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Abstract
As power systems shift towards increasingwind and solar electricity generation, inter-annual
variability (IAV) ofwind and solar resource and generationwill pose increasing challenges to power
systemplanning and operations. To help gauge these challenges to the power system,we quantify IAV
ofwind and solar resource and electricity generation across the Electric Reliability Council of Texas
(ERCOT) power system, then assess the IAVofwind and solar electricity generation during peak-load
hours (i.e. IAVofwind and solar capacity values) for the current ERCOTwind and solar generator
fleet. To do so, we leverage the long timespan of four reanalysis datasets with the high resolution of
grid integration datasets.Wefind the IAV (quantified as the coefficient of variation) ofwind
generation ranges from2.3%–11% across ERCOT,while the IAVof solar generation ranges from
1.7%–5%across ERCOT.We alsofind significant seasonal and regional variability in the IAVofwind
and solar generation, highlighting the importance of consideringmultiple temporal and spatial scales
when planning and operating the power system. In addition, the IAV of the current wind and solar
fleets’ capacity values (defined as generation during peak-load hours) are larger than the IAVof the
samefleets’ capacity factors. IAVof annual generation and capacity values of wind and solar could
impact operations and planning in several ways, e.g. through annual emissions,meeting emission
reduction targets, and investment needs tomaintain capacity adequacy.

1. Introduction

In the United States, the installed capacity of solar and
wind generators has grown rapidly in recent years, reach-
ing a cumulative 423 and 88GWin2017, respectively (US
Energy InformationAdministration2018). Several factors
have driven this growth, including falling wind and solar
costs (Barbose et al 2016, Lazard 2017, Wiser et al 2017)
and federal and state policies (US Department of
Energy 2017, 2018). Due to economic and policy drivers,
wind and solar installed capacity will likely continue to
grow (Wiser et al 2015, Cole et al 2018a, 2018b), with
some deep decarbonization scenarios envisioning wind
and solar penetrations greater than 60% (Ribera et al
2015,Loftus et al2015,Mileva et al2016).

As wind and solar penetrations increase, the varia-
bility and uncertainty of wind and solar generationwill
increasingly impact power system planning and
operations. Variability and uncertainty impact the
amount of capacity needed to meet planning and
operating reserve requirements, and can impact the
cost offinancing as higher variability can lead to higher
project risk. Numerous studies examine how short-
term variability and uncertainty impact operations,
such as by increasing generator cycling and necessitat-
ing increased system reserve requirements (Wan 2011,
Lew et al 2013, Deetjen et al 2017, Zhao et al 2017).
However, research considering how long-term varia-
bility and uncertainty impact planning and operations
is lacking. Consequently, here we quantify long-term
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variability, specifically inter-annual variability (IAV),
of wind and solar resources and generation, and then
assess how this IAVmight impact systemplanning and
operations.

Prior analyses quantify IAV of wind speed and elec-
tricity generation using two types of data: (1) reanalysis
datasets, which are coarse but dynamically consistent cli-
mate datasets based on unchanging data assimilation
schemes and changing data sources, and (2) observations
(Li et al 2010, Holt and Wang 2012, Wan 2012, Brower
et al 2013, Rose andApt 2015). Using 30 years of one rea-
nalysis dataset in the US Great Lakes, Li et al (2010) find
annual average wind speed IAV exhibits low spatial but
high seasonal variability, with greater IAV in winter than
summer. Using 24 years of a reanalysis dataset, Brower
et al (2013) estimate the coefficient of variation (COV) of
annual average wind speed IAV ranges from 2% to 6%
across the United States. COV quantifies variability
around a mean normalized by that mean, i.e. variability
of annual average resource around multi-year average
resource (see section 2.4 for mathematical definition).
Using 32 years of one reanalysis dataset bias-corrected
with observations, Rose andApt (2015)find theCOV for
annual electricity generation from individual plants ran-
ges from 5% to 12% in the Great Plains, whereas the
plants’ aggregated generationCOVequals 3%.

