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Scholl, Victoria Mary (M.A., Geography) 

Assessing the integration and pre-processing of NEON airborne remote sensing and in-situ data 

for optimal tree species classification 

Thesis directed by Associate Professor Jennifer K. Balch 

Accurately mapping tree species composition and diversity is a critical step towards 

understanding how forests recover in response to disturbances. The National Ecological 

Observatory Network (NEON) is a valuable source of open ecological data for sites across the 

United States. Freely available NEON data include in-situ measurements of individual tree 

species, stem locations, and crown diameter, along with hyperspectral, multispectral, and LiDAR 

airborne remote sensing image products. By linking these field-based and airborne NEON data, 

this study explores the impact of different types of training data preparation and preprocessing on 

coniferous tree species classification at the Niwot Ridge Mountain Research Station (NIWO) 

subalpine forest NEON site in Colorado. Pixel-based random forest (RF) machine learning 

models were trained using a series of reference data sets along with remote sensing raster data as 

descriptive features. The highest classification accuracies, 73% and 68% based on internal OOB 

error and an independent validation set, respectively, were achieved using all polygons created 

with half the maximum crown diameter per tree. The LiDAR-derived data products were found 

to be the most important remote sensing data-derived features, generally followed by vegetation 

indices. Incorporating LiDAR point cloud metrics, refining the reference data alignment with the 

remote sensing imagery, and transferring this pixel-based analysis to object-based classification 

using individual tree crowns are all promising directions for future analyses. This work 

contributes to the open development of well-labeled training data sets and reproducible forest 

composition mapping efforts.  
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CHAPTER 1 

INTRODUCTION 

 

The world’s forests are complex systems that are essential to many global processes 

(Bonan et al., 2008; Watson et al., 2018). Forests are experiencing unprecedented changes due to 

ongoing climate change and other types of natural and anthropogenic disturbances, including 

wildfire (Westerling et al. 2006), insect outbreaks (Bentz et al. 2010), and drought (Greenwood 

et al., 2017). Disturbances are events that alter forest patterns and processes, and they may 

interact in surprising and important ways (Pickett and White, 1985; Turner 2005; Buma 2015). 

Compound disturbances occur simultaneously or sequentially, producing an unpredictable effect 

that is different from the sum of the separate disturbances (Paine et al. 1998). Linked 

disturbances may amplify or dampen the extent, severity, or probability of subsequent 

disturbance occurrence (Simard et al., 2011). After being disturbed, forests may show signs of 

resilience and return to their pre-disturbance structure and function (Holling 1973), or they may 

shift to an alternative state of being (Scheffer et al. 2001). We have not yet quantified regional 

rates of forest recovery and resilience in response to large interacting disturbances, which are 

anticipated to increase in the future (Seidl et al., 2017). Key limitations to our understanding and 

modeling of post-disturbance resilience are a lack of data describing forest composition and 

diversity at the individual tree level.  

The advent of remote sensing allows us to more efficiently estimate biophysical 

parameters of trees across large forested areas over time (Coops et al., 2004). Airplanes offer 

valuable spatial and temporal flexibility for data collection and are commonly used to map 

vegetation at local to regional scales. Many studies highlight the benefits of fusing diverse types 
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of airborne multispectral, hyperspectral, and light detection and ranging (LiDAR) data for 

optimal extraction of vegetation properties from remote sensing data (Dalponte et al. 2008, 

Asner et al., 2012; Stavros et al., 2017; Liu et al. 2017). In addition to estimating land cover and 

functional types across forested areas (Hansen et al. 2013; Asner et al., 2017), these spectral and 

structural data are shown to be useful predictors for estimating tree species and biophysical 

metrics such as biomass for both pixels and object-based image analysis using various 

classification techniques (Kaartinen et al., 2012; Fassnacht et al., 2016).  

Large amounts of open ecological and remote sensing data are becoming increasingly 

available in recent years (Michener, 2015; Fassnacht et al., 2016). A notable source of these data 

is the National Ecological Observatory Network (NEON), a National Science Foundation (NSF) 

funded Grand Challenge project, awarded with the purpose of measuring ecological change for a 

span of 30 years (Keller et al., 2008). With its free, publicly available field-based and airborne 

remote sensing data products, NEON provides a valuable opportunity to study forest dynamics 

across the western United States. The NEON Airborne Observation Platform (AOP) collects 

multispectral, hyperspectral, and LiDAR imagery at sites across the United States and generates 

publicly available image data products with high spatial resolutions, ranging from 0.1 to 1 

meters. Field-based measurements, including stem location, maximum crown diameter, and 

species of individual trees within selected sampling plots are collected, following standardized 

protocols every 1 to 3 years, in synchrony with AOP flights, when possible (Kampe et al., 2010). 

Species-level identification can theoretically be performed by linking these remote sensing and 

in-situ data, although the alignment of field-based data with remote sensing observations is a 

critical, yet challenging, aspect of these efforts (Graves et al., 2018). Open competitions in which 

many groups work to solve a problem using a common data set often lead to noteworthy 
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methodological advances (Carpenter, 2011). A recent ecological data science competition has 

tasked research groups with tree crown segmentation, alignment of data, and species 

classification at the open canopy longleaf pine ecosystem at the Ordway-Swisher Biological 

Station in Florida (Marconi et al., 2019). This explosion of collaborative open data exploration 

and processing methods for tree species classification is encouraging, although the highly diverse 

flora across NEON sites requires further assessment of methods based on local vegetation 

characteristics.  

This study integrates NEON in-situ tree measurements with AOP remote sensing data at 

the closed canopy subalpine forest site at the Niwot Ridge Mountain Research Station (NIWO) 

within the Southern Rockies domain, where large interacting disturbances are prevalent. The 

impact of various types of training data preparation and preprocessing on pixel-based 

classification accuracy of the four dominant conifer species was investigated using the random 

forest (RF) machine learning technique. Training sets were created for tree stem point locations, 

circular polygons based on the maximum crown diameter of each individual tree, and also 

circular polygons with half of the maximum crown diameter of each individual as an 

intermediate size. An open R code workflow is proposed to filter short, suppressed trees and clip 

overlapping crowns to allow the taller trees to take precedence in layered canopies. Variable 

importance was used to assess the contribution of each remote sensing data product to the 

species classification. It was expected that the filtering and clipping steps would improve species 

classification, when compared to utilizing all available field-based observations to train the RF 

classifier. It was also expected that the half-diameter polygons would yield the best species 

classification accuracies, because they capture more variation in signal than individual stem 

points do, but are less likely to contain mixed pixels, as larger polygons would capture. This 
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work provides an initial species classification assessment at the NIWO site in Colorado and 

contributes to the open development of well-labeled training data sets and forest composition 

mapping efforts. 
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CHAPTER 2 

BACKGROUND 

 

2.1 National ecological observatory network (NEON)  

The National Ecological Observatory Network (NEON) (https://www.neonscience.org/) 

is a National Science Foundation (NSF) funded Grand Challenge project, awarded with the 

purpose of measuring ecological change for a span of 30 years (Kampe et al., 2010). 81 NEON 

field sites are strategically distributed across the United States, within 20 distinct eco-climatic 

domains. The study area of this research is the Niwot Ridge (NIWO) site located in Domain 13, 

Southern Rockies and Colorado Plateau. NEON sampling efforts include in-situ individual plant 

measurements and airborne remote sensing.  

