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Anti-reflection coatings are typically applied to a surface to reduce optical reflection at an

interface. These coatings are usually in the form of thin films with matching refractive indices, but

only are efficient for a small waveband. This idea can be mimicked by structuring (e.g. cutting par-

allel grooves) on a surface to change the effective dielectric constant and can potentially be efficient

across a larger band of wavelengths. Surface structuring methods for anti-reflection purposes has

been shown to be a viable method at the National Institute of Standards and Technology (NIST)

and at the University of Michigan [1].

Two cameras are being developed for CCAT: The Short-Wavelength Camera (SWCam) and

the Long-Wavelength Camera (LWCam). SWCam will have a primary band centered at 350µm

and LWCam will cover 6 spectral bands from 750µm to 3.3mm. SWCam may also cover secondary

bands at 450 and 200µm as well. These bands are too wide for thin film anti-reflective coatings to

be efficient and materials with the appropiate index of refraction do not exist.

Silicon is chosen as the lens material due to its low loss in the submillimeter band. The

downside to silicon is a high index of refraction which causes an increase in reflection at the air-

silicon interface and so a broadband anti-reflection solution must be achieved.

I have modeled the physical situation and have used the model to do simulations to verify

the performance of anti-reflective structuring. The model allows for multiple layers of structures

having different depths and widths. We are able to specify wavelength and angle of incidence,

allowing one to integrate over full Gaussian beams. We have confidence in the model due to it

producing known solutions in limiting cases. Future work entails further simulations to determine

what tolerances we must achieve in fabricating the lenses to allow for reflections of less than 1%

across the full bandwidth.
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Chapter 1

Introduction

1.1 CCAT

CCAT is being designed to be located at 5600m on Cerro Chajnantor in the Andes mountains

in Chile. The goal of CCAT is to have the capability for deep, large area multicolor submillimeter

surveys. Science objectives include galaxy formation and evolution throughout the history of the

Universe; hot gas pervading clusters of galaxies; star formation, protoplanetary disks, and debris

disks in the Milky Way galaxy; and Kuiper belt objects in the outer reaches of the Solar System.

The telescope will have a 25m diameter aperture with a 1 degree field of view and 3.5 arcseconds

of angular resolution at 350µm. The telescope aims to function at wavelengths of 200 - 2,200µm

[2]. To accomplish this, two cameras are being developed for CCAT: the Long-Wavelength Camera

(LWCam) and the Short-Wavelength Camera (SWCam).

1.2 LWCam

LWCam will have a 20 arcminutes field-of-view and will cover 6 spectral bands from 750µm

to 3.3mm. The camera will utilize either microwave kinetic inductance detectors (MKIDs) or

transition-edge sensor (TESs), with MKIDs being the most attractive option due to the ease of

multiplexing. TESs have recently been successful (ACT, BICEP2, Keck Array and others) so they

are being considered. Because of LWCam’s angular resolution, wide field-of-view, broad spectral

coverage, and large mapping speed, the camera will be useful in studies of dusty, star-forming

galaxies [3].
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1.3 SWCam

SWCam will also use MKID technology, but will have the primary band centered at 350µm.

The goal of SWCam is also to observe dusty, star-forming galaxies, but will observe at shorter

wavelengths than LWCam [4]. The combination of LWCam and SWCam will allow for CCAT to

study a large continuum in spectra.



Chapter 2

Two Layer Dielectric

2.1 Two Layer Case

Imagine we have the optical system of Air - Layer1 - Layer2 - Air. Layer1 has index of refrac-

tion n1 and thickness d1. Similarly for Layer2. We have 3 interfaces (Air/Layer1, Layer1/Layer2,

and Layer2/Air) that we can assign reflection and transmissions coefficients to (I will call them

ri and ti, where i is the 1st, 2nd, or 3rd interface). A schematic of this system can be seen in

figure[2.1].

