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1. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION
The scattering of an electromagnetic wave by a dielectric wedge
is an exceptionally difficult problem which at the present time has no

(1) though Radlow,(z) in the special case of a

known analytic solution,
right-angle wedge, was able to use a double-Laplace transform method that
had been found successful in treating the quater-plane problem to analyze
the wedge exactly.™ All other treatments yield approximations of one kind
or another. An approximate numerical solution for the diffraction

(3}

coefficient has been given, but the shortcoming of this sort of approach
is that, although engineering and other applications eventually require
numerical calculations, the wedge field is a compound of several different
components, such as speéecularly reflected andlrefracted rays, surface waves,
lateral waves and tip diffraction, and a numerical calculation of the com-
posite effect throws very little light on the real nature of the response.
An analytic solution, even though not exact, is highly desirable in order
to enable the different components of the solution to be separated,
recognized and understood. A study of the functional form of the result
can yield considerable insight into the rather complex properties of the
wedge, and in particular the behavior near shadow boundaries, as well as
the effect of varying such parameters as wedge angle or dieiectric constant.

(4)

Balling, "in his Licentiate thesis, provides an analytic treatment

based on tracing the multiply-reflected rays inside the wedge, In two later

papers,(s’ﬁj he applies his results to evaluate the role of surface fields

*Radlow‘s resul%izﬁre too involved for use, and Kuo and-Plonus(ll)
and Kraut and Lehman have attempted alternative formulations. The latter
authors in fact find Radlow's analysis to be erroneous. I[n any case the
method seems incapable of generalization to other angles.



1-2

and lateral waves in the radiation from a wedge excited by a line source
inside the wedge. All these treatments utilize formulas for successive
ray reflections, and Borovikov(7) has also obtained a recurrence formula
for the calculation of the terns for an edge wave, provided none of the
edges are located near shadow boundaries. A somewhat different approach
by Tricolesand Rope(g) based on the penetration of the field in a dielec-
tric slab calculates the approximage effect of a hollow dielectric wedge
made by two slabs meeting at a bevelled edge. The application is to
radomes, where the hollow structure’is used.,

Kaminetzky and Keller,[g) in the most recent published results,
analyze the wedge in two cases in which the tip diffraction can be cal-
culated approximately as the first term in an expansion of the field in
terms of a small expansion parameter. The two cases they treat are
Ai) a smail difference in the dielectric constants of the materials inside
and outside the wedge, and ii) small wedge angle. The latter complements

(10)

an earlier treatment where the wedge angle is nearly 180°, and-the
expansion is relative to the refiection of a wave at a plane dielectric
surface.

The wedge problem is an important one in at least two areas. The
first concerns radar reflections and EMP pulse response from dielectric
objects which may be in free-space or else buried. The second concerns
the use of the geometric theory of diffraction (GTD) to calculate the
radiation properties of antennas and other reflectors. For example, a
dielectric support may be used to locate a subreflector or splash-plate
and the effect of the dielectric in modifying the diffracted fieids from
metallic edges needs to be taken into account. The radiation from most

composite reflectors can be represented in terms of specular reflections
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and edge effects, and the advent of a new class of formulas involving
dielectric wedges, either on their own or in contact with a metallic surface,
can be expected to extend the range of application of the GTD method.
The shadow-boundary terms are an important part of the toal solution
and shouid be shown explicitly.
Although the geometry of the arrangement is quite simple, nevertheless

the existence of propagating waves inside and outside the wedge, with

different velocities, makes the problem a very formidable one.

1.2 SUMMARY

Tﬁree separate investigations were made. The first, based on a
spectral decomposition method, was the one on which the contract proposal
was originally based. It turned out to have a built-in flaw, which was
not discovered, however, until rather late ih the analysis. As a con-
sequence the method was abandoned. Just at that time, attention was drawn
to two Soviet papers, both of which claimed to have solved the wedge
problem rigorously and completely, though by completely different methods.
The first paper, by Zavadskii,(lé) was examined and found to be fauity.
Efforts made to correct the errors were to no avail. However, a semi-
trivial result emerged from these studies which, in retrospect, could have
been found by elementary methods. The second paper, by Aleksandrova and .
Khiznyak(l4), also turned out to be faulty, though the complex analysis
involved a great deal of study to pin-point exactly where the errors
occurred. It was not found possible to solve fhe problem by their method
with the errors corrected.

It appears that at the present time there is still no valid and

rigorous solution to the wedge problem, though several approximations,
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particularly Balling's,(4) “have appeared in the literature, and should

provide useful results in practical applications.
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DIFFRACTION BY A DIELECTRIC WEDGE: SPECTRAL ANALYSIS

ABSTRACT

A spectral analysis of the field inside and outside a dielectric wedge
is made, and field matching in the presence of an axial incident wave is
made, both on-axis and on the wedge faces. The method involves unknown
spectral functions among which a relation (14) is imposed in order to
lead to Wiener-Hopf-like equations (21) and {22). However an examination
of the pole locations of these equations shows that they self-generate
an unending pole-sequence, which makes the method unusable. No modification

of the method that would render it valid appears possible.
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2.1 INTRODUCTION

Despite its simple geometry, the problem of a dielectric wedge excited
by an incident wave is an extremely difficult one, and no exact solutions
are known. Various features have been treated by different researchers,
including an examination of the field near the tip, specular internal and
external reflection, and properties when the dielectric constants of the
wedge and the surrounaing medium are-nearly the same.

In this paper we attempt an e#act formulation from which useful results
can be extracted. In view of the extreme difficulties encountered, the
total wedge ‘angle has been restricted to less than 90° (other features
apparently enter when the wedge angle is larger than this), and the analysis
is further confined to symmetrical incidence of a plane wave with parallel

polarization.

