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Abstract—In this paper, we provide a compositional method-
ology for constructing symbolic models for networks of discrete-
time switched systems. We first define a notion of so-called
augmented-storage functions to relate switched subsystems and
their symbolic models. Then we show that if some dissipativity
type conditions are satisfied, one can establish a notion of so-
called alternating simulation function as a relation between a
network of symbolic models and that of switched subsystems. The
alternating simulation function provides an upper bound for the
mismatch between the output behavior of the interconnection
of switched subsystems and that of their symbolic models.
Moreover, we provide an approach to construct symbolic models
for discrete-time switched subsystems under some assumptions
ensuring incremental passivity of each mode of switched subsys-
tems. Finally, we illustrate the effectiveness of our results through
two examples.

Index Terms—Switched systems, Large-scale systems, Quan-
tized systems.

I. INTRODUCTION

THE notion of symbolic models (a.k.a. finite abstractions)
plays an important role in the control of hybrid systems

(see [1] and the references therein). Symbolic models allow
us to use automata-theoretic methods [2] to design controllers
for hybrid systems with respect to logic specifications such
as those expressed as linear temporal logic (LTL) formu-
lae [3]. Symbolic models are established for incrementally
stable switched systems, a class of hybrid systems [4], by
providing approximate bisimulation relations between them
[5]–[8]. However, as the complexity of constructing symbolic
models grows exponentially in the number of state variables
in the concrete system, the approaches proposed in [5]–
[7] limit the application of symbolic models to only low-
dimensional switched systems. Although the result in [8] pro-
vides a state-space discretization-free approach for computing
symbolic models of incrementally stable switched systems,
this approach is still monolithic and reduces the computational
complexity only for switched systems with few modes, see [8,
Section IV(D)].

Motivated by the above limitation, in this work we aim
at proposing a compositional framework for constructing
symbolic models for interconnected switched systems. To do
so, we first i) partition the overall concrete switched system
into a number of concrete switched subsystems and construct
symbolic models of them individually; ii) then establish a
compositional scheme that allows us to construct a symbolic
models of the overall network using those individual ones.
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The compositional framework based on a divide-and-
conquer scheme [9] is not new. Several results have already
introduced compositional techniques for constructing symbolic
models of networks of control subsystems. The results in [10]–
[14] provide techniques to approximate networks of control
subsystems by networks of symbolic models by assuming
some stability property of the concrete subsystems. Other com-
positional approaches provide techniques to design symbolic
models of concrete networks without requiring any stability
property or condition on the gains of subsystems [15]–[17].
However, none of the aforementioned results in [10]–[17]
provide a compositional framework for constructing symbolic
models for interconnected switched systems.

In this paper, we provide a compositional methodology
for the construction of symbolic models of interconnected
switched systems based on dissipativity theory [18]. We first
define a notion of so-called augmented-storage functions to
relate switched subsystems and their symbolic models. Then,
by leveraging dissipativity-type compositional conditions, we
construct a notion of so-called alternating simulation function
as a relation between the interconnection of switched sub-
systems and that of their symbolic models. This alternating
simulation function allows one to determine quantitatively the
mismatch between the output behavior of the interconnection
of switched subsystems and that of their symbolic models.
Moreover, we provide an approach to construct symbolic
models together with their corresponding augmented-storage
functions for discrete-time switched subsystems under some
assumptions ensuring incremental passivity of each mode of
switched subsystems. Finally, we apply our results to a model
of road traffic by constructing compositionally a symbolic
model of a network containing 50 cells of 1000 meters each.
We also design controllers compositionally maintaining the
density of traffic lower than 30 vehicles per cell. Addition-
ally, we apply our results to an interconnection of switched
subsystems admitting multiple incrementally passive storage
functions.

The results presented in this paper are mainly concerned
with the compositional construction of symbolic models of in-
terconnected discrete-time switched systems. The constructed
symbolic models here can be used to synthesize controllers
monolithically or also compositionally. Compositional ap-
proaches for controller synthesis can be found in [15], [19]
and references therein. Due to lack of space, we provide the
proofs of all statements in an extended version [20].

