Towards a Graph Transform Model
For Configuration Management Environments

Dennis Heimbigner and Steven Krane

CU-CS-383-88 January 1988

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

The authors gratefully acknowledge the support of the National Science Foundatioﬁ grant #DCR-8745444 in corporation with the
Defense Advanced Research Project Agency and the IBM Corporation

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Towards a Graph Transform Model for
Configuration Management Environments
(An Extended Abstract)

Steven Krane, IBM T. J. Watson Research Centerv
Dennis Heimbigner, University of Colorado

To appear in Proceedings of the International Workshop on Software Version and
Configuration Control, Grassau, FRG 27-29 Jan. 1988

A concise, simple model for software configuration management that subsumes many exist-
ing systems is described. The model is based upon transactions and the transformation of
graphs to describe the steps in configuration management.

1. Introduction

Software configuration management is the process of controlling the changes to a col-
lection of software objects. A number of software configuration management systems have
been proposed and a smaller number have been implemented effectively (e.g., [1,3-5]).
Despite the amount of research in this area, there seems to be little agreed-upon terminology
and even less understanding of how the various existing configuration managers relate to
each other.

The goal of this paper is to define a concise and consistent model for software
configuration management environments that subsumes a large number of configuration
managers (in particular Odin [1], Adele [3], Make [4], and DSEE [5]). Given such a general
model, it is possible to compare and contrast systems using their representation within this
general framework. It is also possible to define and implement the general model to explore
its utility as a replacement for these other configuration management systems.

The rest of this paper is devoted to a description of the model. It is necessarily brief;
in particular, it does not consider issues of execution strategies or issues of implementation.
It also assumes that the reader has some familiarity with the configuration managers listed in
the references.

2. Modelling Approach

Our approach to modelling explicitly recognizes the transactional nature of
configuration management. That is, such systems are driven by requests for software
objects. This explicit transaction orientation is one feature that differentiates our model from

most others 1.

In the model, an object request is an (incomplete) specification of a specific software
object or objects (sometimes termed the producr). This specification of an object also
includes the specification of the attributes of that object such as "compilation_level =
OPTIMIZE". The process for obtaining a product consists of: (1) repeatedly transforming an
object specification to produce another, more detailed, specification and (2) executing that

"Most systems we have encountered implicitly are transactional in nature, but there is virtually no mention of this in the literature.

specification.

All specifications in this model take the form of attributed graphs. The nodes of the
graph are software objects. Each type of software object has an associated set of attributes.
The edges represent various relationships over the objects. In the model described subse-
quently, the relationships are is-component-of and derives. The is-component-of relation
represents the use of one component by another component. We define component to refer
to a non-re-derivable object. The derives relation represents the transformation of one object
into another object. Both relations may be viewed as special cases of a more general
depends-on relation.

Two kinds of generic transformation processes are used in this model: extension and
attribution. An extension transformation takes a graph and adds nodes and edges
corresponding to some particular relationship. This transformation actually changes the
shape of the graph. An attribution transformation propagates the values of attributes to any
nodes that do not have the attribute values defined. As we shall see, the model operates by
alternating extension and attribution transformations. The process continues until all rela-
tions have been extended and all attributes propagated.

2.1. Knowledge Base

The transformation processes described here utilize an underlying knowledge base
containing the following information: (1) All software objects, (2) Transformation rules
(both for extension and attribution), (3) Relationships between objects, and (4) the attribute
values of objects.

The depends-on relation is a principal kind of information contained in the knowledge
base. In our model this information is conveniently represented in two graphs: the Uses
Graph and the Type Graph. They appear in one form or another in almost all configuration
managers. As shown below, the way in which these graphs are used distinguishes one system
from another.

The Uses Graph (UG) defines transformation rules for specific software objects. It
may specify both extension and attribution rules. The nodes of this graph are software
objects and the edges are instances of the the derives relation. The Make system uses a
Makefile, which is mostly a representation of the UG. For example, a Makefile might con-
tain the following dependency line:

test.o: test.c test.h
This line represents the specific dependency information for the specific object test.o.

