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Taylor, K. M. (Ph.D., Applied Mathematics)

The geometry of signal and image patch-sets

Thesis directed by Prof. François G. Meyer

In this thesis, we study the representation of local, or fine scale, snippets — or patches — that

are extracted from a signal or image. We describe a method that characterizes the dimensionality

that is observed in the set of patches when they are regarded as points in Euclidean space. Our

approach is based on the assumption that the signal or image is composed of solutions to ordinary

differential equations of a certain class.

We also provide a theoretical interpretation — via graph models — that explains the success

of analyzing signal and image patches using diffusion-based graph metrics. Our framework is built

on the assumption that there exists a partition of the signal or image’s patches. Specifically, we

assume there are two subsets of patches. One set comprises patches that are connected through

some type of coherence in the domain of the signal, such as temporal coherence in time series,

or spatial coherence between patches in the image plane. The other set comprises patches whose

edge connections are not so largely influenced by the aforementioned coherence. Instead, these

connections are more sporadic, with little relationship between the locations in the signal or image

domain from which the patches were extracted. Using the commute time metric — a diffusion-

based graph metric — we prove that the average proximity between patches in the first set grows

faster than the average proximity between patches in the second set, as the number of patches

approaches infinity. Consequently, a parametrization of the patches based on commute times will

relatively cluster the second set of patches, which is the first step toward solving a larger problem,

such as classification or clustering of the patches, detection of anomalies, or segmentation of an

image.

In addition to our theoretical results, this thesis also evaluates numerical procedures designed

to efficiently compute the spectral decomposition of large matrices. These procedures include the
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Nyström extension [24], and a multilevel eigensolver. Finally, we benchmark a classifier that is

trained on the commute time embedding of a dataset of seismic events, against a standard algorithm

used to detect arrival-times.
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Chapter 1

Introduction

Obtaining a useful representation of a dataset is fundamental in many applications. The goal

is that the organization of the data in the new representation will make its meaningful characteristics

or properties easier to recognize for purposes such as learning about the system which generated

the data, detecting features of interest, prediction, compression, or classification.

1.1 Using graphs to represent datasets

Graphs, or networks, provide a convenient way to represent a dataset because they are simple

to construct, yet capable of encoding complex interactions, similarities, or patterns which exist in

the data. One standard way to map a dataset to a graph is to identify vertices of the graph as

data points, while (weighted) edges of the graph identify similarities between the data points. The

geometry of the graph is the set of relationships between its vertices, including the relationship of

being connected with an edge. The geometry of a dataset’s graph representation has been used to

study the spread of disease, the internet, polymers, etc.

In addition to the obvious vertex interaction that is indicated by an edge, more complex

or subtle interactions can be discovered by studying other properties of the graph’s geometry.

Such properties include clustering coefficients, vertex centrality, and degree distributions. Other

properties of the graph’s geometry can also be inferred from the set of eigenvalues corresponding to

matrices associated with the graph, including the adjacency matrix, the graph’s discrete Laplace

operator (a.k.a the graph Laplacian), or the normalized graph Laplacian [20].
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Diffusion-based graph metrics. In contrast to static attributes of the graph geometry,

dynamical processes are also used to reveal relationships between the graph’s vertices. Specifically,

one can define a diffusion process or a random walk on the graph (see section 4.2) that provides an

intrinsic multiscale approach to understanding the graph’s geometry; as time evolves, starting from

an initial vertex of the graph, the process is more likely to “visit” a larger subset of the graph’s

vertices. This notion is quantified by defining metrics on the graph that are based on the diffusion

process. These metrics can be used to compare vertices of the graph and add to our understanding

of the graph’s geometry.

The normalized graph Laplacian mentioned before also plays a role in defining the diffusion

equation on the graph, analogous to the Laplace operator in Euclidean space. Indeed, the spectral

decomposition of the normalized graph Laplacian is used to expand solutions to diffusion equations

defined on the graph. Thus, analogous to classical Fourier analysis, the eigenfunctions of the

normalized graph Laplacian can be related to a notion of smoothness that is adapted to the geometry

of the graph [81]. Moreover, the spectral decomposition of the normalized graph Laplacian can be

used to express a variety of diffusion-based distances between vertices (see section 4.2).

Graph parametrizations. In order to replace the abstract geometry of the graph with a

more concrete geometry where subsequent analysis of the dataset can be performed, vertices of the

graph are mapped to points in Euclidean space. In this space, the distance between vertices encodes

the diffusion-based metric. Embedding a finite metric space in a Euclidean space is nontrivial, and

in general, not possible. [62]. However, the diffusion-based metrics we consider in this work can

be preserved exactly through an embedding into Euclidean space provided the graph is connected

and the Markov process defined in chapter 4 is aperiodic.

Techniques used to map the graph representation of the dataset into a new Euclidean space

are similar to techniques used to embed manifolds. Informally, a manifold is a generalization of the

concept of a surface in three dimensions. Analogous to a linear space, a manifold has a dimension

that characterizes the number of distinct coordinates that are needed to fully parametrize the

manifold. For instance, the sphere in three dimensions is a two dimensional manifold because every
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point on the sphere can be described uniquely by its latitude and longitude. In addition, every

small part of a j-dimensional manifold can be smoothly mapped to Rj. Examples of manifolds

include a sphere, a torus, a cone, and the set of all k-dimensional subspaces of Rl, with k ≤ l.

The relationship between embedding manifolds and graphs is utilized in highly successful

dataset parametrizations, including ISOMAP [86], local linear embedding [73], Laplacian eigen-

maps [7], and diffusion maps [23]. The number of studies which demonstrate the ability of the

aforementioned algorithms to recover complex interactions between data points is growing, in part

due to the empirical success of such studies. Adding to the popularity and success of algorithms

such as ISOMPAP, LLE, Laplacian eignmaps and diffusion maps, the objects that are generated

by the algorithms are guaranteed to converge to invariant objects on the underlying manifold [23].

Signal and image data Despite the observed success of the dataset embedding techniques

whose convergence guarantees rely on a smooth manifold generating the data [73, 7, 23, 86], for many

data types, it is unclear if there is truly an underlying manifold which satisfies such assumptions.

Signals and images are two such data types. In fact, Wakin et al. describe a representation of an

image model that does not satisfy the smooth manifold assumption in [93]. Nevertheless, works

that parametrize signals or images and use procedures which rely on the manifold hypothesis to

prove convergence are both prevalent and effective [56, 92, 16, 81, 80]. In fact, small images are

parametrized in each of the papers [73, 23, 86].

The effectiveness of the parametrizations [73, 7, 23, 86] that are meant to recover low-

dimensional structure in signal and image data is intuitive. That is, if the image is of a natural

scene or if the signal is the recording of a human voice, for example, then there is some underlying

set of constraints that limit the possible configuration of content in the signal or image. The cap-

tured scene limits the distribution of an image’s pixels, while physical constraints limit the sounds

a human can produce. Consequently, signal and image data can be represented using very few

parameters because the set of patches has very few “degrees of freedom.”

Formalizing this intuition is the motivation behind the development of concise signal and

image models. Such models are typically defined on, or emphasize, the local (or fine) scale of the
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signal or image. This is a natural framework; although two images of natural scenes may have

no correlation whatsoever, the frequent occurrence of edges, repeated patterns, and large smooth

regions in natural scenes leads to local correlations between two different images. The same logic

applies to signals.

1.2 Contribution and structure of this thesis

In this thesis, we study the graph representation of local, or fine scale, blocks, or snippets,

that are extracted from inside a signal or image. When processing signals, a vertex can be thought

of as a sliding temporal window, for instance. Similarly, when processing images, a vertex can be

thought of a 8-by-8 pixel block, for example. We refer to these snippets as patches.

First, we describe a method that characterizes the dimensionality, or “degrees of freedom,”

that is observed in the set of patches when the patches are regarded as points in Euclidean space

— before being mapped to a graph. Our approach is based on the assumption that the signal or

image is composed of solutions to linear constant-coefficient, homogeneous, ordinary differential

equations. Solutions of this kind include decaying oscillations, a prevalent feature in many signals

and images. Furthermore, we present corollaries indicating that our results can be used locally

and approximately, in the sense that if only a portion of a signal or image can be approximated

by an ODE’s solution, then we can characterize the dimensionality of the point cloud of patches

associated with that portion of the signal or image.

Second, we provide a theoretical interpretation — via graph models — that explains the

success of diffusion-based graph embeddings of signal and image patches. Although we motivate

our study using the graph representation of signal and image patches in particular, our theoretical

conclusions on the graph’s embedding are completely general. Our framework is built on the

assumption that there exists a partition of the signal or image’s patches. In particular, we assume

there are two subsets of patches. One set comprises patches that are connected through some type of

coherence in the domain of the signal, such as temporal coherence in time series, or spatial coherence

between patches in the image plane. The other set comprises patches whose edge connections are
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not so largely influenced by the aforementioned coherence. Instead, these connections are more

sporadic, with little relationship between the locations in the signal or image domain from which

the patches were extracted. Using the commute-time metric — a diffusion-based graph metric

— we prove that the average proximity between patches in the first set grows faster than the

average proximity between patches in the second set, as the number patches approaches infinity.

Consequently, a parametrization of the patches based on commute-times will relatively cluster the

second set of patches, which is the first step toward solving a larger problem, such as classification

or clustering of the patches, detection of anomalies, or segmentation of an image.

In addition to our theoretical results, this thesis also evaluates numerical procedures designed

to efficiently compute the spectral decomposition of large matrices. These procedures include out-

of-sample extension via the Nyström extension [24], and a multilevel technique based on algebraic

multigrid [e.g. 88, and references therein]. Both of these techniques require choosing a subset of

the patches from which to interpolate. We find that choosing this subset is critical to performance,

even on toy datasets. Finally, we demonstrate that a commute-time parametrization is able to

organize very large, real datasets that have a high degree of variability. Specifically, in the attempt

to automatically identify arrival times of seismic waves, we benchmark a classifier that is trained on

the commute-time embedding of a dataset of seismic events, against an optimized picker, which is a

standard algorithm used to detect arrival-times of incoming seismic waves. The classifier trained on

the commute-times outperforms this optimized picker in detecting arrivals in unseen seismic traces,

as well as the same type of classifier trained on a principal component analysis and a wavelet

analysis of the seismic dataset.

This thesis is organized as follows (see Figure 1.1). In chapter 2, we briefly review related

works, while establishing preliminaries, including notation and definitions. In chapter 3, we present

our theoretical conclusions on the organization of a signal or image’s set of patches as points in

Euclidean space. In chapter 4, we present our graph models and theoretical results and analysis of

the commute-times on these graph models. We show that the commute-time embedding is able to

efficiently organize the seismic dataset for the purpose of arrival-time estimation in chapter 5. Our
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Figure 1.1: The main contribution of this thesis is in chapters 3 and 4. Chapter 3 studies the
organization of a signal or image’s patch-set as points in Rd, while chapter 4 focuses on the patch-
graph and its embedding into Rd′ .

evaluation of numerical methods for rapidly computing the normalized graph Laplacian’s spectral

decomposition is given in chapter 6. We conclude, and provide both a general interpretation of our

results, and questions triggered by this work in chapter 7.



Chapter 2

A review of existing work

2.1 Introduction

Analyzing a dataset via diffusion on its graph representation is a highly successful approach,

especially if that dataset comprises local properties of signals and images. In this section, we

describe several related works that utilize, model, or statistically study the geometry associated

with a graph of patches — or local snippets — of a signal or image. We also describe related works

that only consider the patches as points in Euclidean space. Such works offer critical insight since

the edges of the graph are typically constructed based on proximity of the patches as points in

space.

2.2 Local analysis of signals and images using patches

We begin with several definitions. For simplicity and without loss of generality, we define

concepts using only a signal that is formed by a time series, or a sequence of samples, {xn}N ′

n=1.

Because we want to extract N = N ′ − (d− 1) patches from this sequence, we need d extra samples

at the end (hence the N ′ samples). We first define the notion of a patch.

Definition 1. We define a patch as a vector in Rd formed by a subsequence of d ≥ 1 contiguous

samples extracted from the time series,

xn = (xn, xn+1, . . . , xn+d−1), for n = 1, 2, . . . , N, (2.1)

See Figure 2.1 for an illustration.
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Figure 2.1: Top: A patch xn extracted from a time series {xn} is composed of d equally-spaced
time samples. Bottom: A patch extracted from an image is a square block of pixel intensities. For
example, an outline of a 3-by-3 patch in pink (on the left), and a closer view of the same patch (on
the right).

As we collect all the patches, we form the patch-set in Rd.

Definition 2. The patch-set is defined as the set of patches extracted from the time series,

patch-set = {xn, n = 1, 2, . . . , N}. (2.2)

In order to study the discrete structure formed by the patch-set (2.2), we consider the patch-

graph Γ defined as follows.

Definition 3. We define the patch-graph, Γ, as a weighted graph such that:

(1) The set of vertices is formed by the patch-set {xn, n = 1, . . . , N}.

(2) Each vertex xn is connected to its ν nearest neighbors using a fixed metric, ρ, that is defined

on Rd. If there are multiple neighbors which are equidistance apart, then we randomly order
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these neighbors as first, second, etc. Using this ordering when necessary, we can associate

ν neighbors with each vertex xn.

(3) The weight wn,m along the edge {xn,xm} is given by

wn,m =





e−ρ2(xn,xm)/σ2
if xn is connected to xm or if xm is connected to xn,

0 otherwise.

(2.3)

The edges of the patch-graph encode the similarities between its N vertices: a large weight

wn,m occurs only if xn and xm are close with respect to ρ. The parameter σ controls the influence of

the similarity on the edge weight wn,m. In particular, wn,m will be significant only when ρ(xn,xm)

is comparable in magnitude to, or much smaller than, σ.

We observe that the nearest neighbor relationship in Rd is not necessarily symmetric, however

after establishing edges, the definition of the weights in (2.3) leads to an undirected graph. That

is the edge {xn,xm} is also identified with the edge {xm,xn}. We relate the choice of metric ρ to

the normalization of the patches, as described in section 3.5.

Although we define the patch-graph as a ν nearest neighbor graph, there are alternative ways

to construct a graph of patches. For example, a graph could be defined that considers only edges

connecting patches that are within some radius ǫ.

We use a ν nearest neighbor graph because a key component of our theoretical result of

chapter 4 relies on recovering the local structure in the patch set. To appreciate such structure

in a ǫ ball graph, the neighborhood radius ǫ must be chosen small enough not to blur the local

structure into one large component of the graph. However, such a small neighborhood could result

in a disconnected graph since patches who are farther than ǫ away from every other patch would

not be connected to other patches. We must avoid a disconnected graph because it is contrary to

the assumptions of the analysis in the following sections. Although we cannot guarantee that a ν

nearest neighbor graph is connected, we have observed in practice that a ν nearest neighbor graph

is less likely to be disconnected than an ǫ ball graph. See Figure 2.2 for an illustration.
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Figure 2.2: An illustration of a patch-set with different local structures at different times and
the consequence of using an ǫ-neighborhood graph. Discrete patches are represented by red dots.
Two ǫ-neighborhoods of points are indicated by dotted lines. Because we want to recognize the
low-dimensional structure in regions where patches are close together, we would require ǫ be small
enough (see blue point). However, this leads to disconnected components of the graph (see green
point).

Lastly, observe that the weighted graph is fully characterized by its weight matrix.

Definition 4. The weight matrix W is the N × N matrix with entries Wn,m = wn,m. The

degree matrix is the N × N diagonal matrix D with entries Dn,n =
∑N

l=1 wn,l.

2.2.1 Dynamical systems analysis

The concept of patches is equivalent to the concept of time-delay coordinates in the context

of dynamical systems [75, 1, 43]. More precisely, when a dynamical system – i.e. a system of

ordinary differential equations (or partial differential equations) – describes a physical process and

gives rise to the time series {xn}, then Taken’s embedding theorem [82] allows us to replace the

unknown phase space of the dynamical system with a topologically equivalent phase space formed

by the patch-set {xn} ⊂ Rd. In plain English, we can learn about a complicated dynamical system

by simply observing the evolution of a vector of d consecutive measurements (as in (2.1)) from the

dynamical system. We note that there exists a rich literature on the analysis of geophysical time

series using this concept of time-delay coordinates [e.g., 19, 44, 34, 35, 49, 50, 87, 27, 96, 26].

Recurrence quantification analysis (RQA) is a method to analyze the substitute phase space

formed by a dynamical system’s patch-set. The method constructs a recurrence plot in the form of
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a N -byN square matrix R with entries

(R)n,m =





1 if ‖xn − xm‖ ≤ ǫ,

0 otherwise,

where ‖ · ‖ is the Euclidean norm on Rd. The matrix R indicates when a dynamical system

exhibits recurrent behavior and serves as a figurative fingerprint for the underlying dynamical

process [31, 61].

The different patterns in the nonzero entries in R, referred to as its typologies in [31], can

be linked to specific characteristics of the process that generated the data, such as its periodicity,

stationarity, and chaosticity. These typologies include the lengths of vertical or diagonal lines

and the number of nonzero entries in R. Indeed, the number of nonzero entries is related to the

Grassberger-Procaccia correlation sum, which is used to estimate the correlation dimension of the

dynamical system’s attractor [46].

Using the recurrence plot generated by RQA, a relatively recent and straightforward way

to recover the structure in phase space is to regard the nonzero entries of the matrix R as the

adjacency matrix of a graph, similar to the work [40]. Note that this graph construction is similar

to the construction of the patch graph Γ, except that this graph has edges that are truncated based

on an ǫ radius. Other alternatives for mapping a time series to a graph include partitioning phase

space into regions and then identifying these regions as vertices [13], or using other metrics for

determining edge connections between vertices of the graph [98, 79, 60]. Regardless, such work has

indicated that properties of the resulting graph, including the average path length, degree distribu-

tion, vertex centrality, and clustering coefficient, can be used to distinguishing nontrivial features

and characteristics in the time series. In fact, similar predictive power has been demonstrated on

graphs that are not related to a dynamical system’s phase space in any obvious way [53].

2.2.2 Natural image statistics

Several studies on the statistics of patches extracted from natural images [66, 69, 54] have

demonstrated that image patch data is highly non-Gaussian and tends to cluster around nonlinear
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α

l

Figure 2.3: An illustration of the ideal patch manifold that is similar to the one considered in [54].
Left: The parameters l and α describe the orientation of the step edge. Right: To construct a
3-by-3 ideal patch, one averages over the underlying scene inside each square. Averaging simulates
the process of discretizing a scene with pixels.

manifolds in the Euclidean space. For example, in [54], a manifold model meant to account for the

nonlinear structure in the patch-set is constructed. In this model, an image patch in the set of all

image patches that contain step-edges at various orientations is parametrized by the smallest angle,

α, between the step-edge and the patch’s relative horizontal axis, and the distance, l, between the

step-edge and the patch’s origin. This results in a two-dimensional manifold, with α and l as the

intrinsic coordinates (see Figures 2.3 and 2.4 for more details).

As demonstrated in [54], image patches extracted from natural images lie close to the patch-

set generated by this manifold model, which, considering normalization of the patches, constitutes

a nonlinear two-dimensional surface embedded on the 7-dimensional sphere in R9.

2.2.3 Local PCA of the patch-set

As described in chapter 1, developing concise, or efficient representations for signals and

images is a growing trend. These models include sparse representations, in which a dataset is

represented using at most a fixed number of atoms or elements from a dictionary or basis [58]. An

emerging idea in developing sparse representations is to construct bases or dictionaries that are

adapted to the types of signals and images being processed. The K-SVD algorithm is one of these

algorithms that adaptively constructs a dictionary that is able to efficiently represents a set
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Figure 2.4: A sampling of 3-by-3 patches containing ideal step edges. The parameter l changes in
the horizontal direction, while α changes in the vertical direction.

of image patches [3]. Formally, let C represent a d-by-K matrix, where each column represents an

atom in the dictionary. In this way, we can identify xn with a vector yn ∈ RK such that

xn ≈ Cyn. (2.4)

The K-SVD algorithm searches for columns of C and vectors yn to minimize the Euclidean

norm of the error in representing the set of patches {xn}N
n=1 with the set {yn}N

n=1, subject to

the constraint that the number of nonzero elements in each yn is at most a fixed constant. This

constraint ensures that the patch-set is sparse in the dictionary represented by C.
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The K-SVD algorithm alternates between modifying the set {yn} and columns of C. To

compute C, the algorithm essentially performs local principal component analysis (PCA) on the

neighborhood of each patch xn (see section 3.7.3 for more on local PCA). Then, columns of C are

selected as a minimal set of components from each patch’s local PCA [3]. In effect, the K-SVD

algorithm amounts to quantizing, or encoding, the patch-set with columns of the dictionary C.

Note that the columns of C can also be regarded as patches in Rd, and the approximation (2.4)

writes every patch in the patch-set as some linear combination of the patches defining the columns

of C. From this perspective, the columns of C can be regarded as an ideal subset of patches from

which to construct any patch in the patch-set.

2.3 Diffusion on the patch-graph

In this section, we focus specifically on related works that exploit the diffusion process on the

patch-graph.

The authors [16] describe a simple method for removing noise from images. Their approach

finds patches in the image that are similar to xn (as measured by the metric in Rd, for example),

then obtains an estimate for a noise-free xn as a weighted average of those similar patches and xn

itself — a type of collaborative filtering.

In [81], Szlam et al. reinterpret the nonlocal means algorithm of [16] as diffusion on the

patch-graph. Specifically, a random walk is defined on the graph as follows. A random walker at

vertex xn will transition to a neighboring vertex xm with probability

Pn,m =
wn,m∑

l wn,l
=

Wn,m

Dn,n
. (2.5)

We see that the random walker is very likely to transition from one patch to another that is very

close, since close proximity leads to a large edge weight wn,m. If a
√

N -by-
√

N pixel image is

represented as an N -dimensional column vector, and the matrix P has entries that are given in

(2.5), then multiplying the column vector on the left by P is equivalent to evolving the diffusion

process on the patch-graph for a small time step. Evolving the diffusion process on the patch-
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graph removes high frequency oscillations in functions defined on the patch-graph, namely pixel

intensities associated with each vertex. This process removes noise in a way analogous to classical

noise removal methods.

In addition to state-of-the-art noise removal techniques, the patch-graph can also be used to

segment images. For example, in [78], Shi and Malik use a graph whose vertices are functions of the

patches xn. This graph is segmented based on values of the smallest eigenvectors associated with

the smallest nonzero eigenvalue of the graph Laplacian. Despite this connection, Shi and Malik

justify their approach since it minimizes the normalized cut criterion; a partition of vertices that

minimizes this criterion is theoretically the most efficient in terms of minimizing the number of

edges removed relative the size of the partitions created, as shown in [78].

