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Abstract

The transmission of ideas, information, and resources forms the core of many issues studied in
political science, including collective action, cooperation, and development. While these pro-
cesses imply dynamic connections among political actors, researchers often cannot observe
such interdependence. One example is public policy diffusion, which has long been a focus
of multiple subfields. In the American state politics context, diffusion is commonly concep-
tualized as a dyadic process whereby states adopt policies (in part) because other states have
adopted them. This implies a policy diffusion network connecting the states. Using a dataset
of 187 policies, we introduce and apply an algorithm that infers this network from persistent
diffusion patterns. The results contribute to knowledge on state policy diffusion in several
respects. Additionally, in introducing network inference to political science, we provide schol-
ars across the discipline with a general framework for empirically recovering the latent and
dynamic interdependence among political actors.
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Introduction
A central feature of political science is the dynamic interdependence among political actors.

Citizens, elites, governments, and countries all display intergroup connections because group

members repeatedly face common sets of choices. Furthermore, the decisions made by one ac-

tor in a group often influence those of the others. As a result, many critical issues that politi-

cal scientists study—such as collective action problems, international cooperation, and economic

development—are influenced by the flow of ideas, information, and resources between those con-

nected political actors. Yet while scholars are often able to observe the flow of information itself,

empirically identifying the underlying network of connections—usually the concept of chief theo-

retical interest—is more difficult, especially if that network changes over time. In this research we

introduce to the discipline a general method for inferring a dynamic network connecting political

actors based only on observable information about the repeated choices that those actors make.

The methodology we introduce is applicable to a wide range of research areas across politi-

cal science. However, to demonstrate its utility, we focus the bulk of our attention on one notable

instance of this phenomenon: the diffusion of public policies across the American states. A consid-

erable amount of scholarship documents how policies, norms, agreements, and even wars diffuse

across political boundaries. Indeed, Graham, Shipan, and Volden (2013) identify more than 800

articles from the past 50 years on diffusion processes in American politics, comparative politics,

and international relations. A central theme in all of this work is that peer governments are con-

nected to one another by their repeated policy decisions. However, observing systematic patterns

in those connections over time—who tends to lead and who tends to follow—is a difficult task. We

provide a means of doing so here by inferring a policy diffusion network based on the adoption of

many policies over time. Moreover, we demonstrate how and why this dynamic network is crucial

to understanding the diffusion process.

In what follows we demonstrate the significance of policy diffusion network inference and

analysis. We begin by grounding the concept of a diffusion network in the theoretical framework

of diffusion studies. We highlight that several scholars have suggested the existence of a diffusion
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network in theory, but never had the means of empirically measuring the ties in the network. Then

we describe our network inference methodology; recently developed in machine learning, it can

be used to infer a latent diffusion network from data consisting of binary diffusion “cascades.”

Next we apply the algorithm to infer our network of state policy diffusion. Then we illustrate how

including information from the inferred diffusion network as a covariate in well-known policy

diffusion studies improves model fit. Following that, we present an analysis of the factors that

predict the formation of diffusion ties between states. Finally, we close with a discussion of the

broad applicability of our methodology to many different research areas in political science.

Conceptualizing a Policy Diffusion Network
The institution of federalism provides an ideal environment for diffusion processes by encour-

aging member governments to compete with or learn from one another. The American states

represent an important example of such an environment (e.g., Walker 1969; Gray 1973; Berry and

Berry 1990; Shipan and Volden 2012). Indeed, the states are connected in many ways, including

shared history and culture, the exchange of goods, migration of citizens, and overlapping media

markets. A key result of these connections is that states look to each other when making policy.

Due to myriad competitive, cooperative, and imitative forces, policy innovations regularly spread

throughout the American states, and scholars have worked for decades to develop theoretical and

empirical tools to understand and evaluate the various forces that underlie diffusion episodes. This

has proven to be a difficult task because it requires conceptual and empirical separation of policy

adoption, in which a state passes a new law as a result of internal and/or external determinants,

and policy diffusion, which specifically refers to the external influence that other states exert on

adoption in the state.

The broad arc of the literature on policy diffusion has moved from an initial interest in looking

for consistent patterns of diffusion between states across multiple policies to the application of

new methodologies or measurement strategies to single-policy diffusion episodes and finally to a

renewed interest in the general patterns across policies. This return of the pendulum to detecting

persistent pathways of diffusion results from recent theoretical and methodological advancements
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that provide the impetus for reexamining the foundational questions posed at the outset.

In his pioneering study, Walker (1969) stated his primary goals as (1) determining whether a

group of policy leaders existed and, if so, (2) how policies spread from these pioneering states to

the rest of the American states. After his innovation scores provided an affirmative answer to the

first question, he moved to developing a theoretical and empirical approach for determining the

existence of “more or less stable patterns of diffusion of innovations among the American states”

(Walker 1969, 888). He theorized that these patterns would reflect both geographic proximity and

states’ locations within various national communication channels formed by associations of state

officials, organized interests, consultants, and academics. Given the limitations of the time, his

empirical analysis focused on the presence of regional groupings. He found that while regional

groupings existed, the evidence clearly pointed to additional influences that blurred these regional

distinctions.1 While subsequent work by Gray (1973) offered a number of important critiques

of Walker’s (1969) approach, it continued to conceptualize diffusion as reflective of “regional or

professional communication networks [that] may produce distinctive diffusion patterns” (1176).

While these critiques stunted the pursuit of comparing innovativeness across states, the litera-

ture continued to pursue the idea of evaluating patterns of policy diffusion. Event history analysis

(EHA), introduced for the study of policy diffusion by Berry and Berry (1990) in their analysis of

the diffusion of state lottery adoptions, has been the primary vehicle for this pursuit as it offers the

opportunity to simultaneously account for time-varying internal and external determinants of pol-

icy adoption. It addresses many of the concerns raised by Gray (1973) and others about Walker’s

(1969) innovation scores and led to the development of a robust literature on policy adoption. Dur-

ing this era, researchers almost exclusively focused on one policy at a time since that fit within the

EHA framework. Furthermore, while these researchers highlighted the role of a variety of internal

determinants of adoption, the central external determinant of interest was geographic contiguity,

which was meant to capture diffusion between neighboring states. Despite notable exceptions such

1More recent work also highlights diffusion between non-contiguous states. For example, California is considered
both a prolific policy innovator in general (Volden 2006) and a leader in energy and environmental policy specifically
(Ghanadan and Koomey 2005). New Jersey and Maryland have both recently implemented policies explicitly modeled
after energy and emissions policies in California (Nussbaum 2007; Wagner 2007).
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as Mintrom and Vergari’s (1998) study of policy entrepreneurs’ connections across states or Gross-

back, Nicholson-Crotty, and Peterson’s (2004) evaluation of ideological similarity with previous

adopters, the vast majority of studies continued to examine only contiguity. A common finding

in this work is that the probability of adoption increases as more of a state’s neighbors adopt the

policy (but see Mooney 2001).

After dominating the field for more than twenty years, single policy EHA studies began to run

their course in terms of pushing the boundaries of knowledge. Researchers responded by moving

in different directions, including a micro level approach that examines the internal legislative pro-

cesses that influence policy adoption (Karch 2007) and studying how policy characteristics affect

the overall rate of diffusion (Boushey 2010; Nicholson-Crotty 2009). Other researchers pushed

forward on studying the patterns of interstate diffusion in creative ways: the incorporation of Ge-

ographic Information Systems (GIS) to develop more nuanced measures of economic diffusion

pressures between contiguous states (Berry and Baybeck 2005), the consideration of policy adop-

tion and expansion to separate the role of economic and social learning forces behind diffusion

(Boehmke and Witmer 2004), and the examination of bottom-up or top-down diffusion between

cities, states, and the Federal government (Shipan and Volden 2006).

One of the biggest innovations during this period was the development of the dyadic EHA

approach by Volden (2006). The dyadic EHA eschews adoption as its outcome of interest and

instead considers whether a policy change by a state moves it closer to the policies of other states.

An increase in policy similarity between pairs of states serves as the dependent variable and the

dyadic structure facilitates evaluating whether a state moves its policy closer to those of other

states whose policy differs (Boehmke 2009). This allows the consideration of a variety of absolute

and relative characteristics of state dyads, including contiguity, but also ideological similarity and

policy success in states that might be emulated. This approach has been applied to health policy

in the United States (Volden 2006) as well as to unemployment policy in OECD countries (Gilardi

2010).

Studies like these have prompted a new wave of theoretical arguments to explain patterns of
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diffusion, whether through competition between states (Baybeck, Berry, and Siegel 2011), learning

and free-riding across states facing uncertainty about a policy’s value (Volden, Ting, and Carpenter

2008), or through changes in public opinion resulting from constituent learning through policy

choices in nearby states (Pacheco 2012). These theoretical advances have, in turn, resulted in new

ways to examine diffusion empirically.

Despite the major strides these and other studies have taken to further our understanding of

policy adoption, they have still done so in the context of a single policy. Even the dyadic EHA

approach usually considers policy similarity based on multiple components of a single policy. So

while the literature has made significant progress identifying the existence of diffusion pathways,

we still know relatively little about their persistence. Put differently, almost no systematic progress

has been made towards answering Walker’s (1969) second question about general patterns of policy

diffusion. While scholars have recently returned to the collection and analysis of large numbers

of policies (Nicholson-Crotty 2009; Boushey 2010; Boehmke and Skinner 2012b), they have not

yet used these databases to uncover persistent connections between states through public policy

diffusion. Yet this approach seems to be most consistent with what Walker (1969), Gray (1973),

and others had in mind at the founding of this literature.

Indeed, the patterns of policy diffusion between the American states serve as a perfect opportu-

nity for identifying the presence and structure of a dynamic, latent, policy diffusion network. The

structure of such a network has been one of the driving forces in the literature for half a century,

yet methodological and data limitations placed critical restrictions on the ability of researchers to

estimate and evaluate such a network more than one policy at a time. As we describe below, the

recent combination of technical advances and accumulation of data on the timing of adoptions for

scores of policies provides the information necessary to solve this problem.

To our knowledge the latent network that we estimate on these data provides the first empirical

measure of the full state-to-state policy diffusion network. The intuition behind the meaning of

this network, however, parallels that of the much-used contiguity network. Just as a state becomes

more likely to adopt a policy when its neighboring states have previously done so, it should be
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more likely to adopt a policy when any state to which it is connected in its general diffusion

network has already done so. After estimating this network, we therefore explore its structure in a

number of ways. First, we identify leader states and compare the structure of the network to one

specified solely by contiguity. Then we show that supplementing existing studies with information

about prior adopters in this latent network improves our ability to predict the adoption of specific

policies. We then investigate the structure of this network by evaluating the ability of theoretically

important covariates to explain diffusion ties.

Policy Diffusion Network Inference in the American States
Gomez-Rodriguez, Leskovec, and Krause (2010) consider the problem of inferring latent dif-

fusion pathways connecting units (e.g., states or countries) based on data recording the times at

which those units adopted or were infected with some attribute (e.g., a policy), over several at-

tributes. Two non-policy-adoption examples are data on when a collection of people fell ill over

several ailments or data on when news websites reported a given story over several stories. These

cascades, as they are termed, exhibit the footprint of a hidden diffusion network connecting the

units under study. Information on policy adoption for several states or countries and several poli-

cies constitutes data of this type. Here we use Gomez-Rodriguez, Leskovec, and Krause’s (2010)

latent network inference algorithm, called NetInf, to infer policy diffusion networks connecting

the American states over time.