Figure 2.1: Schematic of two layer case
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2.2 Calculating the Transmitted Field

The reflection coefficients are calculated from the Fresnel equations as r = n2 cos θt−n1 cos θi
n2 cos θt+n1 cos θi

[5] for a wave traveling in a medium of n1 towards a medium of n2. Assuming no absorption,

R+ T = r2 + nt cos θt
ni cos θi

t2 = 1 so the transmission coefficient is just t =
√

ni cos θi
nt cos θt

(1− r2).

The delay in phase, δ, of two adjacent rays (one of which has been reflected) is given as

δ = k0Λ, where Λ = 2nd/ cos θt and k0 = 2π/λ [5]. We can then find θt via Snell’s Law. We then

find δi for Layer1 and Layer2.

Figure 2.2: Schematic of a few cases of reflection for a two layer system

Now let us consider only the light that is transmitted through the entire system. Let E be

the transmitted wave normalized to the original wave. If no reflections occur we will just have

E = t1t2t3 (this is the first wave drawn in figure[2.2]). Now let’s consider a wave reflected on the

second interface, which is then reflected off the first interface, and then transmitted out through the

system (the second wave drawn in figure[2.2]). This would be written as E = t1t2t3r1r2exp(−iδ1)

with respect to the first wave. Similarly, if the bounce occurred between interface 3 and 2 (the

fourth wave drawn in figure[2.2]), E = t1t2t3r2r3exp(−iδ2). Another situation can occur: a wave

is reflected between interface 3 and interface 1 and is transmitted between interface 2 twice (once
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for each reflection) before leaving the system (the third wave drawn in figure[2.2]). This looks like

E = t1t2t3r3t2r1t2exp(−i(δ1 + δ2)). Additionally, we can observe any combination of these few

cases.

For a transmitted wave we will always have the combination of t1t2t3 effecting the amplitude

and some combination of reflections. I claim that we can write any combination of reflections

resulting in transmission as

E = t1t2t3(r1r2e
−iδ1)m(r2r3e

−iδ2)n(r1r3t
2
2e
−i(δ1+δ2))p

where m,n, and p = 0, 1, 2, 3.... It should be noted that there is an additional phase change of π

for a reflected wave if the wave if traveling in a medium of n1 and is reflected off a medium of n2,

where n2 > n1.

The amplitude of a transmitted wave reduces very quickly with the number of reflections so

we can just do three nested for loops and computing will still go fairly quickly.

At the end we just sum up all the transmitted waves and find the transmitted irradiance by

multiplying the total transmitted field by its complex conjugate:

Etot =
∑

E

It = Etot ∗ conj(Etot)

Now, although this does converge rather quickly, it is still not ideal to compute the trans-

mitted field this way. Three nested for loops is fairly fast to compute, but when we get to the 5

layer case we would need 15 nested for loops which is not ideal. Since we end up summing all the

transmitted waves, we can write the calculation as

Etot =

m′∑
m=0

n′∑
n=0

p′∑
p=0

t1t2t3(r1r2e
−iδ1)m(r2r3e

−iδ2)n(r1r3t
2
2e
−i(δ1+δ2))p

Let m′, n′, and p′ →∞, then we have the triple infinite sum:
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Etot = t1t2t3

∞∑
m=0

∞∑
n=0

∞∑
p=0

(r1r2e
−iδ1)m(r2r3e

−iδ2)n(r1r3t
2
2e
−i(δ1+δ2))p

The infinite sum
∑∞

k=0(ρe
−iθ)k will converge to e−iθ/(e−iθ − ρ) given that |ρ| < 1. For any

interface ri ≤ 1, and if ri = 1 then the corresponding ti = 0, so we can still apply the convergence

of the above infinite sum to our calculation. This results in:

Etot =
t1t2t3e

−2i(δ1+δ2)

(e−iδ1 − r1r2)(e−i(δ1+δ2) − r1r3)(e−iδ2 − r2r3)
.

This convenience allows us to compute the irradiance much quicker.

2.3 Sanity Checks

In the limit that Layer1 and Layer2 have the same index of refraction, we know that the

fractional reflection should be zero when δ = 2mπ,m = 1, 2, 3, ...

For the case with n1 = n2 = 2.5, d1 = d2 = 1mm and normal incidence, the fractional

reflection should be zero at wavelengths of λ = 10/m millimeters, which is what we see in figure[2.3].

