Finding the Best Solutions: The Cost
< C Problem and Finding Matchings

Hal Gabow

CU-CS-139-78 October 1978

&
@University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

FINDING THE BEST SOLUTIONS: THE COST < C PROBLEM AND FINDING MATCHINGS

HAROLD N. GABOW
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

ABSTRACT

For a given combinatorial optimization problem, the corresponding
COST < C problem is to find all solutions of cost at most C. This is close-
ly related to the often-studied K BEST problem, which is to find the K
smallest solutions in order. Typical COST < C algorithms for graph problems
(e.g., paths, matchings, spanning trees) use less space (0(m+n) instead of
O(K+mtn)) than K BEST, and are slightly faster.

As an illustration, several COST < C (and K BEST) algorithms for
matchings on bipartite graphs are presented. The times are

O(Kudn(nB,mnlogtﬂ), improving previous bounds. The approach is to reduce
the matching problems to path problems on directed graphs.

Lastly, a justification is given for the relatively high time bound on
COST < C for paths: A single-source problem arising in its solution is shown
to be equivalent to a multi-source problem.

1. INTRODUCTION

When a real-world problem is formulated as a graph optimization pro-
blem, various aspects may be lost. These include unstated constraints or
desiderata, approximate numerical parameters, and others. One way to deal
with this is to find a number of solutions of small cost, rather than just
one optimum solution. The best of these solutions can then be selected.

This approach is usually formulated as the K BEST problem: find the
K smallest solutions, in order of increasing cost. Efficient algorithms
have been given for K BEST in the cases of paths [L72,Y], cycles [JK],
matchings [M], and spanning trees [CFM,G,KIM]. These algorithms use time
O(K+ P(m,n)) and space O(K+mtn); here n and m are the number of vertices and
edges, and P 1s a slow-growing (e.g., low order polynomial) function.

An alternate approach is the COST < C problem: find all solutions of
cost at most C. This problem is easier than K BEST, since the output need
not be sorted. Real-world situations may make sorted output unnecessary or
of limited significance. The K BEST algorithms mentioned above can be
adapted to COST < C. The space bounds reduce to O(m+n). The constant of
proportionality in the time bounds decrease. So for reasons of applica-
bility and efficiency, COST < C may be a better problem formulation than
K BEST.

Section 2 gives general remarks on COST < C. These include #P-com-
pleteness results [V77a-b], and the space savings mentioned above. Section
3 studies a specific example, COST < C for matchings on bipartite graphs.
Algorithms are obtained by reducing the matching problems to path problems.
A K BEST matching algorithm improves previous results. Section 4 studies
the complexity of COST < C for paths. A possible justification for the
relatively high time bound for paths is given, by showing a multi-source
path problem is involved.

2. THE COST < C PROBLEM: GENERAL REMARKS

This Section discusses these general complexity properties of COST < C:
Counting COST < C solutions is usually #P-complete; a COST < C algorithm

usually requires less space than the corresponding K BEST algorithm.

We start with some terminology. Let S-subgraph denote a fixed family
of subgraphs of graphs, e.g., cycle, spanning tree, etc. In a graph G, let
c(e) be a real-valued cost assigned to each edge e; the cost of a subgraph
H is c(H) = 2 c(e). The COST < C(S) problem is, for a given graph G with

ecgcH
cost function ¢ and cost bound C, find all S-subgraphs of cost at most C.
The #COST < C(S) problem is to find only the number of such subgraphs.
This number is denoted by K, which 1s used as a parameter in time estimates
for COST < C. B

We first study #COST < C. Define these related problems: #(8) is
the problem of counting all S-subgraphs of a given graph. #(S) problems
are studied in [V77b]. #COST = C(S) is defined analogous to #COST < C.

Let o denote reducibility by oracle Turing machines in the sense of
Valiant [V77b]. Then the three counting problems are related as follows:

Lemma 2.1: For a fixed S, #(S8) o #COST = C(S) a #COST < C(8).

Proof: 1In the first reduction the cost function c can be restricted to pos-
itive integers: Let all edge costs be 1, and compute #COST = i, for i = 0,
eeey M.