 

2.2 NEON airborne remote sensing   

NEON’s sampling suite includes the Airborne Observation Platform (AOP), which 

carries a suite of three remote sensing instruments: multispectral (RGB) digital camera, NEON 

imaging spectrometer (NIS), and small-footprint LiDAR. Coincident capture of these three data 

sets is powerful and practical for high spatial resolution ecosystem monitoring. Spectral and 

structural properties of vegetation are closely tied to plants’ biochemical composition and health 

(Kampe et al., 2010). Fusing multispectral, hyperspectral, and LiDAR data has been shown to 

improve derived forest metrics compared to using any of the methods alone (Anderson et al., 

2008; Dalponte et al., 2008; Asner et al., 2012). The NEON project has established observation 

sites across the continental U.S. to monitor climate change, land use change, and invasive 

species. The forests within the terrestrial sites are representative of the diverse ecosystems and 
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climates present throughout the United States. During its annual flight campaign, the AOP flies 

over core NEON sites throughout the country at 90% of maximum greenness or greater, typically 

at an altitude of 1000 meters above ground level, and generates publicly available remote sensing 

data (Schimel and Keller, 2015). The data products are available as both flightlines and 1 km by 

1 km mosaic tiles. The mosaic tiles have corners spatially referenced to an even kilometer and 

are projected into the Universal Transverse Mercator (UTM) mapping frame. When multiple 

flight lines cover a given tile, the most-nadir pixels are selected for the final mosaic. The AOP 

instruments and their relevant data products utilized in this study are described in further detail 

below.   

 

2.2.1 Imaging spectrometer  

The NEON Imaging Spectrometer (NIS) is a pushbroom collection-style instrument that 

measures reflected light energy with 426 narrow spectral bands, spanning the visible (380 nm) to 

shortwave infrared (2510 nm) wavelengths, with a spectral sampling of 5 nm. NEON 

implements calibration and atmospheric corrections to convert at-sensor radiance to surface 

reflectance [NEON.DOC.001288]. Raster data products generated from this hyperspectral 

reflectance include “Spectrometer orthorectified surface directional reflectance - mosaic” and 

“Vegetation Indices”, each with a spatial resolution of 1 meter. The surface reflectance data for 

all 426 spectral bands is available as an open HDF5 format. The Vegetation Indices are a 

collection of seven spectral indices that are known to be indicators of vegetation health: ARVI, 

EVI, NDLI, NDNI, NDVI, PRI, SAVI [described in NEON.DOC.002391]. These vegetation 

indices are calculated using well-known equations from scientific literature, using NIS surface 
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reflectance data as the input. The Vegetation Indices data product is distributed in the GeoTIFF 

format, in which each band contains a different vegetation index.  

 

2.2.2 LiDAR 

NEON operates two Optech ALTM Gemini systems and a Riegl LMS-Q780, used to 

collect discrete and waveform light detection and ranging (LiDAR) data at a spatial resolution of 

approximately 1-4 points/waveforms per square meter. These LiDAR instruments operate at a 

laser wavelength of 1064 nm in order to describe vegetation cover, height, shape, and vertical 

structure and underlying terrain. The discrete return LiDAR point cloud data is available from 

NEON, but for this exploratory study only the readily available raster data products (derived 

from the point cloud and distributed by NEON as 1km by 1km tiles with 1 meter spatial 

resolution) were used: Ecosystem Structure, Slope and Aspect.  

The Ecosystem Structure data product is a Canopy Height Model (CHM) raster, 

essentially a surface of normalized vegetation heights, distributed in GeoTIFF format. The CHM 

is produced by separating discrete LiDAR returns into ground and vegetation classes 

[NEON.DOC.002387]. The ground returns are used to create a rasterized Digital Terrain Model 

(DTM), elevations describing the physical terrain or “bare earth”, while the vegetation returns 

are used to create a rasterized Digital Surface Model (DSM), elevations describing objects on top 

of the ground surface. Subtracting the DTM from the DSM yields a surface of ground-

normalized vegetation height, containing artifacts known as “data pits”. Based on the pulse width 

of the outgoing laser pulse (10 ns), any object under two meters may potentially be confused 

with the ground, so all heights below 2 meters in the CHM are rounded down to a height of 0 

meters. NEON implements an algorithm to remove data pits for a more accurate estimation of 
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canopy height. CHM data provide valuable tree structure information to supplement the spectral 

information from the other AOP instruments and better inform species classification efforts. The 

Slope and Aspect data products are derived from the DTM. Slope is determined as the angle 

between a plane tangential to the local terrain surface and a plane tangential to the local geoid 

surface, reported in degrees. Aspect is the direction of the steepest slope, given in degrees 

referenced to grid north.  

 

2.2.3 Digital camera  

The multispectral digital camera measures light reflected in the red, green, and blue 

(RGB) bands within the visible range of wavelengths. Across its multiple payloads, NEON 

operates two Phase One iXU-RS1000 (100 MP) aerial cameras, and one Phase One iXA (80 MP) 

camera.  RGB 8-bit intensity is captured with a 10 cm spatial resolution in the “High-resolution 

orthorectified camera imagery mosaic” data product and distributed as multi-band GeoTIFF files 

[NEON.DOC.001211]. The digital camera imagery is remapped to the same geographic 

projection as the simultaneously captured LiDAR and imaging spectrometer data. The higher 

spatial resolution of the digital camera imagery can aid in identifying fine features such as 

boundaries of individual tree crowns in dense canopy that are not as visible in the other airborne 

data products. Figure 1 illustrates the differences in spatial resolution and also the type of 

information captured by each of the three NEON AOP instruments.  
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Figure 1: Comparison of spatial resolutions and information captured by the raster data products 
from each of the three AOP instruments: Hyperspectral true-color composite with 1m pixel size 
using NIS bands 450, 555, and 620 nm (left), discrete lidar-derived canopy height model with 
1m pixel size, where black indicates ground and brighter pixels represent taller canopy height 
above ground (center), and digital camera RGB composite with 0.1m pixel size.  

 
 
2.3 NEON field-based vegetation sampling methods  

In-situ vegetation measurements are made in synchrony with NEON AOP imagery 

collections. The NEON Woody Plant Vegetation Structure data collection follows the Terrestrial 

Organismal Sampling (TOS) protocol for Measurement of Vegetation Structure 

[NEON.DOC.000987] at forested sites. Within a NEON site, there are a variety of plot types: 

Tower (located within the footprint of the instrumentation-mounted flux tower, each 40m x 40m 

in size), Distributed (between 20 and 50 plots distributed in a stratified random manner across 

the site, 20m x 20m in size), and Gradient (additional plots established as needed to capture 

major topographical, vegetation, or hydrologic gradients present). Tower plots are sampled 

annually while distributed plots have a 3-year sampling interval. Each distributed plot is sampled 

if at least one tree stem with diameter at breast height (DBH) ≥ 10 cm is located within the plot 

boundaries. Within a plot, all individual plants that exceed the DBH threshold are mapped and 

measured throughout the plot sampling area. For subplots containing only heterogeneously 



 
 

10 
 

distributed individuals with DBH < 10 cm, nested subplots ranging in size from 1m2 to 100m2 

may be employed [NEON.DOC.000987].  