Figure 2.3: Two layer case where both layers have the same dielectric constant. We expect to see
a minimum in fractional reflection at λ = 10/m millimeters, m = 1, 2, 3, ...

We should also see a minimum at λ = 5/m millimeters if the first layer is air, as in figure[2.4].
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Figure 2.4: Two layer case where the first layer is air and the second layer has an index of refraction

of 2.5. We expect to see a minimum in fractional reflection at λ = 5/m millimeters, where m =

1, 2, 3, ...

We can make three other simple checks: as the index of refraction of a layer goes to ∞ we

should see complete reflection (figure[2.5]); if both layers have the same index of refraction as air,

we should see complete transmission (figure[2.6]); as θ → π/2 we should see complete reflection

(figure[2.7]).
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Figure 2.5: Two layer case where the first layer has index of refraction approaching ∞. We expect
to see a total reflection.

Figure 2.6: Two layer case where both layers are air. We see complete transmission, as expected.
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Figure 2.7: Two layer case where the angle of incidence is π/2. At this angle we expect to see total
reflection.



Chapter 3

Three Layer Dielectric

3.1 Three Layer Case

We now add a third layer of dielectric material so our system looks like Air - Layer1 - Layer2

- Layer3 - Air.

Figure 3.1: Schematic of Three Layer case

3.2 Calculating the Transmitted Field

We use the same process as before, and note that now any transmitted wave can be written

as
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E = t1t2t3t4(r1r2e
−iδ1)a(r1r3t

2
2e
−i(δ1+δ2))b(r1r4t

2
2t

2
3e
−i(δ1+δ2+δ3))c

∗ (r2r3e
−iδ2)d(r2r4t

2
3e
−i(δ2+δ3))e(r3r4e

−iδ3)f

where a, b, c, d, e, and f = 0, 1, 2, ...

This expression accounts for the reflections between any two layers occurring in any com-

bination. To find the total transmitted field we sum all the possibilities. Using our infinite sum

technique as previously, we conclude that

Etot = t1t2t3t4e−i(3δ1+4δ2+3δ3)

(e−iδ1−r1r2)(e−i(δ1+δ2)−r1r3t22)(e−i(δ1+δ2+δ3)−r1r4t22t23)

∗ 1

(e−iδ2 − r2r3)(e−i(δ2+δ3) − r2r4t23)(e−iδ3 − r3r4)

3.3 Sanity Checks

First, we check that we see minima in fractional reflection where expected. If each layer

has index of refraction equal to 2.5 and each layer is 1mm thick, we expect to see a minimum at

λ = 15/m millimeters (figure[3.2]).
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Figure 3.2: Three layer case where each layer has the same index of refraction. We expect to see a

minimum in fractional reflection at λ = 15/m millimeters

We can also check that the three layer case reduces to the two layer case by letting the first

layer be air (figure[3.3]) and comparing to figure[2.3].

Figure 3.3: Three layer case where the first layer is air and the other two layers have the same

index of refraction. We expect this case to be representative of the two layer case seen in Figure

2.3.
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3.4 Quarter Stack

We can also observe the usefulness of our multilayer method by looking at quarter wavelength

matching (figure[3.4]). The black line is drawn at a fractional reflection of 1%. Note the broad

band minimum near 5mm that occurs by matching n1 = n3 =
√
n2 and requiring n1d1 = λ/4 [7].

We will see that by adding more layers we can improve the bandwidth of our minimum.

Figure 3.4: Three layer quarter stack case where n1 = n3 =
√
n2. We expect to see a minimum at

λ = 4n1d1 = 4 ∗ 2.5.25 ≈ 5.03mm. This agrees with what the simulation shows.



Chapter 4

Five Layer Dielectric

4.1 Five Layer Case

We now add two more dielectric layers to our system which now looks like Air - Layer1 -

Layer2 - Layer3 - Layer4 - Layer5 - Air.