In addition, diffusion on the patch-graph has been used in texture analysis/synthesis [56],

multi-modal image registration [92], and super-resolution [71].

2.4 Conclusion

The works in the previous sections demonstrate that the patch-sets associated with signals

and images exhibit low-dimensional, nonlinear geometry when regarded as points in Euclidean

space. Furthermore, numerous works demonstrate that the geometry of the patch-graphs associated

with signals and images can be used to improved methods for compression, classification, noise

removal, and discovering the underlying dynamics behind a physical process.

A main purpose of this thesis is to add to our theoretical understanding of (i) the structure of

the patch-set in Euclidean space and (ii) the intrinsic geometry of the patch-set when parametrized

using embeddings of the patch-graph. We consider embeddings of the graph that typically assume

that the image and signal patch data lies on some smooth manifold. However, we provide theoret-

ical understanding of these embeddings’ behaviors without assuming the existence any underlying

smooth manifold.
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Extrinsic organization of signal and image patches

3.1 Introduction

A signal’s patch-set can be identified as the discretization of a vector valued function that

depends on time. Similarly, an image’s patch-set is the discretization of another vector valued

function that depends on two coordinates which span the image plane. In this chapter, we identify

these vector valued functions and characterize the geometry of their images as subsets of Euclidean

space. We begin with a focus on signal data.

3.2 Preliminaries

We emphasize that we think about a patch, xn, in several different ways. Originally, xn is

simply a snippet of a time series. Then, we think about xn as point in Rd. Later, we also regard

xn as a vertex of a graph. A fourth perspective that is useful for our theoretical results defines the

patch xn as a point on a curve in Rd, as we explain below. Keeping these four perspectives in mind

is critical to our approach and understanding.

To clarify the fourth perspective, let x(t) be a single-variable function.

Definition 5. The trajectory associated with x(t) is a vector valued function mapping R → Rd

given by

x(t) = (x(t), x (t + ∆t) , x (t + 2∆t) , . . . , x (t + (d − 1)∆t))T . (3.1)

We refer to the parameter ∆t as the delay.
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Now, assume that the function is sampled every τ > 0 time units in order to produce the

time series data

xn = x(tn), where tn = (n − 1)τ, for n = 1, 2, . . . , N ′.

When the sampling period τ is equal to the delay ∆t, a point on the trajectory is equivalent to a

patch, as defined in chapter 2:

x(tn) =
(
x(tn), x(tn+1), . . . , x(tn+(d−1))

)T

=
(
xn, xn+1, . . . , xn+(d−1)

)T
, for n = 1, 2, . . . , N.

Therefore, when t is fixed, this correspondence allows us to identify a patch extracted from the

signal at time t as x(t).

Before stating the main result of this chapter, we consider two motivating perspectives.

3.2.1 The patch-set and finite differences

It is clear that the values composing each patch can be used to approximate derivatives of

the analog process up to order d − 1 within an error that is on the order of the sampling period.

For example, the forward difference approximation to the pth derivative of x(t) (provided it exists)

can be written

1

(∆t)p

p∑

k=0

(−1)k

(
p

k

)
x(t + (p − k)∆t), for p ∈ {1, 2, . . . , d − 1}.

Equip Rd with rectangular coordinates (q1, q2, . . . , qd), and let a region of x(t) refer to the

function x(t) restricted to a temporal neighborhood {τ ∈ R : |t − τ | < ǫ, ǫ > 0} centered at t. If ∆t

is sufficiently small, and if a patch is extracted from a region of x(t) in which
∣∣dpx

dtp

∣∣ ≈ 0, then it will

lie in close proximity to the (d − 1)-dimensional hyperplane

p∑

k=0

(−1)k

(
p

k

)
qk+1 = 0. (3.2)

Furthermore, if we consider a patch extracted from a region of x(t) such that

∣∣∣∣
dkx

dtk

∣∣∣∣ < ǫk, for k = 1, 2, . . . , p ≤ d − 1, (3.3)
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then we can expect this patch will lie near to the intersection of p of the hyperplanes (3.2), provided

∆t is small enough. As ǫk → 0, this set of inequalities corresponds to an intersection of p of the

hyperplanes (3.2), resulting in a (d − p) dimensional hyperplane in Rd, further confining the space

where we would expect patches capturing smooth changes in the time series to be located.

The previous perspective suggests that the organization of the patch set as points can encode

derivative information of x(t), and that patches leading to similar derivative approximations may

be in close proximity in Rd.

3.2.2 Patches as the pointwise image of linear operators

Note that the trajectory (3.1) can be regarded as the pointwise image of the function x(t)

mapped through a linear operator T . More precisely, let Ω0 and Ω1 be two linear function spaces

such that the set Ω0 contains functions x : R → R, while the set Ω1 contains functions x : R → Rd.

Define the map T : Ω0 → Ω1 by its action on t ∈ R as

T x(t) = x(t). (3.4)

Clearly T is a linear operator between Ω0 and Ω1, so it is easy to characterize the image of T (Ω0)

as a subspace of Ω1.

With this in mind, consider the case that Ω0 is the span of a single function. As a first

example, let Ω0 = {α sin(ωt) : α ∈ R}. Clearly the dimension of the image of T as a subspace of Ω1

is at most one, according to the rank-nullity theorem. However, if we choose d = 2 and ∆t = π
2ω ,

then the pointwise image of T (Ω0) in R2 comprises concentric circles of radius α, occupying a

subspace of dimension two. The situation is even more extreme if Ω0 is the span of a piecewise

constant function. For example, let Ω0 be the span of the sign function

sgn(t) =





−1 if x ≤ 0,

1 if x > 0.

Then, for fixed α 6= 0 and any value of d and ∆t, the pointwise image of the sign function through

T jumps between vertices of the d-dimensional hypercube Qd = {v ∈ Rd : ‖v‖∞ = |α|}. Such a
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t
0 (−1,−1,1)

(−1,1,1)

(1,1,1)

(−1,−1,−1)

3

Figure 3.1: On the left we have the sign function with black dots representing a samples of the
function that would compose patches. Different colors represent different patches of size d = 3.
These patches are mapped to vertices of the cube on the right – a pointwise trajectory that occupies
every distinct dimension of R3. This behavior persists as the patch size, d, increases.

pointwise image occupies every distinct dimension of Rd at some time t (see Figure 3.1). In other

words, the pointwise image of T (Ω0) in Rd occupies a subspace whose dimensionality increases with

the patch size, d

The examples above demonstrate that although Ω0 and T (Ω0) may be simple in function

spaces, the pointwise image of T (Ω0) in Rd, in particular the patch-set generated by x(t), is

somewhat more obscure.

3.3 A lemma on the geometry of the patch-set in Euclidean space

The following lemma implies that there exist linear function spaces Ω0 of dimension p < d

such that the pointwise image of T (Ω0) as a set in Rd is a p-dimensional subspace of Rd, where T

is defined in (3.4). Also, as described in appendix A.1, we can analytically compute this subspace

given the functional form of Ω0.

Lemma 1. Assume that x(t) is a solution to a pth-order, linear, constant coefficient, homogeneous

ordinary differential equation (ODE)

dpx

dtp
+ cp−1

d(p−1)x

dtp−1
+ · · · + c1

dx

dt
+ c0x = 0. (3.5)

If this ODE has a characteristic equation with only simple roots, and p < d, then the trajectory
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(3.1) is confined to a p-dimensional subspace of Rd that is uniquely characterized by the roots and

the delay ∆t.

Proof: See appendix A.1.

Remark: If the ODE’s characteristic equation has roots with multiplicity greater than one,

then one can approximate that ODE’s solutions with solutions to another ODE, whose coefficients

are perturbed by an infinitesimally small amount. With probability one, this ODE has simple roots,

and the previous lemma can be applied. The resulting approximation will be valid over a bounded

interval of time. On this interval, we can use Corollary 3.7, presented below, in order to bound the

deviation of the trajectories of the solutions associated with the original ODE.

Lemma 1 implies that if x(t) is the solution to (3.5), then the trajectory cannot be a “wild”

curve, filling up all of Rd, but is confined to a p-dimensional subspace. Furthermore, if d changes,

the dimension of the subspace, p, remains constant. This fact can be used to test our presumptions

about the data. Specifically, if we hypothesize that the signal is a solution to an ODE of the form

(3.5), but we do not know the order p, then it would be possible to infer p by estimating the global

dimensionality of the patch set using principal component analysis or singular value decomposition

as d increases: the order p is the largest global dimensionality estimate obtained as d increases.

Finally, Lemma 1 accounts for the discretization of the underlying scene, by essentially rotating the

subspace in a way that depends on the delay ∆t (see appendix A.1). Note that Lemma 1 only gives

the maximum dimension of the subspace of Rd to which the trajectory belongs. So, it is possible

that a function solving (3.5) could exhibit fewer than p degrees of freedom.

We mention two relevant corollaries of Lemma 1. Corollary 1 assumes that x(t) is exactly a

linear combination of distinct sinusoidal functions, while Corollary 2 assumes only that x(t) can be

approximated as a linear combination of solutions to (3.5) in order to bound the deviation of the

trajectory (3.1) from a p-dimensional subspace of Rd.

Corollary 1. If x(t) can be written as

x(t) =
K∑

k=1

(
ak cos(ωkt) + bk sin(ωkt)

)
, (3.6)



21

then the trajectory x(t) is contained in a 2K-dimensional subspace of Rd.

Proof: See appendix A.1.1.

Corollary 2. Assume that x(t) can be written as

x(t) =

p∑

i=1

bi yi(t) + e(t), for t ∈ I (3.7)

in some interval I with positive length, where each yi(t) solves (3.5), bi are expansion coefficients,

and e(t) is the error between x(t) and the linear combination of yi(t) on I. It follows that if

|e(t)| ≤ ǫ1 for all t ∈ I, then the Euclidean distance between the trajectory segment {x(t) : t ∈ I}

and the subspace containing the trajectories

yi(t) = (yi(t), yi(t + ∆t), . . . , yi(t + (d − 1)∆t))T , for i = 1, 2, . . . , p

is at most
√

d ǫ1.

Proof: See appendix A.1.2.

As a consequence of Corollary 2, the patches extracted at times t ∈ I will also lie at most

√
d ǫ1 away from a p-dimensional subspace of Rd.

3.4 Generalization to images

In this section, we conjecture that Lemma 1 has a natural extension to image patches. We

provide a sketch of a potential proof in appendix A.2, and describe the difficulty in completing this

proof. In section 3.7, we provide empirical evidence which supports the conjecture.

We regard the image as a function x(t, u), defined on (a subset of) R2. We think of an image
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patch, x(t, u) as a d-by-d matrix:

x(t, u)

=




x(t, u) x(t, u + ∆u) . . . x(t, u + (d − 1)∆u)

x(t + ∆t, u) x(t + ∆t, u + ∆u) . . . x(t + ∆t, u + (d − 1)∆u)

x(t + (d − 1)∆t, u) x(t + (d − 1)∆t, u + ∆u) . . . x(t + (d − 1)∆t, u + (d − 1)∆u)




.

(3.8)

Furthermore, we assume that a local approximation to x(t, u) can be written as

x(t, u) ≈ X(t)Y (u) for all (t, u) ∈ Ω, (3.9)

where Ω ⊂ R2.

Conjecture 1. Assume that X(t) is a solution to a pth-order, linear, constant coefficient, homo-

geneous ordinary differential equation

dpX

dtp
+ ap−1

d(p−1)X

dtp−1
+ · · · + a1

dX

dt
+ a0X = 0. (3.10)

Also assume that Y (u) is a solution to another qth-order, linear, constant coefficient, homogeneous

ordinary differential equation

dqY

duq
+ bm−1

d(q−1)Y

duq−1
+ · · · + b1

dY

du
+ b0Y = 0. (3.11)

If the ODEs (3.10) and (3.11) have characteristic equations with only simple roots, and p, q < d,

then the patch space generated by (3.8) for all (t + k∆t, u + l∆u) ∈ Ω and k, l = 0, 1, . . . , d −

1 is confined to a pq-dimensional subspace of Rd2

that is uniquely characterized by the constant

coefficients of the linear differential equations.

Remark: See appendix A.2 for the beginning of a possible proof.

Although the assumption (3.9) is somewhat limiting, in some cases, we can still account for

more complex content in an image patch. More precisely, in Figure 3.2 we show the approximations
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Figure 3.2: Approximations to the patch-set of Figure 2.4. Each approximation lives in a four-
dimensional subspace of Rd.

to the ideal patch set of Figure 2.4. The approximations in Figure 3.2 are obtained by projecting

the patches of Figure 2.4 onto the span of only two Fourier basis vectors. Therefore, according

to the conjecture 1, these approximations live in a four-dimensional subspace of Rd. Given the

assumption (3.9), it is expected that when the step edge inside a patch is oriented vertically or

horizontally, the approximations are more accurate. Thus, in order to more accurately approximate

a step edge that is not aligned vertically or horizontally, we can rotate the vertical and horizontal

directions inside a patch. Then, we can infer that even these patches live close to a four-dimensional
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subspace. The union of these subspaces may help characterize the nonlinear structure in the ideal

patch-set.

3.5 Normalization

In many applications, we may want to identify two patches from a signal or image as similar

even though they may be different in their amplitudes or in their averages/ offsets from zero. To

ensure that these patches are connected, we modify the metric used to create the patch graph in

(2.3). This modification of the metric is equivalent to normalizing the patches. Below we describe

two normalizations and the advantages of each. We note that the dimensionality estimates of

sections 3.3 and 3.4 are still upper bounds on the ambient dimensionality of the trajectory, even

after normalizing.

3.5.1 Removing the mean from each patch

To remove the mean from a patch x(t), at a fixed time t ∈ R, we first compute the mean

of x(t) over the interval [t, t + d∆t), given by x(t) = d−1
∑d−1

k=0 x(t + k∆t). Then, we compute the

centered patch

x0(t) =
(
x(t) − x(t), . . . , x(t + (d − 1)∆t) − x(t)

)T
. (3.12)

This procedure effectively estimates and removes a slowly varying drift by computing a running

average over the entire signal.

Geometrically, the normalized patch (3.12) lies on a curve on a hyperplane in Rd. Indeed,

after subtracting the mean, the patch lies on the hyperplane of Rd defined by
∑d

n=1 xn = 0. In

addition, as shown in appendix A.3, the Euclidean norm of the normalized patch (3.12) is equal

to the distance between the original trajectory and the subspace spanned by the constant vector

1 = (1, 1, . . . , 1)T ∈ Rd. This is useful because the distance between the trajectory and the subspace

spanned by the constant vector is related to the local-mean-oscillation of the signal, as shown in

Section A.3. The signal’s local-mean-oscillation quantifies how much it deviates from its average

on a local interval, and has important applications in functional analysis [41, 45].
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Note that the normalization (3.12) tends to preserve the high-frequency content that exists

in the original signal or image, as shown in appendix A.4,

Finally, constructing the patch-graph using the normalized patches (3.12), is equivalent to

using the using the metric

ρ0(xn,xm) =
∥∥(xn − d−1〈xn,1〉1) − (xm − d−1〈xm,1〉1)

∥∥

in the definition of the edge weights, given in (2.3).

3.5.2 Unifying the Euclidean norm of each patch

To make all patches have the same Euclidean norm, we project the patch x(t) onto the unit

sphere and define the normalized patch

x1(t) =
x(t)

‖x(t)‖ . (3.13)

The normalized patch (3.13) characterizes the local oscillation of x(t) in a manner that is indepen-

dent of changes in amplitude. Geometrically, the normalized patch (3.13) lies on a curve on the

d − 1 dimensional unit sphere in Rd.

Note that the normalization (3.13) also preserves frequency content when the signal is suffi-

ciently smooth enough, as discussed in appendix A.4.

Finally, constructing the patch-graph using the normalized patches (3.13), is equivalent to

using the using the metric

ρ1(xn,xm) =
∥∥∥ xn

‖xn‖ − xm

‖xm‖

∥∥∥ (3.14)

in the definition of the edge weights, given in (2.3). The metric ρ1 is useful because it is invariant

under any global scaling of the signal, and it is not sensitive to changes in the local energy of the

signal (as measured by the Euclidean norm of the difference between patches). In addition, the

metric ρ1 allows us to specifically detect changes in the signal’s local frequency content, or local

smoothness.
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3.6 Lemma 1 applied

In this section, we consider some applications of Lemma 1.

3.6.1 Sparse representation of an ODE’s patch-set

In this section, we consider the patch-set extracted from a solution to an ODE of the form

(3.5). We demonstrate that the patch-set is contained in the subspace predicted by Lemma 1 by

comparing two approximations to the patch’s content. One approximation is obtained with vectors

that span the two-dimensional subspace given in the proof of Lemma 1. The other approximation

minimizes the Euclidean norm of the error between the true patch and the approximation when

using only three elements from a Fourier basis. This comparison demonstrates the utility of having

a functional form of the subspace predicted by Lemma 1 over a simple Fourier analysis of the

patch-set.

Figure 3.3 plots solutions to the second-order ODE x′′+ω2x = 0 for 2π ≤ ω ≤ 4π for t ∈ [0, 1)

as a black curve with intial conditions x(0) = −1 and x′(0) = 1. For a fixed value of ω, we create

only one patch in R25 by sampling the ODE’s solution 25 times for t ∈ [0, 1). The red circles

represent the best nonlinear approximation to the data using three elements from a Fourier basis.

More precisely, components of a patch extracted from the solution to the ODE can be written as

xj =

⌈d/2⌉∑

k=1

αk cos
(
2π(k − 1) (j − 1)/d

)
+ βk sin

(
2π(k − 1) (j − 1)/d

)
, for j = 1, 2, . . . , d, (3.15)

where αk and βk are chosen to satisfy the initial conditions.

We define the components of the best nonlinear approximation using the Fourier basis as

x̃j =
∑

l∈A
αl cos

(
2π(l − 1) (j − 1)/d

)
+ βl sin

(
2π(l − 1) (j − 1)/d

)
, for j = 1, 2, . . . , d,

where A ⊂ {1, 2, . . . , 11, 12 = ⌈d/2⌉} is the set of indices associated with the three expansion

coefficients αk with the largest magnitude in (3.15).

As expected, when the patch data is not periodic on the domain of the patch, the Fourier

approximation suffers. On the contrary, the reconstruction to the patch data using vectors which
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Figure 3.3: We represent the 25 time-samples composing a patch extracted from a signal α cos(ωt)+
β sin(ωt) as a graph over [0, 1) with a black curve. Each plot corresponds to a different value of
ω. The red circles represent the best nonlinear approximation to the patch data using a Fourier
basis. The blue circles represent the approximation to the patch data using vectors which span the
two-dimensional subspace predicted by Lemma 1.

span the two-dimensional subspace predicted by Lemma 1 is exact, as supported by the blue circles

in Figure 3.3.

3.6.2 The patch-set of a linear chirp

Consider the linear chirp x(t) = cos
(

ω
2 t2
)

for times t ∈ [0, 2π]. Notice that at each time

t0 ∈ [0, 2π], the chirp can be approximated with a cosine of frequency ωt0:

x(t) ≈ cos

(
ωt0

(
t − t0

2

))
, (3.16)

for all t within a sufficiently small neighborhood of t0. We plot the linear chirp x(t) = cos
(

ω
2 t2
)

in

Figure 3.4. We fix ω = 2, d = 3, and ∆t = π
50 . Notice that the approximation to the chirp (3.16)

is a sinusoid whose frequency, ωt0, increases linearly with the time t0 about which we approximate

x(t). At each time t0, we can identify the two-dimensional subspace of Rd that confines solutions

to the ODE

x′′ + (ωt0)x = 0. (3.17)
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Figure 3.4: Two sinusoidal functions in red and blue, and a linear chirp whose frequency content
varies between the frequencies of the sinusoidal functions in green.

Figure 3.5: Several different views of the curves associated with a linear chirp (in green), and
two cosines waves oscillating at the chirp’s minimum and maximum frequencies (in blue and red,
respectively).
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Thus, according to Lemma 1, the trajectory will begin at time t = 0 near a subspace associ-

ated with the frequency ωmin = ω(d − 1)∆t. Then, at time t = 2π, the trajectory associated with

the chirp will end near the subspace associated with the frequency ωmax = ω(2π + (d − 1)∆t) at

time t = 2π. Confirming our expectations, Figure 3.5 shows a green curve (representing the chirp’s

trajectory) that wanders between two ellipses. Each ellipse represents the trajectory associated

with a solution to the ODE (3.17). The red and blue colors correspond to the frequencies ωmin and

ωmax, respectively.

3.7 A first look at the patch-set

The goal of this section is to provide the reader with some intuition about the geometry of

the patch-set and the associated patch-graph. This will help us motivate our graph models and the

analysis of their geometries, which are presented in chapter 4.

3.7.1 Examples of signals and images

We construct the patch-set associated with some examples of signals and images. Because it

is not practical to visualize the patch-set in Rd when d = 25, we display the projection of the patch-

set onto the three-dimensional space that captures the largest variance in the patch-set (computed

using principal component analysis). Figure 3.6 displays three signals {xn}, n = 1, . . . , N ′, with

N ′ = 2072. Patches of size d = 25 samples are extracted around each time sample, which results in

the maximum overlap between patches. Signal A is a chirp, signal B is a row of the image Lenna

(shown in Fig. 3.7-D), and signal C is a seismogram [84].

In order to quantify the local regularity of signals A and B, we compute the variance over

each patch, and color the curve according to the magnitude of the local variance: hot (red) for large

variance and cold (blue) for low variance. The color of signal C encodes the temporal proximity

to the arrival of a seismic wave associated with an earthquake: hot color indicates close proximity,

while cold color corresponds to baseline activity. Identifying arrival-times is necessary for purposes

such as locating an earthquake’s epicenter. This example illustrates the application of the present
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A
B

C

Figure 3.6: A, B, C: time series composed of N ′ = 2072 samples. The color of signals A and
B encodes the local variance (large = red, low = blue). C: seismogram; the color indicates the
temporal proximity to a seismic arrival, identified by vertical black lines. See text for more details.

D E F

Figure 3.7: D, E, and F: image of size 128× 128, 128× 128, and 240× 240 pixels, respectively. The
color of the pixel at the center of each patch encodes the local variance of the image’s intensity.
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work to the problem of detecting seismic waves [84].

