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Zhou, Shan (Ph.D., Economics)

Estimation of a Nonparametric Model of Profit Frontiers with an Application for the Swedish Paper

Industry

Thesis directed by Professor Carlos Martins-Filho, Chair

In this thesis, I extend the conditional quantile frontier approach developed in Aragon et al.

(2005) for production functions to profit functions. Instead of estimating a conventional profit

function, that envelops all observed data and whose estimation is sensitive to outliers, I first define

a class of profit frontiers based on conditional quantiles of order α associated with an appropriate

joint distribution of profit, input and output prices. I show that these conditional quantiles are

useful in defining and ranking production units in terms of profit efficiency. Then I propose a

nonparametric conditional quantile estimator for the α-profit frontier by integrating a suitably

defined estimator for the profit density. My estimator is inspired by that proposed in Martins-Filho

and Yao (2008), but instead of adopting their traditional Rosenblatt-density estimator as a basis

for the α-profit frontier, I use the class of density estimators introduced by Mynbaev and Martins-

Filho (2010). I establish consistency and asymptotic normality of the α-profit frontier estimator.

The estimator is more robust to the outliers since it does not envelope the data. Additionally,

under some smoothness conditions on the distribution function, the bias of the proposed estimator

converges to zero faster than that of an estimator constructed based on the Rosenblatt density

estimator. A Monte-Carlo simulation study seems to support the asymptotic results and shows

that the proposed estimator has better performance than its competitors in some scenarios. In the

second chapter, I use the α-quantile frontier estimator proposed in the first chapter to study profit

efficiency in the Swedish paper industry. I also study production efficiency by using a modification

of our proposed estimator.
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Chapter 1

Estimation of a Nonparametric Model of Profit Frontiers: Theory

1.1 Introduction

Notions of efficiency permeate firm decision making in the classical microeconomic theory of

the firm. For example, given a technology, firms are assumed to produce maximum output given a

set of inputs; minimize cost and and maximize profit. However, there exists voluminous empirical

evidence that suggests not all producers engage in successful optimizing behavior. (For instance,

Berger and Humphrey (1993), Maudos et al. (2002), Färe et al. (2004), etc.) In various settings

it is useful to measure and study the magnitude and nature of the inefficiency that pulls firms

away from the relevant efficient frontier, be it a production, cost or profit function. Starting with

Farrell (1957), a vast literature has emerged focusing on production or technical efficiency. These

studies usually postulate a common production frontier for all firms, and measure the technical

efficiency by a suitably defined distance between the production plan of each firm and the frontier.

However, the ultimate objective of a firm is to maximize profit. Besides technical efficiency, a

major component of a firm’s profit-seeking behavior involves allocative efficiency, which captures

the ability of choosing optimal proportions of inputs and outputs in the production process. In this

paper, we provide a way of measuring and estimating a profit function and profit efficiency, which

represents the combined effect of both technical and allocative efficiency. The basic idea, inspired

by Aragon et al. (2005), is to describe profit functions at different efficiency levels as quantile

functions of a suitably defined conditional distribution. We then estimate them by an improved

nonparametric kernel method.
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Empirical and theoretical models for measuring efficiency and estimating frontiers have fallen

into two broad categories; stochastic and nonstochastic models of frontier. The basic principle in

stochastic models is to describe the variable of interest (output, cost, profit) as being generated by

a sum of the function of interest and a non-observed error term consisting of a noise and an ineffi-

ciency term. It was originally proposed by Aigner et al. (1977) and Meeusen and van den Broeck

(1977) in the context of production functions. Greene (2008) and Kumbhakar and Lovell (2000)

provide extensive reviews and applications of these models. Estimation of these models is normally

conducted by maximum likelihood methods. Considering the possibility of mis-specification of

parametric frontier models, Fan et al. (1996) investigate semiparametric estimation of a stochastic

frontier model with nonparametric production function. Recent developments in the estimation

of nonparametric stochastic frontier models include, among others, Kumbhakar et al. (2007) and

Martins-Filho and Yao (2015).

A critical drawback of stochastic frontier models is that they generally require strong distri-

butional assumptions regarding the inefficiency and noise terms, which are sometimes impractical

for certain models. Nonstochastic frontier models assume that all observations lie inside the frontier

and any deviation from the frontier is caused by inefficiency. The most popular nonparametric ef-

ficiency estimators are based on the idea of estimating the attainable set by the smallest set within

some class that envelops the observed data. Data envelopment analysis (DEA) and free disposal

hull (FDH) estimators are among the most popular and have been widely used in efficiency anal-

ysis since Charnes et al. (1978). The FDH estimator of the frontier is the free disposal hull of the

observations and the DEA estimator is the convex cone of the FDH estimator. They rely on linear

programming methods to search for the most efficient units, which are then connected to form a

minimum enveloping frontier. DEA and FDH are very appealing to researchers because they rely

on very few assumptions and are easy to implement; however, they suffer some critical drawbacks.

Park et al. (2000, 2010) and Simar and Vanhems (2012) obtain general asymptotic properties and

convergence rates of FDH and DEA estimators under certain assumptions. Convergence rates are

also obtained in Korostelev et al. (1995); Kneip et al. (1998) and Gijbels et al. (1999) in special
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cases.

Similar to other nonparametric estimators, DEA and FDH estimators suffer from the “curse

of dimensionality.” The convergence speed of these estimators becomes much slower as the dimen-

sionality of the problem increases. Another major drawback of these methods is that the estimation

of the frontier is highly influenced by the most efficient firms, outliers or extreme values. Hence,

these methods are not robust and highly sensitive to a small set of observations. Recently, Simar

and Zelenyuk (2011) propose stochastic versions of the FDH and DEA estimators by allowing noise

into the model, but the properties of these estimators remain unknown.

Considering these drawbacks, Cazals et al. (2002) introduce the concept of production frontier

of order m and provide a robust envelopment estimator. Instead of the full production frontier,

they consider the expected maximum output among m firms drawn from the population of firms

using less than a given level of inputs. A new probabilistic interpretation of the frontiers and the

efficiency scores is provided in the paper. Daouia and Simar (2005, 2007) and Daouia et al. (2010)

further extend this idea and link frontier estimation to extreme value theory. Inspired by this

idea, Aragon et al. (2005) introduces a quantile approach in production frontier analysis. They

define a production function of continuous order α based on conditional quantiles of a distribution

that describes the generation of inputs and outputs of a production process. Estimators for these

conditional quantiles are by nature much more robust to outliers as they do not envelope all

observations. Martins-Filho and Yao (2008) improves this method by introducing a smooth kernel

estimator at the cost of introducing a bias term vanishing with the sample size. In this paper,

inspired by Aragon et al. (2005), we define a profit frontier of continuous order α and propose an

easy-to-implement nonparametric estimator for these profit frontiers. Our estimator is based on

the kernel estimator proposed in Martins-Filho and Yao (2008), but we improve on their estimation

method by using a new class of kernels proposed by Mynbaev and Martins-Filho (2010) that promise

to reduce the order of the bias of the class of estimators under study.

Throughout the paper we consider competitive firms with technology represented by a pro-

duction function y = ρ(x) where y ∈ Rd1
+ is an output vector and x ∈ Rd2

+ is an input vec-
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tor.1 Given a vector of input prices w = (w1, · · · , wd2)′ ∈ Rd2
++ and a vector of output prices

p = (p1, · · · , pd1)′ ∈ Rd1
++, profit is given by

π = p′ρ(x)− w′x.

We assume that for all input prices w ∈ Rd2
++ and output prices p ∈ Rd1

++, profit is bounded above

as a function of x, i.e. there exists 0 < Bπ <∞ such that 0 ≤ π ≤ Bπ for all x. One can maximize

profit with respect to x to get the input demand functions x∗ = x(p, w). If the maximum exists,

then the maximum profit is given by

π(p, w) = p′ρ(x(p, w))− w′x(p, w).

The value of maximum profit depends on p and w which are exogenous to the firm’s decision making

process. π(p, w) is what we call the profit function throughout the paper. Given the existence of

inefficiency, our objective is to estimate profit functions and assess firms’ efficiency levels. There

are a number of differences in estimating a profit function compared to estimating a production

function. First, the derivation of the profit function relies on many assumptions on market structure

and it is difficult to justify the assumption of a parametric form for the profit function. Second,

the production function is monotonic nondecreasing with respect to its arguments (inputs), while

the profit function is nondecreasing with respect to some of its arguments (output prices) and

nonincreasing with other arguments (input prices). Perhaps, due to these difficulties there is a

much smaller literature devoted to the analysis of profit efficiency. Existing empirical studies, such

as Ali et al. (1994) and Maudos et al. (2002) are mostly based on parametric stochastic profit

frontier models with very high probability of misspecification. We show in this paper that these

problems can be solved by our nonparametric quantile approach.

The rest of the chapter is divided into four sections. Section 1.2 describes the model and

its estimation in detail. Section 1.3 provides the main assumptions and theorems that establish

the asymptotic behavior of our estimators. Section 1.4 contains a small Monte Carlo study that

1 Throughout the paper we define Rd+ = ×di=1[0,∞) as the d fold Cartesian product of [0,∞); and Rd++ =
×di=1(0,∞).
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implements the estimator, investigates its finite sample properties and compares performances of

smooth and nonsmooth estimators. Section 1.5 concludes. The proofs for all propositions and

theorems are collected in the Appendix, where a set of auxiliary lemmas is also given.

1.2 Model and Estimation

1.2.1 Profit function of order α

Let {(Πi, Pi,Wi)}ni=1 be a sequence of independent and identically distributed random vectors

defined in the probability space (Ω,F ,P) and having the same distribution function as (Π, P,W ),

which is denoted by F with associated density function f . Πi ∈ R+ denotes profit2 , Pi ∈ Rd1
+

denotes a vector of output prices and Wi ∈ Rd2
++ denotes a vector of input prices associated with

a firm or producing unit i. We denote the support of f by Ψ and focus on the set Ψ∗(p, w) =

{(Π, P,W ) ∈ Ψ : P(P ≤ p,W ≥ w) > 0} where P represent probability. Given Cp,w = {P ≤

p,W ≥ w} ⊂ F we let

F (π|Cp,w) = P(Π ≤ π|P ≤ p,W ≥ w) =
P(Π ≤ π, P ≤ p,W ≥ w)

P(P ≤ p,W ≥ w)
. (1.1)

and give the following probabilistic definition of a profit function

π(p, w) := inf{π ∈ [0, Bπ] : F (π|Cp,w) = 1}. (1.2)

As defined, the value of the profit function at (p, w) is given by the “smallest” number that is

larger than or equal to the highest attainable profit given input price larger than or equal to w and

output prices less than or equal to p (vector inequalities are all taken element-wise). By definition,

for any (Πi, Pi,Wi) with Pi ≤ p and Wi ≥ w, we must have Πi ≤ π(p, w) with probability 1. That

is, π(p, w) envelopes all data points.

Similar to Aragon et al. (2005), in the context of production functions, our definition of profit

function suggests the alternative concept of a profit function of continuous order α ∈ (0, 1], as the

2 Of course, profit can be negative in the short run. Here we assume firms earning negative profit will exit the
market eventually.
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quantile function of order α of the conditional distribution of Π given Cp,w. Thus, we define

πα(p, w) := F−1(α|Cp,w) = inf{π ∈ [0, Bπ] : F (π|Cp,w) ≥ α} (1.3)

where F−1(·|Cp,w) is the generalized inverse of F (·|Cp,w). We call πα(p, w) the profit function of

order α. It is apparent that the profit function in (1.2) corresponds to that in (1.3) when α = 1.

By definition F−1(α|Cp,w) is the profit threshold exceeded by 100(1−α)% of firms that face input

prices larger than or equal to w and output prices less than or equal to p. If the conditional

distribution F (·|Cp,w) is strictly increasing at F−1(α|Cp,w) for α ∈ (0, 1], we have

Proposition 1. Assume that for every (p, w) such that P(P ≤ p,W ≥ w) > 0, the conditional

distribution function F (·|Cp,w) is strictly increasing at F−1(α|Cp,w) for α ∈ (0, 1]. Then, for any

(π, p, w) ∈ Ψ∗, we have π = πα(p, w) with α = F (π|Cp,w).

Proposition 1 shows that any vector (π, p, w) ∈ Ψ∗ belongs to some profit function of order

α. That is, the quantile curves {(πα(p, w), p, w) : P(P ≤ p,W ≥ w) > 0, α ∈ (0, 1]} cover the entire

set Ψ∗ of attainable profits, input and output prices. Given a firm or production unit associated

with (πα(p, w), p, w), its profit is larger than 100α% of all units facing the same or less favorable

prices (higher input prices and lower output prices) and less than 100(1 − α)% all other firms or

production units. Thus, the order of the conditional quantile curve to which (π, p, w) belongs,

gives a measure of “profit efficiency” of the firm or production unit (π, p, w) relative to all other

production units facing the same or less favorable prices.

It is clear that, for any fixed (p, w) such that P(P ≤ p,W ≥ w) > 0, πα(p, w) is a monotone

nondecreasing function of α. The following proposition shows that as α → 1, {πα(p, w)}0<α≤1

converge to π(p, w) pointwise, and under additional regularity condition, the convergence is uniform

over a suitably defined set.

Proposition 2. For any fixed (p, w) such that P(P ≤ p,W ≥ w) > 0, limα→1 πα(p, w) = π(p, w).

If, in addition, for every α ∈ (0, 1], πα(p, w) is continuous on the interior of the support of the
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marginal density of (P,W ), denoted by S0, then for any compact subset Φ ⊂ S0

sup
(p,w)∈Φ

|πα(p, w)− π(p, w)| → 0 as α→ 1.

The most natural measure of profit efficiency of a firm or production unit i, compares its

realized profit Πi to the profits attained by all firms facing output prices p ≤ Pi, the output prices

faced by unit i, and input prices w ≥ Wi, the input prices faced by unit i for α = 1. However, in

an attempt to decrease the sensitivity of our measurement of profit efficiency to outliers or extreme

values, we introduce a new measure of efficiency that compares the profit of a production unit to

a profit function of order α. Thus, we say that the firm or production unit i is α-profit efficient if

its profit Πi ≥ πα(Pi,Wi). Otherwise, such firm is labeled α-profit inefficient. Thus, we can define

an α-efficiency score as eα(Πi, Pi,Wi) = Πi/πα(Pi,Wi). Note, that different from efficiency scores

that emerge from traditional frontiers that envelope all possible triples (Πi, Pi,Wi), eα(Πi, Pi,Wi)

may be greater than 1, since the profit function of order α does not provide an upper bound for

the profits of all firms facing prices p ≤ Pi and w ≥Wi .

The concept of profit functions of order α can be easily extended to settings where additional

constraints on profit and technology are appropriate. We give some examples below.