II. NOTATION AND PRELIMINARIES

A. Notation
We denote by R, Z, and N the set of real numbers, integers,

and non-negative integers, respectively. These symbols are
annotated with subscripts to restrict them in the obvious way,
e.g., R>0 denotes the positive real numbers. Given N ∈ N≥1,



vectors νi ∈ Rni , ni ∈ N≥1, and i ∈ [1;N ], we use
ν = [ν1; . . . ; νN ] to denote the vector in Rn with n =

∑
i ni

consisting of the concatenation of vectors νi. The closed inter-
val in N is denoted by [a; b] for a, b ∈ N and a ≤ b. We denote
by diag(A1, . . . , AN ) the block diagonal matrix with diagonal
matrix entries A1, . . . , AN . We denote the identity matrix in
Rn×n by In. The individual elements in a matrix A ∈ Rm×n,
are denoted by {A}ij , where i ∈ [1;m] and j ∈ [1;n]. We de-
note by ‖·‖ the infinity norm. We denote by | · | the cardinality
of a given set and by ∅ the empty set. For any set S ⊆ Rn
of the form of finite union of boxes, e.g., S =

⋃M
j=1 Sj

for some M ∈ N, where Sj =
∏n
i=1[cji , d

j
i ] ⊆ Rn with

cji < dji , and positive constant η ≤ span(S), where span(S) =
minj=1,...,M ηSj and ηSj = min{|dj1 − c

j
1|, . . . , |djn − cjn|},

we define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n}.
The set [S]η will be used as a finite approximation of the set
S with precision η. Note that [S]η 6= ∅ for any η ≤ span(S).
We use notations K and K∞ to denote different classes of
comparison functions, as follows: K = {α : R≥0 → R≥0| α
is continuous, strictly increasing, and α(0) = 0}; K∞ = {α ∈
K| lim

r→∞
α(r) =∞}.

B. Discrete-Time Switched and Transition Systems
In this work we consider discrete-time switched systems of

the following form.
Definition 1: A discrete-time switched system Σ is defined

by the tuple Σ = (X, P,W, F,Y1,Y2, h1, h2), where
• X,W,Y1, and Y2 are the state set, internal input set,

external output set, and internal output set, respectively,
and are assumed to be subsets of normed vector spaces
with appropriate finite dimensions;

• P = {1, . . . ,m} is the finite set of modes;
• F = {f1, . . . , fm} is a collection of set-valued maps fp :
X×W ⇒ X for all p ∈ P ;

• h1 : X→ Y1 is the external output map.
• h2 : X→ Y2 is the internal output map.

The discrete-time switched system Σ is described by difference
inclusions of the form

Σ :

{
x(k + 1) ∈ fp(k)(x(k), ω(k)),

y1(k) = h1(x(k)),
y2(k) = h2(x(k)),

(1)

where x : N → X, y1 : N → Y1, y2 : N → Y2, p : N → P ,
and ω : N → W are the state signal, external output signal,
internal output signal, switching signal, and internal input
signal, respectively. We denote by Σp the system in (1) with
constant switching signal p(k) = p ∈ P ∀k ∈ N. We use
Xx0,p,ω and Yx0,p,ω to denote the sets of infinite state and
external output runs of Σ, respectively, associated with infinite
switching sequence p = {p0, p1, . . .}, infinite internal input
sequence ω = {w0, w1, . . .}, and initial state x0 ∈ X.

Let φk, k ∈ N≥1, denote the time when the k-th switching
instant occurs and define Φ := {φk : k ∈ N≥1} as the
set of switching instants. We assume that signal p satisfies
a dwell-time condition [21] (i.e. there exists kd ∈ N≥1, called
the dwell-time, such that for all consecutive switching time
instants φk, φk+1 ∈ Φ, φk+1 − φk ≥ kd, for any k ∈ N).

System Σ is called deterministic if |fp(x,w)| ≤ 1 ∀x ∈
X,∀p ∈ P,∀w ∈W, and non-deterministic otherwise. System
Σ is called blocking if ∃x ∈ X,∀p ∈ P,∀w ∈ W such
that |fp(x,w)| = 0 and non-blocking if |fp(x,w)| 6= 0
∀x ∈ X,∃p ∈ P,∃w ∈ W. System Σ is called finite if X

and W are finite sets and infinite otherwise. In this paper, we
only deal with non-blocking systems.
Next, we introduce a notion of so-called transition systems,
inspired by the one in [5], to provide an alternative description
of switched systems that can be later directly related to their
symbolic models

Definition 2: Given a discrete-time switched system Σ =
(X, P,W, F,Y1,Y2, h1, h2), we define the associated transi-
tion system T (Σ)=(X,U,W,F , Y1, Y2,H1,H2). where:
• X = X× P × {0, . . . , kd − 1} is the state set;
• U = P is the external input set;
• W = W is the internal input set;
• F is the transition function given by (x′, p′, l′) ∈
F((x, p, l), u, w) if and only if x′ ∈ fp(x,w), u = p
and the following scenarios hold:
– l < kd − 1, p′ = p and l′ = l + 1: switching is not

allowed because the time elapsed since the latest switch
is strictly smaller than the dwell time;

– l = kd−1, p′ = p and l′ = kd−1: switching is allowed
but no switch occurs;

– l = kd − 1, p′ 6= p and l′ = 0: switching is allowed
and a switch occurs;

• Y1 = Y1 is the external output set;
• Y2 = Y2 is the internal output set;
• H1 : X → Y1 is the external output map defined as
H1(x, p, l) = h1(x).