In addition to using reanalysis and observational
datasets (Lohmann et al 2006, Markovic et al 2009,
Pozo-Vázquez et al 2011, Davy and Troccoli 2012,
Eerme 2012), many studies quantify IAV of solar irra-
diance and electricity generation using the National
Solar Radiation Database (NSRDB) (Gueymard and
Wilcox 2011, Madaeni et al 2013, Bryce et al 2018,
Sengupta et al 2018), a grid integration dataset that
contains high-resolution gridded irradiance data (US
National Renewable Energy Laboratory 2017). Using
eight years of NSRDB data, Gueymard and Wilcox
(2011) estimate the COV of annual average Global Tilt
Irradiance (GTI) ranges from 0.5% to 6% and the
COV of annual average Direct Normal Irradiance
(DNI) ranges from 1% to 10% across the United
States. They also find significant seasonal differences
in DNI and GTI COV. For instance, the COV of
monthly average DNI ranges from 2% to 15% in
August and 15% to 30% in February across much of
the United States. Using 18 years of NSRDB data for
seven sites with observational data, Sengupta et al
(2018) estimate the COV for annual average Global
Horizontal Irradiance (GHI) andDNI ranges from 3%
to 5%across sites under all sky conditions.

Overall, prior research suggests the COV of annual
average wind speed and solar irradiance ranges from
1% to 5% across the United States, and significantly
larger variability exists seasonally and year-to-year. In
systems with high renewable penetrations, such varia-
bility could significantly affect planning and opera-
tions. However, much of the research thus far has
quantified variability in wind and solar resource,
whereas planning and operations vary with power

output. Additionally, existing studies have largely not
quantified both wind and solar resource or electricity
generation IAV or quantified IAV of metrics relevant
to planning and operations. For example, the contrib-
ution of wind and solar to meeting peak system
demand (called the capacity value) is a key planning
metric, and the IAV of capacity value could be much
greater than of annual generation because capacity
value relies on variation in resource during peak-load
hours (Gami et al 2017, Cole et al 2017). In this study,
capacity value is shown as a percentage of nameplate
capacity. Using NSRDB and demand data for theWes-
tern United States, Madaeni et al (2013) find the capa-
city value of concentrating solar power can range from
15% to 70% across years for a single site. Finally, prior
studies have largely quantified resource or generation
IAV over regions not aligned with power systems, lim-
iting their applicability to planning and operations.

Here, we quantify the IAV of wind and solar
resources and electricity generation in the Electric
Reliability Council of Texas (ERCOT) power system.
We first quantify IAV of wind and solar resource and
electricity generation across all potential wind and
solar sites in ERCOT, including by region and season.
To link IAV to planning and operations and ground
our analysis in a real-world system, we then quantify
IAV of capacity values and annual generation of the
2017 ERCOT wind and solar generator fleet. To con-
duct this analysis, we use reanalysis and grid integra-
tion datasets to leverage the advantages of both.

2.Methods

We conduct our study in the ERCOT power system,
which serves 90% of Texas’ electric load (Electric
Reliability Council of Texas 2017a), due to its high wind
penetration of 20 GW in 2018 (Electric Reliability
Council of Texas 2017c), high wind and solar resource
quality (US National Renewable Energy Labora-
tory 2016), and spatially varied fleet of wind farms (see
supplemental information (SI) section SI.1 is available
online at stacks.iop.org/ERL/14/044032/mmedia).
Solar capacity in ERCOT is expected to reach 1.5 GW in
2018 (Electric ReliabilityCouncil of Texas 2017c).

IAV of wind and solar resource varies spatially and
temporally (Li et al 2010, Gueymard andWilcox 2011,
Wan 2012, Madaeni et al 2013, Sengupta et al 2018)
and manifests on multi-decade timescales (Sengupta
et al 2018). To account for these factors, we leverage
two types of datasets: reanalysis datasets, which span
decades but have limited spatial and temporal resolu-
tion (table 1), and grid integration datasets, which
have a smaller timespan but higher resolution. To take
advantage of the multi-decade timespan of reanalysis
datasets, we first use them to validate IAV of wind and
solar resource in the grid integration datasets. We also
validate the grid integration datasets at sub-annual
timescales with observed wind and solar data,
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supplementing prior validations (Bañuelos-Ruedas
et al 2010, Olauson and Bergkvist 2015, Sengupta et al
2018). Once validated, we then use the grid integration
datasets to explore IAV of wind and solar resource and
generation at temporal and spatial scales relevant to
power systemplanning and operations.

We represent wind and solar resource using wind
speed and surface GHI, respectively, because they are
widely available in reanalysis datasets and are the primary
drivers of wind and solar generation. We specifically use
100 m wind speeds because reanalysis datasets provide
wind speeds close to 100m, facilitating accurate approx-
imation using the wind power law (Bañuelos-Ruedas
et al 2010), and 100m is a common hub height formod-
ernwind turbines (Draxl et al2015a).