2.2 FORMULATION

Initial attempts to provide a formulation in terms of cylindrical
functions wefe discouraging, and eventually an expansion of the fields as
an integral of plane waves was selected as more promising. However, a number
of features had to be closely constrained in order to permit field matching
in a constructive way and this accounts in part for the form taken by the
subsequent analysis. “

Figure 2.1 shows the configuration in which a dielectric wedge, of
angle 20 and refractive index n is immersed in a medium of refractive index
n_. The latter would normally correspond to free space, but it turns out
to be essential to allow both media to possess a small loss term. This will
be taken to the zero in the limit, but for much of the analysis it has to be
retained, since it determines the all-important feature of whether certain

singularities are inside or outside integration contours.



Fig. 2.1 Geometry of Dielectric Wedge

Figure 2.1 shows a rectangular coordinate system with the x-axis
bisecting the wedge and the z-axis along its tip. A cylindrical coordinate
system p, ¢, z 1is alsoverected, with ¢ = za at the interfaces.

The total region is divided in?o foﬁr, as follows:

Region I a < ¢ < |
I 0<¢<a
I’ T < ¢ <21 - o

II" -a < ¢ <0



In view of the chosen symmetry of the incident wave the fields in Regions I’
and II' will be mirror images.of those in I and II, and can be allowed for
by replacing (T - ¢) by‘fﬂ - ¢! and ¢ by I¢| respectively. However, this
does not automatically ensure field matching on the axis, since Hp s
proportional to -(1/p)8Ez/8¢ will in general be discontinuous on axis due
to the presence of the modulus terms in the azimuth angle. However, by
requiring BEZ/8¢ to be zero on axis, corresponding to Hp = 0 there, as
required by symmetry, the necessary continuity is obtained. The reason

for this choice, rather than for. the more usual one of selecting functions
of cos ¢, which are automatically symmetrical on axis, stems from the

form taken by the fields at ¢= *a . To enable matching in a form that is
mathematically tractable it seems necessary to work with the above

formulation.

2.3 FIELD EXPRESSIONS IN REGION I
Throughout this paper we take w as a spectral variable and build

solutions in region I from the basic plane wave

—p[(wzfni)%sing¢—a) - jwcos (¢-a) ] (1)
= e K .
z

In this expression p 1is the radial distance from the tip, normalized with
respect to the free-space wave number ko, i.e. p = kopo where o, is the
actual radial distance. The exponential is put in this form, ome of many

possible, in anticipation of eventual field matching at ¢ = a .

As mentioned earlier, ng contains a small loss term, and we put

*n b (1-38) (2)
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Equation (1) has branch cuts at w = #n_, and in order to avoid divergent
2 07 z
waves at infinity that branch of (w -n;) has to be chosen to give damped

waves as w > *o_. This leads as one possibility to the branch cuts shown in

Figure 2.2a, but there is some latitude as to where the cuts go.

w- PLANE

+ng + o

(a) (b)

Fig. 2.2 Branch Cuts in w-plane

Since o < ¢ < 7 in region I it is found that if w = RejB as R‘+ o that
0 <B < a is a possible range, whilst if w = RejB as R *‘—W; then

-a < B < 0 is a possible range for B. It turns out from other consider-
ations that a branch cut at B = -0 is needed at w~ -w and this leads to
the modified branch cut shown in Figure 2.2b. For the time being we take

w exactly on the real axis and get, for the scattered electric field in

region I



< 2 2% ‘ ,
E = f f(w)e_p{(w "no) bln(¢—a)—jwcos(@~a)}dw (3)

with £(w) an undetermined spectral function. Before proceeding we need to
check both for completeness and performance a* infinity. As far as the
latter is concerned, this is covered by the convergence of (3) as p + o
due to the choice of branch cut. However, individual plane wave components
need not, in isolation, satisfy the radiation condition, which is a restraint
on the total field only. Specifically, when —fnoi < W< snO! we can put

w = [nO{ cos 6 with 0 < 6 < 7, and an individual term in {3) becomes like
a plane wave” travelling at angle ¢ =7 + a - 6. When O < 8§ < g this gives
waves at angles greater than 7, which would not, in the absence of
attenuation, be acceptable in isolation. The fact that (3) is integrated
to *e ensures in any case the correct performance of the total field, as
is eventually confirmed when the fields are found.

As far as completeness is concerned, it might appear that a term

2.4 .
)? reversed would also be

.. . . - 2
similar to (3) but with the sign of (w I
needed, since such a term would also satisfy the wave equation. However,

2 i 2 + . . ~ H } i
for w= > ,nO[ the wave would diverge, whilst for —;no1 < w < jnol the
wave components would represent incoming waves at angles from 7 + g to

2T + @; not only are they physically irrelevant when taken in isolation,

s rexl, 1.e. they

e

but they turn out to have inward attenuation when w

~

are incoming waves from infinity, and form no part of the solution.

-jpnocos o)
An incident field on axis of unit amplitude is simply e ;

>

whence we get the total fields in g < o <m,

1

term in no ensures that these waves are attcnuated outward when w
3 Puswald
i
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-p[(wz—ni)%sin(¢—u)—jwcos(¢-a)]

E, = e 1PM008 j e £ (w) dw
- (4)
2E .
- % 7;; = —jnosin¢ e Jengcosé
? —D[(wz—nz)%sin(¢-a)-jwcos(¢—a)} 2 2%
+ J e o f(w) [ (w —no)zcos(¢—a)
+ jwsin(¢-a) ] dw (5)

(The latter expression is proportional to HO).