Example 1

Firms may face certain environmental variables z, and these constrain their choices of inputs

x (or outputs y). For example, we consider a firm’s production capacity is an exogenous variable

z ∈ Rd1
++. Then its optimization problem becomes

max
x

p′ρ(x)− w′x,

s.t. ρ(x) ≤ z.

The profit function derived from above problem would be π(z, p, w). In this case, we can adjust

our definition of profit frontier by comparing units with the same or smaller production capacities.

The definition of profit function and frontiers becomes

π(z, p, w) := inf{π ∈ [0, Bπ] : F (π|Cz,p,w) = 1}
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and

πα(z, p, w) := F−1(α|Cz,p,w) = inf{π ∈ [0, Bπ] : F (π|Cz,p,w) ≥ α},

where random vector Z represents the production capacity of a firm. Cz,p,w is a conditional set

{Z ≤ z, P ≤ p,W ≥ w} and F (π|Cz,p,w) is a conditional distribution

F (π|Cz,p,w) = P(Π ≤ π|Z ≤ z, P ≤ p,W ≥ w) =
P(Π ≤ π, Z ≤ z, P ≤ p,W ≥ w)

P(Z ≤ z, P ≤ p,W ≥ w)
.

Therefore, π(z, p, w) represents the smallest function that is larger than or equal to the highest

attainable profit given input prices larger than or equal to w, output prices less than or equal to p,

and with capacity less than or equal to z. πα(z, p, w) is defined by comparing all units with same

or smaller production capacities facing the same or less favorable input and output prices.

Example 2

Consider a firm that has monopoly power. Then, market demand affects output prices and

p becomes endogenous. Assume the market price of output is determined by the inverse demand

function p(y), and the price elasticities of demand are represented by

ε =



ε11 ε12 . . . ε1d1

ε21 ε22 . . . ε2d1

...
...

. . .
...

εd11 εd12 . . . εd1d1


,

where εij = 1/(
dpj
dyi
· yipj ), and pj is the jth element of p(y). Now the optimization problem becomes

max
x

p′(ρ(x))ρ(x)− w′x.

Take the first derivative for the objective function with respect to x, by matrix calculus we have

∂π

∂x
=
∂ρ

∂x
(x) · ∂p

∂ρ
(ρ(x)) · ρ(x) +

∂ρ

∂x
(x) · p(ρ(x))− w,

where ∂ρ
∂x(x) is a d2 × d1 matrix, ∂p

∂ρ(ρ(x)) is a d1 × d1 matrix. The first order condition implies

∂ρ

∂x
(x∗) · [∂p

∂ρ
(ρ(x∗)) · ρ(x∗) + p(ρ(x∗))] = w.
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Assume price elasticity of demand ε does not depend on inputs x, By the definition of εij ,

(∂p∂ρ(ρ(x∗)))ij = (1/εij)(
pj(ρ(x∗))
ρi(x∗)

), where pj(ρ(x∗)) represents the jth element of vector p(ρ(x∗))

and ρi(x
∗) represents the ith element of vector ρ(x∗). Hence,

∂p

∂ρ
(ρ(x∗)) · ρ(x∗) =



(1/ε11)p1(ρ(x∗))+ . . . + (1/ε1d1) pd1(ρ(x∗))

(1/ε21) p1(ρ(x∗))+ . . . + (1/ε2d1) pd1(ρ(x∗))

...
. . .

...

(1/εd11) p1(ρ(x∗))+ . . . + (1/εd1d1) pd1(ρ(x∗))


.

If there is only one input, the first order condition becomes

∂ρ

∂x
(x∗) · p(ρ(x∗))(1 + 1/ε) = w.

Solving the first order condition gives the optimized inputs x(ε11, . . . , ε1d1 , . . . , εd1d1 , w) and thus

the profit function in this setting is π(ε11, . . . , ε1d1 , . . . , εd1d1 , w). For a single output, we can define

an α profit frontier as

πα(ε, w) := inf{π ∈ [0, Bπ] : F (π|Cε,w) ≥ α},

where F (π|Cε,w) = P(Π ≤ π|Υ ≥ ε,W ≥ w).

Example 3

More generally, we consider the alternative profit function in Humphrey and Pulley (1997).

Assume firms (or banks, in their paper) have some market power but are not monopolists, and

firm’s decision is a mix of price-taking and price-setting behavior. They treat output as essentially

exogenous at the time of decision, and focus on negotiating prices rather than output quantities to

maximize profit. The optimization problem is

max
p,x

p′y − w′x,

s.t. g(y, x, p, w, z) = 0,

where g(y, x, p, w, z) represents a firm’s ability for transforming given values of y, x, w, and z into

output prices. z includes variables capturing exogenous factors affecting firms’ profitability. The

profit function is derived by solving the constrained optimal choice for output prices p = p(y, w, z)
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and input quantities x = x(y, w, z). Therefore the alternative indirect profit function is given by

π(y, w, z) = p′(y, w, z)y − w′x(y, w, z); and a α frontier can be defined as:

πα(y, w, z) := inf{π ∈ [0, Bπ] : F (π|Cy,w,z) ≥ α},

where

F (π|Cy,w,z) =

 P(Π ≤ π|Y ≤ y,W ≥ w,Z ≥ z), if dπ(y,w,z)
dz ≤ 0;

P(Π ≤ π|Y ≤ y,W ≥ w,Z ≤ z), if dπ(y,w,z)
dz ≥ 0.

The analysis and estimation procedures defined in the following subsection can easily be extended

to these alternative settings with minor modifications.

1.2.2 Estimation

In order to estimate πα(p, w), we first need an estimator for a conditional cumulative distri-

bution function F (π|Cp,w). In a production function setting, Aragon et al. (2005) propose a simple

estimator based on the empirical distribution function. Their empirical estimator is not smooth

and as a result, it might be difficult to identify differences between firms that are similar in terms

of profit efficiency. In the same setting Martins-Filho and Yao (2008) proposed a smooth kernel

based estimator. The smoothness it provides might reduce the finite sample variance compared to

the empirical estimator, but introduces a bias that does not vanish at the parametric rate. Here,

we follow Martins-Filho and Yao (2008), but provide an alternative kernel that can produce biases

of lower order. For convenience, we define the functions P (π, p, w) = P(Π ≤ π, P ≤ p,W ≥ w) and

PPW (p, w) = P(P ≤ p,W ≥ w). We estimate F (π|Cp,w) by integrating a smooth kernel density

estimator constructed using the observations {(Πi, Pi,Wi)}i∈{i:Pi≤p,Wi≥w}. Thus, we define

F̂ (π|Cp,w) =


0 if π ≤ 0;

P̂ (π,p,w)

P̂PW (p,w)
if π > 0.

(1.4)

with

P̂ (π, p, w) = (nhn)−1
n∑
i=1

(∫ π

0
Mk

(
Πi − γ
hn

)
dγ

)
I(Pi ≤ p,Wi ≥ w), (1.5)
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and

P̂PW (p, w) = n−1
n∑
i=1

I(Pi ≤ p,Wi ≥ w). (1.6)

hn is a nonstochastic sequence of bandwidths such that 0 < hn → 0 as n → ∞, I(A) is the

indicator function for the set A and Mk for k = 1, 2, · · · is a class of kernels defined by Mynbaev

and Martins-Filho (2010). The kernels Mk are defined as

Mk(x) = − 1

ck,0

k∑
|s|=1

ck,s
|s|

K(
x

s
), (1.7)

where ck,s = (−1)s+kCs+k2k , Cs+k2k are the binomial coefficients and K(·) is a traditional (seed) kernel

function, i.e., K(·) is a symmetric function such that
∫
K(u)du = 1. Lemma 1 shows that Mk(x) is

a kernel function for all k in that
∫
Mk(x)dx = 1. The main advantage of the definition of Mk(x)

is that it allows us to express the bias of our estimator in terms of higher order finite differences of

the density function (see the proof in Lemma 2). It is clear that F̂ (π|Cp,w) depends on k through

the dependence of P̂ (π, p, w) on k. As a result, we are defining a class of estimators for F (π|Cp,w).

The choice of k depends on the smoothness assumption on the distribution function, and will be

discussed in the next section. Also, note that our estimator uses a smooth nonparametric estimator

of the distribution function in the direction of profit π, but still uses an empirical distribution

function in the direction of p and w. In the context of a production function, Martins-Filho and

Yao (2008) showed that smooth kernel based estimator implemented in the output direction has a

parametric (
√
n) rate of convergence. In the next section we will show that our estimator has the

same convergence rate. Note that it is possible to smooth estimators in the directions of prices as

well, but as a result the estimator would suffer from the well-known “curse of dimensionality.”

Assuming that πα(p, w) is the unique root of F (·|Cp,w) = α, we denote its estimator by

πα,n(p, w), the root of

F̂ (πα,n(p, w)|Cp,w) = α for α ∈ (0, 1], p ∈ Rd1
++ and w ∈ Rd2

++. (1.8)

By the continuity of F (·|Cp,w)), smoothness of the seed kernel, and the Mean Value Theorem, we
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write

πα,n(p, w)− πα(p, w) =
F (πα(p, w)|Cp,w)− F̂ (πα(p, w)|Cp,w)

f̂(π̄α,n(p, w)|Cp,w)
,

where

f̂(π|Cp,w) =
∂F̂ (π|Cp,w)

∂π
=

 0, if π = 0

(nhn)−1
∑n
i=1 Mk(

Πi−π
hn

)I(Pi≤p,Wi≥w)

n−1
∑n
i=1 I(Pi≤p,Wi≥w)

, if π > 0

and π̄α,n(p, w) = λπα,n(p, w) + (1 − λ)πα(p, w) for some λ ∈ (0, 1). In the following section we

provide some asymptotic characterizations for our estimator, including consistency and asymptotic

normality.

1.3 Asymptotic Characterization of πα,n

In this section we provide theorems establishing asymptotic properties of our estimators. All

proofs of the theorems and required lemmas can be found in Appendix. We begin by listing and

discussing assumptions that are sufficient to establish our main theorems.

1.3.1 Assumptions

Assumption 1. {(Πi, Pi,Wi)}ni=1 is a sequence of independent random vectors taking values in a

compact set Ψ∗ = [0, Bπ]×SPW where SPW is a compact set in Rd1
++×Rd2

++. For any i, (Πi, Pi,Wi)

has the same joint distribution F and joint density function f as the vector (Π, P,W ), f is defined

on R× Rd1 × Rd2 with support Ψ∗.

Assumption 2. (i) The seed kernel K(·) is a bounded symmetric density with compact support

[−BK , BK ] and
∫ BK
−BK γK(γ)dγ = 0. (ii)

∫ BK
−BK γ

2K(γ)dγ = σ2
K . (iii) For any γ, γ′ ∈ [−BK , BK ],

we have |K(γ) −K(γ′)| ≤ mK |γ − γ′| for some 0 < mK < ∞. (iv) For all ζ, ζ ′ ∈ [−BK ,∞), we

have |κ(ζ)− κ(ζ ′)| ≤ mκ|ζ − ζ ′| for some 0 < mκ <∞, where κ(ζ) =
∫ ζ
−BK K(γ)dγ. (v) For fixed

k,
∫
|K(t)|t2kdt <∞.

The first assumption is standard. Assumption 2 is similar to Martins-Filho and Yao (2008)

except (v). We need Assumption 2 (v) in the proof of Lemma 2 for the purpose of bias restriction



13

(see the similar assumption in Mynbaev and Martins-Filho (2010)). Note that Assumption 2

imposes some smoothness condition on the kernel, since a function satisfies Lipschitz condition if

it has bounded first derivative. We can prove that for any k ∈ N, if the seed kernel K satisfies

Assumption 2, then it also holds for Mk by the definition (1.7).3

Assumption 3. For all π and π′ ∈ G, where G is a compact set, we have∣∣∣∣∣
∫
π−1([π,π′])

d(P,W )

∣∣∣∣∣ ≤ mπ−1 |π′ − π|

for some 0 < mπ−1 <∞. Here, for any two sets A ⊆ Dp,w := [0, p]× [w,∞) and B ⊆ [0, π(p, w)],

Define π(A) = {π(p, w) : (p, w) ∈ A)} and π−1(B) = {(p, w) ∈ Dp,w : π(p, w) ∈ B}.

Assumption 3 is similar to Assumption 4 in Martins-Filho and Yao (2008). It imposes a

Lipschitz type condition on the inverse image π−1 of π.

Assumption 4. (i) The joint density function f is continuous on Ψ∗, 0 < f(π, p, w) < Bf for all

(π, p, w) ∈ Ψ∗. (ii) For all (π, p, w) and (π′, p, w) ∈ Ψ∗, we have |f(π′, p, w)−f(π, p, w)| ≤ mf |π′−π|

for some 0 < mf < ∞. (iii) For all (p, w) such that P(P ≤ p,W ≥ w) > 0 and for all α ∈ (0, 1],

f(πα(p, w)|Cp,w) > 0, where f(·|Cp,w) is the derivative of F (·|Cp,w).

Assumption 5. Given p, w, for all π ∈ (0, Bπ),

5A Fix k, there exist functions H2k(π, p, w) > 0 and ε2k(π, p, w) > 0 such that

|∆2k
h Ff (π, p, w)| ≤ H2k(π, p, w)h2k

for all |h| ≤ ε2k(π, p, w). Here, Ff (π, p, w) =
∫ π

0 f(γ, p, w)dγ and

∆2k
h Ff (π, p, w) =

k∑
s=−k

ck,sFf (π + sh, p, w)

with ck,s = (−1)s+kCs+k2k .

5B f is continuously differentiable with respect to π. |f (1)(π, p, w)| <∞,

where f (1)(π, p, w) represent the first order derivative of f with respect to π.

3 See Lemma 1 in the Appendix.
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Assumption 5A imposes an order 2k Lipschitz condition on Ff (π, p, w) with respect to π.

From the proof of Theorem 1 in Mynbaev and Martins-Filho (2010) we know that boundedness of

F
(2k)
f (π, p, w) implies a Lipshitz condition of order 2k. As a result, Assumption 5B is a more strict

condition than 5A in the special case k = 1. Given Assumption 5A, we can obtain the order of the

bias for our estimator to be h2k. Given Assumption 5B, we can obtain a specific structure for the

asymptotic bias and variance by using a Taylor expansion.

1.3.2 Asymptotic Properties

We start by providing a proposition showing some asymptotic properties of F̂ (π|Cp,w) with

Assumption 2.

Proposition 3. Under Assumption 2, we have: (i) F̂ (π|Cp,w) is continuous; (ii) limπ→0 F̂ (π|Cp,w) =

0; (iii) For any (p, w), there exists some N(p, w) such that for all n > N(p, w), limπ→∞ F̂ (π|Cp,w) =

1.

Note that since Mk(.) is not necessarily positive, F̂ (π|Cp,w) is not necessarily monotonic.

Except for that, Proposition 3 states that F̂ (π|Cp,w) has properties associated with a proper dis-

tribution function. The next main theorem establishes consistency of πα,n.