Vegetation measurements collected using the TOS protocol include the location and 

species of tree stems, total stem height, crown diameter, and DBH. An offset mapping technique 

is used to determine the within-plot location of mapped stems relative to permanent plot markers 

where high-resolution GPS measurements have already been recorded. A laser rangefinder (± 30 

cm accuracy) is used to measure the distance and azimuth of each stem relative to the permanent 

plot reference point. Crown diameter is also measured using the laser rangefinder, to the nearest 

0.1m. DBH is measured using diameter tape or calipers. The species is determined by the field 

technician and the corresponding taxon ID code is recorded from a NEON master list of plant 

species. This taxon list provides codes for instances when identification below a specific 

taxonomic rank (such as family or genus) cannot be made.  

Each measured stem is assigned a unique individual ID, which allows data entries to be 

matched across separate NEON data tables that contain mapped tree attributes. As the 

documentation describes, “One or more records expected for each tagged woody individual 

(individualID) for all time. Corrections to taxonID or mapped location through time will result in 

duplicate individual IDs. In the case of duplicates, users are advised to retain the record with the 

latest date.” Multiple records per individual ID are also created for multi-bole individuals (those 

with forked trunks that meet specific requirements), with a letter appended onto the end of the 

five-digit individual ID code (for example, “02013A”, “02013B”). In the case of many multi-

bole entries in the described 2016 NIWO data set, there may be two or more individual ID 

entries that indicate multi-bole measurements but are otherwise identical (in particular, they have 

the same mapped coordinates, height, and maximum crown diameter).  
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At the NIWO site, distributed plots are measured using the vegetation structure protocol 

but tower plots are not, due to the fact that most of the tower airshed is above tree line. Pairing 

these in-situ ground truth measurements with remote sensing observations provides a promising 

opportunity to create a well-labeled data set to inform species classification efforts.  

 

2.4 Tree species classification using remotely sensed data 

2.4.1 Remote sensing features  

The amount of studies utilizing remotely sensed data to classify tree species has grown 

exponentially in the recent decades (Fassnacht et al., 2016). Researchers are using a variety of 

passive and active sensor types, most commonly hyperspectral or imaging spectroscopy, 

multispectral imaging, and LiDAR, followed by synthetic aperture radar (SAR) systems. Many 

studies combine passive and active systems to capitalize on their strengths. Passive systems such 

as hyperspectral and multispectral cameras capture reflected light across a range of wavelengths, 

typically within the visible (VIS), near infrared (NIR) and shortwave infrared (SWIR) regions of 

the electromagnetic spectrum between approximately 400 and 2500 nanometers. The amount of 

light reflected by tree canopies across the VIS, NIR, and SWIR wavelengths is related to the 

plants’ chemical properties, including pigments such as chlorophyll (Ustin et al., 2009), water 

content (Gao and Hoetz, 1990), leaf and crown structure, and health (Fassnacht et al., 2016). The 

VIS wavelengths, blue in particular, have been found to be especially useful for classifying 

conifer species (Pu and Liu, 2011). Many studies employ some form of feature reduction to 

efficiently condense or summarize data with many highly correlated bands, such as is the case 

with hyperspectral imagery, using methods such as principal component analysis (PCA) 

(Maschler et al., 2018). PCA projects the hyperspectral data into a new feature subspace with 
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uncorrelated principal components. Texture metrics are another form of feature reduction, as 

they quantify the spatial variation or patterns of image brightness values within a given region, 

such as a tree crown or stand. Texture metrics have been shown to improve species classification 

accuracies, especially when species exhibit characteristic crown structure and shadows (Franklin 

et al., 2000). Active remote sensing systems, such as LiDAR and SAR, capture information 

related to the height of vegetation, shape of tree crowns, and density or layering of canopies. 

Incorporating these types of structural data has been shown to improve species classification 

accuracies, especially when combined with passive data sets (Wang et al., 2019). Tree species 

classification accuracies reported throughout the literature vary widely from approximately 60% 

to 95%, along with the type and number of sensors used, biodiversity within forests, and 

classification methods utilized (Fassnacht et al., 2016).  

 

2.4.2 Random forest classifier 

One of the most commonly applied machine learning algorithms is Random Forest (RF), 

a non-parametric supervised classification method that uses an ensemble of decision trees, also 

known as “bootstrap aggregated” or “bagged” decision trees (Breiman et al., 2001). Each 

decision tree in the “forest” considers a random subset of features and only has access to a 

random set of the training data samples (approximately two-thirds of the collected data). The 

remaining one-third of the data is then used to predict upon using the previously created decision 

tree. Whereas using a single decision tree is known to lead to overfitting on the training set, 

building multiple decision trees by iteratively resampling data from the training set reduces the 

occurrence of overfitting for greater stability and accuracy. Each decision tree within the 

ensemble “votes” for a final outcome value and the class with the greatest number of votes is 
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assigned in the end. As a form of data-splitting, this Out-Of-Bag (OOB) bootstrap-resampling 

procedure can provide a reliable estimate of accuracy for unseen data, although a completely 

independent test set is recommended as the “a gold standard for tree species classification 

studies” (Fassnacht et al., 2016). There are two hyperparameters that may be tuned when 

constructing a RF classifier: the number of decision trees (ntree) and the number of variables 

sampled randomly as each split or stage to grow a single tree (mtry). One criterion used to rank 

predictor variable importance within the random forest classification is the Mean Decrease in 

Accuracy (MDA), where classification accuracy is calculated while excluding each single 

variable (Liu et al., 2017). When the greatest decrease in accuracy is observed, this indicates that 

a variable is the most important for classification. Assessing variable importance is a valuable 

step for feature selection and creating parsimonious models, which use the fewest predictor 

variables possible.    

 

2.4.3 Accuracy assessment 

A variety of metrics are used to assess the accuracy of a classification. Overall accuracy 

(OA) is calculated by dividing the total number of correctly classified reference samples by the 

total number of reference samples. OA is the complement of the OOB error estimate. Confusion 

matrices are used to compare the known classes of reference samples to their predicted classes 

after classification. Rows in the confusion matrix describe known reference sample classes and 

columns describe the predicted classes. The number of accurate predictions are tallied along the 

diagonal, where the reference class is the same as the predicted class. The number of 

misclassifications for each reference and predicted class combination are presented in the other 
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cells of the confusion matrix, from which errors of commission and omission can be calculated 

for each of the classes.  

Errors of commission are the number of false positives, samples incorrectly classified in 

the target class. Errors of omission are the number of false negatives, samples incorrectly left out 

of the target class. User’s and producer’s accuracies describe accuracy of the resulting 

classification output from the perspective of the map consumer and creator, respectively. 