The NetInf algorithm is derived and described in detail in the online appendix. Here we

give a broad overview of its major steps. The inferential task is the identification of a latent,

directed network (i.e., each tie has a sender and a receiver) that can be used to explain a dataset

with several cascades, where each cascade is a recording of when units (e.g., states) exhibited

some dichotomous attribute (e.g., a policy adoption). Each cascade is stylistically represented as

a tree, in which there is a branch for each diffusion instance whereby the attribute (e.g., policy)

spreads from the origin (i.e., sender) of the branch to the destination (i.e., receiver). The network

being inferred constrains the trees that can be used to construct the cascade such that only edges

in the network can be used to construct the trees. The network is tied to the set of cascades in that
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the algorithm will attempt to find edges that can be used in trees to explain many cascades. The

structure of this algorithm actually fits quite closely with Walker’s (1969) description of the ideal

way to represent state-to-state policy diffusion:

At the top of the tree would be a set of pioneering states which would be linked together

in a national system of emulation and competition. The rest of the states would be

sorted out along branches of the tree according to the pioneer, or set of pioneers, from

which they take their principal cues (Walker 1969, 893).

Here we apply NetInf to a moving window of policy adoptions on the 187 policies included

in the database introduced by Boehmke and Skinner (2012b) to infer an evolving state-to-state

policy diffusion network for the years 1960–2009.2 Before presenting our application further, we

define some useful terminology. We infer a different network in each year (t). The diffusion ties

(i.e., edges) that we infer are directed, identifying for each pair of states (i, j), whether policies

diffuse from i to j, from j to i, both, or neither. For a directed edge i→ j, which indicates that

policies diffuse from i to j, we refer to i as the source and j as a follower. Thus, if the edge i→ j

exists in the network at time t, then we say i is a source of policy for the follower j at time t.3

NetInf Overview

Now that the broad structure of the algorithm and components of our application have been

described, we present a few critical details on how edges in the diffusion network are selected

along with an illustrative example. Three main factors contribute to the likelihood that state i

2Several other data collection efforts, such as content analysis of legislative journals, model legislation, or public
records, could also be used to infer the diffusion network (e.g., Garrett and Jansa 2013). The significant advantage we
gain from NetInf is the scale and scope of policy adoption data coverage; in this case, we simply need to know the
years in which states adopted the policies. This allows us to infer the network at yearly intervals over a very long span
of time and across many policies with minimal coding rules. Indeed, we contend that NetInf can provide a great
deal of information to political scientists across the discipline even with a relatively feasible data collection effort.

3As with most research on policy diffusion, we are limited by the fact that our data comprise only successful in-
stances of the spread of policies. However, NetInf could be extended to incorporate unsuccessful or never-attempted
cases of diffusion because information on those cases—if it were available—could be put into the cascade data struc-
ture that NetInf employs for inference. The main roadblocks to this are (1) defining what constitutes an unsuccessful
attempt and (2) collecting data on those attempts over time. Research by Karch, Nicholson-Crotty, Woods, and Bow-
man (2013) begins to overcome these issues, but only for a specific set of policies that are implemented as interstate
compacts. Nonetheless, as this research grows, NetInf is well-positioned to be useful in understanding how policy
diffusion networks affect successful and unsuccessful diffusion.
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will be identified as a source for j. Collectively, these factors ensure that NetInf is picking

up patterns consistent with the definition of policy diffusion given above, rather than just chance

sequential adoption of the same policy by two states.

(1) The number of times i adopts a policy before j. NetInf uses edges it infers to explain

the individual cascades, but an edge from i to j can only be used if i adopts before j. The

number of times i adopts before j represents a ceiling on the number of times NetInf can

use an edge from i to j in a cascade-specific tree.

(2) The length of time between i’s adoptions and j’s adoptions. The wait times are parameter-

ized as exponentially distributed, which means short times are more likely than long times.

Thus, NetInf would prefer to use single edges to explain short times between adoptions,

and chains of edges to explain longer times. The degree to which NetInf prefers short to

long times is governed by the tunable exponential rate parameter used in the algorithm.

(3) The precision with which an adoption by i predicts an adoption by j. NetInf uses a

probability model in which adoption by sources is used to predict adoptions. If state i simply

adopts a lot of policies early, a result will be many i-then- j sequences, but also many policies

for which i adopts and j does not, which will penalize the probability model’s likelihood with

false positives.

NetInf iteratively adds the edge that performs the best on the three factors above, weighted

according to the underlying probability model (detailed in the online appendix). To smooth things

out, the NetInf probability model also includes a very low, but non-zero, probability that a state

will adopt a policy when one of its sources has not previously adopted (i.e., the cascade can jump

without an edge in the network). Another feature to note is that NetInf prefers non-redundancy

in forming the network. That is, if an edge has been added to the network that can be used to

explain an adoption, NetInf will prefer to add an edge that explains other adoptions that are not

yet adequately explained by existing edges.
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An Example: West Virginia, 1975–2009

We illustrate the edge ranking and selection procedure using the case of identifying sources for

West Virginia over the period 1975–2009. West Virginia adopted 39 policies over this time period.

The first step in ranking and identifying potential sources for WV is to ask which states adopted

several of those 39 policies prior to WV adopting. Among the other 49 states, the largest number

of pre-WV adoptions we observe is 17. Colorado, California, and Connecticut all adopted 17 of

the 39 policies adopted by WV before WV adopted them. This makes CO, CA, and CT strong

potential sources for WV because each could be used to explain 17 of WV’s policy adoptions. As

it turns out, all three of the edges CO→WV, CT→WV, and CA→WV are added to the diffusion

network that covers the period 1975–2009. The CO→WV edge is the 46th (out of 300) added to the

network for that period, the edge CT→WV is the 67th, and the edge CA→WV is the 112th. Note

that the number of edges identified is a tunable parameter of NetInf , so if we had asked for only

100 or 50 edges, we would have excluded the CA→WV and the CT→WV edges, respectively. We

also consider one more potential source state, Delaware, which adopted 16 policies prior to WV in

this period, but is not identified as a source for WV.

In serving as potential sources for WV, CO, CA, CT, and DE are all high relative to other

potential sources on the first point listed above: the number of i-then- j sequences. The source

quality ranking of CO>CT>CA>DE, results from their performance on the second two factors.

Figure 1 depicts the distributions of years between the three potential source states and WV’s

adoptions for the policies in which the potential sources adopt before WV. The graph shows that

WV adopted very shortly after CO in nearly all 17 instances. There were several longer lags for

CT, more longer lags for DE, and many long lags for CA (e.g., 5-10 years). Thus, CO performs

the best on criterion 2 (the length of time between i’s and j’s adoptions).

[Insert Figure 1 here]

Lastly, CO, CT, CA and DE adopted 57, 56, 68, and 53 policies, respectively, over the 1975–

2009 period. These adoption frequencies factor in on the third criterion, the precision of an adop-
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tion by i in predicting an adoption by j. Because CA adopted 18-20 percent more policies than

CO, CT, or DE, policy adoption by CA is less effective at predicting an adoption by WV than are

adoptions by CO or CT.4

To understand why DE is not identified as a source, we need to dig a bit deeper into the com-

parative pre-WV adoption timing. Recall that NetInf prefers to use edges to span short time

periods in diffusion trees. In understanding how NetInf chooses between potential sources, it

is important to consider which potential source regularly adopts prior to the follower state, and

relatively close to the follower state’s adoption. Looking at WV’s adoptions, we see that CO, CT,

CA, and DE were the most recent prior adopting states for 11, 8, 10, and 3 policies, respectively.

Because NetInf prefers to use edges for short diffusion times, DE is not a good candidate source

relative to other states.

Network Inference over Time

In order to represent variation in the network over time, we apply NetInf to a moving win-

dow of policy adoptions. There are many ways we could divide the data in order to use NetInf

to infer a different network for each year. We base our approach on how the networks and mea-

sures computed on them would likely be used in future research. We expect, and later suggest,

that scholars will use the diffusion networks in the same way they use geographic neighbors in

statistical models of the adoption of new policies. That is, statistical models will use the number of

state s’s sources that have adopted the policy prior to t to predict whether s will adopt that policy

at time t.

To avoid endogeneity in the use of the network at t to predict adoption at t, we specify our

time-varying network inference to assure that only policy adoptions prior to time t are used to

inform the structure of the diffusion network at time t. An edge from i to j at t can be interpreted

as indicating that the policy has frequently spread from i to j in the period immediately preceding

4To underscore their relative strength as sources for WV, we can consider the number of policies in which NetInf
uses each edge to explain adoptions out of the 17 instances in which each of the identified sources adopted a policy
prior to WV adopting. The edges CO→WV, CT→WV, and CA→WV are used in 17, 10, and 9 policy cascades,
respectively.
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t. This way, we can be certain that a state’s policy adoption at time t is not used, via the inferred

network, to predict that same policy adoption at time t.5

Tuning NetInf

We set three parameters in the network inference procedure. First, we need to define the number

of preceding years of adoptions that will be used to infer the network for time t. Second, we need

to define the number of edges we want to infer. Third, we need to tune the rate parameter of the

exponential distribution used by NetInf to calibrate how long it takes for policies to diffuse from

one state to another. The exponential distribution gives the distribution of diffusion times between

states, provided that there is an edge connecting them. Higher rates place a higher penalty on the

addition of edges to the network along which it takes a long time for policies to diffuse.

The procedure we use to select the values of these three parameters is fully described and illus-

trated in the online appendix. To give an overview, we use a grid search on a range of the number of

edges from 100–1,000, the time interval from 5–50 years and the exponential rate parameter from

0.125–1 (i.e., an average diffusion time of 1–8 years). We infer a new time series of networks for

each combination of tuning parameter values and evaluate the fit of an event history model, which

does not include any other state covariates, in which we use the inferred networks to predict policy

adoptions. Our process of tuning NetInf represents a combination of theoretical and data-driven

considerations. We rely upon prior theoretical expectations regarding the appropriate ranges in

which we expect to find the optimal parameter values. We use a data-driven approach to identify

the best set of parameters within these ranges. The only condition under which we would explore

a broader range of the parameters is if we found a boundary solution in the grid search (e.g., if the

best rate parameter were 0.125, corresponding to an 8 year average diffusion time).6

5There may be concern that we infer one diffusion network at each time point, which models the diffusion of all
policy adoptions within the respective time window. Indeed, some types of policies may diffuse in systematically
different patterns than do other types of policies. In the online appendix we present diagnostics to evaluate whether
there exist multiple classes of policies that systematically affect the ties inferred in the diffusion networks. We find
very strong evidence that there are not multiple classes of diffusion patterns in our dataset of policies.

6Note that future researchers might choose to fix one or more of these parameters based on theory in order to focus
on certain types of edges (e.g., fixing a high rate parameter to focus on fast diffusion or a small time interval to focus
on short-term and volatile relationships).
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The networks that we use in the analysis that follows are those that result in the best fit over

the grid of tuning parameter values. The network that results in the best predictive fit across

all parameters is one with 300 edges and defined over 35 years of policy adoptions. Because

we evaluate the tuning parameters, including the time interval, based on the effectiveness of the

inferred ties in predicting future adoption cascades, we are not surprised to find that the best-

performing time interval is relatively long. Ties identified in relatively long time intervals will be

those that are robust to historical fluctuations in political, social and economic conditions.7 The

fit is not particularly sensitive to the rate parameter, but the network using a rate of 0.5 results in

the best fit. This value corresponds to diffusion episodes that take, on average, two years. An

average of approximately 1,900 adoption instances over an average of approximately 120 policies

is used to infer the network for each year (precise distributions of these quantities are provided in

the online appendix).

Descriptive Analysis of the Policy Diffusion Network
In this section we conduct descriptive and exploratory analyses of the network we have inferred.

First, we demonstrate that the network is quite distinct from a set of relations recording geographic

contiguity. Second, we summarize the outgoing and incoming diffusion ties of each state over

five-year periods. Third, we provide an external empirical validation of the network by comparing

it to newspaper reports of state-to-state emulation during the same time period.