For grid integration datasets, we use the Wind
Integration National Dataset (WIND) Toolkit (Draxl
et al 2015a) and the NSRDB (US National Renewable
Energy Laboratory 2017). The WIND Toolkit is a
2×2 km gridded, 5 min resolution dataset covering
the continental United States from 2007 to 2013
(Draxl et al 2015a). The WIND Toolkit was created
with theWeather Research and ForecastModel (WRF)
(Skamarock et al 2008), a commonly used mesoscale
Numerical Weather Prediction model, driven at the
boundaries (and initial conditions) by the ERA-
Interim reanalysis dataset. While the WIND Toolkit is
driven by the ERA-Interim reanalysis, which in turn is
used in this comparison, it is still a result of the WRF,
where winds are dynamically computed, and thus a
different product from reanalysis data. The WIND
Toolkit provides meteorological variables, including
wind speed, at many hub heights. We focus our analy-
sis on 100mwind speeds, but test the sensitivity of our
results to 80 and 120 m. The NSRDB is a 4 × 4 km
gridded, half-hourly dataset covering the continental
United States from 1998 to 2015 (USNational Renew-
able Energy Laboratory 2017). NSRDB downscales
satellite-based data using the Physical Solar Model,
which runs a radiative transfer model to produce grid-
ded solar radiation. NSRDB provides common solar
radiation variables including GHI and Direct Hor-
izontal Irradiance (DHI).

2.1. Validating grid integration datasets
2.1.1. Comparing IAV of grid integration datasets to
reanalysis datasets
Given their spatial and temporal completeness, acces-
sibility, and wide use in the literature, we compare the

IAV of the WIND Toolkit and NSRDB with four
reanalysis datasets: North American Regional Reana-
lysis (NARR) (Mesinger et al 2006, National Centers
for Environmental Prediction 2005), ERA-Interim
(ERA-I) (Dee et al 2011, European Centre for Med-
ium-RangeWeather Forecasts 2009), andModern-Era
Retrospective Analysis for Research and Applications
(MERRA) Versions 1 and 2 (Rienecker et al 2011,
Gelaro et al 2017, Global Modeling and Assimilation
Office (GMAO) 2008a, 2008b, 2015a, 2015b). Table 1
summarizes key features of each reanalysis dataset.
Notably, all reanalysis datasets span over three
decades.

Since the reanalysis datasets do not output wind
speeds at 100m, we approximate wind speeds at 100m
(htgt) at each time step using the wind power law
(Kaltschmitt and Wiese 2007) (SI.2). For solar, we use
untransformed surface incident solar radiation from
each reanalysis, which we assume approximates GHI,
and ignore surface albedo.

2.1.2. Validating grid integration datasets at finer
timescales
To supplement prior validations with a validation
focused specifically on our region of analysis (Draxl et al
2015b, Sengupta et al 2018), we validate wind and solar
resource in theWINDToolkit andNSRDB, respectively,
in Texas. Observed 100mwind speeds and surface GHI
from Bovina (Draxl et al 2015b) and Edinburg (Ramos
and Andreas 2011), Texas, are analyzed, respectively.
Bovina is in the Panhandle along the New Mexico
border, whereas Edinburg sits at the southern tip of
Texas. Quality-controlled data are available for Bovina
from 2009 to 2012 and for Edinburg from 2012 to 2015.
We specifically compare average monthly resource
between these observed datasets and the data from the
nearest grid cell to each location.

2.2.Quantifying IAVofwind and solar resource and
electricity generation across ERCOT
After comparing IAV of the WIND Toolkit and
NSRDB to that of reanalysis datasets, we use these
high-resolution grid integration datasets to quantify
IAV of wind and solar resource and electricity genera-
tion across ERCOT. To quantify resource IAV, we
extract 100 m wind speed and GHI from the WIND
Toolkit and NSRDB, respectively. We also test the
sensitivity of our results to using 80 and 120 m wind
speeds from theWINDToolkit.

Table 1. Summary of reanalysis datasets we use to compare IAVofwind and solar resource in theWINDToolkit andNSRDB. From
each reanalysis, we extract GHI andwind speed.

