
GEOMETRIC REALIZATION OF STRATA
IN THE BOUNDARY OF THE INTERMEDIATE JACOBIAN LOCUS

by

KRISZTIÁN HAVASI
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ABSTRACT

Havasi, Krisztián (Ph.D., Mathematics, Department of Mathematics)

Geometric Realization of Strata in the Boundary of the Intermediate Jacobian Locus

Thesis directed by Associate Professor Sebastian Casalaina-Martin

In this thesis we describe intermediate Jacobians of threefolds obtained from singular cubic

threefolds. By this we mean two things. First, we describe the intermediate Jacobian of a desingu-

larization of a cubic threefold with isolated singularities. Second, we describe limits of intermediate

Jacobians of smooth cubic threefolds, as the family of cubic threefolds acquires isolated singulari-

ties. In regards to the first question, generalizing a result of Clemens–Griffiths we show specifically

that the intermediate Jacobian of a distinguished desingularization of a cubic threefold with a

single singularity of type A3 is the Jacobian of the normalization of an associated complete inter-

section curve in P3, the so called (2, 3)-curve. In regards to degenerations, we describe how the

limit intermediate Jacobian, under certain conditions, can be described as a semi-abelian variety

as the extension of a torus by the finite quotient of the product of Jacobians of curves, where one

of the curves is the normalization of the (2, 3)-curve associated to the cubic threefold and a choice

of singularity, and the other curves are so-called tails arising from stable reduction of plane curve

singularities.
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Chapter 1

Introduction

Cubic threefolds (smooth cubic hypersurfaces in P4) have played an important role in the devel-

opment of algebraic geometry. By the global Torelli theorem for cubic threefolds, a well known result

of Clemens and Griffiths [CG72], smooth cubic threefolds can be recovered from their principally

polarized intermediate Jacobians, just like smooth curves can be recovered from their principally

polarized Jacobians. In their celebrated paper [CG72], using the intermediate Jacobian as a tool of

study, Clemens and Griffiths also showed that smooth cubic threefolds are not rational. Since these

results the intermediate Jacobian has played a central role in the study of smooth cubic threefolds.

Much attention has also been paid to the degeneration of the intermediate Jacobian as the cubic

threefold becomes singular. It turns out that intermediate Jacobians of smooth cubic threefolds are

in fact Prym varieties [Mum74], therefore one way to study degenerations of intermediate Jacobians

is through degenerations of Prym varieties. Our goal is to compute the degenerate intermediate

Jacobian as a degenerate Prym variety for several cubic threefolds with various singularities. An-

other interesting question is that if we have a singular cubic threefold, how can we describe the

intermediate Jacobian of a desingularization? We answer this question in the cases of a cubic

threefold with a single singular point of type either A1, A2 or A3 (the A1 case is due to Clemens

and Griffiths, and the A2 case essentially follows immediately from that argument).

If X is a cubic threefold with isolated singularities only and with a distinguished double point

P , we can project from P the lines of X passing through P . The projection is then a (2, 3)-complete

intersection curve C in P3 with the property that the blow-up of P3 along C is isomorphic to the

blow-up of X at P , and the singularities of C are the same as the singularities of the blow-up of
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X at P . Thus C is nonsingular if X has an A1 or A2 singularity at P and no other singularities.

To find the intermediate Jacobian of the desingularization of X in this case (i.e. the intermediate

Jacobian of the blow-up of X at P ), using that BlP X ∼= BlC P3 we only need to know how the

cohomology changes when we blow up a manifold along a smooth submanifold. This is well-known

(we review the details in this thesis for completeness), and so we find that the intermediate Jacobian

of the desingularization of a cubic threefold with a single A1 or A2 singularity is the Jacobian of

the curve C. In the case of a single A3 singularity the situation is more complicated, because C is

now singular with one node. Using the theory of toric varieties we prove

Theorem 1.0.1. If X is a cubic threefold with a unique singularity, which is of type A3, the

intermediate Jacobian of the desingularization of X obtained by two successive blow-ups of the

singular point, is the Jacobian of the normalization of the associated (2, 3)-curve.

Let L ⊂ X be a sufficiently general line. The planes of P4 containing L can be parameterized

by P2. Let D ⊂ P2 be the discriminant curve belonging to L, i.e. the curve whose points represent

planes intersecting X in L and two residual lines. Then D has a double cover D̃ → D, where points

of D̃ represent the residual lines. The singularities of D are in type-preserving bijection with the

singularities of X. According to a theorem of Mumford’s, in the case of a smooth X the Prym

variety of this double cover is isomorphic to the intermediate Jacobian of X. Thus in the case of a

singular cubic threefold describing the degenerate intermediate Jacobian is the same as describing

the degenerate Prym variety of the double cover D̃ → D.

A degeneration of a Prym variety is an extension of some quotient of the Prym variety of the

desingularization of the double cover D̃ → D (the compact part) with a non-compact torus (C∗)n:

1→ (C∗)n → P
D̃/D

→ P
ND̃/ND

/
G→ 0, (1.0.2)

where ND̃ and ND are desingularizations of D̃ and D, respectively, and G is some finite group,

often trivial. We prove that the Prym variety P
ND̃/ND

is isomorphic to the Jacobian of the

desingularization of C if X has an An singularity and ND is non-hyperelliptic, or X has a D4

singularity. In fact we have:
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Theorem 1.0.3. Let X → ∆ be a general family of cubic threefolds over the unit disk with

smooth general fiber and central fiber a cubic threefold X with isolated AD singularities P1, . . . , Pn

of types S1, . . . , Sn respectively, with S1 = Ak for some 1 ≤ k ≤ 6, or S1 = D4. Assume that

there is a general line L ⊂ X so that projection from L yields an irreducible discriminant curve

D ⊂ P2 (which will be the case for instance if n = 1). We further assume that if P1 is of type Ak,

the normalization ND is non-hyperelliptic. Then the limit intermediate Jacobian IJ(X) will be a

semi-abelian variety

1→ (C∗)r → IJ(X)→
(
J(NC)× JT1 × · · · × JTn

)/
G→ 0 (1.0.4)

where NC is the normalization of the (2, 3)-curve C obtained from projection from P1, Ti is a

so-called tail curve associated to stable reduction of a plane curve singularity of type Si, G is some

finite group, and r = 5− g(NC)−
∑n

i=1 g(Ti).

For this theorem, the main contribution of this thesis is to identify the abelian variety J(NC)

in the compact part (the remainder of the theorem can be found in [CMGHL15]). This is proven

in theorems 3.2.5 and 3.2.14. The special cases where X has a unique singularity, which is of type

A1 or A2 is due to [CM78] and [CML09], respectively. We also note, that we are able to describe

the extension data for the semi-abelian variety explicitly, although for brevity, we direct the reader

to the body of the thesis.

One of the main goals of this investigation was to identify boundary strata in the closure of

the intermediate Jacobian locus in the second Voronoi compactification of A5. In chapter 4 we

give explicit descriptions of degenerations of intermediate Jacobians in a number of examples; we

describe the semi-abelian varieties. While this is not the complete degeneration data to give a point

of the second Voronoi compactification for torus rank 2 or more, this does describe a good amount

about how various loci in the boundary can arise geometrically. Nevertheless, we point out that

one question we had hoped to answer was what geometric locus of cubic threefolds gives rise to the

locus B22 described in [CMGHL15]. Unfortunately, at this point, we have not yet identified this

locus.
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Chapter 2

Intermediate Jacobians of
Desingularizations of Cubic
Threefolds

2.1 Cubic Threefold with Isolated Singularities

Let X be a cubic hypersurface in P4 having a double point at P = (1 : 0 : 0 : 0 : 0). Let π denote

the projection of P4 through the point P onto the hyperplane P3 given by {x0 = 0}. We denote by

C the image through π of all lines that lie in X and pass through P . We start with the following

well-known result (see e.g., the references in [CMJL12, §1.2, p. 6]). For completeness, we include a

proof here.

Theorem 2.1.1. If X has isolated singularities only, then C is a curve and a complete intersection

of type (2, 3), and

BlC P3 ∼= BlP X, (2.1.2)

i.e. the blow-up of P3 along the curve C is isomorphic to the blow-up of X at the singular point P .

Proof. As X is a cubic hypersurface in P4, it is given as the zero set of a single homogeneous

polynomial f(x0, x1, x2, x3, x4) of degree three. The coefficient of x3
0 in f must be zero, otherwise

X would not contain the point P . Similarly, the coefficients of the terms x2
0xi, (1 ≤ i ≤ 4) must

be zero, otherwise P would be a smooth point of X. Therefore the equation of X can be written
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in the form

x0Q(x1, x2, x3, x4) + F (x1, x2, x3, x4) = 0, (2.1.3)

where Q is a homogeneous polynomial of degree two and F is a homogeneous polynomial of degree

three. Here Q must be nonzero, because otherwise the singularity at P would have multiplicity

three. Similarly, F is nonzero, since otherwise X would be the union of a hyperplane and a quadric,

and it would have nonisolated singularities. For the same reason Q and F cannot have common

factors.

Next, we want to find the image C of all lines lying in X and passing through P along the

projection π. Let (0 : x1 : x2 : x3 : x4) be an arbitrary point of the hyperplane {x0 = 0}.

Then the line P1 connecting (0 : x1 : x2 : x3 : x4) and P = (1 : 0 : 0 : 0 : 0) is given by

(µ : λx1 : λx2 : λx3 : λx4), where (µ : λ) are homogeneous parameters. Plugging this into equation

(2.1.3) we get

µQ(λx1, λx2, λx3, λx4) + F (λx1, λx2, λx3, λx4) = 0, (2.1.4)

then using that degQ = 2, degF = 3:

µλ2Q(x1, x2, x3, x4) + λ3F (x1, x2, x3, x4) = 0. (2.1.5)

When an entire line lies in X, then this equation must hold for any (µ : λ). The only way this can

happen is when the coefficients of µλ2 and λ3 are zero. Thus the projection C into P3 of the lines

lying inside X and containing the singular point P is given by the equations

 Q(x1, x2, x3, x4) = 0

F (x1, x2, x3, x4) = 0.
(2.1.6)

Since Q and F have no common factors, C has pure dimension one, and it is a complete intersection

of type (2, 3).

Next, we want to find BlC P3, the blow-up of P3 along the curve C. The result below (the equa-

tion of BlC P3) also follows from standard results on blowing up regular sequences, see e.g. [EH00,
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Exercise IV-26, p. 173]. Let’s consider the open set U1
∼= C3 ⊂ P3 given by x1 6= 0. In U1 the curve

C is given by the equations  Q(1, x2, x3, x4) = 0

F (1, x2, x3, x4) = 0.
(2.1.7)

Then BlC∩U1 U1 ⊂ C3 × P1 is given by the equation

a0Q(1, x2, x3, x4) = a1F (1, x2, x3, x4), (2.1.8)

where (a0 : a1) are homogeneous coordinates of P1. We get similar equations for the open sets

Ui, 1 ≤ i ≤ 4. The blow-up BlC P3 is then a variety that we receive by gluing the blow-ups

BlC∩Ui Ui together. That we can do this simply follows from the fact that the blow-up of a manifold

along a subvariety exists.

Next, we compute BlP X, the blow-up of the variety X at the singular point P which will be

a subvariety of P4 × P3. If the homogeneous coordinates of P3 are given by (y1 : y2 : y3 : y4), we

consider the open set P4×C3 ⊂ P4×P3 given by y1 6= 0. Then we have the following equations for

the blow-up in P4 × C3:

x0Q(x1, x2, x3, x4) + F (x1, x2, x3, x4) = 0 (2.1.9)

x2 = x1y2 (2.1.10)

x3 = x1y3 (2.1.11)

x4 = x1y4. (2.1.12)

After substitutions, the first equation becomes

x0Q(x1, x1y2, x1y3, x1y4) + F (x1, x1y2, x1y3, x1y4) = 0. (2.1.13)

Then pulling out x1 gives:

x2
1

(
x0Q(1, y2, y3, y4) + x1F (1, y2, y3, y4)

)
= 0. (2.1.14)
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Here the factor x2
1 represents the exceptional set (x1 = 0 gives x2 = x3 = x4 = 0), so we must

disregard it. Thus the blow-up in P4 × C3 is given by:

x0Q(1, y2, y3, y4) + x1F (1, y2, y3, y4) = 0, (2.1.15)

x2 = x1y2, x3 = x1y3, x4 = x1y4. (2.1.16)

We can in fact write this as a subvariety of P1 × C3 by simply taking the projection from P4 × C3

by forgetting the coordinates x2, x3, x4 and the last three equations. Then the blow-up becomes a

subvariety of P1 × C3 given by the single equation

x0Q(1, y2, y3, y4) + x1F (1, y2, y3, y4) = 0. (2.1.17)

We get similar equations for the other open patches inside the sets {yi 6= 0}. Comparing equations

(2.1.8) and (2.1.17) we see that the open patches of BlC P3 and BlP X inside P1×C3 are isomorphic.

The transition functions between the different open patches must agree for the two blow-ups,

because in both cases they are derived from the usual transition functions between the standard

open affine subsets of the projective space P3. Thus BlC P3 is isomorphic to BlP X.

We now show the following well-known result (see e.g., the references in [CMJL12, §1.2, p. 6]).

For completeness, we include a proof here.

Theorem 2.1.18 (e.g., [CML09, §3], [CMJL12, Prop. 1.3]). If X has isolated singularities only,

the singularities of the blow-up BlP X of X at P are in bijection with the singularities of the

(2, 3)-curve C, and along this bijection the corresponding singularities have the same singularity

types.

Proof. By Theorem 2.1.1 we have BlC P3 ∼= BlP X, therefore it is enough to see that the singularities

of BlC P3 are in bijection with the singularities of C, and this bijection respects the singularity type.

All singularities of BlC P3 must be in the exceptional set, therefore it is enough to prove that each

point above a non-singular point of C is non-singular, while above any singular point p of C there

is exactly one singular point in the blow-up with the same singularity type as p.
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So let’s fix a point p = (y1 : y2 : y3 : y4) ∈ C and let’s examine the points of the blow-up above

p. From the proof of Theorem 2.1.1 we know that C is given by the equations

 Q(x1, x2, x3, x4) = 0

F (x1, x2, x3, x4) = 0,
(2.1.19)

where Q and F are nonzero homogeneous quadratic and cubic polynomials. By our assumptions it

is not possible that both Q and F are singular at p, because then X would be singular along the

entire line connecting P and the point p ∈ P3 ∼= {x0 = 0} and this would contradict the assumption

that X has isolated singularities only. To see this we take the derivative of the defining polynomial

of X (see equation (2.1.3)) to get

[
Q(x1, . . . , x4) x0

∂
∂x1

Q(x1, . . . , x4) + ∂
∂x1

F (x1, . . . , x4) . . .

. . . x0
∂
∂x4

Q(x1, . . . , x4) + ∂
∂x4

F (x1, . . . , x4)
]
.

(2.1.20)

If we plug in the general point (µ : λy1 : λy2 : λy3 : λy4) of the line connecting P and p we get

[
Q(λy1, . . . , λy4) µ ∂1Q(λy1, . . . , λy4) + ∂1F (λy1, . . . , λy4) . . .

. . . µ ∂4Q(λy1, . . . , λy4) + ∂4F (λy1, . . . , λy4)
]

=[
λ2Q(y1, . . . , y4) µλ ∂

∂y1
Q(y1, . . . , y4) + λ2 ∂

∂y1
F (y1, . . . , y4) . . .

. . . µλ ∂
∂y4

Q(y1, . . . , y4) + λ2 ∂
∂y4

F (y1, . . . , y4)
]
.

(2.1.21)

If p is a singular point of both Q and F , this Jacobian is zero for any (µ : λ), therefore at p at least

one of Q and F is non-singular.

Let’s apply a local analytic transformation to a neighborhood of p in P3 such that p is taken to

the origin of C3, while z = 0 gives locally either the surface Q or F (we pick one that is non-singular

at p). Then the other surface of Q and F will be given by some equation h(x, y, z) = 0, with h

complex analytic. The curve C is then given locally by the equations z = 0, h(x, y, 0) = 0 (thus C

becomes a planar curve) and the singularity type of C at p will be given by the function h(x, y, 0).

By another analytic transformation (in the x, y coordinates only) we can write h(x, y, 0) in the
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standard polynomial form q(x, y) according to the singularity type of C at the point p. Then the

blow-up of C3 along the curve given by z = q(x, y) = 0 is given in C3 × P1 by the equation

a0z − a1q(x, y) = 0, (2.1.22)

where (a0 : a1) are homogeneous coordinates of P1. The Jacobian of this is given by

[
−a1∂xq(x, y) −a1∂yq(x, y) a0 z −q(x, y)

]
. (2.1.23)

To get a singular point we must have a0 = 0, therefore above the origin there can be at most one

point w where the blow-up is singular, and that is given by (a0 : a1) = (0 : 1), (x, y, z) = (0, 0, 0).

From the first two entries of the Jacobian we see that if C is non-singular at p, the blow-up is non-

singular at w, therefore above a non-singular point of C all points of the blow-up are non-singular.