Producer’s accuracy (PA) is the complement of omission error. From the perspective of a map 

maker, PA quantifies the proportion of reference samples accurately assigned to the target class 

compared to the total number of reference samples for that class. User’s accuracy (UA) is the 

complement of commission error. From the perspective of someone using the classification map, 

UA quantifies how often the target class on the map represents the target class on the ground, or 

in reality. Cohen’s Kappa coefficient (K) is a statistic that evaluates classification performance, 

also known as “observed accuracy”, compared to random chance or “expected accuracy”. K 

ranges from 0 to 1; a value of 0 means that the classification is no better than random chance, 

while a value of 1 indicates a classification that is much better than random chance.  
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CHAPTER 3 

METHODS 

 

3.1 Study area  

The area of study for this research is the Niwot Ridge Mountain Research Station 

(NIWO) NEON site located on the eastern slope of the Colorado Front Range (Figure 2). This 

site in the Southern Rockies is 27km west of Boulder, Colorado and 6km east of the Colorado 

Continental Divide. The Rocky Mountain ecosystems present here include alpine tundra and 

subalpine coniferous forests. Dominant tree species present within the subalpine coniferous 

forest plots at NIWO are presented in Table 1, along with the corresponding taxon codes for 

identification of each species recorded by NEON field technicians.  

 

 
Figure 2: Location of the Niwot Ridge Mountain Research Station (NIWO) in NEON Domain 
13, Southern Rockies & Colorado (left) and the extent of the NIWO site along with the location 
of various sampling plots (right). Airborne remote sensing data is collected across this region 
annually. Field-based tree measurements are collected at subplots throughout the site every 1-3 
years, depending on plot type.  
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Table 1. Tree species present at the NIWO NEON site for all plots combined in the 2016 woody 
vegetation structure data.  

Scientific Name Common Name Taxon ID  Number of mapped trees 
at NIWO 

Abies lasiocarpa Subalpine fir ABLAL 249 

Pinus contorta Lodgepole pine PICOL 112 

Picea engelmannii Engelmann spruce PIEN 264 

Pinus flexilis Limber pine PIFL2 74 

 
 

3.2 NEON data  

Woody vegetation structure data, along with selected AOP data products, were 

downloaded from the NEON Data Portal (https://data.neonscience.org/) for the NIWO site 

(Table 2). The most recent woody plant vegetation structure data available for download during 

the timeframe of this study was collected during August, extending through October of 2016, and 

consist of 699 trees with mapped stem locations and crown measurements (Table 1). The closest 

date of available airborne remote sensing data products was September 2017. All data products 

were downloaded during the summer and fall of 2018.  

 

3.3 Reference data processing  

The in-situ woody vegetation structure data includes tree locations and corresponding 

crown diameters. A series of reference data sets were generated to investigate their influence on 

species classification: tree stem point locations, circular polygons with the maximum crown 

diameter of each tree, and circular polygons with half of the maximum crown diameter of each 

tree to serve as an intermediate step between points and large polygons (Figure 3). Notice that 
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many of the points and polygons are overlapping, which means that multiple trees will be 

associated with individual pixel locations in the overlapping areas. Also notice that there are 

duplicate polygons present in some locations, which are generated as a result of multi-bole 

entries present in the reference data set. Tree crowns were modeled as circles in this study due to 

the lack of more specific crown shape measurements in the data set. It is understood that in 

reality, tree crowns at NIWO are often irregularly shaped and asymmetrical as a result to factors 

such as directional winds, sun exposure, and proximity of neighboring vegetation. 

 

 

Table 2. Descriptions of NEON data downloaded for this study.  

Sampling type Data Product ID Data Product Name Date Collected  

Terrestrial  

(in-situ) 

NEON.DP1.10098.001 Woody plant vegetation structure 2016-08 - 2016-10 

 

 

Airborne 

NEON.DP3.30006.001 Spectrometer orthorectified surface  
directional reflectance - mosaic 

 
 
 

2017-09 
NEON.DP3.30026.001 Vegetation indices - spectrometer - mosaic 

NEON.DP3.30015.001 Ecosystem structure (CHM) 

NEON.DP3.30025.001 Slope and Aspect - LiDAR 

NEON.DP3.30010.001 High-resolution orthorectified  
camera imagery mosaic 
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Figure 3: Reference data sets generated using all of the input woody vegetation measurements at 
the NIWO_015 distributed base plot with dimensions of 20 x 20m, located at 451146m East, 
4432366m North. Tree stem points are shown in (A). Circular polygons with half the maximum 
crown diameter for each tree are shown in (B). Circular polygons created with the maximum 
crown diameter for each tree are shown in (C). All of these points and polygons are displayed 
together in (D). Polygons are displayed with 50% opacity to help illustrate the areas of overlap 
between adjacent polygons, as well as the presence of multi-bole entries which appear opaque 
where multiple identical polygons are present.  The base layer is RGB image data collected by 
the AOP with 0.1m spatial resolution.  
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To investigate the potential value of processing these “raw” reference data, an 

experimental workflow was designed to remove small polygons and clip areas of overlap 

between adjacent polygons to preserve the taller trees, which are more likely visible from the 

airborne imagery. This open workflow, termed “neon_veg”, is being developed openly and 

collaboratively on GitHub (https://github.com/earthlab/neon-veg). In this workflow, identical 

multi-bole entries were identified and excluded from subsequent analysis to remove duplicated 

points or polygons present in the raw data set. An area threshold was then applied to remove any 

small trees with circular area values less than the area of four hyperspectral pixels. This threshold 

was employed with the coarser resolution of the hyperspectral and LiDAR data products in mind. 

By preserving the trees with larger crowns, it was believed that purer spectra would be extracted 

for them for the training data sets, as opposed to extracting mixed pixels which signal from 

smaller plants and background materials or neighboring vegetation. “Engulfed” polygons, those 

which are shorter and completely within the boundaries of other polygons, are also present in the 

initial reference data sets (Fig. 3). Since they likely cannot be observed from the airborne 

perspective, “engulfed” polygons were removed from subsequent analysis. Remaining polygons 

were checked for overlap with neighboring polygons. For each overlapping pair of polygons, 

shorter polygons were clipped by taller ones. If the remaining clipped area was smaller than the 

aforementioned area threshold, it was deleted. At this point, the workflow described has 

generated a collection of polygons that theoretically intersect with independent pixels in the 

airborne remote sensing data set (Figure 4).  

The following six sets of reference data were used to evaluate species classification 

accuracy at the NEON NIWO site in this study: (1) points for all mapped tree stems, (2) 

polygons generated using the respective maximum crown diameter for all of the tree stems, (3) 
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polygons generated using half of the respective maximum crown diameter for all of the tree 

stems, (4) polygons with maximum tree crown diameter processed using the neon_veg 

workflow, (5) polygons with half of the maximum tree crown diameter processed using the 

neon_veg workflow, and (6) points for mapped tree stems (corresponding to the center locations 

of remaining polygons with maximum crown diameter) after being processed by the neon_veg 

workflow.  
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Figure 4: Reference data sets generated using the neon_veg workflow to filter out small tree 
crowns and clip overlapping crowns to preserve taller trees at the NIWO_015 distributed based 
plot. Tree stem points corresponding to the remaining polygons with maximum crown diameter 
are shown in (A). Circular polygons with half the maximum crown diameter for each tree are 
shown in (B). Circular polygons created with the maximum crown diameter for each tree are 
shown in (C). All of these points and polygons are displayed together in (D). Polygons are 
displayed with 50% opacity to help illustrate the areas of overlap between adjacent polygons. 
Note that there is no longer overlap between adjacent polygons, and multi-bole entries have been 
removed. The base layer is RGB image data collected by the AOP with 0.1m spatial resolution.  
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3.3 Feature extraction  

To perform species classification, descriptive features must be extracted to explain the 

characteristics of each of the tree species at known reference locations in the remote sensing 

imagery. The NEON AOP-derived features that were utilized during this study describe the 

spectral, structural, and environmental characteristics of vegetation (Table 3). From the NIS, 

spectral reflectance at each of the individual bands were included to capture species-specific 

reflectance properties throughout the visible, near infrared, and shortwave infrared wavelengths. 