Geographic Contiguity

The first descriptive feature of the diffusion network that we consider is its similarity to a net-

work of geographic contiguity relations among states. Figure 2 plots the percentage of contiguity

relations between states that are identified as diffusion ties (black line) and the percentage of in-

ferred diffusion ties that are between contiguous states (gray line). Both of these percentages hover

between ten and twenty percent between 1960 and 2009. This indicates that the overwhelming

majority of policy diffusion relations exist between states that are not geographically contiguous.

7We also use a network based on 400 edges and 10-year periods for use in two applications to policy diffusion
models because that network fits those data best (see the online appendix).
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Therefore, although geographic contiguity represents a good first start, ties between neighboring

states are not a comprehensive proxy for the policy diffusion network.

[Insert Figure 2 here]

State-Level Activity in Diffusion Pathways

Ranking states based on their innovativeness is a research problem that dates back at least to

Walker (1969). Table 1 presents the top 15 states based on the number of states to which they send

diffusion ties over five-year periods. In their time-aggregated measures of policy innovativeness,

Walker (1969) and Boehmke and Skinner (2012b) find {CA, NJ, OR, NY, CT} and {CA, NJ, IL,

NY, OR} to be the top five states, respectively. Many of these states are at the top of our list in

each five year period. Only Florida emerges as an outlier with respect to previous rankings: Walker

(1969) and Boehmke and Skinner (2012b) rank Florida as 13th and 12th, respectively, whereas we

find Florida to be in the top five for nearly every five year period, and at the top of the list for a

decade.

[Insert Table 1 here]

To venture an explanation as to why Florida emerges as an innovator in our analysis, but not

in previous studies, we present Table 2, which details how often each of the three top innovators

(New York, California, and Florida) were first adopters, and also how often the other two did not

adopt. We see from this table that, even though Florida is the least frequent first adopter among

the three, the policies for which it is the first adopter are, at a very high rate, never adopted by New

York or California. Thus, although Florida does not stand out as a notably frequent first adopter,

it is often placed at the root of cascade trees because other frequent adopters are not innovators

in policy areas led by Florida. This inference regarding Florida highlights a primary strength of

NetInf: a state will not be deemed innovative based solely on the speed with which it adopts

policies. Rather, a state is deemed innovative if its adoption serves to explain adoptions by other

states that cannot be explained with reference to other early adopters.

[Insert Table 2 here]
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Media-based Validation of the Policy Diffusion Network

We have not yet connected the diffusion ties we have inferred with any real-world instances of

state-to-state policy emulation. Given the high profile status of several areas in state law, selected

major policy decisions at the state level are afforded in-depth press coverage (Tan and Weaver

2009). As we show below, newspaper articles often indicate when a substantial portion of a state

law has been modeled after another state’s policy. We identified accounts of policy emulation

in journalistic coverage of state policymaking by searching LexisNexis Academic for newspaper

articles containing the phrase, “modeled after a/an ∗∗∗”, where “∗∗∗” was the name of a state, for

all fifty states.8 LexisNexis covers newspaper articles going back to 1981. We then counted of the

number of stories that report the emulation of each states’ policies. These documented instances

of policy emulation can serve as the basis for a qualitative validation of the inferred network. If the

news media accurately reports some (possibly biased) sample of actual policy emulation instances,

then we should observe a positive association between the number of diffusion ties sent by a state

and the number of media reports of that state being emulated by others.

Figure 3 depicts the bivariate relationship between the number of emulation stories identified

and the average number of ties sent by each state in the inferred diffusion network, averaged

over 1981–2009. On the linear scale, we find a strong correlation of r = 0.72. However, two

outliers—New York and California—have approximately twice as many emulation stories as any

other state, so we also consider the correlation on the log-scale, which produces a slightly more

moderate correlation of 0.621. Both the Pearson’s correlation coefficient and Spearman’s rank-

based correlation are statistically significant at the 0.01 level.9 The positive relationship between

emulation reports in the media and average ties sent in the inferred diffusion network indicates that

the diffusion relationships we identify align with in-depth journalistic accounts of state-to-state

8To avoid primarily nationally-oriented coverage, we excluded The New York Times, The Washington Post, USA
Today and The Los Angeles Times from this analysis (but results are not contingent on this choice).

9Our online appendix describes a regression analysis in which we estimate the effect of inferred diffusion network
ties on the number of emulation stories reported, adjusting for the total coverage of a state in LexisNexis. There is a
strong positive and statistically significant relationship between emulation stories and diffusion ties after adjusting for
total state news coverage.
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policy diffusion.

[Insert Figure 3 here]

Applying the Inferred Network to Models of Policy Diffusion
Most policy diffusion studies examine the influence of state-level features on the adoption of

new policies as well as the influence states have on one another, primarily via contiguity. Our

network of policy diffusion across the fifty states provides a novel opportunity to account for

cross-state dependencies in these studies. To that end, we incorporated the inferred policy diffusion

network into EHA models of diffusion for four separate policies: lotteries (Berry and Berry 1990),

Indian gaming (Boehmke 2005), capital punishment (Boehmke 2005), and restaurant smoking bans

(Shipan and Volden 2006). In addition to these policy-specific EHA models, we also replicated

Boehmke and Skinner’s (2012a) “pooled event history analysis” (PEHA) model fit to data on 151

different policies diffusing over the period 1960–1999 (see also Boehmke 2009).

To conserve space, we present the details of these applications of the inferred diffusion network

in the online appendix. Briefly, they yield two primary contributions to research on state policy

diffusion. First, they illustrate how the diffusion network can be integrated as a covariate in con-

ventional diffusion models. We demonstrate that doing so produces statistically and substantively

significant estimates of the effect of network ties on adoption and improves model fit. The second

contribution stems from the fact that NetInf does not condition on covariates, making it possible

that the ties inferred by NetInf arise from some underlying covariates that induce regular patterns

of policy diffusion. Our replications show that the inferred ties are not simply an artifact of the

covariates already known to influence policy adoption; rather, our diffusion network is a uniquely

important aspect of the diffusion process.10

10We validated this characteristic of NetInf with a simulation experiment in which we generated policy adoption
data based solely on state covariates. NetInf produced network estimates that were consistent with patterns in
covariate values, which indicates that consistent effects of covariates can give the appearance of diffusion ties between
states.
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Understanding the Inferred Network
Similar to other forms of latent variable (e.g., estimated legislator ideal points), the diffusion

network we have identified likely arises from a complex combination of states’ attributes and their

relationships to each other, drawing from political, economic, and geographic factors. In our final

analysis, we evaluate the structure of our inferred network through the lens of extant theoretical

expectations about the identities of leaders and followers. We do so via multilevel logit models of

source-follower ties over the period 1960–2009.

Theoretical Framework

The concepts of exploration and exploitation, referring to the processes of individual inde-

pendent innovation and interactive emulation, respectively (Lazer and Friedman 2007), lie at the

heart of social theories of problem solving and behavioral choice (see, e.g., Akers, Krohn, Lanza-

Kaduce, and Radosevich 1979; Rice, Grant, Schmitz, and Torobin 1990; Kirke 2004; Berkes 2009).

Sometimes referred to as social learning (Ellison and Fudenberg 1995; Hummon 2000), a growing

body of research addresses how networks will and should be organized to cope with uncertainty re-

garding optimal decisions (Mason and Watts 2012). The theoretical framework of policy diffusion

in the American states bears a strong resemblance to the general literature on learning in networks.

Indeed, incomplete information underpins Walker’s (1969) theory of policy diffusion and much of

the subsequent research (e.g., May 1992; Mooney 2001; Volden 2006). States do not have the time

or resources to fully evaluate all possible solutions to their pressing policy problems. Walker and

others therefore suggest that states may act according to Simon’s (1976) concept of satisficing, in

which they attempt to identify policies that will improve their lot even if they may not constitute

the optimal policy. To accomplish this, states rely on a set of heuristics to identify policies for

possible adoption. Most importantly, states will look to the actions of other states as a source of

information. These may be neighboring states, states with similar characteristics and therefore

similar policy needs, or states with more extensive resources that act as leaders by investigating

new policies.
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We draw our explanatory variables intended to capture states’ capacity to innovate and learn

from other states from among those commonly used in the literature. For example, Walker (1969)

argues that more populous, wealthier states typically have the resources and motivation to learn

about policies on their own and scholars using EHA have continued to include these variables. We

also consider legislative professionalism, which diffusion scholars have more recently used as a

measure of legislative capacity (see, e.g., Shipan and Volden 2006). Because previous EHA studies

overwhelmingly focus on monadic policy diffusion, scholars typically use these variables to test

whether greater resources lead states to adopt new polices faster. Because we seek to explain their

effect on the diffusion network, however, we have the opportunity to separate their distinct effects

on leaders and followers. If diffusion occurs according to an informational process, then states

with greater capacity will tend to be leaders since they can investigate policies on their own more

thoroughly. This also suggests that states with greater resources can also process more information

and consider policy solutions in more states simultaneously. We therefore expect that states with

greater resources are more likely to be sources, but also to identify other states as sources.

Beyond resource effects, however, we also want to capture Walker’s idea of peer states. When

identifying sources, states may look beyond the wealthiest states to states that have similar char-

acteristics and whose choices may reflect more upon their specific circumstances. The process

according to which similar nodes are more likely to form ties in a network is referred to as ho-

mophily, and is one of the most common effects found in research on social networks (Fowler,

Heaney, Nickerson, Padgett, and Sinclair 2011). The identity of peer states likely goes beyond

measures of capacity or expertise, however, so we also consider the role of factors for which sim-

ilarity may matter in and of itself. In particular, we consider similarity in terms of ideology and

racial diversity. Ideology plays a crucial role in the types of policies states seek to adopt. With in-

complete information, then, states may look to the policies adopted by ideologically similar states

rather than to those of dissimilar states since the former has a greater chance of providing a so-

lution consistent with the preferences of its citizens. A number of studies have demonstrated that

ideology influences whether a state will copy the policy adopted by another state (e.g., Grossback,

17



Nicholson-Crotty, and Peterson 2004; Volden 2006; Volden, Ting, and Carpenter 2008). We also

consider the role of racial and ethnic diversity. States with more heterogeneous populations face

distinct policy challenges so we expect that states will use diversity in defining their peer network.

The most studied concept of peer states is geographic proximity. While Walker (1969) focused

largely on regional clusters of states with a small number of their members serving as leaders, more

developed theories have emerged over the years. Many focus on the role of contiguity explicitly,

whether as a source of information transmission about public opinion (Boehmke 2005; Pacheco

2012) or as a facilitator of cross-border economic activity (Berry and Baybeck 2005; Baybeck,

Berry, and Siegel 2011). While contiguity remains the workhorse variable for interstate diffusion,

we also want to leverage the fact that our network considers the relationship between all pairs of

states to examine the role of geographic proximity above and beyond contiguity. To do this we

include a measure of distance between state capitals to test whether states have a regional tendency

when determining their peers.

Modeling Strategy

In order to test for the effects of capacity and homophily on the leader-follower relationship,

we include variables corresponding to each and enter them into our model in three ways. We start

with variables on total state population and income from the Bureau of Economic Affairs, legisla-

tive professionalism (King 2000), Berry, Ringquist, Fording, and Hanson’s (1998) citizen ideology

(the revised 1960–2010 series), partisan control of state government (Klarner 2003), and racial di-

versity using Hero and Tolbert’s (1996) formula applied to Census data. For each variable, we

include its value in the potential source state to model which states tend to be emulated, its value

in the potential follower state to capture the tendency of states to identify sources, and as a relative

measure using their absolute difference (for continuous variables) or product (for the partisan con-

trol) to assess homophily. We expect that the measures of capacity have positive effects; that the

relative measures of ideology and diversity exert negative effects (since larger values correspond

to greater difference between the two states); and that shared borders and geographic proximity

have positive effects. Of course, homophily likely extends beyond ideology and diversity, so we
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also expect that the absolute difference between these variables has a negative effect. We have no

specific expectation about the role of ideology on its own in the source or follower state.