It is also clear that if p is a singular point of C (i.e. q(x, y) is singular at (0, 0)), then w is also

a singular point of the blow-up. To see that the two singularity types are the same, let’s write

equation (2.1.22) in the open set C3 × C given by a1 6= 0. We can pick a1 = 1 and write

q(x, y)− a0z = 0 (2.1.24)

as an equation in C4. Applying the linear transformation

a0 = u+ iv, z = −u+ iv (2.1.25)

the equation transforms into

q(x, y) + u2 + v2 = 0. (2.1.26)

Thus the type of the singularity is determined by q(x, y) and therefore C has the same singularity

type at p as the blow-up has at w.
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2.2 Cohomology of a Blow-up

In this section we review some basic facts about the cohomology of a blow-up. This is standard

(see e.g., [GH78, p. 605]). For completeness, we include detailed proofs here. Let M be a complex

manifold and Y ⊂M a submanifold. Let M̃ denote BlY M , the blow-up of M along Y , π : M̃ →M

the map of the blow-up, and E = π−1(Y ) ⊂ M̃ the exceptional set. For computing the cohomology

of M̃ we have the following

Theorem 2.2.1 ([GH78, p. 605]). For any n ≥ 0 the cohomology of the blow-up is given by

Hn(M̃,C) = π∗
(
Hn(M,C)

)
⊕
(
Hn(E,C)

/
π∗|E
(
Hn(Y,C)

))
, (2.2.2)

and this formula respects the Hodge-decomposition, i.e. for any p, q ≥ 0 we have

Hp,q(M̃) = π∗
(
Hp,q(M)

)
⊕
(
Hp,q(E)

/
π∗|E
(
Hp,q(Y )

))
. (2.2.3)

Formula (2.2.2) is also true with the integer cohomologies Hn(·,Z)
/
{torsion cocycles}.

Proof. We want to use Mayer-Vietoris sequences for M and M̃ . We will decompose M as the union

of a tubular neighborhood of Y and the open set M−Y , and similarly, we will write M̃ as the union

of a neighborhood of E and the open set M̃ −E. The two decompositions will be compatible along

π. First let’s choose U to be a tubular neighborhood of Y , and Ũ = π−1(U) ⊂ M̃ its preimage

along π, which is a neighborhood of E. We also introduce the following open sets:

M◦ = M − Y (2.2.4)

M̃◦ = M̃ − E = π−1(M◦) (2.2.5)

U◦ = U − Y (2.2.6)

Ũ◦ = Ũ − E = π−1(U◦). (2.2.7)
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With this notation we have

M = M◦ ∪ U, U◦ = M◦ ∩ U, (2.2.8)

which gives the Mayer-Vietoris sequence

· · · → Hn−1(U◦,C)→ Hn(M,C)→ Hn(M◦,C)⊕Hn(U,C)→ Hn(U◦,C)→ · · · , (2.2.9)

and similarly

M̃ = M̃◦ ∪ Ũ , Ũ◦ = M̃◦ ∩ Ũ , (2.2.10)

gives the sequence

· · · → Hn−1(Ũ◦,C)→ Hn(M̃,C)→ Hn(M̃◦,C)⊕Hn(Ũ ,C)→ Hn(Ũ◦,C)→ · · · . (2.2.11)

The map π is an isomorphism outside of E and Y , therefore we have the isomorphisms

π|
M̃◦

: M̃◦ →M◦ (2.2.12)

π|
Ũ◦

: Ũ◦ → U◦, (2.2.13)

which in turn induce cohomology isomorphisms

π∗|
M̃◦

: Hn(M◦,C)→ Hn(M̃◦,C) (2.2.14)

π∗|
Ũ◦

: Hn(U◦,C)→ Hn(Ũ◦,C). (2.2.15)
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Now U being a tubular neighborhood of Y means that there is a contraction

f : U × [0, 1]→ U (2.2.16)

f(z, 0) = z, ∀z ∈ U (2.2.17)

f(y, t) = y, ∀y ∈ Y, ∀t ∈ [0, 1] (2.2.18)

f(z, 1) ∈ Y, ∀z ∈ U, (2.2.19)

and Y is a deformation retract of U . This means that they are homotopy equivalent and the

inclusion i : Y ↪→ U induces an isomorphism i∗ : Hn(U,C) → Hn(Y,C). Using the universial

property of blow-up ([Har77, Prop. II.7.14., Cor. II.7.15.]) f induces a contraction f̃ of Ũ to E and

therefore the inclusion ı̃ : E ↪→ Ũ induces an isomorphism ı̃∗ : Hn(Ũ ,C)→ Hn(E,C).

Using the above isomorphisms and the functorial property of the Mayer-Vietoris sequence, which

we apply to π, we get the following commutative diagram:

Hn−1(U◦,C) //

π∗|
Ũ◦

Hn(M̃,C) // Hn(M◦,C)⊕Hn(E,C) //

π∗|
M̃◦ ı̃∗

Hn(U◦,C)

π∗|
Ũ◦

Hn−1(Ũ◦,C) // Hn(M̃,C) // Hn(M̃◦,C)⊕Hn(Ũ ,C) // Hn(Ũ◦,C)

Hn−1(U◦,C) //

π∗

OO

Hn(M,C) //

π∗

OO

Hn(M◦,C)⊕Hn(U,C) //

π∗

OO

i∗

Hn(U◦,C)

π∗

OO

Hn−1(U◦,C) // Hn(M,C) // Hn(M◦,C)⊕Hn(Y,C) // Hn(U◦,C)

(2.2.20)

The second row is the same as (2.2.11), the third row as (2.2.9) and the arrows between them come

from the functorial property of the Mayer-Vietoris sequence. Copying the first and fourth rows we
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get:

Hn−1(U◦,C) // Hn(M̃,C) // Hn(M◦,C)⊕Hn(E,C) // Hn(U◦,C)

Hn−1(U◦,C) // Hn(M,C) //

π∗

OO

Hn(M◦,C)⊕Hn(Y,C) //

π∗|E

OO

Hn(U◦,C)

(2.2.21)

The map π∗ : Hn(M,C) → Hn(M̃,C) is injective. To see this, we consider de-Rham cohomology

and the fact that π is birational, i.e. an isomorphism away from closed sets. If ϕ is a C∞ n-form on

M that represents a non-zero cocycle, then by the de Rham theorem there is a piecewise smooth

n-chain σ, such that
∫
σ ϕ 6= 0. We can choose σ such that it is transversal to Y . Then if σ̃ is

the proper transform of σ (which is an n-chain in M̃), we have
∫
σ̃ π
∗ϕ =

∫
σ ϕ 6= 0, because π is

an isomorphism away from Y and E. This proves that π∗ is injective. By theorem 2.2.24 below

π∗|E : Hn(Y,C) → Hn(E,C) is also injective. We also need to prove that the map Hn(M̃,C) →

Hn(E,C) is surjective. Again, to see this, we consider de Rham cohomology: if ϕ is a C∞ n-form

on E, it can be extended into an C∞ n-form on M̃ using a tubular neighborhood of E.

Using the above we can transform diagram (2.2.21) into the following:

0 0

Cokerβ
δ //

OO

Coker γ

OO

A
µ′ // B′

α′ //

β′

OO

C1 ⊕ C ′2
λ′ //

γ′

OO

D

A
µ //

∼=

OO

B
α //

β

OO

C1 ⊕ C2
λ //

γ=id⊕γ2

OO

D

∼=

OO

0

OO

0

OO

(2.2.22)

The columns are exact, the last two rows are the rows of diagram (2.2.21), therefore exact, and
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we want to prove that δ, which is induced from α′, is an isomorphism. To prove injectivity, let

x ∈ Cokerβ with δ(x) = 0. There is a y ∈ B′, such that β′(y) = x. Since γ′(α′(y)) = 0, there

exists z ∈ C1⊕C2, such that γ(z) = α′(y). Now λ′(α′(y)) = 0, therefore λ′(γ(z)) = 0 and λ(z) = 0.

Thus there exists some b ∈ B, such that z = α(b). Next, we have α′(y− β(b)) = α′(y)−α′(β(b)) =

α′(y)− γ(α(b)) = α′(y)− γ(z) = 0, which gives that there exists u ∈ A, such that µ′(u) = y−β(b).

But since µ′(u) = β(µ(u)), we have y = β(b) + β(µ(u)). This gives that x = β′(y) = 0 and

injectivity is proven. To prove surjectivity we use the fact that pr2 ◦α′ is surjective (this is the

map Hn(M̃,C) → Hn(E,C) above). Let x ∈ Coker γ be arbitrary element. Since γ′ is surjective,

there exists (u, v) ∈ C1 ⊕ C ′2 with γ′(u, v) = x. Since pr2 ◦α′ is surjective, there exists b ∈ B′,

such that α′(b) = (u2, v), for some u2 ∈ C1. Then γ′(α′(b)) = γ′(u2, v) = γ′(u, v) + γ′(u2 − u, 0) =

γ′(u, v) + γ′(γ(u2 − u, 0)) = x. Therefore x = δ(β′(b)), and δ is surjective.

Returning to our original notation and to diagram (2.2.21), the above gives that

Hn(M̃,C)
/
π∗
(
Hn(M,C)

) ∼= Hn(E,C)
/
π∗|E
(
Hn(Y,C)

)
, (2.2.23)

which proves the first part of the theorem, since these cohomologies are vector spaces and thus

subspaces are direct summands.

To prove the theorem for the Hp,q cohomology, we notice that the above proof works for that case

as well. We can use the sheaf cohomology version of the Mayer-Vietoris theorem, since Hp,q(M) ∼=

Hq(M,Ωp). In the diagram (2.2.20) all vertical maps are pullbacks, therefore they respect the

Hodge decomposition. The maps π∗ and π∗|E in diagram (2.2.21) are injective on the Hp,q direct

summands, since they are pullbacks and respect the Hodge decomposition, and similarly the map

Hn(M̃,C)→ Hn(E,C) is surjective on the Hp,q components.

Theorem 2.2.24 ([BT82, §20]). If k is the codimension of Y in M , we have

Hn(E,C) ∼=
k−1⊕
i=0

Hn−2i(Y,C) = Hn(Y,C)⊕Hn−2(Y,C)⊕ · · · ⊕Hn−2k+2(Y,C), (2.2.25)
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and

Hp,q(E) ∼=
k−1⊕
i=0

Hp−i,q−i(Y ) = Hp,q(Y )⊕Hp−1,q−1(Y )⊕ · · · ⊕Hp−k+1,q−k+1(Y ). (2.2.26)

Proof. The exceptional set E is the projectivization P(NY/M ) of the normal bundle NY/M of Y in

M . The fibers on NY/M have dimension k, and the fibers of E → Y are projective spaces Pk−1.

From the theory of the cohomology of the projectivization of a vector bundle ([BT82, §20]) we

know that additively

H∗(E,C) = H∗(Y,C)⊗H∗(Pk−1,C). (2.2.27)

We can rewrite this as

Hn(E,C) =
⊕
r+s=n

Hr(Y,C)⊗Hs(Pk−1,C) (2.2.28)

for any n ≥ 0. Since the cohomology of the projective space is

Hs(Pk−1,C) =

 C if 2 | s, 0 ≤ s ≤ 2k − 2

0 else,
(2.2.29)

we obtain the first statement of the theorem. To prove (2.2.26), we note that the tensor product in

(2.2.28) is realized as the wedge product of differential forms when we consider de Rham cohomology.

In fact, let η be a 2-form on E, such that the restriction to any fiber gives a cocycle [η|Pk−1
] that

generates H2(Pk−1,C) = C, i.e. it represents a hyperplane cocycle. Such η exists by [BT82, p. 270].

Then (2.2.28) becomes

Hn(E,C) =
k−1⊕
i=0

Hn−2i(Y,C) ∧ [ηi], (2.2.30)

where Hr(Y,C) ⊂ Hr(E,C) through the inclusion π∗|E . Since [ηi] ∈ H i,i(E), we obtain the second

statement of the theorem.
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2.3 Cubic Threefold with a Single A1 or A2 Singularity

In this section we describe the intermediate Jacobian of the desingularization of a cubic threefold

with a single A1 or A2 singularity. We show in theorem 2.3.15 that it is the Jacobian of the (2, 3)-

curve described above. These results are due to Clemens and Griffiths [CG72], and we include the

proof here for completeness. Let X ⊂ P4 be a cubic threefold with a single A1 or A2 singularity

at P ∈ X. By theorem 2.1.1 BlP X = BlC P3, where C is the (2, 3)-curve introduced earlier,

and by theorem 2.1.18 the singularities of C are the same as that of BlP X. Blowing up X at P

will desingularize X at P , since it is either an A1 or an A2 point, therefore both BlP X and the

curve C are non-singular. Our goal is to find the intermediate Jacobian of the desingularization

X̃ = BlP X = BlC P3. For this we find the cohomology and the Hodge diamond of X̃. Let

π : X̃ → P3 be the map of the blow-up along C, and let E = π−1(C) be the exceptional divisor.

Then dimE = 2 and the fibers of π|E are P1. By theorem 2.2.24 we have

Hn(E,C) ∼= Hn(C,C)⊕Hn−2(C,C) (2.3.1)

Hp,q(E) ∼= Hp,q(C)⊕Hp−1,q−1(C). (2.3.2)

More precisely, formula (2.2.30) gives

Hn(E,C) = Hn(C,C)⊕Hn−2(C,C) ∧ [η], (2.3.3)

where η is a (1, 1)-form on E, such that its restrictions on the fibers generate H2(P1,C). We then

have the following cohomologies:

H4(E,C) = C (2.3.4)

H3(E,C) = H1(C,C) ∧ [η] (2.3.5)

H2(E,C) = H2(C,C)⊕H0(C,C) ∧ [η] ∼= C⊕ C (2.3.6)

H1(E,C) = H1(C,C) (2.3.7)

H0(E,C) = C. (2.3.8)
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The Hodge diamond of E:

C
H1,0(C) H0,1(C)

0 C2 0

H1,0(C) H0,1(C)

C

(2.3.9)

Next we want to use theorem 2.2.1, so we compute

H2(E,C)
/
π∗|E
(
H2(C,C)

)
= H0(C,C) ∧ [η] ∼= C (2.3.10)

H1(E,C)
/
π∗|E
(
H1(C,C)

)
= 0 (2.3.11)

H0(E,C)
/
π∗|E
(
H0(C,C)

)
= 0. (2.3.12)

After ”factoring out” the Hodge diamond of C from that of E we get:

C
H1,0(C) H0,1(C)

0 C 0
0 0

0

(2.3.13)

To get the Hodge diamond of X̃, we have to add the Hodge diamond of P3 to the above, which

gives:

C
0 0

0 C2 0

0 H1,0(C) H0,1(C) 0

0 C2 0

0 0
C

(2.3.14)

This means that H1,2(X̃) ⊕ H0,3(X̃) ∼= H0,1(C), and H3(X̃,C) ∼= H1(C,C). This proves the

following

Theorem 2.3.15 ([CG72]). The intermediate Jacobian of the desingularization X̃ = BlP X of a

cubic threefold with a single A1 or A2 singularity is isomorphic to the Jacobian JC of the (2, 3)-curve
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C.

2.4 Cubic Threefold with a Single A3 Singularity

Let X ⊂ P4 be a cubic threefold with a single A3 singularity at P ∈ X. Blowing up X once at

P results in a singular threefold with a node, so we have to blow it up a second time to get the

desingularization X̃ of X. Since the singularities of BlP X ∼= BlC P3 are the same as the singularities

of C, the curve C is singular with a node. Thus we do not want to consider the Jacobian of C,

but rather the Jacobian of the normalization of C, i.e. the blow-up of C at the node. To find the

intermediate Jacobian of X̃, we want to see how it relates to the Jacobian of the normalization of

C. For this we want to find some relationship between X̃ and BlNC BlQ P3, where Q is the node

of C and NC = BlQC is the normalization of C. In other words to get Y = BlNC BlQ P3 we first

blow up P3 at the node of C, then blow up the result along the proper transform of C. Notice that

an alternative way to get X̃ is first blowing up P3 along C, then blowing up the result at the node

(which is a point above Q, the node of C), thus to get Y we essentially switch the order of these

two blow-ups.

First we consider the picture locally around Q. Since Q is a node of C, there exists some

neighborhood U of Q and an analytic isomorphism ξ : U → C3, that gives an analytic isomorphism

between C ∩ U and D = {(x, y, z) ∈ C3 | xy = z = 0}, i.e. the union of the x and y axes. We need

to compare two series of blow-ups: one, the blow-up of C3 along D followed by the blow-up of the

result at the node of the result (there has to be one node above the origin); two, the blow-up of

C3 at the origin followed by the blow-up of the result along the proper transform of D. We hope

to find further blow-ups of these spaces that will result in the same threefold. To do this we use

the theory of toric varieties. We follow the treatment of the theory as in [CLS11], and we rely on

results of Chapters 1-3, 7, 11.

Let N = N3, NR = N ⊗ R = R3 and (e1, e2, e3) the standard basis of NR. Let σ =

Cone(e1, e2, e3) ⊂ NR be the cone of the first octant, which is strongly convex and rational. The

following picture depicts the intersection of σ with the plane lying on the endpoints of the vectors

e1, e2, e3.
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e1 e2

e3

σ

Below we use the same plane to get two dimensional representations of cones and fans. The affine

toric variety of σ is Uσ = C3. We note the closures of the orbits of the faces of σ:

V (Cone(e1)) = the yz-plane (2.4.1)

V (Cone(e2)) = the xz-plane (2.4.2)

V (Cone(e3)) = the xy-plane (2.4.3)

V (Cone(e1, e2)) = the z-axis (2.4.4)

V (Cone(e1, e3)) = the y-axis (2.4.5)

V (Cone(e2, e3)) = the x-axis. (2.4.6)

To construct BlD C3, let Σ1 be the fan containing the cones σa = Cone(e1, e2, e2 + e3, e1 + e3) and

σb = Cone(e1 + e3, e2 + e3, e3) and all of their faces. Thus we get Σ1 if we subdivide σ along the

new face Cone(e1 + e3, e2 + e3).

e1 e2

e3

e1 + e3 e2 + e3
Σ1

σa

σb

Proposition 2.4.7. The toric variety TΣ1 is the blow-up of C3 along the union of the x and y

axes, i.e. TΣ1
∼= BlD C3.