2.4 °"FIELD EXPRESSIONS IN REGION II

The analysis follows, in part, the considerations
outlined in section?2.3 with (wz—nz)% replacing (wz—ni)%; but
there are some important differences. 1In region ITI the waves
corresponding to reversing the sign of (Wz—nz)% are not only
acceptable, from the point of view of convergence at infinity;
they are also required, and in fact represent those waves
incident in region II from region II', where they are generated

by refraction at the boundary at ¢ = —-a and cross the axis into

region II. Accordingly we get, for 0 < ¢ < o

o]

f e-g[(wz—nz)%sin(a—¢)—jwcos(a—¢)]

E, = g, (w)dw
L
+ J eQ{(wz—nz)Zsin(a—¢)+jwcos(a—¢)]gz(w)dw (6)
C
oE 7 .2 2.5 . oy _
- % Zh; _ [ o~ (W -n)?sin (a~¢)~jwcos (a ¢)}g1(w)[-(wz—nz)%cos(a-¢)

-jwsin{g-¢)ldw +



b
|
~J

+ f o[ (w’-n?%) 2sin(a—¢)+jwcos<°‘“¢”gz ) [(w?-n?) Zcos (a=)

C

-jwsin (a=¢) ] dw (7)

Herein 91 and g, are two specfral functions, which we may expect
to be simply related to each other in view of the fact that the two
integrals represent equal downward and upward waves respectively
within the wedge. The contour for gl is the real-axis, but that
for 9, is not, since its integrand does not converge (for O < ¢ < a)

at w = +» on axis. In fact we need w ~ ReJ% and -Rre 1%

as
R » « in order to give an integrand which has, for the range

0 < & < o, a non-positive real part to the exponent. We shall
later choose this contour to correspond to a purely imaginary
exponent at ¢ = a, but it is sufficient at this stage to note that
suitable contours exist, and that the left-hand branch cut must

be tilted upwards (at infinity) by an angle a to accommodate this

feature.

2.5 FIELD MATCHING ON AXIS AT ¢ =

As mentioned earlier, the field in I' is obtained from I
by replacing (m-¢) by [mT-¢]. At ¢ = 7 this does not in any
way affect Ez’ which is therefore continuous at the boundary: but
9/3¢ changes sign when operating on |m - ¢| as ¢ goes

through m. Since BEZ/8¢ is proportional to Hp’ which in the



symmetrical case vanishes at ¢ = 7 anyway, it is clear that
matching on the axis requires BEZ/3¢ =0 at ¢ = m. From (5)

with ¢ = T we thus get

«©

- 1
0 = f e pr(w)[(wz—ni)zcosa—jwsina]dw 0O < p < ® (8)
- Q0
where
1
U = (w2-n§)zsina+jwcosa (9)

2

3 . . . .
O)zcosa—jws1na}, and if we define a

~L
Now 3U/dw = j(wz—ni) 2{(w2—n

new function F by

f(w)(wz--ng);2 ="F (U) ‘ (10)

then (8) can be written

W=+
f e PYr(u) au = o 0<p< (11)

wW=~w

It is clear, therefore, that (11) can be satisfied by choosing
F(U), qua function of U, to be free of singularities in the
region Re U > 0. Moreover, convergence of (1l1) as p =+ 0 requires
F(U) = O([U[_l) as U approaches infinity along the contour Cy
in the U-plane corresponding to the real axis of w. This contour
is shown in figure 2.3;it starts at U = 00e_j(ﬂ/Z_O‘), comes in close
to the imaginary U-axis, rises to a maximum at U = ng and then
drops to the right before rising asymptotically to

U = wed (T/2-a)

. The closeness of approach to the imaginary axis

is proportional to 6. Alsc shown on the contour is the line



Ci
9=a-—1- U- PLANE
6=0,2a—-4
U = jno COS (8—0)
T __]
9—2 T,
2
T a
2
g=m-

Fig. 2.3 Contour Cl in the U-plane

U = jnocos(e—a) corresponding to w =n_cos 8. This intersects

the contour C1 at 6 = % and (almost) at 8 = @o; and between these
positions the line w = n_cos 8 éorresponds to values of U to

the right of the contour. Since we shall later be concerned

with poles at various positions along w =n_cos 6 it is clear

that poles for 0 < 8 < /2 cannot be permitted. It is also clear
that F(U) free of singularities for Re U < 8 is unnecessarily

restrictive; it is only necessary for it to be analytic between

the contour Cl and infinity.
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I£ should be noted that F(U) analytic qua U is‘not thé
same as f{w) analytic qua w. In fact such a function as
F(U) = U is clearly analytic in U but because of (9) it has
branch cuts at w = ino’

Around the point w = nocos(u+w) we have U = jnocosw which
is therefore symmetric about ¥ = O. Accordingly, if the left
hand part of the reali-axis contour in the w-plane 1is swung around
the point w = n_cosa, in fact to be asymptotic to the line
_ we~j2a

w ; the corresponding contour in the U-plane can be made

to collapse to a curve doubling back on itself. Figures 2.4a & 2. 4b

ORIGINAL
w=PLANE "CONTOUR ¢4
in —
—no e, /no oS a J °
\\- S /
/
m-2a ;ﬁé i
I-q
2
(a) (b) U-PLANE

Fig. 2.4 Contours in the w and U-planes



outline the corresponding contours and show that there is a
region in Im w < 0 which is outside the region which gives the

contour Cl. Since the contour of Figure 2.4b lies within the

contour Cl it is apparent that (8) is satisfied for F(U)

1 and infinity.