• H2 : X → Y2 is the internal output map defined as
H2(x, p, l) = h2(x).

We use T (X)z0,u,ω and T (Y)z0,u,ω to denote the sets of infi-
nite state and external output runs of T (Σ), respectively, asso-
ciated with infinite external input sequence u = {u0, u1, . . .},
infinite internal input sequence ω = {w0, w1, . . .}, and initial
state z0 = (x0, p0, l0) ∈ X , where u0 = p0 and l0 = 0.

In the next proposition, we show that sets Yx0,p,ω and
T (Y)z0,u,ω , where p = u and z0 = (x0, p0, 0), are equivalent.

Proposition 3: Consider Σ, T (Σ), p = {p0, p1, . . .} = u,
ω = {w0, w1, . . .}, and x0 ∈ X. Then, Yx0,p,ω = T (Y)z0,u,ω ,
where z0 = (x0, p0, 0).
From now on, we use Σ and T (Σ) interchangeably.

If Σ does not have internal inputs, which is the case for
interconnected systems (cf. Definition 7), Definition 1 reduces
to the tuple Σ = (X, P, F,Y, H), the set-valued map fp
becomes fp : X ⇒ X, and (1) reduces to:

Σ :

{
x(k + 1) ∈ fp(k)(x(k)),

y(k) = h(x(k)).
(2)

Correspondingly, Definition 2 reduces to tuple T (Σ) =
(X,U,F , Y,H), and the transition function F is given by
(x′, p′, l′) ∈ F((x, p, l), u) if and only if x′ ∈ fp(x), u = p
and the following scenarios hold:
• l < kd − 1, p′ = p and l′ = l + 1;
• l = kd − 1, p′ = p and l′ = kd − 1;
• l = kd − 1, p′ 6= p and l′ = 0.

III. AUGMENTED-STORAGE AND ALTERNATING
SIMULATION FUNCTIONS

Inspired by the definition of the storage function in [22], we
introduce a notion of so-called augmented-storage function,
which relates two transition systems with internal inputs and
outputs.

Definition 4: Consider T (Σ)=(X,U,W,F ,Y1,Y2,H1,H2) and
T̂ (Σ̂)=(X̂,Û ,Ŵ ,F̂ ,Ŷ1,Ŷ2,Ĥ1, Ĥ2) where Ŵ ⊆ W and Ŷ1 ⊆



Y1. A function S : X × X̂ → R≥0 is called an augmented-
storage function from T̂ (Σ̂) to T (Σ) if ∀(x, p, l) ∈ X and
∀(x̂, p, l) ∈ X̂ , one has

α(‖H1(x, p, l)− Ĥ1(x̂, p, l)‖)≤S((x, p, l), (x̂, p, l)), (3)

and ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂ , ∀û ∈ Û , ∀w ∈ W ,
∀ŵ ∈ Ŵ , ∀(x′, p′, l′) ∈ F((x, p, l), û, w) ∃(x̂′, p′, l′) ∈
F̂((x̂, p, l), û, ŵ) such that one gets

S((x′, p′, l′), (x̂′, p′, l′)) ≤ σS((x, p, l), (x̂, p, l)) + ε (4)

+

[
w−ŵ

H2(x, p, l)−Ĥ2(x̂, p, l)

]T R:=︷ ︸︸ ︷[
R11 R12

R21 R22

][
w−ŵ

H2(x, p, l)−Ĥ2(x̂, p, l)

]
,

for some α ∈ K∞, 0 < σ < 1, ε ∈ R≥0, and some symmetric
matrix R of appropriate dimension with conformal block
partitions Rij . i, j ∈ [1; 2]. We say that T̂ (Σ̂) is an abstraction
of T (Σ) if there exists an augmented-storage function from
T̂ (Σ̂) to T (Σ). In addition, if T̂ (Σ̂) is finite (X and W are
finite sets), we say that T̂ (Σ̂) is a symbolic model of T (Σ).

Now, we introduce a notion of so-called alternating sim-
ulation functions, inspired by Definition 1 in [23], which
quantitatively relates transition systems without internal inputs
and outputs.