Proof. We need to construct Uσa and Uσb and see how they glue together. To get the dual cones

we need to find the facet normals of σa and σb. A facet normal can be found by taking the cross

19



product in R3 of the two generating vectors of the facet, e.g. e1 × e2 = e3 gives the normal to the

facet that is represented by the bottom edge of the triangle in the diagram of Σ1. This computation

gives:

σ∨a = Cone(e3, e1, e1 + e2 − e3, e2) ⊂MR (2.4.8)

σ∨b = Cone(e3 − e2 − e1, e1, e2) ⊂MR, (2.4.9)

where M = N∨ and MR = M ⊗ R = N∨R . We have to find generators of the semigroups σ∨a ∩M

and σ∨b ∩M . In fact in both cases the generators of the cones in MR are also generators of the

semigroups in M . To see this let

x = t1e3 + t2e1 + t3(e1 + e2 − e3) + t4e2 ∈ σ∨a ∩M, ti ∈ R≥0. (2.4.10)

This gives

x = (t2 + t3)e1 + (t4 + t3)e2 + (t1 − t3)e3, (2.4.11)

where the coefficients must be integers. If t1 ≥ t3, we are done. Otherwise we write

x = (t1 + t2)e1 + (t1 + t4)e2 + (t3 − t1)(e1 + e2 − e3). (2.4.12)

Since now t3 − t1 is non-negative and integer, t1 + t2 and t1 + t4 are also integers, this proves that

{e1, e2, e3, e1 + e2 − e3} are generators of the semigroup σ∨a ∩M . Similarly let

x = t1(e3 − e2 − e1) + t2e1 + t3e2 ∈ σ∨b ∩M, ti ∈ R≥0. (2.4.13)

We can rewrite this as

x = (t2 − t1)e1 + (t3 − t1)e2 + t1e3, (2.4.14)

where the coefficients are integers, but this is only possible if the original coefficients in (2.4.13) are

integers, which proves that {e3 − e2 − e1, e1, e2} are generators of σ∨b ∩M .

The affine toric variety Uσa is then defined as the Zariski closure of the image of (C∗)3 3
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(q1, q2, q3) 7→ (q3, q1, q1q2q
−1
3 , q2) ∈ C4. Thus

Uσa = V(〈u1u3 − u2u4〉), 〈u1u3 − u2u4〉 C C[u1, u2, u3, u4]. (2.4.15)

Similarly Uσb is the Zariski closure of the image of (C∗)3 3 (q1, q2, q3) 7→ (q3q
−1
1 q−1

2 , q1, q2) ∈ C3.

Thus Uσb
∼= C3, and the coordinate ring is C[Uσb ] = C[v1, v2, v3] (this also follows from the fact

that σb is generated by a Z-basis of N). We can glue Uσa \ V(〈u3〉) and Uσb \ V(〈v1〉) with the

isomorphism given by

u1 = v1v2v3, u2 = v2, u3 =
1

v1
, u4 = v3. (2.4.16)

Since the union D of the x and y axes is given by the ideal a = 〈xy, z〉 C C[x, y, z], the blow-up

of C3 along D is given in P1 × C3 by the equation a0xy = a1z, where (a0 : a1) ∈ P1. We get an

open affine cover by the sets {xy = a1z} ⊂ C4 and {a0xy = z} ⊂ C4 by setting a0 = 1 first, then

a1 = 1. The identifications

a0 = v1, a1 = u3, x = u2 = v2, y = u4 = v3, z = u1 (2.4.17)

then show that the toric variety TΣ1 is indeed the blow-up BlD C3.

For an alternative proof, we can construct the lattice polyhedron P belonging to a (as in

[CLS11, §11.3]). The ideal a is radical because it is generated by square-free monomials, therefore

it is integrally closed (see [CLS11, Example 11.3.7.]). The polyhedron belonging to a is then

P = Conv(e1+e2, e3)+σ∨, where Conv(e1+e2, e3) is the line segment between the two points. Since

the facets of the recession cone of P are coordinate planes, P is normal and therefore XP = BlaC3.

To find the fan in NR that gives XP we note that P has two vertices, e1 + e2 and e3. The facets

joining e1 + e2 have normal vectors that are the generators of σb and the facets joining e3 have

normal vectors that are the generators of σa. This means that the fan corresponding to P is Σ1

and therefore XΣ1 = XP = BlD C3.

The blow-up BlD C3 has a node, and in the next step we want to find the blow-up of BlD C3 at
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the node. From Examples 11.1.12 and 11.2.12 of [CLS11] we know that this blow-up is given by

the star subdivision Σ2 = Σ∗1(τ) of Σ1, where

τ = Cone(e1 + e2 + e3) = Cone(e1, e2 + e3) ∩ Cone(e2, e1 + e3) (2.4.18)

is the center line of σa. The toric variety XΣ2 is the one that we get by first blowing up C3 along

the union of the x and y axes, then blowing up the singular point.

e1 e2

e3

e1 + e3 e2 + e3
Σ2

τ

In the second series of blow-ups we first blow up C3 at the origin, then blow up the result along

the proper transform of the union of the x and y axes. Again, we start from the cone σ ⊂ NR

which corresponds to C3. The origin is the orbit belonging to σ, i.e. V (σ) = {0}. If we let Σ

denote the fan whose only maximal cone is σ, as σ is smooth the blow-up Bl0 C3 is given by the

star subdivision Σ3 = Σ∗(τ), where τ = Cone(e1 + e2 + e3), as defined earlier.

e1 e2

e3

τ

Σ3
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In Σ3 we have the following orbit closures:

V (Cone(e1, e3)) = proper transform of the y axis (2.4.19)

V (Cone(e2, e3)) = proper transform of the x axis (2.4.20)

V (Cone(e3)) = proper transform of the xy plane (2.4.21)

V (τ) = the exceptional set (2.4.22)

V (Cone(τ, e3)) = V (Cone(e3)) ∩ V (τ). (2.4.23)

The orbit closure V (Cone(e3)) can also be described as the xy plane blown up at the origin and

V (Cone(τ, e3)) as the exceptional set of the blow-up of the xy plane at the origin.

In Bl0 C3 the proper transforms of the x and y axes are disjoint, therefore blowing up Bl0 C3

along the proper transform of the union of the two axes is the same as blowing it up twice con-

secutively along the proper transform of one axis then the other. To get the two consecutive

blow-ups we take two consecutive star subdivisions of Σ3. This gives Σ4 = (Σ∗3(τ1))∗ (τ2), where

τ1 = Cone(e1 + e3) and τ2 = Cone(e2 + e3). This gives the blow-up that we want, because all cones

of Σ3 and Σ∗3(τ1) are smooth. Thus XΣ4 is the blow-up of C3 at the origin followed by the blow-up

of the proper transform of the union of the x and y axes.

e1 e2

e3

τ2τ1
Σ4

τ

In the next step we construct a common refinement of the fans Σ2 and Σ4. It is given by adding

the new ray

τ3 = Cone(e1 + e2 + 2e3) = Cone(τ1, τ2) ∩ Cone(τ, e3), (2.4.24)

and taking the star subdivision

Σ5 = Σ∗2(τ3) = Σ∗4(τ3). (2.4.25)
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e1 e2

e3

τ2τ1
Σ5

τ

τ3

Since Σ2 and Σ4 are smooth, these refinements represent blow-ups. We obtain Σ5 from Σ2 by adding

τ3 to Cone(τ1, τ2) and subdividing, therefore XΣ5 → XΣ2 is the blow-up BlV (Cone(τ1,τ2))XΣ2 . By

[CLS11, Prop. 11.1.10] the orbit closure V (Cone(τ1, τ2)) in Σ1 is the total transform (the preimage)

of 0 ∈ C3 in BlD C3, which is some curve F isomorphic to P1. The orbit closure V (Cone(τ1, τ2)) in

Σ2 is then the proper transform of F along the blow-up XΣ2 → XΣ1 . This latter blow-up was at a

node of XΣ1 which is actually on F . The proper transform of F is still isomorphic to P1, therefore

we get XΣ5 from XΣ2 by blowing it up along some curve isomorphic to P1. Similarly, we obtain

Σ5 from Σ4 by adding τ3 to Cone(τ, e3) and subdividing, therefore XΣ5 → XΣ4 is the blow-up

BlV (Cone(τ,e3))XΣ4 . The orbit closure V (Cone(τ, e3)) in Σ3 is the exceptional set of the blow-up of

the xy plane at the origin, therefore it is isomorphic to P1. Its proper transform in XΣ4 must also

be isomorphic to P1, therefore we get XΣ5 from XΣ4 by blowing it up along some curve isomorphic

to P1.

Getting back to the global picture, let’s consider the following two series of blow-ups, both
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starting from P3:

Blη BlR BlC P3 = X#

π3
��

π

&&

BlR BlC P3 = X̃

π2
��

BlC P3

π1
��

P3

Blν Bl
C̃

BlQ P3 = Z#

ρ3
��

ρ

%%

Bl
C̃

BlQ P3 = Z̃

ρ2

��
BlQ P3

ρ1
��

P3,

(2.4.26)

where R is the node of BlC P3, η is the proper transform along π2 of the preimage along π1 of

Q ∈ C, C̃ = NC = BlQC is the proper transform of C along ρ1 and ν is the proper transform

along ρ2 of the curve that consists of all the directions from Q that are in the tangent plane of C

at Q (since C has a node at Q, it has a tangent plane and the directions in that tangent plane at

Q give a curve in the exceptional set of BlQ P3). The curves η and ν are isomorphic to P1.

There is an isomorphism between X# \ π−1(C) and Z# \ ρ−1(C), since both are isomorphic to

P3 \ C. These are isomorphisms between open dense sets. In fact more is true:

X# \ π−1(Q) ∼= Z# \ ρ−1(Q) ∼= BlC\{Q}
(
P3 \ {Q}

)
, (2.4.27)

since the blow-ups of (2.4.26) only differ at Q and its preimages. To see that this isomorphism

extends to an isomorphism X# ∼= Z# we use our result about toric varieties. This gives that

π−1(U) ∼= XΣ5
∼= ρ−1(U), (2.4.28)

where U ⊂ P3 was defined above as some small open neighborhood of Q. The isomorphism

π−1(U) ∼= ρ−1(U) is compatible with X# \ π−1(Q) ∼= Z# \ ρ−1(Q), therefore X# ∼= Z#. This

proves the following

Theorem 2.4.29. Let X ⊂ P4 be a cubic threefold with a single A3 singularity, and let X̃ be its
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desingularization which we get by blowing up the singular point twice. Then X̃ can be obtained

from a series of blow-ups and blow-downs as follows: blow up P3 at the node of the (2, 3)-curve C,

blow up the result along the normalization of C, blow up the result along the curve ν ∼= P1 and

finally blow down the result along the curve η ∼= P1.

Corollary 2.4.30. The intermediate Jacobian of the desingularization of X is the Jacobian of the

normalization of the (2, 3)-curve C, i.e.

IJ(X̃) ∼= J(NC). (2.4.31)

Proof. Using the theorems of §2.2 and the process in §2.3 we see that blowing up at a point or

along a curve isomorphic to P1 does not change the third cohomology. On the other hand blowing

up along NC adds H1(NC,C) to H3(·,C) and adds H0,1(NC) to H1,2(·).
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Chapter 3

Degenerations of Intermediate
Jacobians of Cubic Threefolds

3.1 Cubic Surfaces

In this section X is a surface in P3 given by a single homogeneous degree three polynomial. It will

frequently be the case that we will want to cut a cubic threefold with a hyperplane in P4. The

result will be a cubic surface, and we will be interested in lines on these possibly singular cubic

surfaces. We give a short summary of the description of lines on cubic surfaces with some basic

isolated singularities. The source of all these classical results is Cayley’s famous Memoir on Cubic

Surfaces ([Cy869]). In this section we use Cayley’s original notation.

3.1.1 Non-singular cubic surfaces

If X has no singularities, it contains exactly 27 lines, each with multiplicity one. There are 45 planes

in P3 that intersect X in a union of lines. The intersection in all 45 cases is a union of three distinct

lines. Each of the 27 lines appears in 5 different planes as part of the intersection. The incidence

relations between the lines and the planes are the following. There are six disjoint lines labelled

from 1 to 6. Another set of six disjoint lines are labelled from 1′ to 6′. Line i intersects line j′ if and

only if i 6= j. There are 15 lines labelled ij with 1 ≤ i < j ≤ 6, i.e. lines 12, 13, . . . , 16, 23, . . . , 56.

Line ij intersects line k if and only if k = i or k = j and similarly line ij intersects line l′ if and

only if l = i or l = j. Finally, line ij intersects line kl if and only if i, j, k, l are distinct indexes.

The lines i and j′ determine the plane ij′, where the third line of intersection is ij if i < j and ji
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otherwise. There are 6×5 = 30 such planes. The lines ij, kl, mn also determine a plane if all these

indexes are distinct, that gives the remaining 15 planes.

3.1.2 A1 cubic surfaces

In this case there are six lines labelled from 1 to 6 that go through the singular point and lie on

a quadric cone which is the tangent cone to X at the node. These lines have multiplicity two.

There are 15 lines with multiplicity one, not containing the node. These are labelled ij, with

1 ≤ i < j ≤ 6. For i < j the lines i, j and ij make up the plane ij. These planes have multiplicity

two. The lines ij, kl, mn lie in a plane if and only if these indexes are distinct. These 15 planes

have multiplicity one.

3.1.3 A2 cubic surfaces

Now the tangent cone at the singular point is a union of two planes which are labelled 123 and 456.

Each of these planes has multiplicity six. In plane 123 the three lines labelled 1, 2 and 3 intersect

at the singular point, and similarly in plane 456 the lines 4, 5 and 6 intersect there. Thus the lines

going through the singular point are 1 through 6, and each of these lines has multiplicity three.

The remaining lines have multiplicity one and they are labelled ij, with i ∈ {1, 2, 3}, j ∈ {4, 5, 6}.

The planes ij with i ∈ {1, 2, 3}, j ∈ {4, 5, 6} contain the lines i, j and ij, each having multiplicity

three. There are six more planes, each with multiplicity one, made up of the lines ij, kl, mn with

distinct indexes.

3.1.4 A3 cubic surfaces

The tangent cone at the singularity is the union of two planes, and the intersection line of these

planes is a line of X which is labelled line 3 and called the edge. It has multiplicity six. One of the

biplanes is labelled 12 and it contains the additional lines 1 and 2, also called rays, the other plane

is labelled 1′2′ and contains the additional lines 1′ and 2′. The rays 1, 2, 1′, 2′ each have multiplicity

four, while the biplanes 12 and 1′2′ have multiplicity 12. The above are the five lines that contain

the singular point. Next, a transversal line labelled 4 intersects the edge 3. It has multiplicity
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one. The plane 0 contains the lines 3 and 4, line 3 having multiplicity two in this plane. The

plane 0 has multiplicity three. There are four more line, each with multiplicity one, labelled ij′

with i, j ∈ {1, 2}. The plane that is spanned by the lines i and j′ is labelled ij′ and the third line

of intersection in this plane is naturally ij′. These four planes each have multiplicity four. There

are two more planes remaining: 11′.22′ containing the lines 11′, 22′ and 4, and the plane 12′.21′

containing the lines 12′, 21′ and 4. These planes have multiplicity one.

3.1.5 4A1 cubic surfaces

The four nodes of X are labelled from 1 to 4. The six lines 12, 13, 14, 23, 24, 34 called axes, each

connect two of the nodes. The axes have multiplicity four. The planes 1, 2, 3, 4 each contain three

nodes and the three axes among them. For example plane 1 contains the nodes opposite to node

1, i.e. the nodes 2, 3, 4 and the axes 23, 24, 34. The multiplicity of these planes is eight. There are

three transversal lines 12.34, 13.24, 14.23, each intersecting two of the axes and not touching the

nodes. They have multiplicity one. The planes 12, 13, 14, 23, 24, 34 each contain the corresponding

axis with multiplicity two and one of the transversals with multiplicity one. For example the plane

12 contains the lines 12 and 12.34. The multiplicity of these planes is two. There is one more plane

labelled 1234 having multiplicity one and containing the three transversals.

3.1.6 2A2 cubic surfaces

There is a line called the axis joining the two singular points. It is labelled 0, and has multiplicity

nine. Three additional lines, labelled 1, 2, 3, go through the first singular point only, and similarly

the lines labelled 4, 5, 6 go through the second singular point only. These six lines are called rays

and they have multiplicity three. These are all the lines in X. The plane 0 is the common biplane

of the two singular points, and it contains the line 0 only with multiplicity three. The plane 0

has multiplicity six. The plane labelled 7 is the other biplane of the first singular point, and it

contains the lines 1, 2 and 3. Similarly, plane 8 is the other biplane of the second singular point

and it contains the lines 4, 5 and 6. The planes 7 and 8 have multiplicity six. Finally, the plane 14

contains the lines 1, 4 and 0, the plane 25 contains the lines 2, 5 and 0 and the plane 36 contains
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the lines 3, 6 and 0. These planes have multiplicity nine.

3.2 Plane Quintic and the (2, 3)-curve

Let X be a cubic threefold in P4 which has at least one singularity of type An or D4 and contains

isolated singularities only. Let the point Q be a distinguished singularity of type An or D4 on X.

Then the projection ρ to P3 through the point Q defines a birational map from the blow-up of X

at Q onto P3. This birational map is in fact the blow-up of P3 along the curve C, introduced in

§2.1. The curve C is a complete intersection of type (2, 3) and is the image along the projection ρ

of all the lines that go through Q and are contained in X. By theorem 2.1.18 the singularities of

C are in bijection with the singularities of BlQX and this bijection preserves singularity type.

Next, let’s fix some line L contained in X that does not go through Q or any other singularity

and is not contained in any plane that may be contained in X. To be more precise, we need L to

be non-special in the sense of [CML09, §3.2]. The two dimensional subspaces P2 of P4 containing

the line L can be parameterized by the projective plane P2. Let’s denote this parameter space by

Π. Then a point V ∈ Π represents a 2-space in P4 containing L. The intersection X ∩ V has to be

a degree three curve, since X is a cubic hypersurface. This intersection already contains the line

L, therefore other than L it has to be a degree two curve, i.e. either a conic curve or two lines.