Reanalysis dataset Source Time range Output spatial resolution Output temporal resolution

MERRA-1 (Rienecker et al 2011) 1979–2016 0.5°×0.667° (56 km) Hourly

MERRA-2 (Gelaro et al 2017) 1980-present 0.5°×0.625° (50 km) Hourly

ERA-I (Dee et al 2011) 1979-present 0.75°×0.75° (80 km) 3 h

NARR (Mesinger et al 2006) 1979-present 0.3°×0.3° (32 km) 3 h
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Since system planning and operations vary with
electricity generation rather than resource, we also
quantify IAV of electricity generation. To do so, we
input meteorological data from the WIND Toolkit
and NSRDB into the System Advisor Model (SAM), a
performance and financial model that converts
weather data to wind or solar electricity generation for
a specified technology (Blair et al 2014). To estimate
solar generation, we input DNI, DHI, temperature,
and wind speed from NSRDB, and to estimate wind
generation, we input wind speed and direction, atmo-
spheric pressure, and temperature from the WIND
Toolkit. With respect to technology, we assume fixed
tilt solar panels and composite wind turbines of com-
monly used commercial turbines with 100 m hub
height (International Electrotechnical Commis-
sion 2005, Draxl et al 2015a), but test the sensitivity of
our results to 1-axis tracking panels and 80 and 120 m
hub heights. For more details, see SI.3. While we do
not test the sensitivity of our results to different wind
turbine technologies, we found little impact of turbine
choice on wind generation in other work (Carreno
et al in review).

We calculate generation on the native WIND
Toolkit and NSRDB grids, then aggregate generation
to a common 5.7×5.7 km grid (Lopez et al 2012). To
limit our analysis to areas eligible for wind and solar
development, we apply land exclusions for protected
land, water bodies (filtering out offshore wind), slope
exclusions, and metropolitan areas. These exclusions
eliminate small areas in the southwest, northeast, and
eastern parts of ERCOT (SI.4).

2.3.Quantifying IAVofwind and solar generation
and capacity value of current ERCOTfleet
To better understand real-world planning and
operational impacts of wind and solar IAV, we also
quantify the potential IAV of the 18.9 GW wind and
0.8 GW solar power capacity installed in ERCOT as
of summer 2017 (Electric Reliability Council of
Texas 2017d). Specifically, we quantify the IAV of
wind and solar power capacity values and electricity
generation, key metrics relevant to planning and
operations, respectively. Capacity value indicates the
fraction of a generator’s capacity available during
peak demand periods. As such, it determines gen-
erators’ contributions to resource adequacy, i.e. to
ensuring sufficient capacity exists to meet peak
demand plus a planning margin. Many utilities and
system operators, including ERCOT, utilize this
reliability metric during planning (PJM Intercon-
nect 2017, Electric Reliability Council of Texas
2017b).

To isolate resource-induced IAV and to control
for wind and solar growth over the last decade, we esti-
mate historic wind and solar generation of the 2017
ERCOT fleet by inputtingWIND Toolkit and NSRDB
meteorological data into SAM (see section 2.2). Since

ERCOT only provides the county of wind and solar
plants, we estimate each plant’s hourly historic
resource as the average hourly resource for all grid cells
overlaying that plant’s county. We then sum genera-
tion across plants to estimate generation by all wind
and solar farms.

To estimate capacity values, we use ERCOT’s cur-
rent method to quantify real-world IAV consequences
(Electric Reliability Council of Texas 2017b). How-
ever, many methods to calculate capacity value exist
(Milligan et al 2017), and future research should
explore the sensitivity of capacity value IAV to differ-
ent calculation methods. Per ERCOT’s method, we
calculate winter and summer capacity values as gen-
eration coincident with the top 20 demand hours in
the winter (December–February) and summer (June–
August). ERCOT publishes hourly load through 2014
(Electric Reliability Council of Texas 2018b). Conse-
quently, we estimate solar generation and capacity
values for 2002–2014 (limited by contiguous peak-
load data andNSRDB timespans) andwind generation
and capacity values from 2007–2012 (limited by the
WIND Toolkit’s timespan). Over this period, summer
peak load consistently occurs between 3 and 7 p.m.,
while peak winter load consistently occurs between
6 a.m. and 2 p.m. and between 6 and 11 p.m. (SI.5).
Thus, wind and solar capacity value IAV in our analy-
sis is attributable to wind and solar generation IAV,
not demand variability, as capacity values do not
depend on the magnitude of peak load but rather the
timing.

2.4. Coefficient of variation
To quantify the IAV of wind and solar resource,
electricity generation, and capacity values, we use the
COV. In general, the COV equals the multi-year
standard deviation divided by themulti-yearmean:

x
COV 100 %, 1

x x

N 1
i
N

i1
2

*=

å -
-

=

( )
( )

where i indexes year; x=single-year mean for a given
temporal and spatial scale; x =multi-year mean for a
given temporal and spatial scale; and N=number of
years. We quantify COV over several spatial and
temporal scales, as summarized in table 2. Since COV
quantifies variability around the mean normalized by
the mean, it facilitates comparison of variability across
differing average resource (or generation) levels.