In order to evaluate these predictions, we estimate a multilevel, over-time, logit model of the

diffusion network.11 In accordance with the structure of this network, each observation corre-

sponds to whether one state considers a second state as a source. We therefore have dyadic data,

which facilitates the inclusion of characteristics of each state separately as well as their relative

characteristics. In order to account for dependence between observations we include two (non-

nested) random effects: one for each state when it is the follower, choosing its peer network, and

another when it is a potential source for other states. We also include, but do not report, a set of

fixed effects for each year.12 Finally, recall that as we noted in the previous section the NetInf

algorithm does not condition on underlying covariates. As such, anything that would predispose

two states to prefer the same policies might induce the appearance of diffusion ties among them.

Measures of partisanship and political ideology would be chief among these common exposures

when it comes to policymaking, which suggests some initial caution in interpreting these results.

Results

We report the results of this estimation in Table 3. Overall, they indicate the importance of

capacity, political homophily, and geographic proximity. The results for capacity stand out as espe-

cially strong, with more populous states more likely to serve as sources and to identify other states

as sources and larger and wealthier states to identify other states as sources. Further, we find strong

evidence of homophily, with larger absolute differences between states decreasing the probability

11At this point we emphasize how our analysis departs from Volden’s (2006) approach, because of important over-
laps. The dependent variable that Volden (2006) uses is whether a state A moves policy in the direction of state B’s
policy at time t, for all combinations of A, B, and t. This approach identifies policy specific emulation of B by A. Of
course, if several states have the same policy as B, Volden’s approach cannot determine which state A is emulating.
In contrast, NetInf searches for a network of edges that represent regular diffusion pathways over many policies,
meaning that our approach is capable of identifying the state(s) that A persistently emulates. However, our approach is
not capable of identifying policy-specific diffusion ties between states—only ties that manifest consistently over many
policies.

12Network data may exhibit more complex dependencies than directed vertex random effects (Cranmer and Des-
marais 2011). As such, we used quadratic assignment procedure (QAP, see Krackardt 1987)—a permutation testing
method designed for network data—to replicate the hypothesis tests presented in Table 3. The QAP was run for 500
iterations. We use the variant of QAP in which the rows and columns of the adjacency-matrix-valued dependent
variable are permuted.
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of each state choosing the other as a source. Interestingly, though, legislative professionalism does

not conform to this pattern. The effects for sources and followers are not statistically significant

and the difference term has a positive effect—indicating heterophily—which is only significant ac-

cording to the parametric p-values, indicating that states rely more on states with different values

of professionalism.

[Insert Table 3 here]

Citizen ideology also produces results consistent with expectations. In particular, ideological

distance has a negative and significant effect, demonstrating strong ideological homophily in dif-

fusion. We also find that more liberal states have fewer sources and serve as sources less often.

Analogous results obtain based on government control: unified Democratic states identify similar

states as sources more often than states with divided government, but the effect is only statistically

significant according to the parametric p-values. No effects emerge among unified Republican

states.

In order to substantively interpret these coefficient estimates, we present a series of graphs that

translates them into expected probabilities of source-follower ties. We first examine the homophily

effects in Figure 4. To calculate these probabilities we set every continuous variable at its mean

value and every dichotomous variable at its modal value in 1985. We set the estimated random

effects at their mean of zero. We then present partial effects for each set of variables: one changing

just the value in the state seeking sources, one changing the value in potential sources, and one

changing the absolute difference between them.

[Insert Figure 4 here]

Consider first the top left graph for the effects of ideology. The baseline condition involves

citizen ideology at its mean value, represented by the vertical line. Moving ideology in a potential

follower decreases the probability of identifying sources when the state becomes more liberal and

increases it when the state becomes more conservative. A similar result occurs for the ideology

of potential source states: more liberal states get chosen less often and more conservative states
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more often. Of course, both of these manipulations also increase ideological distance, which has

a negative effect on source selection. The combined effect of making the potential source more

liberal leads to an even greater decrease than either alone whereas making it more conservative

leads to a less severe decrease. In terms of magnitude, the effects range from zero to about 30%

relative to the baseline probability of about 15%.

The other graphs show similar patterns for per capita income, population, and minority diver-

sity. The magnitudes do differ quite a bit, with population showing very large effects for a handful

of large states and diversity producing a relatively small effect (note that the scales of the graphs

differ to enhance readability). Interestingly, across all five plots, the follower state effect generally

appears largest in magnitude, the homophily effect typically lies in the middle, and the poten-

tial source state effect is the smallest. Consistent with the individual coefficients, the results for

legislative professionalism do not fit our expectations. While generally insignificant and small in

magnitude, we find these results puzzling and hope to explore them in future work. One possible

explanation rests in the high correlation of professionalism with population (0.72 in our sample).

We present the results for the other variables in Figure 5. Unified government control has

a small effect, generally less than one or two percentage points. The biggest effects occur for

same unified governments, with Democratic states most likely to choose other Democratic states

as sources, but Republican states less likely to choose other Republican states. The bottom graph

shows the effect of geographic distance and contiguity. Increasing distance by a thousand miles

leads to an approximately two and a half percentage point drop in the probability of choosing a

state as a source whereas contiguity leads to a minuscule change once we account for distance—

the small capped bar at the minimum of 40 miles represents the estimated additional effect of

contiguity.

[Insert Figure 5 here]
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Network Inference in Political Science
This research makes several substantive contributions to the literature on public policy diffusion

in the American states. However, the network inference methodology is sufficiently general that it

has the potential to impact several other research areas in political science. The obvious domain

in which NetInf is applicable is the literature on policy diffusion at the national level. Graham,

Shipan, and Volden (2013) report that from 1958–2008, major political science journals published

307 policy diffusion articles in comparative politics and 226 in international relations (as well as

189 in American politics). However, political scientists also study many other phenomena that

are comprised of a fixed set of actors (e.g., citizens, legislators, countries) who make repeated

sequential decisions. NetInfwould be fruitfully applied in these domains to infer the connections

between these actors.

Consider the study of international agreements and organizations. Shared affiliations in these

institutions have been used as a proxy for ties between countries (e.g., Dorussen and Ward 2008).

This measure has drawn criticism due to the largely static nature of membership in these institu-

tions. As Hafner-Burton, Kahler, and Montgomery (2009) point out, “[a]lthough mutual member-

ship in international institutions may lead to more opportunities for mutual interaction. . . it does

not necessarily lead to positive ties, as is often assumed in international relations. . . . [M]embership

may offer a static view of world politics” (578–579). NetInf could solve this problem by con-

structing a dynamic network based on countries’ repeated decisions to join intergovernmental or-

ganizations, trade agreements, and/or other international institutions (i.e., the cascades through

which affiliations spread across countries).

Another possible use for NetInf is to infer connections among legislators. In American

politics, a long tradition of work examines legislative “cue-taking,” or the process by which legis-

lators look to other members in making voting and cosponsorship decisions (e.g., Kingdon 1973;

Matthews and Stimson 1975). Network analysis has recently been employed to study legisla-

tors’ interactions in the American (Tam Cho and Fowler 2010) and cross-national (Ringe, Victor,

and Gross 2013) contexts. However, a common means of understanding how cue-taking oper-
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ates is through the use of legislator characteristics as covariates in regression models (e.g., Box-

Steffensmeier, Arnold, and Zorn 1997). This is a useful approach, but due to the lack of a tie

measurement method, it necessarily conflates sequence with cue-taking. NetInf could solve this

problem. Indeed, NetInf has recently been applied to data on cosponsorship in the U.S. Senate

with the aim of identifying the Senate influence network (Denny 2014).

Finally, political scientists and communication scholars are interested in intermedia agenda

setting, or how media outlets interact through picking up stories from one another (e.g., Golan

2006; Denham 2014). NetInf has the potential to infer a network of media outlet influence,

which could be useful for studies that examine the media’s impact on public attention to issues.

Specifically, it could help scholars understand which outlets, news mediums, or people are most

influential in setting the news agenda (e.g., Neuman, Guggenheim, Jang, and Bae 2014). In fact,

the example that Gomez-Rodriguez, Leskovec, and Krause (2010) use to introduce NetInf is the

cascading of news articles among online media outlets over a one-year period.

Network inference has the potential to impact many areas across political science. Many impor-

tant political phenomena are driven by patterns of influence and emulation. Thus, political science

routinely confronts the fact that the individual decisions of a collection of actors affect, and are

affected by, other actors. NetInf is a useful means of dynamically measuring these relationships.

Conclusions
A half-century of research has examined the causes and consequences of policies diffusing

across national and subnational boundaries. However, until now scholars have not had an ideal

means of measuring the precise patterns though which policies diffuse. Geographic contiguity

is one important factor, but does not capture the complete network of policy diffusion. In this

research, we introduce a network inference methodology to political science and use it to infer a

policy diffusion network connecting the American states.

We offer three broad contributions to the state politics literature. First, in contrast to common

assumptions in research on state policy diffusion, we find that the overwhelming majority of dif-

fusion ties connects states that are not geographic neighbors. Second, we show that the policy
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diffusion network we infer can improve explanatory models of policy adoption within specific pol-

icy areas. Our replications of previously published diffusion models indicate that when sources in

a state’s policy diffusion network adopt a policy, the likelihood of adoption significantly increases

by a comparable amount to adoption by contiguous neighbors. Third, we present empirical models

of the ties in the inferred networks to evaluate a number of theoretical perspectives on diffusion.

Perhaps most interestingly, the results highlight the role of internal capacity and pairwise similar-

ity, which tend to dominate. States with greater resources tend to have more peers, but all states

favor other states that share similar demographic and political features. We also find evidence of

leadership, with larger and wealthier states more often chosen as sources. While we have focused

on extant theories, we hope that the availability of our estimates and future applications of NetInf

provide the impetus to test existing and develop new theories of interstate policy diffusion.

The current research opens the door to several future directions in methodology and state policy

diffusion research. First, and chief among them, is extending the NetInf algorithm to simultane-

ously infer covariate-based commonalities in policy adoptions as well as the underlying diffusion

network. This would present the opportunity to precisely differentiate between diffusion ties and

patterns that are attributable to covariates. A second worthwhile extension of NetInf would be

to incorporate whether policy innovations succeed or fail by some metric, which would allow us to

evaluate the degree to which diffusion depends upon the result of the innovation. Third, our tracing

of diffusion accounts in LexisNexis is rather limited, but demonstrates the feasibility of defining

diffusion networks through the analysis of textual sources. Finally, though our work utilizes what

is, to our knowledge, the most comprehensive database of state policy adoptions currently avail-

able, there are many more policies that could be traced through the states. An expanded policy

database would permit fine-grained inference of policy-specific diffusion networks connecting the

states and the chance to identify different structures by policy type.

A final contribution of this research is the introduction of the NetInf technology to political

science. While we illustrate its applicability in the context of state policy diffusion, it has broad

potential for research in American politics, comparative politics, and international relations. The
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discipline often studies political actors who repeatedly face the same choices and make them in

sequence. This means that interdependence between actors and the emergence of leaders and

followers are likely to influence the processes under study. NetInf helps to empirically recover

this interdependence so that researchers can better understand its causes and consequences.
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Figure 1: Pre-WV Adoption Times, 1975–2009
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Note: Each box plot gives the distribution of time lags (in years) between the adoptions of the state
listed on the x-axis and WV’s adoptions for all policies that the state adopted prior to WV.