Let’s denote by D the set of points V ∈ Π that represent 2-spaces in P4 such that the intersection

X ∩ V consists of L and two other lines. We know that D is a quintic curve in Π = P2, and the

singularities of D are in bijection with the singularities of X and this bijection respects singularity

type (see [CML09, Prop. 3.6 and its proof]). Let’s denote by R the point of Π that corresponds to

the 2-space that is the span of the line L and the singular point Q. Then R ∈ D and R has the

same singularity type in D as Q in X, i.e. it is either a double point of D of type An or a triple

point of type D4.

We can construct a double cover of the curve D in the following way. Let D̃ be the curve in the

Fano scheme of the lines of X whose points represent lines of X intersecting L (but L /∈ D̃). Then

a point L1 ∈ D̃ is a line of X that spans a 2-space V together with L, since L and L1 intersect. As

both L and L1 are in the intersection X ∩ V , this intersection must be three lines (L, L1 and some

30



L2), therefore V ∈ D. Thus we can define a map π : D̃ → D sending the line L1 to the 2-space V .

This is a double cover, since the line L2 is also mapped to V and L1 and L2 are the only lines that

are mapped to V . By [CML09, Prop. 3.6] π is étale, i.e. L1 and L2 are always different. We can

normalize both curves D and D̃ and obtain the commutative diagram

ND̃
π̂ //

��

ND

��
D̃

π // D,

(3.2.1)

where π̂ is an étale double cover of smooth, possibly disconnected curves and the vertical arrows

are the desingularizations. In the remaining part of this section we assume that D is irreducible,

which also implies that ND is connected.

3.2.1 Trigonal construction. The An case.

In this subsection we assume that Q is an An singularity of the cubic threefold X.

Proposition 3.2.2. For a cubic threefold X with an An singularity (and possibly other isolated

singularities), and an irreducible discriminant curve D, the curve ND is trigonal, i.e. there exists

a degree three map ND → P1.

Proof. Recall that R is the point in Π = P2 that represents the plane spanned by the line L and

the point Q. Thus R is a double point of D of type An. Projection from R gives a rational map

D → P1. Since R is a double point, the map is generically 3 : 1. The normalization map is

birational, so the induced map ND → P1 is degree three.

Recillas’ theorem ([Rec74], [BL04, §12.7]) says that the Prym variety belonging to an étale

double cover of a trigonal, non-hyperelliptic curve is the Jacobian of a tetragonal curve. Tetragonal

means that the curve has a g1
4, or equivalently, that it has a degree four map onto P1. We can con-

struct this tetragonal curve the following way. Using the above notation consider the composition

ND̃
2:1−−→ ND

3:1−−→ P1. (3.2.3)
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The preimage of a general point in P1 is then six points in ND̃ consisting of three pairs of points

where each point in a pair is mapped to the same point in ND. Say, if p ∈ P1, above p we have

the points p1, p2, p3 ∈ ND and above pi we have the points p0
i , p

1
i ∈ ND̃, 1 ≤ i ≤ 3. A point of

the tetragonal curve will be then a triple of points of ND̃ (thus a point of the symmetric product

(ND̃)(3)), such that the three points of the triple are mapped to different points of ND, but are

mapped to the same point of P1 (except above branch points of ND → P1). In other words, from

each of the three pairs of points in ND̃ above a single point of P1 we pick one point to get a triple of

points of ND̃. In the above example a triple (pi11 , p
i2
2 , p

i3
3 ) would be such a point. There are 23 = 8

ways to do this, thus we get a degree eight cover of P1. It turns out that the curve that we get

will have two identical components. Picking one of the components gives us the desired tetragonal

curve corresponding to the double cover D̃ → ND. Alternatively, we can identify complementary

triples, i.e. identify (pi11 , p
i2
2 , p

i3
3 ) with (p1−i1

1 , p1−i2
2 , p1−i3

3 ). According to Recillas, the Jacobian of

this tetragonal curve is the same as the Prym-variety of the double cover of the trigonal curve.

Remark 3.2.4. Beauville [Bea82] gives the following diagram to describe the above situation:

Σ′ t Σ′′ = π̂−1
∗ (AJ−1(λ)) �

� //

%%

(ND̃)(3) AJ //

π̂∗
��

Pic3(ND̃)

Nm
��

(−)⊗G̃−1

// Pic0(ND̃)

Nm
��

(ND)(3) AJ // Pic3(ND)
(−)⊗G−1

// Pic0(ND)

AJ−1(λ) ∼= P1 = g1
3

//
?�

OO

{G := OND(f−1(p))}
?�

OO

// {OND}
?�

OO

Here Σ′ = Σ′′ is the tetragonal curve, AJ is the Abel-Jacobi map, f : ND
3:1−−→ P1, Nm is the norm

map induced by π̂ : ND̃ → ND, p ∈ P1 is arbitrary and λ ⊂ Pic3(ND) represents the g1
3 of ND.

The following theorem generalizes a result of Collino–Murre ([CM78, Thm. 4.22]) in the case of

A1 singularities, and [CML09, Thm. 4.1] in the case of A2 singularities. The argument we give here

is inspired by that of [CMGHL15, Prop. 6.7], which gives another proof of the Collino–Murre result

for cubics with an A1 singularity. The theorem below answers affirmatively the question posed in

[CML09, Rem. 4.2].
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Theorem 3.2.5. For a cubic threefold X having an An singularity (and possibly other isolated

singularities), an irreducible discriminant D, and a non-hyperelliptic ND, the tetragonal curve

constructed above is isomorphic to the normalization NC of the (2, 3)-curve C, where C is obtained

from projection from an An singularity.

Remark 3.2.6. By [CML09, Cor. 3.7 and its proof] for an X with only one singular point, which

is of type A1, . . . , A6, the discriminant D is irreducible and thus ND is connected.

Proof of 3.2.5. We only need to define a birational map from C to the tetragonal curve. That

will also define a birational map from the normalization NC to the tetragonal curve, but then a

birational map between two compact smooth curves can be extended to an isomorphism.

Let’s take therefore a general point ` ∈ C which represents a line in X through the distinguished

An singularity Q. Since ` is a general point, we may assume that it is non-singular in C and that

it does not intersect L in X. Because of this, L and ` span some 3-space W in P4. The set of

2-spaces contained in W and containing L defines a line in Π, which we denote by w. Since ` is a

general point of C and all singularities of X are isolated, we may assume that W does not contain

any singularity of X other than Q.

Let’s consider the intersection Y := X ∩W . Then Y is a cubic surface and since ` is a general

point we can assume that the only singularity of Y is at Q (i.e. X and W are not tangent to each

other). We now show that for a general W (therefore a general ` ∈ C) the singularity Q of Y is of

type A1. Let

xn+1 + y2 + z2 + v2 = 0 (3.2.7)

be the equation of a threefold in C4 with an An singularity in the origin. Let a general hyperplane

through the origin be given by the equation

v = ax+ by + cz. (3.2.8)

Then the equation of the intersection is given by

xn+1 + y2 + z2 + a2x2 + b2y2 + c2z2 + 2abxy + 2acxz + 2bcyz = 0. (3.2.9)
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We use the method described in [All03, §2] (in particular Theorem 2.1 of [All03], attributed to

Bruce and Wall) to find the singularity type at the origin. Applying the weights
(

1
2 ,

1
2 ,

1
2

)
to the

variables (x, y, z), we see that for general (a, b, c) there are no terms with weight less than 1 and the

terms of weight 1 (all terms except the first) determine an isolated singularity. Thus we have an

A1 singularity in the origin. This means that if we intersect a threefold at an An singularity with

a general hyperplane, we get an A1 singularity. Of course, a general W is not necessarily a general

hyperplane through Q, since W must contain the fixed line L. However, it is possible to choose L

in a way that a general W containing L and Q intersects X in an A1 cubic surface. Indeed it is

enough to find only one pair of (W,L), such that L is non-special, 〈L,Q〉 ⊂W and X ∩W is an A1

cubic surface, because then fixing L and moving W in some neighborhood will not change the fact

that X ∩W is an A1 cubic surface, since an open set of hyperplanes containing Q intersect X in an

A1 cubic surface, as was shown above. It is for dimension reasons why there must be a pair (W,L)

as given above: by [CML09, Lemma 3.9] a general L is non-special, therefore there can only be a

one dimensional variety of special lines in X (lines that cannot be picked as L). There is however a

three dimensional family of hyperplanes W through Q intersecting X in an A1 cubic surface, and in

each W there are finitely many lines of X not touching Q. These lines make up a two dimensional

family, because each line belongs to a one dimensional family of hyperplanes containing the line

and Q. Therefore among these lines there has to be a non-special line that we can choose to be L.

The above gives that we can fix L such that for a general W (and thus a general ` ∈ C) Y = X ∩Q

is a cubic surface with one A1 singularity.

Recall from §3.1.2 that a cubic surface with an ordinary double point contains 21 lines with

the following incidence relations. The lines l1, l2, . . . , l6 go through the singular point. The plane

determined by the lines li and lj cuts out a third line lij , giving 15 more lines for 1 ≤ i < j ≤ 6.

Then li meets lrs if and only if i = r or i = s, and lij meets lrs if and only if i, j, r, s are all different.

In the cubic surface Y we already have two lines, one is L that does not meet Q, the other is `

that does. We can therefore identify L as the line l12 of the cubic surface, while ` will be identified

with l6. Now the 3-space W determines the line w in the plane Π. The line w intersects the double

point R (because Q ∈W ) and in general it intersects the quintic D in three additional points. The
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double point R and the three additional points represent the planes of W containing L and meeting

Y in three lines (and not a line and a conic curve). The point R represents the plane that is the

span of Q and L = l12. Thus this plane cuts out the lines l12, l1, l2 from Y . The three additional

intersection points of w and D give three planes in W that cut out three line triples in Y , where in

each triple one of the lines is l12. To see which are the other lines in the triples we enumerate the

lines in Y that intersect l12 other than l1, l2. These lines are l34, l35, l36, l45, l46, l56. The three pairs

that determine three planes are

(l34, l56), (l35, l46), (l36, l45), (3.2.10)

since lij intersects lrs if and only if the indexes are distinct. Thus in the double cover D̃ → D, the

line l34 ∈ D̃ for example is mapped to the point of D that represents the plane spanned by l34 and

l56, and so is the line l56.

Our original goal in the proof was to find a point of the tetragonal curve that we map the point

` ∈ C to. Now to give a point of the tetragonal curve means that we have to pick one line lij from

each of the pairs in (3.2.10). Our choice cannot be arbitrary, because it has to move continuously

with the point ` ∈ C and we also want to stay on one of the components of the curve obtained in

Recillas’ construction. Thus from each pair of lines we pick the one that intersects l6, i.e. l56 from

the first pair, l46 from the second and l36 from the third. Thus we have defined a map from an

open set of C to the tetragonal curve. It is clear that this map is not constant.

Notice that the lines l3, l4 and l5 of Y are also points of C and they would define the same 3-

space W and thus the same line w ⊂ Π. They then also give the same three additional intersection

points on w ∩ D and thus the same three pairs of lines as in (3.2.10). However, they will give

different points on the tetragonal curve, because of our convetion of how we pick the three lines

from the three pairs of lines. This is the reason why the map defined above is injective and therefore

birational.
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3.2.2 Hyperelliptic construction. The D4 case.

In this subsection we assume that the distinguished singularity Q is a D4 singularity of the cubic

threefold X, and that the discriminant D is irreducible, which also implies that ND is connected.

Proposition 3.2.11. For a cubic surface X with a D4 singularity (and possibly other isolated

singularities), and an irreducible discriminant D, the curve ND is hyperelliptic, i.e. there exists a

degree two map ND → P1.

Proof. The proof is similar to that of Proposition 3.2.2. The difference is that R is a triple point

of D, therefore a general line passing through it has two residual intersections with D. Thus the

map ND → P1 has degree two.

Mumford’s theorem ([Mum74, §7]) says that the Prym variety of an étale double cover of a

hyperelliptic smooth curve is the Jacobian of a hyperelliptic curve or the product of two such. The

hyperelliptic construction gives the curve whose Jacobian is the same as the Prym of the double

cover, and it goes as follows. Similarly to the trigonal construction, we consider the composition

ND̃
2:1−−→ ND

2:1−−→ P1. (3.2.12)

Above a general point of P1 there are two points of ND and four points, or two pairs of points, of

ND̃. From each pair of points we pick one to get a point of the newly created curve. There are

four ways to do this, so the new curve has four points above a general point of P1. The new curve

is a subvariety of the symmetric product (ND̃)(2). The point (p, q) ∈ (ND̃)(2) is a point of the

new curve if and only if p and q are mapped to different points of ND and the same point of P1

(except over branch points of ND → P1). According to Mumford the newly constructed curve is

either hyperelliptic or the disjoint union of two hyperelliptic curves.

Remark 3.2.13. As in the case of the trigonal construction (see remark 3.2.4) we have the following
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diagram to describe the above situation [Bea82]:

Σ = π̂−1
∗ (AJ−1(λ)) �

� //

$$

(ND̃)(2) AJ //

π̂∗
��

Pic2(ND̃)

Nm
��

(−)⊗G̃−1

// Pic0(ND̃)

Nm
��

(ND)(2) AJ // Pic2(ND)
(−)⊗G−1

// Pic0(ND)

AJ−1(λ) ∼= P1 = g1
2

//
?�

OO

{G := OND(f−1(p))}
?�

OO

// {OND}
?�

OO

Here Σ is the newly constructed curve, AJ is the Abel-Jacobi map, f : ND
2:1−−→ P1, Nm is the

norm map induced by π̂ : ND̃ → ND, p ∈ P1 is arbitrary and λ ⊂ Pic2(ND) represents the g1
2 of

ND.

The following is the D4-version of theorem 3.2.5:

Theorem 3.2.14. For a cubic threefold X with a D4 singularity (and possibly other isolated

singularities), and an irreducible discriminant D, the curve constructed above is isomorphic to the

normalization NC of the (2, 3)-curve C, where C is obtained from projection from a D4 singularity.

Remark 3.2.15. By [CML09, Cor. 3.7] for an X with only one singular point which is of type D4,

the discriminant D is irreducible and thus ND is connected.

Proof of 3.2.14. The proof follows the ideas of the proof of Theorem 3.2.5. Again, it is enough

to construct a birational map between the curve C and the curve arising from the hyperelliptic

construction. If we pick a general point of C, that gives us a line ` in X passing through Q, a three-

space W (the span of L and `), and a line w in Π passing through R. If we intersect a threefold

at a D4 singularity with a general hyperplane, we get an A2 singularity in the intersection. To see

this let’s take the standard form of a D4 singularity at the origin of C4:

x3 + xy2 + z2 + v2 = 0. (3.2.16)

The equation of a general hyperplane is given by

y = ax+ bz + cv. (3.2.17)
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Then the intersection becomes

x3 + a2x3 + b2xz2 + c2xv2 + 2abx2z + 2acx2v + 2bcxzv + z2 + v2 = 0. (3.2.18)

Applying the weights
(

1
3 ,

1
2 ,

1
2

)
, we see that all terms have weight ≥ 1 and for general a the terms

having weight 1 (i.e. x3 + a2x3 + z2 + v2) define an isolated singularity. Therefore the singularity

has type A2. As in the proof of Theorem 3.2.5, we can find a non special line L, such that for a

general W (and thus a general ` ∈ C) Y := X ∩W is a cubic surface with a single A2 singularity.

Recall from §3.1.3 that a cubic surface with an A2 singularity has 15 lines, six of which pass

through the singular point. These are labelled as l1, l2, . . . , l6. There are nine lines labelled lij ,

with i ∈ {1, 2, 3}, j ∈ {4, 5, 6}. The lines l1, l2, l3 are coplanar meeting at the singular point, and

similarly the lines l4, l5, l6 are coplanar meeting at the singular point. The lines li, lj , lij are coplanar

for i ∈ {1, 2, 3}, j ∈ {4, 5, 6}. Finally the lines lij , lkl, lmn are coplanar if and only if i, j, k, l,m, n

are distinct.

We can identify the line ` with l6 of Y and the non-special line L with l14. Then the plane

spanned by L and the point Q intersects X in the lines L = l14, l1, l4. The line w ⊂ Π intersects

D in two additional points besides R. These intersection points correspond to two planes in W

containing L but not Q and intersecting X in three lines. These two planes intersect X in the lines

L = l14, l25, l36 and L = l14, l26, l35, respectively. In the map D̃ → D → P1 the line w represents a

point ξ in P1, the two intersection points (besides R) η1 and η2 of w with D are the points above

ξ, while the lines l25, l36 represent points of D̃ above η1 and the lines l26, l35 represent points of

D̃ above η2. To pick a point of the hyperelliptic construction we pick l36 from the pair of points

above η1 and we pick l26 from the pair of points above η2, that is we pick the lines that intersect

` = l6. Notice that besides l6 there are three other lines in Y that come from different points of

C, namely the lines l2, l3, l5. These lines determine the same line w ⊂ Π, and the same intersection

points η1, η2, however they pick different lines from the two pairs of lines l25, l36 and l26, l35. That

is why the rational map we created from C to the hyperelliptic construction is injective. Also, it is

clearly non-constant, therefore it is birational.
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3.3 Generalized Intermediate Jacobians of Singular Cubic Three-

folds

In §2.3 and §2.4 we desingularized a cubic threefold by successive blow-ups at singular points, before

we could talk about its intermediate Jacobian. In this section we consider degenerate intermediate

Jacobians of cubic threefolds with certain types of isolated singularities. Degenerate intermediate

Jacobians are limit intermediate Jacobians of 1-parameter degenerations X → ∆ of cubic threefolds,

where ∆ is the unit disk in C, and the fibers are smooth cubic threefolds on ∆ \ {0}. Any such

degeneration can be filled in with a semi-stable cubic threefold above 0 ∈ ∆, which means that we

only have to consider cubic threefolds with at worst Ak, k ≤ 5 or D4 singularities or the chordal

cubic. The latter is not treated in this paper, although we recall from [Co82] that degenerations to

the chordal cubic give rise to genus five hyperelliptic Jacobians. For a computation on the stability

of the cubic threefold we refer to [All03], for a brief summary see [CMGHL15, Thm. 1.1]. By

a result due to Mumford, the intermediate Jacobian for a smooth cubic threefold is isomorphic

to the Prym variety of the connected étale double cover of the plane quintic introduced above.