372 individual wavelength bands remained after removing the “bad bands”, specified as 1340 to 

1445 nm and 1790 to 1955 nm in the NIS metadata, where atmospheric water vapor absorbs light 

and leads to poor reflectance signal quality. To reduce the dimensionality of the hyperspectral 

data with many highly correlated bands, principal component analysis (PCA) was performed. 

PCA is a commonly used technique to transform large data sets with correlated dimensions into a 

new set of orthogonal dimensions or principal components. The first two principal components 

explained a cumulative proportion of 0.96 of the total variance, so the first two principal 

components (“PC1” and “PC2”) were extracted as a result and used as features, similarly as Liu 

et al. (2017). In addition to including the first two principal components, all seven of the 

Vegetation Indices calculated by NEON were included as descriptive features since they capture 

spectral differences between specific wavelengths that relate to vegetation health and chemical 

composition.  

From multispectral digital camera imagery, the red, green, and blue (RGB) intensity 

bands were resampled from their 0.1m spatial resolution to match the 1m grid size of the other 

remote sensing products. Within each 1m by 1m grid cell, the aggregated mean and standard 

deviation of RGB intensities were calculated. The mean + standard deviation for each of the 



 
 

23 
 

RGB channels were included as features to capture the average spectral intensity in addition to 

the variation in intensity per pixel. The LiDAR-derived CHM provided height above ground at 

each pixel location. Although canopy height alone has limited value for species classification due 

to its dependence on individual tree age (Ghosh et al., 2014), it has been found to improve 

classification accuracies in some studies (Naidoo et al., 2012) and is useful for filtering non-

canopy pixels in this exploratory study. The slope and aspect products describe the orientation 

and steepness of the underlying “bare earth” surface, which are important microclimate 

characteristics that influence species survival within a given environment (Walsh, 1980).  

For each 1km by 1km tile, these airborne remote sensing data layers were combined into 

raster stacks. Any pixels with a height of 0 meters in the canopy height model were excluded, as 

they are assumed to contain signal from the ground. Each set of reference data was used to 

extract features from the remote sensing data stacks by determining which pixels intersect with 

each of the points or polygons. Each pixel was a sample described by the remote sensing-derived 

features. 
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Table 3. List and description of remote sensing-derived features used as training data in the 
Random Forest models for species classification.  

Feature Name Description Formula / wavelengths used [nm]  Reference(s) 

X381, X386, … 
X2509 

Spectral reflectance at each of the 426 
bands (372 after removing bad bands) 

381.3 - 2509.7 nm  
with 5 nm spacing 

 

*PC1, *PC2 1st and 2nd principal components   

 
 
 
 
 

*Vegetation 
Indices 

Normalized Difference Vegetation Index 
(NDVI) NDVI = !"#$%!#&$

!"#$'!#&$	
 (Rouse et al., 1974) 

Enhanced Vegetation Index (EVI) EVI = 2.5	×
!"#$%!#&$

(!"#$' #×!#&$ % ..&	×!/.$ '0)	
 

(Huete et al., 2002) 

Atmospherically Resistant Vegetation 
Index (ARVI) ARVI = !"#$%[!#&$%3 !/.$%!#&$ ]

!"#$'[!#&$%3 !/.$%!#&$ ]
 (Kaufman & Tanre, 1992) 

Canopy Xanthophyll, or Photochemical 
Reflectance Index (PRI)  PRI = !&50%!&.$

!&50'!&.$	
 (Gamon, Penuelas, & Field, 1992) 

Canopy Lignin, or Normalized 
Difference Lignin Index (NDLI) NDLI = 

678 9
:9;<= %678	( 9

:9>?@)

678 9
:9;<= '678	( 9

:9>?@)	
 

(Serrano, Penuelas, & Ustin, 2002) 

Normalized Difference Nitrogen Index 
(NDNI) NDNI = 

678 9
:9<9@ %678	( 9

:9>?@)

678 9
:9<9@ '678	( 9

:9>?@)	
 

(Serrano, Penuelas, & Ustin, 2002) 

Soil-Adjusted Vegetation Index (SAVI) SAVI = (0'A)(!"&$%!#&$)
(!"&$'!#&$'A)

 (Huete 1988) 

*CHM Height of canopy above ground Digital Surface Model (DSM)  − 
Digital Terrain Model (DTM) with 
modified data pit filling algorithm  

(Naidoo et al., 2012) 

*Slope Steepness of bare earth surface   (Walsh, 1980) 

*Aspect Compass direction of steepest slope   (Walsh, 1980) 

*rgb_mean_sd_R 

*rgb_mean_sd_G 
*rgb_mean_sd_B 

Mean plus standard deviation of red, 
green, blue digital camera multispectral 
image intensity  

  

Where λn is reflectance at the specified wavelength in units of nanometers, 𝛾 is a weighting 
constant based on aerosol type and atmospheric compensation for ARVI, L is a correction factor 
to account for different soil conditions for SAVI. Asterisks indicate which features were used in 
the final selected model.  
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3.4 Random forest classification  

The randomForest function within the randomForest R package (Liaw and Wiener, 2002) 

was used to predict species (in this case, the “taxon ID” attribute was used as a categorical class 

label for each sample) using the spectral and structural features derived from the AOP data 

described in the previous section. Six random forest classifiers were trained, each using a 

different set of reference data. A random selection of 20% of the pixels within the neon_veg half 

diameter data were initially left out, and all six models were trained on the remaining data within 

each set. Each RF model was then used to predict species of the 20% independent validation set. 

Classifier performance was assessed based on internal OOB error estimates and overall accuracy 

of the independent validation set predictions. Confusion matrices were used to assess user’s and 

producer’s accuracies for each of the four species. Cohen’s Kappa coefficient was also calculated 

to take into account the possibility of classification accuracy by chance.  

Note that as a result of the filtering and clipping operations, the neon_veg reference data 

sets contained less than half of the number of trees as the initial NEON data sets (Table 4). To 

test the potential influence of sampling bias on the classification results, three additional RF 

models were trained after reducing the number of trees for each “raw” data set to include the 

same tree IDs present in each corresponding neon_veg set. For instance, the 699 “all stem 

points” data set was filtered to consist of only the 266 stems that are present in the “neon_veg 

stem points” data set. 

 

 

 

 

 



 
 

26 
 

Table 4. Number of unique trees and pixels intersecting with each stem point or crown polygon 
across the six reference data sets. Unique trees were identified based on their “individualID” 
attribute in the in-situ NEON data. Unique pixels were identified based on their spatial location 
or coordinates within the scene.  