2.6 FIELD MATCHING ON AXIS AT ¢ = 0

analytic, qua U, between C

In the same way as described in section 2.5 we require

BEZ/3¢ to be zero at ¢ = 0. If we write
_ 2 2.5 . .
W, W¥ = + {(w'-n"") “sino-jwcosa (12)

then (7) gives

wW=+x
5. LY —pW*
" J gl(w)(wz_nZ)ze PWaw - f gz(w)(wz—nz)ze W= qu
— . (13)

0O < p < bl

_ The contour w real c¢ives the contour C2 for W, as shown in figure
2. 5. The contour C for w in the 9, integral is somewhat at
choice. The larger Im w is on this contour the larger is the
real part of W*. There is a lowest contour, shown in
figure 2.6 for which Re W* = O and C cannot be taken below this
if the second integral in (13) is to be convergent. A little
later it will be seen that we wish to make the two contours in the
W and W* plane as close as possible, so we choose w = C to give

W* imaginary on it. If we further choose a new function G such that®

*
This choice is not mandatory, but the method of this section
is dependent on it.



W- PLANE

Fig. 2.5 Contour C, in the W-plane

=

g, 0 (w?-n)¥ = 6wy, g, (wP-n®)T = Gwe) (14)

then (13) becomes

joo

- —_ x
}.{ GWye pwdw + j( G(W*)e oW aw* = O 0 < p < (15)
C -3

o

2
Now in (15) both W and W* are functioning merely as dummy

variables, so in the second integral we can replace W* by W.



w-PLANE
a C
-n a
[0
+n

Fig.Z2.6 Contour C in the w-plane

Moreover the contour C2 can be jéined to the imaginary axis by arcs
at infinity (which give zero on integration), to produce the

closed contour C3 of figure2.7consisting of (1) the imaginary

axis, (2) arcs at + j~, (3) the contour C2 of figure 2.5.

Equation (15) can now be written simply

f cwye Yaw = o | 0<p <o (16)

C3

and it was in order to achieve this form that g, and 9, were
chosen to be related as in (14). Equation (16) is satisfied if

G(W) qua W is analytic in C3. Also shown in figure2.7is the line



TT-a = -1 W-PLANE

W=-jn COS (8+ a)

Fig. 2.7 Contour C, in the W-plane

3
W ==jncos (6 + a) corresponding to w = ncosf. It lies inside the
contour when /2 - a < § < /2, a range for which G{W) is not

permitted to possess singularities. Since we shall later be
concerned with poles along the line w = ncosb, O < 8 < T, the range

/2 -~ a < 6 < 1/2 must be excluded if {16) is to be satisfied.



2.7 FIELD MATCHING AT ¢ = a

From (4) the incident field at ¢ = o varies as e—jnopcosa
and before we can field match it is necessary to put this in the

form of an integral compatible with the others. This is achieved

through writing

o]

cJow

~jngpcosa _ 1
© 213 f w+nocosa dw (17)

-—CC

a result that is readily verified by deforming the contour into
Imw > O, wheﬁce the pole at w = ~h cosa provides the necessary
residue. This is only valid when a < 7/2, but since we are later
restricting a to be not greater than 7m/4 the constraint is of

no consequence., Accordingly, with ¢ = a4, equating (4) to (6)

gives
[eo) jpw [oe] . co .
755 | woss &+ [ 20 au - [ o103 a
-0 O -0 - 00

¥ f 9, (w)eIPY gy - (18)

@]

Before proceeding further it is necessary. to deform C to the
real w-axis. This could not be done before because with the
more general exponent for 0O < ¢ < a the integrand was not
convergent; but with ejpw in the integrand it can be done,
together with non-contributing arcs at +~. Now if gz(w) has
any singularities between the real w-axis and the contour C

they will give rise to @ contribution on collapsing C to the real
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axis. To prevent this, write g, = 52 + I where 9g is that

part of 9, carrying singularities (poles oxr branch cuts) between
C and w real, and is freelfrpm singularities above C. Then by
deforming C to +j~ we see that J gs(w)ejpwdw = O and (18) can

be written C

fee)

J ejDW{f(w)-gl(w)-Eé(w)+(l/2ﬂj)(w+nocosa)—l]dw =0

-—CO

O <p<e (19)

If we define a plus function h+(w) to be free of singularities

for Tm w > O then (19) can be written in the form

1 1 _ ~
£+ 513 lmieoss ~ P = g1 g0 (200
Since w = -n is above the C-contour the presence of branch cuts
at this position doesn't affect §2(w). On putting £ and g in

terms of F and G through (10) and (14), equation (20) becomes

F(U) + 1 1

_ G(W)+G(W*)
2 2.% 273 ‘wH+n_coso
-nZ o

2)%

= h (w)] (21)

(w2~n

Here, G(W*) comes from G{(W*) by dropping those singularities,
if any, that occur in the w-plane between C and the real axis.
If a similar process is used to match Hp at ¢ = a the following

relationship is obtained

n_sina

_. o { 1 - — w1y _ =
PO+ S [mtaey — K 0] = GO - T (22)
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where k+ is a similar function to h+. Equations (21) and (22)
are the basic relations from which G and F can, in principle,

be found, and which then determine the fields wvia {(4) and (6).
2.8 POLE CONTRIBUTIQNS TQ THE SOLUTION

Equations (21) and (22) both exhibit a pole at w = ~n cosa.
This is at a position where, if gz(w) (or G(W*)) possessed a
pole it would have to be subtracted out to form Ez(w). Hence
G(W*) in (21) and (22) cannot contribute such a pole, and only
F(U) and G(W) can do so. That both must do soc follows at once

from the different ways in which F, G and the pole enter into

the two equations.

Let UO and Wb be the values of U and W at w = —nocosa.