Theorem 1. Let hn be a nonstochastic sequence of bandwidths such that 0 < hn → 0 as n → ∞.

Given w ∈ Rd2
++, p ∈ Rd1

++, suppose there exist N(p, w), such that when n > N(p, w) we have

P{Π < hnBM} = 0. Under Assumptions 1-4 along with Assumption 5A (or 5B), if H2k(π, p, w),

Ff (π, p, w) and ε2k(π, p, w) are bounded for all (π, p, w) ∈ Ψ∗, we have

πα,n(p, w)− πα(p, w) = op(1). (1.9)

The next main theorem shows that under suitable normalization and centering πα,n(p, w) is

asymptotically distributed as a standard normal.

Theorem 2. Let hn be a nonstochastic sequence of bandwidths such that nh2
n →∞ and nh4

n = O(1)

as n→∞. Given w ∈ Rd2
++, p ∈ Rd1

++, suppose there exist N(p, w) such that when n > N(p, w) we
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have P{Π < hnBM} = 0. Then,

(i) Under Assumption 1-4 and Assumption 5B, we have

vn(p, w)−1√n(πα,n(p, w)− πα(p, w)−Bn(p, w))
d→ N(0, 1)

where

Bn(p, w) = −1

2
h2
nσ

2
M

∫
π−1([πα(p,w),π(p,w)]) f

(1)(πα(p, w), P,W )d(P,W )

PPW (p, w)f(πα(p, w)|Cp,w)
+ o(h2

n),

v2
n(p, w) =

1

(PPW (p, w)f(πα(p, w)|Cp,w))2
(F (πα(p, w), p, w)− F 2(πα(p, w), p, w)

PPW (p, w)

−2hnσκ

∫
π−1([πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W )) + o(hn),

with σκ =
∫
γκM (γ)Mk(γ)dγ, and f (1)(π, P,W ) denotes the first derivative of f with respect to π.

(ii) Under Assumption 1-4 and Assumption 5A, we have

|Bn(p, w)| ≤ ch2k
n [

∫
Dp,w

H2k(πα(p, w), P,W )d(P,W )

+

∫
Dp,w

sup
π∈R
|Ff (π, P,W )|ε−2k

2k (πα(p, w), P,W )d(P,W )],

where c represent an arbitrary nonnegative constant.

Part (i) of Theorem 2 shows the explicit structure for bias and variance when k = 1. Part (ii)

shows that the bias decays to zero faster when we impose a stronger Lipschitz smoothness condition

on the distribution function and increase the value of parameter k accordingly. From Theorem 2,

we first observe that our estimator is
√
n asymptotically normal although it is based on kernel

smoothing. That is, the convergence speed of our estimator is independent of the dimensionality

of the problem. Therefore, our estimator does not suffer the “curse of dimensionality”. Second,

note that the extra smoothness of our estimator provides a smaller variance compared to the

empirical estimator at the cost of introducing a bias which vanishes asymptotically (see Aragon

et al. (2005)). Finally, the order of the bias term is controlled by the smoothness assumptions

on the density function. Note that under appropriate assumptions, the bias term is smaller than

the order h2k
n . Hence we can reduce the bias by increase the parameter k. For our estimator, the

“smoother” the density function is, the faster the bias term would vanish.
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1.4 Monte Carlo Study

1.4.1 Setup and Implementation

In this section, we design and conduct a small Monte-Carlo simulation to implement our

estimator and investigate some of its finite sample properties. We also compare the performance

of our estimator to that of a similar estimator based on the empirical distribution. The data

generating process is given by

Πi = π(Pi,Wi)Ri i = 1, .., n

Ri = exp(−Zi), Zi ∼ Exp(β)

where Πi represents profit, Pi and Wi represent output and input prices. In this simulation,

we assume output is a scalar. Ri = exp(−Zi) represents efficiency score for each unit i. Zi

are independently generated from an exponential distribution with parameter β = 1/3. As a

result the density function of Ri is f(r) = 3r2 with support (0, 1] and a mean 0.75. π(p, w) is

the profit function. In this simulation we consider two profit functions π(p, w) = p6/5w−6/5 and

π(p, w1, w2) = 1
4p

2(w−1
1 + w−1

2 ). The first one considers only a single input; and the second one

considers two inputs with their prices represented as w1 and w2. One can easily verify these

functions satisfy all properties of a profit function: a) nondecreasing in p and nonincreasing in w;

b) convex in both p and w; c) homogenous of degree one, and d) continuous. Prices are uniformly

drawn from a meshgrid [pl, pu] × [wl, wu] = [1, 3] × [1, 3] for the first profit function; and from a

meshgrid [pl, pu]× [w1l, w1u]× [w2l, w2u] = [1, 3]× [1, 3]× [1, 3] for the second profit function. Several

experimental designs are considered: We estimate profit frontiers of order α = 0.25, 0.5, 0.75 and

0.99 usingMk kernel functions with k = 1, 2 as well as an empirical distribution. In each experiment,

We consider two sample sizes n = 200 and n = 400 and perform 2000 iterations to obtain the

averaged absolute value of bias and root mean squared error of each estimator.

The empirical profit frontier of order α is estimated as follows: let Np,w =
∑n

i=1 I(Pi ≤

p,Wi ≥ w). For j = 1, ..., Np,w, get the order statistic of the observation Π(ij) such that Π(i1) ≤
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Π(i2) ≤ ... ≤ Π(iNp,w ). The empirical conditional distribution F̂e(π|Cp,w) is

F̂e(π|Cp,w) =

∑Np,w
j=1 I(Π(ij) ≤ π)

Np,w

=


0 if π < Π(i1);

m/Np,w if Π(im) ≤ π < Π(im+1), 1 ≤ m ≤ Np,w − 1;

1 if π ≥ Π(iNp,w ).

Thus the empirical estimator for the conditional quantile πα(p, w) can be computed as follows

π̂e,α(p, w) =

 Π(i{αNp,w})
if αNp,w ∈ N;

Π(i{[αNp,w ]+1}) otherwise,

where [αNp,w] denotes the integer part of αNp,w.

The implementation of our estimator requires choices of kernel function as well as bandwidth.

We use the Epanechnikov function K(x) = 3
4(1−x2)I(|x| ≤ 1) as the seed kernel. It is easy to show

this kernel function satisfies Assumption 2. The bandwidth is chosen by minimizing the asymptotic

approximation of our estimator’s mean integrated squared error (AMISE). For k = 1, we get the

global optimal bandwidth with respect to α as

h∗n =

 2σκ
∫ 1

0
I2(p,w,α)

f2(πα(p,w)|p,w)
dα

(σ2
K)2

∫ 1
0

I2
1 (p,w,α)

f2(πα(p,w)|p,w)
dα

1/3

n−1/3,

where

I1(p, w, α) =

∫
π−1([πα(p,w),π(p,w)])

f (1)(πα(p, w), P,W )d(P,W ), and

I2(p, w, α) =

∫
π−1([πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W ).

In our simulations, since we know the true distribution, we can compute h∗n directly. In practice, use

of h∗n requires the estimation of the unknown distribution. Applying a similar method described in

Mynbaev and Martins-Filho (2010), we can estimate I1, I2 and f using a suitably defined Rosenblatt

density estimator. The optimal bandwidths for the estimators with higher k are yet to be obtained.

We use the same bandwidth as k = 1, when k > 1.
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1.4.2 Results and Analysis

Table 1.1 gives the bias and root mean square error of our smoothed estimator with order of

kernel k = 1 and k = 2 compared with the empirical estimator evaluated at prices (p, w) = (2, 2)

for the first profit function π(p, w) = p6/5w−6/5; as well as those at prices (p, w1, w2) = (2, 2, 2) for

the second profit function π(p, w1, w2) = 1
4p

2(w−1
1 + w−1

2 ). The simulations seem to confirm our

Table 1.1: Bias and RMSE under Each Experiment Design

p6/5w−6/5 |Bias| RMSE

n=200 Kernel Kernel Empirical Kernel Kernel Empirical
α k=1 k=2 k=1 k=2

0.25 .018 .019 .021 .024 .024 .027
0.50 .020 .021 .024 .033 .033 .037
0.75 .027 .027 .030 .031 .032 .037
0.99 .132 .261 .084 .175 .358 .095

n=400 Kernel Kernel Empirical Kernel Kernel Empirical
α k=1 k=2 k=1 k=2

0.25 .014 .013 .015 .017 .016 .019
0.50 .015 .012 .017 .018 .016 .019
0.75 .019 .016 .021 .023 .021 .028
0.99 .083 .098 .057 .102 .121 .068

1
4p

2(w−1
1 + w−1

2 ) |Bias| RMSE

n=200 Kernel Kernel Empirical Kernel Kernel Empirical
α k=1 k=2 k=1 k=2

0.25 .023 .024 .027 .031 .032 .035
0.50 .035 .036 .039 .046 .046 .051
0.75 .026 .027 .031 .042 .040 .047
0.99 .169 .334 .107 .224 .460 .137

n=400 Kernel Kernel Empirical Kernel Kernel Empirical
α k=1 k=2 k=1 k=2

0.25 .018 .017 .020 .021 .021 .025
0.50 .025 .021 .022 .029 .027 .031
0.75 .023 .019 .027 .028 .022 .034
0.99 .108 .125 .074 .132 .154 .089

asymptotic results. In particular, the root mean squared error of all estimators decreases with the

sample size. For both profit functions, the kernel estimator outperforms the empirical estimator

in the cases with α = 0.25, 0.5 and 0.75. Although we do not use the optimal bandwidth, the

performance of the estimator with kernel order k = 2 is quite good. When the sample size is 200,
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the performance of estimators with k = 1 and k = 2 are very close. When the sample size grows

from 200 to 400 we observe a larger improvement for the estimator with k = 2. For example, with

α = 0.5, the bias of the estimator with k = 2 decreases from .021 to .012, while the bias of the

estimator with k = 1 just decreases from .020 to .015. We find the similar results for all α. This is

consistent with the result in Theorem 2 which states the bias decays faster as k increases.

We also observe that as α increases, all estimators show larger bias and mean square error.

This can be interpreted as resulting from the fact that there are less effective data available as

α grows. As a result, when α is close to 1, profit functions of order α become more difficult to

estimate. Note that the performance of our smoothed estimator is especially poor when α = 0.99.

This is most likely due to the fact that our distribution function has compact support, and it is

not smooth near the boundary. Therefore, the smoothed estimator can generate large biases.

In summary, our simulation results indicate the proposed smooth estimator for the profit

function of order α can outperform the empirical estimator in most cases as long as α is not very

close to 1. Additionally, increases in the order k of the Mk kernel may increase the convergence

speed of the bias. However, we do not suggest to use our method in approximating the full frontier

where α is approaching to 1. Note that the full frontier is not required in estimating the efficiency

in our method. According to the analysis in Section 1.2, any α frontier with α ∈ (0, 1) can be

served as a standard in the efficiency analysis.

1.5 Conclusion and Discussion

In this paper we consider the construction and estimation of a profit function of continuous

order α ∈ (0, 1]. We define a class of such profit functions based on conditional quantiles of an ap-

propriate distribution of profit, input and output prices. We show that they are useful in measuring

and assessing profit efficiency. We show that our estimator is consistent and asymptotically normal

with a parametric convergence speed of
√
n. Furthermore, the bias of our estimator decays to zero

faster than the traditional kernel estimators. A Monte-Carlo simulation is performed to implement

our estimator, investigate its finite sample performance and compare it to an estimator based on
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empirical distribution function. Simulation results seem to confirm the asymptotic results we have

obtained and also seems to indicate that our proposed estimator can outperform its competitors

in most cases. However, our estimator seems to possess large boundary bias. Finally, we conduct

an efficiency analysis of the Swedish paper industry based on the α frontier estimation method

developed in this paper. We find the industry is very profit inefficient compared to high average

production efficiency score, and firms of different sizes may have different patterns in earning profit.

Future research includes: (1) decrease the possible boundary bias for our estimator; (2) investi-

gate asymptotic normality and the choice of optimal bandwidth for k > 1; (3) decomposition of

technique efficiency and allocative efficiency for the profit efficiency estimator.



Chapter 2

Profit Efficiency in the Swedish Paper Industry: An Application

2.1 Introduction

Frontier estimation techniques for efficiency analysis are powerful tools of measuring firms’

performances in many empirical studies. First, they allow individuals, such as firm managers

with very little knowledge in economics to rank production units by assigning intuitive numerical

scores representing their performances, and relate these results to their interests. Second, they

help economists identify the sources of inefficiency and develop policies to improve the efficiency of

individual firms and the entire industry. For example, if profit inefficiency is much larger than the

production inefficiency, it suggests that there are profit improvements to be made among inefficient

firms through better management of input and output, without actually investing in any technology

improvement; it is simply about allocating resources more efficiently.

As mentioned before, both parametric and nonparametric methods have been widely em-

ployed in estimating production frontiers and efficiency scores. In contrast, despite the agreement

that profitability is an important measure of performance, there has been very few empirical studies

in the profit aspect due to the lack of estimation techniques as well as a generally accepted measure

of profit efficiency (compared to the well-known concept of production or technical efficiency). So

far, limited efforts in the profit efficiency analysis have been firstly and mostly conducted in the

banking industry (for instance, Berger and Humphrey (1993); Berger and Mester (1997); Akhavein

et al. (1997); Maudos et al. (2002) and Akhigbe and McNulty (2005)). Herr et al. (2010) is among

very few empirical studies in other industries (hospitals). Most of these studies construct a profit
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frontier based on a parametric model, and measure the profit efficiency as the ratio of the actual

profit of a bank and the potential or maximum level that could be obtained by the most efficient

bank. Not surprisingly, these studies rely heavily on a number of strong assumptions, especially the

parametric structure of the profit function, and are possibly exposed to the risk of mis-specification.

For nonparametric studies, Färe et al. (2004) adopt data envelopment analysis (DEA) and

use the directional distance functions to compute profit inefficiency index for the USA banking

sector. In their study, profit inefficiency is decomposed into technical and allocative inefficiency.

They find that the allocative inefficiency is the major determinant of profit inefficiency for the

USA banks. Maudos and Pastor (2003) also study an alternative profit efficiency of the Spanish

banking based on DEA, and compared the profit efficiency to the cost efficiency. Recently, Färe

et al. (2015) and Ruiz and Sirvent (2011) develop an alternative slack-based DEA method for the

decomposition of profit efficiency. DEA is commonly criticized for its sensitivity to outliers, we

hope the α-frontier estimator proposed in this paper could provide a good alternative for future

profit efficiency analysis.