Thus taking limits of intermediate Jacobians of 1-parameter degenerations is equivalent to taking

degenerations of Prym varieties along 1-parameter families of unramified double covers of plane

quintics ([CML09, §5.1]).

If the double cover D̃ → D at the center of a 1-parameter degeneration of covers has worse

than node singularities, we can perform a stable reduction to replace the fiber at the center with

a double cover that only has nodes. In this case the new 1-parameter family above ∆ \ {0} only

differs from the previous one by a finite base change, so the limit Prym variety is the same. To

perform a stable reduction on an A2k+1, k ≥ 1 singularity p ∈ D, we blow up D at p k-times to

normalize it and attach a hyperelliptic, genus-k tail T at the two points of Bl
(k)
p D that are above p.

Thus we replace an A2k+1 singularity with two nodes, the attachment points of T and Bl
(k)
p D. In

case of an A2k, k ≥ 1 singularity, similarly we have to blow D up k-times and add a hyperelliptic,

genus-k tail, but since there is only one point in Bl
(k)
p D above p, we attach the blow-up to T at

only one point, which then becomes a node of the stable reduction. In case of a D4 singularity,
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since in two dimensions such a point is a triple point, the elliptic tail T will be attached at the

three points of BlpD that are above p. After dealing with the singularities, if there are genus zero

irreducible components with less than three marked points (connections with other components),

we have to collapse such components to a point. As we perform the stable reduction on D we

have to do the same on the double cover D̃ by adding the same hyperelliptic tails twice, since each

singularity p ∈ D has two preimages along D̃ → D. The properties of the marked points used to

attach the tail to the rest of the curve are summarized in [CMGHL15, p. 25], and for more details

see [Has00].

The Jacobian of a curve C with nodes can be defined as the group of line bundles on C with

multidegree 0, meaning the degree must be 0 on all irreducible components. Equivalently, it can be

defined as the limit of Jacobians of 1-parameter degenerations of smooth curves. Such a Jacobian

is a semiabelian variety which can be given by a short exact sequence

1→ H1(Γ,Z)⊗Z C∗ → JC → J(NC)→ 0, (3.3.1)

where Γ is the dual graph of C, C∗ is the multiplicative group of C, and NC is the normalization

(or desingularization) of C. Thus JC is the extension of the principally polarized abelian variety

J(NC) (the compact part) by some torus (C∗)n (the non-compact part). We can thus give a

Jacobian by specifying the compact and non-compact parts, as well as an element of the extension

group Ext
(
J(NC), H1(Γ,Z)⊗ZC∗

)
. The latter is equivalent to giving a homomorphism H1(Γ,Z)→

tJ(NC), where tJ(NC) is the dual of the compact part, and H1(Γ,Z) is the character group or

dual of the non-compact part. This map is defined as follows: we identify tJ(NC) with J(NC)

through the principal polarization, then any edge e in a cycle is mapped to t(e)− s(e), where t(e)

and s(e) are points that are the results of the desingularization of the node represented by e, t(e) is

located on the target component of e and s(e) is located on the source component of e (see [ABH02,

§1.1]).

Now let D̃ → D be an étale double cover of nodal curves. We can define its Prym variety

by taking limits of Prym varieties of 1-parameter degenerations of étale double covers of smooth
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curves, or equivalently by setting

P
D̃/D

= Ker(1 + ι)0 = Im(1− ι), (3.3.2)

where ι : JD̃ → JD̃ is induced by the fixed point free involution ι : D̃ → D̃, which is induced by

the étale double cover D̃ → D. Such a Prym variety is a semiabelian variety which can be given

by a short exact sequence

1→ H1(Γ̃,Z)− ⊗Z C∗ → P
D̃/D

→ P
ND̃/ND

/
G→ 0, (3.3.3)

where Γ̃ is the dual graph of D̃, H1(Γ̃,Z)− is the −1-eigenspace of H1(Γ̃,Z) with respect to

ι : Γ̃→ Γ̃, the involution induced by ι : D̃ → D̃. The curves ND̃ and ND are normalizations and

G ⊂ P
ND̃/ND

is a finite group that will be described later. The dual or the character group of the

non-compact part is

H1(Γ̃,Z)[−] = H1(Γ̃,Z)
/
H1(Γ̃,Z)+, (3.3.4)

where H1(Γ̃,Z)+ is the +1-eigenspace of H1(Γ̃,Z). Equivalently H1(Γ̃,Z)[−] can also be defined as

the image of the map

π− : H1(Γ̃,Z) −→ H1(Γ̃, 1
2Z) (3.3.5)

h 7−→ 1
2(h− ι(h)), (3.3.6)

see [ABH02, p. 10]. It is possible to choose a basis 〈u1, . . . , uk, v1, . . . , vl, w1, . . . , w2m〉 of H1(Γ̃,Z)

such that ι : H1(Γ̃,Z)→ H1(Γ̃,Z) is the identity on 〈ui〉ki=1, is multiplication by −1 on 〈vi〉li=1 and
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interchanges w2i−1 and w2i for 1 ≤ i ≤ m. Then we have

H1(Γ̃,Z)+ = 〈u1, . . . , uk, w1 + w2, . . . , w2m−1 + w2m〉 (3.3.7)

H1(Γ̃,Z)− = 〈v1, . . . , vl, w1 − w2, . . . , w2m−1 − w2m〉 (3.3.8)

H1(Γ̃,Z)[−] = Im(π−) = 〈v1, . . . , vl,
1
2(w1 − w2), . . . , 1

2(w2m−1 − w2m)〉 (3.3.9)

H1(Γ̃,Z)[−]
/
H1(Γ̃,Z)− ∼= (Z/2Z)m (3.3.10)

(1 + ι)H1(Γ̃,Z) = 〈2u1, . . . , 2uk, w1 + w2, . . . , w2m−1 + w2m〉 (3.3.11)

H1(Γ̃,Z)[−] = H1(Γ̃,Z)
/
H1(Γ̃,Z)+ =(

H1(Γ̃,Z)
/

(1 + ι)H1(Γ̃,Z)
)/(

H1(Γ̃,Z)+
/

(1 + ι)H1(Γ̃,Z)
)

=(
H1(Γ̃,Z)

/
(1 + ι)H1(Γ̃,Z)

)/(
Torsion

)
.

(3.3.12)

By part 1 of [ABH02, Lemma 1.4] the extension homomorphism of (3.3.3) can be defined by the

last column of the diagram:

H1(Γ̃,Z)
1+ι //

c
��

H1(Γ̃,Z) //

c
��

H1(Γ̃,Z)
/

(1 + ι)H1(Γ̃,Z) //

c′

��

H1(Γ̃,Z)[−]

c[−]

��
tJ(ND̃)

1+ι // tJ(ND̃) // tJ(ND̃)
/

(1 + ι) tJ(ND̃) // K

(3.3.13)

where

K =
tJ(ND̃)

/
(1 + ι) tJ(ND̃)

c′
(

Torsion
(
H1(Γ̃,Z)

/
(1 + ι)H1(Γ̃,Z)

)) , (3.3.14)

c is the extension homomorphism of JD̃, c′ and c[−] are induced from c and the rightmost horizontal

map of the first row is factoring by the torsion group. To get the element in the upper right corner

we used (3.3.12). If we dualize the second row and add the dualization as an extra row, delete the
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first column, then using [ABH02, Prop. 1.5] we get the diagram

H1(Γ̃,Z)−� _

��

� s

**

� |

++

��

H1(Γ̃,Z) // //

c
��

γ

��

H1(Γ̃,Z)/(1 + ι)H1(Γ̃,Z) // //

c′

��

H1(Γ̃,Z)[−]

c[−]

��
tJ(ND̃) // // tP

ND̃/ND
// // tP

ND̃/ND

/
c′(Tors)

J(ND̃)

Θ=Θ
J(ND̃)

∼=

OO

P
ND̃/ND

Θ|P
ND̃/ND

OOOO

? _oo P
ND̃/ND

/
Goooo

2·Ξ
OOOO

·2
// // P

ND̃/ND

/
G

Ξ
∼=

hh

(3.3.15)

Here γ is the extension map of JD̃ giving γ(e) = t(e)−s(e) for a cycle e, as was defined earlier. The

maps between the last two rows come from the polarizations, Θ being the principal polarization

of J(ND̃), and Ξ being the principal polarization of P
ND̃/ND

. By a well known property of Prym

varieties

Θ|P
ND̃/ND

∼= 2 · Ξ. (3.3.16)

The composition H1(Γ̃,Z) → H1(Γ̃,Z)[−] of the second row is in fact π− of (3.3.5). For the finite

group G we have G ∼= (Z/2Z)d, where 0 ≤ d ≤ k, k being the dimension of the subspace of H1(Γ̃,Z)

on which ι is the identity. Then some diagram chasing gives:

Proposition 3.3.17. If H1(Γ̃,Z)/(1+ι)H1(Γ̃,Z) = H1(Γ̃,Z)[−], (i.e. (1+ι)H1(Γ̃,Z) = H1(Γ̃,Z)+),

then the Prym variety is an extension

1→ H1(Γ̃,Z)− ⊗Z C∗ → P
D̃/D

→ P
ND̃/ND

→ 0 (3.3.18)

with extension data given by the map

γ[−] : H1(Γ̃,Z)[−] → P
ND̃/ND

, (3.3.19)

which is defined as follows. For any z ∈ H1(Γ̃,Z)[−], one has 2z ∈ H1(Γ̃,Z)− ⊆ H1(Γ̃,Z), and we
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set γ[−](z) := γ(2z); i.e.,

∑
niei 7→ OND

(∑
2ni(t(ei)− s(ei))

)
. (3.3.20)

Note that here, we may have ni ∈ 1
2Z, under the natural identification of H1(Γ̃,Z)[−] with the

image of the map H1(Γ̃,Z)→ H1(Γ̃, 1
2Z), given by z 7→ 1

2(z − ιz).
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Chapter 4

Geometric Realization of Strata in the
Boundary of the Intermediate
Jacobian Locus

4.1 Irreducible Quintic

In this section X is a cubic threefold with isolated singularities, ` ⊂ X is a non-special line (as

defined in [CML09, §3.2]), and the discriminant curve D is a plane quintic that we assume to be

irreducible. We also assume that the double cover D̃ is irreducible. Note that for cubic threefolds

with a unique singularity of type Ak, k ≤ 6 or D4, the discriminant is automatically irreducible

[CML09, Cor. 3.7 and its proof].

4.1.1 A1 cubic threefolds

For completeness, here we review the case of cubic threefolds with an A1 singularity. The result

is essentially due to [CM78] and the argument we give here follows [CMGHL15, Thm. 6.4]. We

include the proof since it helps to motivate the approach we take in other, more complicated cases.

Let X be a cubic threefold with a unique singular point, which is an A1 singularity. Let D̃ → D

be the étale double cover of the plane quintic. Then D has one A1 singularity p, and recall that

D is automatically irreducible. Above p the two nodes of D̃ are p+ and p−. Both D and D̃ are
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irreducible. The dual graph Γ of D is therefore

• ebb
v

, (4.1.1)

where v represents the only irreducible component of D and e represents the node p. The dual

graph Γ̃ of D̃ is

•

e+

]]

e−

��v , (4.1.2)

where v represents the only irreducible component of D̃ and e+ and e− represent the nodes p+ and

p− respectively. Using results from page 42 we have

H1(Γ̃,Z) = Z〈e+, e−〉 (4.1.3)

H1(Γ̃,Z)+ = Z〈e+ + e−〉 (4.1.4)

H1(Γ̃,Z)− = Z〈e+ − e−〉 (4.1.5)

H1(Γ̃,Z)[−] = Z〈12(e+ − e−)〉. (4.1.6)

Since (1 + ι)(e+) = (1 + ι)(e−) = e+ + e−, we have (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. Therefore the

Prym-variety of D̃ → D is given by

1→ H1(Γ̃,Z)− ⊗Z C∗ → P
D̃/D

→ P
ND̃/ND

→ 0, (4.1.7)

and the intermediate Jacobian is given by

1→ C∗ → IJ(X)→ P
ND̃/ND

→ 0, (4.1.8)

where the extension data is

g 7→ O
ND̃

(p+
1 − p

+
2 − p

−
1 + p−2 ), (4.1.9)

obtained from proposition 3.3.17. Here p+
1 and p+

2 are the points on ND̃ that we receive from
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blowing up the point p+ and similarly for the points p−1 , p
−
2 , p

−.

We want to show that ND is non-hyperelliptic. Since D is planar degree five with a node,

ND is genus five. Let’s consider all conic curves in the plane of D that go through the node of

D. Since five points determine a conic and one is fixed at the node, we can choose such a conic

by picking four points on the plane. This gives us a choice of dimension eight, however, once we

pick the four points and thus the conic, if we move the points around on the conic, the conic will

not change. Therefore there is a four dimensional family of conics passing through the node of D.

The conic and D must have 10 intersection points, but two of these are at the node. This gives

us a base point free g4
8 on D and ND, which means ND can be embedded into P4 as a degree

8 curve. Thus it cannot be hyperelliptic by standard algebraic curve theory. Alternatively, since

g(ND) = 5 and ND has a base point free g1
3 (which must be complete by Clifford’s Theorem), ND

is non-hyperelliptic by [ACGH85, p. 13]. This in fact works for all genus at least three.

Since the curve ND is genus five, non-hyperelliptic and trigonal, by Theorem 3.2.5 the Prym-

variety P
ND̃/ND

is the Jacobian of the (2, 3)-curve C, which is smooth (Theorem 2.1.18) and genus

four. From the proof of Theorem 2.1.1, C is the intersection of the quadric Q = 0 and the cubic

F = 0, where Q gives the tangent cone to the node of X if considered as a polynomial in the

open affine C4, and gives the projectivization of the tangent cone if considered as a homogeneous

polynomial in P3. For an A1 singularity the tangent cone is a quadric cone whose projectivization is

a smooth quadric. Under the indentification of the Prym of ND̃ → ND with the Jacobian of C the

extension data is given by the difference of the two g1
3’s on the (2, 3)-curve (see [CMGHL15, §6.1

and Theorem 6.4]). The two g1
3’s come from the two rulings of the smooth quadric that contains

C.

To summarize, the intermediate Jacobian is

1→ C∗ → IJ(X)→ JC → 0, (4.1.10)

with extension data

g 7→ N ⊗ N̂ ∈ JC, (4.1.11)
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where N and N̂ are the two g1
3’s on C. (In Theorem 6.4 of [CMGHL15] we see (N⊗N̂)⊗±1, but that

is because in fact the extension data should be in JC/Aut(JC). Now Aut(JC) ∼= {±1}, explaining

the ambiguity.)

4.1.2 A2 cubic threefolds

This case is also covered in [CML09]. Let X be a cubic threefold with a unique singular point,

which is an A2 singularity and let D̃ → D be the étale double cover of the plane quintic. Recall

that D is automatically irreducible. Then the (2, 3)-curve is smooth and genus four, while D has

an A2 singularity p. This means we need to perform a stable reduction. If the result is the cover

F̃ → F , then F consists of two irreducible components, one being the normalization ND, the other

an elliptic tail T . The two components are attached at a node which on ND rests over the point

received from the blow-up of D at p. Then the curve F̃ consists of three components, two of which

are identical to T (T+ and T−) and the third is the normalization ND̃. This gives the following

dual graph Γ̃:

•T
+

•v

e+
22

e− ,,•T
−

(4.1.12)

We can see that H1(Γ̃,Z) = H1(Γ̃,Z)+ = H1(Γ̃,Z)− = 0, and thus IJ(X) does not have a non-

compact part. Therefore

IJ(X) = JT × P
ND̃/ND

= JT × JC, (4.1.13)

where JT is the Jacobian of the elliptic curve T , and JC is the Jacobian of the (2, 3)-curve C. To

see that JC = P
ND̃/ND

, we have to show that ND is non-hyperelliptic. This can be done similar

to the A1 case, since ND is genus five, just like it was genus five in the A1 case.

4.1.3 A3 cubic threefolds

We now address the case of cubic threefolds with an A3 singularity. This case is dealt with in

[CMGHL15, Thm. 6.3, §6.2]; we follow the proof there, and also provide one strengthening, that
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the extension data for the degeneration of the intermediate Jacobian, lying in the Jacobian of the

normalization of the (2, 3)-curve, is in fact due to the difference of points lying over the node in the

(2, 3)-curve; this is explained in more detail below.

With the usual notation, D (automatically irreducible) now has an A3 singularity p and the

(2, 3)-curve C has an A1 singularity. The stable reduction F consists of an elliptic tail T and the

normalization ND which is genus four. They are attached to each other at the two nodes p1 = t1

and p2 = t2, where pi ∈ ND come from the blow-up of p and ti ∈ T . Then F̃ consists of two elliptic

curves T+ and T− which are isomorphic to T and the normalization ND̃. The tail T+ is attached

to ND̃ by the two nodes p+
1 = t+1 and p+

2 = t+2 and similarly for T−, p−i and t−i . The double cover

F̃ → F then consists of a trivial cover T+ t T− → T and the cover ND̃ → ND which is induced

from D̃ → D. The points p±i ∈ ND̃ are above pi ∈ ND and t±i ∈ T± are above ti ∈ T , for i = 1, 2.