It is easily found that

c
Il

-jnOCOSZa (23)

=
i

jncos(eO - a)’where ncoseo'= nocosa (24)

since, from (24), o < eo < w/2 it can be seen from figures2.3 and
2.7 that UO and WO are in regions where F and G may possess

poles, and so we put, in the neighbourhood of these poles

F(U) - =2, om) - — (25)
@] O
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where A and B are constants to be determined. The residues at
W =-n_cosa are readily found from (25) and the definitions of

U and W in terms of w, and give

A ~ &/2jcoso
U-U wi+n coso (26)
o) o
B _ B/2jcosa 2nSlneo
. - - (27)
U-U w+n cosa n _sina-nsind
o) o) o) o
Hence, to match the poles at w = —nocosa in (21) and (22),

since they cannot be provided in that position by h+ and k+,
we find, after a little simplification, that A and B must

satisfy the two equations

A 2cosa 2B
- =

. e, 2B (28)

n,sina 273 n sina n51n60

2nosinacosa —2anin6O
A + . = . - '
213 n_sino-nsinb (23)
fo) o}
with solution
nocosasina nsinao—nosina
A =B = (30)

T “ nsinb® +n sina
oo

Unfortunately, with G(W) given by (25), it is implied that

G(W*)”~B/WW-—WO) and this introduces an additional pole into

(21) and (22) at the value of w for which W* = WO, i.e. at
4 =—ncos(eo - 2a). This pole requires further additional poles

in F and G to satisfy (21) and (22), with still further additional
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sets of poles arising in the same way. Apparently this series
does not, as had at first been supposed, terminate in anyway,
and so both this method of solution, and also, apparently,
equations (21) and (22), must be considered faulty. The reason
for this is not known, but may be tied up in the choice implicit
in {14). However, without this choice there seems to be no
obvious way to proceed beyond the setting up of the initial

equations, and the method fails.

2.9 CONCLUSIONS

The spectral analysis has led to the two relations (21)
and (22}, which bear a superficial resemblance to the more
familiar Wiener-Hopf equations. However, an examination of
their pole behavior suggests that these relations are faulty

and rather reluctantly the method has had to be abandoned.






A CRITIQUE OF
ZAVADSKII'S METHOD OF SOLUTION TG DIFFRACTION
PROBLEMS INVOLVING A RECTANGULAR DIELECTRIC WEDGE

ABSTRACT

A thorough investigation of Zavadskii's method is made in an attempt to
obtain solution to electromagnetic diffraction problems involving a
rectangular dielectric wedge (0>¢>m/2) and (i) “infinite metal plate
along ¢=*mw/2, (ii) semi-infinite metal plate along ¢=-1/2, (iii)
perfect magnetic conductor along ¢=-7/2 and a semi-infinite metal plate
along ¢=m/2. 1In all the cases it is shown that Zavadskii's method, as
it 1s, gives a solution confaining branch cut integrals tﬁat grow
exponentially in the farfield thus violating the radiation éondition,

For case (i) involving an infinite metal plate a simple way of modifying
Zavadskii's solution is shown so that the resulting solution conforms

with the known exact solution. Several modifications to Zavadskii's
method are tried to obtain the correct solution to cases {ii) and (3ii)
but none of them proved to be successful. A method involving a secondary
solution, with branch cut integrals alone, is shown to lead to two
coupled integral equations. However it is not clear if a solution to
these integral equations exists. Finally a unique solution is given to
the problem of illuminating a rectangular dielectric wedge, resting on

a semi-infinite metal plate, such that there is no net diffracted wave

from the edge.
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3.1 INTRODUCTION

The problem of wave diffraction by a perfectly conducting metallic
wedge has been solved [1,2]. The analogous problem of diffraction by a
wedge with impedance faces has also been solved [3-10]. A generalization
of this solution to thercase'of a dielectric wedge, either free or resting
on a semi-infinite metal plate, entails serious mathematical difficulties.

Apart from being a classical boundary value problem the diffraction
of electromagnetic waves by a dielectric wedge is of particular interest
in the theory of dielectric wave guide matching [11, 12}, radio propagation
over the earth [13,14], and in radar, for the effect of scattering by
dielectric radomes [15]. An analogous problem to that of the dielectric
wedge is’encountered.in the field of acoustics [16] and in seismological
situations involving the behavior of Rayleigh waves at the boundary between
the ocean and the earth [17, 18]. It is not surprising, then, that con-
sidgrable research effort has been directed towards the problem of dif-
fraction by a dielectric wedge [19-30].

An understanding of the diffraction by a dielectric wedge resting
on a semi-infinite metal plate is of importance in assessing the effects
of dielectric supports for a wave guide feed illuminating a reflector
antenna. A number of years ago Zavadskii [31] proposed a ﬁethod, which,
he claimed, would give exact analytic solution to a class of two-dimensional
wedge diffraction problems. However the solution obtained by his method
contains branch cut integrals which he does not evaluate. Upon examining

these branch cut integrals we found them to "explode' at infinity in



.

complete violation of the radiation condition.

Several attempts were made to modify his approach so as to remove
this drawback but did not meet with success. In this report, after giving
a brief summary of Zavadskii's formulation we proceed to discuss various
modifications that were tried to circumvent the failure of his approach.
We also present the solution to what we call, a_”quasi—trivial” problen,
that of illuminating, a rectangular dielectric wedge resting on a semi-
infinite metal plate, such that there is no diffracted wave from the edge.
Though most of our discussion will concentrate on the problem of diffrac-
tion by a rectangular dielectric wedge resting on a perfectly conducting
metal plate, we will also touch up on other related problems to which
Zavadskii's method might be applicable.