In this section, we try to apply the estimation method we developed in the previous sections to

analyze performance of firms in the Swedish paper industry. Firms in the paper industry are prob-

ably different from the commonly studied banks in that: first, firm’s ability of setting/influencing

prices might be more restricted in this industry. Second, products (pulp and paper) are more ho-

mogenous. In other words, there is less output diversification. Therefore, we could expect a more

competitive environment compared to the banking industry. The main objectives of this section

are: (1) To demonstrate how to use the nonparametric method for estimating α-frontiers and the

corresponding efficiency scores; (2) Based on efficiency scores, we try to discuss the source of profit

inefficiency and investigate the relationship between production efficiency and profit efficiency.

2.2 Data and Estimation

Data and variables

The data set is a firm level panel taken from Sweden paper industry (pulp and paper sector)
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covering the years 1990 to 2008. 210 firms are included, and a few firms earning negative profit are

excluded based on our positive profit assumption. Descriptive statistics for each of these variables

are provided in the following table. Output y is constructed by sales divided by a sector level

producer price index. We consider capital and labor as the two inputs. Capital k is derived from

investment data and labor l is measured by the number of employees. r represents user cost of

capital and w represents wage rate (salary/employees). Output price p is measured by the producer

price index. Unit for monetary variables is thousands of SEK (Swedish Krona). Since the number

of firms including in each year is relatively small (average of 60-70 firms), it would probably not

be appropriate to construct a specified frontier for each year considering the sample size. To our

knowledge, there is no significant structural change or technological advancement in the industry.

Therefore we assume that the profit and the production frontier in this sector had not changed

during the period. As a result, we treat each individual firm in each year as a single decision making

unit (DMU), and assume at the moment that all DMU share a single production or profit frontier.

The total number of valid observations is 1116.

Table 2.1: Descriptive Statistics of Variables

Standard
Variable Mean Median Minimum Maximum Deviation

Output y 947654994 254459957 5625046 14620107826 1796026213
Input 1 (Labor) l 437.021 147 4 9739 838.901
Input 2 (Capital) k 691164409 105882956 311140 8203495467 1337884052
Output Price p 117.901 120.9 89.9 138.6 14.396
Labor Price w 375286 364975 756.923 766010 106717
Capital Price r 0.144 0.138 0.121 0.186 0.019
Profit π 102145378 5690962 2 5724815000 370814498

Estimation

We denote an α profit frontier and an α production frontier as π = πα(p, w, r) and y = ρα(l, k)

respectively. Following the similar procedure developed in Section 2, the corresponding estimators
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for them are defined by πα,n(p, w) and ρα,n(l, k), the root of

F̂π(πα,n(p, w, r)|Cp,w,r) = α, and

F̂ρ(ρα,n(l, k)|Cl,k) = α.

where

F̂π(π|Cp,w,r) =


0 if π ≤ 0;

(nhπ,n)−1
∑n
i=1

(∫ π
0 Mk

(
Πi−γ
hπ,n

)
dγ
)
I(Pi≤p,Wi≥w,Ri≥r)

n−1
∑n
i=1 I(Pi≤p,Wi≥w,Ri≥r) if π > 0,

and

F̂ρ(ρ|Cl,k) =


0 if ρ ≤ 0;

(nhρ,n)−1
∑n
i=1

(∫ ρ
0 Mk

(
Yi−γ
hρ,n

)
dγ
)
I(Li≤l,Ki≤k)

n−1
∑n
i=1 I(Li≤l,Ki≤k)

if ρ > 0.

Finally, the measurement of profit and production efficiency for DMU i are estimated respec-

tively as êπ,α(Πi, Pi,Wi, Ri) = Πi/πα,n(Pi,Wi, Ri) and êρ,α(Yi, Li,Ki) = Yi/ρα,n(Li,Ki).

Above nonparametric estimators for distribution functions are implemented using the Epanech-

nikov kernel. Bandwidths hρ,n and hπ,n are selected following by the similar plug-in method de-

scribed in Martins-Filho and Yao (2008). We choose parameter k = 1 to keep things simple. To

make profit and production efficiency to be comparable, α is chosen to be the same for both profit

and production frontier estimators.

The remaining problem is the choice of parameter α. Theoretically speaking, a frontier with

any order α ∈ (0, 1) can be used as a standard for estimating efficiency scores. Here we provide a

data-driven selection method for α in practice. The basic motivation is that we want to choose an α

to make the specified quantile function to be close to the true frontier; while remaining as robust as

possible. Consider two cases: first, a small increase in α has little impact on the frontier estimator;

second, a small increase in α leads to a significant change on the frontier estimator, making it

envelope much more observations and consequently much closer to extreme values. Clearly, in the

second case the estimator would be more affected by extreme values.

Figure 2.1 shows the relationship between α and the percentage of observations above the

estimators of α frontiers. In the figure, we observe that for production frontiers, the percentage

of ‘over-efficient’ observations decreases very slowly until α = 0.95. It suggests that α frontiers
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of order 0 < α < 0.95 are very tightly distributed. That is, frontier estimators in this region are

very close. The percentage of ‘over-efficient’ observations falls dramatically starting from α = 0.95,

which suggests that α frontiers of order 0.95 < α < 1 are very spaced and are spread out among

65% of observations. In this region, a small change in the α would lead to a large jump of the

frontier estimator, and probably a big change in the shape of estimators. As a result, we tend to

avoid picking an α in the interval (0.95, 1) where frontier estimators are not very robust. For profit

frontiers, we observe a very different pattern. There is no significant change for the percentage of

‘over-efficient’ observations for all α ∈ (0, 1). That is, estimators for α profit frontiers are basically

evenly distributed for α ∈ (0, 1). From Figure 2.1, we have no strong preference in choosing α

for profit frontier estimators. However, since we want to choose the same α for both profit and

production frontier estimators for the purpose of comparison, we set α = 0.95 based on the above

discussion.

Figure 2.1: Percentage of Observations Above Frontiers
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2.3 Empirical Results

Overall efficiency results

In this section, we obtain profit and production efficiency scores for each decision making unit

based on the estimation method described above. We try to use these efficiency scores to explore

the source of profit inefficiency. However, in the absence of a reliable theoretical model explaining

the source of efficiency in this industry, we just analyze potential correlates of efficiency rather than

explanatory factors. The major focus here is the relationship between production efficiency and

profit efficiency.

Table 2.2 reports the average profit efficiency (PE) and production efficiency (TE) for all

firms in the industry for each year. Average production efficiency is greater than 1 in each year,

while average profit efficiency is less than 0.1 in each year, indicating that the industry is technically

efficient, but significantly profit inefficient. Clearly, the main source of profit inefficiency in this

industry is on the allocation side.

Table 2.2: Industry Average Profit and Production Efficiency

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

PE 0.099 0.043 0.076 0.078 0.070 0.152 0.075 0.088 0.093 0.039
(0.253) (0.145) (0.219) (0.196) (0.161) (0.375) (0.196) (0.205) (0.217) (0.140)

TE 1.314 1.364 1.340 1.267 1.408 1.222 1.101 1.424 1.432 1.242
(0.933) (1.697) (1.434) (0.693) (1.188) (1.049) (0.632) (0.816) (0.832) (0.814)

2000 2001 2002 2003 2004 2005 2006 2007 2008

PE 0.103 0.111 0.118 0.090 0.090 0.059 0.101 0.061 0.047
(0.323) (0.373) (0.298) (0.207) (0.237) (0.165) (0.330) (0.161) (0.156)

TE 1.331 1.278 1.375 1.359 1.471 1.466 1.568 1.520 1.590
(0.952) (0.816) (0.738) (0.781) (0.744) (0.785) (0.918) (0.871) (0.981)

The histogram in Figure 2.2 provides a clearer picture for the industry. For profit efficiency,

we observe that over 90% of the observations lie inside the interval around 0.02, suggesting most

firms can only earn less than 2% of potential profit compared to the 0.95 profit frontier. In contrast,

for production efficiency, most firms have scores concentrated around 1. What is more, there are a

number of observations with extremely high level of production efficiency at 3 to 5, explaining the

high average production efficiency we observe in Table 3. The insignificant levels of profit efficiency
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and the significant levels of production efficiency suggest high levels of allocative inefficiency. That

is, most firms in the industry might choose inadequately their input-output mix.

Figure 2.2: Histograms for Profit Efficiency and Production Efficiency

In order to compare performances among firms, we then calculate average efficiency scores
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across years for each individual firm, and rank them based on production and profit efficiency

score respectively. We find the two rankings are not significantly correlated. In another word,

firms with high rank of production efficiency may have low rank of profit efficiency; while firms

with high rank of profit efficiency may have low rank of production efficiency. However, we do

observe some patterns. For example, the lowest production efficiency rank for the top 10 profit

efficient firms is 52; while the lowest profit efficiency rank for the top 10 production efficient firms

is 96. Furthermore, 10 of the worst performing firms in production are all ranked in the last 15

in profit performance; while among 10 of the worst performing firms in profit, only 4 of them

belong to the last 15 in production performance. Lastly, the top 25 firms in profit performance all

have production efficiency score larger than 1. These observations suggest that profit efficient firms

generally perform very well in the production aspect; production inefficient firms are generally profit

inefficient. However, production efficient firms are not necessarily profit efficient; profit inefficient

firms are not necessarily production inefficient.

Efficiency of firms with different sizes

The results above provide us a general idea about efficiency of the Swedish paper industry.

We observe high technological efficiency with extreme low profit efficiency across firms. Naturally,

we are concerned about the credibility of this result. Indeed, it is possible that many firms with low

profit efficiency might be underestimated because they are compared to a frontier that is too high

for them. That is, the assumption that all firms share a common frontier might be inappropriate.

One possible reason is the impact of firm size.

Many papers studying profit efficiency treat firm size as an important factor that affects the

variation in the profit efficiency across firms. Some may argue that high competitive pressures

might induce more incentives for smaller banks to be efficient; others may support the statement

that high profit efficiency usually is associated with larger banks because they have more market

power and larger production capacities. Empirical results varies across papers and there is no

consistent conclusion.

A common way of dealing size problem in previous studies is to divide the sample into several
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categories based on a measure of firm size, and then estimate efficiency scores separately for each

category. The size of a firm can be measured in a number of ways: assets, sales, employees and

value added are commonly used measures. Here we adopt ‘value added’ as our measure of firm

size since it can capture more complexity of a firm compared to other measures (see Becker-Blease

et al. (2010)). Based on value added, we separate the sample into three groups: we define small

firms as those under 100 million in value added; medium-sized firms as those between 100 million

and 1 billion, and large firms as those over 1 billion. We estimate different α frontiers for each

sample, and calculate efficiency scores for firms in each group based on the group specified frontier

respectively.

Table 2.3 reports our estimates of average profit and production efficiency in the industry by

year and by size class. We make the following observations on the results. First, profit efficiency

scores significantly increase for all three groups compared to the first model which ignores the size

issue. The average profit efficiency across years increased from less than 0.1 in the first model

to 0.37 for large firms; 0.17 for medium firms, and 0.27 for small firms. For most firms’ profit

efficiency now becomes more significant compared to the first model, the assumption of assigning

different frontiers to different groups provides us more comparable efficiency indexes. Nevertheless,

compared to the production efficiency, the industry is still very profit inefficient, suggesting most

firms can probably improve their profit by adjusting their strategy of allocating inputs and output.

This result is consistent with the first model. Finally, we observe that large firms possess highest

average profit efficiency score, which is 10% higher than small firms and 20% higher than medium

firms. It suggests that the link between profit efficiency and firm size in this industry may be more

complicated than a simple linear relationship.

In order to analyze results in each group more clearly, Figure 2.3 shows plots of group average

efficiency scores against years based on results in Table 2.3. We can see some different patterns

for the time trends of production and profit efficiency among different groups. For large firms,

we observe a sharp increase in the profit efficiency in the year 1992, which is the only year when

the average profit efficiency exceeds the average production efficiency. This is probably because
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Table 2.3: Average Efficiency for Different Groups

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

PE(L) 0.382 0.107 0.983 0.695 0.327 0.272 0.380 0.129 0.268 0.303
TE(L) 0.915 0.992 0.719 0.919 1.143 0.905 0.949 1.040 0.966 0.973
PE(M) 0.134 0.124 0.126 0.093 0.195 0.315 0.199 0.237 0.271 0.346
TE(M) 0.808 0.935 0.853 0.993 0.972 0.812 0.840 0.919 0.959 0.897
PE(S) 0.225 0.090 0.209 0.133 0.259 0.298 0.325 0.289 0.481 0.272
TE(S) 1.129 0.974 1.128 0.971 0.886 0.728 0.926 1.076 0.969 0.971

2000 2001 2002 2003 2004 2005 2006 2007 2008 Mean

PE(L) 0.387 0.324 0.443 0.406 0.438 0.279 0.297 0.320 0.221 0.366
TE(L) 0.922 0.943 1.036 1.110 1.135 1.229 1.189 1.000 1.075 1.008
PE(M) 0.229 0.097 0.114 0.178 0.131 0.129 0.104 0.160 0.191 0.177
TE(M) 0.889 0.822 0.894 0.940 0.891 1.018 1.123 1.091 1.215 0.941
PE(S) 0.220 0.177 0.184 0.128 0.298 0.260 0.309 0.255 0.151 0.240
TE(S) 1.054 0.938 1.039 1.124 1.180 1.165 1.161 0.997 1.186 1.032

in 1992, the total number of large firms decreases suddenly from 5 to 1. The exit of competitors

provides the only large firm in the industry greater market power, thus much more profit. In 1994,

the number of large firms is back to 5, and the average profit efficiency fall back to normal. Another

observation for large firms is that the trend of profit efficiency is basically not consistent with the

trend of production efficiency. For example, in 1992 when the profit efficiency enjoyed a peak, the

production efficiency actually decreases to the bottom at 0.7. The reason is probably the lack of

motivation for improving production process given the high profitability gained from market power.

This observation could be an indication that large firm’s profitability does not necessarily rely on

the production efficiency. For medium firms we don’t see many dramatic changes compared to large

firms. Two trends seem to be similar, and the movement of profit efficiency after the year 1996 is

very consistent with the movement of production efficiency. It seems that production efficiency is

the driving force for the profit efficiency change for medium firms, for there is little change in the

allocative efficiency for these firms after 1996. Without improvement in the allocative efficiency,

medium firms show lowest average profit efficiency score compared to the other two groups. For

small firms, the co-movement of profit efficiency and production efficiency is more consistent than

large firms but less consistent than medium firms, suggesting that production efficiency have some
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impact on the profit efficiency for small firms, but there are other factors. Here we observe more

entering and exiting behaviors compared to other groups, and these behaviors may have considerable

impact on the profit efficiency for small firms. For example, we see a peak for profit efficiency in

1998. This is followed by the exiting of a profit inefficient firm. Another increase in the profit

efficiency in 2004 is followed by the entering of 4 new firms. The entering may introduce a lower

efficiency score for the new firms, but brings more competition and consequently higher average

profit efficiency in the group. To summarize, these observations may suggest that firms of different

sizes may have different ways of achieving profitability.
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Figure 2.3: Efficiency Trends for Different Groups
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Appendix A

Proofs and auxiliary lemmas

This appendix provides the proofs of lemmas, propositions, and the main theorems. Through-

out the proofs, let c > 0 represent an arbitrary constant that may take different values in dif-

ferent contexts. Denote Dp,w = (0, p1] × ...(0, pd1 ] × [w1,∞) × [wd2 ,∞). By the definition of

π(p, w), for any point (p
′
, w
′
) ∈ Dp,w, we have π(p

′
, w
′
) ≤ π(p, w). Therefore, we can write

Dp,w = π−1([0, π(p, w)]). Denote P (π, p, w) = P(Π ≤ π, P ≤ p,W ≥ w) and P̂ (π, p, w) as defined

in (1.5). σκ =
∫ BM
−BM Mk(γ)γκM (γ)dγ, assuming its existence. In order to prove Theorems 1 and 2,

we need the following lemmas.