30



Figure 2: Comparison of Diffusion Relations with Geographic Contiguity
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Figure 3: Association Between Inferred Diffusion Ties and Media Reports of Emulation
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Note: Both axes are on the natural log scale. Because New York and California are large positive
outliers on the linear scale, the correlation is computed on the natural log scale. The correlation on the
linear scale is 0.72. The line depicts a loess regression fit.
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Figure 4: Estimated Substantive Effects of Absolute Difference Variables
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Note: The graphs present the effects of each variable on the probability scale using Model 2’s estimates.
All other variables are set to their mean (continuous variables) or mode (binary variables) in 1985 and
the random effects are set to zero.
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Figure 5: Estimated Substantive Effects of Selected Variables
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Note: The graphs present the effects of each variable on the probability scale using Model 2’s estimates.
All other variables are set to their mean (continuous variables) or mode (binary variables) in 1985 and
the random effects are set to zero.
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Table 1: Top 15 States Based on the Total Number of Diffusion Ties Sent to Other States within
Five-Year Periods

Rank 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95–99 00–04 05–09

1 NY NY NY NY NY FL FL CA CA CA
2 KY KY FL FL FL NY NY CT CT CT
3 CA SC CO NJ NJ CA CA NJ FL NJ
4 MN AL RI MN MN MN CT FL WA FL
5 AL CO CT OR RI OR OR NY NJ WA
6 SC NM MN IL OR NJ MN MN IL IL
7 RI MN MI CO CO RI NJ OR MN MN
8 MI OH NJ AK CA CT CO WA AZ AZ
9 VT NJ NE NH AK AK OH LA IA LA

10 NJ WA PA RI IL IL RI CO NC IA
11 IL MI LA AR LA CO IL IA OR OH
12 WA RI AL CT MI ID AK AZ CO NC
13 MD MD OR MI CT MI LA NC HI CO
14 OH PA MD DE ID OH MI OH LA WI
15 MS VT AR MS PA KS ID ID OH UT

35



Table 2: Top Innovators from the Inferred Diffusion Network

FL NY CA First Adopter
FL – 7 5 13

NY 7 – 3 18
CA 6 14 – 24

Note: The entry in row i, column j of the state
× state elements of this table gives the number
of policies for which state i was the first adopter
and state j never adopted. The last column gives
the total number of policies for which state i was
the first adopter.
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Table 3: Multilevel Logit Models of State Policy Diffusion Ties

Coef. S.E. Coef. S.E.
Follower State Characteristics:

Citizen Ideology −0.013∗ (0.002)
Legislative Professionalism −0.373 (0.240)
Minority Diversity 0.804+ (0.236)
Per Capita Income 0.692+ (0.094)
Population 0.168∗ (0.011)
Unified Democratic Government 0.004 (0.034)
Unified Republican Government −0.025 (0.041)

Potential Source Characteristics:
Citizen Ideology −0.003∗ (0.001)
Legislative Professionalism −0.110 (0.216)
Minority Diversity −0.091 (0.182)
Per Capita Income 0.104 (0.074)
Population 0.037∗ (0.008)
Unified Democratic Government −0.054 (0.034)
Unified Republican Government −0.068 (0.039)

Relative Follower/Source Characteristics:
Contiguous 0.152∗ (0.039) 0.048 (0.040)
Distance −0.234∗ (0.019) −0.201∗ (0.020)
Citizen Ideology (Absolute Difference) −0.009∗ (0.001)
Legislative Professionalism (Absolute Difference) 0.315+ (0.139)
Minority Diversity (Absolute Difference) −0.084 (0.107)
Per Capita Income (Absolute Difference) −0.445∗ (0.048)
Population (Absolute Difference) −0.033∗ (0.004)
Unified Democratic (Product) 0.124+ (0.046)
Unified Republican (Product) −0.080 (0.082)
Constant −1.922∗ (0.137) −2.481+ (0.230)
σu1 (Follower Random Effect) 0.799 0.826
σu2 (Potential Source Random Effect) 0.204 0.214
N 122,500 94,080

Note: Observations are dyadic. The dependent variable indicates whether potential source state is a source for a
follower state in a given year. We use the network with 300 edges over 35 years of policy adoptions. Multilevel
logit coefficients are reported with standard errors in parentheses. + indicates statistical significance at the 0.05
level (two-tailed) according to just the parametric p-values from the multilevel logit. ∗ indicates statistical signif-
icance at the 0.05 level according to the QAP p-values and the parametric p-values. QAP p-values derived from
500 network permutations.
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Latent Network Inference
The derivation of the NetInf algorithm begins with the definition of a probabilistic model

describing how attributes would cascade through a diffusion network. To clarify application to state

policy diffusion, we refer to the units and attributes in the model as states and policies, respectively.

Denote a single policy cascade—the years in which states adopted a given policy—as c. The

model is derived in three steps. First, we construct the probability that state u spreads a policy

to state v: Pc(u,v). Second, given these dyadic spread probabilities, we build the probability that

a policy spreads through the states in a given tree pattern P(c|T ), where T specifies which states

influence which other states. Third, we define P(c|G), which is the probability of cascade c given

the diffusion network (i.e., graph) connecting the states G. With these three quantities defined,

we can define a proper likelihood of the policy cascades given a proposed diffusion network by

evaluating the probability of each cascade on that diffusion network.

The NetInf algorithm assumes that diffusion occurs in continuous time and that diffusion
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time has an exponential distribution. If state u adopts a policy at time tu and state v adopts a policy

at time tv (tv ≥ tu) and u spreads the policy to v, then the probability of the diffusion time (tv− tu)

is given by

Pc(u,v) = λ exp
(
−(tv− tu)

λ

)
, (A.1)

where λ is the rate parameter of the exponential distribution. Given this, the probability of ob-

serving a cascade that propagates in a given pattern over the states, represented by the tree T that

encodes (i, j) pairs listing which states were influenced by which other states, is

P(c|T ) = ∏
(i, j)∈T

Pc(i, j). (A.2)

The diffusion network G places a constraint on the possible tree structures T along which the

policy can spread. That is, a policy cannot spread from i to j if there is not a diffusion pathway

from i to j in G. Thus, to build the probability of a cascade c given the diffusion network G, we

average the probability of the cascade c over all possible tree structures in G, denoted T (G).

P(c|G) =
1

|T (G)| ∑
T∈T (G)

P(c|T ), (A.3)

where |T (G)| is the number of tree structures that can be constructed from G. Given a set of

policy cascades (C), the likelihood of the cascade data given a proposed diffusion network G is:

P(C|G) = ∏
c∈C

P(c|G). (A.4)

Inferring the Network

With the probabilistic model of diffusion along a diffusion network defined, the task of inferring

a diffusion network is to find a network structure G under which we would have been highly likely

to observe the set of policy cascades C. Ideally, we would identify the network structure that

maximized the likelihood of observing C. Likelihood maximization in this case, however, turns out
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to be a computationally intractable task. Among the 50 states, there are 2×21225 possible network

structures. Moreover, Gomez-Rodriguez, Leskovec, and Krause (2010) show that every network

structure would need to be evaluated to assure that the optimal network had been identified.

As a more computationally tractable alternative, Gomez-Rodriguez, Leskovec, and Krause

(2010) derive an approach to approximation of the optimal G. They also demonstrate analytically

and through simulations that this method is capable of inferring a very-close-to-optimal network

structure inference within feasible compute times. Their departures from exhaustive optimization

are two. First, instead of computing the likelihood of a cascade given a network structure by enu-

merating all possible propagation trees represented by that network structure, they simply focus

on the most likely propagation tree for each cascade within a given network structure—a shortcut

which they refer to as lazy evaluation. Second, they adopt a greedy (i.e., local) optimization ap-

proach that iteratively adds diffusion ties to the network structure G such that the kth diffusion tie

added to the network improves the likelihood function more than any other tie that could be added

to the network, given the k−1 ties already in the network.

Network Inference: Empirical Conditions
In this section we present ancillary information regarding the application of NetInf to the

state policy diffusion data. Specifically, we present the complete model fit results from our tuning

exercise as well as descriptive data regarding the number of policies and adoption instances used

to draw inferences in each year.

NetInf Parameter Tuning

We set three parameters in the network inference procedure. First, we need to define the number

of preceding years of adoptions (denoted k) that will be used to infer the network for time t. Second,

we need to define the number of edges (E) we want to infer in each time period. Third, we need

to tune a rate parameter λ of the exponential distribution used by NetInf to calibrate how long it

takes for policies to diffuse from one state to another. A policy can only diffuse from i to j if there

is an edge from i to j in the inferred network. The exponential distribution gives the distribution
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of diffusion times between states, provided that there is an edge connecting them. Higher rates

place a higher penalty on the addition of edges to the network along which it takes a long time for

policies to diffuse. This prevents any given adoption by one state that happens to fall later in time

than adoption by another state from contributing to the formation of a tie between the two states.

We take a data-driven approach to finding optimal values of these parameters. We use the

conventional discrete-time event history modeling methodology to evaluate the performance of

the network in predicting future adoptions measured at different parameterizations. For each

unique combination of parameters {k,E,λ}, we fit a pooled (across all policies in the data) logistic

discrete-time event history model predicting policy adoption. The model contains three classes of

regressors. For state s still in the data at time t for policy p, the regressors are:

(1) States Adopting: The number of other states that have adopted by time t−1,

(2) Sources Adopting: In a network inferred on all adoptions between t−k and t−1, the number

of s’s sources in the network that have adopted p.

(3) Policy Area: An indicator variable that models the unique rate of adoption for each policy.

In this design, all of the adoptions used to infer the network used to predict adoptions at time

t occurred prior to t. We use a simple grid search to find best-fitting values of {k,E,λ}. We

search over λ ∈ {0.125,0.25,0.5,1}, which corresponds to mean diffusion times of 8, 4, 2, and

1 years, respectively, k ∈ {5,10, . . . ,50}, and E ∈ {100,200, . . . ,1000}. We use the Bayesian

Information Criterion (BIC) to evaluate the fit of each combination of parameters and search for

the combination of parameters that best fits the data (i.e., results in the lowest BIC). Figure A.1

depicts the BIC values for all of the parameter combinations that we consider.

[Insert Figure A.1 here]

The network that results in the best predictive fit, across all values of λ is one with 300 edges

and defined over 35 years of policy adoptions.1 The fit is not particularly sensitive to the rate

1We also use a network based on 400 edges and 10-year periods for use in two applications to policy diffusion
models (see below).
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parameter, but the network using a rate of 0.5 results in the best fit. This means that policies

diffuse, on average, in two years. An average of approximately 1,900 adoption instances over an

average of approximately 120 policies is used to infer the network for each year.

Policies and Adoptions Used in NetInf Over Time

Figure A.2 gives the number of unique policies and the total number of adoption instances used

to infer the diffusion network in each year. The network inferred toward the end of the time series

is generally based on more data than the network earlier on in the series.

[Insert Figure A.2 here]

Checking for Heterogeneity in Diffusion Classes

As the heterogeneity in the results from models of policy diffusion in the state politics litera-

ture suggests, there is considerable variation in the processes that drive the diffusion of different

policies. It is therefore important to check whether we are inappropriately pooling policies to infer

a single diffusion network. Though we know that policies vary in terms of the patterns and pre-

dictors of diffusion, we must evaluate whether this variation is policy-specific and idiosyncratic

with respect to the underlying diffusion network, or whether there are systematic and consistent

cross-policy differences. In other words, we need to check whether there are different classes of

policies in terms of the underlying diffusion network.

We use a probabilistic mixture modeling approach (Imai and Tingley 2012) to examine whether

there are multiple classes of policies in terms of their effects on the inferred diffusion network. We

iteratively remove each policy from the dataset and infer a new network with 300 edges that spans

the entire time period in our data. For each policy, we have a network inferred without that policy

included. If two (or more) policies affect the diffusion network in the same way, the inferred net-

work should change in systematically similar ways when those two policies are removed from the

dataset. Using a policies×potential edges—187×2,450—observation dataset, we fit a Bernoulli
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mixture model with the likelihood

l(y,α,π) =
50

∏
i=1

∏
j 6=i

187

∏
p=1

k

∑
a=1

αapπ
yi jp
i ja (1−πi ja)

(1−yi jp),

where yi jp is an indicator of whether there is a diffusion tie from i to j when policy p is removed

from the dataset, k is the number of classes (i.e., mixture components) included in the model, αap

is the probability that policy p is a member of class a, and πi ja is the probability that there is an

edge from i to j in networks inferred excluding policies in class a.