This arrangement gives the dual graph Γ̃:

•T
−

•v

e−2 --

e−1

AA

e+1
11

e+2

��•T
+

(4.1.14)

For the cohomology we have

H1(Γ̃,Z) = Z〈e+
1 − e

+
2 , e

−
1 − e

−
2 〉 (4.1.15)

H1(Γ̃,Z)+ = Z〈e+
1 − e

+
2 + e−1 − e

−
2 〉 (4.1.16)

H1(Γ̃,Z)− = Z〈e+
1 − e

+
2 − e

−
1 + e−2 〉 (4.1.17)

H1(Γ̃,Z)[−] = Z〈12(e+
1 − e

+
2 − e

−
1 + e−2 )〉. (4.1.18)

It is straightforward to check that (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. For the intermediate Jacobian we

have

1→ C∗ → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.19)
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with extension data g 7→
(
OT (t1 − t2),O

ND̃
(p+

2 − p
+
1 − p

−
2 + p−1 )

)
.

The curve ND is genus four and trigonal. To prove that it is non-hyperelliptic, we proceed like

in the A1 case with some modifications. Let’s take the conics in the plane of D that go through

the singularity of D and have the same tangent there as the tangent given by the A3 singularity.

That means we can use three points to determine the conic and this gives us 6− 3 = 3 degrees of

freedom. The intersection multiplicity of the conic and D is four, therefore there has to be six other

intersection points. This gives us a base point free g3
6 and an embedding of ND to P3 as a degree

six curve. Therefore ND is non-hyperelliptic by standard algebraic curve theory. Alternatively,

we can use [ACGH85, p. 13]. As ND is non-hyperelliptic the Prym-variety of ND̃ → ND is the

Jacobian of the normalization of the (2, 3)-curve, or P
ND̃/ND

= J(NC).

Next we want to find the extension data on J(NC). The curve C is the intersection of a

singular quadric cone and a cubic surface and it has an A1 singularity at the node of the cone.

The normalization NC is genus three and it is hyperelliptic, because the ruling of the cone gives a

g1
2 on C (each line of the ruling intersects C at three points, but one of these is always the node).

Lines in the plane of D passing through p ∈ D give a g1
3 on ND. One of these lines, the tangent

line of the A3 singularity p ∈ D gives the divisor p1 + p2 + r on ND which belongs to the g1
3. The

point r ∈ D is the fifth intersection point of the tangent line with D, as the intersection multiplicity

at p is four. Let r̃ ∈ ND̃ be one of the points above r. If we pick the points ξ1 = p+
1 + p−2 + r̃

and ξ2 = p−1 + p+
2 + r̃ on NC using the trigonal construction, then the extension data becomes

p+
2 − p

+
1 − p

−
2 + p−1 = ξ2 − ξ1 in J(NC). Using that NC is genus three and hyperelliptic, this is a

point on the particular symmetric theta divisor NC −NC (see also [CMGHL15, §6.2]).

Let’s denote the node of C by ξ. We want to prove that the points ξ1, ξ2 ∈ NC found above

come from ξ after desingularization. To see this we need to prove that the line of X represented

by ξ is mapped to the tangent line of p ∈ D through the projection from the non-special line `.

The point ξ represents the null-line of the A3 singularity of X. This line together with ` spans a

three-space W that intersects X. Now W ∩X is a cubic surface with an A3 singularity in general.

If we cut X with a three-space in general position, the singularity becomes A1, but now we are in

the special case where the three-space W contains the null-line of A3. In general the singularity

50



remains A3 in this case (it can get worse for a special three-space). According to §3.1.4 line 4 in

W ∩X cannot be picked as `, because in plane 0 besides line 4, there is line 3 with multiplicity two,

therefore the cover D̃ → D would not be étale. Line 11′ can be a good choice for `. There are only

two planes containing line 11′, plane 11′ having multiplicity four and containing the singular point,

and plane 11′.22′ having multiplicity one and not containing the singular point. This means that

the line in the plane of D that corresponds to the three-space W must intersect D at two points

and therefore it has to be the tangent line of the singular point p. Even the multiplicities of the

planes coincide with the intersection multiplicities of the tangent line and D.

To summarize, the intermediate Jacobian of X is given by the sequence

1→ C∗ → IJ(X)→ JT × J(NC)→ 0, (4.1.20)

with extension data g 7→
(
OT (t1 − t2),ONC(ξ2 − ξ1)

)
, where ξ1, ξ2 ∈ NC come from blowing up

the point ξ ∈ C.

4.1.4 A4 cubic threefolds

This case is also covered in [CML09], see table on page 52. The A4 case is very similar to the A2

case. Now the (2, 3)-curve has an A2 singularity which lies at the node of the cone. Thus NC is

genus three and hyperelliptic, the g1
2 coming from the ruling of the cone. The stable reduction of

D̃ → D (D being automatically irreducible) gives a curve F with two components, one being a

genus two, hyperelliptic tail T , the other being the normalization ND, which is genus four, non-

hyperelliptic and trigonal. We can see that it is non-hyperelliptic similar to the A3 case, noting

that the tangent line of a planar A4 singularity has intersection multiplicity four with the curve at

the A4 singularity in general. The Prym-variety of the double cover of ND is thus the Jacobian of

NC. The dual graph Γ̃ is exactly as in the A2 case. For the intermediate Jacobian we then have

IJ(X) = JT × P
ND̃/ND

= JT × J(NC), (4.1.21)
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where T is genus two and hyperelliptic, ND is genus four, non-hyperelliptic and trigonal and NC

is genus three and hyperelliptic.

4.1.5 A5 cubic threefolds

This is very similar to the A3 case. Now D has an A5 singularity at p and C has an A3 singularity

at the node of the cone. Thus ND is genus three and NC is genus two and hyperelliptic. In the

stable reduction the tail T is genus two. We have the same configuration for T, T±, pi, p
±
i , ti, t

±
i as

in the A3 case, and the dual graph Γ̃ is exactly the same. We also know that t1 + t2 is a divisor on

T belonging to the g1
2. The extension data also has the same format as in the A3 case.

We need to prove that ND is non-hyperelliptic. The proof is similar to the A1 and A3 cases.

Now we consider conics in the plane that go through the A5 singularity at p, and has the same

tangent to the second degree as that given by the A5 singularity. In other words conics that

approximate the two branches of A5 locally to degree two. This means that we are fixing three of

the five points that determine a conic, so we have two points left that we can freely choose on the

plane. That gives us 4− 2 = 2 degrees of freedom in picking a conic. Since the conic approximates

both branches locally to the second degree, the intersection multiplicity of the conic and the quintic

at p is six. We therefore have four other intersection points that vary with the conics. This gives

us a base point free g2
4 and an embedding to P2 as a degree four curve. Therefore ND cannot be

hyperelliptic (alternatively, use [ACGH85, p. 13]). Thus we can use the trigonal construction and

the Prym-variety of the double cover of ND is the Jacobian of NC.

We want to locate the extension data on J(NC). We want to prove that this is just ξ2 − ξ1,

where ξ1, ξ2 come from blowinp up the singularity of C, exactly as in the A3 case. To see this we

need to prove that the singular point ξ on C is mapped to the tangent line of the singularity p along

the projection from `. But this proof is the exact same as in the A3 case, because a general three-

space that contains the null-line of an A5 singularity gives an A3 singularity on the intersection

surface, while for a general planar A5 singularity the tangent line of the singularity has intersection

multiplicity four with the singular point. Thus the situation is the same as in the A3 case, and the

same proof works.
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As a result the intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT × J(NC)→ 0, (4.1.22)

with extension data g 7→
(
OT (t1−t2),ONC(ξ2−ξ1)

)
, where T is genus two, hyperelliptic, t1+t2 ∈ g1

2,

NC is genus two, hyperelliptic and ξ1, ξ2 ∈ NC come from blowing up the singular point ξ ∈ C.

4.1.6 A6 cubic threefolds

This case is similar to the A4 case. The discriminant D is automatically irreducible. The interme-

diate Jacobian is given by

IJ(X) = JT × P
ND̃/ND

= JT × J(NC), (4.1.23)

where the tail T is genus three and hyperelliptic, ND is genus three, non-hyperelliptic and trigonal,

and finally NC is genus two and hyperelliptic. To prove that ND is non-hyperelliptic we can use

[ACGH85, p. 13].

Remark 4.1.24. According to Allcock (see e.g., [CMJL12, Thm. 2.1]), X with an An, n ≥ 6

singularity is semi-stable if and only if it does not contain any of the planes containing its null line.

In this case X degenerates (in the sense of [CMJL12, §2.1]) to the chordal cubic, and this means

that IJ(X) should be a degeneration of a hyperelliptic Jacobian, as is the case above.

4.1.7 A7 cubic threefolds with irreducible discriminants

Similar to the A5 case. Remark 4.1.24 also applies here. The curve D has a unique singularity,

which is A7, therefore ND is genus two and necessarily hyperelliptic. The tail T is now genus three

and hyperelliptic. Using the hyperelliptic construction the Prym-variety P
ND̃/ND

is the Jacobian

of an elliptic curve G. Thus the intermediate Jacobian is

1→ C∗ → IJ(X)→ JT × JG→ 0, (4.1.25)
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where T is genus three, hyperelliptic, and G is elliptic.

Suspicion: C is an irreducible (2, 3)-curve with an A5 singularity, thus NC is an elliptic curve

and G = NC via the hyperelliptic construction. The extension data is g 7→
(
OT (t1− t2),ONC(ξ2−

ξ1)
)
, where ξ1, ξ2 come from the normalization of the singularity of C.

4.1.8 A8 cubic threefolds with irreducible discriminants

Similar to the A6 case. Remark 4.1.24 also applies here. The intermediate Jacobian is given by

IJ(X) = JT × P
ND̃/ND

= JT × JG, (4.1.26)

where the tail T is genus four and hyperelliptic, ND is genus two and hyperelliptic and G is elliptic.

Suspicion: C is an irreducible (2, 3)-curve with an A6 singularity, thus NC is an elliptic curve

and G = NC via the hyperelliptic construction.

4.1.9 A9 cubic threefolds with irreducible discriminants

Similar to the A5, A7 cases. Remark 4.1.24 also applies here. Now ND is elliptic, therefore the

Prym of the double cover is trivial. The intermediate Jacobian:

1→ C∗ → IJ(X)→ JT → 0, (4.1.27)

where the tail T is genus four and hyperelliptic and the extension data is g 7→ OT (t1 − t2).

4.1.10 D4 cubic threefolds

If X has one D4 singularity, the plane quintic D (automatically irreducible) has one D4 singularity

at p. The curve D̃ is irreducible with two D4 singularities p+ and p−, which are the preimage of p

along the double cover D̃ → D. The stable reduction then gives the double cover F̃ → F , where

F has two irreducible components, one being an elliptic tail T , the other being the normalization

ND. They are attached at three nodes p1 = t1, p2 = t2, p3 = t3, where pi ∈ ND come from the

blow-up of p ∈ D. The curve F̃ has three components, two of which being identical to T (T+ and
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T−), one of which being the normalization ND̃. We have the points p±i , t
±
i on F̃ above the points

pi, ti ∈ F . Then the dual graph Γ̃ of F̃ is the following:

•T
−

•v

e−3

$$e−2 --

e−1

66

e+1

::
e+2

11

e+3

((•T
+

(4.1.28)

For the cohomology we have

H1(Γ̃,Z) = Z〈e+
3 − e

+
2 , e

+
3 − e

+
1 , e

−
3 − e

−
2 , e

−
3 − e

−
1 〉 (4.1.29)

H1(Γ̃,Z)+ = Z〈e+
3 − e

+
2 + e−3 − e

−
2 , e

+
3 − e

+
1 + e−3 − e

−
1 〉 (4.1.30)

H1(Γ̃,Z)− = Z〈e+
3 − e

+
2 − e

−
3 + e−2 , e

+
3 − e

+
1 − e

−
3 + e−1 〉 (4.1.31)

H1(Γ̃,Z)[−] = Z〈12(e+
3 − e

+
2 − e

−
3 + e−2 ), 1

2(e+
3 − e

+
1 − e

−
3 + e−1 )〉. (4.1.32)

It is easy to check that (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. The intermediate Jacobian is an extension

1→ (C∗)2 → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.33)

with extension data

g1 7→
(
OT (t3 − t2),O

ND̃
(p+

3 − p
+
2 − p

−
3 + p−2 )

)
(4.1.34)

g2 7→
(
OT (t3 − t1),O

ND̃
(p+

3 − p
+
1 − p

−
3 + p−1 )

)
. (4.1.35)

By Theorem 3.2.14 the Prym of ND̃ → ND is the Jacobian of the normalization NC. We

also know that this is eiher a hyperelliptic Jacobian or the product of two such. Let’s consider the

singular point of X. It is a D4 singularity, whose tangent cone is the union of two hyperplanes.

The intersection of the two hyperplanes give a plane that contains three lines of X. These lines
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represent the three directions that would give the three A1 singularities in the blow up at p and

they give the three A1 singularities of C. In fact the tangent cone when projectivized is the union

of two planes and the three nodes of C lie on their intersection line. Let’s denote these nodes

by q1, q2, q3. The cubic surface in P3 then intersects the projectivized tangent cone in two elliptic

curves in the two planes of the projectivized tangent cone. These two elliptic curves make up the

curve C and they are attached at the three nodes q1, q2, q3. The normalization NC is then the

disjoint union of two elliptic curves with three marked points on each.

Now let’s pick the point q1 ∈ C. It represents one of the three lines of X in the intersection of

the two hyperplanes that make up the tangent cone of the singular point. An easy computation

shows that in general a three-space that contains such a line intersects X in a cubic surface where

the D4 singularity becomes A3. Let W be the three-space spanned by the non-special line ` and the

line represented by q1. For similar considerations that we made in the case of the A3 singularity,

the image of W in the plane of the quintic D is a line that intersects D at two points, one with

multiplicity four, the other with multiplicity one. Therefore this image can only be one of the three

tangent lines of the singular point p.

The above suggest the following: the intermediate Jacobian is

1→ (C∗)2 → IJ(X)→ JT × JCa × JCb → 0, (4.1.36)

with extension data

g1 7→
(
OT (t3 − t2),OCa(qa3 − qa2),OCb

(qb3 − qb2)
)

(4.1.37)

g2 7→
(
OT (t3 − t1),OCa(qa3 − qa1),OCb

(qb3 − qb1)
)
, (4.1.38)

where T,Ca, Cb are elliptic, Ca, Cb are the two components of C and qai , q
b
i are the marked points

of Ca and Cb.

Remark 4.1.39. According to Allcock (see e.g., [CMJL12, Thm. 2.1]), X with a unique singularity,

which is D4 is strictly semi-stable, and X degenerates (in the sense of [CMJL12, §2.1]) to a cubic

threefold with three D4 singularities. In particular, we should get the same type of data in the two
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cases for IJ(X), which in fact we do, as we will see later.

4.1.11 2A1 cubic threefolds

If X has two nodes, D also has two nodes, say p and q. The double cover D̃ is then irreducible

with four nodes p+, p−, q+, q−, with p± lying above p and q± lying above q. The dual graph Γ̃ of

D̃ → D is

•

e+

NN

f+

]]
e−

}}

f−

��v , (4.1.40)

For the cohomology we have

H1(Γ̃,Z) = Z〈e+, e−, f+, f−〉 (4.1.41)

H1(Γ̃,Z)+ = Z〈e+ + e−, f+ + f−〉 (4.1.42)

H1(Γ̃,Z)− = Z〈e+ − e−, f+ − f−〉 (4.1.43)

H1(Γ̃,Z)[−] = Z〈12(e+ − e−), 1
2(f+ − f−)〉. (4.1.44)

Obviously (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. Therefore the intermediate Jacobian is

1→ (C∗)2 → IJ(X)→ P
ND̃/ND

→ 0, (4.1.45)

with extension data

g1 7→ OND̃(p+
2 − p

+
1 − p

−
2 + p−1 ) (4.1.46)

g2 7→ OND̃(q+
2 − q

+
1 − q

−
2 + q−1 ), (4.1.47)

where p+
1 and p+

2 are obtained by desingularizing the node p+, and similarly for the other points.

The normalization ND is a genus four, trigonal curve. To see that it is non-hyperelliptic, we

consider the conics of the plane of D that go through the points p and q. Since five points determine
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a conic and two are now fixed, we can move three points freely on the plane. This gives us 6−3 = 3

degrees of freedom. The intersection multiplicity of the conic in general is two at each the nodes,

therefore there are six intersection points on D other than the nodes. This gives us a base point

free three dimensional family of degree six effective divisors (a g3
6) on ND, and thus an embedding

of ND into P3 as a degree six curve. Therefore it cannot be hyperelliptic (for an alternative proof

use [ACGH85, p. 13]) and the Prym of ND is the Jacobian of NC. This also means that NC has

to be genus three and connected.