A.1 Lemmas

Lemma 1. Let Mk(x) be defined as in (1.7). Provided Assumption 2, we have: (i) Mk(·) is a

symmetric bounded kernel function with compact support [−BM , BM ].
∫ BM
−BM γMk(γ)dγ = 0; (ii)∫ BM

−BM γ2Mk(γ)dγ := σ2
Mk

= 2σ2
K

∑k
s=1 λk,ss

2; (iii) For any γ, γ′ ∈ [−BM , BM ], we have |Mk(γ) −

Mk(γ
′)| ≤ mMk

|γ − γ′| for some 0 < mMk
<∞; (iv) For any ζ, ζ ′ ∈ [−BM ,∞), we have |κM (ζ)−

κM (ζ ′)| ≤ mκk |ζ − ζ ′| for some 0 < mκk <∞, where κM (ζ) =
∫ ζ
−BM Mk(γ)dγ.

Proof. (i) For any fixed positive integer k, let BM = k · BK . If x ∈ (−∞,−BM ) ∪ (BM ,∞), then

x/k ∈ (−∞,−BK) ∪ (BK ,∞). By Assumption 2, K(x/k) = 0. Therefore,

Mk(x) = − 1

ck,0

k∑
|s|=1

ck,s
|s|

K(
x

s
) = 0.
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Furthermore, since Mk(x) is just a finite linear combination of bounded functions K(.), it is also

bounded on the support [−BM , BM ]. By construction, we can write

Mk(x) =
k∑
s=1

λk,s
s

[K(
x

s
) +K(−x

s
)],

where λk,s = −(ck,s/ck,0) = −(ck,−s/ck,0) = (−1)s+1(k!)2/(k + s)!(k − s)!, s = 1, ..., k. Therefore

Mk(·) is symmetric: Mk(x) = Mk(−x), and
∫ BM
−BM γMk(γ)dγ = 0. Next, since

∑k
|s|=0 ck,s =

(1− 1)2k = 0, we have

− 1

ck,0

k∑
|s|=1

ck,s = 1 or

k∑
s=1

λk,s =
1

2
.

Therefore, ∫ BM

−BM
Mk(x)dx =

k∑
s=1

∫ BM

−BM

λk,s
s

[K(
x

s
) +K(−x

s
)]dx

=

k∑
s=1

λk,s
s

[

∫ kBK

−kBK
K(

x

s
)dx+

∫ kBK

−kBK
K(−x

s
)dx]

= 2
k∑
s=1

λk,s[

∫ k
s
BK

− k
s
BK

K(ϕ)dϕ]

= 1.

The last equality comes from the fact that for s = 1, ..., k, k
sBK ≥ BK and

∫ k
s
BK

− k
s
BK

K(ϕ)dϕ =∫ BK
−BK K(ϕ)dϕ = 1.

(ii) ∫ BM

−BM
γ2Mk(γ)dγ =

k∑
s=1

λk,s
s

∫ BM

−BM
[γ2K(

γ

s
) + γ2K(−γ

s
)]dγ

=

k∑
s=1

λk,s
s

[

∫ kBK

−kBK
γ2K(

γ

s
)dγ +

∫ kBK

−kBK
γ2K(−γ

s
)dγ].

For each s = 1, ..., k, ∫ kBK

−kBK
γ2K(

γ

s
)dγ =

∫ k
s
BK

− k
s
BK

s(sϕ)2K(ϕ)dϕ

= s3

∫ BK

−BK
ϕ2K(ϕ)dϕ

= s3σ2
K .
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Therefore, ∫ BM

−BM
γ2Mk(γ)dγ = 2σ2

K

k∑
s=1

λk,ss
2 = σ2

Mk
.

(iii) For any γ, γ′ ∈ [−BM , BM ], we have γ/s, γ′/s ∈ [−BK , BK ] for any s = 1, ..., k. By

Assumption 2,

|K(
γ

s
)−K(

γ′

s
)| ≤ mK |

γ

s
− γ′

s
|

=
mK

s
|γ − γ′|.

By triangle inequality,

|Mk(γ)−Mk(γ
′)|

≤
k∑
s=1

|λk,s|
s

[|K(
γ

s
)−K(

γ′

s
)|+ |K(−γ

s
)−K(−γ

′

s
)|]

≤
k∑
s=1

2|λk,s|mK

s2
|γ − γ′|

= mMk
|γ − γ′|.

(iv) Without loss of generality, assume ζ ′ < ζ, By the definition of κM (.),

|κM (ζ)− κM (ζ ′)|

= |
∫ ζ

−BM
Mk(γ)dγ −

∫ ζ′

−BM
Mk(γ)dγ|

= |
∫ ζ

ζ′
Mk(γ)dγ|

= |
k∑
s=1

λk,s
s

[

∫ ζ

ζ′
K(

γ

s
)dγ +

∫ ζ

ζ′
K(−γ

s
)dγ]|.

Since

|
∫ ζ

ζ′
K(

γ

s
)dγ| = s|

∫ ζ
s

− ζ′
s

K(ϕ)dϕ|

= s|
∫ ζ

s

−BK
K(ϕ)dϕ−

∫ − ζ′
s

−BK
K(ϕ)dϕ|

= s|κ(ζ/s)− κ(ζ ′/s)|

≤ smκ|ζ/s− ζ ′/s|

= mκ|ζ − ζ ′|,
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the result then follows by triangle inequality.

Lemma 2. Under Assumption 1-4 and Assumption 5A, we have:

|E(P̂ (π, p, w))− P (π, p, w)| ≤ ch2k
n

[∫
Dp,w

H2k(π, P,W )d(P,W )

+

∫
Dp,w

sup
π∈R
|Ff (π, P,W )|ε−2k

2k (π, P,W )d(P,W )

]
,

for sufficiently small hn. If we assume furthermore H2k(π, p, w), Ff (π, p, w) and ε2k(π, p, w) are

bounded for all (π, p, w) ∈ Ψ∗, we have |E(P̂ (π, p, w))− P (π, p, w)| = O(h2k
n )

Proof.

E(P̂ (π, p, w)) = E[(nhn)−1
n∑
i=1

(

∫ π

0
Mk(

Πi − γ
hn

)dγ)I(Pi ≤ p,Wi ≥ w)]

= hn
−1

∫
Dp,w

∫
[0,π(P,W )]

∫ π

0
Mk(

Π− γ
hn

)dγf(Π, P,W )dΠd(P,W )

=

∫
Dp,w

∫
[0,π(P,W )]

∫ π−Π
hn

−BM
Mk(ϕ)dϕf(Π, P,W )dΠd(P,W )

=

∫
Dp,w

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W ).

The third equality follows from the fact that Mk(.) is symmetric and − Π
hn

< −BM for sufficiently

small hn. We consider 3 cases: (1) 0 < π < π(p, w); (2) π > π(p, w); (3) π = π(p, w). Here we only

derive the result for case (1), for case (2) and (3) results are obtained in a similar manner.

For case (1),

E(P̂ (π, p, w)) =

∫
Dp,w

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

=

∫
π−1([0,π(p,w)])

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

=

∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

+

∫
π−1({π})

∫
[0,π]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

= A1n +A2n.

Note that for the last term, for (P,W ) ∈ π−1({π}), it must be Π < π(P,W ) = π. Thus π−Π
hn

>

BM for sufficient small hn. Therefore κM (π−Π
hn

) → 1 as n → ∞. By Assumptions 2 and 4,
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|κM (π−Π
hn

)f(Π, P,W )| <∞. By Lebesgue’s dominated convergence theorem (LDC),

A2n =

∫
π−1({π})

∫
[0,π]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

=

∫
π−1({π})

∫
[0,π)

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

→
∫
π−1({π})

∫
[0,π]

f(Π, P,W )dΠd(P,W ).

Now,

A1n =

∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π(P,W )]

κM (
π −Π

hn
)
∂Ff (Π, P,W )

∂Π
dΠd(P,W ),

where Ff (Π, P,W ) =
∫ Π

0 f(γ, P,W )dγ. Using integration by parts,∫
[0,π(P,W )]

κM (
π −Π

hn
)
∂Ff (Π, P,W )

∂Π
dΠ

=

∫
[0,π(P,W )]

κM (
π −Π

hn
)dFf (Π, P,W )

= κM (
π −Π

hn
)Ff (Π, P,W )|Π=π(P,W )

Π=0 −
∫

[0,π(P,W )]
Ff (Π, P,W )dκM (

π −Π

hn
)

= κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W ) +

1

hn

∫
[0,π(P,W )]

Ff (Π, P,W )Mk(
π −Π

hn
)dΠ

= κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W ) +

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγ,

where the third equality follows from the fact that Ff (0, P,W ) = 0. Hence,

A1n = E1n + E2n,

where

E1n =

∫
π−1([0,π)∪(π,π(p,w)])

κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W )d(P,W ),

E2n =

∫
π−1([0,π)∪(π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W ).

Now,

E1n =

∫
π−1([0,π))

κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W )d(P,W )

+

∫
π−1((π,π(p,w)])

κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W )d(P,W )

= E11,n + E12,n.
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For E11,n, note that when (P,W ) ∈ π−1([0, π)), π−π(P,W )
hn

→∞ and κM (π−π(P,W )
hn

)→ 1 as n→∞.

By Assumption 2 and Assumption 4, |κM (π−π(P,W )
hn

)Ff (π(P,W ), P,W )| < ∞. Thus by LDC we

have

E11,n →
∫
π−1([0,π))

Ff (π(P,W ), P,W )d(P,W ) =

∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W ).

For E12,n, note that when (P,W ) ∈ π−1((π, π(p, w)]), π−π(P,W )
hn

→ −∞ and κM (π−π(P,W )
hn

)→ 0 as

n→∞. Again by LDC E12,n → 0 as n→∞. As a result,

E1n →
∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W ).

For E2n, we consider

E2n −
∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

=

∫
π−1([0,π)∪(π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W )

−
∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

=

[∫
π−1([0,π))

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W )

−
∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )]

]

+

[∫
π−1((π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W )

−
∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

]
.

When (P,W ) ∈ π−1([0, π)), π−π(P,W )
hn

> BM , and Mk(γ) = 0 for γ > π−π(P,W )
hn

. By LDC∫ π
hn
π−π(P,W )

hn

Ff (π − hnγ, P,W )Mk(γ)dγ → 0 as n → ∞. Therefore the terms in the first square

bracket converges to
∫
π−1([0,π))

∫
[0,π(P,W )] f(Π, P,W )dΠd(P,W ) as n → ∞. For the terms in the

second square bracket, by the definition of Mk(.) we have:
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∫
π−1((π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W )

−
∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

= − 1

ck,0

∫
π−1((π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

K(t)
k∑
|s|=1

ck,sFf (π − shnt, P,W )dtd(P,W )

−
∫
π−1((π,π(p,w)])

∫ π

0
f(γ, P,W )dγd(P,W ).

When (P,W ) ∈ π−1((π, π(p, w)]), π−π(P,W )
hn

< −BK ≤ −BM (see Lemma 1 for the relationship

between BK and BM ), and π
hn
> BM ≥ BK for sufficient small hn. As a result, as n→∞, by LDC

we have

− 1

ck,0

∫
π−1((π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

K(t)
k∑
|s|=1

ck,sFf (π − shnt, P,W )dtd(P,W )

→
∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)

k∑
|s|=1

ck,s
ck,0

Ff (π − shnt, P,W )dtd(P,W )

Note that
∑k
|s|=1

ck,s
ck,0

= −1, we can write

−
∫
π−1((π,π(p,w)])

∫ π

0
f(γ, P,W )dγd(P,W )

=
k∑
|s|=1

∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)dt

ck,s
ck,0

Ff (π, P,W )d(P,W ).

As a result, ∫
π−1((π,π(p,w)])

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγd(P,W )

−
∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

→ − 1

ck,0

∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)∆2k

hntFf (π, P,W )dtd(P,W ).

Hence,
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E2n →
∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

−
∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )

− 1

ck,0

∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)∆2k

hntFf (π, P,W )dtd(P,W ),

and

A1n = E1n + E2n

→
∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

− 1

ck,0

∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)∆2k

hntFf (π, P,W )dtd(P,W ).

Combining above results,

E(P̂ (π, p, w)) = A1n +A2n

→
∫
Dp,w

∫
[0,π]

f(Π, P,W )dΠd(P,W )

− 1

ck,0

∫
π−1((π,π(p,w)])

∫ BK

−BK
K(t)∆2k

hntFf (π, P,W )dtd(P,W ).

By Assumption 5A, we have

|E(P̂ (π, p, w))− P (π, p, w)|

≤ c

∫
π−1((π,π(p,w)])

∫ BK

−BK
|K(t)∆2k

hntFf (π, P,W )|dtd(P,W )

≤ c

∫
Dp,w

(

∫
|hnt|≤ε2k(π,P,W )

+

∫
|hnt|>ε2k(π,P,W )

)|K(t)∆2k
hntFf (π, P,W )|dtd(P,W )

≤ c[

∫
Dp,w

∫
|hnt|≤ε2k(π,P,W )

|K(t)|(hnt)2kdtH2k(π, P,W )d(P,W )

+

∫
Dp,w

sup
π∈R
|Ff (π, P,W )|

∫
|hnt|>ε2k(π,P,W )

|K(t)|dtd(P,W )].

Since for any N > 0,∫
|t|>N

|K(t)|dt ≤
∫
|t|>N

|K(t)|| t
N
|2kdt ≤ N−2k

∫ BK

−BK
|K(t)|t2kdt,
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as a result, we have

|E(P̂ (π, p, w))− P (π, p, w)|

≤ ch2k
n

[∫
Dp,w

H2k(π, P,W )d(P,W ) +

∫
Dp,w

sup
π∈R
|Ff (π, P,W )|ε−2k

2k (π, P,W )d(P,W )

]

Lemma 2 gives the order of the bias as functions of k. Thus as we increase k, the speed of decay

of bias increases. If we assume f has bounded first order derivative with respect to π, by applying

Taylor’s Theorem, the next lemma provides a more explicit structure for bias and variance when

k = 1.