In the second reduction a general real-valued cost function can be al-
lowed, by computing the number of S-subgraphs with cost < C and = C. 0

Let #SUBSET SUM be the problem of, given numbers S ERREEL and a de-

sired sum S, find the number of subsets of numbers summing exactly to S.
This problem is #P-complete (The reduction in [MY,pp.239-243] leads to a
simple proof). This is the basis of our hardness result.

Lemma 2.2: {#COST < C(S) is #P-hard if S-subgraphs have these two proper-
ties:
(a) Tor any graphs Gi’ i=1,2, we can find (in polynomial time) a

graph G containing the Gi as edge-disjoint subgraphs, such that the S-sub~
graphs of G are precisely the unions of S-subgraphs of Gi;

(b) Some graph G, has a positive even number of S-subgraphs, with some

0
edge e, in exactly half of them.

Proof: By Lemma 2.1, it suffices to show #COST = C(S) is #P-hard. Use (a)
to construct a graph containing n copies of G Let all edge costs be 0,

0
except the ith copy of e, has cost S Take C = 8., Then if GO has 2k
S—-subgraphs, the answer to #SUBSET SUM is the answer to #COST = C divided
by k", 0]

This reduction uses cost 0 edges. However, by scaling up the numbers
s;, we see COST <C is #P-hard when costs are all positive integers.

#(S), and hence #COST < C(S), is known to be #P-complete when an S-sub-
graph is a maximum matching or a path joining designated start and end ver-
tices [V77b]. However the Lemma gives interesting results in these cases:

Theorem 2.1: #COST < C(S) is #P-complete when an S-subgraph is a maximal

matching or spanning tree.

Proof: For a maximal matching, G, is a cycle of length 4. For a spanning

0
tree, GO is a cycle of length 4 plus a diagonal; the diagonal is in 4 of the

8 spanning trees. , - O

The status of #(S) is unknown for maximal matchings [V77b]. For span-—
ning trees #(S) can be solved in polynomial time [E].

Now we turn our attention to COST < C algorithms. In spite of the pre-—
vious results, these algorithms give feasible computations if K is not huge.
The usual approach is backtracking: edges are systematically included and
excluded until all desired S—subgraphs are found.

As an example, suppose in a directed graph, an S-subgraph is an s-t
path, i.e., a simple path from a designated start vertex s to an end vertex

t. K BEST (s-t bath) has been solved in O(Klnin(n3,nuxlogr0) time and
0(K+m+n) space (see[L72,L76,Y] for time, [G] for space). This approach
gives a COST < C algorithm using the same time but less space, 0(m+n).

The algorithm is given below. P is a global data structure for a path.
The recursive procedure EXTEND (v) is called with P as the last s-t path
found so far, and v on P. Let P = (s,...,v,w,...,t). Then EXTEND (v) out-
puts all paths (including P) of cost < C that begin with (s,...,v). This is
done by first (recursively) outputting the paths that include edge (v,w),
and then the paths that exclude it. EXTEND (v) returns with P set to
(8,...,V).

procedure PATHS; comment finds all s-t paths of cost < C, where vertices
s,t and cost C have already been specified; begin

procedure EXTEND (v);
begin let EXCLUDE be a list of edges local to EXTEND;
1. if v = t then begin output (P); return end;

2. let w be the vertex following v in P;

3. EXTEND (w); comment now P ends at w; »

4. remove w from P; let EXCLUDE consist of the edge (v,w);

5. while there is a v-t path avoilding vertices in P-v and edges in EXCLUDE,
with cost £ C-c(P) do
begin

6. let (v=w0,wl,...,wk=t) be such a path;

7. for i « 1 to k do add w, to Py

8. EXTEND (w,);

9. remove w, from P; add (v,wl) to EXCLUDE;

10. end end EXTEND;

11. let d(v) be the length of a shortest s-v path, for each vertex v;

12. if d(t) > C then return comment no paths of desired cost exist;

13. if G has negative edges then

14. begin for each edge (v,w) do c(v,w) < c(v,w) + d(v) - d(w);

15. C < C-d(t);
end;

16. let P be a shortest s-t path;
17. EXTEND (s);
end PATHS;

Lemma 2.3 PATHS solves COST < C(s~t path) in a directed graph with no neg-
ative cycles, in time O(K min(ng,mrllogrw) and space 0(mtn).