Figure 3.7 displays three images. We extract patches of size 5× 5. Here, the patches are not

maximally overlapping: we collect every third patch in the horizontal and vertical directions for

images D and E, while we collect every fifth patch in each direction for image F. This results in

patch-sets of size 42 × 42 for images D and E, and of size 48× 48 for image F. As before, the color

of a pixel in the images encodes the local variance within the patch centered at that pixel.

3.7.2 Projections of the patch-sets

Figure 3.8 shows the projections of each of the six patch-sets. Distances in Figure 3.8 corre-

spond to the normalized distance ρ1, defined in (3.14). We observe that patches with high variance

(red-orange) appear to be scattered all over Rd. These patches correspond to regions where the

image intensity varies rapidly. Patches with low variance (blue-green), which correspond to regions

where the signal is smooth and varies very little, tend to be concentrated along one-dimensional

curves (for time series) and two-dimensional surfaces (for images). These visual observations can

be confirmed when computing the actual mutual distances between patches (data not shown).

The organization of the patches in the patch-set can be explained using simple arguments.

Let us assume that the sequence {xn} corresponds to the sampling of an underlying differentiable

function x(t), and assume that the derivative of x(t), given by x′(t), remains small over the interval

of interest. In this case, if two patches xn and xm overlap significantly – i.e. |n − m| is small –

then they will be close to one another in Rd. Indeed, the values of the coordinates of patches xn

and xm will be very similar, since the signal x(t) varies slowly. In principle, if the sampling is fast

enough, the patches should lie along a one-dimensional curve in Rd. By the same argument, when

x(t) exhibits rapid changes, the magnitude of the derivative, |x′(t)|, can be very large, and therefore

temporally neighboring patches are not guaranteed to be spatial neighbors in Rd. This argument

allows us to understand the distribution of the patches in the signal B, or the image F.

Instead of characterizing patches according to the local smoothness of the underlying function,

we can also analyze the distribution of the patches according to the function’s local frequency
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Figure 3.8: Principal component analysis of patch-sets associated with the time series A-C and the
images D-F. Each point represents a patch; the color encodes the variance within the patch (see
Figures 3.6 and 3.7.)

information. This will help us understand the structure of the patch-set for signal A. For this

type of signal, it is appropriate to measure the distance between the normalized patches, xn/‖xn‖

and xm/‖xm‖ after computing the Fourier transforms (a simple rotation of Rd) of the respective

patches. This process is akin to the concept of time-frequency analysis. We expect that regions of

the signal with little local frequency changes will cluster in Rd: this is the case for the blue patches

of the chirp signal A. On the contrary, when the local frequency content changes rapidly (as in the

middle of the chirp signal A), the corresponding patches will be far away from one another in Rd:

this is the case for the red patches of signal A (see Figure 3.8-A).

We can also try to understand the organization of the patch-set for the seismogram C. Let

us assume that {xn} is obtained by sampling a function of the form x(t) = b(t) + w(t), where w(t)

represents a seismic wave and b(t) represents baseline activity. We can expect that w(t) is a rapidly
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oscillating transient with rich frequency content, while b(t) is varying slowly. Now consider two

patches xn and xm. It can be shown that if both patches xn and xm are extracted from the baseline

function, b(t), and do not contain any part of the energetic transient, then their mutual distance

is expected to be small. In addition, if xn contains part of the energetic transient w(t) and xm is

extracted from the baseline b(t), then their mutual distance is expected to be large. Finally, if xn

and xm are composed of two different parts of w(t), then their mutual distance is also expected

to be large (provided the patches are sufficiently long and w(t) oscillates sufficiently fast). More

generally, one can expect that two patches extracted from two different energetic transients w1(t)

and w2(t) will be at a large distance from one another (see section 5.2 and [84]).

Finally, Lemma (1) can also be used to interpret the inter-patch distances. In particular,

portions of the signal that can be well-approximated using few ODE solutions will generate patches

that live in a smaller region of Rd (even after normalizing) than those patches generated by portions

of the signal that require very many ODE solutions to be approximated.

3.7.3 Local dimensionality estimates via local PCA

To estimate the local dimensionality of the patch-set, we perform local PCA at each patch

in Rd, and record the minimum number of components required to capture at least 90% of the

local neighborhood’s variation. More precisely, we fix a positive integer ν. For each patch, xn,

we determine its ν nearest neighbors in Rd using the ambient, Euclidean norm. Refer to the

neighboring patches of xn as xn,1,xn,2, . . . ,xn,ν , and organize the patches as rows of the ν-by-d

matrix Xn. Let ν be the d-by-d constant matrix with every entry equal to ν−1, and form the

ν-by-d matrix Yn = (I−ν)Xn. One can verify that the ith row of Yn is simply the patch xn,i with

its mean removed. For k = 1, 2, . . . , d, let pk denote the unit-norm eigenvector of the covariance

matrix (ν − 1)−1YT
n Yn associated with the kth largest eigenvalue. We form the d-by-l matrix Pl,

using p1, . . . ,pl as columns. The matrix PlP
T
l is the orthogonal projection onto the subspace of

Rd spanned by p1, . . . ,pl. The norm

ε(l, n) = ‖(I − PlP
T
l )Xn‖, (3.18)
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where ‖ · ‖ is the Euclidean norm in Rd, measures the error involved in approximating the neigh-

borhood of xn with a subspace of dimension l + 1 (we add one for the constant component). In

addition (3.18) decreases as l increases. Therefore, we estimate the local dimensionality of the

patch-set around xn in Rd as the minimum l such that ε(l, n) < 0.1 maxm[ε(1,m)].

We show dimensionality estimates for the example time series and images A-F in Figures

3.9 and 3.10. Notice that near the center of signal A, where aliasing is present, we have a low

dimensionality estimate. This can be understood as follows: The patch comprises d = 25 samples,

and so at the level of the patch, we can only see at most 12 full oscillations on the patch. Therefore,

when the signal oscillates faster than ⌊d/2⌋, the content of the signal will alias to a lower frequency,

and appear smoother, thereby requiring fewer sinusoids to approximate locally, and thus a lower

dimensionality upper bound according to Lemma (1). For comparison, consider the dimensionality

estimate associated with signal C. Although there is likely aliasing taking place with signal C,

there is still enough broad-band energy — meaning both low and high frequencies are present in

the signal — to cause a large local dimensionality estimate.

The image patch data also exhibits low local dimensionality estimates in smooth regions of

the image itself, as illustrated in Figure 3.9. Analogous to the aliasing in signal A, observe that

there are also low dimensionality estimates corresponding to patches extracted from the flannel

shirt in image E or the grass in image F.

3.7.4 From the patch-set to the patch-graph: the weight matrix W

Having gained some understanding about the organization of the patch-set, we now move

to the structure of the patch-graph and its weight matrix W. Figure 3.11 displays the weight

matrices built from the patch-sets that correspond to the time series A-C (top) and the images

D-F (bottom). Note that when processing time series A-C, the columns (or equivalently, the rows)

of W can be identified with temporally-ordered time-samples. Therefore, a large main diagonal in

the weight matrix correspond to patches that are close in time and also close in Rd. For instance,

consider the time series A and its associated weight matrix. The dark bands near the top-left
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Figure 3.9: Local dimensionality estimates of the patch-set associated with time series A-C as
points in R25. For A, B, and C, we plot both dimensionality estimates and the signal, with time
samples color coded according to the estimated local dimensionality.

and bottom-right of the diagonal correspond to the slowly varying oscillations near the beginning

and end of the chirp (see Figure 3.6). Indeed, large entries near the diagonal of W is a direct

consequence of relatively little variation in the time series. On the other hand, the columns of W

corresponding to portions of the time series that exhibit rapid local changes (center of Figure 3.11-

A) tend to lack such prominent diagonal structures. For such regions of the matrix W, the entries

are no longer concentrated along the diagonal, and are shattered across all rows and columns
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Figure 3.10: Local dimensionality estimates of the patch-set associated with images D-F as points
in R25. The top row shows the estimated dimensionality as a colored square overlaid on the image
plane, note the color bar. The bottom row shows estimates overlaid on the original image for
comparison.

(see the center of W in Figure 3.11-A; the columns correspond to the fastest oscillations at the

center of the chirp). The large distances between these patches are also apparent in the lighter

pixel intensities, representing relatively smaller edge-weights. Note that the patches extracted from

the seismic data are very far apart, as indicated by the much lighter shades of gray. It is more

difficult to relate the ordering of an image’s weight matrix to locations in the image itself. For the

weight matrices associated with images D-F, the ordering of the columns is equivalent to the order

in which the patches were collected from the image plane: first left-to-right, then top-to-bottom

(similar to a raster scan, or how one would read pages of a book). Hence, periodically repeating

dark blocks in the weight matrices associated with images D-F are indicative of image patches that

are close in Rd and close in the image-plane as a result of relatively little change in the image’s
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Figure 3.11: The weight matrices W associated with signals A-F are displayed as images: wn,m is
encoded as a grayscale value: from white (wn,m = 0) to black (wn,m = 1). Dark structures along
the diagonal of the W matrix associated with the time series A-C indicate that patches that are
close in time are also close in Rd.

local content. For example, the dark square-like structure that appears near the main diagonal of

W in Figure 3.11-E, and which spans roughly one fifth of the number of columns, corresponds to

the mirror’s smooth, light border in image E.

Of course, a permutation of the patch indices might obfuscate the aforementioned structure

in the weight matrix. In this case, the graph’s parametrization and our theoretical conclusions are

unaffected. We simply assume order in the patch index relative to the signal domain so that we

can visually interpret the structure in W.
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3.8 Conclusion

The experiments in section 3.7 highlight the fact that regions of an image, or of a signal,

that contain anomalies (e.g. singularities, edges, rapid changes in the frequency content, etc.) are

scattered all over the patch-set, making their detection and identification extremely difficult (see

Figures 3.8, 3.9, and 3.10). In particular, patches extracted from a portion of a signal or image

with smooth content will require few ODE solutions to be well-approximated locally, and thus will

lie close to a low-dimensional subspace of Rd, according to Corollary 2. On the other hand, patches

with sharp edges, or other drastic, localized changes will likely require many constituent ODE

solutions to be equally well-approximated, and therefore these patches will occupy a relatively

high-dimensional region of Rd. Because the anomalous patches are usually the most interesting

ones, we need to find a new parametrization of the patch-set that concentrates the anomalies and

separates them from the smooth baseline part of the image. The structure of W in the “rough

regions” suggests that patches that contain anomalies appear to be very well connected (see the

center of Figure 3.11-D, which corresponds to the boa on the hat of Lenna). This concept can be

quantified by studying how fast a random walk would reach all patches in these rough regions, and

suggests that we should consider studying the hitting times associated with a random walk on the

patch-graph. In the next chapter we formalize this concept and propose a parametrization of the

patch-set in terms of the commute time on the patch-graph. A theoretical analysis of this approach

is provided in section 4.4



Chapter 4

Parametrizing the patch-graph

4.1 Introduction

In this chapter, we analyze the effect that the organization of patches has on the embedding

of the patch-graph based on the commute time metric. The commute time and its relation to other

diffusion-based metrics are given in section 4.2. Our main result on the embedding of graphs that

model general patch-graphs is described in section 4.4. We test our theoretical conclusions on the

graph models using signal data in section 4.5.

4.1.1 The fast and slow patches

We first introduce the concept of fast and slow patches. We have noticed that patches that

contain anomalies (discontinuities, edges, fast changes in frequency, etc.) in the original signal lead

to regions of the matrix W where the nonzero entries are scattered all around. We call such patches

fast patches because, as we will see in the following, a random walk will diffuse extremely fast in

such regions of the patch-graph. Conversely smooth regions of the signal lead to slow patches that

are associated with a small number of large entries in W, which are concentrated near the diagonal.

We will see that a random walk initialized in the slow patch region of the patch-graph will diffuse

very slowly.
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4.2 A better metric on the graph: the commute time

As explained in section 3.8, we propose to replace the Euclidean distance, which leads to

the scattering of the fast patches seen in Figure 3.8 by a notion of distance that quantifies the

speed at which a random walk diffuses on the patch-graph. We propose to use the commute time.

Parametrizing the graph using its commute time distance is closely related to parametrizing the

graph using its diffusion distance [23] (see Section 4.2.2). Although the works [16, 80, 81] do not

explicitly embed vertices of the patch-graph based on the diffusion distance, they also study a

random walk on the patch-graph, and define the diffusion distance in terms of this walk. In these

studies, noise is removed by evolving the diffusion process for a small time. A detailed comparison

of our approach with the seminal work of [80] is provided in section 7.3. We note that the notion of

the first-passage time associated with a diffusion (which is equivalent to the hitting time associated

with a random walk) has been used extensively to characterize the geometry of complex networks,

and random media (e.g. [9, 25] and references therein). It is therefore natural to analyze the

patch-graph (and inherently the patch-set) with this distance.

4.2.1 A random walk on the patch-graph

In order to define the commute time between two vertices, we first need to define a random

walk on the graph. In our problem, the random will lead to a notion of global proximity between

patches. We consider a first-order homogeneous Markov process, Zk, defined on the vertices of the

patch-graph, Γ, and evolving with the transition probability matrix P given by

Pn,m = Prob(Zk+1 = xm|Zk = xn) ,
wn,m∑

l wn,l
=

Wn,m

Dn,n
. (4.1)

Consider a slow patch xn extracted from a regular/smooth part of the signal. If the random walk

starts at xn, then it can only travel along the low-dimensional structure that corresponds to the

temporal neighbors of xn (see e.g. Figure 3.8-A.) The existence of this narrow bottleneck is also

visible in the W matrix (see Figure 3.11-A): a random walk initialized within the fat diagonal of

the upper left corner of W (the low frequency part of the chirp) is trapped in this region of the
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matrix, and can only travel along this fat diagonal. As a result, it will take many steps for the

random walk to reach another slow patch xm if |n − m| is large. This notion can be quantified

by computing the hitting time, h(xn,xm), which measures the expected minimum number of steps

that it takes for the random walk, started at vertex xn, to reach the vertex xm [14]

h(xn,xm) = En min{j ≥ 0 : Zj = xm},

where the expectation En is computed when the random walk is initialized at vertex xn, i.e. when

Z0 = xn. The commute time [14]: provides a symmetric version of h, and is defined by

κ(xn,xm) = h(xn,xm) + h(xm,xn). (4.2)

4.2.2 Spectral representation of the commute time

When the Markov process is aperiodic and the graph is connected, the commute time can be

expressed using the eigenvectors φ1, . . . , φN of the symmetric matrix

D−1/2WD−1/2 = D1/2PD−1/2.

The corresponding eigenvalues can be labeled such that −1 < λN ≤ . . . ≤ λ2 < λ1 = 1. Each

eigenvector φk is a vector with N components, one for each vertex of the graph. Hence, we write

φk =

(
φk(x1) φk(x2) . . . φk(xN )

)T

,

to emphasize the fact that we consider φk to be a function sampled on the vertices of Γ. The

commute time can be expressed as

κ(xn,xm) =
N∑

k=2

1

1 − λk

(
φk(xn)√

πn
− φk(xm)√

πm

)2

, (4.3)

where πn =
∑N

m=1 wn,m/
∑N

j,l=1 wj,l is the stationary distribution associated with the transition

probability matrix in (4.1)P [55, 77].
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4.2.3 The relationship to diffusion maps

The diffusion distance [23] between vertices xm and xn, Dt(xm,xn), measures the distance

between the transition probability distributions – computed at time t – of two random walks

initialized at xn and xm,
∑N

l=1 |P
(t)
n,l − P

(t)
m,l|2. The diffusion distance can also be decomposed in

terms of the eigenvectors φk [23],

D2
t (xm,xn) =

1

V

N∑

k=2

λ2t
k

(
φk(xm)√

πm
− φk(xn)√

πn

)2

, (4.4)

where V =
∑

m′,n′ wm′,n′ is the volume of the graph. It follows that the commute time is a scaled

sum of the squares of diffusion distances computed at all times,

κ(xm,xn) = V
∞∑

t=0

D2
t/2(xm,xn). (4.5)

The significance of this equation is that the commute time includes the short term evolution (t ≈ 0)

as well as the asymptotic regime (t → ∞) of the random walk. We will come back to this analysis

in section 4.4.4.

4.3 Parametrizing the patch-graph

Equation (4.3) suggests the following embedding Ψ of the patch-graph Γ into RN−1,

Ψ : xn −→ 1√
πn

(
φ2(xn)√

1−λ2

φ3(xn)√
1−λ3

. . . φN (xn)√
1−λN

)T

, n = 1, 2, . . . , N. (4.6)

If we agree to measure the distance on the graph Γ using the square root of the commute time,

then the mutual Euclidean distance after embedding is equal to the original distance on the graph,

‖Ψ(xn) − Ψ(xm)‖ =
√

κ(xn,xm). (4.7)

The result is a direct consequence of (4.4) and (4.5). Similar ideas were first proposed in [11]

to embed manifolds and are the foundation of the parametrizations given in [7, 23]. In practice,

we need not use all the N − 1 coordinates in the embedding defined by (4.6). Indeed, since

λN ≤ · · · ≤ λ2 < λ1 = 1, we have that 1√
1−λN

≤ · · · ≤ 1√
1−λ3

≤ 1√
1−λ2

, and therefore, if we can
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accept some approximation error, then we can use only the first d′ coordinates of Ψ. As we will

see in section 4.4.4, this dimension reduction further improves the separation between slow patches

and fast patches. In the remaining of the paper we will work with the embedding of Γ into Rd′

defined by

Φ : xn −→ 1√
πn

(
φ2(xn)√

1−λ2
. . .

φd′+1(xn)√
1−λd′+1

)T

. (4.8)

We note that we can always choose d′ such that the embedding Φ almost preserves the commute

time,

‖Φ(xn) − Φ(xm)‖2 ≈ κ(xn,xm). (4.9)

In fact, our experiments indicate that this approximation holds for small values of d′.

4.3.1 Examples (revisited)

Figure 4.1 displays the embedding of the patch-sets associated with signals and images A-F

using the map Φ (4.8), where d′ = 3. The blue curve in Figure 4.1-A corresponds to the slow

patches (low frequencies of the chirp) that are connected according to their temporal proximity.

On the other hand, red and orange patches extracted from the high frequency part of the chirp are

now concentrated in a relatively small region (compare to Figure 3.8-A). Similar features are seen

in the parametrizations of the patch-graphs associated with signals and images B-F.

4.4 A model for the patch-graph and the analysis of its embedding

4.4.1 Our approach

The embedding of the patch-graph Γ defined by Φ, in (4.8), should lead to a representation

of the patch-set in Rd′ where distances correspond to commute times measured on the graph before

embedding. Our goal is to explain the concentration of the fast patches created by the embedding

Φ (see e.g. Figure 4.1). Our approach is based on a theoretical analysis of a graph model that

epitomizes the characteristic features observed in patch-graphs composed of a mixture of fast and

slow patches. This model is composed of two subgraphs: a subgraph of slow patches, which are
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Figure 4.1: Scatter plot of the patch-set shown in Figure 3.8 after parametrizing using Φ in (4.8),
with d′ = 3. The fast patches (red and orange) are now concentrated and have been lumped
together. The slow patches (blue-green) remain aligned along curves (for time-series) and surfaces
(for images).

extracted from the smooth regions of the signal, and a subgraph of fast patches, which are extracted

from the regions of the signal that contain singularities, changes in frequency, or energetic transients.

We confirm our theoretical analysis with numerical experimentations using synthetic signals in

section 4.5, and we demonstrate that our conclusions are in fact applicable to a larger class of

patch-graphs. The graph models are introduced in section 4.4.2. Our theoretical analysis of the

embedding of the graph models is given in section 4.4.3. We evaluate the performance of the

embedding Φ when d′ is small in section 4.4.4.

4.4.2 The prototypical graph models

We define the graph models in terms of the nonzero entries in the associated weight matrix

W. Without loss of generality, we assume that the number of vertices N is even.
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The slow graph model. The large entries in a weight matrix W of a patch-graph com-

posed only of slow patches will have large entries when |n−m| is small1 : temporal/spatial proximity

implies proximity in patch-space (see e.g. Figure 3.11-A, top corner). We therefore define the slow

graph model as follows.

Definition 6. The slow graph S(N,L) is a weighted graph composed of N vertices x1, . . . ,xN . The

weight on the edge {xn,xm} is defined by

wn,m =





wS if |n − m| ≤ L,

0 otherwise,

for 1 ≤ n,m ≤ N and 2L + 1 ≤ N. (4.10)

The weight ws is a positive real number that models the edge weight between two temporally

adjacent patches. The parameter L characterizes the thickness of the diagonal in W. The slow

graph is connected and each vertex has at most 2L neighbors, not including self-connections (see

Figure 4.2). Hence, we require that 2L + 1 ≤ N . Finally, note that the slow graph is distinct from

a regular ring, since the first and last vertices are not connected. We do not consider a regular ring

since it would imply that the underlying signal is periodic.

The fast graph model. We now consider the model for a patch-graph built from a patch-

set comprising only fast patches. As demonstrated in section 3.7, most of the entries in W have

similar sizes, and appear to be scattered throughout the matrix: temporal/spatial proximity does

not correlate with proximity in Rd. In fact, fast patches are all far away from one another. We

therefore define the fast graph model as follows.

Definition 7. The fast graph F(N, p) is a random weighted graph composed of N vertices, x1, . . . ,xN .

1 We assume that the rows/columns of W are ordered according to increasing index n of the sequence {xn}. This
assumption does not affect the graph’s parametrization nor our theoretical conclusions, but allows us to interpret the
structure in W.
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The weight on the edge {xn,xm} is defined by

wn,m = wm,n =





wF with probability p,

0 with probability 1 − p

if 1 ≤ n < m ≤ N,

and

wn,m = 1 if n = m.

The weight wF is a positive real number that models the distance between two fast patches.

The fast graph model is equivalent to a weighted version of the Erdös-Renyi graph model [32],

except that F(N, p) contains self-connections. The parameter p controls the density of the edges;

p = 1 corresponds to a connected graph (clique).

The fused graph model. The fused graph model exemplifies the patch-set associated with

a signal, or an image, which exhibits regions of fast and slow changes. The fused graph combines

a slow and a fast subgraph of equal size (see Figure 4.2).

Definition 8. The fused graph Γ∗(N) is a weighted graph composed of a slow subgraph S(N/2, L)

and a fast subgraph F(N/2, p). In addition, edges between S(N/2, L) and F(N/2, p) are created

randomly and independently with probability q and assigned the edge weight wc > 0.