The curve C has one singularity, a node at say ξ. The point ξ represents the line l′ of X that

connects the two singular points. The lines ` and l′ span a three-space whose image along the

projection from ` is the line that connects the points p and q of D. Now let’s assume that C

was obtained from the projection from the node that corresponds to p ∈ D. Consider the g1
3 of

ND that we get if we intersect D with lines going through p. Then the line connecting p and q

gives the divisor q1 + q2 + r of the g1
3, where q1, q2 are obtained from desingularizing q, and r is

the fifth intersection point between D and the line connecting p and q. Thus the extension data

(q+
2 − q

+
1 − q

−
2 + q−1 ) above can be given as the difference of two points of NC, namely

q+
2 − q

+
1 − q

−
2 + q−1 = (q−1 + q+

2 + r̃)− (q+
1 + q−2 + r̃) = ξ1 − ξ2 ∈ J(NC), (4.1.48)

where r̃ ∈ ND̃ is one of the points above r ∈ ND. Since the point ξ ∈ C is mapped to the line

connecting p and q, this suggests that ξ1 and ξ2 come from the desingularization of ξ. We can of

course do the projection of X from the other node, the one that correspondes to q and take the g1
3

using lines going through q and we get a similar result for the other extension data. Thus we have

for the intermediate Jacobian:

1→ (C∗)2 → IJ(X)→ J(NC)→ 0, (4.1.49)
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with extension data

g1 7→ ONC(η1 − η2) (4.1.50)

g2 7→ ONC(ξ1 − ξ2) (4.1.51)

where ηi and ξi come from the desingularization of the node of C when we use one of the nodes of

X as projection point, then the other one. When we use different nodes of X for the projection

to get C, we get different curves C, but their normalization NC does not depend on the point of

projection, and that is why we can talk about the points ηi and ξi on NC.

4.1.12 A1 + A2 cubic threefolds

Let’s denote the A1 singularity of D by p and the A2 singularity by q. Then D̃ has the singularities

p+, p−, q+, q−. The stable reduction gives the curve F with components ND and an elliptic tail T ,

which are attached at the node q = t, q ∈ ND, t ∈ T . The curve F̃ has components ND̃, T+, T−

and nodes p+, p−, q+ = t+, q− = t−. The dual graph of F̃ → F is

•T
+

•v
e−

nn

e+

��
f+

AA

f−
11•T
−

(4.1.52)

The cohomology is given by

H1(Γ̃,Z) = Z〈e+, e−〉 (4.1.53)

H1(Γ̃,Z)+ = Z〈e+ + e−〉 (4.1.54)

H1(Γ̃,Z)− = Z〈e+ − e−〉 (4.1.55)

H1(Γ̃,Z)[−] = Z〈12(e+ − e−)〉. (4.1.56)
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Obviously (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. Therefore the intermediate Jacobian is

1→ C∗ → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.57)

with extension data

g 7→
(
OT ,OND̃(p+

2 − p
+
1 − p

−
2 + p−1 )

)
. (4.1.58)

The curve ND is genus four and trigonal. It is non-hyperelliptic for the same reason given in

the 2A1 case. Therefore its Prym is the Jacobian of NC, which is necessarily genus three. If we

consider the projection from the A2 singularity of X and the g1
3 received from lines going through

q ∈ D, for reasons explained in previous cases (e.g. 2A1) the extension data is ξ2 − ξ1, where the

ξi come from the desingularization of the A1 singularity of X. Thus for the intermediate Jacobian

we have

1→ C∗ → IJ(X)→ JT × J(NC)→ 0, (4.1.59)

with extension data

g 7→ (OT ,ONC(ξ2 − ξ1)) . (4.1.60)

4.1.13 A1 + A3 cubic threefolds with irreducible discriminants

Let the A1 singularity of D be the point p, and the A3 singularity of D the point q. Then D̃ has

the singularities p+, p−, q+, q−. To get the stable reduction F , we desingularize q and attach an

elliptic tail T to the points q1 and q2. These points come from the desingularization of q and are

attached to t1 and t2 of T . In F̃ , the stable reduction of D̃, we then have the tails T+ and T− and
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the points q±i , t±i . The dual graph Γ̃ then looks like

•T
+

•
v

e−

AA
e+

!! f+1

AAf+2
22

f−2

��f−1 ,,•T
−

(4.1.61)

The cohomology is given by

H1(Γ̃,Z) = Z〈e+, e−, f+
2 − f

+
1 , f

−
2 − f

−
1 〉 (4.1.62)

H1(Γ̃,Z)+ = Z〈e+ + e−, f+
2 − f

+
1 + f−2 − f

−
1 〉 (4.1.63)

H1(Γ̃,Z)− = Z〈e+ − e−, f+
2 − f

+
1 − f

−
2 + f−1 〉 (4.1.64)

H1(Γ̃,Z)[−] = Z〈12(e+ − e−), 1
2(f+

2 − f
+
1 − f

−
2 + f−1 )〉. (4.1.65)

Again we have (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. Therefore the intermediate Jacobian is

1→ (C∗)2 → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.66)

with extension data

g1 7→
(
OT ,OND̃(p+

2 − p
+
1 − p

−
2 + p−1 )

)
(4.1.67)

g2 7→
(
OT (t2 − t1),O

ND̃
(q+

2 − q
+
1 − q

−
2 + q−1 )

)
, (4.1.68)

where p±i come from the blow-ups of p±. The curve ND is genus three, trigonal and non-

hyperelliptic for the usual reason, therefore the Prym is the Jacobian ofNC, whereNC is connected,

genus two and hyperelliptic. Thus for the intermediate Jacobian we have

1→ (C∗)2 → IJ(X)→ JT × J(NC)→ 0. (4.1.69)
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For the usual reason the extension data is given by

g1 7→ (OT ,ONC(ξ2 − ξ1)) (4.1.70)

g2 7→ (OT (t2 − t1),ONC(η2 − η1)) , (4.1.71)

where the ξi and the ηi come from the desingularization of the singularities of the (2, 3)-curve C,

the ξi belonging to the original A1 singularity and the ηi belonging to the original A3 singularity

of X.

4.1.14 A1 + A4 cubic threefolds with irreducible discriminants

This is very similar to the A1 +A2 case. The only difference is that the tail T is hyperelliptic genus

two and ND is genus three. The intermediate Jacobian is

1→ C∗ → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.72)

with extension data

g 7→
(
OT ,OND̃(p+

2 − p
+
1 − p

−
2 + p−1 )

)
, (4.1.73)

where the p±i come from the desingularization of the nodes of D̃ above the A1 singularity of D.

The normalization NC of the (2, 3)-curve is connected and genus two. The intermediate Jacobian

using NC is

1→ C∗ → IJ(X)→ JT × J(NC)→ 0, (4.1.74)

with extension data

g 7→ (OT ,ONC(ξ2 − ξ1)) , (4.1.75)

where the ξi come from the blow-up of the node of C if the A4 singularity of X was used as center

of projection to create C.
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4.1.15 A1 + A5 cubic threefolds with irreducible discriminants

This is similar to the A1 +A3 case. The point q ∈ D is now an A5 singularity, the tail T is now a

hyperelliptic, genus two curve. The dual graph and the cohomology groups are the same, therefore

the intermediate Jacobian is given as

1→ (C∗)2 → IJ(X)→ JT × P
ND̃/ND

→ 0, (4.1.76)

with extension data

g1 7→
(
OT ,OND̃(p+

2 − p
+
1 − p

−
2 + p−1 )

)
(4.1.77)

g2 7→
(
OT (t2 − t1),O

ND̃
(q+

2 − q
+
1 − q

−
2 + q−1 )

)
. (4.1.78)

The normalization ND is hyperelliptic and genus two, therefore we cannot use the trigonal con-

struction. By the hyperelliptic construction the Prym of the double cover is the Jacobian of some

elliptic curve G, therefore we have

1→ (C∗)2 → IJ(X)→ JT × JG→ 0. (4.1.79)

Suspicion: C is an irreducible (2, 3)-curve with an A5 singularity (or an A1 and an A3 singu-

larity), thus NC is an elliptic curve and G = NC via the hyperelliptic construction. The extension

data is

g1 7→ (OT ,ONC(ξ2 − ξ1)) (4.1.80)

g2 7→ (OT (t2 − t1),ONC(η2 − η1)) , (4.1.81)

where the ξi come from the desingularization of the node and the ηi come from the desingularization

of the A5 singular point.
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4.1.16 A1 + A7 cubic threefolds with irreducible discriminants

This is similar to the A1 + A3 and the A1 + A5 cases. Remark 4.1.24 also applies here. The

dual graph and the cohomology groups are the same. The difference is that the tail T is now

hyperelliptic and genus three, while ND is elliptic and thus its Prym variety is trivial. Therefore

the intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT → 0, (4.1.82)

with extension data

g1 7→ OT (4.1.83)

g2 7→ OT (t2 − t1). (4.1.84)

4.1.17 2A2 cubic threefolds with irreducible discriminants

In the stable reduction we have the elliptic tails T1, T2, and T±1 , T
±
2 . The dual graph Γ̃:

•
T+
1

•v

@@

//

����

•
T−1

•T−2 •
T+
2

(4.1.85)

The cohomology groups are trivial and the intermediate Jacobian is compact. The normalization

ND is a trigonal, non-hyperelliptic, genus four curve. It is non-hyperelliptic for the usual reasons,

see e.g. the 2A1 case. The Prym of ND is the Jacobian of the normalization NC of the (2, 3)-curve

C. The curve NC is genus three. Thus for the intermediate Jacobian we have:

IJ(X) = JT1 × JT2 × J(NC). (4.1.86)
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4.1.18 A2 + A3 cubic threefolds with irreducible discriminants

Let p denote the A2 singularity, and q denote the A3 singularity of D. In the stable reduction T1

denotes the elliptic tail belonging to p, and T2 denotes the hyperelliptic genus two tail belonging

to q. In F the tail T2 is connected to ND at the nodes qa = t2a and qb = t2b. We have the tails T±1

and T±2 as usual and the nodes q±a , q
±
b , t
±
2a, t

±
2b. The dual graph Γ̃:

•
T+
2

•v

e+2a
22

e+2b

AA

e−2a

��
e−2b

,,
e+1

��

e−1

��•T−1 •
T−2

•T+
1

(4.1.87)

The cohomology is then given by

H1(Γ̃,Z) = Z〈e+
2a − e

+
2b, e

−
2a − e

−
2b〉 (4.1.88)

H1(Γ̃,Z)+ = Z〈e+
2a − e

+
2b + e−2a − e

−
2b〉 (4.1.89)

H1(Γ̃,Z)− = Z〈e+
2a − e

+
2b − e

−
2a + e−2b〉 (4.1.90)

H1(Γ̃,Z)[−] = Z〈12(e+
2a − e

+
2b − e

−
2a + e−2b)〉. (4.1.91)

Clearly (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+. The curve ND is trigonal and genus three. It is also non-

hyperelliptic for the usual reason. Its Prym is therefore the Jacobian of NC, which is a genus two

curve. If ξ1, ξ2 ∈ NC are obtained by desingularizing the point of C representing the A3 singularity

of X, the intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 × J(NC)→ 0, (4.1.92)

with extension data

g 7→ (OT1 ,OT2(t2b − t2a),ONC(ξ2 − ξ1)) . (4.1.93)
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4.1.19 A2 + A4 cubic threefolds with irreducible discriminants

Similar to the 2A2 case. The intermediate Jacobian is

IJ(X) = JT1 × JT2 × J(NC), (4.1.94)

where T1 is elliptic, T2 is hyperelliptic, genus two and NC is genus two.

4.1.20 A2 + A5 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 × JG→ 0, (4.1.95)

where T1 is elliptic, T2 is hyperelliptic genus two and G is elliptic.

Suspicion: NC is connected and elliptic and G = NC. The extension data is given by

g 7→ (OT1 ,OT2(t2 − t1),ONC(ξ2 − ξ1)) , (4.1.96)

where the points ξ1, ξ2 ∈ NC come from the desingularization of the singular point that represents

the A5 singularity of X.

4.1.21 A2 + A7 cubic threefolds with irreducible discriminants

Remark 4.1.24 also applies here. The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 → 0, (4.1.97)

where T1 is elliptic and T2 is hyperelliptic genus three. The extension data is given by

g 7→ (OT1 ,OT2(t2 − t1)) . (4.1.98)
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4.1.22 2A3 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT1 × JT2 × JG→ 0, (4.1.99)

where T1, T2, G are elliptic.

Suspicion: NC is connected and elliptic and G = NC. The extension data is given by

g1 7→ (OT1(t1b − t1a),OT2 ,ONC(ξ1b − ξ1a)) (4.1.100)

g2 7→ (OT1 ,OT2(t2b − t2a),ONC(ξ2b − ξ2a)) , (4.1.101)

where the points ξ1a, ξ1b, ξ2a, ξ2b ∈ NC come from the desingularization of the singular points that

represent the A3 singularities of X.

4.1.23 A3 + A4 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 × JG→ 0, (4.1.102)

where T1, G are elliptic and T2 is hyperelliptic genus two.

Suspicion: NC is connected and elliptic and G = NC. The extension data is given by

g 7→ (OT1(t2 − t1),OT2 ,ONC(ξ2 − ξ1)) , (4.1.103)

where the points ξ1, ξ2,∈ NC come from the desingularization of the singular point that represents

the A3 singularity of X.
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4.1.24 A3 + A5 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT1 × JT2 → 0, (4.1.104)

where T1 is elliptic and T2 is hyperelliptic, genus two. The extension data is given by

g1 7→ (OT1(t1b − t1a),OT2) (4.1.105)

g2 7→ (OT1 ,OT2(t2b − t2a)) . (4.1.106)

4.1.25 2A4 cubic threefolds with irreducible discriminants

The intermediate Jacobian is

IJ(X) = JT1 × JT2 × JG, (4.1.107)

where T1, T2 are hyperelliptic, genus two and G is elliptic.

Suspicion: NC is connected and elliptic and G = NC.

4.1.26 A4 + A5 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 → 0, (4.1.108)

where T1, T2 are hyperelliptic, genus two. The extension data is given by

g 7→ (OT1 ,OT2(t2 − t1)) . (4.1.109)
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4.1.27 3A1 cubic threefolds with irreducible discriminants

Similar to the 2A1 case. The intermediate Jacobian is given by

1→ (C∗)3 → IJ(X)→ J(NC)→ 0, (4.1.110)

with extension data

g1 7→ ONC(ξ2 − ξ1) (4.1.111)

g2 7→ ONC(η2 − η1) (4.1.112)

g3 7→ ONC(µ2 − µ1), (4.1.113)

where NC is connected, hyperellitpic and genus two and the points ξi, ηi, µi ∈ NC come from the

desingularization of nodes of C corresponding to the nodes of X.

4.1.28 2A1 + A2 cubic threefolds with irreducible discriminants

Similar to the A1 +A2 case. The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT × J(NC)→ 0, (4.1.114)

with extension data

g1 7→ (OT ,ONC(ξ2 − ξ1)) (4.1.115)

g2 7→ (OT ,ONC(η2 − η1)) , (4.1.116)

where T is an elliptic tail, NC is connected, hyperellitpic and genus two and the points ξi, ηi ∈ NC

come from the desingularization of nodes of C corresponding to the nodes of X.
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4.1.29 2A1 + A3 cubic threefolds with irreducible discriminants

Similar to the A1 +A3 case. The intermediate Jacobian is given by

1→ (C∗)3 → IJ(X)→ JT × JG→ 0, (4.1.117)

where T is an elliptic tail and G is also elliptic.

Suspicion: NC is connected and elliptic and G = NC. The extension data is given by

g1 7→ (OT ,ONC(ξ2 − ξ1)) (4.1.118)

g2 7→ (OT ,ONC(η2 − η1)) (4.1.119)

g3 7→ (OT (t2 − t1),ONC(µ2 − µ1)) , (4.1.120)

where the points ξi, ηi ∈ NC come from the desingularization of nodes of C corresponding to the

A1 singularities of X, and the points µi are desingularization of the singularity corresponding to

the A3 point of X.

4.1.30 2A1 + A4 cubic threefolds with irreducible discriminants

Similar to the 2A1 +A2 case. The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT × JG→ 0, (4.1.121)

where T is a hyperelliptic, genus two tail and G is elliptic.

Suspicion: NC is connected and elliptic and G = NC. The extension data is given by

g1 7→ (OT ,ONC(ξ2 − ξ1)) (4.1.122)

g2 7→ (OT ,ONC(η2 − η1)) , (4.1.123)

where the points ξi, ηi ∈ NC come from the desingularization of nodes of C corresponding to the

node of X.
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4.1.31 2A1 + A5 cubic threefolds with irreducible discriminants

Similar to the 2A1 +A3 case. The intermediate Jacobian is given by

1→ (C∗)3 → IJ(X)→ JT → 0, (4.1.124)

with extension data

g1 7→ OT (4.1.125)

g2 7→ OT (4.1.126)

g3 7→ OT (t2 − t1), (4.1.127)

where T is a hyperelliptic, genus two tail.

4.1.32 A1 + 2A2 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 × J(NC)→ 0, (4.1.128)

with extension data

g 7→ (OT1 ,OT2 ,ONC(ξ2 − ξ1)) , (4.1.129)

where T1, T2 are elliptic tails, NC is connected, genus two, hyperelliptic.

4.1.33 A1 + A2 + A3 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT1 × JT2 × JG→ 0, (4.1.130)

where T1, T2 are elliptic tails and G is also elliptic.
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Suspicion: NC is connected, elliptic and G = NC. The extension data is

g1 7→ (OT1 ,OT2 ,ONC(ξ2 − ξ1)) (4.1.131)

g2 7→ (OT1 ,OT2(t2 − t1),ONC(η2 − η1)) , (4.1.132)

where the ξi belong to the A1 singularity and the ηi belong to the A3 singularity of X.

4.1.34 A1 + A2 + A4 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ C∗ → IJ(X)→ JT1 × JT2 × JG→ 0, (4.1.133)

where T1 is an elliptic tail, T2 is a hyperelliptic, genus two tail and G is elliptic.

Suspicion: NC is connected, elliptic and G = NC. The extension data is

g 7→ (OT1 ,OT2 ,ONC(ξ2 − ξ1)) , (4.1.134)

where the ξi belong to the A1 singularity of X.