Proof: The time is dominated by lines 5-6: finding an acceptable v-t path.
This is a single-source shortest path problem with non-negative edge costs
(by lines 13-15). SoDijkstra's algorithm does lines 5-6 once in time

O(min(nz,nxlogxn))[AHU]. These lines are done < n times per output path. [
This result illustrates the general space savings for COST < C.

Theorem 2.2: COST < C (S) can be solved in O(mtn) space when an S-subgraph
is an s-t path, a cycle, a maximum matching, or a spanning tree in an un-
directed or directed graph.

Proof: As with s~-t paths, other K BEST algorithms [JK,M,G,KIM,CFM] can be
modified for backtracking. (Section 3 gives more details for cycles and
matchings). O

Regarding time, corresponding COST < C and K BEST algorithms have the
same asymptotic time bound. But a simple comparison of code shows COST < C
saves time, by replacing-a priority queue with a stack.

3. FINDING BEST MATCHINGS

This Section presents algorithms for several COST < C problems for
matchings on bipartite graphs. Two previous algorithms are improved or ex-
tended. The approach is to reduce the matching problems to path problems
on directed graphs.

We first recall some fundamental facts. A matching M is a set of dis-
joint edges. A vertex not on an edge of M is exposed. A path is alternat-
ing if its edges are alternately in M and M, and further, an end edge is in

ﬁ‘only if the corresponding end vertex is exposed. (This restriction is not
standard.) An alternating path is augmenting if both end edges are in G -M,

and de-augmenting if these edges are in M. The cost of an alternating path

P with respect to M is c(P,M) = c(PnM) - c(PnaM).

The following "direct sum principle" is well-known [L76]: Fix a match-
M of cardinality k; let N be another cardinality k-matching. Then'N()b&
consists of disjoint alternating cycles, even length alternating paths, and
pairs of disjoint augmenting and de-augmenting paths ('Alternating" means
alternating with respect to M). TFurther c(N(E)M,M) = c(N) - c(M).

The direct sum principle gives a 1-1 correspondence between cardinality
k matchings and sets of alternating paths described above. Note when k
gives a perfect matching, the sets contain only alternating cycles; when k
gives a maximum matching, the sets contain only alternating cycles and even
paths.

Now we recall a well-known correspondence between bipartite graphs G
with a distinguished perfect matching M and directed graphs D. Specifically,

let G have vertices U Vs i=l, ..., n, and let M = {(ui,vi)!i=l,...,n}.

The corresponding directed graph D has vertices w,, i=1, ..., n, and edges

i’
(wi,wj), where (ui,vj) is an edge of G-M.

Alternating cycles in G correspond to directed cycles in D. If edge
costs satisfy c(wi,wj) = c(ui,vj) - c(uj,vj), then the costs of an alternat-
ing cycle (with respect to M) and the corresponding directed cycle are equal.

Thus by the direct sum principle, a perfect matching N on G corresponds

to a set of disjoint cycles S on D, and ¢c(N) - ¢(M) = ¢(S). This implies
the following result.

Lemma 3.1: Let F(n,m) be the time to find a minimum cost perfect matching
on a bipartite graph, M(n,m,K) be the time for COST < C (perfect matching)
on a bipartite graph, and S(n,m,K) be the time for COST < C (set of dis-
joint cycles) on a directed graph with no negative cycles. Then

M(n,m,K) 0(F(n,m) + Kn + S(n,m,K)),
S(n,m,K)

i

[

0(Kn + M(n,m,K)).
The space for both COST < C problems is equal.

Proof: Given G, find a minimum cost perfect matching M. The corresponding
graph D has no negative cycles, by the minimality of M. The equation for
M follows. 0

Thus COST < C (perfect matching) reduces to COST < C (set of disjoint
cycles). This in turn reduces to COST < C (cycle), by the following general
technique.