Edges between S(N/2, L) and F(N/2, p) ensure a high probability that Γ∗(N) is connected

(a requirement for the validity of the parametrization (4.6)). These edges allow us to model patches

that are extracted from regions of the image that combine edges/transients and smooth intensity.

If no edges are created between the two subgraphs because q is too small, then an edge is placed

at random between the two subgraphs to ensure that the final fused graph is connected.

The true patch-graph is always constructed using a ν nearest neighbor rule (see section 2.2):

each patch is connected to at least ν other patches. In order to mimic a true patch-graph, we

adjust the thickness L of the slow subgraph to the density of the edge connection, p, in the fast

subgraph, so that on average, each vertex in the fused graph is connected to 2L vertices. We know

that the number of edges between distinct vertices in F(N, p) is a binomial random variable with

expectation
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(N/2,L)

Figure 4.2: The fused graph model Γ∗(N) is composed of a slow graph S(N/2, L) (blue) and a fast
graph F(N/2, p) (orange), connected by random edges (green).
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Figure 4.3: The weight matrix W of the fused graph model Γ∗(256) is displayed as an image: wn,m

is encoded as a grayscale value: from white (wn,m = 0) to black (wn,m = 1). The entries of W
associated with the slow graph appear in the upper-left quadrant of W. Entries associated with
the fast graph appear in the lower right quadrant. Random edges between the fast graph and slow
graph appear in the upper right and lower left quadrants.

N(N−1)
2 p. Since the total number of edges between distinct vertices of S(N,L) is equal to2

L∑

j=1

(N − j) = NL − L(L + 1)

2
, (4.11)

we choose

p =
2L

N − 1
− L(L + 1)

N(N − 1)
. (4.12)

This choice of p guarantees that the total expected number of edges in F(N, p) is equal to the total

number of edges in S(N,L). Furthermore, provided that L = O(ln(N)), a short computation shows

2 This is equivalent to the number of entries along the first L upper diagonals of the matrix W.
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that, for large values of N , this choice of p also ensures that the expected degree of a vertex in

F(N, p) is equal to the average degree of a vertex in S(N,L). Figure 4.3 shows the nonzero entries

in the weight matrix associated with one realization of the fused graph model using parameters

N = 256, L = ⌈2 ln N⌉ = 12 and q = 1
N . Vertices xn with n ≤ 128 are only connected to other

vertices xm if |n − m| ≤ L. This connectivity mimics the temporal connectivity present in the

smooth parts of a signal or image (compare with Figure 3.11).

4.4.3 The main result

Our goal is to understand the effect of the embedding Φ defined by (4.8) on the fused graph.

It turns out that studying the embedding of each individual subgraph (slow and fast) separately is

much more tractable than considering the entire fused graph. To complement our theoretical study

of the fast and the slow subgraphs, we provide numerical evidence in sections 4.4.4 that indicates

that our understanding of the embedding of the subgraphs can be used to analyze the embedding

of the fused graph. In section 4.5, we confirm that our theoretical analysis can be applied to true

patch-graphs. Instead of studying Φ directly, we take advantage of the fact that the embedding

Φ almost preserves the commute time (see (4.9)). We can therefore understand the effect of the

embedding on the distribution of mutual distances ‖Φ(xn)−Φ(xm)‖ within a subgraph by studying

the distribution of the commute times κ(xn,xm) on that subgraph. While it would appear that

it is a straightforward affair to compute the commute time on the slow graph, the computation

becomes rapidly intractable. For this reason we provide lower and upper bounds for the average

commute time on the slow and fast subgraphs, respectively. This is sufficient for our needs, since

the two bounds rapidly separate even for low values of N . To estimate these bounds, we rely on

the connection between commute times on a graph and effective resistance on the corresponding

electrical network [17, 29]. Specifically, we map a graph to an electrical circuit as follows: each

edge with weight wn,m becomes a resistor with resistance 1/wn,m. The vertices of the graph are

the connections in the circuit. Given two vertices, xn and xm that are identified as terminals in

the circuit, one can compute the effective resistance between these terminals, Rn,m. The key result
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is that κ(xn,xm) = V Rn,m, where V is the volume of the graph [17].

Before stating the main Lemma, let us take a moment to compute some rough estimates

of the commute times on the slow and fast graphs. To get some quick answers, we consider the

simplest versions of the two graph models. When L = 1, the slow graph S(N, 1) is a path with self-

connections. On a path of N vertices without self-connections, the commute time between vertex

xn and xm is equal to 2(N − 1)|m − n| [55]. Therefore, the average commute time (computed

over all pairs of vertices) on a path of length N is O(N2). While it would make sense that adding

edges to a path should decrease the commute time, this is usually not true [55]. Nevertheless, the

presence of edges that allow the random walk to move forward by a distance L at each time step

lead us to conjecture that the average commute time on S(N,L) should at least decrease by a factor

of L. In fact, as we will see in Lemma 2, the average commute time of the slow graph decreases

by a factor of L2. With regard to the fast graph, we can analyze the case where the density of

edges p = 1. In this case, the fast graph F(N, 1) is a complete graph, or clique, and every vertex

is connected to every other vertex. In a complete graph, the average commute time is O(N) [55].

Since the fast graph can be regarded as a complete graph whose edges have been removed with

probability 1 − p, we expect the commute time to be slightly larger than O(N), because removing

edges restricts the random walker’s options to get from one vertex to another. Again, in agreement

with our intuition, Lemma 2 asserts that in the fast graph, the commute time increases by a factor

of roughly [L ln(N)/ ln(L)].3

We are now ready to state the main lemma. Our results will be stated in terms of the “average

behavior” of the commute time on each graph, a concept that we need to define properly. In the

case of the slow graph, which is deterministic, we consider the average commute time computed

over all pairs of vertices.

Definition 9. Let κS be the average commute time between vertices in the slow graph S(N,L)

κS ,
2

N(N − 1)

∑

1≤m<n≤N

κ(xn,xm). (4.13)

3 Since p = p(L) as defined in (4.12), the increase of the commute time in F(N, p) also depends on L.
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In the case of the fast graph, the “average behavior” of the commute time needs to be defined

more carefully. Indeed, each fast graph is a realization of a stochastic process, and therefore we need

to consider the expectation of the commute time. More precisely, given a realization, F , of a fast

graph, we compute the expected commute time Exn,xm [κ|F ] as the expectation of κ(xm,xn) over all

possible random assignment of the vertices xn and xm. We then need to consider how Exn,xm [κ|F ]

varies as a function of F . Therefore, we compute a second expectation over all possible fast graphs

F .

Definition 10. The expected commute time κF on a fast graph F generated according to Definition

7 is defined by

κF , EF [Exn,xm [κ|F ]] , (4.14)

where the inner expectation is computed over all random assignments of the vertices xn,xm given

a realization F of a fast graph geometry, and the outer expectation is computed over all possible

realizations F of the fast graph.

Lemma 2. We have

(N(2L + 1) − L(L + 1))
2 (N + 1)

3L2(L + 1)
≤ κS . (4.15)

We also have

κF ≤ (N(2L + 1) − L(L + 1))


 ln N

ln
(

2L − L(L+1)
N + 1

) +
1

2


 , (4.16)

provided that, for all assignments of the vertices xm and xn, and for all fast graphs F , the covariance

Cov(M,Rm,n) between the number of edges, M , and the effective resistance, Rm,n, of the associated

electrical circuit is nonpositive.

Proof: See appendix A.6.

It is clear that if L is held constant while N increases, then p will approach zero, according to

(4.12). If p approaches zero, then the fast graph is more likely to be disconnected, which is contrary

to our assumptions on a general patch-graph. To avoid this, L must change with N . As shown

in appendix A.5), choosing L > ln N is sufficient to guarantee a vanishing probability of the fast
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graph being disconnected. It can be verified that if L = N1/3, then the upper bound on κF grows

at the same rate as the lower bound on κS . Therefore, to ensure that the upper bound on κF is

negligible relative to the lower bound on κS , when N is large, while still maintaining a connected

fast graph with high probability, we must choose ln N < L < N1/3. Indeed, we will fix L = c ln N

for some constant c > 1.

Corollary 1. Assume that L = c ln N for some constant c > 1. It follows that, as N → ∞, the

lower bound on κS grows like
(

N
ln N

)2
, and the upper bound on κF grows like N(ln N)2

ln lnN . Furthermore,

the lower bound on κS grows faster than the upper bound on κF , and so with a probability that

approaches one as N → ∞,

κF
κS

→ 0.

Proof: Notice that κS is bounded away from zero. Because the choice of L guarantees that the

fast graph is connected with a probability approaching one, κF is finite with probability approaching

one. Therefore the ratio κF/κS is bounded below by zero and from above by a ratio of the bounds

from Lemma 2. The ratio of bounds goes to zero, which follows from a simple, but lengthy, limit

calculation. �

We can translate the corollary in terms of the mutual distances between vertices of the

subgraphs after the embedding Φ: Φ(F(N, p)) will be more concentrated than Φ(S(N,L)).

4.4.4 Spectral decomposition of commute times on the graph models

The results of section 4.4.3 apply to the exact commute times on the graph models. However,

as mentioned in section 4.3, it is more practical to use a truncated version of the spectral expansion

of the commute time, defined by Equation (4.3). We also noticed that the commute time encom-

passes the short term evolution (t ≈ 0) as well as the asymptotic regime (t → ∞) of the behavior

of the random walk. Neglecting eigenvalues φk for large k emphasizes the long term behavior of

the random walk, and we expect that it should further increase the difference between the dynam-

ics of the random walk on the slow and fast graphs. In this section, we confirm experimentally
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that approximating the commute times by truncating the expansion (4.3) actually emphasizes the

separation between average commute times on the fast subgraph and the slow subgraph in the

fused graph model. In all the numerical experiments in this section, unless otherwise stated, we

fix N = 1024, L = ⌈2 ln(N)⌉, p is chosen according to (4.12), q = 1/N , and wS = wF = wc = 1.

In all experiments, we compute the eigenvalues {λk} of the matrix D−1/2WD−1/2 associated with

the fast graph, the slow graph, and the fused graph.

4.4.4.1 Slow and fast subgraphs: two different dynamics revealed by the spectral

decomposition

We first provide a back-of-the-envelope computation of the spectrum of the slow and fast

graphs. As we have noticed before, the slow graph model is a “fat” path. We know that the

spectrum of a path without self-connections [20] is given by

cos [π(k − 1)/(N − 1)] , k = 1, 2, . . . , N.

We expect therefore that the eigenvalues associated with the slow graph will decay slowly away

from one for small k. Figure 4.4 (inset) displays the eigenvalues associated with the slow graph

model. As expected, the spectrum is flat around k = 0 and exhibits the slowest decay of all the

graph models. We use the similarity between the fast graph model and the Erdös-Renyi graph to

predict the spectrum of the fast graph. Except for λ1 = 1, all the other eigenvalues of an Erdös-

Renyi graph asymptotically follow Wigner’s semicircle distribution [21]. Our numerical experiments

confirm this prediction: as shown in Figure 4.4-right, the eigenvalues of the fast graph appear to

be distributed along a semicircle.

The decay of the spectrum has a direct influence on the dynamics of the random walk.

Specifically, the spectral gap controls the mixing rate, which measures the expected number of

time-steps that are necessary to reduce the distance between the probability distribution after t

steps P
(t)
n,m and the stationary distribution πm by a certain factor [91]. This concept is justified by
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Figure 4.4: The eigenvalues λk of the matrix D−1/2WD−1/2 associated with the fused (green), slow
(blue), and fast (orange) graphs. Left: λk as a function of k; right: histogram of the λk.
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Figure 4.5: The eigenvectors {φ1, φ2, φ8, φ16, φ32} associated with the slow (left), fast (center),
and fused (right) graphs. Right: the large amplitude of the eigenvectors φk on the first half of
vertices (blue) belonging to the slow subgraph leads to a larger separation between the fast and
slow subgraphs when truncating the commute time expansion.

the fact that the convergence of P
(t)
n,m is exponential [30], and is given by

max
n,m

∣∣∣∣∣
P

(t)
n,m

πm
− 1

∣∣∣∣∣ ≤
λt

max

πmin
, t = 1, 2, . . . (4.17)

where λmax = max{λ2, |λN |} (which is related to the spectral gap), and πmin is the smallest entry

of the stationary distribution. Since λ2 is much larger in the slow graph than in the fast graph,
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we expect that convergence to the associated stationary distribution will take longer on the slow

graph than on the fast graph.

4.4.4.2 The dynamics of the fused graph is enslaved by the slow subgraph

We now consider a random walk on the fused graph. If this random walk begins at xn in the

fast subgraph of the fused graph, then after a small number of steps, t0, the probability of finding the

random walker at any other vertex xm in the fast subgraph is close to the stationary distribution,

Pt0
n,m ≈ πm. On the other hand, during the same amount of steps, a random walk initialized in

the slow subgraph will only explore a small section of the slow subgraph, and consequently, the

transition probabilities will still be similar to its initial values P
(t0)
n,m ≈ Pn,m. As a result, the

restriction imposed by the geometry of the slow subgraph is expected to decrease the convergence

rate of the transition probabilities on the fused graph. We confirm this analysis with experimental

results. Figure 4.4 (inset) shows that for k < 23 the eigenvalues associated with the fused graph

and the eigenvalues associated with the slow graph exhibit slow decay away from one, thereby

increasing the convergence rate given in (4.17). For 25 ≤ k ≤ 400, the eigenvalues of the fused

graph decay at a rate similar to that of the fast graph. Finally, for k ≥ 400 the eigenvalues of

the fused graph join those of the slow graph (see also the histogram in Figure 4.4-right). We have

observed in numerical experiments that these transitions in the behavior of the spectrum of the

fused graph are not affected by varying the parameters N , L, and q.4 We conclude that the slow

subgraph has the largest influence on the first few (small k) eigenvalues λk of the fused graph.

4.4.4.3 The eigenvectors of the fused graph and their impact on the commute time

The transition exhibited in the spectrum of the fused graph can also be detected in the cor-

responding eigenvectors φk. Figure 4.5 shows the eigenvectors {φ1, φ2, φ8, φ16, φ32} corresponding

to the three graph models. The first eigenvector φ1 has entries equal to the square root of the

stationary distribution, φ1(xn) =
√

πn, and is not used in the expansion of the commute time (4.3).

4 We assume q is small because having a large q would increase the expected degree of a vertex in the fused graph,
which is contrary to a true patch-graph, in which each vertex has roughly ν neighbors.
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As expected, the random walk spends most of its time inside the slow subgraph of the fused graph,

as indicated by the larger values of φ1 for the first (blue) N/2 vertices (see Figure 4.5-right). The

eigenvectors {φ2, φ8, φ16} of the fused graph exhibit large amplitude oscillations over the vertices

belonging to the slow subgraph (first half – shown in blue – of the plots in Figure 4.5-right), which

resemble those found in the eigenvectors associated with the slow graph (Figure 4.5-left). As k

increases, the eigenvectors φk of the fused graph become more and more similar to the eigenvectors

of the fast graph.

The impact of the eigenvectors φk on the commute time on the fused graph can be analyzed

by estimating the size of the terms

1

1 − λk

(
φk(xn)√

πn
− φk(xm)√

πm

)2

(4.18)

in the spectral expansion (4.3) of the commute time κ. We claim that κ(xn,xm) will be small if

both vertices xn and xm are in the fast subgraph, and that κ will be large if either vertex is in the

slow subgraph.

We can first estimate the size of φk(xn)/
√

πn−φk(xm)/
√

πm. We observe that the eigenvectors

φk for small values of k have large amplitude oscillations on vertices belonging to the slow subgraph,

but are relatively constant on the fast subgraph (see Figure 4.5-right). Therefore, for small values

of k, each term (4.18) will be small when xn and xm both belong to the fast subgraph (we also have

πn ≈ πm when two vertices belong to the same subgraph). Conversely, these terms will be large

when either xn or xm belongs to the slow subgraph. While this analysis of the size of the terms

(4.18) only holds for small values of k, it turns out that these are the terms that have the largest

influence in the expansion of the commute time (4.3). Indeed, the spectrum of the fused graph

decays slowly, and therefore the first few coefficients (1 − λk)−1 in the commute time expansion

(4.3) are much larger than the remainders, and therefore the terms (4.18) for small values of k will

provide the largest contribution in the expansion of the commute time.

We conclude that κ(xn,xm) is small when xn and xm belong to the fast subgraph, and

κ(xn,xm) is large when either vertex is in the slow subgraph. Furthermore, we expect that this
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Figure 4.6: κ′
F/κ′

S as a function of the dimension d′ of the embedding Φ, for several values of the
number of vertices N . Left: slow S and fast F graphs separately; right: slow and fast subgraphs
in the fused graph Γ∗.
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Figure 4.7: Histogram of κ′. Left: slow graph S and fast graph F . Right: κ′ for the three types of
transition between the subgraphs of the fused graph Γ∗. Error bars represent one sample standard
deviation using 25 realizations. Note the logarithmic scale on the horizontal axes.
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Figure 4.8: κ′ as function of N . Left: slow graph S and fast graph F . Right: κ′ for the three types
of transition between the subgraphs of the fused graph Γ∗.
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difference will be further magnified if we replace the exact expansion of κ in (4.3) by an approxi-

mation that only includes the first few values of k.

4.4.4.4 The truncated spectral expansion of the commute time increases the

contrast between the slow and fast subgraphs

We finally come to the heart of the section: the numerical computation of the average ap-

proximate commute time defined by

κ′ =
2

N(N − 1)

∑

n<m

‖Φ(xn) − Φ(xm)‖2. (4.19)

Because of (4.7), we expect that κ′ will be close to the true commute time κ. We compute κ′ for

the three graph models: slow, fast and fused. We generated 25 realizations of the fast and fused

graphs, and we estimated the expected commute time with the sample mean, given by κ′ in (4.19).

Figure 4.6-A displays κ′
F/κ′

S as a function of the number of terms d′ used in the embedding

(4.8), for several values of the number of vertices N , for the slow and fast graphs. Our theoretical

analysis of κF/κS , performed in Corollary 1, is only valid for large values of N . Nevertheless, our

numerical simulations indicate that for very low values of N , κF is already smaller than κS , since

all ratios are below one (see Figure 4.6-A). Furthermore, we see that this ratio is even smaller for

smaller values of d′. We observe similar results when the commute times κ′
S and κ′

F are computed

within the slow the fast subgraphs of the fused graph (see Figure 4.6-B). These results confirm that

the embedding Φ will further concentrate the vertices of the fast graph if d′ is chosen to be much

smaller than N . We have observed experimentally that choosing d′ ≈ ln(N) leads to the smallest

ratio of averages, not only on the graph models, but also on the general patch-graphs studied in

section 4.5.

The enslaving of the fused graph by the slow graph is clearly shown in Figure 4.7-B, where

the normalized histogram of κ′ is shown for the three types of transition between the subgraphs of

the fused graph Γ∗: slow → slow, fast → fast, and slow → fast. The histogram of the slow → fast

transition is very similar to the histogram of the slow → slow transition, clearly indicating that
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once the random walk is trapped in the slow subgraph, the presence of the fast subgraph does not

help the random walk escape from the slow graph. We also notice that the average of κ′ for the fast

→ fast transition is roughly two orders of magnitude smaller than the average of κ′ for the slow →

slow, or slow → fast transitions. In addition, the variance of each distribution is small enough to

limit the overlap between the distributions.

Figure 4.8 displays κ′ as a function of the number of vertices N , where d′ = ln N . Again, this

result confirms that the asymptotic analysis of the ratio κF/κS , performed in Corollary 1, actually

holds for very small values of N . Indeed, whether the slow and fast graphs are considered separately

(Figure 4.8-A), or are the components of the fused graph (Figure 4.8-B), the ratio κF/κS → 0 (note

the logarithmic scale). It is important to bear in mind that when analyzing images, N is typically

of the order of 106 and therefore our theoretical analysis will hold without any difficulty. Lastly,

we again note in Figure 4.8-B that the transitions slow → fast in the fused graph have the same

dynamics as the transition slow → slow.

4.5 Numerical experiments with synthetic signals

In this section we validate our theoretical results using synthetic signals. Each signal is the

realization of a stochastic process with a prescribed autocorrelation function. We study two types

of stochastic processes: one that generates signals that transition from low to high local frequency,

and a second one that yields signals with varying local smoothness. We argue that these signals

embody the types of local changes that are of fundamental importance in many areas of image

processing. For both classes of signals, we embed the patch-sets using Φ in (4.8). We study the

property of the embedding by quantifying the average commute time κ′, defined in (4.19) between

fast and slow patches, and we compare the numerical results with the theoretical predictions given

in section 4.4.
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4.5.1 The signals

We consider two types of models: a time-frequency signal model and a local regularity signal

model. Each model is characterized by an autocorrelation function. The autocorrelation func-

tion can be modified using a covariance parameter that controls the local frequency, or the local

regularity of the signal. We partition the interval [0, 1] into subintervals over which the covari-

ance parameter is kept constant. The covariance parameter alternates between two different values

creating subintervals of alternating local frequency, or alternating local regularity. The number

of alternations is chosen randomly according to a homogeneous Poisson process with intensity µ:

there are on the average µ+1 subintervals. A simpler version of this model has been used in [22] to

mimic the presence of edges in images. Unlike the model used in [22], we adjust the signal defined

on each subinterval so that the result is continuous on [0, 1]. In all experiments that we report

here we use µ = 3. The autocorrelation function associated with the time-frequency signal model

is given by

E(x(t)x(t + τ) = 2

(
1 + cos (2πτ)

2

)β

− 1, (4.20)

where τ ∈ [0, 1), and β ≥ 0. As the covariance parameter β increases, the range of frequencies

present in the signal also increases. Figure 4.9 displays a realization of this model where the signal’s

covariance parameter in (4.20) alternates four times between βS = 8, and βF = 256. See appendix

A.7 for more on generating a signal from the time-frequency signal model. The autocorrelation

function associated with the local regularity signal model is equal to that of fractional Brownian

motion, given by

E(x(τ1)x(τ2)) =
1

2

(
|τ1|2H + |τ2|2H − |τ2 − τ1|2H

)
, (4.21)

where H is the Hurst parameter. As H decreases, the local regularity decreases. A realization of

this model is shown in Figure 4.10 where the signal’s covariance parameter alternates four times

between HS = 0.9 and HF = 0.3. We use the method described in [2] to generate the fractional

Brownian motion.
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Figure 4.9: A realization of the time-frequency model. The low frequency portion (βS = 8) is shown
in blue; the high frequency portion (βF = 256) is shown in orange. There are four subintervals
(µ = 3).
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Figure 4.10: A realization of the local regularity model. The smooth portion (HS = 0.9) is shown
in blue; the irregular portion (HF = 0.3) is shown in orange. There are four subintervals (µ = 3).