Definition 5: Consider T (Σ) = (X,U,F , Y,H) and
T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . A function S̃ :
X × X̂ → R≥0 is called an alternating simulation function
from T̂ (Σ̂) to T (Σ) if ∀(x, p, l)∈X and ∀(x̂, p, l)∈X̂ , one has

α̃(‖H(x, p, l)− Ĥ(x̂, p, l)‖)≤S̃((x, p, l), (x̂, p, l)), (5)

and ∀(x, p, l) ∈ X , ∀(x̂, p, l) ∈ X̂ , ∀û ∈ Û , ∀(x′, p′, l′) ∈
F((x, p, l), û) ∃(x̂′, p′, l′) ∈ F̂((x̂, p, l), û) such that one gets

S̃((x′, p′, l′), (x̂′, p′, l′))≤ σ̃S̃((x, p, l), (x̂, p, l)) + ε̃, (6)

for some α̃ ∈ K∞, 0 < σ̃ < 1, and ε̃ ∈ R≥0.
Note that the notions of storage and simulation functions in

[22, Definitions 3.1, 3.2] are defined between two continuous-
time control systems with continuous state sets, whereas
we define the augmented-storage and alternating simulation
functions between two transition systems associated with two
discrete-time switched systems. Moreover, on the right-hand
side of (4) and (6), we introduce constant ε ∈ R≥0 to allow
the relation to be defined between two systems with either
infinite or finite state sets. The role of ε will become clear
in Section V where we introduce symbolic models. Such a
constant does not appear in [22, Definitions 3.1, 3.2] which
makes them only suitable for systems with continuous state
sets.

The next result shows that the existence of an alternating
simulation function for transition systems implies the existence
of an approximate alternating simulation relation between
them as defined in [1].

Proposition 6: Consider T (Σ) = (X,U,F , Y,H) and
T̂ (Σ̂) = (X̂, Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . Assume S̃ is an
alternating simulation function from T̂ (Σ̂) to T (Σ) as in
Definition 5. Then, relation R ⊆ X × X̂ defined by R ={
((x, p, l),(x̂, p, l))∈X×X̂|S̃((x, p, l), (x̂, p, l))≤ϕ

}
, where

ϕ = ε̃
(1−σ̃)ψ , and ψ can be chosen arbitrarily such that

0 < ψ < 1, is an ε̂-approximate alternating simulation relation,
defined in [1], from T̂ (Σ̂) to T (Σ) with ε̂= α̃−1(ϕ).

IV. COMPOSITIONALITY RESULT

In this section, we consider networks of discrete-time
switched subsystems and leverage dissipativity type conditions
under which one can construct an alternating simulation func-
tion from a network of abstractions to the concrete network by
using augmented-storage functions of the subsystems. In the
following, we define first a network of discrete-time switched
subsystems.

A. Interconnected Systems
Here, we define the interconnected discrete-time switched

system as the following.
Definition 7: Consider N ∈ N≥1 switched subsystems

Σi = (Xi, Pi,Wi, Fi,Y1i ,Y2i , h1i , h2i), and a static ma-
trix M of an appropriate dimension defining the coupling
of these subsystems, where1 M

∏N
i=1 Y2i ⊆

∏N
i=1 Wi.

The interconnected switched system Σ = (X, P, F,Y, h),
denoted by I(Σ1, . . . ,ΣN ), is defined by X =

∏N
i=1Xi,

P =
∏N
i=1Pi, F =

∏N
i=1Fi, Y =

∏N
i=1Y1i, [w1; . . . ;wN ] =

M [h21(x1); . . . ;h2N (xN )].
Similarly, given transition subsystem Ti(Σi), i ∈ [1;N ], one

can also define the network of those transition subsystems as
I(T1(Σ1), . . . , TN (ΣN )).

Next subsection provides one of the main results of the
paper on the compositional construction of abstractions for
networks of switched systems.

B. Compositional Abstractions of Interconnected Switched
Systems

In this subsection, we assume that we are given N discrete-
time switched subsystems Σi, or equivalently, Ti(Σi), together
with their corresponding abstractions T̂i(Σ̂i) and augmented-
storage functions Si from T̂i(Σ̂i) to Ti(Σi).

The next theorem provides a compositional approach on
the construction of abstractions of networks of discrete-time
switched subsystems and that of the corresponding augmented-
storage functions.

Theorem 8: Consider the interconnected transition system
T (Σ) = (X,U,F , Y,H) induced by N ∈ N≥1 transition
subsystems Ti(Σi),∀ i ∈ [1;N ]. Assume that each Ti(Σi) and
its abstraction T̂i(Σ̂i) admit an augmented-storage function Si
as in Definition 4. If there exist µi > 0, i ∈ [1;N ], such that
the matrix inequality and inclusion

[
M
Iq

]T Rδ︷ ︸︸ ︷[
R̃11 R̃12

R̃21 R̃22

] [
M
Iq

]
� 0, (7)

M

N∏
i=1

Ŷ2i ⊆
N∏
i=1

Ŵi, (8)

are satisfied, where R̃i′j′ = diag (µ1R
i′j′

1 , . . . , µNR
i′j′

N ),
∀i′, j′ ∈ [1; 2], and q is the number of columns in M , then

S̃((x, p, l), (x̂, p, l)) :=

N∑
i=1

µiSi((xi, pi, li), (x̂i, pi, li)),

is an alternating simulation function from T̂ (Σ̂) =
I(T̂1(Σ̂1), . . . , T̂N (Σ̂N )), with the coupling matrix M , to
T (Σ) = I(T1(Σ1), . . . , TN (ΣN )).