For a fixed S-subgraph, let an S-set be a set of disjoint S-subgraphs.
Let FIND (C) be an algorithm for COST < C (S). Often we can convert FIND
to an algorithm for COST < C (S-set), by these changes: First, introduce a
list LIST to store the S-set. LIST is initially empty. For each call
output (H) when an S-subgraph H is found, substitute these lines:

1. begin add H to LIST; remove the vertices of H from the graph;

2. output (LIST);

3. FIND (C-c(H));

4, remove H from LIST; add the vertices of H to the graph; end;

Lemma 3.2: Let FIND, an algorithm for COST < C (S), satisfy this property:

(#) Let O, and H, be disjoint S-subgraphs, with H When

1 2

H2 is output, FIND has modified the graph so H1

Then the above modifications to FIND give an algorithm for COST = C (S-set)
having the same time and space bounds as FIND.

Proof: Use induction on the number of S-subgraphs. Property (*) insures
that an S-set is listed only once. 0

1 output before HZ'

is not an S-subgraph.

Note (%) often holds. TFor instance if FIND works by finding min cost

S-subgraphs, Hl must be removed before H2 can be discovered.

We use these results to get algorithms for two versions of COST < C.
First consider finding all perfect matchings (i.e., all costs are 0).
Lemmas 3.1-2 reduce this to finding all directed cycles. The most efficient
algorithms for all cycles use time O(Kmtm+n) and space O(mt+n) [J75,RT,SL].
This gives the following result,

Theorem 3.1: All perfect matchings on a bipartite graph can be found in

O(nl/z

Proof: The first berfect matching is found in time O(n

mtn+Km) time and O(n+m) space.

l/2m+n) [HK]. 0

This result has been previously obtained by Itai et al. [IrT]. oOur
algorithm is essentially equivalent.

Next consider arbitrary cost functions. COST < C (cycle) on a direct-

graph with no negative cycles can be solvedin O(Kndn(n3,mnlogr0) time and
O0(m+n) space [JK]: The algorithm just repeatedly chooses a vertex s, uses

PATHS of Sectlon 2 to find all s-s paths of cost < C, and then deletes s.
Theorem 3.2: COST < C (perfect matching) on a bipartite graph can be solved
in O(Klnin(nB,mn.logrO) time and O(m+tn) space.

Proof: A min cost perfect matching M is found in time O(min(n3¢m1logn))
[L76§. The directed graph corresponding to G,M has no negative cycles by
the minimality of M. (]

A corresponding K BEST algorithm, using the same time and O (K+mtn)

space, is easily constructed. This improves the O(Kna) time algorithm
given in [M].

Next we consider COST < C (maximum matching). First we specify how a
graph with an arbitrary matching corresponds to a directed graph. Let G be
bipartite, with vertex set (U,V), and arbitrary matching M. The correspond-

ing directed graph is found by enlarging G to a graph G" with a perfect

matching, finding the corresponding directed graph D", and enlarging D' to
the desired graph D.

To form G', add a vertex x' for each exposed vertex x of G, and add the
matched edge (x,x'). G' has a perfect matching, so let D' correspond to G',

Note the vertices of D' correspond naturally to the matched edges of G', and
80 partition into 3 sets:

WM (vertices of D' corresponding to matched edges of M);
WU (vertices corresponding to matched edges (x,x'), xeU)
Wv (vertices corresponding to matched edges (x,x"), xeV).

To form D, add a fourth set of vertices W ¢ containing a vertex w' for each

we:WM, and add the edge (w',w) for each corresponding pair w',w.

As with perfect matchings, alternating cycles of G correspond to
directed cycles of D. An even length alternating path starting at an ex-
posed vertex of U corresponds to a directed path from WU to WM. An even
alternating path starting in V corresponds to a directed path from WM‘ to
W .

V EJ
Let the edges (w',w) from WMY to WM have cost -c(u,v), where w corre~

sponds to (u,v) eM. Then the correspondence between cycles and paths pre-
serves cost,

This correspondence shows COST < C (maximum matchings) reduces to
COST < C (set of disjoint cycles and SimTipaths,iwl,...,k). (An 8~T path,

for sets of vertices S, T is a path from some seS to some teT). We allow
a number of corresponding sets Sy Ti)' It is easy to see COST < C (S~T path)

reduces to COST < C (s~t path). Thus the directed graph problem reduces to

COST < C (set of disjoint cycles and s, -t paths, i=1l, ..., k). This pro-
o 1 . i

blem is solved using the following genéral technique.