We estimate models with k ∈ {1,2, . . . ,15}. The R package flexmix (Leisch 2004) is used

to fit the models. Estimation also requires an initial assignment of the component membership

probability for each policy. We use k-means clustering to identify initial cluster memberships,

then assign the component membership cluster probability for each policy according to α0
ap =

λ
1(cp=a)

∑
k
i=1 λ

1(cp=i) , where cp is the initial cluster assignment of policy p and λ is a weight that controls the

entropy in the initial component assignment probabilities, with higher values of λ corresponding

to lower entropy. We evaluate models with 10 values of λ , varied equally between 1 and 5. The

model fit results of the mixture modeling are presented in Figure A.3. Following Fraley and Raftery

(1998), we evaluate the fit of each model using the BIC.

[Insert Figure A.3 here]

Across all values of λ , the best fitting model is clearly the one with only one component. This

indicates that, insofar as removing individual policies changes the results of the network inference,

the network is changed in ways that are idiosyncratic with respect to the other policies. In other

words, policies do not appear to affect the network in patterns that can be efficiently grouped into

a discrete number of classes, aside from the overall patterns that cut across all policies. These

results support our use of a single diffusion network to model the diffusion patterns across all of

the policies in our dataset.
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Adjusting for Total State Coverage in the LexisNexis Analysis

In Table A.1, we present ordinary least squares regression results in which we regress the

number of emulation stories identified in LexisNexis on the mean number of diffusion ties sent

in the diffusion networks and the total number of search hits of a state’s name in LexisNexis

Academic. This analysis adjusts for the influence of overall state coverage on the number of

reported diffusion ties.

[Insert Table A.1 here]

Table A.2 reports the news outlets in which we identify emulation stories from the LexisNexis

database.

[Insert Table A.2 here]

Applying the Inferred Network to Models of Policy Diffusion
Here we present our replications of the five policy diffusion EHA models. Recall from the main

text that we replicated four policy-specific models: lotteries (Berry and Berry 1990), Indian gam-

ing (Boehmke 2005), capital punishment (Boehmke 2005), and restaurant smoking bans (Shipan

and Volden 2006).2 We also replicated Boehmke and Skinner’s (2012) “pooled event history anal-

ysis” (PEHA) model fit to data on 151 different policies diffusing over the period 1960–1999 (see

also Boehmke 2009). This approach stacks the data from different policies and estimates a uni-

fied model with a common set of independent variables (including state, year, and policy fixed

effects). Pooling the data does result in fewer independent variables than for any single policy,

but it provides insight into what factors affect diffusion most broadly across the issue spectrum of

American politics. We show below that information from our inferred diffusion network is one of

those factors.
2Specifically, we replicate the following models: Berry and Berry (1990, 409), Table 1, model 1; Boehmke (2005,

85 and 89), Tables 4.2 and 4.4; Shipan and Volden (2006, 839), Table 3, model 9.

vii



Model Details

We focus on these five models for several reasons. First, the four policy-specific models rep-

resent a wide variety of policies, and the pooled model represents an even wider range. Thus, we

examine whether the diffusion network has a broad or narrow impact on adoption. Second, the

original studies presenting the policy-specific models are well-known in the policy diffusion liter-

ature, having each garnered at least 60 citations according to Google Scholar.3 Finally, the models

all use similar EHA empirical specifications, enhancing comparability. The dependent variable in

each is coded “1” if a state adopted the policy in a given year and “0” otherwise, with states that

have already adopted dropping out of the data beginning in the year after adoption.4

The theories underlying our replication models each have their own unique characteristics. To

conserve space, we refer readers to the original studies for detailed discussions of each. We focus

here on comparing the effect of the diffusion network on adoption to that of a factor that con-

sistently appears in these models: geographic contiguity. Nearly all studies of policy diffusion

include in their models either the number of or percentage of neighboring states that have previ-

ously adopted the policy. The expectation for this variable is that, due to economic competition

and/or policy learning, as more neighbors adopt, the probability of a state adopting increases (see,

for example, Berry and Berry 1990, 403–404; Boehmke 2005, chapter 4; Shipan and Volden 2006,

828).

It is unlikely that states can only compete with and learn from states with whom they share a

border. Indeed, Berry and Berry (1990) point out that there are many plausible means of state-

to-state influence, including shared borders, a shared region, or even shared culture. They further

suggest that it would be useful to have a measure of which states a state tends to “follow” in

policy adoption. With information on “predesignated leader states” in regions, the authors “would

hypothesize that a state’s probability of adopting a lottery increases after one or more states with a

3In fact, Berry and Berry (1990) is included on the “high impact” list of most influential articles appearing in the
American Political Science Review (Sigelman 2006).

4The Berry and Berry (1990) and Boehmke (2005) models are estimated with probit and the Shipan and Volden
(2006) and Boehmke and Skinner (2012) models are estimated with logistic regression.
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reputation as a leader within its region adopt it” (Berry and Berry 1990, 403). However, they also

acknowledge that they have no means of measuring this concept because there are no “reliable data

about which states are perceived. . . to be regional leaders in a policy area” (Berry and Berry 1990,

403).

Including Network Information

Our inferred policy diffusion network provides those data that previous scholars of policy dif-

fusion have not had available. In fact, beyond simply measuring regional leaders, the network gives

information on any state that tends to be a leader, or source, of policy innovation for another state.

In our replications we incorporate information from the estimated diffusion network by creating

a variable on the same scale as Neighbors Adopting: the number of a state’s sources in a given

year that previously adopted the policy. We use the inferred network to produce a list of states

that influence the state in a specified time period immediately preceding a given year.5 This list

represents all of that state’s sources at that time. Next, to create the variable Sources Adopting we

count the number of states from that list that have previously adopted the policy. We also computed

this measure as a percentage, similar to studies that compute the percentage of Neighbors Adopting

(e.g., Shipan and Volden 2006). We present both sets of results below (our substantive conclusions

do not change).

After creating the Sources Adopting variable, we then add it to each of the five replication

models. Recall that we avoid endogeneity problems because we only use adoptions that occurred

before a given year to measure the network for that year. As such, the adoption of policy j by state

i at time t cannot inform the network used in the diffusion models to predict the adoption of policy

j by state i at time t. The adoptions used in the network for time t occur prior to t.6

5As mentioned above, we constructed a version using 35-year periods and one with 10-year periods. Results
between the two are generally very similar. For each model we used the version that produced the lowest AIC and
BIC values (35-year version for the lotteries, capital punishment, and pooled models; 10-year version for the Indian
gaming and smoking ban models).

6We include all policies in the construction of the network used to produce Sources Adopting, including the policy
of interest in the EHA model. We also estimated the models after having removed the policy area of interest and found
results that are virtually identical to what we present below.

ix



Estimates and Model Fit

We first examine the extent to which the inclusion of Sources Adopting—instead of or in ad-

dition to Neighbors Adopting—improves model fit.7 Table A.3 reports coefficient estimates and

standard errors for the two variables as well as model fit statistics for three specifications: (1)

the original model with Neighbors Adopting (plus the authors’ other covariates), (2) a model with

Sources Adopting substituted for Neighbors Adopting (plus the other covariates), and (3) a model

with both Neighbors Adopting and Sources Adopting (plus the other covariates). In all cases the

coefficients are positive (as expected), though statistical significance varies somewhat across spec-

ifications and replications. We assess the substantive impact of these effects in section .

[Insert Table A.3 here]

To compare model fit we compute AIC, BIC, and cross-validated percent correctly classified.

We compute this last measure via leave-one-out cross-validation, which involves iteratively drop-

ping one observation, estimating the model, computing an expected probability from that model

for the left-out observation, then generating a predicted value of the dependent variable based on

a single draw from the Bernoulli distribution with that expected probability. We then compute

the percentage of the observations for which the prediction matches the actual dependent variable

value. Thus, unlike information-based measures of fit such as AIC and BIC, this measure assesses

each specification’s capacity to make out-of-sample predictions. In Table A.3, the values in bold

indicate the best-fitting model according to each statistic.

The AIC and BIC values support the inclusion of Sources Adopting in all but the restaurant

smoking ban model, where the original model and the model with Sources Adopting produce AIC

and BIC values within 2 units of each other, indicating equal fit. The cross-validated percent cor-

rectly classified measure also generally supports the inclusion of Sources Adopting. In four of the

five replication models the percent correctly classified in one or both models with Sources Adopting

increases from the original model with Neighbors Adopting (the restaurant smoking ban model is
7The question of whether Sources Adopting should replace or complement Neighbors Adopting is context-

dependent. We focus on model fit here, but theoretical expectations should also be an important guide.
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again the lone exception). These improvements are somewhat small in magnitude—ranging from

+1 to +3 percentage points across the different models. Nonetheless, they consistently point to

the models that include Sources Adopting in the specification as the best fit.

Overall, Table A.3 provides good evidence that Sources Adopting can improve the fit of policy

diffusion EHA models, either in place of or in addition to Neighbors Adopting. Importantly, across

the five models, none of the fit statistics decisively selects the original model with Neighbors

Adopting as the better fit. Given this evidence that Sources Adopting is a useful addition to diffusion

models, our next step is to examine its substantive impact on policy adoption.

Marginal Effects

We examine the substantive implications of including Sources Adopting in Figure A.4 by graph-

ing the average marginal effects of Neighbors Adopting (top row) and Sources Adopting (bottom

row) in each model on the probability scale.8 All estimates are computed from the specifications

that include either Neighbors Adopting or Sources Adopting.9

[Insert Figure A.4 here]

The first point to note from Figure A.4 is the effect of the count of Neighbors Adopting (lotter-

ies, Indian gaming, capital punishment, and pooled model) and percentage of Neighbors Adopting

(restaurant smoking bans) is positive. Consistent with the expectation that states react to economic

competition and/or policy learning, more neighboring states with the policy corresponds with an

increase in the probability of adoption. The magnitude and level of uncertainty varies somewhat

across the models, but the effect is consistently in the positive direction.

Moving to the bottom row of Figure A.4, note that when substituted for Neighbors Adopting,

the effect of Sources Adopting is also positive in all five models; as the number of sources adopting

the policy increases, so too does probability of a state adopting the policy. From the minimum (0)

to the maximum (lotteries: 7, Indian gaming: 10, capital punishment: 10, restaurant smoking bans:
8We employ the “observed value” method of Hanmer and Kalkan (2013) in these computations. Rather than setting

the other variables in the models to particular values (e.g., their means or modes), we allow them to vary naturally over
the observed values for every case in the data, then compute the average expected probability for each observed value
of Neighbors Adopting and Sources Adopting, respectively.

9Results with both included in the same model are substantively similar (see below).
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9, pooled model: 14) of Sources Adopting, the probability of adoption increases by the following

percentage points, on average: 24 (lotteries), 24 (Indian gaming), 50 (capital punishment), 16

(restaurant smoking bans), and 11 (pooled model). As with the effect of Neighbors Adopting, the

confidence intervals indicate varying degrees of uncertainty around these estimates.10 Nonetheless,

these graphs show that Sources Adopting exerts a substantively significant, positive impact on the

probability of adoption across many different policies.

Moreover, these positive effects remain even after controlling for Neighbors Adopting (see

below). In short, these replication results show that information from our policy diffusion network

can make a valuable contribution to diffusion studies. We show examples from four specific policy

areas and a 151-policy pooled model in which states utilize a persistent set of diffusion sources to

guide their policymaking decisions.

Marginal Effects with Neighbors and Sources

Figure A.5 presents the average marginal effects of Neighbors Adopting and Sources Adopting

on the expected probability of adoption, controlling for the other (i.e., from the models in column

3 of Table A.3). Note that results are substantively similar to those in Figure A.4, which presents

results from models with one variable or the other.