Shapefile Description  Number of points or polygons Number of pixels (extracted samples)  

All stem points 699 554 

All polygons, half diameter 699 1218 

All polygons, max diameter 699 3005 

Neon_veg stem points 266 266 

Neon_veg polygons, half diameter 305 836 

Neon_veg polygons, max diameter 266 2555 
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CHAPTER 4 

RESULTS 

 

Spectral reflectance curves were extracted from the 372 NIS hyperspectral bands for the 

points or polygons within each reference set (Appendix A). Spectral reflectance curves were 

extracted per species using all half-diameter polygons (Figure 5). As expected, the reflectance 

curves extracted per species using all half-diameter polygons appear very similar across the 

species with the characteristic green peak (~550 nm) within the visible wavelength region and 

the steep slope at the edge between the red and near infrared regions (~750 nm) and the shoulder 

or flattening off into the near infrared region (~800 nm). To compare reflectance magnitudes in 

different wavelength regions, all four mean spectral reflectance curves with standard deviation 

shading were overlaid (Appendix B). The overlaid mean reflectance curves extracted within all 

half-diameter polygons have very similar shapes across the conifer species but they appear to be 

biased or separated vertically to varying degrees (Figure 6). The relationship between reflectance 

magnitude across species curves differs across wavelength regions. For instance, Abies 

lasiocarpa (subalpine fir) has the highest mean spectral reflectance out of all the species from 

400 to approximately 1300nm, but then Pinus flexilis (limber pine) has the highest mean spectral 

reflectance at all greater wavelengths out to 2500 nm (Figure 6). The mean spectral reflectance 

curves for Pinus contorta (lodgepole pine) and Picea engelmannii (Engelmann spruce) appear to 

be almost identical across all wavelengths, but there is a well-defined feature visible at 

approximately 1200nm where Pinus contorta mean reflectance drops sharply. Features and 

biases such as these may aid in differentiating between species during classification.  
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Figure 5: Mean spectral reflectance per species from 380 to 2510 nm, extracted from all 
polygons with half the max crown diameter at the NEON NIWO site for each of the dominant 
tree species: ABLAL (Subalpine fir), PICOL (Lodgepole pine), PIEN (Engelmann spruce), and 
PIFL2 (Limber pine). The shading illustrates +/- one standard deviation in reflectance per 
wavelength. Gaps in the spectra at approximately 1350 nm and 1800 nm are where “bad bands” 
were removed where there is high atmospheric absorption.  
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Figure 6: Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes extracted from all polygons with half the maximum crown 
diameter across all four species: ABLAL (Subalpine fir), PICOL (Lodgepole pine), PIEN 
(Engelmann spruce), and PIFL2 (Limber pine). 

 

 

Boxplots were generated to compare remote sensing-derived features across the tree 

species extracted for all polygons with half the maximum crown diameter (Figure 7). All 15 

remote sensing-derived features were ranked in order of importance based on the Mean Decrease 

in Accuracy metric for all polygons compared with neon_veg polygons, each with half of the 

maximum crown diameter (Figure 8). Across all reference data sets, the structural features 

derived from the LiDAR data (aspect, slope, and canopy height) are ranked as the top three most 

important variables. This makes sense based on how these variables are depicted in the boxplots; 

their mean values and ranges appear to be well-separated across the four species. The importance 

of the remaining spectral variables is highly variable across reference sets with all points or 

polygons (Appendix C). For the neon_veg reference sets, the next most important variables 
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following the LiDAR-derived ones are vegetation indices (such as NDLI, ARVI, NDVI, PRI, in 

varying order).  

 
 
 
 
 
 

 

Figure 7: Interspecies comparison of remote sensing features extracted by all polygons with half 
of the maximum crown diameter. Slope, aspect, and chm (canopy height) are LiDAR-derived 
features. PRI (Photochemical Reflectance Index) and NDLI (Normalized Difference Lignin 
Index) are vegetation indices derived from the hyperspectral image data. rgb_mean_sd_B is the 
average plus standard deviation of intensity within each 1m grid cell derived from the 
multispectral digital camera imagery.  
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Figure 8. Predictor variable importance ranked by Mean Decrease in Accuracy (MDA) for 
Random Forest models trained using (A) all polygons with half the maximum crown diameter 
and (B) neon_veg polygons with half the maximum crown diameter. See Table 3 for remote 
sensing-derived variable definitions.  
  

 

Overall classification results were compared for each of the RF models trained using all 

of the samples within each difference reference data set (Table 5). Based on OOB error, the 

training sets with all points and/or polygons yielded the highest overall accuracy (OA) values 

ranging from 70.1% for the tree stem points to 73.1% for the polygons with half-crown diameter. 

OA for the neon_veg data sets followed a similar pattern, with OA ranging from 61.0% to 68.3% 

for tree stem points and polygons with half diameter, respectively. The OA for max-diameter 

polygons fell somewhere in between for both cases. Based on the independent validation set, all 

polygons with half and max diameter yielded the highest OA of 68.5%. The next highest OA 

belonged to the half-crown diameter neon_veg polygons.  This indicates that polygons created 

with half the maximum crown diameter yielded the highest OA, while using tree stem points 

performed the poorest based on OA. 
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Table 5. Overall classification results RF models using different reference sets for training. Bold 
text highlights row with the highest OA.  

Reference data set OA (%) 
OOB error 

OA (%) 
Independent Validation 

Kappa  
OOB 

All stem points 70.1 56.2 0.563 

All polygons, half diameter 73.1 68.5 0.629 

All polygons, max diameter 71.2 68.5 0.607 

Neon_veg stem points 61.0 54.3 0.441 

Neon_veg polygons, half diameter 68.3 65.4 0.566 

Neon_veg polygons, max diameter 67.4 63.0 0.545 

 

After reducing the trees in each of the raw NEON datasets to match those trees within 

each of the corresponding neon_veg training datasets, the overall classification accuracies were 

compared (Table 6). This comparison was done to test the impact of the filtering and clipping 

operations within the neon_veg workflow, and to control for the stark difference in sample size 

(Table 4). The classification accuracies are now almost identical between each pair of 

corresponding reference set shapes (all vs. neon_veg points, all vs. neon_veg polygons with half 

diameter, all vs. neon_veg polygons with maximum crown diameter). Based on OOB error, the 

neon_veg half diameter polygons training set yielded the highest OA, 68.4%. The next highest 

OA based on OOB error was produced using all polygons with half diameter, 67.9%. Based on 

the independent validation set, all polygons with half diameter and max diameter both yielded 

the highest OA of 65.4%, followed closely by the the neon_veg polygons with half diameter with 

an OA of 64.8%. Both training sets with tree stem points yielded the lowest OA values, 

approximately 61% and 55% based on OOB and independent validation, respectively.  
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Table 6. Overall classification results for each RF model using a different reference data set for 
training, but the tree IDs were reduced in each of the raw NEON datasets to match those within 
each of the corresponding neon_veg datasets. This reduces the sampling bias and allows for the 
clipping/filtering output to be compared with the raw reference datasets generated without any 
preprocessing. Bold text highlights row with the highest OA based on OOB error and 
independent validation.   