4.5.2 Embedding the patch-graph

For each realization of a specific signal model, we construct a patch-set of N = 1024 maximally

overlapping patches. The patch size is given by d = 32 for the time-frequency model, and d = 16 for

the local regularity model. We compute the embedding Φ (4.8) and keep d′ eigenvectors φk. Figure

4.11 shows the patch-set associated with the realization of the time-frequency signal displayed in

Figure 4.9 before (left) and after (right) embedding. The scatterplot before embedding is computed

using the first three principal components. Figure 4.12 shows the patch-set associated with the

realization of the local regularity signal displayed in Figure 4.10 before (left) and after (right)

embedding. The fast patches of the time-frequency signal are the orange patches extracted from the

high frequency segments. The slow patches are the blue patches extracted from the low frequency

sections. Similarly, the fast patches of the local regularity signal are the orange patches extracted

from the irregular segments, and the slow patches are the blue patches extracted from the smooth



61

sections. For both signals, the fast patches are scattered across the space before embedding. After

embedding, the fast patches are tightly clustered. This visual impression is confirmed by computing

the mutual distance between patches after embedding, ‖Φ(xn) − Φ(xm)‖. In principle, we should

report the value of the Lipschitz ratio ‖Φ(xn) − Φ(xm)‖/‖xn − xm‖ to quantify the contraction

experienced through the mapping Φ. However, we have noticed that because the mutual distances

‖xn − xm‖ between fast patches is typically large (as explained in section 3.7), the Lipschitz ratio

ends up being small for fast patches. Therefore studying the size of the Lipschitz ratio associated

with Φ does not reveal whether the map concentrates the fast patches or not, but only indicates

that the sampling of the fast patches (in the patch-set) is coarse. For this reason we prefer to study

how ‖Φ(xn) − Φ(xm)‖ varies for pairs of slow and fast patches. Based on our theoretical analysis,

we expect that after the embedding, the mutual distance between fast patches will becomes much

shorter than the mutual distance between slow patches.

We point out that the eigenvectors φk used in the embedding Φ (4.8) are designed to have,

on average, small gradients (as measured along edges of the graph). Indeed, these eigenvectors

are also the eigenvectors of the graph Laplacian [20], and therefore minimize a Rayleigh ratio that

quantifies the average norm of the gradient of φk. Thus, if we further restricted our computation

of the commute times inside each subset of fast and slow patches to only those patches that were

connected by an edge in the graph, we would expect to see smaller values and little dependence

on whether or not the patch was fast or slow. However, since our theoretical analysis of section

4.4 is based on the average commute time between all vertices belonging to the fast or slow graph

models, we choose to compute the commute times between all patches, not just between patches

that are connected with an edge.

For each signal model, we compute the square root of the average approximate commute time

√
κ′ =

√
2

N(N − 1)

∑

n<m

‖Φ(xn) − Φ(xm)‖2 (4.22)

for a pair of patches, xn and xm, that are either both fast, or both slow patches. We study how κ′

varies as a function of the autocorrelation parameter that controls how irregular the fast patches
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Figure 4.11: Patch-set of the time-frequency signal (see Figure 4.9) before (left) and after (right)
embedding. The color-code matches the color used in the plot of the signal: blue = low frequency,
orange = high frequency.

Figure 4.12: Patch-set of the local regularity signal (see Figure 4.10) before (left) and after (right)
embedding. The color-code matches the color used in the plot of the signal: blue = smooth, orange
= irregular.

are. κ′ was computed using ten realizations of each signal model. The slow patches were generated

using βS = 8 and HS = 0.9. As before, we used N = 1024 and d = 32 for the time-frequency model

and d = 16 for the local regularity model. We observed that the overall shapes of the curves in

(4.13) is invariant under variation of the parameters (as along as the ratio of the patch length to

the average subinterval length remains less than 10%). The dimension d′ of the embedding used to
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Figure 4.13:
√

κ′ for slow (blue) and fast patches (orange) for the time-frequency model (left) and
the local regularity model (right) as a function of the “roughness” of the fast patches. The slow
patches were generated using βS = 8 (left) and HS = 0.9 (right).

compute κ′ was chosen so that (1−λk)−1 < 0.1(1−λ2)−1, for all k > d′ +1. Figure 4.13 shows
√

κ′

as a function of the frequency parameter (left), and smoothness parameter (right). We note that

as the signal exhibits more rapid, local changes (increasing βF , or decreasing HF), the associated

fast patches are increasingly concentrated (smaller ‖Φ(xn)−Φ(xm)‖) through the parametrization.

These experiments confirm that the theoretical analysis of section 4.4 can be applied to a general

patch-set constructed from realistic signals.

4.6 Conclusion

We have confirmed experimentally that embedding the fused graph using Φ shrinks the mutual

distance between vertices of the fast subgraph, effectively concentrating these vertices closer to one

another. As a result, the embedding helps divide the fused graph into the slow and the fast

subgraphs by concentrating the vertices of the fast subgraph away from the vertices of the slow

subgraph. Our analysis of the embedding is based on the fact that Φ approximately preserves the

commute time measured on the fused graph. Furthermore, we have demonstrated that a truncated

version of the commute time, κ′, is even more conducive to identifying vertices of the fast subgraph
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of the fused graph.

The implication of these results is that the embedding of the true patch-graph Γ using Φ

will concentrate the “anomalous” patches, which contain rapid changes in the signal, away from

the baseline patches. This concentration of the fast anomalous patches happens for values of the

embedding dimension d′ that are of the order of ln(N): this choice of d′ results in a low-dimensional

embedding of the patch-graph. Because the fast patches are more clustered after embedding, their

detection – for the purpose of detection of anomalies, classification, or segmentation – will become

much easier. Finally, we note that our theoretical analysis can be extended to a more general

context where patches are replaced by a vector of local features extracted from elements of a large

dataset. The only requirement is that the graph of features exhibit a geometry similar to the fused

graph Γ∗.



Chapter 5

Estimating seismic arrivals

5.1 Introduction

In this section, we propose a new method to analyze seismic time series and estimate the

arrival-times of seismic waves, which illustrates the ideas presented in chapters 3 and 4. We validate

our approach using a dataset of seismic events that occurred in Idaho, Montana, Wyoming, and

Utah between 2005 and 2006. Our approach outperforms methods based on singular-spectrum

analysis, wavelet analysis, and the short-term average to long-term average ratio (STA/LTA).

5.1.1 Estimation of arrival-times

Seismic waves arrive at recording stations as distinct bursts, or arrivals, corresponding to

different types of motion (e.g. compressional vs. shear) and different propagation paths through

the Earth (refracted, reflected, diffracted). Arrival-times of seismic waves are indispensable to the

determination of the location and type of the seismic event; the precise estimation of arrival-times

remains therefore a fundamental problem. This chapter addresses the problem of estimating the

timing of different seismic waves from a seismogram.

Several methods for estimating arrival-times use some variant of the classic current-value-to-

predicted-value ratio method (e.g., [4, 67, 28], and references therein). The current value is a short

term average (STA) of the energy of the incoming data, while the predicted value is a long term

average (LTA), so the ratio is expressed as STA/LTA. This ratio is constantly updated as new data

flows in, and a detection is declared when the ratio exceeds a threshold value. When the signal and
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the noise are Gaussian distributed, the STA/LTA method yields an optimal detector that strikes

the optimal balance between the false alarm rate, or “mispicks” [65] and the missed detections

rate [37, 12]. As demonstrated by [70], this theoretical model is unrealistic since seismic waves

are non-Gaussian. As a result the seismic waves should be characterized not just by their mean

and variance (as in STA/LTA), but also by higher order statistics (such as skewness and kurtosis).

These higher order moments have been used to detect the onset of seismic waves [74, 51, 39].

The performance of a detector can be improved by enhancing the signal transients relative to

the background noise. Several time-frequency and time-scale decompositions have been proposed for

this purpose (e.g., [97, 6, 95] and references therein). Advanced statistical methods can use training

data (in the form of seismograms labeled by an analyst). For instance, the software developed at

the Prototype International Data Center (Arlington, VA) is based on a multi-layer neural network

that uses labeled waveforms in order to predict the types of waves of unseen seismograms [94].

5.1.2 Problem statement

We are interested in detecting seismic waves and estimating the arrival-time of each wave.

We model the seismogram x(t) as a sum of two components

x(t) = b(t) + w(t), (5.1)

where w(t) represents a seismic wave arriving at time τ , and b(t) represents the baseline (or back-

ground) activity.

We assume that b(t) models the background noise. In contrast, we expect that w(t) will be a

fast oscillatory transient localized around the arrival-time τ (see Figure 5.1). Our goal is to detect

the seismic wave w(t), and estimate its onset τ . The difficulty of the problem stems from the fact

that there is a large variability in the shape and frequency content of the seismic waves w(t).

We tackle this question by considering the patch-set associated with the model (5.1). As

explained in section 5.2, baseline patches (or slow patches) that do not overlap with the seismic

wave w(t) and only contain the baseline signal b(t) become tightly clustered along low-dimensional
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curves. In contrast, arrival patches (or fast patches) that include portions of the seismic wave

w(t) remain at a large distance from one another, and are also at a large distance from the baseline

patches. The differential organization of the baseline and arrival patches in Rd is the first ingredient

of our approach.

This commute time parametrization (4.8) allows us to represent patches from Rd, where d is

of the order of 103 using only about d′ = 25 coordinates. Finally, the last stage of our approach

consists in training a classifier to detect patches containing seismic waves. The classifier uses the

low-dimensional parametrization of the patch-set (4.8).

In summary, the contribution of this chapter is a novel method to analyze seismograms and

estimate arrival-times of seismic waves. Our approach includes the following three steps:

(1) Construct the patch-sets associated with each seismogram;

(2) Compute the commute time parametrization using every patch;

(3) Construct a classifier which uses the commute time parametrization; detect the presence

of seismic waves and estimate the arrival-times.

5.2 Mutual distance between two patches

In the following, we assume that the seismogram is described by the model (5.1) and we

study the Euclidean distance between any two patches x(tn) and x(tm) extracted at times tn and

tm. We first consider the case where both patches come from the baseline part of the signal. In

this case, we assume w(t) = 0 over the intervals [tn, tn + d∆t) and [tm, tm + d∆t), and we have

‖x(tn) − x(tm)‖2 =
d−1∑

k=0

(b(tn + k∆t) − b(tm + k∆t))2 . (5.2)

If the baseline signal varies slowly, then we have |b(tn + k∆t) − b(tm + k∆t)| ≈ 0, (k = 0, . . . , d−1),

and therefore

‖x(tn) − x(tm)‖2 =
d−1∑

k=0

(b(tn + k∆t) − b(tm + k∆t))2 ≈ 0. (5.3)
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We now consider the case where one patch, x(tn) (without loss of generality), is part of a seismic

wave w(t), whereas the other patch, x(tm), comes from the baseline part. We have

‖x(tn) − x(tm)‖2 =

d−1∑

k=0

(w(tn + k∆t) + b(tn + k∆t) − b(tm + k∆t))2

=

d−1∑

k=0

w2(tn + k∆t) + 2

d−1∑

k=0

w(tn + k∆t) (b(tn + k∆t) − b(tm + k∆t))

+
d−1∑

k=0

(b(tn + k∆t) − b(tm + k∆t))2 .

Again, we can assume that for each k, |b(tn + k∆t) − b(tm + k∆t)| ≈ 0, and thus

d−1∑

k=0

w(tn + k∆t) (b(tn + k∆t) − b(tm + k∆t)) ≈ 0. (5.4)

As before, we have
∑d−1

k=0 (b(tn + k∆t) − b(tm + k∆t))2 ≈ 0 . We conclude that

‖x(tn) − x(tm)‖2 ≈
d−1∑

k=0

w2(tn + k∆t). (5.5)

The sum (5.5) measures the energy of the (sampled) seismic wave over the interval [tn, tn + d∆t).

Because the patch size, d∆t , is chosen so that w(t) oscillates several times over the patch (see

Figure 5.1), the interval [tn, tn + d∆t) is comprised of several wavelengths of w(t), and the energy

(5.5) is usually large. Finally, we consider the case where both patches contain part of the seismic

wave w(t) (see Figure 5.1),

‖x(tn) − x(tm)‖2 =

d−1∑

k=0

(b(tn + k∆t) − b(tm + k∆t))2 +

d−1∑

k=0

(w(tn + k∆t) − w(tm + k∆t))2

+ 2
d−1∑

k=0

(w(tn + k∆t) − w(tm + k∆t)) (b(tn + k∆t) − b(tm + k∆t)) .

If we assume that the baseline signal varies slowly over time, then we have

‖x(tn) − x(tm)‖2 ≈
d−1∑

k=0

(w(tn + k∆t) − w(tm + k∆t))2 . (5.6)

The sum (5.6) measures the energy of the difference between two overlapping sections of the seismic

wave w(t), sampled every ∆t (see Figure 5.1). In order to estimate the size of this energy, we

approximate the seismic wave with a cosine function (see Figure 5.1), w(t) = cos(ωt), where the
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Figure 5.1: The two patches (in red and in blue) contain part of the seismic wave w(t).

frequency ω corresponds to the peak of the short-time Fourier transform of w(t) around τ . In this

case, we have

w(tn + k∆t) − w(tm + k∆t) = cos {ω(tn + k∆t)} − cos {ω(tm + k∆t)}

= 2 sin {ω(tm − tn)/2} sin {ω [(tn + tm)/2 + k∆t]} ,

and the sum (5.6) becomes

d−1∑

k=0

{w(tn + k∆t) − w(tm + k∆t)}2 = 4 sin2 {ω(tm − tn)/2}
d−1∑

k=0

sin2 {ω [(tn + tm)/2 + k∆t]} .

(5.7)

The sum in the right-hand side of (5.7) can be written as

d−1∑

k=0

sin2 {ω [(tn + tm)/2 + k∆t]} =
d−1∑

k=0

cos2
{

ω
[
(tn + tm)/2 +

π

2ω
+ k∆t

]}
. (5.8)

The right-hand side of (5.8) is the energy of the cosine function sampled every ∆t on an interval

starting at (tn + tm)/2 + π/2ω of length d∆t (see Figure 5.1). As explained above, d∆t ≫ 2π/ω,

and thus the energy (5.8) is measured over several wavelengths and is therefore large. Finally, given

a patch starting at time tn, all patches starting at time tm, where tm = tn + (q + 1/2)2π/ω, for

some q = 0, 1, . . . will satisfy sin2 (ω(tm − tn)/2) = 1. We conclude that given a patch starting at

time tn, there are many choices of tm such that the sum in (5.7), and therefore the norm in (5.6),

are large.
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In summary, we expect the mutual distance between patches extracted from the baseline

signal to be small, while the mutual distance between baseline and arrival patches will be large.

Moreover, we also expect that two arrival patches will often be at a large distance of one another.

This organization between the seismic patches is similar to the type of organization between

fast and slow patches that is studied in chapter 4. Therefore, parametrizing the seismic patches

using (4.8) is expected to concentrate those patches that contain the seismic arrivals.

5.3 Normalization of the patch-set

We now consider the following question: if we want to use seismograms from different sta-

tions to learn the general shape of a seismic wave, how should we normalize the seismograms? The

magnitude of an earthquake, which characterizes its damaging effect, is defined as a logarithmic

function of the radiated energy [72]. The radiated energy can be estimated by integrating the

velocity associated with the displacement measured by seismograms [8]. A logarithmic normaliza-

tion would make it possible to account for the large variability in the energy and would allow us

to compare seismograms from different stations or from different events. We favor an equivalent

normalization that consists in rescaling each patch by it energy. More precisely, for each patch x(t)

at a fixed time t, we center the patch using (3.12), and then fix the Euclidean norm with (3.13).

5.4 Estimation of Arrival-Times of Seismic Waves

5.4.1 Learning the presence of seismic waves in the patch-set

Our goal is to learn the association between the presence of a seismic wave within a patch,

and the values of the patch coordinates. As explained before, we advocate a geometric approach:

we expect that patches will organize themselves on the unit sphere in Rd in a manner that will

reveal the presence of seismic waves. We represent all the patches with the coordinates defined by

Φ in (4.8). We then use training data (labeled by experts) to partially populate the patch-set with

information about the presence or absence of seismic waves. We combine the information provided
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by the labels with the knowledge about the geometry of the patch-set to train a classifier; this

approach is known as semi-supervised learning [18]. We then use the classifier to classify unlabeled

patches into baseline, or arrivals patches. The classification problem is formulated as a kernel ridge

regression problem [47]: for any given patch, the classifier returns a number between 0 and 1 that

quantifies the probability that a seismic wave be present within the patch.

We assume that Nl of the N patches have been labeled by an expert (analyst): for each of

these patches we know if a seismic wave was observed in the patch, and at what time. We construct

a response function f defined on the new coordinates, Φ(xn) ∈ Rd′ , and taking values in [0, 1],

f : Rd′ −→[0, 1] (5.9)

Φ(xn) −→f(Φ(xn)). (5.10)

The range [0, 1] is arbitrary: 0 is the absence of a response, while 1 is the maximum response. The

classifier decides that the patch xn contains an arrival if the response f(Φ(xn)) is greater than some

threshold ε > 0. The threshold ε controls the rates of false alarms and missed detections: a small ε

results in many false alarms but will rarely miss arrivals, and vice versa. We expand the response

function as a linear combination of Gaussian kernels in Rd′ ,

f(Φ(x)) =

Nl∑

j=1

βj exp
{
−‖Φ(x) − Φ(xj)‖2/α2

}
. (5.11)

The vector of unknown coefficients β =
(
β1, . . . , βNl

)
is computed using the training data. The

kernel ridge regression [47] combines two ideas: distances between patches are stored in the Gaussian

kernel matrix K, with entries Kn,m = exp
{
−‖Φ(xm) − Φ(xn)‖2/α2

}
, n,m = 1, . . . , Nl; and the

classifier is designed to provide the simplest model of the response in terms of the Nl training data.

Rather than trying to find the optimal fit of the function f to the Nl labeled patches, we penalize

the regression (5.11) by imposing a penalty on the norm of β [47]. This prevents the model (5.11)

from overfitting the training samples. The optimal regression is defined as the solution to the

quadratic minimization problem

‖r − Kβ‖2 + µβT Kβ, (5.12)
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where ‖ · ‖ is the Euclidean norm on RNl , and r =
(
r1, . . . , rNl

)T
is the known response for the Nl

labeled patches. The parameter µ controls the amount of penalization: µ = 0 yields a least squares

fit, while µ = ∞ ignores the data. For a given choice of µ, the optimal vector of coefficients [47] is

given by

β = (K + µI)−1r, (5.13)

where I is the Nl ×Nl identity matrix. In our experiments, the ridge parameter µ was determined

by cross-validation, and the same value, µ = 0.8, is used throughout. The Gaussian width α is

chosen to be a multiple of the average kernel distance,

α2 = C
(
average

xn,xm
‖Φ(xn) − Φ(xm)‖2

)
; (5.14)

for all experiments we choose C = 0.51.

5.4.2 Defining ground truth

5.4.2.1 Uncertainty in arrival-time

In order to validate our approach we need to compare the output of the response function

f , defined by (5.11), to the actual decision provided by an expert (analyst). The comparison is

performed for every patch being analyzed. Before we present the result of the comparison (see

section 5.5.2) we need to properly define the ground truth. The decision of the analyst is usually

formulated as a binary response: an arrival is present at time τi or not. We claim that this

apparent perfect determination of the arrival-time is misleading. Indeed, [36] argues that the origin

time and the arrival-time at a given station are, “for all practical purposes, random variables whose

distributions” depend on the quality of the seismic record and the training and experience of the

analyst detecting the arrivals. We formalize this intuition and model the arrival-time estimated by

the analyst as a Gaussian distribution with mean τi and variance hi. The parameter hi controls the

width of the Gaussian and quantifies the confidence with which the analyst estimated τi. Ideally,

hi should be a function of the inter-observer variability for the estimation of τi. In this work, we

propose to estimate the uncertainty hi directly from the seismogram. For each arrival-time τi, we
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Figure 5.2: Seismic traces xn (blue); estimated responses rn (red); arrival-times τi (black vertical
bars).

compute the dominant frequency ω of x(t) using a short-time Fourier transform. Let T = 1/ω be

the period associated with ω, we define the uncertainty hi as follows

hi =





2T/∆t if 2T/∆t < hmax,

hmax otherwise.

(5.15)

This choice of hi corresponds to the following idea: if the seismogram were to be a pure sinusoidal

function oscillating at the frequency ω (see Fig 5.1), then this choice of hi would guarantee that

we observe two periods (cycles) of x(t) over a time interval of length hi.

Finally, we define the true response rn at time tn to be the maximum of the Gaussian bumps

associated with the arrival-time times τi nearest to time tn,

rn = max
i

{
exp

(
−(tn − τi)

2/hi

)}
. (5.16)

Figure 5.2 displays two seismograms with different values for hi. In the top seismogram the first

two arrivals are very localized (small h1 and h2), whereas the third arrival corresponds to a lower

instantaneous frequency, and is therefore less localized (large h3). In the second seismogram (bot-

tom of Figure 5.2) the first two arrivals are very close to one another resulting in an overlap of the

Gaussians defining the response rn.
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5.4.2.2 Energy localization of seismic traces

Because we analyze seismic traces of very different quality, we need to find a way to quantify

these differences so we can assess the corresponding variability in the response of our proposed

methodology. It is well-known that variability in the estimation of arrival-times by an analyst is

less pronounced when a seismic trace contains very localized arrivals [90], hence we propose using

energy localization as our metric to categorize waveforms. We define the energy localization of a

given trace to be the average ratio of the energy of the seismic waves present in the trace over the

energy of the baseline activity. This is related to the STA/LTA ratio, but differs in that we form a

single statistic for an entire waveform rather than a transformed time series. For a given trace let

A be the subset of patches that contain arrivals, and B be the complement of A, i.e. the subset of

patches that contain only baseline activity. We define the energy localization by the ratio

S =

∑
A ‖xn‖2/|A|∑
B ‖xn‖2/|B| , (5.17)

where |A| and |B| are the numbers of patches in A and B, respectively. Figure 5.3 shows two seismic

traces with very different energy localizations (S = 26.0 vs. S = 1.3). Arrival-times assigned by

an analyst are represented by vertical bars, and STA/LTA processed time series are shown for

comparison.