[Insert Figure A.5 here]

Replication Results with Percentage of Sources Adopting

Table A.4 presents the coefficient estimates and model fit statistics for the replication models

using the percentage of sources (rather than number of sources) adopting the policy as the indepen-

dent variable of interest. To maintain consistency we use the original authors’ operationalization

of the neighbors variable, which is a count in all but Shipan and Volden (2006). In an actual

analysis we recommend that researchers use the same operationalization (count or percentage) for

neighbors and sources.

Overall, these results are consistent with the results using the number of sources (see Table

10This is at least partially due to the fact that policy adoption models tend to have many independent variables (the
median is 19 in the four policy-specific replications).
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A.3): including the source variable in the model produces a positive (and often statistically signif-

icant) coefficient estimate and improves model fit.

[Insert Table A.4 here]

We do not for advocate one measure over the other, but rather defer to individual researchers

in making the choice based on theoretical and empirical considerations. The two approaches rep-

resent very different views on the diffusion process. The percentage measure specifies a diffusion

process where the non-adopting neighbors (sources) have just as much influence as the adopting

neighbors (sources) and the state ends up being pulled between the two. The count-based measure

assumes that non-adopting neighbors (sources) do not influence a state’s decision to adopt. If a

researcher thought that states are only affected by their sources who adopt a particular policy, the

count measure would likely make the most sense. In contrast, if states look to both their adopting

and non-adopting sources, the percentage-based measure may be more appropriate.

Fixed Effects Logit Results
Table A.5 presents results using a source and follower fixed-effects logit model. Overall, results

are consistent with those reported in the main text.

[Insert Table A.5 here]
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Figure A.1: BIC of the Pooled Discrete Time Event History Models
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Note: There are 187 policies and 65,885 observations in each model.
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Figure A.3: Mixture Model Fit

2 4 6 8 10 12 14

60000

80000

100000

120000

Number of Mixture Components

B
IC

Note: Different line shades correspond to different values of λ , the parameter that controls the entropy
in the initial cluster assignment probabilities.

xvii



Fi
gu

re
A

.4
:A

ve
ra

ge
M

ar
gi

na
lE

ff
ec

ts
of

N
ei

gh
bo

rs
A

do
pt

in
g

an
d

So
ur

ce
s

A
do

pt
in

g

(a
)N

ei
gh

bo
rs

,L
ot

te
ri

es

N
ei

gh
bo

rs
 A

do
pt

in
g 

Lo
tte

ry

Expected Probability of Adoption

●
●

●

●

●

0.
02

0.
04

0.
06

0.
09

0.
13

0
1

2
3

4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(b
)N

ei
gh

bo
rs

,I
nd

ia
n

G
am

in
g

N
ei

gh
bo

rs
 A

do
pt

in
g 

In
di

an
 G

am
in

g

Expected Probability of Adoption

●

●

●

●

●

●

0.
07

0.
11

0.
15

0.
21

0.
28

0.
36

0
1

2
3

4
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(c
)N

ei
gh

bo
rs

,C
ap

ita
lP

un
is

hm
en

t

N
ei

gh
bo

rs
 A

do
pt

in
g 

C
ap

ita
l P

un
is

hm
en

t

Expected Probability of Adoption

●

●

●

●

●

●

●

●

●

0.
15

0.
18

0.
21

0.
25

0.
29

0.
33

0.
38

0.
42

0.
46

0
1

2
3

4
5

6
7

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(d
)N

ei
gh

bo
rs

,S
m

ok
in

g
B

an
s

%
 N

ei
gh

bo
rs

 A
do

pt
in

g 
S

m
ok

in
g 

B
an

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●

●

0.
03

0.
05

0.
07

0.
09

0.
13

0.
16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(e
)N

ei
gh

bo
rs

,P
oo

le
d

M
od

el

N
ei

gh
bo

rs
 A

do
pt

in
g 

P
ol

ic
y

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
1

0.
12

0.
14

0
1

2
3

4
5

6
7

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(f
)S

ou
rc

es
,L

ot
te

ri
es

S
ou

rc
es

 A
do

pt
in

g 
Lo

tte
ry

Expected Probability of Adoption

●
●

●

●

●

●

●

●

0.
01

0.
02

0.
03

0.
06

0.
09

0.
13

0.
19

0.
25

0
1

2
3

4
5

6
7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(g
)S

ou
rc

es
,I

nd
ia

n
G

am
in

g

S
ou

rc
es

 A
do

pt
in

g 
In

di
an

 G
am

in
g

Expected Probability of Adoption

●
●

●
●

●

●

●

●

●

●

●

0.
07

0.
09

0.
13

0.
18

0.
24

0.
31

0
1

2
3

4
5

6
7

8
9

10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(h
)S

ou
rc

es
,C

ap
ita

lP
un

is
hm

en
t

S
ou

rc
es

 A
do

pt
in

g 
C

ap
ita

l P
un

is
hm

en
t

Expected Probability of Adoption

●

●

●

●

●

●

●

●

●

●

●

0.
09

0.
16

0.
25

0.
36

0.
48

0.
6

0
1

2
3

4
5

6
7

8
9

10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(i
)S

ou
rc

es
,S

m
ok

in
g

B
an

s

S
ou

rc
es

 A
do

pt
in

g 
S

m
ok

in
g 

B
an

Expected Probability of Adoption

●
●

●
●

●
●

●

●

●

●

0.
03

0.
05

0.
08

0.
11

0.
16

0.
19

0
1

2
3

4
5

6
7

8
9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(j
)S

ou
rc

es
,P

oo
le

d
M

od
el

S
ou

rc
es

 A
do

pt
in

g 
P

ol
ic

y

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.
03

0.
06

0.
1

0.
14

0
2

4
6

8
10

12
14

1
3

5
7

9
11

13

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
ot

e:
T

he
gr

ap
hs

pr
es

en
tt

he
av

er
ag

e
m

ar
gi

na
le

ff
ec

ts
of

N
ei

gh
bo

rs
A

do
pt

in
g

(t
op

ro
w

)a
nd

So
ur

ce
s

A
do

pt
in

g
(b

ot
to

m
ro

w
)i

n
th

e
fiv

e
re

pl
ic

at
io

n
m

od
el

s:
lo

tte
ri

es
(B

er
ry

an
d

B
er

ry
19

90
),

In
di

an
ga

m
in

g
(B

oe
hm

ke
20

05
),

ca
pi

ta
lp

un
is

hm
en

t(
B

oe
hm

ke
20

05
),

re
st

au
ra

nt
sm

ok
in

g
ba

ns
(S

hi
pa

n
an

d
Vo

ld
en

20
06

),
an

d
th

e
po

ol
ed

m
od

el
(B

oe
hm

ke
an

d
Sk

in
ne

r
20

12
).

Po
in

ts
re

pr
es

en
te

xp
ec

te
d

pr
ob

ab
ili

ty
po

in
te

st
im

at
es

an
d

ve
rt

ic
al

lin
es

re
pr

es
en

t9
5%

co
nfi

de
nc

e
in

te
rv

al
s.

xviii



Fi
gu

re
A

.5
:A

ve
ra

ge
M

ar
gi

na
lE

ff
ec

ts
of

N
ei

gh
bo

rs
A

do
pt

in
g

an
d

So
ur

ce
s

A
do

pt
in

g,
C

on
tr

ol
lin

g
fo

rt
he

O
th

er

(a
)N

ei
gh

bo
rs

,L
ot

te
ri

es

N
ei

gh
bo

rs
 A

do
pt

in
g 

Lo
tte

ry

Expected Probability of Adoption

●
●

●
●

●
0.

03
0.

04
0.

05
0.

06
0.

08

0
1

2
3

4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(b
)N

ei
gh

bo
rs

,I
nd

ia
n

G
am

in
g

N
ei

gh
bo

rs
 A

do
pt

in
g 

In
di

an
 G

am
in

g

Expected Probability of Adoption

●

●

●

●

●

●

0.
08

0.
12

0.
16

0.
22

0.
28

0.
35

0
1

2
3

4
5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(c
)N

ei
gh

bo
rs

,C
ap

ita
lP

un
is

hm
en

t

N
ei

gh
bo

rs
 A

do
pt

in
g 

C
ap

ita
l P

un
is

hm
en

t

Expected Probability of Adoption

●
●

●

●

●

●

●

●

●

0.
16

0.
18

0.
21

0.
23

0.
26

0.
29

0.
32

0.
35

0.
38

0
1

2
3

4
5

6
7

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(d
)N

ei
gh

bo
rs

,S
m

ok
in

g
B

an
s

%
 N

ei
gh

bo
rs

 A
do

pt
in

g 
S

m
ok

in
g 

B
an

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●
●

0.
04

0.
05

0.
06

0.
09

0.
12

0.
14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(e
)N

ei
gh

bo
rs

,P
oo

le
d

M
od

el

N
ei

gh
bo

rs
 A

do
pt

in
g 

P
ol

ic
y

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
1

0.
12

0
1

2
3

4
5

6
7

8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(f
)S

ou
rc

es
,L

ot
te

ri
es

S
ou

rc
es

 A
do

pt
in

g 
Lo

tte
ry

Expected Probability of Adoption

●
●

●
●

●

●

●

●

0.
01

0.
02

0.
03

0.
05

0.
08

0.
11

0.
15

0.
2

0
1

2
3

4
5

6
7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(g
)S

ou
rc

es
,I

nd
ia

n
G

am
in

g

S
ou

rc
es

 A
do

pt
in

g 
In

di
an

 G
am

in
g

Expected Probability of Adoption

●
●

●
●

●

●

●

●

●

●

●

0.
07

0.
1

0.
14

0.
19

0.
25

0.
32

0
1

2
3

4
5

6
7

8
9

10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(h
)S

ou
rc

es
,C

ap
ita

lP
un

is
hm

en
t

S
ou

rc
es

 A
do

pt
in

g 
C

ap
ita

l P
un

is
hm

en
t

Expected Probability of Adoption

●

●

●

●

●

●

●

●

●

●

●

0.
1

0.
16

0.
25

0.
35

0.
47

0.
58

0
1

2
3

4
5

6
7

8
9

10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(i
)S

ou
rc

es
,S

m
ok

in
g

B
an

s

S
ou

rc
es

 A
do

pt
in

g 
S

m
ok

in
g 

B
an

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●
●

0.
04

0.
05

0.
06

0.
09

0.
12

0.
14

0
1

2
3

4
5

6
7

8
9

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(j
)S

ou
rc

es
,P

oo
le

d
M

od
el

S
ou

rc
es

 A
do

pt
in

g 
P

ol
ic

y

Expected Probability of Adoption

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
0.

04
0.

05
0.

06
0.

08

0
2

4
6

8
10

12
14

1
3

5
7

9
11

13

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

N
ot

e:
T

he
gr

ap
hs

pr
es

en
tt

he
av

er
ag

e
m

ar
gi

na
le

ff
ec

ts
of

N
ei

gh
bo

rs
A

do
pt

in
g

(t
op

ro
w

)a
nd

So
ur

ce
sA

do
pt

in
g

(b
ot

to
m

ro
w

),
co

nt
ro

lli
ng

fo
rt

he
ot

he
r,

in
th

e
fiv

e
re

pl
ic

at
io

n
m

od
el

s:
lo

tte
ri

es
(B

er
ry

an
d

B
er

ry
19

90
),

In
di

an
ga

m
in

g
(B

oe
hm

ke
20

05
),

ca
pi

ta
lp

un
is

hm
en

t(
B

oe
hm

ke
20

05
),

re
st

au
ra

nt
sm

ok
in

g
ba

ns
(S

hi
pa

n
an

d
Vo

ld
en

20
06

),
an

d
th

e
po

ol
ed

m
od

el
(B

oe
hm

ke
an

d
Sk

in
ne

r2
01

2)
.P

oi
nt

s
re

pr
es

en
te

xp
ec

te
d

pr
ob

ab
ili

ty
po

in
te

st
im

at
es

an
d

ve
rt

ic
al

lin
es

re
pr

es
en

t9
5%

co
nfi

de
nc

e
in

te
rv

al
s.