It is well known that the problem of diffraction in a wedge with per-
fectly conducting faces was solved a long time ago by Sommerfeld [2].
Malyuzhinets [3-7] has proposed and developed a method of solving dif-
fraction problems in angular regions, with application to a wedge of
arbitrary apex angle with ideal impedance faces, to sectored media repre-
senting a system of wedges with a common edge and common faces. This method
is based on the representation of the field in a dielectric medium by the
Sommerfeld integral and it reduces the diffraction problem to functional

equations for the integrands. But solutions to these functional equations

‘could be obtained only in very special cases. To circumvent this dif-

ficulty Zavadskii introduces the generalized, two-sided Laplace transform
which we denote as the t-transform. Upon application of the t-transform
to the functional equations, and after some algebraic manipulation one
obtains a functional equation, with periodic coefficients in the trans-

form domain, which is amenable to algebraic solution. 7In the next section



we give a brief summary of-Zavadskii's formulation and in the subsequent
three sections we proceed to discuss the various approaches that were
tried to obtain a correct solution to the diffraction problems involving
the following geometries:
i. Rectangular dielectric wedge resting on an infinite metal plate.
ii. Rectangular dielectric wedge resting on a semi-infinite metal
plate.
iii. A mixed boundary value problem involving a rectangular dielectric
wedge (0>¢>-m/2) with a metal plate along ¢ = /2 and a
perfect magnetic conductor along ¢ = - /2,

Conclusions are given in section 3.6.



3.2 ZAVADSKII'S METHOD

3.2.1 Statement of the problem
We begin with the following problem in cylindrical co-ordinates.
Consider two homogeneous sectoral media which have a common edge (p = 0)
and a common face (¢ = 0), each occupying respective wedges with apex
angles ¢O and ¢1, as shown in Fig. 3.1. The remaining outer faces of

the wedge are resting against perfectly conducting metal plates. To

!

Figure 3.1.Geometry of dielectric wedge diffraction problem.

simplify matters we assume that one of the media is free space and the
sécqnd medium has a magnetic permeability equal to that of free-space and
a refractive index of 7 > 1. Later it will be necessary to restrict
¢1 to be a multiple of g— but at present we will assume ¢1 to be
arbitrary. We assume that a monochromatic, z-polarized plane wave of
unit magnitude is incident on the dielectric wedge at an angle wO with
0<w0<¢0. Then the diffracted electric field will also be polarized
in the z-direction and we have a two-dimensional scalar problem.

We use the scalar functions E(p, ¢) and El(p,¢) where p = kr

to represent the total electric fields in the free space and the dielectric

medium respectively. The fields E and E1 must satisfy the wave



equations in their respective regions, the boundary conditions at
¢ =0, ¢O, and —¢1,the radiation condition, and the edge condition. A

mathematical description of these requirements is given below.

a) The wave equation:

2 oAl .
(@ + KnH)E; (p,0) = 05 -0,<0<0 (1b)
where
2 2
_ 9 o129 19 . _
b= sTot gz ¢ k=ul (1c)
or r~ 99

w 1is the angular frequency and c¢ 1is the velocity of light in free space.

b) The boundary conditions at ¢ = 0, ¢O, and -¢

1'.
E(0,$,) = 0 (2a)
E;(P,~0,) = 0 (2b)
E(p,0) = E;(p,0) (2¢)
E'(0,0) = E; (P,0) ' (2d)
where
: P
B'(0,0) = 55 E(pug)s and EJ(0.0) = 55 B (0.,6) (2¢)

The conditions (2a) and (2b) follow from the requirement that the
tangential electric field be zero on the metal plate and (2¢) and {2d)
follow from the requirement that the tangential field and the normal
derivative of the field be continuous across the boundary. -

¢) The radiation condition:

. oF ~
1 9E _ ; = 0: f :
im r(ar jkE) 0; for O <9<4 (3a)
T>00
O \
Lim v {5~ - jknElj =0, for -¢,<¢<0 (3b)



where

E(p,9) = E(p,9) - Ey(p,9) (3¢)

and Eb(p,¢) = exp[-jpcos(¢-w0)] is the incident field, and the time
reference, following Zavadskii, is taken as ekjwt.
Physically the conditions (3a) and (3b) mean that all the reflected,

refracted, and diffracted fields must be radially outgoing at infinity.

A detailed discussion of radiation condition may be found in reference [32].

d) The edge condition {12, 33-35]:
The edge condition requires that the electrical and magnetic energy

stored in any finite neighborhood of the edge must be finite; that is,

J {e}Elz + p!H!Z av » 0 4)
\Y

as the volume v contracts to the neighborhood of thé edge. For a smooth
edge, which may be regarded as locally straight, the differential volume

in (4) is dv = rdrd¢dz. Then condition (4) states that in the neighborhood
of the edge, none of the field components of (E,H) should grow more

~-i+T
e

rapidly than with T>0 as 0.

. 2.2 Sommerfeld integrals

To obtain a solution satisfying (la) - (2d) Zavanskii begins with the

following representation for E and El'

f -3 )
E(p,9) = 5%3- | ste Jpeos(a-0ly,, 0<9<9,, (5a)
Y+
o1 - 1 [ ~jpncos(e-t)_ . .
T+



where Y 1is the Sommerfeld contour of integration as shown in Fig.32.

The shaded portions in the g-plane represent the regioﬁs where the real
part of the exponent of the integrand in (5a) is negative and ensures
convergence as ¢ goes to infinity. The path of integration Y+¢ shifts
as ¢ 1is varied. E(p,¢) as given by (5a) clearly satisfies the wave
equation since it represents an infinite sum of plane waves each of which
satisfy the wave equation. Since the end points of the contour Y + ¢ lie
-in shaded regions an infinitesimal displacement of the contour does not

change the value of the integral, which implies that

2 Y . 5
o =L 9" ipcos(¢-a)

The contour [ 1is so chosen that under the transformation

- a
z(a) = cos 1 cos (7a)
with the choice of the branch such that
(o) = - z(-a) (7b)
and
glotm) = g(a) + 7 (7¢)
Y transforms to T in the r-plane.
In the O-plane E1 is given by
E (p,9) = [ SI{E(Q)+@ e TP () da (8aj

Y
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where

- odo{e) _ sind

(8b)
/n’~cos?a

The branch points at a« = icos—lnimﬂ, m=1,2,... are joined pair wise
as shown in Fig.3 2, and the square root sign is so chosen that the following

relation holds.