1This condition is required to have a well-defined interconnection.



Remark 9: Condition (7) is a linear matrix inequality
which can be verified by some semi-definite programming
tools (e.g. YALMIP [24]). Note that condition (8) is required
to have a well-defined interconnection of abstractions and
is automatically fulfilled if one constructs the internal in-
put sets of each abstractions T̂i(Σ̂i) such that the equality
M

∏N
i=1 Ŷ2i =

∏N
i=1 Ŵi holds.

Remark that similar compositionality result as in Theorem
8 was proposed in [22]. Since [22] is concerned with infinite
abstractions (a continuous-time control system with potentially
a lower dimension), extra matrices (i.e. W , Ŵ , H in [22,
equation (9)]) are required to formulate the dissipativity-
type conditions. However, as our work is mainly concerned
with symbolic models, we formulate the dissipativity-type
conditions without requiring those extra matrices.

V. CONSTRUCTION OF SYMBOLIC MODELS

In this section, we consider Σ=(X,P,W,F,Y1,Y2,h1,h2) as
an infinite, deterministic switched system, and assume its ex-
ternal output map h1 satisfies the following general Lipschitz
assumption: there exists `∈K∞ such that: ‖h1(x)−h1(x′)‖ ≤
`(‖x− x′‖) ∀x, x′ ∈ X. In addition, the existence of an
augmented-storage function between T (Σ) and its symbolic
model is established under the assumption that Σp is so-called
incrementally passive (δ-P) [13] as defined next.

Definition 10: System Σp is δ-P if there exist functions
Sp : X × X → R≥0, αp ∈ K∞, a symmetric matrix Qp of
appropriate dimension, and constant 0 < κp < 1, such that for
all x, x̂ ∈ X, and for all w, ŵ ∈W

αp(‖x− x̂‖) ≤ Sp(x, x̂) (9)

Sp(fp(x,w), fp(x̂, ŵ))≤κpSp(x, x̂) (10)

+

[
w − ŵ

h2(x)− h2(x̂)

]T Qp:=︷ ︸︸ ︷[
Q11
p Q12

p

Q21
p Q22

p

] [
w − ŵ

h2(x)− h2(x̂)

]
.

We say that Sp and Qp, ∀p ∈ P , are multiple δ-P storage
functions and supply rates, respectively, for system Σ if they
satisfy (9) and (10). Moreover, if Sp = Sp′ and Qp = Qp′ ,
∀p, p′ ∈ P , we omit the index p in (9), (10), and say that S
and Q are a common δ-P storage function and supply rate for
system Σ.

Now, we show how to construct a symbolic model T̂ (Σ̂) of
transition system T (Σ) associated to the switched system Σ
where Σp is δ-P.

Definition 11: Consider a transition system T (Σ) =
(X,U,W,F , Y1, Y2,H1,H2), associated to the switched sys-
tem Σ = (X, P,W, F,Y1,Y2, h1, h2), where X,W are as-
sumed to be finite unions of boxes. Let Σp be δ-P as in
Definition 10. Then one can construct a finite transition system
(a symbolic model) T̂ (Σ̂) = (X̂, Û , Ŵ , F̂ , Ŷ1, Ŷ2, Ĥ1, Ĥ2)
where:
• X̂ = X̂ × P × {0, . . . , kd − 1}, where X̂ = [X]η and

0 < η ≤ span(X) is the state set quantization parameter;
• Û = U = P is the external input set;
• Ŵ = [W]$, where 0 ≤ $ ≤ span(W) is the internal

input set quantization parameter.
• (x̂′, p′, l′) ∈ F̂((x̂, p, l), û, ŵ) if and only if ‖fp(x̂, ŵ)−
x̂′‖ ≤ η, û = p and the following scenarios hold:
– l < kd − 1, p′ = p and l′ = l + 1;

– l = kd − 1, p′ = p and l′ = kd − 1;
– l = kd − 1, p′ 6= p and l′ = 0;

• Ŷ1 = Y1, Ŷ2 = Y2;
• Ĥ1 : X̂ → Ŷ1 is the external output map defined as
Ĥ1(x̂, p, l) = H1(x̂, p, l) = h1(x̂);

• Ĥ2 : X̂ → Ŷ2 is the internal output map defined as
Ĥ2(x̂, p, l) = H2(x̂, p, l) = h2(x̂);

Remark 12: Although one can freely construct Ŵ , in the
context of networks of subsystems, it should be constructed
in such a way that the interconnection of finite transition
subsystems is well-defined (cf. Remark 9).