3. Results

3.1. IAVof ERCOT-widewind resource and
electricity generation
3.1.1. Comparing wind speeds from WIND toolkit to
reanalysis datasets and observations
We leverage the multi-decade timespan of the reana-
lysis datasets to assess IAV of wind speeds from the
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WIND Toolkit. Annual average wind speed has a
similar COV in the WIND Toolkit (3.0%) as the
reanalysis datasets (2.4%, 2.9%, 3.2%, and 3.4%),
despite the WIND Toolkit’s shorter timespan (SI.6).
Additionally, average annual wind speeds have a
similar range in the WIND Toolkit (0.7 m s−1) as in
most reanalysis datasets (0.6, 0.8, 0.8, and 1.1 m s−1).
Thus, the WIND Toolkit provides a reasonable
approximation of wind speed IAV despite its sub-
decadal timespan. Using observational data, we also
find the WIND Toolkit reasonably approximates sub-
annual wind speeds (SI.6).

3.1.2. Spatial and temporal variability in average and
IAV of wind speed and generation
Given that the WIND Toolkit largely captures wind
speed IAV and has a higher spatial and temporal
resolution than reanalysis datasets, we use the WIND
Toolkit to examine spatial and temporal variability in
wind speed and electricity generation and their IAV
for every grid cell throughout Texas. We represent
electricity generation as capacity factors, or generation
normalized bymaximumpotential generation.

Average annual wind speed and capacity factors
generally share a similar spatial distribution, with high
values through central Texas and lower values through
eastern Texas (figure 1). IAV of wind speed and capa-
city factors also share similar spatial distributions. IAV
is inversely proportional to average speed and capacity
factor, e.g. low IAVs coincide with high wind speeds
and capacity factors in central and western Texas.
Since the cube of wind speeds drives wind generation,
capacity factor IAV (2.3%–11%) is greater than wind
speed IAV (1.1%–6%). Increasing hub height from 80
to 120 m increases mean capacity factors by about
three percentage points with negligible increase in
COV, indicating higher hub heights would yield
higher generation but similar variability (SI.7).

Given regional transmission constraints and
operational differences across seasons, we quantify
IAV by region and season. Based on ERCOT’s load
zones, we divide ERCOT into Panhandle, West,
North, South, and Houston regions (SI.8) (Electric
Reliability Council of Texas 2018a). To capture IAV at
the regional and seasonal level, we estimate the average
seasonal and regional COV for each grid cell, then
aggregate grid cells into distributions (figure 2). Thus,
each region’s distribution includes the COV of annual

average capacity factors of each grid cell in that region,
whereas each season’s distribution includes the COV
of average capacity factors for that season of each grid
cell in ERCOT.

Large seasonal heterogeneity exists in the IAV of
capacity factors. Spring exhibits the highest median
IAV (12.2%), nearly twice asmuch as fall and summer,
which exhibit the lowest median IAV (7.3% and 7.7%,
respectively). Notably, each season has a higher COV
than all seasons combined (5.5%), underscoring the
need to consider IAV at sub-annual timescales.Within
a given season, COVs vary by up to four times across
ERCOT. For instance, in summer and spring, COVs
range from2% to 19%and 4% to 19%, respectively.

Capacity factor IAV also varies significantly across
regions. TheHouston region exhibits the highestmed-
ian IAV (8.7%), or more than twice as much as the
Panhandle (4.0%), which has the lowest median IAV
across regions. Furthermore, the Panhandle region
has lower median IAV than all of ERCOT (5.5%). In
general, regions with greater wind resources have
lower IAVs. IAV also varies significantly within each
region, reflecting regions’ sizes and resource diversity.
Shifting hub height from 100 m to 80 or 120 m has a
negligible impact on regional and seasonal IAV (SI.7).

3.2. IAVof solar resource and generation
3.2.1. Comparing GHI from NSRDB to reanalysis
datasets and observations
Like the WIND Toolkit, the NSRDB provides a fair
representation of GHI IAV based on reanalysis data
(SI.6). The COV for GHI in NSRDB equals 2.9%,
slightly greater than that in the reanalysis datasets
(2.0%–2.6%). The range of annual average GHI in the
NSRDB (207–233Wm−2), though, is similar to that
in ERA-I (211–236Wm−2) and MERRA-1
(206–232Wm−2). MERRA-2 and NARR systemati-
cally overestimate GHI relative to NSRDB, resulting in
a higher range of annual average GHIs in those two
datasets. Based on monthly average GHI, the NSRDB
also reproduces observed GHI from in situ data at
Edinburg fairly accurately (SI.6) (Sengupta et al 2018).