Let an Sl,...,Sk-set be a set of disjoint Sl~subgraphs, «eey and Sk—
subgraphs. If FIND i(C) is an algorithm for COST < C (Si-set), i=1, ...,

k, then an algorithm for COST < C(Sl,...,Sk—set) can usually be formed as

follows: Let FIND1 be the main routine. Assume all FINDi uée LIST to store
the Si~set. In FINDi, i=2, ..., k, remove the initialization of LIST. In

FINDi, i=1, ..., k-1, add a call, FINDi+l (C), on entry: also replace each
occurence of output (LIST) by these lines:

1. Dbegin output (LIST);

2. remove the vertices in subgraphs of LIST from the graph;

3. TFINDi+l (C-c(LIST));

4. add the vertices in subgraphs of LIST to the graph; end;

Lemma 3.3: Let FINDi be an algorithm for COST < C(Simset), i=1, ..., k.
Suppose no Si-subgraph has negative cost, for i=2, ..., k. Then the above

modifications to FINDi give an algorithm for COST < C(Sl"' ,S, ~set), whose

k
time and space bounds are the maximum of those for FINDi, i=1, ..., k. O

Now we extend Theorems 3.1-2 to maximum matchings. When costs are 0,
all s-t paths can be found using essentially the same algorithm as for
cycles [RT].

Theorem 3.3: All maximum matchings on a bipartite graph can be found in

1/2

time O(n™" "mtn+Km) time and O(mtn) space. U

An equivalent algorithm is given by Itai et al [IRT].
For arbitrary costs, we use PATHS of Section 2 for s-t paths.

Theorem 3.4: COST < C (maximum matching) on a bipartite graph can be solved
in 0(Knﬁn(n3ﬂmllogr0) time and O(min) space. g

Finally we consider COST < C (cardinality k matching). Let G be a bi-
partite graph with a matching M of cardinality k; let D be the corresponding
directed graph defined above. Augmenting and de-augmenting paths in G corre-
sponds to W -WV and WM,—W paths in D, respectively. Thus COST < C (cardi-

U M
nality k matching) reduces to COST < C (set of disjoint cycles, §,-T, paths,
P [— / - T gt ‘ -
82 12 paths, and Sy T2, 82 Tl path pairs). (An Sl TZ’ 82 Tl path pair con

sistg of an SI-T2 path and an SZ~T1 paéh, disjoint ffom,each other.) Vertex -

2 T2 are disjoint; they correspond to W_, W, W W

sets S_, Tl, S M’ Mja v’?

1
respectively.

To solve the COST < C problem on D, we use a graph D*. Form D* by
adding two vertices Zss i=1,2. Add cost 0 edges (W,zi), where we:Ti,

and (zi,w), where wezsi, i=1,2, Note the cycles in D* correspond in D to

cycles, S paths, S -T, paths, and §_~-T S

1 Tl 2 2 172> 72 Tl
Unfortunately, the problem in D does not reduce to all cycle-sets in
D*, 1In the direct sum principle, a cardinality k matching corresponds to a
set containing an equal number of augmenting and de-augmenting paths, i.e.,
these paths are not naturally paired. This means in D, sets of path pairs
composed of the same paths are not distinct. We will generate sets of
Sl-Tz, SZ—T1 path pairs so (numbers of) the start vertices of both paths in-

path pairs.

crease in successive pairs. This way, a set of path pairs is generated only
once.

Another misfortune is that to generate all path pairs, there seems to

be no way to avoid generating all cycles of D*. Although this involves
extra work, we shall see it is not excessive.

The following algorithm, executed on D%, solves COST < C (SIMTZ,S:Z»Tl
path pair-set) for D.
procedure PAIRS (C);

1. begin for each cycle of cost s C do

2. if the cycle corresponds to an Sl_TZ’ 82--’1‘l path pair P then
3. begin add P to LIST;

4, remove from D* the vertices of P;

5 let s, be the start vertices of P, si,esi, i=1,2;

6. remove from D* all edges (zi,S), for SG:Si with s < si,i=1,2;
7. output (LIST);

8. PAIRS (C-c(P));

9. add the vertices and edges removed in lines 4 and 6 to D*;
10. remove P from LIST;

‘end end PAIRS;

Lemma 3.4: PAIRS solves COST < C (Sl-—Sz,Sz—Tl path pair-set). If COST < C
(cycle) can be solved in time O(K- T(n,m)), and KD* is the number of cycle
sets of cost < C in D*, then PAIRS uses time O(KD*. T(n,m)) and space 0(mtn).