Let us point out some differences between the symbolic
model in Definition 11 and the one proposed in [5]. There is
no distinction between internal and external inputs and outputs
in the symbolic model defined in [5], whereas their distinctions
in our work play a major role in interconnecting subsystems
and providing the main compositionality result.

In the following, we impose assumptions on function Sp
in Definition 10 which are used to prove some of the main
results later.

Assumption 13: There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, p′ ∈ P, Sp(x, y) ≤ µSp′(x, y). (11)

Assumption 13 is an incremental version of a similar assump-
tion that is used to prove input-to-state stability of switched
systems under constrained switching assumptions [25].

Assumption 14: Assume that ∀p∈P , ∃γp∈K∞ such that

∀x, y, z ∈ X, Sp(x, y) ≤ Sp(x, z) + γp(‖y − z‖). (12)

Assumption 14 is shown in [26] to be a non-restrictive
condition provided that one is interested to work on a compact
subset of X× X.

Now, we establish the relation between T (Σ) and T̂ (Σ̂), in-
troduced above, via the notion of augmented-storage function
as in Definition 4.

Theorem 15: Consider a switched system Σ =
(X, P,W, F,Y1,Y2, h1, h2) with its equivalent transition sys-
tem T (Σ) = (X,U,W,F , Y1, Y2,H1,H2). Let Σp be δ-P as
in Definition 10. Consider a finite transition system T̂ (Σ̂) =
(X̂, Û , Ŵ , F̂ , Ŷ1, Ŷ2, Ĥ1, Ĥ2) constructed as in Definition 11.
Suppose that Assumptions 13 and 14 hold. Let ε > 1 and
define κ=maxp∈P {κp}. If, kd ≥ ε ln(µ)

ln( 1
κ )

+ 1, and there exists

a symmetric matrix Q̃ such that ∀q ∈ {1, . . . , kd − 1}, Q̃ −
κ
−q
ε

∑m
p=1Qp � 0, then function V defined as

V((x, p, l), (x̂, p, l)) := κ
−l
ε

m∑
p=1

Sp(x, x̂), (13)

is an augmented-storage function from T̂ (Σ̂) to T (Σ).
Remark 16: If equation (10) is satisfied with the same

Qp,∀p ∈ P , then function V in Theorem 15 reduces to
V((x, p, l), (x̂, p, l)) := κ

−l
ε Sp(x, x̂). In addition, if Σ ad-

mits a common δ-P storage function, function V reduces to
V((x, p, l), (x̂, p, l)) := S(x, x̂).

Remark 17: For affine switched systems
(
i.e.,x(k+ 1) =

Ap(k)x(k)+Dp(k)ω(k)+Bp(k),y1(k) = C1x(k),y2(k) = C2x(k)
)
,

we can restrict attention to δ-P storage functions of the form
Sp(x, x̂) = (x−x̂)TZp(x−x̂), Zp � 0. It is readily seen
that such functions always satisfy (9) and (11). Moreover,
inequality (10) reduces to the linear matrix inequality[
θpA

T
p ZpAp ATp ZpDp

DT
p ZpAp θpD

T
p ZpDp

]
�
[
κpZp+CT2 Q

22
p C2 CT2 Q

21
p

Q12
p C2 Q11

p

]
(14)
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Fig. 1: Left: Model of a road traffic network in a circular highway
composed of 25 identical links, each link has two cell. Right: Closed-
loop state trajectories of system Σ consisting of 50 cells.

in which Zp and Qp can be determined by semi-definite
programming, where θp > 1, 0 < κp < 1. Consequently,
it can be readily verified that ε in (4) would be defined as
ε = cpλmax(Zp), for some cp> 0 depending on θp and the
dimensions of Zp.

VI. CASE STUDY

A. Model of road traffic
Consider the switched system Σ which is adapted from [27]

and described by

Σ :

{
x(k + 1) = Ax(k) +Bp(k),

y(k) = x(k),

where A ∈ R50×50 is a matrix with elements {A}qq = 0.9−
τv
d if q ∈ Q1 = {q is odd |q ∈ [1; 50]} and {A}qq = 0.65− τv

d
if q ∈ Q2 = {q is even |q ∈ [1; 50]}, {A}(q+1)q = {A}1(50) =
τv
d , ∀q ∈ [1; 50], and all other elements are identically zero,

where τ = 10
60×60 , d = 1, and v = 120 are sampling time

interval in hours, length in kilometers, and the flow speed of
the vehicles in kilometers per hour, respectively. The vector
Bp ∈ R50 is defined as Bp = [b1p1 ; . . . ; b25p25 ] such that
bipi = [0; 0] if pi = 1, and bipi = [0; 12] if pi = 2, ∀i ∈ [1, 25],
[p1; . . . ; p25] ∈ P = {1, 2}25, where P is the set of modes of
Σ.