The Type Graph (TG) also contains transformation rules. However, these rules do not
involve specific objects; rather they are generic rules that are defined in terms of object types.
The nodes in this graph are the types and the edges represent the derives relationship. These
edges can be used to extend a graph along the derives relation. In the Make system, this
graph is represented by the so-called default rules such as this:

.C.0:
<commands to convert a .c object to a .o object>

Associated with the TG is a set of graphs isomorphic to the TG: they have the same
shape as the TG but carry different semantic information. Each graph (termed an Anribute
Graph (AG)) in this set defines the propagation rules for some specific attribute. Some of the
attributes that might be covered in the set of AG’s are: 00, debug, and name.

2.2. Model Overview

In the following sections we describe the steps in the model by characterizing the
graphs they produce. In all cases these graphs are the result of applying a transformation pro-
cess to a previous graph (except for the initial transaction request). Where possible, refer-
ence is made to the existence of specification languages for describing these transformation
processes. Finally, we refer back to the system that drove the inclusion of the graph in the
model. See Appendix I for a pictorial representation of the model.

2.2.1. Partial System Graph

The Partial System Graph (PSG) represents an initial, very high level, specification of
the object(s) (i.e., product) to be produced. In practice, this graph usually consists of a single
root (object). In Adele, the PSG is represented by the configuration. In Make it is the label
used to describe what to make (e.g. make compiler). In DSEE it is the root of the loaded Sys-
tem model. In Odin it is the combination of the type of the product plus some source object.
Typically the PSG is selected by a request from the user (make compiler, build, etc).

2.2.2. System Graph

The System Graph (SG) represents the list of non-re-derivable elements needed to
build the product. This is sometimes called a composition list[2]. The SG is derived by
starting with the PSG and extending that graph via the is-component-of relationship. In most
systems, this relationship is statically defined in the knowledge base. Thus the extension
process consist of the trivial operation of attaching that static information to the PSG.

Adele is an example of a system in which this process is dynamic. Since the Adele
system supports Modula-2, it separates our notion of a component into Modula-2’s interface
plus a body. An Adele Configuration is a high level specification of the process for building
the composition list. It is a rule based language that describes attribute selection and con-
straints on those attributes. The attributes generally describe the various dimensions of
multi-version properties. For example, the rule "system = UNIX and machine = MC68000"
directs the selection of particular bodies of the needed interfaces. It is important to note that
this selection of specific bodies then drives the selection of further interfaces, which in turn
drive the selection of more bodies. For example it may be that the MC68000 body of the
"device_driver" interface uses the "m68_device_generic" interface while no other body for
"device_driver" does. Given the Adele Configuration (PSG) and the state of the knowledge
base it is quite possible to end up with different composition lists.

2.2.3. Bound System Graph

The Bound System Graph (BSG) represents the result of binding a fully qualified name
to the components needed to construct the product. The BSG is constructed from the SG by
setting the values of the name-related attributes. The rules for specifying the values are
taken from the knowledge base and depend on the particular system being modelled.

The names as represented in the SG typically represent the base names of the needed
components. These names do not include information about version identification, revision
identification within that version, or any hint as to the physical location of the object. The
process that constructs the BSG assigns appropriate values to the version, revision, location,
and other attributes associated with the nodes of the BSG graph.

In Make, this process does not exist. The names given in the makefile are the fully
qualified names. In DSEE, on the other hand, the Configuration Thread (CT) provides a

rather elegant mechanism for the high level specification needed to complete the version and
revision attributes. An English paraphrase of a typical CT could read as "Use all of the files
that I have checked out plus release 5 of foo.bar and release 4 of everything else."

2.2.4. System Object Graph

The System Object Graph (SOG) describes the complete set of objects needed for the
construction of the product. In this context, complete means that both the non-re-derivable
objects mentioned above and those associated re-derivable objects are part of the final pro-
duct. This graph is constructed by extending the BSG via the derives relationship. This
transformation adds both new software objects as nodes and new edges of the derives rela-
tionship. For most systems there is no language to specify the process for building the SOG.
One obvious area of future research is to explore what constructs are needed to specify this
process.