Lemma 3. For k = 1, under Assumption 1-4 and Assumption 5B, we have: (a)

E(P̂ (π, p, w)) =



P (π, p, w) + 1
2h

2
nσ

2
Mk

∫
π−1((π,π(p,w)]) f

(1)(π, P,W )d(P,W ) + o(h2
n)

if 0 < π < π(p, w);

P (π, p, w) + o(h2
n) if π ≥ π(p, w).

(b)

V (P̂ (π, p, w)) =



n−1P (π, p, w)(1− P (π, p, w))

−2n−1hnσκ
∫
π−1((π,π(p,w)]) f(π, P,W )d(P,W ) + o(hn/n)

if 0 < π < π(p, w);

n−1P (π, p, w)(1− P (π, p, w)) + o(hn/n)

if π ≥ π(p, w).

where P (π, p, w) = P(Π ≤ π, P ≤ p,W ≥ w) and P̂ (π, p, w) is defined in (1.5).

σκ =
∫ BM
−BM Mk(γ)γκM (γ)dγ, assuming its existence.

Proof. (a) From the proof of Lemma 2,

E(P̂ (π, p, w) =

∫
Dp,w

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W ).
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We consider 3 cases: (1) 0 < π < π(p, w); (2) π > π(p, w); (3) π = π(p, w). For case (1),

E(P̂ (π, p, w)) =

∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

+

∫
π−1({π})

∫
[0,π]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

= A1n +A2n.

Again, following the proof of Lemma 2,

A2n →
∫
π−1({π})

∫
[0,π]

f(Π, P,W )dΠd(P,W ),

and

A1n = κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W ) +

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )Mk(γ)dγ.

By Taylor’s theorem, Ff (π − hnγ, P,W ) = Ff (π, P,W ) − hnγf(π, P,W ) + 1
2h

2
nγ

2f (1)(π, P,W ) +

o(h2
n). Hence, by LDC,

A1n = E1n + Ẽ2n + E3n + E4n +

∫ π
hn

π−π(P,W )
hn

o(h2
n)Mk(γ)dγ

= E1n + Ẽ2n − E3n + E4n + o(h2
n),

where

E1n =

∫
π−1([0,π)∪(π,π(p,w)])

κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W )d(P,W );

Ẽ2n =

∫
π−1([0,π)∪(π,π(p,w)])

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)dγd(P,W );

E3n = hn

∫
π−1([0,π)∪(π,π(p,w)])

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γdγd(P,W );

E4n =
1

2
h2
n

∫
π−1([0,π)∪(π,π(p,w)])

f (1)(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γ2dγd(P,W ).

Following the proof in Lemma 2,

E1n →
∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )
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For Ẽ2n, we can write:

Ẽ2n =

∫
π−1([0,π)∪(π,π(p,w)])

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)dγd(P,W )

=

∫
π−1([0,π))

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)dγd(P,W )

+

∫
π−1((π,π(p,w)])

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)dγd(P,W )

= Ẽ21,n + Ẽ22,n.

For Ẽ21,n, when (P,W ) ∈ π−1([0, π)), π−π(P,W )
hn

→ ∞ and
∫ π
hn
π−π(P,W )

hn

Mk(γ)dγ → 0 as n → ∞ by

LDC. For Ẽ22,n, when (P,W ) ∈ π−1((π, π(p, w)]), π−π(P,W )
hn

→ −∞ and
∫ π
hn
π−π(P,W )

hn

Mk(γ)dγ → 1 as

n→∞. As a result, Ẽ2n →
∫
π−1((π,π(p,w)])

∫
[0,π] f(Π, P,W )dΠd(P,W ).

h−1
n E3n =

∫
π−1([0,π)∪(π,π(p,w)])

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γdγd(P,W )

=

∫
π−1([0,π))

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γdγd(P,W )

+

∫
π−1((π,π(p,w)])

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γdγd(P,W )

= E31,n + E32,n.

For E31,n, when (P,W ) ∈ π−1([0, π)), π−π(P,W )
hn

→ ∞ and
∫ π
hn
π−π(P,W )

hn

Mk(γ)γdγ → 0 as n → ∞ by

LDC. For E32,n, when (P,W ) ∈ π−1((π, π(p, w)]), π−π(P,W )
hn

→ −∞ and
∫ π
hn
π−π(P,W )

hn

Mk(γ)γdγ → 0

as n→∞ by the symmetry of Mk(.). As a result, h−1
n E3n → 0.

h−2
n E4n =

1

2

∫
π−1([0,π)∪(π,π(p,w)])

f (1)(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γ2dγd(P,W )

=
1

2

∫
π−1([0,π])

f (1)(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γ2dγd(P,W )

+
1

2

∫
π−1([π,π(p,w)])

f (1)(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γ2dγd(P,W )

= E41,n + E42,n.

Similarly, when (P,W ) ∈ π−1([0, π)), π−π(P,W )
hn

→ +∞ and E41,n → 0 as n→∞. When (P,W ) ∈

π−1((π, π(p, w)]), π−π(P,W )
hn

→ −∞ and
∫ π
hn
π−π(P,W )

hn

Mk(γ)γ2dγ → σ2
Mk

as n → ∞ by the symmetry
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of Mk(.). As a result, h−2
n E4n → 1

2σ
2
Mk

∫
π−1((π,π(p,w)]) f

(1)(π, P,W )d(P,W ). Therefore, if 0 < π <

π(p, w),

E(P̂ (π, p, w)) = E1n + Ẽ2n + E3n + E4n +A2n + o(h2
n)

=

∫
π−1([0,π))

∫
[0,π]

f(Π, P,W )dΠd(P,W )

+

∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )

+

∫
π−1({π})

∫
[0,π]

f(Π, P,W )dΠd(P,W )

+
1

2
h2
nσ

2
Mk

∫
π−1((π,π(p,w)])

f (1)(π, P,W )d(P,W ) + o(h2
n)

= P (π, p, w) +
1

2
h2
nσ

2
Mk

∫
π−1((π,π(p,w)])

f (1)(π, P,W )d(P,W ) + o(h2
n).

For case (2), when π > π(p, w), π > π(P,W ) for all (P,W ) ∈ Dp,w, κM (π−π(P,W )
hn

) → 1,∫ π
hn
π−π(P,W )

hn

Mk(γ)dγ → 0,
∫ π
hn
π−π(P,W )

hn

Mk(γ)γdγ → 0 and
∫ π
hn
π−π(P,W )

hn

Mk(γ)γ2dγ → 0. By LDC,

∫
Dp,w

κM (
π − π(P,W )

hn
)Ff (π(P,W ), P,W )d(P,W ) → P (π, p, w);∫

Dp,w

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)dγd(P,W ) → 0;

hn

∫
Dp,w

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γdγd(P,W ) → 0;

1

2
h2
n

∫
Dp,w

f (1)(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γ2dγd(P,W ). → 0

Therefore, if π > π(p, w), E(P̂ (π, p, w)) = P (π, p, w) + o(h2
n). For case (3), the proof is similar to

case (1) with the set (π, π(p, w)] replaced by the empty set.

(b) Note that V (P̂ (π, p, w)) = 1
n(V1n − V2n), where

V1n = E[hn
−2(

∫ π

0
Mk(

Π− γ
hn

)dγ)2I(Pi ≤ p,Wi ≥ w)];

V2n = (E[h−1
n

∫ π

0
Mk(

Π− γ
hn

)dγI(Pi ≤ p,Wi ≥ w)])2.

From the proof in part (a), we know the limiting behavior of V2n. Now for V1n, since hn → 0 as

n→∞, there exist N(p, w) ∈ R+ such that for all n > N(p, w),
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V1n = E[hn
−2(

∫ π

0
Mk(

Π− γ
hn

)dγ)2I(Pi ≤ p,Wi ≥ w)]

= hn
−2

∫
Dp,w

∫
[0,π(P,W )]

(

∫ π

0
Mk(

Π− γ
hn

)dγ)2f(Π, P,W )dΠd(P,W )

=

∫
Dp,w

∫
[0,π(P,W )]

(

∫ π−Π
hn

−BM
Mk(ϕ)dϕ)2f(Π, P,W )dΠd(P,W )

=

∫
Dp,w

∫
[0,π(P,W )]

(κM (
π −Π

hn
))2f(Π, P,W )dΠd(P,W ).

Like part (a), we also consider 3 cases when (1) 0 < π < π(p, w); (2) π > π(p, w); (3) π = π(p, w).

For case (1),

V1n =

∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π(P,W )]

(κM (
π −Π

hn
))2f(Π, P,W )dΠd(P,W )

+

∫
π−1({π})

∫
[0,π]

(κM (
π −Π

hn
))2f(Π, P,W )dΠd(P,W )

= Ã1n + Ã2n.

Note that for the last term, for Π < π, κM (π−Π
hn

) → 1 as n → ∞. By Assumptions 2 and 4,

|κM (π−Π
hn

)2f(Π, P,W )| <∞. By Lebesgue’s dominated convergence theorem,

Ã2n →
∫
π−1({π})

∫
[0,π]

f(Π, P,W )dΠd(P,W ).

Now,

Ã1n =

∫
π−1([0,π)∪(π,π(p,w)])

∫
[0,π(P,W )]

(κM (
π −Π

hn
))2∂Ff (Π, P,W )

∂Π
dΠd(P,W ),

where Ff (Π, P,W ) =
∫ π

0 f(γ, p, w)dγ. Note that∫
[0,π(P,W )]

(κM (
π −Π

hn
))2∂Ff (Π, P,W )

∂Π
dΠ =

∫
[0,π(P,W )]

(κM (
π −Π

hn
))2dFf (Π, P,W )

Using integral by parts, ∫
[0,π(P,W )]

(κM (
π −Π

hn
))2dFf (Π, P,W )

= (κM (
π −Π

hn
))2dFf (Π, P,W )|Π=π(P,W )

Π=0

−
∫

[0,π(P,W )]
Ff (Π, P,W )d(κM (

π −Π

hn
))2
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= (κM (
π − π(P,W )

hn
))2Ff (π(P,W ), P,W )

+
2

hn

∫
[0,π(P,W )]

Ff (Π, P,W )κM (
π −Π

hn
)Mk(

π −Π

hn
)dΠ

= (κM (
π − π(P,W )

hn
))2Ff (π(P,W ), P,W )

+2

∫ π
hn

π−π(P,W )
hn

Ff (π − hnγ, P,W )κM (γ)Mk(γ)dγ.

By Taylor’s theorem, Ff (π − hnγ, P,W ) = Ff (π, P,W )− hnγf(π, P,W ) + o(hn), Hence by LDC,

Ã1n = V11n + V12n + V13n +

∫ π
hn

π−π(P,W )
hn

o(hn)κM (γ)Mk(γ)dγ

= V11n + V12n + V13n + o(hn),

where

V11n =

∫
π−1([0,π)∪(π,π(p,w)])

(κM (
π − π(P,W )

hn
))2Ff (π(P,W ), P,W )d(P,W );

V12n = 2

∫
π−1([0,π)∪(π,π(p,w)])

Ff (π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)κM (γ)dγd(P,W );

V13n = −2hn

∫
π−1([0,π)∪(π,π(p,w)])

f(π, P,W )

∫ π
hn

π−π(P,W )
hn

Mk(γ)γκM (γ)dγd(P,W ).

Using the same argument as in the proof of part (a),

V11n →
∫
π−1([0,π))

∫
[0,π]

f(Π, P,W )dΠd(P,W );

V12n → 2

∫
π−1((π,π(p,w)])

Ff (π, P,W )

∫ BM

−BM
Mk(γ)κM (γ)dγd(P,W ).

Note that, ∫ BM

−BM
Mk(γ)κM (γ)dγ =

∫ BM

−BM
κM (γ)dκM (γ)

= κM (γ)2|BM−BM −
∫ BM

−BM
κM (γ)dκM (γ)

= 1−
∫ BM

−BM
κM (γ)dκM (γ).

As a result,
∫ BM
−BM Mk(γ)κM (γ)dγ = 1/2. Therefore,

V12n →
∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W ).
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Similarly,

V13n → 2hnσκ

∫
π−1((π,π(p,w)])

f(Π, P,W )dΠd(P,W ).

The result then follows by combining above results. Case (2) and (3) follow similarly.

Lemma 4. Let hn be a sequence of nonstochastic bandwidths such that 0 < hn → 0 as n → ∞,

Given w ∈ Rd2
++, p ∈ Rd1

++ and there exist N(p, w) such that when n > N(p, w), P{Π < hnBM} = 0.

Under Assumptions 1-4 along with Assumption 5B (or 5A) and if H2k(π, p, w), Ff (π, p, w) and

ε2k(π, p, w) are bounded for all (π, p, w) ∈ Ψ∗, then we have

(a) supπ∈[0,π(p,w)] |P̂ (π, p, w)− E(P̂ (π, p, w))| = op(1); and

(b) supπ∈[0,π(p,w)] |E(P̂ (π, p, w))− P (π, p, w))| = o(1).

Proof. (a): Since [0, π(p, w)] is compact, there exist π0 ∈ [0, π(p, w)] and rπ such that [0, π(p, w)] ⊂

B(π0, rπ) where B(π0, rπ) = {π ∈ R : |π − π0| < rπ}. Furthermore, for all π ∈ [0, π(p, w)],

[0, π(p, w)] ⊂ ∪{π:π∈[0,π(p,w)]}B(π, n−
1
2 )

By the Heine-Borel Theorem, there exists {B(πl, n
− 1

2 )}Lnl=1 such that

[0, π(p, w)] ⊂ ∪Lnl=1B(πl, n
− 1

2 )

with Ln < rπn
1
2 . Therefore, any π ∈ [0, π(p, w)], there exists some l ∈ {1...Ln}, such that π ∈

B(πl, n
− 1

2 ). Then we have

|P̂ (π, p, w)− E(P̂ (π, p, w))|

≤ |P̂ (π, p, w)− P̂ (πl, p, w)|+ |P̂ (πl, p, w)− E(P̂ (πl, p, w))|

+|E(P̂ (πl, p, w))− E(P̂ (π, p, w))|

= P1n + P2n + P3n.

For any ε > 0, note that:
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P{|P̂ (π, p, w)− P̂ (πl, p, w)| > ε}

= P{|(nhn)−1
n∑
i=1

[∫ π

0
Mk(

Πi − γ
hn

)dγ −
∫ πl

0
Mk(

Πi − γ
hn

)dγ

]
I(Pi ≤ p,Wi ≥ w)| > ε}

= P{n−1|
n∑
i=1

[∫ π−Πi
hn

− Πi
hn

Mk(ϕ)dϕ−
∫ πl−Πi

hn

− Πi
hn

Mk(ϕ)dϕ

]
I(Pi ≤ p,Wi ≥ w)| > ε}

≤ P{n−1
n∑
i=1

|
∫ π−Πi

hn

− Πi
hn

Mk(ϕ)dϕ−
∫ πl−Πi

hn

− Πi
hn

Mk(ϕ)dϕ| > ε}.