Figure 4.1: Schematic of Five Layer case
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4.2 Calculating the Transmitted Field

Again, we can write any transmitted wave as

E = t1t2t3t4t5t6(r1r2e
−iδ1)a(r1r3t

2
2e
−i(δ1+δ2))b(r1r4t

2
2t

2
3e
−i(δ1+δ2+δ3))c(r1r5t

2
2t

2
3t

2
4e
−i(δ1+δ2+δ3+δ4))d

∗ (r1r6t
2
2t

2
3t

2
4t

2
5e
−i(δ1+δ2+δ3+δ4+δ5))e(r2r3e

−iδ2)f (r2r4t
2
3e
−i(δ2+δ3))g(r2r5t

2
3t

2
4e
−i(δ2+δ3+δ4))h

∗ (r2r6t
2
3t

2
4t

2
5e
−i(δ2+δ3+δ4+δ5))i(r3r4e

−iδ3)j(r3r5t
2
4e
−i(δ3+δ4))k(r3r6t

2
4t

2
5e
−i(δ3+δ4+δ5))`

∗ (r4r5e
−iδ4)m(r4r6t

2
5e
−i(δ4+δ5))n(r5r6e

−iδ5)o

This is a long expression, but actually very straightforward as we just need to look at all

the possible reflections between any two layers. Computing this using nested for loops would have

been tedious and long, as it would have required using 15 nested loops. Alternatively, we use the

infinite sum method as before to find

Etot = t1t2t3t4t5t6e−i(5δ1+8δ2+9δ3+8δ4+5δ5)

(e−iδ1−r1r2)(e−i(δ1+δ2)−r1r3t22)(e−i(δ1+δ2+δ3)−r1r4t22t23)(e−i(δ1+δ2+δ3+δ4)−r1r5t22t23t24)

∗ 1

(e−i(δ1+δ2+δ3+δ4+δ5) − r1r6t22t23t24t25)(e−iδ2 − r2r3)(e−i(δ2+δ3) − r2r4t23)(e−i(δ2+δ3+δ4) − r2r5t23t24)

∗ 1

(e−i(δ2+δ3+δ4+δ5) − r2r6t23t24t25)(e−iδ3 − r3r4)(e−i(δ3+δ4) − r3r5t24)(e−i(δ3+δ4+δ5) − r3r6t24t25)

∗ 1

(e−iδ4 − r4r5)(e−i(δ4+δ5) − r4r6t25)(e−iδ5 − r5r6)

4.3 Sanity Checks

We again compute a couple limiting cases to ensure accuracy. Letting all the layers have index

of refraction equal to 2.5 and thickness of 1mm, we expect to see minima in fractional reflectional

at λ = 25/m mm (figure[4.2]).
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Figure 4.2: Five layer case where each layer has the same index of refraction. We expect to see a

minimum in fractional reflection at λ = 25/m millimeters.

We can also check that the five layer case reduces to the three layer case by letting the first

two layers be air (figure[4.3]).

Figure 4.3: Five layer case where the first two layers are air and the remaining three layers have

the same index of refraction. We expect this case to be representive of the three layer case seen in

Figure[3.2].
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4.4 Quarter-Quarter Stack

By simulating a quarter-quarter stack we can see the broadband effects for our multilayer AR

coating. We let n1 = 2.51/4 as in the quarter stack case, but now let n2 = 2 and n3 = (n2/n1)
2 [8] to

produce a minima in fractional reflection. The black line is drawn at 1% fractional reflection. Note

that for the quarter-quarter stack we see a fractional reflection of less than 1% from approximately

3.75 - 8mm (figure[4.4]). This is much better than the minima we see in the quarter stack case of

approximately 3.75 - 6mm in figure[3.4].

Figure 4.4: Five layer quarter-quarter stack case. We expect to see a minimum at λ = 4n1d1 =

4 ∗ 2.5.25 ≈ 5.03mm. This agrees with what the simulation shows. Note the broader minimum

under 1% fractional reflection compared to that of Figure 3.4.



Chapter 5

Grooved Structure

Using thin films is not ideal for a very broadband AR coating. Alternatively, we suggest

cutting parallel grooves into the lens material with a dicing saw (figure[5.1]). Cutting grooves that

are much smaller than the wavelengths of the incoming light will allow the light to see an effective

index of refraction that is less than the uniform material [6].