4.1.35 A1 + A2 + A5 cubic threefolds with irreducible discriminants

The intermediate Jacobian is given by

1→ (C∗)2 → IJ(X)→ JT1 × JT2 → 0, (4.1.135)

with extension data

g1 7→ (OT1 ,OT2) (4.1.136)

g2 7→ (OT1 ,OT2(t2 − t1)) , (4.1.137)

where T1 is an elliptic tail and T2 is a hyperelliptic, genus two tail.
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4.2 Quintic = 2 Conics + 1 Line

4.2.1 8A1 cubic threefolds

Two conics and a line in the plane in general position have eight nodal intersections. Since there

is no need for a stable reduction, and ND and ND̃ are disjoint unions of genus zero curves, the

intermediate Jacobian has no compact part, therefore

IJ(X) ∼= (C∗)5. (4.2.1)

4.3 Quintic = Conic + 3 Lines

4.3.1 9A1 cubic threefolds

A conic and three lines in the plane in general position have nine nodal intersections. Since there

is no need for a stable reduction, and ND and ND̃ are disjoint unions of genus zero curves, the

intermediate Jacobian has no compact part, therefore

IJ(X) ∼= (C∗)5. (4.3.1)

4.3.2 3D4 cubic threefolds

There is a unique cubic threefold X with three D4 singularities with equation

x0x1x2 + x3
3 + x3

4 = 0, (4.3.2)

in the sense that any other cubic threefold with three D4 singularities can be obtained under

projective transformation of this equation. The three singularities occur at the points p1 = (1 : 0 :

0 : 0 : 0), p2 = (0 : 1 : 0 : 0 : 0), p3 = (0 : 0 : 1 : 0 : 0). Since permuting the coordinates x0, x1, x2

does not change the equation of X, we can see that X is symmetric with respect to the three

singularities. The equation of X also tells us about the (2, 3)-curve C, namely it is the intersection

of the quadric {x1x2 = 0} and the cubic {x3
3 +x3

4 = 0} in P3. The former is the union of the planes
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{x1 = 0} and {x2 = 0}, while the latter is the union of three planes intersecting one another in

the common line {x3 = x4 = 0}. Therefore C consists of two sets of three lines, each set of three

lines being on the same plane and intersecting in a common point giving a D4 singularity. Lines

from different sets meet each other in three pairs, giving three A1 singularities on the intersection

of the planes {x1 = 0} and {x2 = 0}. The three A1 singularities come from the blow-up of X at

p1, while the two D4 singularities (located at (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0)) come from p2 and

p3. Since C consists of six lines, there are six planes contained in X and containing p1. Three of

them contains the line through p1 and p2 and the other three contains the line through p1 and p3.

Because of symmetry the same statement about the six planes is true for p2 and p3, therefore for

any two singular points there are three planes in X containing the two singular points.

The plane quintic discriminant curve D has three D4 singularities which we also denote by

p1, p2, p3. They are formed the following way: the three lines L12, L13, L23 of the quintic intersect

each other in the points p1, p2, p3, and the conic Q goes through these intersections. Thus D consists

of four irreducible components, each non-singular and genus zero.

L13

L12

L23

Q

p1

p3

p2

D

By Hurwitz’s theorem a connected double cover of a genus zero curve must have ramification points,

therefore in D̃ there must be two identical copies above each component of D. Therefore D̃ consists

of eight genus zero curves labelled L±ij , Q
±, connected through six D4 singularities p±i . These eight

curves must be connected in a way that the resulting D̃ is connected. We want to figure out the

configuration of these connections.

Let p+
i be three points on Q+ and p−i be three points on Q−. These are isomorphic copies of Q

with the three points pi. The curves Q+ and Q− are obviously disjoint, because the double cover
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of Q is their disjoint union. We want to find how the six curves L±ij are connected to the curves

Q±. The curve L+
ij must connect to one of p+

i , p
−
i and also one of p+

j , p
−
j . Then L−ij will connect

to the other points of each of these pairs.

Let’s consider the straight line L12 of D. This represents a three-space W12 in P4. We want

to describe the cubic surface X ∩W12. The three-space W12 can be obtained as the span of the

non-special line ` and the line through p1 and p2 of X. Since the entire line L12 is part of the

discriminant D, any plane of W12 conaining ` intersects X in three distinct lines. This means that

the cubic surface X ∩W12 has infinitely many straight lines. Thus the possibilities for X ∩W12

is that it is either a reducible cubic surface, an irreducible cone, or an irreducible ruled surface (a

scroll). It is easy to see that X ∩W12 cannot be an irreducible cone, since all lines go through

one point in an irreducible cone, while in X ∩W12 the lines ` and the one through p1 and p2 are

skew. To find out about X ∩W12, we have to go back to the equation of X and see the possible

intersections that we get with three-spaces. The general equation of a three-space in P4 is

ax0 + bx1 + cx2 + dx3 + ex4 = 0. (4.3.3)

Since the three-space belonging to L12 contains p1 and p2, but not p3, we have a = b = 0 and c 6= 0.

We can choose c = −1 and get x2 = dx3 + ex4, where d and e are non-homogeneous coordinates

now. In the case d = e = 0, W12 is given by x2 = 0 and the equation of X ∩W12 is just x3
3 +x3

4 = 0,

which is the union of three planes intersecting one another in a common line, the line through p1

and p2. This cannot be the case, because no matter how we would pick the non-special line ` ⊂ X,

the image of the entire line through p1 and p2 would be a point in the plane of the discriminant

curve. Therefore d = e = 0 cannot be, and because of symmetricity we can assume that d 6= 0. For

X ∩W12 we have

dx0x1x3 + ex0x1x4 + x3
3 + x3

4 = 0. (4.3.4)

To find the singularities we consider the Jacobian

[
x1(dx3 + ex4) x0(dx3 + ex4) dx0x1 + 3x2

3 ex0x1 + 3x2
4

]
. (4.3.5)
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It is easy to see that if we assume that dx3 + ex4 6= 0, we eventually have to conclude that

x0 = x1 = x3 = x4 = 0, which is not possible, so we assume that dx3 + ex4 = 0. Since d 6= 0, we

have x3 = − e
dx4 and the equation of X ∩W12 becomes

x0x1(dx3 + ex4)− e3

d3
x3

4 + x3
4 =

(
1− e3

d3

)
x3

4 = 0. (4.3.6)

Case I: e3 6= d3. Then necessarily x4 = 0 and therefore x3 = 0. From the third and fourth

entries of the Jacobian we see that either x0 or x1 must be zero, therefore in this case the only

singularities are at (1 : 0 : 0 : 0) and (0 : 1 : 0 : 0) and they come from p1 and p2. Since we only

have isolated singularities, the cubic surface can only have finitely many lines, so this case cannot

give the cubic surface we are looking for.

Case II: e3 = d3. Under the assumption dx3 + ex4 = 0 and e3 = d3, it is easy to see that the

third and fourth entries of the Jacobian give the same equation. The locus of the singularities is

given by the equations

dx3 + ex4 = 0 (4.3.7)

dx0x1 + 3x2
3 = 0, (4.3.8)

which is a plane quadric. Therefore X ∩W12 cannot be an irreducible ruled cubic surface, because

that has a double line singularity. Thus X ∩W12 is reducible, and is the union of a plane and a

quadric surface. Indeed, (dx3 + ex4) can be factored out from the equation (4.3.4) if e3 = d3, and

what remains is an irreducible quadric. The singular points p1 and p2 must be singular in X ∩W12

as well, therefore they belong to both the plane and the quadric surface.

Remark: we see that case I is the more general case, so we might wonder if we could pick the

non-special line ` as one of the lines that occur in X ∩W12, when W12 belongs to case I, i.e. when

e3 6= d3. In fact it is not possible, because in case I X ∩W12 has at best two A2 singularities (a

D4 in a threefold of P4 becomes an A2 when intersected with a general three-space), and we know

from §3.1.6, that all lines in a cubic surface with two A2 singularities pass through at least one of

the singularities. Therefore we could not find a non-special line there.

76



We have shown above that if W12 is the three-space belonging to L12 of D, then X ∩W12 is

the union of a plane Π12 and a quadric surface R12, where the singularities p1 and p2 lie on the

intersection Π12 ∩ R12 and Π12 is one of the three planes of X mentioned above containing these

two singular points. As the non-special line cannot intersect the line through p1 and p2, it must lie

on the quadric R12.

Next we want to identify the curves L+
12, L

−
12 and see how they connect to the other curves L±ij .

If we pick a point of L12, that corresponds to a plane Y of W12 containing `. Then Y necessarily

has two additional lines when intersected with X, one in the plane Π12, the other in the quadric

R12. One of these lines represent a point of L+
12, the other a point of L−12. Let’s say that the lines

on Π12 correspond to the points of L+
12, while the lines on R12 correspond to the points of L−12, and

similarly for the other L±ij . The question is does L+
12 connect to L+

13 or to L−13? This connection

occurs above the point p1, so we have to consider the plane spanned by ` and p1 and the two

residual lines of intersection with X, say l+ and l−, where l+ is the line on the plane Π12 and l− is

the one on R12. The question is does the line l+ lie on the plane Π13 or on the quadric R13 of the

cubic surface X ∩W13 belonging to L13? The plane Π13 of X ∩W13 is one of the three planes in X

containing both p1 and p3. Two of these three planes intersect Π12 in only a point (which is p1),

and only the third intersect it in a line (the curve C explains why). This line corresponds to one of

the A1 singularities of the (2, 3)-curve C and it is one of the three distinguished lines in the tangent

cone of the D4 singular point p1. If Π12 and Π13 intersect only in a point, l+ must lie on R13, and

thus L+
12 connects with L−13. Let’s assume now that Π13 is the plane that intersects Π12 in a line.

The question is therefore is it possible that l+ is the same as the intersection of Π12 and Π13? If

it was, then the non-special line ` would intersect Π12 ∩ Π13, because ` and l+ intersect. But that

is not possible, because Π12 ∩Π13 represents the tangent direction at p1 ∈ X that gives one of the

A1 singularities when p1 is blown up, thus the span of ` and Π12 ∩Π13 must be a three-space that

projects to one of the tangent lines at p1 ∈ D in the plane of the discriminant D. Thus ` cannot

intersect Π12 ∩ Π13, and l+ does not lie in Π13, but in R13. Therefore L+
12 connects to L−13 in this

case, as well, and thus L−12 must connect to L+
13. Because of symmetricity, similar statements are

true above the other singular points, as well. Therefore the L±ij lines are connected to each other
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in a single cycle of six elements (as opposed to two cycles of three, for example).

The next question is how do the curves Q+ and Q− fit into this arrangement? As the config-

uration must be symmetric with respect to the singularities, the only possible way to do this (up

to some relabelling) is if the lines L±ij keep alternating between Q+ and Q−, that is each L±ij is

connected to Q+ at one point and Q− at the other.

Now that we have a clear understanding of the double cover D̃ → D, we want to describe the

stable reduction F̃ → F . To resolve the D4 singularities of D̃ and D, we add an elliptic tail for

each singularity. The three irreducible components that are connected at a singularity of D̃ or D

will connect to three distinct points of the corresponding tail curve. We have the tails Ti in F for

the singularities pi and the tails T±i in F̃ for the singularities p±i . On each T±i there are connection

points where the other components connect through a node, these nodes are labelled as xt±i , where

x can be one of (q, 12, 13, 23) depending on what component is connected to T±i at that node.

To get the stable reduction of D̃ it is not enough to blow up the singularities and add the tails

described above. The problem is that the genus zero curves L±ij have only two marked points, so

their automorphism groups are infinite. This means that they have to be contracted to a point and

the two tails that used to be connected to a curve L±ij will now be connected to each other through

a node that comes from the contraction of these curves. The components and the connections are

described by the following table:

78



Q+ Q− T+
1 T+

2 T+
3 T−1 T−2 T−3

Q+ - - qt+1
qt+2

qt+3 - - -

Q− - - - - - qt−1
qt−2

qt−3

T+
1

qt+1 - - - - - 12t+1 = 12t−2
13t+1 = 13t−3

T+
2

qt+2 - - - - 12t+2 = 12t−1 - 23t+2 = 23t−3

T+
3

qt+3 - - - - 13t+3 = 13t−1
23t+3 = 23t−2 -

T−1 - qt−1 - 12t−1 = 12t+2
13t−1 = 13t+3 - - -

T−2 - qt−2
12t−2 = 12t+1 - 23t−2 = 23t+3 - - -

T−3 - qt−3
13t−3 = 13t+1

23t−3 = 23t+2 - - - -

This gives the dual graph Γ̃:

•
T−2 f−2 //•

T+
3

f+3

��•T+
1

f+1

??

A� •
Q−

B�e−2

__

e−1 //

e−3

��

•
T−1

f−1
��•

T−3

f−3

__

•
T+
2f+2

oo

C�

•
Q+

e+3

ll

e+2

__

e+1

QQ

D	

E	

(4.3.9)

With 8 vertices and 12 edges the Euler number of the graph is 4, therefore H1(Γ̃,Z) = Z5. In fact
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we have:

H1(Γ̃,Z) = Z〈f+
1 − e

−
2 + e−3 + f−3 ,

f−2 + f+
3 − e

−
1 + e−2 ,

f−1 + f+
2 − e

−
3 + e−1 ,

e+
3 + f+

3 + f+
1 − e

+
2 ,

− e+
1 + f−3 + f+

2 + e+
2 〉

(4.3.10)

H1(Γ̃,Z)+ = Z〈f+
1 − e

−
2 + e−3 + f−3 + e+

3 + f+
3 + f+

1 − e
+
2 ,

f−2 + f+
3 − e

−
1 + e−2 − e

+
1 + f−3 + f+

2 + e+
2 ,

f+
1 + f−2 + f+

3 + f−1 + f+
2 + f−3 〉

(4.3.11)

H1(Γ̃,Z)− = Z〈f+
1 − e

−
2 + e−3 + f−3 − e

+
3 − f

+
3 − f

+
1 + e+

2 ,

f−2 + f+
3 − e

−
1 + e−2 + e+

1 − f
−
3 − f

+
2 − e

+
2 〉,

(4.3.12)

H1(Γ̃,Z)[−] = Z〈12(f+
1 − e

−
2 + e−3 + f−3 − e

+
3 − f

+
3 − f

+
1 + e+

2 ),

1
2(f−2 + f+

3 − e
−
1 + e−2 + e+

1 − f
−
3 − f

+
2 − e

+
2 )〉,

(4.3.13)

or using the cycles indicated on the graph:

H1(Γ̃,Z) = Z〈A�,B�,C�,D	,E	〉 (4.3.14)

H1(Γ̃,Z)+ = Z〈A� + D	,B� + E	,A� + B� + C�〉 (4.3.15)

H1(Γ̃,Z)− = Z〈A� −D	,B� −E	〉 (4.3.16)

H1(Γ̃,Z)[−] = Z〈12(A� −D	), 1
2(B� −E	)〉. (4.3.17)

The picture may become clearer if we introduce

F� := A� + B� + C� = f+
1 + f−2 + f+

3 + f−1 + f+
2 + f−3 , (4.3.18)
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a cycle around the hexagone of the T±i in a clockwise direction. Then choosing a new basis we have

H1(Γ̃,Z) = Z〈A�,D	,B�,E	,F�〉, (4.3.19)

and using this basis the matrix of ι is


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 , (4.3.20)

and we have

H1(Γ̃,Z)+ = Z〈A� + D	,B� + E	,F�〉 (4.3.21)

H1(Γ̃,Z)− = Z〈A� −D	,B� −E	〉. (4.3.22)

It is not true that (1 + ι)H1(Γ̃,Z) = H1(Γ̃,Z)+, because ι(F�) = F� for the basis element F�.

Therefore k = 1 in (3.3.7), and G = (Z/2Z)d, where d is either 0 or 1. Thus the intermediate

Jacobian is given by the sequence

1→ (C∗)2 → IJ(X)→ (JT1 × JT2 × JT3)
/
G→ 0. (4.3.23)

The extension data is given by

g1 7→
[
OT1(13t1 − 12t1),OT2(qt2 − 12t2),OT3(13t3 − qt3)

]
(4.3.24)

g2 7→
[
OT1(qt1 − 13t1),OT2(23t2 − qt2),OT3(23t3 − 13t3)

]
, (4.3.25)

where jkti is the node of Ti and Ljk on Ti and qti is the node of Ti and Q on Ti.
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4.4 Quintic = 5 Lines

4.4.1 10A1 cubic threefolds

For reference, see [Gw05]. The cubic threefold X with ten nodes is the Segre Cubic, and it is unique

up to projective transformation. It can be given in P5 as the intersection of the cubic

5∑
i=0

x3
i = 0 (4.4.1)

and the hypersurface
5∑
i=0

xi = 0. (4.4.2)

In P4 it is defined by the equation

∑
i<j<k

i,j,k∈{0,...,4}

2xixjxk +
∑
i 6=j

i,j∈{0,...,4}

x2
ixj = 0. (4.4.3)

X contains 15 planes, in each plane there are four nodes, and each node is contained in six planes.

The (2, 3)-curve C must have 9 nodes. It has to contain six lines which correspond to the six planes

that contain the node which is the center of projection. Since C is the intersection of a smooth

quadric and a cubic, it must consist of the six lines, and the cubic is in fact the union of three

planes, each tangent to the quadric. Thus C is the union of three pairs of lines, where each pair

is the intersection of the quadric and a plane. Two lines on a plane have one intersection and any

pair of lines intersects any other pair of lines in two points, thus we have nine nodes altogether, as

we wanted.

The plane quintic D consists of five lines that intersect one another in nodes, this gives the(
5
2

)
= 10 nodes. We do not need to do a stable reduction, so the normalization ND is the disjoint

union of five curves of genus zero, and the double cover ND̃ is the disjoint union of ten curves of

genus zero. (For the dual graph Γ̃ of D̃ see [Gw05, Figure 1].) Thus the intermediate Jacobian
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does not have a compact part, and for dimension reasons it is

IJ(X) = (C∗)5 . (4.4.4)

There is more degeneration data provided in [Gw05]; here we only wanted to show that the compact

part is trivial.
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