For given w ∈ Rd2
++, p ∈ Rd1

++ there exist some N(p, w) such that when n > N(p, w), P{Π <

hnBM} = 0. Since Πi has the same distribution as Π, for any i, P{Πi < hnBM} = 0. Therefore,

P{n−1
n∑
i=1

|
∫ π−Πi

hn

− Πi
hn

Mk(ϕ)dϕ−
∫ πl−Πi

hn

− Πi
hn

Mk(ϕ)dϕ| > ε}

= P{n−1
n∑
i=1

|
∫ π−Πi

hn

− Πi
hn

Mk(ϕ)dϕ−
∫ πl−Πi

hn

− Πi
hn

Mk(ϕ)dϕ| > ε | Πi ≥ hnBM , i = 1, ..., n}

= P{n−1
n∑
i=1

|
∫ π−Πi

hn

−BM
Mk(ϕ)dϕ−

∫ πl−Πi
hn

−BM
Mk(ϕ)dϕ| > ε}

= P{n−1
n∑
i=1

|κM (
π −Πi

hn
)− κM (

πl −Πi

hn
)| > ε}

≤ P{n−1
n∑
i=1

mκ|π − πl| > ε}

= P{mκ|π − πl| > ε},

by Assumption 2 and Lemma 1. As a result, for π ∈ B(πl, n
− 1

2 ),

lim
n→∞

P{|P̂ (π, p, w)− P̂ (πl, p, w)| > ε} ≤ lim
n→∞

P{mκn
− 1

2 > ε} = 0.

Similarly, for P3n,

P3n = |E(P̂ (πl, p, w))− E(P̂ (π, p, w))|

= |
∫
Dp,w

∫
[0,π(P,W )]

κM (
πl −Π

hn
)f(Π, P,W )dΠd(P,W )

−
∫
Dp,w

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )|
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≤
∫
Dp,w

∫
[0,π(P,W )]

|κM (
πl −Π

hn
)− κM (

π −Π

hn
)|f(Π, P,W )dΠd(P,W )

≤ mκn
− 1

2P{P ≤ p,W ≥ w,Π ≤ π(P,W )}

≤ mκn
− 1

2 .

Given n→∞, we have P1n = op(1) and P3n = o(1). For any l ∈ {1, ...Ln},

P2n = |P̂ (πl, p, w)− E(P̂ (πl, p, w))|

≤ max
1≤l≤Ln

|P̂ (πl, p, w)− E(P̂ (πl, p, w))|.

We need to show that for any ε > 0, there exists some ∆ε > 0, such that

P{( n

ln(n)
)

1
2 max

1≤l≤Ln
|P̂ (πl, p, w)− E(P̂ (πl, p, w))| ≥ ∆ε} < ε.

Note that

P{( n

ln(n)
)

1
2 max

1≤l≤Ln
|P̂ (πl, p, w)− E(P̂ (πl, p, w))| ≥ ∆ε}

≤
Ln∑
l=1

P{( n

ln(n)
)

1
2 |P̂ (πl, p, w)− E(P̂ (πl, p, w))| ≥ ∆ε}.

Write |P̂ (πl, p, w)− E(P̂ (πl, p, w))| = | 1n
∑n

i=1Win| where

Win = κM (
πl −Πi

hn
)I(Pi ≤ p,Wi ≥ w)− E[κM (

πl −Πi

hn
)I(Pi ≤ p,Wi ≥ w)].

Obviously, E(Win) = 0, |Win| ≤ 2 since both I(.) and κM (.) are less or equal to one. By Bernstein’s

inequality we have

P{( n

ln(n)
)

1
2 |P̂ (πl, p, w)− E(P̂ (πl, p, w))| ≥ ∆ε} < 2 exp(−

n∆2
ε · ( n

ln(n))−1

2σ̄2
n + 4

3∆ε · ( n
ln(n))−

1
2

),

with σ̄2
n = n−1

∑n
i=1 V (Win) → P (πl, p, w)(1 − P (πl, p, w)) by Lemma 3. Thus 2σ̄2

n + 4
3∆ε ·

( n
ln(n))−

1
2 → 2P (πl, p, w)(1− P (πl, p, w)), Hence provided that ∆2

ε > 2P (πl, p, w)(1− P (πl, p, w)),

LnP{(
n

ln(n)
)

1
2 |P̂ (πl, p, w)− E(P̂ (πl, p, w))| ≥ ∆ε}

< rπn
1
2 · 2 exp(− ln(n))

= 2rπn
− 1

2 .
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Therefore, P2n = op(1) and as a result, supπ∈[0,π(p,w)] |P̂ (π, p, w)− E(P̂ (π, p, w))| = op(1).

(b) Note that for π ∈ [0, π(p, w)],

E(P̂ (π, p, w)) =

∫
Dp,w

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

=

∫
π−1([0,π))

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

+

∫
π−1({π})

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

+

∫
π−1((π,π(p,w)])

∫
[0,π]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

+

∫
π−1((π,π(p,w)])

∫
[π,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W ).

Therefore, by triangular inequality, we have

sup
π∈[0,π(p,w)]

|E(P̂ (π, p, w)− P (π, p, w))|

= sup
π∈[0,π(p,w)]

G1n + sup
π∈[0,π(p,w)]

G2n + sup
π∈[0,π(p,w)]

G3n + sup
π∈[0,π(p,w)]

G4n,

where

G1n = |
∫
π−1([0,π))

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

−
∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )|;

G2n = |
∫
π−1({π})

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

−
∫
π−1({π})

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )|;

G3n = |
∫
π−1((π,π(p,w)])

∫
[0,π]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )

−
∫
π−1((π,π(p,w)])

∫
[0,π]

f(Π, P,W )dΠd(P,W )|;

G4n = |
∫
π−1((π,π(p,w)])

∫
[π,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )|.

For the first term, when (P,W ) ∈ π−1([0, π)), Π ≤ π(P,W ) < π. This implies κM (π−Π
hn

) → 1 as

n→∞. First, by LDC,∫
π−1([0,π))

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )→

∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W ).
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Second,
∫
π−1([0,π))

∫
[0,π(P,W )] κM (π−Π

hn
)f(Π, P,W )dΠd(P,W ) is increasing with n. Furthermore, By

the Lipschitz condition imposed on κM (.),∫
π−1([0,π))

∫
[0,π(P,W )] κM (π−Π

hn
)f(Π, P,W )dΠd(P,W ) is a continuous function in π. As a result,

by Dini’s Theorem,∫
π−1([0,π))

∫
[0,π(P,W )]

κM (
π −Π

hn
)f(Π, P,W )dΠd(P,W )→

∫
π−1([0,π))

∫
[0,π(P,W )]

f(Π, P,W )dΠd(P,W )

uniformly. Thus, supπ∈[0,π(p,w)]G1n = o(1). Similarly, we can prove that supπ∈[0,π(p,w)]G2n = o(1)

and supπ∈[0,π(p,w)]G3n = o(1). For the last term, note when Π ∈ [π, π(P,W )], κM (π−Π
hn

) → 0

Similarly, by LDC and Dini’s theorem, supπ∈[0,π(p,w)]G4n = o(1).

A.2 Proof of Propositions

Proposition 1 Proof. For any (π, p, w) ∈ Ψ∗, if π < πα(p, w) = inf{π ∈ [0, Bπ] : F (π|Cp,w) ≥ α},

then π /∈ {π ∈ [0, Bπ] : F (π|Cp,w) ≥ α}. That is, F (π|Cp,w) < α. If π > πα(p, w), there exist some

δ > 0 such that π > πα(p, w) + δ. By the definition of πα(p, w), for any δ > 0, there exist some

π0 ∈ {π ∈ [0, Bπ] : F (π|Cp,w) ≥ α} such that π0 < πα(p, w) + δ. By the strict monotonicity of

F (·|Cp,w), F (π|Cp,w) > F (πα(p, w) + δ|Cp,w) > F (π0|Cp,w) ≥ α. The result then follows.

Proposition 2 Proof. From its definition, {πα(p, w)}0≤α≤1 is monotonically non-decreasing in α.

The first result follows immediately by the fact sup0≤α≤1{πα(p, w)} = π(p, w). Let Φ be a compact

set interior to the support of marginal distribution of (P,W ). Define φn(p, w) = π1− 1
n

(p, w). Since

{πα(p, w)}0≤α≤1 is monotone nondecreasing in α, for any n ∈ N, φn(p, w) ≤ φn+1(p, w), with

limn→∞ φn(p, w) = π(p, w) pointwise. By Dini’s Theorem, sup(p,w)∈Φ |φn(p, w) − π(p, w)| → 0.

Thus, for any ε > 0, there exist some N such that when n > N , sup(p,w)∈Φ |φn(p, w)−π(p, w)| < ε.

That is, there exist δ = 1− 1
N such that when |α− 1| < δ, sup(p,w)∈Φ |πα(p, w)− π(p, w)| < ε.

Proposition 3 Proof. (i) For any π0 ∈ [0, Bπ], let |π − π0| < δ for some δ > 0. Then,
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|P̂ (π, p, w)− P̂ (π0, p, w)|

= |(nhn)−1
n∑
i=1

(

∫ π

0
Mk(

Πi − γ
hn

)dγ −
∫ π0

0
Mk(

Πi − γ
hn

)dγ)I(Pi ≤ p,Wi ≥ w)|

≤ (nhn)−1
n∑
i=1

∫ π

π0

|Mk(
Πi − γ
hn

)|dγ

≤ (nhn)−1 sup
ϕ∈[−BM ,BM ]

Mk(ϕ)

n∑
i=1

|π − π0|

≤ hn
−1δ · sup

ϕ∈[−BM ,BM ]
Mk(ϕ)

< ε,

for any ε > 0 with a sufficiently small δ. (ii) follows directly from (i). For (iii) we need only prove

that for any (p, w), there exists some N(p, w) such that for all n > N(p, w),

hn
−1 lim

π→∞

∫ π

0
Mk(

Πi − γ
hn

)dγ = 1.

Now, note that

hn
−1 lim

π→∞

∫ π

0
Mk(

Πi − γ
hn

)dγ = lim
π→∞

∫ Πi
hn

Πi−π
hn

Mk(ϕ)dϕ.

Since hn → 0 as n→∞, there exists N(p, w) for any (p, w), such that for all n > N(p, w), Πi
hn
> BM

and Πi−π
hn

< −BM . The result follows from the fact that Mk integrates to 1.

A.3 Proof of Theorems

Theorem 1 Proof. First we consider the event A = {ω : |πα,n(p, w)−πα(p, w)| > ε}. Given (p, w),

provided that πα(p, w) is unique, for any ε > 0, we have F (πα(p, w)+ε|Cp,w) > F (πα(p, w)|Cp,w) >

F (πα(p, w) − ε|Cp,w). For ω ∈ A = {ω : |πα,n(p, w) − πα(p, w)| > ε}, πα,n(p, w) > πα(p, w) + ε or

πα,n(p, w) < πα(p, w) − ε. By the strict monotonicity of F (.|Cp,w), we have F (πα,n(p, w)|Cp,w) >

F (πα(p, w) + ε|Cp,w) or F (πα,n(p, w)|Cp,w) < F (πα(p, w)− ε|Cp,w). Let

δ(ε, p, w) = min{F (πα(p, w) + ε|Cp,w)− F (πα(p, w)|Cp,w), F (πα(p, w)|Cp,w)

−F (πα(p, w)− ε|Cp,w)}

> 0.
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For all ω ∈ A,

(1) when F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w) > 0, we have πα,n(p, w) > πα(p, w) + ε. By mono-

tonicity,

F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w) > F (πα(p, w) + ε|Cp,w)− F (πα(p, w)|Cp,w) ≥ δ(ε, p, w).

(2) Similarly, when F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w) < 0, we have

F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w) < F (πα(p, w)− ε|Cp,w)− F (πα(p, w)|Cp,w) ≤ −δ(ε, p, w).

As a result, For ω ∈ A, |F (πα,n(p, w)|Cp,w) − F (πα(p, w)|Cp,w)| > δ(ε, p, w). i.e., A ⊆ B = {ω :

|F (πα,n(p, w)|Cp,w)−F (πα(p, w)|Cp,w)| > δ(ε, p, w)}. Thus, P(A) ≤ P(B). Therefore, we just need

to prove |F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w)| = op(1).

|F (πα,n(p, w)|Cp,w)− F (πα(p, w)|Cp,w)|

= |F (πα,n(p, w)|Cp,w)− F̂ (πα,n(p, w)|Cp,w)|

≤ sup
π∈R+

|F (π|Cp,w)− F̂ (π|Cp,w)|

≤ sup
π∈R+

| P (π, p, w)

PPW (p, w)
− P̂ (π, p, w)

P̂PW (p, w)
|

≤ sup
π∈R+

| P (π, p, w)

PPW (p, w)
− P (π, p, w)

P̂PW (p, w)
|+ sup

π∈R+

| P (π, p, w)

P̂PW (p, w)
− P̂ (π, p, w)

P̂PW (p, w)
|

≤ sup
π∈R+

P (π, p, w)| 1

PPW (p, w)
− 1

P̂PW (p, w)
|+ | 1

P̂PW (p, w)
| sup
π∈R+

|P (π, p, w)− P̂ (π, p, w)|

≤ PPW (p, w)| 1

PPW (p, w)
− 1

P̂PW (p, w)
|+ | 1

P̂PW (p, w)
| sup
π∈R+

|P (π, p, w)− P̂ (π, p, w)|.

Note that P̂PW (p, w) − PPW (p, w) = op(1) by the properties of indicator function. By Slutsky

theorem we have 1
PPW (p,w) −

1
P̂PW (p,w)

= op(1). Since P̂PW (p, w) = Op(1), we just need to prove

supπ∈R+
|P (π, p, w)− P̂ (π, p, w)| = op(1).

sup
π∈R+

|P (π, p, w)− P̂ (π, p, w)|

≤ sup
π∈[0,π(p,w)]

|P (π, p, w)− P̂ (π, p, w)|+ sup
π∈(π(p,w),∞)

|P (π, p, w)− P̂ (π, p, w)|.
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From Lemma 4, supπ∈[0,π(p,w)] |P (π, p, w)− P̂ (π, p, w)| = op(1). For all π ∈ (π(p, w),∞),

P (π, p, w) = P(Π ≤ π, P ≤ p,W ≥ w)

= P(Π ≤ π(p, w), P ≤ p,W ≥ w)

= P(P ≤ p,W ≥ w)

= PPW (p, w).