The chosen switched system Σ here is the model of a
circular road around a city (Highway) divided in 50 cells of
1000 meters each. The road has 25 entries and 50 exits. A
cell q has an entry and exit if q ∈ Q1 and has an exit and
no entry if q ∈ Q2. All the entries are controlled by traffic
signals, denoted sr, r ∈ [1; 25]. In Σ, the dynamic we want to
observe is the density of traffic, given in vehicles per cell, for
each cell q of the road.

During the sampling time interval τ , we assume that 12
vehicles can pass the entry controlled by a traffic signal sr
when it is green. Moreover, 10% of vehicles that are in cells
q ∈ Q1, and 35% of vehicles that are in cells q ∈ Q2 go out
using available exits.

Now, in order to apply the compositionality result, we
introduce subsystems Σi, ∀i ∈ [1; 25]. Each subsystems Σi
represents the dynamic of one link of the entire highway,
where each link contains 2 cells, one entry, and two exits,
as schematically illustrated in Figure 1 left. The subsystems
Σi is described by

Σi :

{
xi(k + 1) = Aixi(k) +Diwi(k) +Bipi(k),

y1i(k) = xi(k),
y2i(k) = C2ixi(k),

Ai=

[
0.9−τv

d
0

τv
d

0.65−τv
d

]
, Di=

[
τv
d
0

]
, Bi1=

[
0
0

]
,Bi2=

[
12
0

]
, C2i=

[
0
1

]T
,

and the set of modes is Pi = {1, 2}, ∀i ∈ [1; 25]. Clearly, Σ =
I(Σ1, . . . ,Σ25), where the elements of the coupling matrix M
are {M}(i+1)i = {M}1(25) = 1, ∀i ∈ [1; 25], and all other
elements are identically zero.

Note that, for any i ∈ [1; 25], conditions (9) and (10)
are satisfied with Sipi(xi, x̂i) = (xi − x̂i)TZipi(xi − x̂i),
Zipi = I2, αipi(s) = s2, κipi = 0.98, Q11

ip = 0.3527,
Q12
ip = Q21

ip = 0.0937, Q22
ip = −0.6785 ∀pi ∈ Pi. Moreover,

since Sipi = Sip′i ,∀p, p
′ ∈ P , and according to Remarks

16 and 17, function Vi((xi, pi, li), (x̂i, pi, li)) = Si(xi, x̂i) is
an augmented-storage function from T̂i(Σ̂i), constructed as
in Definition 11, to Ti(Σi), defined in Definition 2. Now,
by choosing µi = 1,∀i ∈ [1; 25] and finite internal input
sets Ŵi of T̂i(Σ̂i) in such a way that

∏25
i=1Ŵi=M

∏25
i=1X̂i,

condition (7) and (8) are satisfied. Therefore, function
S̃((x, p, l), (x̂, p, l)) =

∑25
i=1Vi((xi, pi, li), (x̂i, pi, li)) is an

alternating simulation function from Î(T̂1(Σ̂1), . . . , T̂25(Σ̂25))
to I(T1(Σ1), . . . , T25(Σ25)).

Let us now design a controller for Σ via symbolic models
T̂i(Σ̂i) such that controllers maintain the density of traffic
lower than 30 vehicles per cell (safety constraint), and to allow
only 2 consecutive red lights for each traffic signal (fairness
constraint). The former constraint implies that each vehicle
can keep a 30-meter safe distance from the one directly in
front. The latter constraint is a way to avoid the trivial solution
(always red) of the safety constraint and ensures fairness
between modes 1 and 2. The idea here is to design local
controllers for symbolic models T̂i(Σ̂i), and then refine them
to the ones for concrete switched subsystems Σi. To do so, the
local controllers are designed while assuming that the other
subsystems meet their specifications. This approach, called
assume-guarantee reasoning [28], allows for the compositional
synthesis of controllers. Note that since assume-guarantee
reasoning approach allows us to perform synthesis using local
symbolic models, the construction of the global one is not
needed here.

Note that the direct computation of the symbolic model
for the original 50-dimensional system Σ is not possible
monolithically. To the best of our knowledge, there does not
exist any software toolbox for constructing symbolic models
of systems with this number of state variables. On the other
hand, we are able to construct the interconnected symbolic
model and controllers for the 50-dimensional system Σ by
applying the proposed compositionality method here. We
leverage software tool SCOTS [29] for constructing symbolic
models and controllers for Σi compositionally with the state
quantization parameter ηi = 0.03 and the computation times
are amounted to 10.2s and 0.014s, respectively. Figure 1 right
shows the closed-loop state trajectories of Σ, consisting of 50
cells.