Reference data set OA (%) 
OOB error 

OA (%) 
Independent Validation 

Kappa  
OOB 

All stem points 61.5 56.2 0.449 

All polygons, half diameter 67.9 65.4 0.561 

All polygons, max diameter 63.0 65.4 0.493 

Neon_veg stem points 61.0 54.3 0.441 

Neon_veg polygons, half diameter 68.4 64.8 0.568 

Neon_veg polygons, max diameter 67.4 63.0 0.545 

 

 

To compare the classification accuracies for each of the species present at the NIWO site, 

confusion matrices were calculated for the half diameter polygon datasets (Table 7). The user’s 

and producer’s accuracies varied greatly across the four species, from 42% at the worst to 87% at 

the best. Pinus flexilis (Limber pine) is consistently the most accurately classified species, while 

Abies lasiocarpa (Subalpine fir) is consistently the least accurately classified species. Abies 

lasiocarpa is often incorrectly predicted as Picea engelmannii (Engelmann spruce). This is 

interesting, as Abies lasiocarpa had the most mapped trees in the in-situ data set at NIWO 

whereas Pinus flexilis had the fewest.  
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Table 7. Confusion matrices with User’s Accuracy (UA) and Producer’s Accuracy (PA) per 
species for (A) all polygons with max-crown diameter, (B) neon_veg polygons with half-crown 
diameter, and (C) all polygons with half-crown diameter when the trees are reduced to those 
within the neon_veg set to assess the impact of reduced sample size. 

 

C 
Predicted 

ABLAL PICOL PIEN PIFL2 PA (%) 

R
ef

er
en

ce
 

ABLAL 63 13 59 12 42.9 

PICOL 8 79 33 10 60.8 

PIEN 24 15 162 18 74.0 

PIFL2 5 0 13 141 88.7 

UA (%) 63.0 73.8 60.7 77.9  
 

 

 

 

 

 

 

 

B 
Predicted 

ABLAL PICOL PIEN PIFL2 PA (%) 

R
ef

er
en

ce
 

ABLAL 64 15 56 12 43.5 

PICOL 9 80 30 10 62.0 

PIEN 25 13 164 17 74.9 

PIFL2 5 0 14 136 87.7 

UA (%) 62.1 74.1 62.1 77.7  

A 
Predicted 

ABLAL PICOL PIEN PIFL2 PA (%) 

R
ef

er
en

ce
 

ABLAL 255 26 99 20 63.8 

PICOL 26 159 42 11 66.8 

PIEN 73 21 381 29 75.6 

PIFL2 13 1 23 248 87.0 

UA (%) 69.5 76.8 69.9 80.5  
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CHAPTER 5 

DISCUSSION 

 

The aims of this study were to perform an initial tree species classification analysis at the 

NIWO NEON site, compare the accuracies resulting from different stem point and circular 

crown polygon training data sets, and evaluate which AOP remote sensing data raster products 

were most important for accurate species classification using Random Forest (RF) models. Our 

results show overall accuracy (OA) values ranged from 61% to 73% (Table 5) when using 

different multispectral, hyperspectral, and LiDAR-derived training data sets. These OA values 

fall within the reported range of 65-95% for studies utilizing combined sensor systems reviewed 

by Fassnacht et al. (2016). We found OA values were higher when all of the reference data 

points or polygons were used, as opposed to the filtered and clipped neon_veg reference data. 

This does not support our hypothesis in which the clipping and filtering steps would improve 

classification accuracy. The logic behind this hypothesis was that by removing small suppressed 

crowns and associating each pixel in the remote sensing imagery with only the dominant and 

likely visible trees, there would theoretically be purer, more separable spectra extracted to 

capture the spectral and structural differences between the species of interest. However, our 

initial results do not support this, which may be explained by the presence of mixed species 

composition within pixels. In the field, it is clear that tree crowns in these subalpine forest 

ecosystems are often irregularly shaped, overlapping with neighboring crowns, and have gaps 

that allow underlying materials to potentially be seen from the airborne perspective. Perhaps the 

association of multiple, overlapping points and polygons with a single pixel helps to describe the 
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mixed pixels in the training data sets where there is signal from the understory reaching the 

sensor.  

Another potential explanation is the limited sample size of the neon_veg reference sets, 

which contain less than 50% of the trees present in the initial reference sets (Table 4).  When the 

number of trees in the reference sets were reduced to match those within the neon_veg sets to 

compare the effect of the clipping and filtering operations, the overall accuracies between each 

set of points and polygons became almost identical, within 2-3% of one another (Table 6). This 

indicates that the smaller sample size has a substantial effect on classification results. When 

additional woody vegetation structure measurements are collected at NIWO in the future, it will 

be interesting to assess how the species classification results may change with an increased 

sample size.  

The reported classification accuracies indicate that using polygons with half of the 

maximum crown diameter per tree is better than using stem point locations or polygons created 

with the maximum crown diameter per tree (Table 5; Table 6). This is useful information for 

future creation of training data, as the provided crown measurements available include stem 

point locations and maximum crown diameter. Minimum crown diameter measurements are also 

available would be interesting to test for modeling crown size. It is understood that tree crowns 

are rarely perfectly circular in reality.  

Besides the filtering and clipping steps in the experimental neon_veg workflow and using 

the CHM to remove pixels associated with a canopy height of zero, the points and circular 

polygons derived from the in-situ tree measurements were utilized entirely as-is in this study 

without any quality assessment or alignment procedures. It is evident that some stem locations 

and polygons extend beyond the actual location of tree crowns (Figure 3). This is potentially a 
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result of field measurement errors as well as georectification and image formation artifacts 

introduced during the creation of the remote sensing data products. Also, this study performed 

pixel-based classification for simplicity and initial exploration, but a variety of studies across the 

current literature are experimenting with manual and automated tree crown delineation to refine 

the selection of pixels within their reference data sets and perform object-based classification 

(Koch et al., 2013; Graves et al., 2018). Beyond using the CHM to identify canopy pixels, 

additional spectral criteria can be utilized such as applying an NDVI threshold to isolate forest 

pixels and eliminate shadow pixels (Maschler et al. 2018). An NDVI threshold could also be 

used to identify pixels with trees that have died since the collection of the field data, as there was 

a time difference of one year between the in-situ and remote sensing data collections in this 

study. Incorporating additional steps to refine the reference data sets, ensure alignment with the 

remote sensing imagery, and delineate individual crown boundaries instead of assuming 

perfectly circular crowns will likely improve upon the accuracies achieved here.  

This study utilized a series of remote sensing raster data products generated by NEON 

from all three AOP instruments. The variable importance assessment shows that the LiDAR-

derived remote sensing features were consistently ranked as the most important for species 

classification (Figure 8). Aspect and slope are understood to be important drivers of 

microclimate conditions such as temperature, moisture, sun and wind exposure, so their 

importance has ecological merit in the mountainous landscape of the Southern Rockies. 

However, as described in Fassnacht et al. (2016), canopy height, on its own, is limited for robust 

species classification as it is dependent on tree age. In addition to using the CHM, other studies 

have found that calculating metrics related to the vertical distribution, density and intensity of 

individual LiDAR returns improved classification results, so these metrics may be promising to 
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incorporate in the future (Alonzo et al., 2014). Future iterations of this work should calculate 

LiDAR point cloud-based metrics per pixel and/or tree crown object for improved species 

classifications.  