In most systems, the dependency information, as described in the UG and TG,
specifies the transformation rules for extending the derives relation. We distinguish the gen-
eric rules found in the TG from the specific rules found in the UG. In Odin the TG is used
exclusively; there is no notion of the UG. The addition of edges and nodes to the BSG is
inferred solely from the type structure described in the TG. Systems other than Odin rely
heavily, if not exclusively, on the UG. In Make, for example, test.o may be taken to
specify a rule for extending the BSG by connecting together the nodes test.o,
test.c, and test.h. Make can also use default rules (its equivalent of the TG) to infer
the addition of new edges and nodes to the BSG. Make can only perform single step
inferencing, while Odin can perform multiple-step inferencing. Thus, in this sense Odin has
a more powerful inferencing mechanism than Make. Adele and DSEE, by contrast, do not
have any form of inferencing at all.

2.2.5. System Configuration Graph

The System Configuration Graph (SCG) is the last graph in the transformation
sequence (at least when modelling [1, 3-5]). All the information needed to construct the final
product is explicit in this graph. This process is also an attribution process. It takes the SOG
and sets the values of some attributes for some objects in the BSG. Some of these values are
taken from the original transaction specification. Others are implicitly added by the system
(e.g., the tool attribute). The next step propagates the attribute values to all nodes of the
graph. The rules that drive the propagation are specified in the knowledge base. For exam-
ple, if the user requested that the product’s debug attribute value be true, then this value
would be set accordingly in the PSG. It is here, in the more detailed graph that the value for
the debug attribute is propagated to all the appropriate objects.

Odin makes use of this process more so than the others. This is where the Attribute
Graphs described earlier are most often used. For the above example, both the fool and
debug AG’s would be used to finish decorating the graph.

3. Future work

The basic structure of this model has been defined and our next step will be to formal-
ize it and to use it to model the details of the other configuration management systems men-
tioned previously. This will require us to define the exact set of rules (both general and
specific) to be used in the graph transformations such that the effect is the same as the system
being modelled.

We believe we understand how to model the transformations embodied in the systems
referenced in this paper. But much work remains to be done to capture the execution seman-
tics. Some of the issues to be addressed in the execution process are:

(1) Change propagation: Most systems decide when to re-construct an object based on
time stamps. However, there are other possibilities such as direct comparison of old
and new values, and tool based equivalence tests.

(2) Tool Scheduling: Given a specification, it may be possible to execute portions of the
specification in parallel (for example, to speed up the execution time).

(3) Evaluation Strategies: Most of the systems described use a lazy evaluation scheme.
Other evaluation schemes exist (eager, opportunistic, etc). To what degree do these
other strategies impact the model?

Finally, we intend to construct a working software configuration manager based on this
model in order to evaluate its utility. One aspect of this research will be to analyze tech-
niques to optimize the overall process.

4. Acknowledgements

The authors gratefully acknowledge the support of the National Science Foundation
grant #DCR-8745444 in cooperation with the Defense Advanced Research Project Agency,
and the IBM Corporation.

5. References

1. G. M. Clemm, The Odin System - An Object Manager for Software Environments, PhD
Thesis, Dpt of Computer Science, University of Colorado, Boulder CO , 1986.

2. E. Cristofor, T. A. Wendt and B. C. Wonsiewicz, ‘‘Source Controls + Tools = Stable

Systems”’, Proceedings 4th Computer Science and Applications Conference, October
1984, 527-532.

3. J. Estublier, ““A Configuration Manager: The ADELE. Data Base of Programs’’,
Workshop on Software Engineering Environments for programming-in-the-large,
Harwichport, Mass, June 1985, 140-147.

4. S. I. Feldman, ‘“Make - A Program for Maintaining Computer Programs”’, Software -
Practice and Experience 9, 4 (April 1979), 255-265.

5. D. B. Leblang, R. Chase and G. M. McLean, “The Domain Software engineering
environment for large scale software development’’, JEEE Conference on
Workstations, November 1985.

Steven Krane (krane@boulder.colorado.edu)
Dennis Heimbigner (dennis@boulder.colorado.edu)
Computer Science Department

University of Colorado

Boulder, CO 80309-0430

USA

Appendix I

Component Selection Process
(extension)

_ _____________
i
I
Name Binding Process :
(attribution) S~ ;
-
1
i
1
i
i
1
i
i
A

-7 Type
s -7 ' Graph

Derivation Process - |
(extension) !
I

5

Parameter Binding Process
(attribution)

Pictorial Representation of the Graph Transform Model