5.4.3 Optimization of the STA/LTA parameters

For STA/LTA processing, we first apply a 0.8-3.5 Hz bandpass Butterworth filter to enhance

the SNR. Instead of using fixed window sizes, we adaptively optimize the window sizes. The optimal

sizes for the short and long windows were selected using a procedure similar to the procdeure used in

[65]. As in [65], the goal of the optimization is to minimize the number of false alarms (“mispicks”)

while reducing the number of missed detections (“highest accuracy”). We quantify this optimality

criterion with the Receiver Operating Characteristic (ROC) curve [47], a standard procedure in

statistics. The ROC curve is a plot of the true detection rate – which quantifies the accuracy of

the detector, as a function of the false alarm rate – which quantifies the rate of mispicks. In order
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A

B

Figure 5.3: Raw and filtered seismic traces with associated STA/LTA outputs. A: high energy
localization (S = 26.0) and B: very diffuse energy localization (S = 1.3). Analyst picks are
represented by bars.

to provide a summary of the entire curve, we compute the area under the curve: the closer the area

is to one, the better the accuracy of the dectector.

Different sizes were selected for the three levels of energy localization ratio S in the Rocky

Mountain data set. The optimal short window was selected in the range [1.6 s, 25.6 s] and the

optimal long window was selected in the range [3.2 s, 51.2 s]. There was no delay between the

windows. As in [65] we use part of the data to compute the optimal STA/LTA window sizes, and

we then use the remaining traces to evaluate the performance of STA/LTA. All the results that are

reported in the STA/LTA experiments were obtained after optimizing the parameters. We found
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Figure 5.4: Locations of the stations and events from the Rocky Mountain region.

that the optimal short/long window sizes were: 1.6/3.2 s, 1.6/51.2 s, and 12.8/25.6 s for the low,

medium, and high localization ratio S, respectively.

For the purpose of comparison, we normalized the STA/LTA output so that its maximum

value is one. The trace (A) in Figure 5.3 has a large energy localization, while the trace (B) has

a very low energy localization. The Butterworth filter is able to remove some of the irrelevant

low-frequency oscillations in (B) and yields a signal that can be processed by STA/LTA. We note

that the second arrival (Lg) in the first trace (A) is missed by the STA/LTA algorithm. We believe

that STA/LTA missed the Lg arrival because the interval between the two arrivals is shorter than

the LTA window length so the LTA cannot be reset properly. In other words, the primary arrival

is still in the LTA window when the secondary arrival moves into the STA window.

5.5 Results

5.5.1 Rocky mountain dataset

We validate our approach with a dataset composed of broadband seismic traces from seismic

events that occurred in Idaho, Montana, Wyoming, and Utah between 2005 and 2006 (see Fig-

ure 5.4). While the data set is small, it provides a set of wave propagation paths and recording

station environments that is broad enough to validate our new algorithm. Arrival-times have been

determined by an analyst. The ten events with the largest number of arrivals were selected for

analysis. In total, we used 84 different station records from ten different events containing 226
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labeled arrivals. Of the 226 labeled arrivals, there are 72 Pn arrivals, 70 Pg arrivals, 6 Sn arrivals,

and 78 Lg arrivals. The sampling rate was 1/∆t = 40 Hz. We consider only the vertical channel in

our analysis. To minimize the computational cost, patches are spaced apart by 40∆t (1 s).

5.5.2 Validation of the classifier

The performance of the algorithm varies as a function of the energy localization S, and

therefore we perform three independent validations by dividing the seismic traces into three homo-

geneous subsets: n1 = 27 traces with low energy localization (S < 3), n2 = 29 traces with medium

energy localization (3 ≤ S ≤ 18), and the remaining n3 = 28 traces with high energy localization

(S > 18).

For comparison purposes, we also processed the data set with the optimized STA/LTA, as

described in section 5.4.3.

Figures 5.5, 5.6, and 5.7 show twenty seven seismic traces that are representative of the three

energy localization subsets: high, medium and low, respectively. STA/LTA (magenta) always misses

the secondary wave for medium and high energy localizations, and often misses the secondary wave

at low energy localization level. Our approach (green) can detect all primary and secondary waves

at high and medium energy localization levels. At low localization levels, our approach sometimes

yields too early a detection.

For each subset s, (s = 1, 2, 3), we perform a standard leave-one-out cross-validation [47]

using ns folds as follows. We choose a test seismogram xtest(t) among the ns traces and compute

the optimal set of weights (5.13) for the kernel ridge classifier (5.11) using the remaining ns − 1

traces. Patches xn are then randomly selected from the test seismogram xtest(t) and the classifier

computes the response function f(Φ(xn)). The response of the classifier is compared to the true

response rn for various false alarms and missed detections levels. We repeat this procedure for each

possible test seismogram xtest(t) among the ns seismograms. Figure 5.8 details the cross-validation

procedure. We quantify the performance of the classifier using a Receiver Operating Characteristic

(ROC) curve [47]. The true detection rate is plotted against false alarm rate. We characterize each
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Figure 5.5: Example output from high-S partition. Seismic trace xn (blue); true response rn (red);
STA/LTA (magenta); classifier f(Φ(xn)) (green).
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Figure 5.6: Example output from medium-S partition. Seismic trace xn (blue); true response rn

(red); STA/LTA (magenta); classifier f(Φ(xn)) (green).
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Figure 5.7: Example output from low-S partition. Seismic trace xn (blue); true response rn (red);
STA/LTA (magenta); classifier f(Φ(xn)) (green).
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ROC curve by the area under the curve (the closer to one, the better).

5.5.3 Optimization of the parameters of the algorithm

The optimal values of the parameters were computed using cross-validation. This procedure

turned out to be very robust, since we used the same parameters for all experiments. The optimal

classification performance was achieved by choosing σ = ∞ and νNN = 32 in the construction of

the graph Laplacian. This is equivalent to setting the weights Wn,m on the edges to be 1, and

yields a graph that is extremely robust to noise. The influence of the patch size on the classification

performance can be found in a series of ROC curves in Figure 5.9. We observe in Figure 5.9 that

the STA/LTA algorithm performs best for seismograms with low energy localization.

We know that STA/LTA cannot trigger unless the energy level in the LTA window has

established a stable level before the signal comes in the STA window at a higher level. This is

always more problematic for secondary arrivals, a well-known problem for STA/LTA. For the mid

and high energy localization partitions, we observe that often the secondary arrivals either arrive

before the primary arrival has left the LTA window or before the energy level after the first arrival

has settled down (i.e. the secondary arrival is within the coda of the first arrival). Either way,

the LTA is too high for a trigger. This problem can be addressed by making LTA shorter, but

STA gets shorter too and the STA/LTA output is less stable. For seismic traces with low energy

localization our approach cannot compete with STA/LTA when the patch size drops below 6.4 s,

(d < 256). Of course, it is unfair to compare our approach using patches of only 3.2 s (d = 128)

when the optimized STA/LTA, typically uses a combination of 25.6 s for the long window and 1.6 s

for the short window. Indeed, as soon as the window size is larger or equal to 25.6 s (d ≥ 1024), our

approach outperforms STA/LTA. Interestingly, our approach does not benefit from using a much

larger patch size; when the patch size becomes 51 s (d = 2048) the scale of the local analysis is no

longer adapted to the physical process that we study.
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Algorithm 2: Cross validation of the classification

Input: Seismic traces, and the associated responses (rn).

Algorithm:

for s = 1 to 3 // for each subset of seismic traces

extract a total of N patches from ns distinct seismic traces.

compute new coordinates Φ(xn) of each patch xn i = 1, . . . , N

for j = 1 to ns // evaluate the classifier for each seismic trace j

build classifier using all patches except those from trace j

for all patches xj
n in trace j

compute classifier response f(Φ(xj
n))

for ε = εl to εu // populate the ROC curve using different thresholds to detect an arrival

if f(Φ(xj
n)) > ε and rn < ε0 then

declare false positive

else if f(Φ(xj
n)) < ε and rn > ε0 then

declare false negative

end if

end for

end for

record false positive and false negative rates for patches in fold j

end for

compute average false positive and false negative rate

end for

Output: area under the ROC curve.

Figure 5.8: Cross validation procedure.
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Figure 5.9: ROC curves for various values of the embedding dimension d at three levels of energy
localization.

Low S Partition Mid S Partition High S Partition

Figure 5.10: Scatter plot of patch-set through the map Φ (4.8), where d′ = 3. The color encodes the
presence (orange) or absence (blue) of an arrival within xn. The energy localization levels increases
from left to right.

5.5.4 So what does the set of patches look like?

To help us gain some insight into the geometric organization of patch space we display the

patches using some of the new coordinates Φ(xn). For the three subsets of patches (classified

according to the energy localization), we display in Figure 5.10 each patch through the map Φ

(4.8), where d′ = 3. The color of the dot encodes the presence (orange) or absence (blue) of an

arrival within xn. As the energy localization increases the separation between baseline patches

and arrival patches increases. This visual impression is confirmed using the quantitative evaluation

performed with the ROC curves (see Figure 5.9). Clearly the shape of the set of patches is not

linear, and would not be well-approximated with a linear subspace.
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5.5.5 Classification performance

We first compare our approach to the gold-standard provided by STA/LTA. The second stage

of the evaluation consists in quantifying the importance of the nonlinear dimension reduction Φ

defined by (4.8). To gauge the effect of Φ we replace it by two transforms: a wavelet transform

and a PCA transform. In both cases, we reduce the dimensionality of each patch from d to d′.

Wavelets have been used for a long time in seismology because seismograms can be approximated

with very high precision using a small number of wavelet coefficients (e.g., [5, 97, 42] and references

therein). On the other hand, we can also try to find the best linear approximation to a set of N

patches. This linear approximation is obtained using PCA (also known as the singular-spectrum

analysis [89]). The first d′ vectors of a PCA analysis yields the subspace that provides the optimal

d′-dimensional approximation to the set of patches.

5.5.5.1 STA/LTA ratio

As discussed previously in section 5.4.3, we implement STA/LTA processing with optimized

short and long window sizes and a Butterworth 0.8-3.5 Hz band pass preprocessing filter. An arrival

is declared when the output exceeds a threshold, which we vary to create the ROC curve.

5.5.5.2 PCA and wavelet representations of the patch-set

An orthonormal wavelet transform (symmlet 8) provides a multiscale decomposition of each

patch xn in terms of d coefficients. Many of the coefficients are small and can be ignored. In order

to decide which wavelet coefficients to retain, we select a fixed set of d′/2 indices corresponding to

the largest coefficients of the baseline patches. Similarly, we select the d′/2 indices associated to

the largest coefficients among the patches that contain arrivals. This procedure allows us to define

a fixed set of d′ wavelet coefficients that are used for all patches as in input to the ridge regression

algorithm. Similarly, we keep the first d′ coordinates returned by PCA.
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Table 5.1: Area under the ROC curve as a function of the patch dimension d and the reduced
dimension d′, at three different energy localization levels S. The red values correspond to the
largest area under the ROC curve for a given feature and dimension d′.

d STA/LTA Wavelet PCA Laplacian
d′ 25 50 25 50 25 50

Low S 64 – 0.53 0.53 0.51 0.55 0.53 0.53
128 – 0.55 0.49 0.52 0.51 0.52 0.52
256 – 0.52 0.47 0.51 0.54 0.54 0.57
512 – 0.53 0.50 0.61 0.61 0.62 0.64

1024 0.68 0.43 0.38 0.54 0.64 0.70 0.71
2048 – 0.45 0.39 0.55 0.48 0.61 0.62

Mid S 64 – 0.54 0.52 0.52 0.54 0.57 0.57
128 – 0.57 0.55 0.53 0.56 0.66 0.66
256 – 0.61 0.62 0.70 0.71 0.71 0.71
512 – 0.68 0.67 0.76 0.79 0.79 0.81

1024 0.68 0.77 0.76 0.81 0.84 0.86 0.86
2048 – 0.64 0.66 0.69 0.75 0.80 0.80

High S 64 – 0.56 0.62 0.65 0.65 0.72 0.67
128 – 0.68 0.69 0.78 0.73 0.80 0.79
256 – 0.72 0.70 0.77 0.84 0.88 0.87
512 – 0.74 0.79 0.73 0.85 0.90 0.90

1024 0.65 0.72 0.76 0.67 0.75 0.88 0.89
2048 – 0.51 0.49 0.57 0.67 0.76 0.74

5.5.5.3 Parameters of the classifier based on the PCA and wavelet representations

After applying a wavelet transform, or PCA, we use a ridge classifier (see section 5.4.1) to

detect arrivals. The parameters of the classifier are optimized for the wavelet and PCA transforms,

respectively. The Gaussian width α was again chosen to be a multiple of the average kernel distance

between any two patches (see (5.14)). The parameter C in equation (5.14) was set to C = 6.9 for

the wavelet parametrization, and C = 4.6 for the PCA parametrization. The ridge regression

parameter was the same for both wavelets and PCA and was equal to µ = 10−3.

5.6 Conclusion

Table 5.1 provides a detailed summary of the performance of our approach. For each energy

localization level (see section 5.5.2 for the definition of the subsets), we report the performance of

the different detection methods as a function of d (patch dimension) and d′ (reduced dimension).
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The performance is quantified using the area under the ROC curve (the ROC curves are shown

in Fig. 5.9); a perfect detector should have an area equal to one. The red values in the table

correspond to the most accurate detection rate for a given feature and dimension d′.

5.6.1 Effect of the patch size

As expected, the patch-based methods perform poorly if the patch is too small (there is not

enough information to detect the seismic wave) or too large (the information is smeared over too

large a window). The choice of the optimal patch size is dictated by the physical processes at stake

here, since the optimal size is the same for all methods, irrespective of the transform used to reduce

dimensionality. For high energy localization seismograms, the seismic waves are very localized and

therefore all algorithms perform better with smaller patches: 6.4 s (d = 256) or 12.8 s (d = 512)

instead of 25.6 s (d = 1024).

5.6.2 Effect of the transform used to reduce dimensionality

The experiments indicate that PCA outperforms a wavelet decomposition at every energy

localization level. Both PCA and the wavelet transform are orthonormal transforms that can be

understood in terms of a rotation of Rd. PCA provides the optimal rotation to align the patch-set

along the d′-dimensional subspace of best-fit. Finally, the nonlinear transformation Φ based on

the eigenfunctions of the Laplacian outperforms both PCA and wavelets. This clearly indicates

that the set of patches contains nonlinear structures that cannot be well approximated by the

optimal linear subspace computed by PCA. Interestingly, the results (not shown) are not improved

by applying a wavelet transform before applying the nonlinear map Φ (4.8) (see [76] for an example

of a combination of wavelet transform with a nonlinear map similar to Φ).

5.6.3 Dimension of the patch-set

Notice that the performance is not significantly improved when 50 coordinates are used

instead of 25. This is a result that is independent of the method used to reduce the dimensionality,
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and is therefore either (i) a statement about the complexity of the patch-set and about the physical

nature of the seismic traces, or (ii) a consequence of some mechanism similar to that described in

section 4.4.

As mentioned before, several studies have estimated the dimensionality of the low-dimensional

inertial manifold reconstructed from the phase space of the tremors of a single volcano. This di-

mensionality was found in most studies [26, 27, 49] to be less than five: a number much smaller

than our rough estimate of the dimensionality of the patch-set. Because the patch-set includes

several seismograms from different events measured at different stations, we expect the dimension-

ality of this set to be greater than the dimensionality of the phase space reconstructed from the

tremors of a single volcano measured at a single station. Yet, our study confirms that the combined

phase spaces associated with regional seismic waves remains remarkably low-dimensional. So, it is

possible our theoretical conclusions of section 4.4 may account for this behavior.



Chapter 6

Evaluation of fast methods for computation

6.1 Introduction

The commute time parametrization of the patch-graph, given in (4.8), entails two computa-

tional bottlenecks. The first computationally expensive procedure is computing nearest neighbors.

The second intensive computation is computing the largest eigenvalues λk and corresponding eigen-

vectors φk, for k = 1, 2, . . . , d′ of the N -by-N matrix D−1/2WD−1/2. This leads to the following

questions. First, how do we quickly compute nearest neighbors? Second, how can we efficiently

compute the eigenpairs when N is large? Third, if the size of the patch-set changes, do we need to

recompute the eigenpairs? In the following, we discuss some answers to these questions.

6.2 Computing ν nearest neighbors

As the number of points in a dataset gets large, the nearest-neighbor calculation used to

build the graph and the calculation of the eigenfunctions can dominate the computational cost.

A naive approach to the nearest-neighbor calculation requires O(N2) computations. Fortunately,

because we choose the number of nearest-neighbors ν = O(log(N)) (see chapter 4), the number of

nonzero entries in the N -by-N matrix D−1/2WD−1/2 is O(N log(N)). Consequently, computing

the nearest neighbors is of the same order. The cost of the ν nearest neighbor calculation can also

be decreased to subquadratic using spatial data structures as described in [48]. In practice, we

compute the nearest-neighbor information using the Approximate Nearest Neighbors Toolbox [64].
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6.3 Out-of-sample extension

Denote the set of N patches as X . When N is large, we compute the eigenpairs (λk, φk)

using a small subset of patches, which we denote as X ⊂ X. Then, we extend the eigenfunctions

to the remaining patches. When dealing with the eigenfunctions φk, this approach is also known

as the Nyström extension [33]. In this section, we introduce the Nyström extension in the context

of interpolation using radial basis functions (RBFs).

We assume that the patches in X are denoted by xi for i = 1, 2, . . . ,M and the remaining

N − M patches are denoted by x̄i for i = 1, 2, . . . , N − M . For now, let f represent the function

we wish to interpolate given the function values f(xi) = fi for each of the M patches in X.

Let k(xi,xj) be a symmetric positive semi-definite kernel. We consider the following model

for the RBF interpolant:

f̃(x) =

M∑

j=1

αjk(x,xj), (6.1)

where x could be any patch, and αj are coefficients to be determined. Evaluating (6.1) at the

patches xj for j = 1, 2, . . . M leads to the linear system of equations

f = Kα, (6.2)

where f = (f1, . . . , fM)T , α = (α1, . . . , αM )T , and K is M -by-M matrix with entries Ki,j =

k(xi,xj).

Since K is symmetric, we can write K = UΛUT , where U is an orthogonal matrix and Λ is

diagonal. That is, the kth diagonal entry of Λ, denoted by λ̃k, and the kth column of U, denoted

by uk, satisfy Kuk = λkuk.

If we assume that K is nonsingular, from (6.2) we obtain

α = UΛ−1UT f .

Now, assume that f = uk for some k ∈ {1, 2, . . . ,M}. Under these assumptions, it is easy to see

that α = λ̃−1
k uk. Using this fact, each eigenvector of K can be extended via (6.1) to the function
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ũk = (ũk(x̄1), . . . , ũk(x̄N−M ))T , defined on the N − M points as

ũk = BT (λ̃−1
k uk), (6.3)

where B is a M -by-(N − M) matrix with entries Bi,j = k(xi, x̄j). Equation (6.3) represents the

RBF interpolant of the eigenvectors of the M -by-M matrix K.

Because we are interested in computing the eigenvectors of the matrix D−1/2WD−1/2, we

choose the RBF kernel to be

k(xi,xj) =
exp(−‖xi − xj‖2/σ2)

(d(xi)d(xj))1/2
,

where d(xi) = Dii represents the ith diagonal entry of D. It follows that if we obtain the eigen-

functions uk defined on the subset of patches X by diagonalizing the M -by-M matrix K, then,

whenever λk 6= 0, equation (6.3) yields approximations to the eigenvector φk defined for all N

patches in X .

The authors [33] also propose that the approximation (6.3) actually diagonalize an approxi-

mation to a dense version of N -by-N weight matrix W defined in section 2.2. That is, the authors

consider all possible weights between patches, not just those between ν nearest neighbors. Hence,

let W̃ represent the approximation to a dense W. Associate the M points in the subset X with the

first M rows of the matrix W̃, and associate the N −M points not in the subset with the remaining

N − M rows of W̃. That is, row 1 ≤ i ≤ M of W̃ corresponds to xi, while row M < i ≤ N corre-

sponds to x̄i−M . It follows that we can write the M extensions, given in (6.3), on all N patches as

an N -by-M matrix

Ũ =




U

BTUΛ−1


 , (6.4)

where the kth column of Ũ equals ũ given in (6.3).

Instead of approximating the eigenvectors using columns of Ũ, we use columns of a different

matrix Ṽ, which “diagonalizes” the approximate W̃. Specifically, as shown in [33], we can write

W̃ = ṼΣṼT for a N -by-M matrix Ṽ satisfying ṼT Ṽ = I and a diagonal M -by-M matrix Σ if we
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choose

Ṽ =




K

BT


K−1/2ΨΣ1/2, (6.5)

where diagonal Σ and M -by-M unitary Ψ are chosen to satisfy

ΨΣΨT = K + K−1/2BBT K−1/2.

It follows that the kth column of Ṽ is an alternative approximation to φk.

6.3.1 Choosing the subset of patches

6.3.1.1 Method One - Random Selection

In typical implementations of the Nyström extension, the M points in the subset are either

fixed, or chosen with uniform probability from the original dataset [24, 33]. In the following, we

initialize the subset X with a single patch that is selected with uniform probability from the N

patches (i.e. with probability N−1). For k = 2, 3, . . . ,M , the kth point chosen to be in the subset

is selected with probability (N − (k− 1))−1 from the N − (k− 1) points that do not already belong

to the subset.

Selecting points in this way is highly efficient, but may betray the geometry of the data. For

instance, a dataset of interest may contain points sampled from a low-density region of the Rd. In

this case, one would prefer having the points from low-density regions belong to the subset of M

points, in order to better represent the true geometry of the original dataset using only the subset

of M datapoints. This notion of preserving the original dataset’s geometry as best as possible leads

us to explore the following procedure for selecting the subset in a geometrically meaningful manner.

6.3.1.2 Method Two - Geometric Selection

Inspired by the coloring algorithm of AMG [15, 88], we say that patch xi strongly depends

on xj if

Wi,j ≥ α max
k 6=i

Wi,k, (6.6)
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where α ∈ (0, 1). The condition (6.6) is satisfied if and only if

‖xi − xj‖2

maxk 6=i ‖xi − xk‖2
≤ α.