3.2.2. Spatial and temporal variability of average and
IAV of solar resource and generation
To understand the IAV of solar resource and genera-
tion across ERCOT, we calculate the annual COV of
both for each ERCOT grid cell, ignoring whether that

Table 2.Temporal and spatial scale and relevant results section of eachCOVanalysis we perform.

Type of COV Temporal scale Spatial scale Results sections

Annual generation, ERCOT-wide Annual ERCOT 3.1.2, 3.2.2

Seasonal generation, ERCOT-wide Seasonal ERCOT 3.1.2, 3.2.2

Regional generation, ERCOT-wide Annual Regional 3.1.2, 3.2.2

Annual generation, current ERCOT fleet Annual Counties withwind or solar in current ERCOT fleet 3.3.1

Seasonal generation, current ERCOTfleet Seasonal Counties withwind or solar in current ERCOT fleet 3.3.1

Capacity values, current ERCOTfleet Annual Counties withwind or solar in current ERCOT fleet 3.3.2
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Figure 1.Average annual (left) and IAV (right) of wind speed (top) andwind electricity generation represented as capacity factors
(bottom). Red areas indicate land exclusions, while orange areas indicate landwith insufficient wind speeds for development per SAM.

Figure 2. Seasonal average (left) and regional (right) distributions of COVs ofwind capacity factors at 100mhubheight fromWIND.
Distributions are composed of theCOVof average seasonal capacity factors for each grid cell in ERCOT (left) or of theCOVof average
annual capacity factors for each grid cell in the given region (right).
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cell currently contains wind and solar generators.
Average annual solar resource (represented by GHI)
and generation (represented by capacity factors) have
similar spatial distributions, with GHI and capacity
factors decreasing from high to moderate values from
west to east Texas (figure 3). Higher GHI and capacity
factors largely coincide with lower IAV, with capacity
factor COVs ranging from 2% to 4% from west to east
Texas. Defying this trend, though, IAV of GHI and
capacity factor is greatest in southwest Texas where
GHI and capacity factors aremoderate, potentially due
to changes in terrain affecting local weather condi-
tions. The mean and standard deviation of the
resource and generation are large contributors to how
solar COV varies (SI.9). The same cannot be said for
wind (SI.9). The COV of solar generation (1.7%–5%)
is less than that of wind generation (2.3%–11%), as
GHI has a linear relationship with solar generation but
wind speed has a cubic relationship with wind
generation.

Aswithwind generation, average annual solar gen-
eration IAV exhibits significant seasonal and regional
variability (figure 4). Across seasons, the median COV
for solar generation ranges from 3.5% in the summer
to 7.8% in the fall, with winter and spring falling in
between. Median COVs in each season are greater
than the median COV across seasons (3.3%), under-
scoring the importance of temporal resolution when
discussing IAV. Significant spatial heterogeneity exists
across ERCOT within a season, with fall and winter
exhibiting the greatest spatial heterogeneity in COV of
roughly 6 percentage points.

Across regions, the median COV for annual average
solar generation varies from 2.2% in the Panhandle to
3.6% in the South region.While theHouston region has
little spatial variability inCOVsdue to its small size, large
regions like the North and Panhandle also have little
spatial variability. In the aggregate, IAV in ERCOT exhi-
bits a bi-modal distribution, mirroring the two clusters
of regional distributions and suggesting solar resources

Figure 3.Annual average (left) and IAV (right) of GHI (top) and solar electricity generation represented as capacity factors (bottom).
Red areas indicate land exclusions.
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in ERCOT could be divided into two classes based on
IAV. Using 1-axis tracking rather than fixed tilt panels
has little effect on regional and seasonal IAV distribu-
tions (SI.10).

3.3. IAVof annual generation and capacity values of
current ERCOTwind and solarfleet
3.3.1. IAV of generation by current wind and solar fleet
Given differing system operations and wind and solar
resource IAV across seasons, we quantify IAV of wind
and solar generation annually and in the winter and

summer for the current wind and solar fleet (figures 5
and 6). From 2007 through 2013, annual wind
generation has a COV of 4.8%, less than we calculated
when averaging across ERCOT (figure 2), because
most wind is installed in the Panhandle, Northwest,
and South (SI.1), regions with lower IAV and higher
resource quality (figures 1 and 2). Wind generation
COV is greater in the summer (8.7%) and winter
(8.3%) than annually, confirming our prior ERCOT-
wide results of higher seasonal than annual IAV
(figure 2). Given that summer andwinter are high load

Figure 4. Seasonal average (left) and regional (right) distributions of COVs of solar capacity factors forfixed tilt panels fromNSRDB.
Distributions are composed of theCOVof average seasonal capacity factors for each grid cell in ERCOT (left) or of theCOVof average
annual capacity factors for each grid cell in the given region (right).