Following the LiDAR-derived variables, the ranking of variable importance varied 

greatly between reference data sets. There is an interesting difference in the rate of variable 

importance falloff (Appendix D), where the variable importance plateaus after slope and aspect 

for the reference sets using all points or polygons. This means that there is not a substantial 

difference in variable importance, aside from aspect and slope, for these reference data. In 

contrast, the variable importance MDA values taper off more slowly for the neon_veg reference 

sets, which indicate a more meaningful ranking beyond the LiDAR-derived variables as a result 

of the filtering and clipping operations within the neon_veg workflow. The vegetation indices 

were generally found to be more important than the multispectral intensity metrics when the 

neon_veg reference sets are used for training the RF models. These variable importance rankings 

would be useful for iterative variable selection in future classification efforts, such as how 

Maschler et al. (2018) perform backwards feature selection. Starting with all input remote 

sensing features, variable importance was calculated and the single variable with the lowest 

MDA was removed from the next iteration of model training until a target OOB accuracy was 

reached. In addition, the RF model parameters were kept consistent across the models and a 

sensitivity analysis would be valuable to fine-tune parameters in subsequent analyses to 

potentially achieve higher species classification accuracies.  

Since the in-situ and remote sensing data are collected following standardized sampling 

protocols across the United States, this method can be applied at other NEON sites to generate 

additional training data sets for regional species classification. However, the types of vegetation 



 
 

39 
 

and topography vary greatly across NEON domains, and we expect this to influence the resulting 

variable importance rankings and species classification accuracies. For instance, the LiDAR-

derived features of slope and aspect describe the underlying terrain steepness and orientation. 

These two variables were found to be the important for species classification at the mountainous 

NIWO site in the Southern Rockies during this preliminary analysis. However, the Ordway-

Swisher Biological Station (OSBS) site in north-central Florida has relatively flat terrain. We do 

not expect the slope and aspect variables to be as important for species classification at a site 

such as OSBS where slope and aspect are relatively constant across space. We anticipate that 

canopy height in addition to hyperspectral-derived features will be more important instead. 

Overall species classification is likely to be influenced by the diversity and tree canopy 

complexity at different ecosystems across NEON sites. For instance, San Joaquin Experimental 

Range (SJER) in central California features open woodland dominated by oak trees, pine trees, 

and scattered shrubs and grasses. Harvard Forest (HARV) in Massachusetts features primarily 

closed-canopy mixed forest composed of both coniferous and hardwood trees, densely packed 

with overlapping crowns. We expect greater species classification accuracies to be achieved at 

SJER compared to at HARV, since an open woodland offers simpler canopy structure and 

clearer separation between neighboring tree crowns. In addition, open woodland enables more 

accurate GPS measurements to be collected at plot corner locations as opposed to in dense, 

closed-canopy tree cover.  

 By applying this method across wider geographic extents and taking advantage of the 

long-term monitoring efforts of the NEON project, we are making strides towards answering 

ecological questions related to post-disturbance forest recovery. These airborne data provide a 

valuable intermediate step along the vertical column of observations from ground-based to 
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space-borne systems. We, as the ecological scientific community, will need to connect and 

supplement species composition estimates at the airborne scale with those from drones, to 

capture species characteristics and disturbance events that exist beyond NEON site boundaries. 

By linking these observations to those from satellite systems, we can extend our monitoring 

efforts into the global coverage and valuable historical record being collected over the past four 

decades. Studying how species composition shifts over time in response to different types and 

combinations of natural and anthropogenic disturbances will inform our understanding of future 

forest form and function.  
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CHAPTER 6 

CONCLUSIONS 

 

In this work, a series of reference data sets was created using NEON in-situ tree 

measurements and each one was used to train a pixel-based Random Forest (RF) model to 

classify tree species at the NIWO subalpine site. The highest classification accuracies, 73% and 

68% based on internal OOB error and an independent validation set, respectively, were achieved 

using polygons created with half the maximum crown diameter per tree. The LiDAR-derived 

raster data products of aspect, slope, and canopy height were found to be the most important 

AOP remote sensing data-derived features, generally followed by vegetation indices. Applying 

the classifier to the entire NIWO site and assessing the output species map will add additional 

insight and meaning to these initial findings. Refining the reference data alignment with remote 

sensing imagery, incorporating additional variables from the LiDAR point cloud, and performing 

object-based classification on crown segments, rather than individual pixels, are all promising 

directions for subsequent analyses at NIWO. Scaling this species classification method to other 

NEON sites will also be informative of the proposed workflow’s robustness. Connecting these 

airborne species classification observations with those from drones and satellites will extend the 

spatial and temporal reaches of this work in the future as well. This study contributes to the 

growing body of literature and open science that integrates NEON in-situ and airborne remote 

sensing data to map vegetation and study the effects of forest disturbances within diverse 

ecosystems across the United States.    
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APPENDIX 

 

Appendix A. Spectral reflectance curves extracted per species  

Mean spectral reflectance per species from 380 to 2510 nm, extracted for each set of 

reference data points or polyogns the NEON NIWO site. The shading illustrates +/- one standard 

deviation in reflectance per wavelength. Gaps in the spectra at approximately 1350 nm and 1800 

nm are where “bad bands” were removed where there is high atmospheric absorption.  

 

 

 
Figure A1: Mean spectral reflectance per species extracted from all tree stem points.  
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Figure A2: Mean spectral reflectance per species extracted from all half-diameter polygons. 
 
 
 

 
Figure A3: Mean spectral reflectance per species extracted from all max-diameter polygons. 
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Figure A4: Mean spectral reflectance per species extracted from neon_veg tree stem points.  
 
 
 

 
Figure A5: Mean spectral reflectance per species extracted from neon_veg half-diameter 
polygons. 
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Figure A6: Mean spectral reflectance per species extracted from neon_veg max-diameter 
polygons.  
 
 
 
Appendix B. Spectral reflectance curves overlaid  

To compare the magnitudes and well-defined differences between species, the mean 

spectral reflectance curves +/- one standard deviation were overlaid.  

 

 
Figure B1. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for all tree stem points.   
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Figure B2. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for all half-diameter polygons.  
 
 

 
Figure B3. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for all max-diameter polygons. 
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Figure B4. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for neon_veg tree stem points. 
 
 
 

 
Figure B5. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for neon_veg half-diameter polygons. 
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Figure B6. Mean spectral reflectance curves with shaded +/- 1 standard deviation overlaid to 
compare reflectance magnitudes across all four species for neon_veg max-diameter polygons. 
 

Appendix C. Interspecies comparison of variables  

To compare the distribution of variables across the species, boxplots were created for the 

six most important variables (as ranked by MDA) for each of the reference sets.  

 

 
Figure C1. Interspecies comparison of most important remote sensing variables extracted by all 
tree stem points. 
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Figure C2. Interspecies comparison of most important remote sensing variables extracted by all 
half-diameter polygons.  
 
 
 

 
Figure C3. Interspecies comparison of most important remote sensing variables extracted by all 
max-diameter polygons.   
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Figure C4. Interspecies comparison of most important remote sensing variables extracted by 
neon_veg tree stem points.  
 
 

 
Figure C5. Interspecies comparison of most important remote sensing variables extracted by 
neon_veg half-diameter polygons. 
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 Figure C6. Interspecies comparison of most important remote sensing variables extracted by 
neon_veg max-diameter polygons. 
 
 
 

Appendix D. Variable importance 

 Variable importance was quantified for each of the RF models based on the MDA metric 

and displayed as horizontal bar charts.  
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Figure D1: Variable importance ranked by MDA for (A) all stem points, (B) all half-diameter 
polygons, (C) all maximum-diameter polygons, (D) neon_veg stem points, (E) neon_veg half-
diameter polygons, and (F) neon_veg polygons maximum-diameter polygons. 