Table A.1: Effect of Diffusion Ties on Emulation Stories, Adjusting for Total State Coverage

Estimate 2.5 %-tile 97.5%-tile
Intercept −6.712 −14.863 0.292

ln(1 + mean ties) 0.779 0.456 1.045
ln(1 + total coverage) 1.030 −0.005 2.240

R2 0.423
N 50

Note: OLS Regression coefficients reported with percentile bootstrap
confidence intervals constructed with 10,000 resampling iterations. The
dependent variable is ln(1+emulation stories).
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Table A.2: News Outlets Reporting Emulation Stories in LexisNexis

The Atlanta Journal-Constitution 11 The Tampa Tribune (Florida) 2
St. Louis Post-Dispatch 10 The Vancouver Sun (12 hour delay) 2
The Denver Post 10 Whittier Daily News (California) 2
Tampa Bay Times 9 Wisconsin State Journal 2
The Philadelphia Inquirer 9 American Banker 1
Deseret Morning News (Salt Lake City) 8 Clean Air Report 1
Lincoln Journal Star (Nebraska) 8 CongressNow 1
Providence Journal 8 Daily News (New York) 1
St. Paul Pioneer Press (Minnesota) 8 El Paso Times (Texas) 1
Omaha World Herald 7 Electric Power Daily 1
Portland Press Herald 7 Electric Utility Week 1
San Jose Mercury News (California) 7 Environmental Policy Alert 1
Tulsa World (Oklahoma) 7 Eureka Times-Standard (California) 1
The Palm Beach Post 6 Finance & Commerce (Minneapolis, MN) 1
The Record (Bergen County, NJ) 6 Global Power Report 1
Topeka Capital-Journal 6 guardian.co.uk 1
Pittsburgh Post-Gazette 5 Idaho Falls Post Register 1
Contra Costa Times 4 Inside EPA Weekly Report 1
South Bend Tribune 4 Investor’s Business Daily 1
The Charleston Gazette 4 Legal News Line 1
The Salt Lake Tribune 4 Long Island Business News (Long Island, NY) 1
Discover America’s Story 3 Maryland Gazette 1
Herald News (Passaic County, NJ) 3 Michigan Lawyers Weekly 1
News-Journal (Daytona Beach, Florida) 3 Missouri Lawyers Media 1
Richmond Times Dispatch 3 Monterey County Herald (CA) 1
San Gabriel Valley Tribune (San Gabriel Valley, CA) 3 Nanaimo Daily News (12 hour delay) 1
Sarasota Herald-Tribune 3 National Post (12 hour delay) 1
The Austin American-Statesman 3 North Carolina Lawyers Weekly 1
The Bond Buyer 3 North Jersey Community Newspapers 1
The Capital (Annapolis, MD) 3 Ottawa Citizen (12 hour delay) 1
The Toronto Star 3 Pasadena Star-News (California) 1
The Union Leader 3 Pittsburgh Tribune Review 1
Bangor Daily News (Maine) 2 Platts Megawatt Daily 1
Brattleboro Reformer (Vermont) 2 Public Opinion (Chambersburg, Pennsylvania) 1
Charleston Daily Mail 2 Ruidoso News (New Mexico) 1
Chicago Daily Herald 2 San Bernardino Sun (California) 1
Crain’s Detroit Business 2 San Mateo County Times (San Mateo, CA) 1
Digital Archives 2 Star Tribune (Minneapolis MN) 1
Dolan Publications 2 Telegraph Herald (Dubuque, IA) 1
Information Bank Abstracts 2 The Baltimore Sun (most recent 6 months) 1
Inland Valley Daily Bulletin (Ontario, CA) 2 The Buffalo News (New York) 1
Inside Bay Area (California) 2 The Calgary Herald (12 hour delay) 1
Journal Record Legislative Report (Oklahoma City, OK) 2 The Capital Times (Madison, Wisconsin) 1
Legal Monitor Worldwide 2 The Columbian (Vancouver, WA) 1
McClatchy Tribune News non-restricted 2 The Decatur Daily (Alabama) 1
Metropolitan News Enterprise 2 The Gazette (12 hour delay) 1
Star-News (Wilmington, NC) 2 The Globe and Mail (Canada) 1
Telegram & Gazette (Massachusetts) 2 The Hamilton Spectator (Ontario, Canada) 1
The Berkshire Eagle (Pittsfield, Massachusetts) 2 The Hill 1
The Bismarck Tribune 2 The Indianapolis Business Journal 1
The Daily News of Los Angeles 2 The New York Post 1
The Daily Oklahoman (Oklahoma City, OK) 2 The Pantagraph 1
The Daily Record (Baltimore, MD) 2 The Patriot Ledger 1
The Florida Times Union 2 The Spokesman-Review 1
The Journal Record (Oklahoma City, OK) 2 The Straits Times (Singapore) 1
The Ledger (Lakeland) 2 The York Dispatch (York, PA) 1
The Santa Fe New Mexican 2 University Wire 1
The State Journal-Register (Springfield, IL) 2 Vallejo Times-Herald (California) 1
Note: Entries report news outlets and number of emulation stories identified in LexisNexis.
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Table A.3: Estimates and Model Fit Statistics for Neighbors Adopting and Sources Adopting in the
Replication Models

Only Neighbors Only Neighbors and
(Original Model) Sources Sources

Berry and Berry (1990): Lotteries (Probit, N = 857)

Neighbors Adopting 0.27∗ 0.16
(0.09) (0.10)

Sources Adopting 0.30∗ 0.25∗

(0.09) (0.10)
AIC 195.12 189.96 189.64
BIC 233.15 227.99 232.42
CV % Correctly Classified 94% 95% 95%

Boehmke (2005): Indian Gaming (Probit, N = 364)

Neighbors Adopting 0.42∗ 0.42∗

(0.20) (0.21)
Sources Adopting 0.20+ 0.21

(0.12) (0.13)
AIC 144.25 144.45 143.54
BIC 241.68 237.98 244.86
CV % Correctly Classified 89% 91% 90%

Boehmke (2005): Capital Punishment (Probit, N = 227)

Neighbors Adopting 0.16 0.14
(0.14) (0.14)

Sources Adopting 0.24∗ 0.23∗

(0.10) (0.10)
AIC 204.53 199.66 200.97
BIC 283.31 278.43 283.17
CV % Correctly Classified 75% 78% 76%

Shipan and Volden (2006): Restaurant Smoking Bans (Logit, N = 807)

% Neighbors Adopting 1.92∗ 1.66+

(0.86) (0.94)
Sources Adopting 0.25∗ 0.19

(0.12) (0.14)
AIC 248.57 249.96 249.16
BIC 328.36 329.75 333.64
CV % Correctly Classified 94% 93% 94%

151-Policy Pooled Model (Logit, N = 62,290)

Neighbors Adopting 0.22∗ 0.19∗

(0.02) (0.02)
Sources Adopting 0.13∗ 0.06∗

(0.02) (0.02)
AIC 17030.64 17089.78 17021.47
BIC 19263.41 19322.55 19263.28
CV % Correctly Classified 93% 93% 94%

Note: Cell entries report coefficient estimates and standard errors (in parentheses) for Neighbors Adopting and Sources
Adopting and AIC, BIC, and cross-validated percent correctly classified values in three specifications of the replication
models. All other variables from the original models are included, but those estimates are not shown to conserve space.
Numbers in bold identify the best-fitting model for each fit statistic. ∗ p < 0.05; + p < 0.10 (two-tailed).
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Table A.4: Estimates and Model Fit Statistics for Neighbors Adopting and Percentage of Sources
Adopting in the Replication Models

Only Neighbors Only Neighbors and
(Original Model) Sources Sources

Berry and Berry (1990): Lotteries (Probit, N = 857)

Neighbors Adopting 0.27∗ 0.20∗

(0.09) (0.10)
% Sources Adopting 1.57∗ 1.30∗

(0.52) (0.56)
AIC 195.12 193.22 191.41
BIC 233.15 231.25 234.20
CV % Correctly Classified 94% 95% 95%

Boehmke (2005): Indian Gaming (Probit, N = 364)

Neighbors Adopting 0.42∗ 0.42∗

(0.20) (0.20)
% Sources Adopting 1.10 1.04

(0.94) (0.94)
AIC 144.25 145.92 145.11
BIC 241.68 239.45 246.44
CV % Correctly Classified 89% 91% 89%

Boehmke (2005): Capital Punishment (Probit, N = 227)

Neighbors Adopting 0.16 0.15
(0.14) (0.14)

% Sources Adopting 2.15∗ 2.13∗

(0.77) (0.77)
AIC 204.53 197.84 198.81
BIC 283.31 276.62 281.01
CV % Correctly Classified 75% 76% 76%

Shipan and Volden (2006): Restaurant Smoking Bans (Logit, N = 807)

% Neighbors Adopting 1.92∗ 1.73
(0.86) (0.97)

% Sources Adopting 1.04 0.59
(0.85) (0.93)

AIC 248.57 250.89 249.87
BIC 328.36 330.50 334.17
CV % Correctly Classified 94% 93% 94%

151-Policy Pooled Model (Logit, N = 62,290)

Neighbors Adopting 0.22∗ 0.18∗

(0.02) (0.02)
% Sources Adopting 0.91∗ 0.54∗

(0.12) (0.13)
AIC 17030.64 17073.94 17011.82
BIC 19263.41 19306.71 19253.63
CV % Correctly Classified 93% 93% 94%

Note: Cell entries report coefficient estimates and standard errors (in parentheses) for Neighbors Adopting and % Sources
Adopting and AIC, BIC, and cross-validated percent correctly classified values in three specifications of the replication
models. All other variables from the original models are included, but those estimates are not shown to conserve space.
Numbers in bold identify the best-fitting model for each fit statistic. ∗ p < 0.05; + p < 0.10.
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Table A.5: Fixed Effects Logit Models of State Policy Diffusion Ties

Coef. S.E. Coef. S.E.
Follower State Characteristics:

Citizen Ideology −0.014∗ (0.002)
Legislative Professionalism −0.397 (0.244)
Minority Diversity 0.790+ (0.245)
Per Capita Income 0.699∗ (0.097)
Population 0.184+ (0.012)
Unified Democratic Government 0.011 (0.035)
Unified Republican Government −0.029 (0.041)

Potential Source Characteristics:
Citizen Ideology −0.007∗ (0.002)
Legislative Professionalism −0.133 (0.250)
Minority Diversity −0.147 (0.246)
Per Capita Income −0.037 (0.093)
Population 0.073∗ (0.014)
Unified Democratic Government −0.038 (0.035)
Unified Republican Government −0.075 (0.040)

Relative Follower/Source Characteristics:
Contiguity 0.149+ (0.039) 0.037 (0.040)
Distance Between Capitals −0.238∗ (0.021) −0.208+ (0.021)
Citizen Ideology (Absolute Difference) −0.009∗ (0.001)
Legislative Professionalism (Absolute Difference) 0.282+ (0.141)
Minority Diversity (Absolute Difference) −0.119 (0.107)
Per Capita Income (Absolute Difference) −0.428∗ (0.049)
Population (Absolute Difference) −0.035+ (0.004)
Unified Democratic (Product) 0.123+ (0.046)
Unified Republican (Product) −0.078 (0.083)
Intercept −3.611∗ (0.202) −3.133∗ (0.384)
N 94,080 94,080
AIC 62,821 62,048
Note: Observations are dyadic. The dependent variable indicates whether potential source state is in fact
a source for a follower state. We use the network with 300 edges over 35 years of policy adoptions. +

indicates statistical significance at the 0.05 level (two-tailed) according to just the parametric p-values from
the multilevel logit. ∗ indicates statistical significance at the 0.05 level according to the QAP p-values and the
parametric p-values. QAP p-values derived from 1000 network permutations.
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