Proof: Each cycle found in line 1 corresponds to a distinct cycle-set of
D*. U

To solve the origimal COST < C problem on D, we use PAIRS (on D¥*) to

find all desired pair sets. For each pair set, we find all sets of disjoint
cycles, SluTl paths, and 82~T2 paths, using previous algorithms (on D). Note

if K is the number of golutions to the entire COST < C problem, then in
Lemma 3.4, KD* < K, Thus the pair sets are found in acceptable time.

Theorem 3.4: All cardinality k matchings on a bipartite graph can be found

1/2

in O(n™ ' "mtn+Km) time and O(mtn) space. - U

Theorem 3.5: COST < C (cardinality k matching) on a bipartite graph can be
solved in O(K1nin(n3,nmklagr0) time and O(mtn) space. 1

These two results are the most general of this Section. Theorem 3.4
extends the results of [IRT]. Theorem 3.5 is easily modified for K BEST
(cardinality k matching); the time remains the same and the space increases

to O(K+mtn). This extends and improves the OO(nA)time algorithm for K BEST
(perfect matching) of [M].

4, THE SECOND SHORTEST PATH

The COST < C (s~t path) problem is essentially equivalent to finding a
second shortest s-t path. (A COST < C algorithm can be constructed from a
second path algorithm, using the approach of PATHS of Section 2; the time
per path for COST < C is the time for the second path.) This Section shows
finding a second shortest path is equivalent to a variant of the all pairs
shortest path problem. The best algorithms for the latter use

3 ,
O(min(n”,mn logn)) time [J77]. So this Section gives some justification for

the seemingly high time bound for PATHS of Section 2.

We start by formally defining two problems on directed graphs with no
negative cycles.

SP: Given vertices s, t, and a value L, does the second shortest s-t
path have length < L?

AP: Given values L(v,w) for each pair of distinct vertices v, w, does
some v-w path have length < £(v,w)?

Let S(n) and A(n) denote the time to solve SP and AP, respectively, on an n
vertex graph. (Note the restriction in AP that v and w are distinct is in-
essential. Allowing bounds £(v,v) on non-trivial cycles does not change the
time complexity A.)

Now we show S(n) and A(n) are essentially equal. First note the struc-
ture of a second shortest s-t path:

Lemma 4.1: If P is a shortest s—t path, there are vertices v and w on P,
with v preceding w, and a v-w path Q disjoint from P-v-w, such that a sec-
ond shortest s—t path consists of Q plus the s-v and w-t portions of P.
(Possibly s=v or w=t). [

Lemma 4.2: S(n) = 0(n“+A(n)).

Proof: Let an instance of SP be given on a directed graph G. Let P be a
shortest s-t path; if v precedes w on P, let p{v,w) be the length of the

portion of P from v to w. Let M be the largest magnitude of an edge length.
Define an instance of AP on a graph G', as follows. G' 1s G with the edges
of P deleted. The bound £(v,w) is L-p(s,v) - p(w,t), if v precedes w on Pj
otherwise it is -nM. It is easy to see the instances of SP and AP have the
same answer. 9 0
Lemma 4.3: A(n) = 0(n"+S(n)).

Proof: Let an instance of AP be given on a graph G, having vertices Vs

i=1l, ..., n. Without loss of generality, assume G has no negative edges
[J77]. Let M be greater than the largest magnitude of a path length bound
K(vi,vj).

Define an instance of SP on a graph G' with edge lengths given by c, and
length bound L = nM, as follows. G' contains a copy of G. The additional
vertices are u,, i=1l, ..., nt+l, where s = ugs t = Ut The additional

i
edges are in a shortest path from s to t:)y, i=1, ..., n, with

u u
(i’ i+l

C(ui’ui+l) = (; also edges leaving the path (ui,vi}, i=1l, ..., n, with

c(ui,vi) = (n-i)M; and edges entering the path: (v ,ui+1)9 i,j=1,..., nwith

3
C(vj’ui+l) = 1Me£(vi,vj),
Note all edge lengths are non-negative. Thus a shortest s—-t path is
.U Y. Now we show the instances of AP and SP have the same answer.