Figure 5.Generation (bars) and capacity values (lines) of current wind fleet in ERCOT inwinter (blue) and summer (red) and annually
(black).

Figure 6.Generation (bars) and capacity values (lines) of current solar fleet in ERCOT inwinter (blue) and summer (red) and annually
(black).
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seasons in ERCOT, increased IAV in those seasons
could result in large inter-annual dispatch changes.
Year-over-year changes in wind generation can be
significant. On an annual basis, wind generation
averages 65.3 TWh but ranges from 59.6–69.9 TWh, a
17% increase from minimum to maximum (figure 5).
Larger increases fromminimum tomaximum genera-
tion occur in the winter and summer of 21% and 33%,
respectively.

Contrary to our results when comparing all
ERCOT resources (figures 1 and 3), solar generation
has a similar COV (4.8%) as wind generation (4.8%)
for the current ERCOT fleet. Current ERCOT solar
installations are largely not in regions with the highest
resource and lowest IAV, potentially due to prioritiza-
tion of interconnection locations, resulting in a larger
COV for annual solar generation than our median
estimate based on ERCOT-wide resources of roughly
3.2% (figure 4). Solar generation COV is greater in the
winter (7.6%) and smaller in the summer (2.9%) than
annually (4.8%), reflecting seasonal differences in
cloud cover and GHI. Furthermore, summer solar
generation has a narrower range (0.45–0.50 TWh, a
12% difference) than winter (0.24–0.31, a 29% differ-
ence) or annual (1.37–1.65 TWh, a 20% difference)
generation (figure 6), confirming our prior ERCOT-
wide results (figure 4).

3.3.2. IAV of capacity value of current wind and
solar fleet
Summer and winter wind capacity values vary signifi-
cantly across years, with COVs of 28.5% and 12.6%,
respectively (figure 5). Winter capacity values range
from 32%–43%, a 34% difference, whereas summer
capacity values range from 13%–32%, a 146% differ-
ence. Thus, wind capacity values have lower IAV in the
winter than summer. Furthermore, winter capacity
values are larger in each year and on average (36%)
greater than summer capacity values (23%). Over our
limited timespan, winter and summer capacity values
seem to be inversely correlated; from 2009–2010, for
instance, summer capacity values decrease by 60%
(from 32%–13%), while winter capacity values
increase by 24% (from 33%–43%). Additionally, we
found no correlation between summer generation and
capacity values (R=0.06) and a modest correlation
between the two in thewinter (R=0.41).

Solar capacity values differ significantly between
seasons, averaging 9.3% and 29.8% in the winter and
summer, respectively, and with minimum values of
5.2% and 25.9% (figure 6). Furthermore, IAV of solar
capacity values are smaller in the summer (9.3%) than
winter (45.1%). Lower capacity value IAV in the sum-
mer than winter reflects lower generation IAV in the
summer than winter. Higher capacity values in sum-
mer than winter are due to better solar resource in the
summer as well as peak-load hours occurring during
daylight hours more often (in the winter, peak load
frequently occurs after 7 p.m. in ERCOT). Capacity

values are not correlated with generation in the sum-
mer (R=−0.02) but weakly correlated in the winter
(R=0.17), opposite ourfindings forwind.

When checking resource adequacy, ERCOT
assigns capacity values of 59%, 14%, and 75% to
coastal wind, non-coastal wind, and utility-scale solar,
respectively, in the summer and 42%, 20%, and 9.8%,
respectively, in the winter (Electric Reliability Council
of Texas 2017c). Because the capacity value ismeant to
convey the contribution of a resource toward meeting
the peak demand over a long-term time frame, the
minimum capacity value of our study period is most
appropriate for comparison. Our results agree with
ERCOT’s assigned capacity values for wind and solar
during thewintermonths, butwe find smaller capacity
values for wind and solar than what is used by ERCOT
in the summer (SI.11).