B. Fully Connected Network
In this example, we specifically choose the parameters of

subsystems such that neither condition (9) nor (10) hold with a
common quadratic δ-P storage function and supply rate for all
subsystems. This illustrates the results for the case of having
multiple quadratic δ-P storage functions.
The dynamic of the interconnected switched system Σ has the
set of modes P={1, 2}N , N∈N≥2, and it is given by

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k),

y(k) = x(k).



The vector Bp ∈ Rn, where n = 2N , is defined as
{B}i1 = Bpi such that Bpi = [−0.9; 0.5] if pi = 1, and
Bpi = [0.9;−0.2] if pi = 2, ∀i, j ∈ [1;N ], i 6= j. The
elements of the matrix Ap ∈ Rn×n are as follows:

{A}ij =

[
0.015 0

0 0.015

]
, {A}ii=Api=


[
0.05 0

0.9 0.03

]
if pi = 1,[

0.02 −1.2
0 0.05

]
if pi = 2.

Now, by introducing Σi described by

Σi :

{
xi(k + 1) = Aipi(k)xi(k) + ωi(k) +Bipi(k),

yi1(k) = xi(k),
yi2(k) = xi(k),

Ai1=

[
0.05 0
0.9 0.03

]
, Ai2=

[
0.02 −1.2

0 0.05

]
, Bi1=

[
−0.9
0.5

]
, Bi2=

[
0.9
−0.2

]
,

and the set of modes is Pi={1, 2}, one can readily verify that
Σ =I(Σ1, . . . ,ΣN ), where the elements of the coupling ma-
trix M are {M}ii=02 and {M}i,j={A}i,j , ∀i, j ∈[1;N ], i 6=j.
Note that, for any i ∈ [1;N ], conditions (9) and (10) are
satisfied with Sipi(xi, x̂i)=(xi − x̂i)TZipi(xi − x̂i),

Zi1 =

[
0.3030 0.0087
0.0087 0.4938

]
, Zi2 =

[
0.4899 −0.0033
−0.0033 0.4291

]
,

Qi1 = 10−3Li1, κi1 = 0.7, αi1(s) = 0.3s2, , Qi2 =
10−3Li2, κi2 =0.7, αi2(s)=0.4s2, where

Li1=

2.7 0 −1 −3
0 1 −3 0
−1 −3 −201.3 −17
−3 0 −1.7 270.8

, Li2=
2.9 0 −1.4 2.7

0 1.6 2.7 0
−1.4 2.7 156 17.5
2.7 0 17.5 −294


Since Assumption 13 and kd ≥ ε ln(µ)

ln(1/κp)
+ 1 hold with

µ = 1.63, kd = 3, ε = 1.01, one can easily find a
matrix Q̃ such that ∀q ∈ {1, 2}, Q̃ − 0.7

−q
ε

∑2
p=1Qp �

0 by using semi-definite programming such that function
Vi((xi, pi, li), (x̂i, pi, li)) =

∑N
i=1 Sipi(xi, x̂i)κ

−l/ε
pi is an

augmented-storage function from T̂i(Σ̂i) to Ti(Σi). Choose an
arbitrary N , then by choosing µi = 1,∀i ∈ [1, N ], and finite
internal input sets Ŵi of T̂i(Σ̂i) in such a way that

∏N
i=1 Ŵi =

M
∏N
i=1 X̂i, condition (7) and (8) are satisfied. Hence,

S̃((x, p, l), (x̂, p, l)) =
∑N
i=1Vi((xi, pi, li), (x̂i, pi, li)) is an

alternating simulation function from Î(T̂1(Σ̂1), . . . , T̂N (Σ̂N ))
to I(T1(Σ1), . . . , TN (ΣN )).

Given N ≥ 5, Xi = [0, 1], and ηi = 0.1, we observe that
constructing the symbolic model for the original system Σ is
only possible compositionally even with this small range of
state set and coarse quantization parameters. The computation
time for constructing symbolic models of Σi is amounted
to 0.53s, using tool SCOTS [29] with the state quantization
parameter ηi = 0.1.

VII. CONCLUSION

In this work, we proposed a compositional scheme for the
construction of symbolic models of interconnected discrete-
time switched systems. First, we used a notion of augmented-
storage functions in order to construct compositionally an
alternating simulation function that is used to quantify the error
between the output behavior of the interconnected switched
system and that of its abstraction. Furthermore, under some
assumptions ensuring incremental passivity of each mode of
switched subsystems, we showed how to construct symbolic
models together with their corresponding augmented-storage
functions of the concrete systems.
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