Figure 5.1: Schematic showing parallel grooves on a substrate of dielectric constant ε with grooves

of width 2dg and groove period of 2`g. This schematic reflects our two layer case where the first

layer is the grooves and the second layer is a uniform dielectric. Note that there are two senses of

polarization of light due to grooves being parallel [6].
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We may additionally cut multiple layers of grooves at different depths and thicknesses, allow-

ing us to choose whichever index of refraction we choose to create a quarter-quarter stack system

that will allow for very broadband transmission. Because the structure is parallel grooves, the

impedance will depend on the polarization the incoming light. We can treat the structure as a

capacitor and find the capacitance per unit depth and length since C = ε A
4πd , where A is the area

of the plates, d is the distance between the plates (or groove thickness in our case), and ε will be

the dielectric constant of the lens material. We can then simply find the impedance as Z = 1/C:

Z‖ =
`g

dgε+ `g − dg

Z⊥ =
`g − dg
`g

+
dg
`gε

From the impedance we can find the effective index of refraction for each sense of polarization.

This method will allow for us to simulate what tolerances must be achieved in fabrication to result

in a large bandwidth AR coating with satisfactory fractional reflection.
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Chapter 6

Further Work

Further work includes using the model to simulate what tolerances must be achieved to result

in a lens with a large bandwidth having less than 1% fractional reflection. We will integrate over

beam, f/#, and wavelength. Loss also needs to be accounted for. Tolerances need to be known

for the index of refraction of the silicon, groove depths, and groove thicknesses. Fabrication of the

lenses will take place at NIST using a dicing saw to cut the grooves into the lenses. Testing using

a Vector Network Analyzer will also be done at NIST to examine the reflection properties of the

lenses after fabrication. We will also use a Fourier Transform Spectrometer at CU to test the lenses

over a very large range of frequencies.



Chapter 7

Conclusions

We have shown the derivation, soundness, and usefulness of an analytic approach towards

calculating the transmitted electric field through a multilayer dielectric system. The usefulness

comes namely in the fact that we can achieve a broadband anti-reflection coating by using the

quarter stack or quarter-quarter stack method. We note the improvement in bandwidth of minimum

reflection of the quarter-quarter stack over the simpler quarter stack approach. This improvement

can be seen below (repeat of figure[3.4] and figure[4.4]) in that the quarter stack approach shows

fractional reflection less than 1% from approximately 3.75-6mm while the quarter-quarter stack

shows fractional reflection less than 1% for approximately 3.75-8mm.

Figure 7.1: Three layer quarter stack case where n1 = n3 =
√
n2. We expect to see a minimum at

λ = 4n1d1 = 4 ∗ 2.5.25 ≈ 5.03mm. This agrees with the simulation.
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Figure 7.2: Five layer quarter-quarter stack case. We expect to see a minimum at λ = 4n1d1 =

4 ∗ 2.5.25 ≈ 5.03mm. This agrees with the simulation. Note the broader minimum under 1%

fractional reflection compared to that of Figure 7.1.

We also note that to physically achieve the proper dielectric constants in fabrication that we

can cut parallel grooves (figure[7.3]) into the silicon at different depths and widths as opposed to

using thin films. By using the grooved method, we can control the effective dielectric constant that

light sees given that the groove spacing is much less than the wavelength of the impeding light.

This control will allow us to use index matching methods to create a broadband AR coating as

demonstrated.
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Figure 7.3: Schematic showing parallel grooves. Cutting the materical such that the groove spacing

is much less than the wavelength of impeding light allows us to control the effective dielectric

constant of the material. Ee can then use impedance matching techniques to achieve a broadband

AR coating [6] .

Finally, we aim to use this model to simulate the tolerances that must be achieved during

fabrication to result in fractional reflection of less than 1% across the desired bandwidth. We will

be able to find the tolerances in material, groove thickness, and groove depth that must be realized

to achieve the necessary AR coating. Testing after fabrication will take place at NIST and CU to

verify our expectations.
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