The subset X is chosen to be a minimal set of points such that any xi from the original dataset

strongly depends on at least one point xj in the subset. The idea is that relatively small distances

between xi and some of its ν-nearest-neighbors can be neglected. This criterion ensures that all

points xi have a relatively close neighbor that is part of the subset of patches, X, used to interpolate

from.

In effect, subsampling a set of patches in this way adds patches that to the subset X if they

are located in a region of Rd that has a relatively low density of patches because in such a region,

this patch has no other neighbors that it is strongly connected to. Thus, it must be included in the

subset X.

6.3.2 Numerical experiments

In this section, we investigate the performance of the extensions (6.4) and (6.5) using two

patch sets: one associated with the signal x(t) = sin(2πt), and another associated with the clown

image in Figure 6.2. We will call these signals the circle dataset and clown dataset, respectively.

For the circle, we extract patches using d = 2 and ∆t = 4−1, in order to produce a perfect circle

in phase space. The circle dataset exemplifies an ideal dataset, where points are equally spaced on

the underlying geometry. Note that there are 210 points in the circle dataset. For the clown data,

we extract 5-by-5 pixel patches, maximally overlapping in the image plane, leading to 212 patches.

6.3.2.1 Computing the weight matrix

Given a set of patches {xi}N
i=1, entries of the matrix W are computed in this section as follows.

First, the ν = 2 log(N) nearest neighbors are computed for each xi and the distances between xi

and its ν nearest neighbors are recorded. The minimum and maximum distances between xi and
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its ν nearest neighbors are used to define the kernel’s scale parameter σ−2 as

σ−2 =
log max ‖xi − xj‖2 − log min ‖xi − xj‖2

max ‖xi − xj‖2 − min ‖xi − xj‖2
. (6.7)

Using this value of σ−2, we set (W)i,j = exp(−‖xi−xj‖2/σ2) if xi is one of the ν nearest neighbors

of xj or if xj is one of the ν nearest neighbors of xi, otherwise, we set Wi,j = 0. For a fixed ν,

choosing σ−2 in this way maximizes

f(σ−2) = max
1≤i,j≤N

Wi,j − min
1≤i,j≤N

Wi,j.

In other words, choosing σ as in (6.7) will maximize the range of weights that we observe in the

weight matrix.

6.3.2.2 Comparing the methods for selecting the subsets to interpolate from

For both the circle and the clown datasets, we compute the random and geometric subsets

of patches X, as described in section 6.3.1. For the circle data, we set α = 0.9. For the roof and

clown data, we set α = 0.1. These choices of α lead to subsets X that contain roughly 10% of the

original set of patches X .

The two subsets X that we will interpolate from are shown for the circle and clown datasets

in Figures 6.1 and 6.2, respectively. Notice that geometric selection of the subset leads to nearly

uniformly separated patches in the circle dataset and patches in the clown dataset that are more

clustered around details in the image. Also notice that there are relatively little patches in the subset

that are extracted from the same smooth region of the image. We understand this as follows: The

smooth content of the image puts patches very close together in Rd, and when a patch containing

this smooth content is chosen in the subset using the geometric selection of section (6.3.1.2), the

other patches that are close in Rd and strongly depend on xn do not need to be included in subset

X.



94

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 6.1: The original circle dataset and each subsample: random subsampling on the right, and
geometric subsampling based on AMG coloring on the left.

Figure 6.2: Subsets of patches extracted from clown dataset. Right: Random selection of the
subset. Left: Geometric selection of the subset.

6.3.2.3 Comparing approximate eigenfunctions

Figure 6.3 shows the extension (6.4) that is obtained by simply interpolating, and the exten-

sion (6.5) that is obtained by enforcing the diagonalization constraint. When enforcing the diagonal-

ization constraint, we see increased accuracy. In addition, we see that the subset of patches X that
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is chosen using geometric selection visually leads to much more accurate approximations. Indeed,

in all our experiments, the random subset of patches leads to the least accurate approximations.

For this reason, we abandon choosing the subset of patches at random.

The times required to compute the eigenfunctions as a function of the subset size is given in

Table 6.1. To compute the same number of eigenvectors using the entire set of N patches requires

0.45 seconds for the circle data, and 51.0 seconds for the clown data. In addition, the error, as

measured using the 2-norm is also provided. The error between the extended eigenvectors and

those computed using all N patches is near machine precision for the circle dataset. For the clown

dataset, the error is 0.0013. Therefore, although we can reduce the time it takes to compute the

eigenvectors associated with the clown dataset by a factor of 10, the relative error is increased by

roughly a factor of 10.

In Figure 6.4, we see that the subset of patches chosen using geometric selection always

produce more accurate eigenvectors, as measured by the Euclidean norm of the residual, given by

‖(D−1/2WD−1/2 − λkI)ṽk‖2,

where ṽk represents the approximate eigenvector, and the matrices D ∈ RN×N , W ∈ RN×N and

eigenvalue λk are computed using all N patches in X.

In Figure 6.5, we demonstrate how the accuracy of the approximate eigenvectors depends on

the size of the subset X. Unsurprisingly, as M increases, the approximate eigenvectors become more

accurate. As before, using the approximation (6.5), which enforces the diagonalization constraint,

leads to more accurate approximations.
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Table 6.1: Relative error in Nyström extension associated with circle dataset (N = 210 patches),
and time required to compute. Time required to compute eigenvectors using N patches is 0.45
seconds.

M Relative Error Time Required (s)

50 6.97 × 10−2 0.03
150 2.94 × 10−5 0.27
250 2.24 × 10−10 0.71
350 3.29 × 10−10 1.70
450 4.82 × 10−11 3.54

Table 6.2: Relative error in Nyström extension associated with clown dataset (N = 212 patches),
and time required to compute. Time required to compute eigenvectors using N patches is 51.0
seconds.

M Relative Error Time Required (s)

81 0.0347 0.21
409 0.0325 4.3
1024 0.0311 86

6.4 The multi-level option

The out-of-sample extensions described above can be interpreted as prolongation in the con-

text of multigrid solvers [88]. This realization leads us to consider using multilevel techniques to

efficiently solve for the eigenpairs (λk, φk) when N is large. In this section, we report experiments

based on an implementation of an AMG-based eigensolver that is described in [52] in order to

obtain approximations to (λk, φk). This eigensolver iteratively refines its approximation to the first

K ≥ 1 eigenvectors φk.

Figure 6.6 shows the 2-norm of the residual for approximations of the first seven modes

obtained via the AMG-based eigensolver and a standard Lanczos eigensolver. We see that the

residual error in the AMG-based approximations associated with the circle data are nearly at

machine precision after 13 iterations. Figure 6.7 shows the evolution of the residual error as a

function of iteration. It is clear that just a few more iterations of the AMG V-cycle applied to the
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Figure 6.3: A subset of the extensions (6.4) and (6.5). Patches in the subset are indicated by black
dots overlaid on the eigenfunctions. Left: subset selected geometrically. Right: subset selected
randomly.
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Figure 6.4: The quality of the approximations of the set of eigenvectors as measured using the
2-norm of the residual. The black curve represent the residual error in the eigenvectors that are
computed using all N patches. Left: error in approximations associated with circle data. Right:
error associated with clown data.
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Figure 6.5: Residual errors when extending modes u1, . . . ,u7 from M datapoints to the N dat-
apoints. Left: extension given by (6.4), without enforcing diagonalization constraint. Right: ex-
tension given by (6.5), which enforces the diagonalization constraint. The subset of M patches is
chosen using geometric sampling. We choose shape parameter γ = 1 to produce the lowest errors
out of possible parameters in the set {0.1, 1, 10, 100}.

circle dataset will cause all seven approximations to reach machine precision, provided the conver-

gence rates do not change.

With the image patch datasets, the residual error does not reach machine precision, nor does

it decay as rapidly with each iteration. Figure 6.7 shows that all but the seventh mode of the clown
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Figure 6.6: Residual errors and angles between approximations. Top row corresponds to the circle
dataset. Middle row corresponds to the roof dataset. Bottom row corresponds to the clown dataset.
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Figure 6.7: The 2-norm of the residual error as a function of iteration count. Left: circle dataset.
Right: clown dataset.

dataset seems to converge.

6.5 Conclusion

Approximating the eigenvectors φk using the Nyström extension or using multilevel iterations

based on algebraic multigrid avoids the computational cost of typical eigenvalue problems, which

may require O(N2) or O(N3) computations, depending on which subspaces of the eigenspace are
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computed, and the sparsity of the matrix D−1/2WD−1/2.

We have demonstrated that the Nyström extension is more accurate when choosing the

subset of patches to interpolate from in a way that is aware of the underlying geometry. We also

demonstrated that the additional diagonalization constraint, presented in [33], also leads to a more

accurate extension, but at the cost of diagonalizing an M -by-M matrix.

Finally, despite the success of the eigensolver on simple datasets, presented in [52], we demon-

strated that the complexity of the geometry in the patch-set slows convergence of the approximate

eigenvectors to the true eigenvectors. This slow convergence may be avoided if Gauss-Seidel relax-

ation were swapped with Kaczmarz relaxation inside each iteration.



Chapter 7

Conclusion

In this thesis, we proved theoretical results that characterize the geometry of a signal or

image’s patch-set as points in Euclidean space, and as vertices of a graph. Our results establish that

a parametrization of a signal’s patch-set based on a random walk’s commute time between vertices

of the associated patch-graph is able to partition a signal’s patch-set by relatively concentrating

patches that exhibit rapid change, are well-separated, and inefficiently represented as points in Rd.

In addition, our experiments with real seismic data are encouraging, and suggest that our theoretical

conclusions of the previous chapters account for the success of diffusion-based parametrizations of

signal or image patch-sets.

We discuss parameter selection in section 7.1. In section 7.2, we point out some possible

extensions of our approach. In section 7.3, we discuss related work and connect our interpretation

with the diffusion interpretation of [80]. Finally, we discuss open questions in section 7.4.

7.1 Guides for selecting parameters

7.1.1 Choosing the patch size

In this work we are interested in the local behavior of the image, and therefore d should remain

of the order of what we consider to be the local scale. We also note that as d becomes large, the

number of available patches (N/d) becomes smaller, making the estimation of the geometry of the

patch-set more difficult, since patches now live in a high-dimensional space. Another consequence

of the “curse of dimensionality” is that the distance between patches becomes less informative for
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large values of d. If the original signal is oversampled with respect to the true physical processes

at stake, then one can coarsen the sampling of the patch-set in the signal domain. In practice,

it would be more advisable to coarsen the underlying continuous patch-set, which is a nontrivial

question.

7.1.2 Choosing edge weights

In general, two principles guide the choice of edge weights in the patch-graph. On the one

hand, patches that are very close should be connected with a large weight (short distance), while

patches that are faraway should have a very small weight along their mutual edge. This principle

is equivalent to the idea of only trusting local distances in Rd. Such a requirement is intuitively

reasonable if we assume that the patch-set represents a discretization of a nonlinear manifold in

Rd. In this situation, we know that when the points on the manifold are very close to another,

the geodesic distance is well approximated by the Euclidean distance. Conversely, because of the

presence of curvature, the Euclidean distance is a poor approximation to the geodesic distance

on the manifold when points are far apart. Because the only information available to us is the

Euclidean distance between patches, we should not trust large Euclidean distances.

On the other hand, as observed in Section 3.7, the fast patches, which contain rapid changes,

are all very far apart (large ρ2(xn,xm)). Therefore the probability that the random walk escapes

the fast patch xn and jumps to a different patch xm, which is given by

wn,m∑
l wn,l

=
e−ρ2(xn,xm)/σ2

∑
l wn,l

,

is always much smaller than the probability of staying at xn, which is given by

1∑
l wn,l

.

In order to avoid trapping the random walk at a fast patch, we “saturate” the distance function

by choosing σ to be very large. In this case, for all the nearest neighbors xm of xn, we have

wn,m ≈ 1, and the transition probability is the same for all the neighbors, Pn,m ≈ 1/ν. This
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choice of σ promotes a very fast diffusion of the random walk locally on the patch-graph. We

note that choosing a large σ may be avoided if self-connections are not enforced (i.e. wn,n = 0).

However, self-connections are a necessary technical requirement to prove that the Markov process

is aperiodic, which is required to prove the equality (4.4) [23].

We note that choosing σ to be very large does not entirely obliterate the information provided

by the mutual distance between patches. Indeed, a metric ρ is used to select the nearest neighbors

of each patch, and therefore allows us to define a notion of a local neighborhood around each patch.

Choosing σ to be very large forces a very fast diffusion within this neighborhood, irrespective of

the actual distances ρ. Alternatively, we could consider choosing σ to vary adaptively from one

neighborhood to another. The parameter σ could be small when patches are extremely close to one

another, while σ could be large when the patches are at a large mutual distance of one another.

This notion is the foundation of the self-tuning weight matrix, which adjusts its weights based on

a point’s local neighborhood [59].

7.2 Extensions and generalizations

In general, the patch-set of an image consists of more than two homogeneous subsets. For

example, one could partition an image patch-set into uniform patches, edge patches, and texture

patches. Our experience with a generalization of the time-frequency signal model from section 4.5

indicates that we can still separate the patches when the signal is composed of up to four different

local behaviors that are specified by four different values of the parameter in the autocorrelation

function (see Figure 7.1).

Finally, although we consider a graph whose vertices are patches from a time series or image,

the core of our assumptions is about the structure of the graph itself — the coherence between

“slow vertices” of the graph may be a consequence of something more general than simply temporal

or spatial coherence in the time series or image. For example, if vertices of a graph represent sites

on the internet and edges exist between websites with similar content, then the coherence in the

daily news across different reporting websites may lead to a geometry that is similar to the slow
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Figure 7.1: The top two plots show two realizations from a generalization of the time-frequency
signal model of section 4.5. The four colors correspond to four covariance parameters, which creates
fast patches with various degrees of local change. We see that the “fastest” patches (orange and red)
are those that are most concentrated in the bottom two plots, which show the patch-set mapped
through Φ in (4.8), using d′ = 3.

graph’s geometry. Our theoretical conclusions, therefore, can be extended to the parametrization of

any graph whose geometry is similar to the assumed form of the patch-graph’s geometry, regardless

of where it originates.

7.3 Related work

Diffusion on the patch-graph has proven useful in texture analysis/synthesis [56], multi-modal

image registration [92], super-resolution [71], and denoising [16, 81, 83]. These works argue that the

graph-based perspective is useful based on numerical experiments using several images. In addition,
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the works [40, 13, 98, 79, 60, 53] also provide empirical evidence that a graph-representation of a

time series can be useful for understanding the underlying dynamical system which generated the

data.

We go beyond providing empirical evidence, and theoretically justify the utility in a graph-

based approach for detecting rapid change in the underlying signal. We note that the work [80] also

offers a theoretical explanation to the success of a graph-based approach for removing noise from

a signal, and so it is interesting to contrast their work with ours. As described in [80], Singer et

al., treat the matrix P as a filter, which acts on an N -dimensional column-vector-representation of

the signal. The matrix-vector multiply is regarded as evolving the diffusion process on the patch-

graph for a time-step on the order of σ. Their results rely on the convergence of a scaled P to the

backward Fokker-Planck operator, and the special form of this operator and its eigenfunctions when

the signal is either a one-dimensional constant perturbed by Gaussian noise, or a one-dimensional

step function also contaminated by Gaussian noise.

Besides the fact that we consider a class of signals that is more diverse than one containing

noisy constants or step functions, the main difference between our analysis and [80] is that the

convergence of P to the backward Fokker-Planck operator relies on both N → ∞ and σ → 0,

while our results rely on a ν nearest neighbor graph and large σ (See section 7.1) and requiring

just N → ∞. We also note that Singer et al. study the mean first-passage time between patches

extracted from the noisy step function. The mean first-passage time is derived from a diffusion that

is intimately related to the random walk, which is used to define the commute time. Singer et al.

explain the existence of a large mean first-passage time between patches extracted from either side

of the step function’s discontinuity using an energy argument. In particular, they argue that a high

density of patches is associated with a lower potential energy, and, consequently, it will take longer

for a random process to exit the well with such a low potential. Finally, because our assumptions

are more qualitative than technical, our results are not limited to patches of size d = 1, as are the

results in [80].

The energy argument in [80] adds an interesting interpretation to our analysis. Following the
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energy perspective, the slow patches can be thought of as points sampled from a probability density

function P defined on Rd that has most of its mass localized in a small region. This localization

leads to a potential U = − log P with a deep, narrow well that would be difficult for a process to

exit from. In some sense, this argument agrees with our findings that the average commute time

between slow patches is very large, and thus, the random walker would spend relatively more time

in portions of the patch-graph corresponding to the slow patches before jumping to a patch that is

temporally far away.

From a more general perspective, this work presents an investigation into the diffusion pro-

cess on the different models graphs from section 4.4.2. The works [68, 85, 10, 63] also focus on

characterizing graphs or networks using a diffusion process. These works are motivated by phys-

ical problems such as transport in disordered media, neuron firing, or energy flow on power-grids

instead of applications in signal analysis. Nevertheless, these works also characterize graphs using

the (mean) first-passage time.

7.4 Open questions

First, although we obtained estimates for average commute times in the fast and slow graph

models considered separately, it is desirable to obtain similar estimates when each is considered part

of the fused graph model. In particular, it would be interesting to understand how the commute

time between vertices coming from distinct components of the fused graph model would behave as

a function of N and L. Indeed, Figure 4.6 suggests that there are likely extensions of our results to

the commute times on the fused graph. Also, it would be interesting to understand these results

as a function of the separation between the components, q.

Finally, we point out that the upper bound on κF is increasing with L even though we

expect that the commute time between points of F(N, p) would decrease as L increases. The

reason for this apparent inconsistency is that the proof of (4.16) relies on the fact that the effective

resistance between the two terminals of the associated electrical circuit is bounded from above by

their geodesic distance on the graph [17]. A more effective inequality that could improve the upper
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bound (4.16) relies on knowing the number of paths s of length at most l between the terminal

nodes of the circuit. If we knew this distribution, then we could use the fact that the commute

time is bounded from above by a constant times the ratio l/s [17], which would decrease the upper

bound in (4.16).
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Appendix A

A.1 Proof of the lemma on the geometry of phase space

We will construct a matrix F : Rd → Rd−p with x(t) in its nullspace. The matrix F will have

entries that only depend on the roots of the ODE’s characteristic equation. Furthermore, we will

prove that F has full rank, and therefore the rank-nullity theorem asserts that the nullspace of F

has dimension p.

Introduce the matrix

Vp×d =




1 er1∆t er12∆t · · · er1(d−1)∆t

1 er2∆t er22∆t · · · er2(d−1)∆t

...

1 erp∆t erp2∆t · · · erp(d−1)∆t




.

Now, observe that if d = p, then

det Vp×d =
∏

1≤i<j≤p

(erj∆t − eri∆t).

Therefore, Vp×pn = 0 has only the trivial solution. Moreover

dim(ker(Vp×(p+k))) = k.

Now, define n∗ = (n∗
1, . . . , n

∗
p+1)T ∈ Rp+1 as a unit vector spanning the one-dimensional nullspace

of Vp×(p+1) and use its entries to populate rows of the (d − p)-by-d matrix
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F(d−p)×d =




n∗
1 · · · n∗

p+1 0 0

0 n∗
1 · · · n∗

p+1 0

. . .

0 0 n∗
1 · · · n∗

p+1




. (A.1)

Observe that we can write the ith entry of the matrix-vector product F(d−p)×dx(t) as

(
F(d−p)×dx(t)

)
i

= n∗
1 x(t + (i − 1)∆t) + n∗

2 x(t + i∆t) + · · · + n∗
p+1 x(t + (i + p − 1)∆t)

= n∗
1




p∑

j=1

αje
rj(t+(i−1)∆t)


+ · · · + n∗

p+1




p∑

j=1

αje
rj(t+(i+p−1)∆t)




=

p∑

j=1

(
n∗

1 + n∗
2 erj∆t + · · · + n∗

p+1 erjp∆t
)

αj erj(i−1)∆t erjt.

The inner sum vanishes by construction of n∗. It follows that Fx(t) = 0 for all t. Finally,

it is clear that F(d−p)×d has linearly independent rows, hence, F(d−p)×d is full rank. Finally, the

rank-nullity theorem asserts that the nullity of F(d−p)×d is p.

A.1.1 Proof of Corollary 1 — constituent frequencies

Using complex exponentials, it is clear that x(t) is solution to a differential equation of the

form (3.5) of order 2K with characteristic equation
∏K

k=1(r − i ωk)(r + i ωk), where i =
√
−1.

Application of Proposition 1 completes the proof.

A.1.2 Proof of Corollary 2 — local approximations

Let Q2 be the orthogonal projection onto the p-dimensional subspace containing solutions to

(3.5). It follows that the minimum Euclidean distance between the trajectory and the subspace is

given by

‖(I − Q2)x(t)‖ =

∥∥∥∥∥(I − Q2)

(
p∑

i=1

biyi(t) + e(t)

)∥∥∥∥∥ ,

where yi(t) = (yi(t), . . . , yi(t + (d − 1)∆t)T is the delay-coordinate embedding of yi(t), e(t) =

(e(t), . . . , e(t + (d − 1)∆t)T is the delay-coordinate embedding of e(t), and bi are expansion coeffi-
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cients. Since Q2yi(t) = yi(t), and since the operator norm of the orthogonal projection (I−Q2) is

at most one, we have that

‖(I − Q2)x(t)‖ = ‖(I − Q2)e(t)‖

≤ ‖e(t)‖.

A.2 A possible direction on the conjecture on the dimensionality of image

patch-sets

We begin by thinking of the patch p(x, y) (defined in (3.8)) as a vector in Rd2

. As in the

proof of Appendix A.1, our goal is to construct a matrix F : with x(t) in its null-space, and then

show that the rank of this matrix is d2 − pq. The difficulty lies in proving the matrices rank, but

we will describe its construction.

Let the characteristic equation of the ODEs (3.10) and (3.11) be given by

ΞX(r) =

p∏

k=1

(r − λk), and ΞY (r) =

q∏

j=1

(r − µj),

respectively. It follows that the solutions can be written as

X(x) =

p∑

k=1

αke
λkx, and Y (y) =

q∑

l=1

βle
µly,

where the coefficients αk and βj are chosen to satisfy initial or boundary conditions.

We will write a vector v ∈ Rd2

as a matrix with entries vij:

v =




v11 v12 . . . v1d

v21 v22

. . .

vd1 vd2 . . . vdd




.