(u

1’77 n+l
If AP has answer '"yes' then some vinvj path has length < E(Vi’vj)' Add~
ing on the paths (ul,...,ui,vi) and (Vj’ui+l""’un+l) gives an s-t path of

length < nM. So SP has answer 'yes'.

Conversely, suppose SP has answer "yes"., A second shortest s-t path
consists of a path in G from v, to v , plus paths (ul,'..,ui,vi) and

i h|

> 3 . " _

(Vj’uk+l’uk+2""’un+l)’ where k 2 1. Its length is (n-i+k)M K(vk,vj)-fp,
where p is the length of the v -v, path. For this to be =< nM, we must have

k =1, and p < K(Vi’vj)‘ Thus AP has answer "yes'.]

Combining Lemmas 4.2-3 gives the desired result.

Theorem 4.1 The time for SP is O(nz) if and only if the time for AP is

O(nz).

Otherwise, the time for SP is the same order as the time for AP. []
ACKNOWLEDGMENT

The author thanks Frank Fussenegger of Martin Marietta Coroporation for
his inspiring discussions on matching.

[any]
[crm]
[E]

[c]

[BK]
[TrT]
3751
L377]
[k]

[xkmM]

[L72]

[L76]
(]
[y]
[rT]
[sL]

[v77a]

[v77b]

Y]

REFERENCES

A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, Mass., 1974,

P. M. Camerini, L. Fratta, and F. Maffioli, "The K best spanning
arborescences of a network", Istituto di Elettrotecnica ed
Elettronica, Politecnico di Milano, Milano, Italy, preprint.

5. Even, Algorithmic Combinatorics, Macmillan Co., New York, 1973.

H. N. Gabow, "Two algorithms for generating weighted spanning trees
in order", SIAM J. Comp. 6, 1977, pp. 139-150.

‘ 2 . . .
J. Hopceroft and R. Karp, "An n5/ algorithn for maximum matchings in
bipartite graphs,' SIAM J. Comp. 2, 1973, pp. 225-231.

A. Itai, M. Rodeh, and S. L. Tanimoto, "Scme matching problems for
bipartite graphs', J.ACM, to appear.

D. B. Johnson, "Finding all the elementary circuits of a directed
graph", SIAM J. Comp. 4, 1975, pp. 77-84.

D. B, Johnson, '"Efficient algorithms for shortest paths in sparse
networks", J.ACM 24, 1977, pp.1-13.

D. B. Johnson and S. D. Kashdan, "Lower bounds for selection inX+Y
and other multisets'", SIAM J. Comp. 7, 1978, pp. 147-153.

N. Katoh, T. Ibaraki, H. Mine, "An algorithm for finding K minimum
spanning trees', Dept. of Appl. Math. and Physics, Kyoto Univ.,
Kyoto, Japan, preprint.

E. L. Lawler, "A procedure for computing the K best solutions to
discrete optimization problems and its application to the shortest
path problem", Mgt. Sci., 18, 1972, pp. 401-405.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

K. G. Murty, "An algorithm for ranking all the assignments in in-
creasing order of cost", Op.Res.16, 1968, pp. 682-687.

M. Machtey and P. Young, An Introduction to the General Theory of Al-
gorithms, North-Holland Co., New York, 1978.

R. C. Read and R. E. Tarjan, "Bounds on backtrack algorithms for list-
ing cycles, paths, and spanning trees", Networks 5, 1975, pp. 237-252.

J. L. Szwarcfiter and P. E. Lauer, "A search strategy for the elemen-
tary cycles of a directed graphgs BIT 16, 1976, pp. 192-204,

i

&} -
L. G. Valiant,"The complexity of computing the permanent', Int. Rep.CSR~
14-77, Dept. Comp. Sci., Univ. of Edinburgh, Edinburgh,Scotland, Oct1977.

L. G. Valiant, "The complexity of enumeration and reliability pro-
blems'", Int. Rep. CSR-15-77, Dept. Comp. Sci., Univ. of Edinburgh,
Edinburgh, Scotland, Oct. 1977.

J. Y. Yen, "Finding the K shortest loopless paths in a network",
Mgt. Sei. 17, 1971, pp. 712-716.