T(a) = 1(-a) (8¢c)

By differentiating (7c) we note that
T{a+m) = T(Q) (8d)

and (8¢} is consistent with (7b).
The relations (7a)-(7c) ensure that the mapping from the o-plane to
the CZ-plane is one-to-one.

The normal derivatives of E § E are obtained by differentiating

1
(5a) and (5b) with respect to ¢.

13 E§£%$9l = ~jp[ sin(a-¢)s(a)e 1PCOS(@-0)
Y+¢
= -jp f51n@ S(a+¢)e‘jOC05adu )
Y
e { -jpncos (g-¢)
Zﬁj —-a—a = ‘ijnSin(C—(j))sl(C)e » o
T+¢
= —jpfnsincsl(c+¢)e-JDncosch
r
- —jpfsinas,(g+@)e'chosada o

f}’/



We have here made,use of the rclation T(a) = sina/nsing.

Using the expressions (5a), (5b), (9) and (10) for E, E 3E and

1’ 3%
;?— respectively we obtain the following set of functional
equations for s and s, so as bto satisfy (2a)-(2d).
s{a*gy) = s(-a+e,) (11a)
s, (@(@-9,) = s, (-z(@)-9)) (11b)
s(@-s(-0) = 1(0) {s [g(@]-s;[-C(x)]} (1lc)
s.(a)+5(—0t) = s, [e(@)]+s, [-2(2)] (11d)

.2.3 Generalized Two-sided Laplace Transform
In order to solve (lla-11d) Zavadskii introduces the following trans-

form relationship.

o

o(a) = J t(d,B)e-aBdB (OC&) B t(Oc,B)) (12)

00

which represents a function of one argument in terms of a function of
two arguments. If t(a,B8) is not a function of B +then the above trans-
form goes over to ordinary two-sided Laplace transform [36]. It should
be noted that given o{a) the function t{a,B) is not unique since to
any given t{u,B8) satisfying (12) one could add any other function

t (@,B) with the property,
f ty(eg)e % = 0 (13)

In the case when the function g{q) has a pole, at the point a=¥_, with

0

unit principle part, in the strip Rea<RewG<Re(a+¢0), we then have
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[ By ~aB-0.8
0(adg) = | [t@+6y,8) + e e a8 (14)
-0
The second term in the brackets corresponds to the pole of the
function at the point o = wo. The convenience of the representation (12)
lies in the fact that in certain problems the function t(a,8) may be
regarded, without contradicting the conditions imposed on the problem,

as periodic in the argument «, whereas-the function o{a) is not periodic.

An example is the case when 0{c) satisfies the functional equation

g(a) = q(u}o(a+¢0) + f£(a) (152)

where q{a) = q(o+T) and f(a) 1is representable in the form

£(o) = FF(B)e—asdB, ¢, = constant (15b)

o0

Taking the transform of (15a) we obtain

-¢,8
t@,8) = q@e ° t(a+,,8) + F(8) (16)

whose solution may be written in the form

-9,8

t(a,B) = F(B)L¢ [q@)e ] (17)

0

where
(o) k )
by (@) =1+ ]} plosvg) (18a)
0 k=0 v=0

-9,8

p(e) = q(a)e (18b)

Since q(@) = q(a+m), it follows that L¢{p(a)] is also periodic with

period m. In special cases, assuming that the series (18a) converges,
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we have,

Lylp@] = 1/{1-p()] (19)

2-2 u
1+ )} 1 plor T
_u=0 v=0
2 1 -1 plo+ Eiﬂ)
v=0

m=1,2,...

9 =1,2,... (20)

Now we turn to the functional equations (1ia) - {11d) and invoke the
following representations for s(a) and sl(a): s{a) = t{«,8),
sl(c(a)) z tl(a,B), with the restriction that ¢1 is an integral multiple

of 7/2. Continuing the representation s(a) = t(¢,B) beyond the pole

at o =w0, we obtain

[s 0}

s(a+dy) = f [t (a+9,,B) + e

o]

By —aB-¢OB‘

9e d (21)
Since Tt(a) = t(a+m), the functions t(a,B), tl[a,B) have a period T
with respect to «@. With this fact in mind we obtain the following system

of inhomogeneous functional equations for t(a,B) and tl(a,B):

By, -0 .8 -By, 9.8
[t(u+¢0,8) + e O]e o - {t(—a+¢o,—8) + e 0]e 0 (22a)
—2¢16
tl(@,ﬁ) = 1, ("'CX.,‘B)e (22b)
1
t(a,B) - t{-a,-B) = T(a}{tl(a,ﬁ) - ti(-u,-B)] (22¢)

t(a,B) + t(-a,-8)

1

tl(O‘;B) + tl(_a:—B_\) (22d)
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which can be reduced to

_ 208 08
t(eB) = (120,80 7+ 20 O shay 6)]

l—T(@)th¢lB
X I+T(a)thé B (23)

The solution to (23) may be written in the form

o8 { -298 1-T(@)the B 7
t(a,B) = Je Shtwo—¢0)82{ ({qu)o e ml—s J -1 (24)
We may now obtain s(a) by integrating (24).
f -
s(@) = | t(,8) < *a (25)

To find the function sl(C(u)), which in tu}n defines sl(a) implicitly,
we may either find tl(a,S) through (22c), (22d) and (24) and integrate
or substitute for s(a) in {11lc) and (11d) and eliminate SL(—C(G)).
In principle one could invert (24) for any arbitrary ¢O with ¢1
being a multiple of 7/2. However when ¢O is not a multiple of /2, it

may not be possible to obtain a closed form expression for s(a) through

(25).