4.Discussion

To better understand how wind and solar IAV may
affect system planning and operations, we quantified
IAV of wind and solar resource and generation in the
ERCOT region while accounting for spatial and
temporal variability. We find IAV of solar resource
(GHI) and generation are comparable across ERCOT,
but due to the cubic relationship of wind speed towind
generation, IAV of wind generation is larger than that
of wind speed. Additionally, IAV of wind and solar
generation varies significantly across seasons and
regions. For instance, the COV for solar generation
differs by more than a factor of two between summer
andwinter and the COV for wind generation differs by
a similar amount between the Panhandle and North
regions. Furthermore, IAV of wind and solar genera-
tion is greater at the seasonal than annual scale,
underscoring the need to quantify IAV at sub-annual
timescales.

Given high wind and growing solar penetrations
in ERCOT and to apply our analysis to a real-world
system, we quantified IAV in electricity generation
and capacity values of the current ERCOT wind and
solar fleet. We found moderate IAV in annual wind
and solar generation, which had COV values of
roughly 5%. Since wind has been deployed thus far
in ERCOT in regions with high resource and low
IAV, the COV of wind generation of the actual
ERCOT fleet is less than that of all potential wind
generation sites. For solar generation, though, the
opposite is true, underscoring the need to quantify
IAV of actual or expected generator fleets. Capacity
values exhibited significantly greater IAV than
generation, especially in the summer for wind
and winter for solar. This suggests IAV may pose a
greater challenge to planning than operations in high
renewable systems.

IAV in wind and solar electricity generation could
impact power system operations. On an annual,
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region-wide basis, IAV in wind and solar generation
will affect generation by other fuel types, which in turn
can have system- and plant-level ramifications. At the
system level, IAV in wind and solar generation will
induce IAV in system costs and emissions, potentially
leading tomissed emission reduction targets in certain
years. At the plant-level, IAV inwind and solar genera-
tion could affect future revenues, with implications for
financing and construction decisions. For example, if a
wind plant’s first few years of operation are less windy
than the long-term average, that can strain project
owners’ ability to service debts. High IAV can also
increase financing rates. IAV in wind and solar capa-
city values could impact power system planning. If one
were to use an average rather thanminimum summer-
time capacity value in doing a planning study, the
capacity contribution of wind and solar would be
overestimated by 1.9 and 0.3 GW, respectively, result-
ing in a potential combined capacity shortfall of
2.2 GW. As ERCOT continues to decarbonize, the
importance of IAV in planning and operations will
increase, as wind and solar will play an increasing role
inmeeting peak demand and account for an increasing
share in annual total generation.

Our results indicate that typical meteorological
years (TMYs), or composites of multiple time series
that represent average meteorological conditions
(Bryce et al 2018), should be used with caution in
power system studies. While TMY can provide good
initial insights, ignoring IAV can lead to skewed results
when analyzing high renewable grids. For instance,
TMY does not capture years where wind and solar
capacity values may be smaller than average, poten-
tially resulting in underinvestment in capacity in plan-
ning studies. To obviate this concern, resource
planning models might use multiple years of resource
data (Shaner et al 2018) or select a ‘worse’ year for eval-
uating renewable energy capacity value. While small
errors in capacity values might have little impact on
overall capacity planning results, large misestimates
can lead to significant changes in capacity buildout
and anticipated costs (Zhou et al 2018). More sophisti-
cated probabilistic models (Dent et al 2016) can be
used to validate planningmodel results.

Significant room for future research on IAV of
wind and solar exists. First, future research should
incorporate wind and solar IAV into production cost
and capacity expansion models to directly quantify
how IAV may affect operations and planning, respec-
tively. Embedding IAV into a capacity expansion
model, for instance, would indicate over-build
requirements to compensate for capacity value IAV.
Second, future research should assess different meth-
ods to mitigate wind and solar IAV, particularly of
capacity values. Options include grid-scale storage,
demand response, and conventional peaking units.
Third, studies indicate that climate change might
affect wind and solar resources (Haupt et al 2016,
Karnauskas et al 2018), but how it might affect wind

and solar variability is still largely unknown (Tobin
et al 2016). Future research should quantify how cli-
mate change may affect wind and solar IAV, especially
given ongoing shifts to high renewable systems.

5. Conclusions

In summary, caution is advised when integrating
increasingly larger amounts of wind and solar genera-
tion without considering their IAV. We documented
differing IAV of wind and solar generation across space
and time, and higher IAV in capacity values than annual
generation. In the near-term, annual generation IAV
will likely need to be compensated for by conventional
generators, increasing operational costs and emissions.
Due to IAV in wind and solar capacity values, using an
average capacity value for wind and solar in planning
models can lead to underbuilt power systems, poten-
tially leading to dropped loador reserve shortfalls.
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