It follows that if we also regard the patch p(x, y) as a vector, then the inner product between

p(x, y) and v can be written as

〈p(x, y),v〉 =

d∑

j=1

Y (y + (j − 1)∆y)

d∑

i=1

vijX(x + (i − 1)∆x).
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Observe that
d∑

i=1

vijX(x + (i − 1)∆x) =

p∑

k=1

(
d∑

i=1

vije
λk(i−1)∆x

)
eλkx.

So

〈p(x, y),v〉 =

d∑

j=1

Y (y + (j − 1)∆y)

p∑

k=1

(
d∑

i=1

vije
λk(i−1)∆x

)
eλkx. (A.2)

An equivalent argument where the roles of X(x) and Y (y) are switched yields

〈p(x, y),v〉 =
d∑

i=1

X(x + (i − 1)∆x)

q∑

l=1




d∑

j=1

vije
µl(j−1)∆y


 eµly. (A.3)

Now, consider the matrices

Vp×d =




1 eλ1∆t eλ12∆t · · · eλ1(d−1)∆t

1 eλ2∆t eλ22∆t · · · eλ2(d−1)∆t

. . .

1 eλp∆t eλp2∆t · · · eλp(d−1)∆t




,

and

Wq×d =




1 eµ1∆t eµ12∆t · · · eµ1(d−1)∆t

1 eµ2∆t eµ22∆t · · · eµ2(d−1)∆t

. . .

1 eµq∆t eµq2∆t · · · eµq(d−1)∆t




.

Note that if d = p, then

detVp×p =
∏

1≤i<j≤p

(eλj∆x − eλi∆x),

and if d = q, then

det Wq×q =
∏

1≤i<j≤q

(eµj∆y − eµi∆y).

Because the roots are simple by assumption, the matrices Vp×p and Wq×q are full rank. Moreover,

the nullspaces of the matrices Vp×(p+1) and Wq×(q+1) are one-dimensional.

We define v∗ = (v∗1 , . . . , v
∗
p+1)T ∈ Rp+1 as a unit vector spanning the one-dimensional null-

space of Vp×(p+1), and w∗ = (w∗
1, . . . , w

∗
q+1)T ∈ Rq+1 as a unit vector spanning the one-dimensional
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null-space of Wq×(q+1). It follows that we can use v∗ and w∗ to make the inner sums of the inner

products (A.2) and (A.3) vanish. Using the same construction of F as in Appendix A.1, we would

obtain a matrix F of size d(d− p) + d(d − q). The factors (d − p) and (d − q) are analogous to the

size of the matrix in one-dimension; The factor of d accounts for the number of one-dimensional

slices of the patch that we can take in the horizontal direction.

Although an analytic proof seems intractable, numerical and symbolic experiments indicate

that the resulting matrix always has rank d2 − pq. This would suggest the nullspace has dimension

pq, which would complete the proof.

A.3 Relating mean-subtraction to local-mean-oscillation

Assume that x(t) is locally integrable and define the local mean of x(t) over the interval

J0 = {τ ∈ R : |t − τ | < ǫ0} as

x(t) =
1

2ǫ0

∫ t+ǫ0

t−ǫ0

x(θ)dθ.

The local-mean-oscillation of x(t) on J0 is defined as

Lx,J0
(t) =

1

2ǫ0

∫ t+ǫ0

t−ǫ0

|x(τ) − x(t)| dτ. (A.4)

We will show that at each fixed time t, the minimum distance between the trajectory x(t)

and the subspace spanned by the vector (1, 1, . . . , 1)T ∈ Rd is related to the local-mean-oscillation

of the signal on the set J1 = {τ : t ≤ τ ≤ t + (d − 1)∆t}. Let xk(t) = x(t + (k − 1)∆t) for

k = 1, 2, . . . , d. Approximating (A.4) using the composite midpoint rule for integration over the set

J1 with nodes at times tk = t + (k − 1)∆t for k = 1, 2, . . . , d leads to the estimate

L̃x,J1
(t) =

1

d

d∑

k=1

∣∣xk(t) − x̃(t)
∣∣ , (A.5)

where x̃(t) = 1
d

∑d
j=1 xj(t).

Now, define Q0 as the orthogonal projection of Rd onto the subspace spanned by the constant

vector (1, 1, . . . , 1)T ∈ Rd so that Q0x(t) = x̃(t)(1, 1, . . . , 1)T =
(

1
d

∑d
j=1 xj(t)

)
(1, 1, . . . , 1)T .
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Finally, observe that we can write

L̃x,J1
(t) = 1

d〈x(t) − Q0x(t),v〉,

where 〈·, ·〉 is the Euclidean inner product, and v ∈ Rd is a vector whose kth entry is given by

vk = sign
(
xk(t) − x̃(t)

)
∈ {±1}.

It follows that

L̃x,J1
(t) =

1

d
〈x(t) − Q0x(t),v〉

≤ 1

d
‖x(t) − Q0x(t)‖‖v‖

=
1√
d
‖x(t) − Q0x(t)‖,

where the second inequality follows after application of the Cauchy-Schwartz inequality. Hence,

the Euclidean distance ‖x(t) − Q0x(t)‖ can be thought of as an approximation that always over-

estimates
√

d factors of an estimate of the local-mean-oscillation of x(t) on the set J1.

A.4 A note on the frequency content in a patch after normalizing

In this section, we consider normalizing a patch by subtracting away its mean, or by fixing

its ℓ2 norm. We will demonstrate in what sense these normalizations will preserve frequency

information in the patch-set.

Let xj(t) = x(t + j∆) and let the mean of the coordinates defining the trajectory at time t

be x(t) = 1
d

∑d−1
j=0 xj(t). At a fixed time tn, x(tn) = xn is average value in a patch, and we can

interpret this as a convolution of discrete sequences (xn ∗ hn), where hn is the impulse response

defined by

hn =





1
d if n ∈ {0, 1, 2, . . . , (d − 1)},

0 else.

The associated frequency response is given by

ĥω =
1 − e−idω

d(1 − e−iω)
.
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Figure A.1: The magnitude of the frequency response of an averaging filter for various patch sizes
d. The blue, red, yellow, and green curves correspond to the parameter d = 2, 4, 6, 8, respectively.

The magnitude of ĥω is given in Figure A.1 for d ∈ {2, 4, 6, 8}. As d increases, the convolution

passes lower frequencies and attenuates higher frequencies. Note that frequencies ω ≥ π are aliased

to ω′ = ω−π. Consequently, the sequence xn preserves the low-frequency information in the patch

xn. If we introduce x = (xn, . . . , xn) ∈ Rd, then the difference

xn − xn

resembles xn with low-frequency global trends removed and high-frequency information preserved.

This is helpful, since we suspect local irregularities in x(t) to be characterized by rapid frequency

variations (equivalently, large magnitude derivatives).

Now, introduce the function

(s(t))2 =
1

d

d−1∑

j=0

(xj(t) − x(t))2,

and let x̃j(t) = (xj(t) − x(t)). The Fourier transform of the ratio x̃j(t)/s(t) is given by

(̂
x̃j

s

)
(ω) = (̂x̃j s̃)(ω) =

(
̂̃xj ∗ ̂̃s

)
(ω),

where s̃(t) = (s(t))−1. It follows that the frequency content in the ratio is determined by convolving

the frequency content of x̃j(t) with the frequency content of s̃(t), which also resembles filtering.



122

Therefore, if s(t) is sufficiently differentiable, then the Fourier Transform of s̃(t) will be localized

around the origin, and the frequency content in the ratio x̃j(t)/s(t) can be approximated as

(
̂̃xj ∗ ̂̃s

)
(ω) ≈

(
̂̃xj ∗ δ

)
(ω) = ̂̃xj(ω).

Hence, the frequency content in each component function x̃j(t) will be preserved when we normalize

by dividing by the standard deviation of values in a local temporal neighborhood.

A.5 The connectedness of the fast graph model

It is necessary that the fast graph F(N, p) be connected for any of the theory behind the

spectral representation of the commute-time parametrization to hold. To ensure that the probability

of F(N, p) being disconnected will vanish as N gets large, we must choose Np > log N [30]. Since p

is defined as a function of L in (4.12), any requirement on p ultimately constrains L. First, because

the maximum degree of a vertex in S(N,L) is 2L + 1, according to (4.10), we require

2L + 1 ≤ N.

Manipulation of this inequality leads to

L + 1

N
≤ 1

2
+

1

2N
.

We assume that N ≥ 2, so that

L + 1

N
≤ 3

4
.

It follows that
(

2 − L + 1

N

)
≥ 5

4
> 1.

Therefore, rewriting (4.12) and using the last inequality we have

p =
L

N − 1

(
2 − L + 1

N

)

>
L

N

(
2 − L + 1

N

)

>
L

N
.
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Therefore, choosing L = c log N for some c > 1 ensures that Np > log N , and consequently, the

probability of F(N, p) being disconnected approaches zero as N approaches infinity.

A.6 Bounding the commute-times in the graph models

A.6.1 Proof of the lower bound on the average commute-time in the slow graph

Before presenting the proof, we discuss two alternative approaches for determining a lower

bound that we do not pursue because of their apparent difficulty. These approaches are based on

the special structure of the weight matrix associated with the slow graph model. In particular,

because the weight matrix is Toeplitz, one may try to analytically obtain the eigenvectors and

eigenvalues used in the spectral representation of the commute-time (4.3), or easily solve the linear

system that results when performing one-step analyses. We now point out why we avoid such

approaches.

First, consider performing one-step analyses [55] in order to compute the commute-time as a

sum of hitting times η(xn,xm) and η(xm,xn). It is well known that the hitting time satisfies the

equation

η(xn,xm) = 1 +

N∑

k=1

(P)nkη(xk,xm),

where (P)nk is (n, k) entry of the probability transition matrix P introduced in section 4.2. For

fixed m ∈ {1, 2, . . . , N}, one would solve the above system for the unknowns η(xn,xm), where

n ∈ {1, 2, . . . ,m− 1,m + 1, . . . , N}, subject to the condition that η(xm,xm) = 0. Then, one would

have to solve another linear system, where the roles of xn and xm are reversed. In total, one would

have to solve ⌈N/2⌉ distinct linear systems, due to the symmetry of the slow graph. We do not use

one-step analyses because of the large number of matrices that must be considered. Notice that,

for nodes xn that are not connected directly to xm, the coefficients of the linear equations defining

η(xn,xm) will have counterparts in the matrix

D−1/2(I − D−1/2WD−1/2)D1/2.
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This observation is additional motivation for expressing the commute-time using the spectral de-

composition of D−1/2WD−1/2, rather than solve every linear system associated with one-step

analyses.

Now, consider computing the eigenvectors and eigenvalues used in the spectral representa-

tion of the commute-time, defined in (4.3). Because the matrix D−1/2WD−1/2 is Toeplitz, and

not circulant, we cannot, in general, diagonalize it with the Fourier transform when N is finite.

As an alternative, one would have to approximate D−1/2WD−1/2 with sequence of circulant ma-

trices. Then, one could obtain some handle on the asymptotic properties of the eigenvectors and

eigenvalues. We do not take this approach because it again requires considering so many different

matrices. Furthermore, we would like to obtain estimates for finite N . As another alternative, one

might try to approximate the slow-graph as a (2L + 1)-regular ring-lattice, which has a circulant

weight matrix. Then, one could argue that the commute-times on the ring-lattice are less than

the commute-times on the slow-graph, thereby obtaining a lower bound. Although such an ap-

proach would provide analytic expressions for λk and φk used in the spectral representation of the

commute-time expansion, we do not take this approach because the terms become so complicated

that it appears the best lower bound we can obtain is the trivial lower bound given by

1

2

(
1

πn
+

1

πm

)
≤ κ(xn,xm),

where we have used orthogonality of the φk, and the fact that (1−λk)−1 ≥ 1/2. Since πn = N−1 on

the regular ring-lattice, the left hand side grows like N , which is not fast enough to prove Corollary

1.

In light of the above difficulties, we consider a third approach.

In order to compute a lower bound on the average commute time, we consider a fixed pair

of vertices in the slow graph, xn0
and xm0

, and compute a lower bound on the commute time

κ(xn0
,xm0

). We can then compute the average of this lower bound over all the pairs of vertices.

To obtain the lower bound on κ(xn0
,xm0

) we use a standard tool to obtain lower bounds

on commute time: the Nash-Williams inequality [57]. The Nash-Williams inequality is usually
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formulated in terms of electrical networks. We prefer to present an equivalent formulation that is

directly adapted to our problem. We first introduce the concept of an edge-cutset.

Definition 11. Let V1 and V2 be two disjoint sets of vertices. A set of edges E is an edge-cutset

separating V1 and V2 if every path that connects a vertex in V1 with a vertex in V2 includes an edge

in E.

Given a weighted graph, which may contain loops, we define a random walk with the proba-

bility transition matrix Pn,m = Wn,m/Dn,n. Let xm0
and xn0

be two vertices. The commute time

between vertices xm0
and xn0

, κ(xm0
,xn0

) satisfies the following lower bound.

Lemma 3 (Nash-Williams). If xm0
and xn0

are distinct vertices in a graph that are separated by

disjoint edge-cutsets Ek, k = 1, . . ., then

V
∑

k




∑

{xn,xm}∈Ek

wn,m



−1

≤ κ(xm0
,xn0

) where {xm,xn} is an edge in the cutset Ek, (A.6)

and where the volume of the graph is defined by V =
∑N

i=1

∑N
j=1 wi,j.

We now exhibit a sequence of edge-cutsets in the slow graph. We refer to Figure A.2 for the

construction of the cutsets. We define the first cutset E1. If m0 < L, then E1 needs a little more

attention and is defined as the set of L edges {xi,xj}, where i and j are defined by





i = 1, . . . ,m0,

j = m0 + 1, . . . , L + i.

(A.7)

The edge-cutset E1 is shown in the Figure A.2 for m0 = 1 (left) and m0 = 2 (center), for L = 3.

The removal of this set of edges prevents xm0
from being connected to xn0

. Indeed, the self loop on

the diagonal (green entry) does not allow the random walk to move toward xn0
. This can be also

be visualized in Figure A.3, where E1 is the leftmost set of edges that connect xm0
to that part of

the graph that is connected to xn0
. The sum of edge weights in E1 is at most L(L + 1)wS/2.

If m0 ≥ L, then E1, is defined as the other generic edge-cutsets.
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We now define the generic edge-cutsets Ek as the set of L(L + 1)/2 edges {xi,xj} such that




i = m0 + 1 + (k − 2)L, . . . ,m0 + (k − 1)L,

j = m0 + 1 + (k − 1)L, . . . , L + i.

(A.8)

As seen in Figure A.2-right for k = 3, setting the entries of E3 to zero disconnects the upper and

lower part of the submatrix W(m0 : n0,m0 : n0), thereby isolating xm0
and xn0

. Alternatively,

we also see in Figure A.3 that any path from xm0
to xn0

needs to go through E3. Each edge-

cutset Ek, k ≥ 2 is a triangle with a height of size L. Therefore, after creating E1, we can fit
⌊

n0−(m0+1)+1
L

⌋
such cutsets between xm0+1 and xn0

. The sum of the weights along the edges of

each cutset Ek, k = 2, . . . is given by L(L + 1)ws/2. In addition, we have the sum of edge weights

in the first cutset E1 is at most L(L + 1)ws/2. Putting everything together, the computation of

the lower bound using the Nash-Williams Lemma yields

V
∑

k




∑

{n,m}∈Ek

wn,m



−1

≥ [N(2L + 1) − L(L + 1)] ws

(⌊
(n0 − m0)

L

⌋
2

L(L + 1)ws
+

2

L(L + 1)ws

)

≥ [N(2L + 1) − L(L + 1)]

L(L + 1)

(
2

(
n0 − m0

L
− 1

)
+ 2

)

≥ [N(2L + 1) − L(L + 1)]

L(L + 1)

(
2
n0 − m0

L

)

We can summarize this result in the following lemma.

Lemma 4. The commute time between vertices xn0
and xm0

inside S(N,L) satisfies

κ(xm0
,xn0

) ≥ 2 [N(2L + 1) − L(L + 1)]

L(L + 1)

(
n0 − m0

L

)
. (A.9)

Finally, we bound the average commute time in the slow graph. Observe that the slow graph

model S(N,L) has N − j pairs of vertices such that |m − n| = j, for j = 1, . . . , N − 1. Therefore,

using the lower bound given in Lemma 4 it follows that

∑

1≤m<n≤N

κ(xm,xn) ≥ 2 [N(2L + 1) − L(L + 1)]

L2(L + 1)

N−1∑

j=1

(N − j)j
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Figure A.2: Each small square represents a nonzero entry in the upper triangular portion of the
weight matrix W of S(N,L). The submatrix W(m0 : n0,m0 : n0) is also shown The green entries
on the diagonal are the self-loops. The edge-cutsets Ek are shown in red for m0 = 1 (left), m0 = 2
(center), and for m0 ≥ L (right).
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Figure A.3: Top: edge-cutsets E1 and E3. Bottom: any path from m0 to n0 needs to use an edge
of the edge-cutset E3.

But

N−1∑

j=1

(N − j)j =

(
N

N−1∑

1

j −
N−1∑

1

j2

)
=

(
N2(N − 1)

2
− N(N − 1)

2

2N − 1

3

)

=
N(N − 1)

2

N + 1

3

Dividing both sides by N(N − 1)/2 and simplifying yields (4.15).
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A.6.2 Proof of upper bound on the average commute time in the fast graph

Our approach relies on the relationship between electrical networks and random walks on

graphs [29]. We begin by introducing the property of interest — the effective resistance — and its

relationship to the commute time.

The electrical network perspective For each pair of vertices xn and xm with a non

zero weight wn,m, we assign the resistance

rn,m =
1

wn,m
(A.10)

to the edge {xn,xm}. We note that if wn,m = 0, then there is no connection between xn and xm,

and no resistance to consider. Now, consider applying a potential difference, or voltage, across

the vertices xm0
and xn0

. As a result, some current flows across the resistors (edges) in the

electrical network (graph). We may replace the set of resistors across which some current flows by

an equivalent, effective resistance, Rm0,n0
that is connected between xm0

and xn0
. The effective

resistance Rm0,n0
is defined by the voltage necessary to maintain a one-unit current between xm0

and xn0
. The main result in [17], is that the commute time between vertices xm0

and xn0
can be

expressed as

κ(xm0
,xn0

) = V Rm0,n0
. (A.11)

Taking expectations of both sides of Equation (A.11) with respect to the process of generating

edges and choosing terminals in a fast graph, we obtain

κF = E(V ) E(R) + Cov(V,R). (A.12)

Notice that every edge in the fast graph has weight wF . Therefore, V can be expressed as

V =

N∑

n=1

wnn + 2
∑

1≤m<l≤N

wml = wFN + 2wF Ñ , (A.13)

where Ñ is a binomial random variable representing the number of edges connecting distinct vertices

in the fast graph. We now rewrite (A.12), using (A.13) and the assumption that Cov(V,R) ≤ 0, to

obtain



129

κF ≤ wF
[
N + 2E(Ñ)

]
E(R).

Recall that Ñ is distributed as a binomial random variable with parameters (N(N −1)/2, p).

Also, the effective resistance between two nodes of a network is at most the geodesic distance

between them, δ, scaled by 1/wF [17]. It follows that

κF ≤ [N(N − 1)p + N ] E(δ).

The authors [38] give a closed form expression for E(δ) on Erdös-Renyi graphs, which we can

utilize since the fast graph’s self-connections do not change the geodesic distance. This yields

κF ≤ [N(N − 1)p + N ]

[
log N − γe

log((N − 1)p + 1)
+

1

2

]
,

where γe ≈ 0.5772 is Euler’s constant. Simplification using (4.12) gives the desired result.

Remark Although Cov(V,R) ≤ 0 is an assumption, we conjecture that it is always satisfied

due to the fact that increasing the number of resistors M in an electrical network with a fixed number

of nodes is effectively like adding resistors-in-parallel, and, according to Rayleigh’s Monotonicity

Law, adding edges (increasing M) can only decrease the effective resistance [29].

A.7 Generating a random trigonometric polynomial with a specified auto-

correlation

Let z(t) represent a random trigonometric polynomial on [0, 1) with an autocorrelation func-

tion given by

C(τ) = 2(cos(πτ))2β − 1 for τ ∈
[
−1

2
,
1

2

)
, (A.14)

for some nonnegative integer β. It follows that we can do a Fourier expansion of C(τ) to obtain

C(τ) =
∑

j∈Z

Ĉje
2πijt, (A.15)
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where i =
√
−1 and

Ĉj =

∫ 1

0
C(τ)e−2πijτdτ

=

∫ 1

0


2(1−2β)




2β∑

k=0




2β

k


 e2πi(β−k)τ


− 1


 e−2πijτdτ

= 2(1−2β)
2β∑

k=0




2β

k



∫ 1

0
e2πi(β−k−j)τ dτ −

∫ 1

0
e−2πijτ dτ

=





2(1−2β)




2β

β


− 1 if j = 0,

2(1−2β)




2β

β − j


 if |j| ≤ β,

0 if j > β,

where the second equality follows after expressing cosine with complex exponentials, and applying

the binomial theorem.

It is clear that 2β is the frequency of the fastest sinusoid making up the random signal z(t),

and that most of the energy is on average at frequency β. Let Aj and Bj be independent and

identically distributed Normal random variables with zero mean and unit variance. Define

ẑj =

√
Ĉj

2
(Aj + iBj) .

Finally, the signal z(t) is defined as

z(t) =
∑

j∈Z

ẑje
2πijt.

To check that the signal z(t) defined above has the correct autocorrelation, observe that linearity of

the expectation, independence and zero mean of the random variables, and the fact that Ĉj = Ĉ−j
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together imply that

E(z(t)z(t + τ)) =
∑

|j|≤2β

∑

|k|≤2β

E
(
ẑj ẑk

)
e−2πikτe2πi(j−k)t

=
∑

|j|≤2β

∑

|k|≤2β

√
ĈjĈk

2
[E(AjAk) − iE(AjBk) + iE(AkBj) + E(BjBk)] e−2πikτe2πi(j−k)t

=
∑

|j|≤2β

Ĉj

2

[
E(A2

j ) + E(Bj)
2
]
e−2πijτ

=
∑

|j|≤2β

Ĉje
2πijτ .

Therefore, referencing (A.15), it follows that E(z(t)z(t + τ)) = C(τ).