Given min{i:Pi≤p,Wi≥w}Πi ≥ hnBM , and for any i, Πi ≤ π(p, w) < π. There exist N(p, w) such

that for all n > N(p, w),

P̂ (π, p, w) = (nhn)−1
n∑
i=1

(

∫ π

0
Mk(

Πi − γ
hn

)dγ)I(Pi ≤ p,Wi ≥ w)

= n−1
n∑
i=1

∫ π−Πi
hn

− Πi
hn

Mk(ϕ)dϕI(Pi ≤ p,Wi ≥ w)

= n−1
n∑
i=1

∫ BM

−BM
Mk(ϕ)dϕI(Pi ≤ p,Wi ≥ w)

= n−1
n∑
i=1

I(Pi ≤ p,Wi ≥ w)

= P̂PW (p, w).

As a result, as P̂PW (p, w)→ PPW (p, w) as n→∞. By triangular inequality,

sup
π∈(π(p,w),∞)

|P (π, p, w)− P̂ (π, p, w)|

≤ sup
π∈(π(p,w),∞)

|P (π, p, w)− PPW (p, w)|+ sup
π∈(π(p,w),∞)

|P̂ (π, p, w)− PPW (p, w)|

= op(1)

The result then follows.

Theorem 2 Proof. (i) By Mean Value Theorem,

πα,n(p, w)− πα(p, w) =
F̂ (πα,n(p, w)|Cp,w)− F̂ (πα(p, w)|Cp,w)

f̂(π̄α,n(p, w)|Cp,w)

=
F (πα(p, w)|Cp,w)− F̂ (πα(p, w)|Cp,w)

f̂(π̄α,n(p, w)|Cp,w)
,
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where f̂(π|Cp,w) =
∂F̂ (π|Cp,w)

∂π and π̄α,n(p, w) = λπα,n(p, w) + (1 − λ)πα(p, w) for some λ ∈ (0, 1).

Write

πα,n(p, w)− πα(p, w) = (An + Cn)(
1

f(πα(p, w)|Cp,w)
+ βn),

where

An = F (πα(p, w)|Cp,w)− E(P̂ (πα(p, w), p, w))

E(P̂PW (p, w))
;

Cn =
E(P̂ (πα(p, w), p, w))

E(P̂PW (p, w))
− F̂ (πα(p, w)|Cp,w);

βn =
1

f̂(π̄α,n(p, w)|Cp,w)
− 1

f(πα(p, w)|Cp,w)
.

The theorem follows if (a) βn = op(1); (b) An = −1
2h

2
nσ

2
Mk

∫
π−1([πα(p,w),π(p,w)]) f

(1)(πα(p,w),P,W )d(P,W )

PPW (p,w) +

o(h2
n); (c) ( sn(p,w)

P̂PW (p,w)
)−1√nCn → N(0, 1) where

s2
n(p, w) = P (πα(p, w), p, w)− (P (πα(p, w), p, w))2

PPW (p, w)

−2hnσκ

∫
π−1([πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W ) + o(hn).

(a) By Slutsky theorem, it is suffice to prove f̂(π̄α,n(p, w)|Cp,w) − f(πα(p, w)|Cp,w) = op(1).

Since πα,n(p, w)− πα(p, w) = op(1) by theorem 1, also, π̄α,n(p, w)− πα(p, w) = op(1).

|f̂(π̄α,n(p, w)|Cp,w)− f(πα(p, w)|Cp,w)|

≤ |f̂(π̄α,n(p, w)|Cp,w)− f(π̄α(p, w)|Cp,w)|+ |f(π̄α,n(p, w)|Cp,w)− f(πα(p, w)|Cp,w)|

≤ |f̂(π̄α,n(p, w)|Cp,w)− f(π̄α(p, w)|Cp,w)|+ op(1)

by continuity of f . Therefore it is suffice to prove supπ∈G |f̂(π|Cp,w) − f(π|Cp,w)| = op(1). where

G is a compact set and G ⊂ (0, π(p, w)).

When (P,W ) ∈ π−1([0, π]), Π ≤ π(P,W ) ≤ π. F (π|Cp,w) = 1 and
∂F (π|Cp,w)

∂π = 0, Therefore,

f(π|Cp,w) =

∫
π−1((π,π(p,w)]) f(π, P,W )d(P,W )

PPW (p, w)
.
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sup
π∈G
|f̂(π|Cp,w)− f(π|Cp,w)|

= sup
π∈G
|
(nhn)−1

∑n
i=1Mk(

Πi−π
hn

)I(Pi ≤ p,Wi ≥ w)

P̂PW (p, w)
−

∫
π−1((π,π(p,w)]) f(π, P,W )d(P,W )

PPW (p, w)
|

≤ 1

P̂PW (p, w)
sup
π∈G
|(nhn)−1

n∑
i=1

Mk(
Πi − π
hn

)I(Pi ≤ p,Wi ≥ w)

−
∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W )|

+| 1

PPW (p, w)
− 1

P̂PW (p, w)
| sup
π∈G

∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W ).

Since 1
PPW (p,w) −

1
P̂PW (p,w)

= op(1) by Slutsky theorem,

sup
π∈G

∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W ) ≤ Bf
∫
π−1((π,π(p,w)])

d(P,W ) = O(1)

by Assumptions 3 and 4.

Denote Qn(p, w) = (nhn)−1
∑n

i=1Mk(
Πi−π
hn

)I(Pi ≤ p,Wi ≥ w), Thus,

sup
π∈G
|Qn(p, w)−

∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W )|

≤ sup
π∈G
|Qn(p, w)− E(Qn(p, w))|

+ sup
π∈G
|E(Qn(p, w))−

∫
Dp,w

κM (
π(P,W )− π

hn
)f(π, P,W )d(P,W )|

+ sup
π∈G
|
∫
π−1((π,π(p,w)])

κM (
π(P,W )− π

hn
)f(π, P,W )d(P,W )

−
∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W )|

+ sup
π∈G
|
∫
π−1([0,π])

κM (
π(P,W )− π

hn
)f(π, P,W )d(P,W )|

= Q1n +Q2n +Q3n +Q4n.

Follow the similar proof process as in Lemma 4 (a), we can prove that Q1n = Op((
lnn
nhn

)
1
2 ) if

nh2
n →∞. For any (p, w), there exist some N(p, w) such that when n > N(p, w)

E(Qn(p, w)) = hn
−1

∫
Dp,w

∫
[0,π(P,W )]

Mk(
Π− π
hn

)f(Π, P,W )dΠd(P,W )

=

∫
Dp,w

∫ π(P,W )−π
hn

− π
hn

Mk(ϕ)f(π + hnϕ, P,W )dϕd(P,W )

=

∫
Dp,w

∫ π(P,W )−π
hn

−BM
Mk(ϕ)f(π + hnϕ, P,W )dϕd(P,W ).
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By Taylor’s theorem, for any π ∈ G,

|
∫
Dp,w

∫ π(P,W )−π
hn

−BM
Mk(ϕ)(f(π + hnϕ, P,W )− f(π, P,W ))dϕd(P,W )|

≤
∫
Dp,w

∫ π(P,W )−π
hn

−BM
Mk(ϕ)|(f(π + hnϕ, P,W )− f(π, P,W ))|dϕd(P,W )

≤ mfhn

∫
Dp,w

∫ BM

−BM
Mk(ϕ)|ϕ|dϕd(P,W ) + o(hn)

= O(hn).

Therefore, Q2n = o(1). Since when (P,W ) ∈ π−1([0, π]), κM (π(P,W )−π
hn

) → 0 and when (P,W ) ∈

π−1((π, π(p, w)]), κM (π(P,W )−π
hn

)→ 1. By LDC, for any π ∈ G,∫
π−1((π,π(p,w)])

κM (
π(P,W )− π

hn
)f(π, P,W )d(P,W )→

∫
π−1((π,π(p,w)])

f(π, P,W )d(P,W )|,

and ∫
π−1([0,π])

κM (
π(P,W )− π

hn
)f(π, P,W )d(P,W )→ 0.

Therefore, Q3n = o(1) and Q4n = o(1). In sum, Noting that 1
P̂PW (p,w)

= Op(1), we have

sup
π∈G
|f̂(π|Cp,w)− f(π|Cp,w)| = op(1).

As a result, βn = op(1).

(b):

An = F (πα(p, w)|Cp,w)− E(P̂ (πα(p, w), p, w))

E(P̂PW (p, w))

=
E(P̂PW (p, w))F (πα(p, w)|Cp,w)

E(P̂PW (p, w))
− P (πα(p, w), p, w)

E(P̂PW (p, w))

+
P (πα(p, w), p, w)

E(P̂PW (p, w))
− E(P̂ (πα(p, w), p, w))

E(P̂PW (p, w))

=
1

E(P̂PW (p, w))
[(E(P̂PW (p, w))F (πα(p, w)|Cp,w)− P (πα(p, w), p, w))

+(P (πα(p, w), p, w)− E(P̂ (πα(p, w), p, w)))]

=
1

E(P̂PW (p, w))
(A1n +A2n).
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We know E(P̂PW (p, w)) = PPW (p, w). Clearly A1n = 0. Since given α ∈ (0, 1), πα(p, w) ∈

(0, π(p, w)), by Lemma 3,

A2n = −1

2
h2
nσ

2
M

∫
π−1((πα(p,w),π(p,w)])

f (1)(πα(p, w), P,W )d(P,W ) + o(h2
n).

The result then follows.

(c):

√
nCn =

√
n(
E(P̂ (πα(p, w), p, w))

E(P̂PW (p, w))
− F̂ (πα(p, w)|Cp,w))

=
√
n(
E(P̂ (πα(p, w), p, w))P̂PW (p, w)

E(P̂PW (p, w))P̂PW (p, w)
− P̂ (πα(p, w), p, w)

P̂PW (p, w)
)

=
1

P̂PW (p, w)

n∑
i=1

Zin,

where

Zin =
1√
n

(
E(P̂ (πα(p, w), p, w))

PPW (p, w)
I(Pi ≤ p,Wi ≥ w)− 1

hn

∫ πα(p,w)

0
Mk(

Πi − γ
hn

)dγI(Pi ≤ p,Wi ≥ w)).

Here,

E(Zin) =
1√
n

(E(P̂ (πα(p, w), p, w))− E(P̂ (πα(p, w), p, w)))

= 0,

n∑
i=1

E(Z2
in) = s2

n(p, w) = s1n + s2n + s3n,

where

s1n =
{E(P̂ (πα(p, w), p, w))}2

PPW (p, w)2
E(I(Pi ≤ p,Wi ≥ w)) =

{E(P̂ (πα(p, w), p, w))}2

PPW (p, w)
;

s2n = E[(
1

hn

∫ πα(p,w)

0
Mk(

Πi − γ
hn

)dγI(Pi ≤ p,Wi ≥ w)))2] = E[(P̂ (πα(p, w), p, w)2];

s3n = −2
E(P̂ (πα(p, w), p, w)

PPW (p, w)
E(

1

hn

∫ πα(p,w)

0
Mk(

Πi − γ
hn

)dγI(Pi ≤ p,Wi ≥ w))

= −2s1n.
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By Lemma 3,

E(P̂ (πα(p, w), p, w)) = P (πα(p, w), p, w) +
1

2
h2
nσ

2
M

∫
π−1((π,π(p,w)])

f (1)(π, P,W )d(P,W ) + o(h2
n);

E[(P̂ (πα(p, w), p, w)2] = P (πα(p, w), p, w)− 2hnσκ

∫
π−1((πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W )

+ o(hn).

As a result,

s1n =
1

PPW (p, w)
(P (πα(p, w), p, w) +

1

2
h2
nσ

2
M

∫
π−1((π,π(p,w)])

f (1)(π, P,W )d(P,W ) + o(h2
n))2

=
(P (πα(p, w), p, w))2

PPW (p, w)
+ o(hn);

s2n = P (πα(p, w), p, w)− 2hnσκ

∫
π−1((πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W ) + o(hn);

s3n = −2s1n = −2
(P (πα(p, w), p, w))2

PPW (p, w)
+ o(hn),

n∑
i=1

E(Z2
in) = s1n + s2n + s3n

= P (πα(p, w), p, w)− (P (πα(p, w), p, w))2

PPW (p, w)

−2hnσκ

∫
π−1((πα(p,w),π(p,w)])

f(πα(p, w), P,W )d(P,W ) + o(hn).

By Liapounov’s CLT,
∑n

i=1
Zin

sn(p,w)

d→ N(0, 1) if limn→∞
∑n

i=1E(| Zin
sn(p,w) |

2+δ) = 0 for some δ > 0.

n∑
i=1

E(| Zin
sn(p, w)

|2+δ) ≤
n∑
i=1

E(|Zin|2+δ| 1

sn(p, w)
|2+δ).

Since sn(p, w) = O(1), we just need to prove limn→∞
∑n

i=1E(|Zin|2+δ) = 0. By Cr Inequality,

n∑
i=1

E(|Zin|2+δ) ≤ 21+δ(n−2/δE(|E(P̂ (πα(p, w), p, w))

PPW (p, w)
I(Pi ≤ p,Wi ≥ w)|2+δ)

+n−2/δE(| 1

hn

∫ πα(p,w)

0
Mk(

Πi − γ
hn

)dγI(Pi ≤ p,Wi ≥ w)|2+δ))

= 21+δ(n−2/δE|E(P̂ (πα(p, w), p, w))

PPW (p, w)
|2+δE(I(Pi ≤ p,Wi ≥ w)))

+n−2/δ

∫
Dp,w

∫
[0,π(P,W )]

κM (
πα(p, w)−Π

hn
)f(Π, P,W )dΠd(P,W ).
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Since E(I(Pi ≤ p,Wi ≥ w) = O(1),

n−2/δE|E(P̂ (πα(p, w), p, w))

PPW (p, w)
|2+δ = n−2/δ |E(P̂ (πα(p, w), p, w))|2+δ

PPW (p, w)2+δ

= O(n−2/δ)

Since κM (.) ≤ 1, f < Bf and π ≤ Bπ,

n−2/δ

∫
Dp,w

∫
[0,π(P,W )]

κM (
πα(p, w)−Π

hn
)f(Π, P,W )dΠd(P,W )

≤ n−2/δBf

∫
Dp,w

∫
[0,π(P,W )]

dΠd(P,W )

≤ n−2/δBf

∫
π−1[0,Bπ ]

∫
[0,Bπ ]

dΠd(P,W )

= O(n−2/δ).

The result then follows.

(ii) Note that in the proof of part (i), An = 1
E(P̂PW (p,w))

(A1n + A2n) is the bias term and

A1n = 0. by Lemma 2,

|A2n| = |P (πα(p, w), p, w)− E(P̂ (πα(p, w), p, w))|

≤ ch2k
n [

∫
Dp,w

H2k(πα(p, w), P,W )d(P,W )

+

∫
Dp,w

sup
π∈R
|Ff (π, P,W )|ε−2k

2k (πα(p, w), P,W )d(P,W )].

The result then follows.