3.2.4 A note on the solution to functional equations
Bven though s(q) and sl{;{a)}, as obtained by the above procedure,
will satisfy (1la)-(11d) there may be other solutions to this system
of equations. There are two reasons for this. The first is that t{a,B)
as given by (24) may not be the only solution to (ZZa)—(ZZd); The second

and the more important reason is that as we mentioned earlier, given s{a)
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the transform t(®,B) is not unique. Hence the eqns (22a) - (22d) do

not represent a unique transform of the functional equations (11a)-(11d).
Hence the solution to s{a) and sl(z(a)) as obtained above does not
constitute a unique solution to the problem but it is ohly a particular
solution to the functional equations (11a)-(1ld). To check the correctness
and the validity of the solution one must evaluate E(p,¢) and El(p,¢)
and verify—if the fields so obtained satisfy the radiation condition and
the edge condition. But as we shall show, through specific examples later,
the fields obtained through Zavadskii's method diverge at infinity and
hence fail to meet the radiation condition. When ¢0 is a multiple of

m/2 it is possible to obtain the most general solution to (11a)-(11d) with
out taking recourse to t-transform. However any solution to this system
of equations is found to result in either an undesired incoming plane

wave or a branch cut integral with exponenfial growth at infinity. Both

or either of these conditions constitute a violation of the radiation
condition. Since the system of eqns (1la)-(11d) and the representation

of the fields as a Sommerfeld integral ove% the path Yy are the key

steps in Zavadskii's method we concluded that his method fails to give

the correct solution to the diffraction problem. We demonstrate this

through a few specific examples.
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3.

RECTANTULAR DIELECTRIC WEDGE RESTING ON
AN INFINITE METAL PLATE

3.1 Zavadskii's solution

Let us consider the case when ¢l = ¢O = 7/2, for which the exact
solution is well known through geometric optics.

In this case (24) simplifies to

25h8 (¥~ 5 {chgB-T (@)sh 18}
t{a,B) = - -

{1+1(a)} shmR (26)
which upon integrating results in the following expression for s(a)

coslj}0 1-7 (o) coswo

sina- siny, T 1+T(a) sino+ siny,

s{a) = (27a)

The function sl(C(a)) may be obtained by substituting for s(a)
in (1lc) and (11d)° and is given by

ZcoswO ,
Sl(gia)) - [1+T(a)](sina—sinw0) (27b)

At this point Zavadskii stops with a somewhat bland statement which
we quote here. "The poles of the function s(a) situated in the strip
-m<as<m  for o = wo {with principle parts equal to 1 and [l-T(wO)]/
[1+T(w0)], respectively} and for o = + (ﬂ~w0) {with principle parts -1,
and —{1—1(¢O)]/[1+r(w0)} make it possible to compute the Sommerfeld
integral (5a) and to obtain the field in the wedge (0,m/2) in the form of
a sum of four plane waves. In this case there 1s no cylindrical wave
radiated by the edge of the wedge . "

However Zavadskii overlooks a very important factor. To evaluate the
integral (5a) one has to close the contour 'Y 1in order to pick up the

poles lying on the real axis. One would normally do this by adding two



paths of steepest descent D_,D, which are deformed around the branch
cuts, due to 7T(a), as shown in Fig.3.3. In this particular case D_,D+

are spaced apart by exactly 27 and s(a) being periodic with period 2w
the integrals on D and D+ cancel each other. Then we are left with
the branch cut integrals {along the paths BO’ BW as shown in Fig. 4)

in addition to the residues from the poles at a = iwo and Q= i(ﬂ—wo).

As we see from Fig.34 the upper portion of BO and the lower portion of

BTr lie in the unshaded region where the exponent of the Sommerfeld
infegrand has a positive real part. Thus both of these branch cut integrals
grow exponentially as p>° and fail to meet the radiation conéition. In
Appendix I we show that the branch cut integrals over the paths B1 and

B2 do not cancel each other. Thus we conclude that Zavadskii's solution

is non-physical and is of no practical use.** We know that for this
particular geometry the exact solution is 5ust the sum of four plane waves
as obtained by the geometric optics method. As we noted earlier the solution
obtained through the t-transform is one particular solution to Fhe sYstem

of equations (11a)-{11d), but not necessarily the correct one. Any correct

sclution to our problem in addition to satisfying these equations must

also satisfy the radiation and the edge condition. It turns out that there

1s in fact a solution to (1la)-(11d) which meets these requirements. We

proceed to obtain such a solution as follows.

3.2 Correct solution

Let s(a) and sl(c(aj) meet the following requirements.

* %k
This was pointed out to Zavadskii in a personal communication to which
there was no response.
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i) s{a+m) = s(-a) (28a)
i) s(@) = s(w2m) | \ | (28b)
141) ;@) = & {éig%%§§291-+ s(@)+s (-0)) (28¢)

/

Then s(a) and sl(g(a)) will also satisfy (1ia)-(11d) with

By = ¢

1= T/2. Any odd function with period 27 or any even function
with period m will satisfy (28a) and (28b). Thus one has an infinite
number of solutions to (1la)-(11d). If we impose the condition that the
Tesulting field must have only one incoming piane wave at ¢ = wo we
narrow down the solutions to two. One solution is that given by (27).
But, as already noted, it fails to meet the radiation condition, and hence
is not the desired solution. The second solution which uniquely meets

all the requirements is simply obtained by replacing T(®) with T(wo) in

(27). Thus

cosy, I-T(wo) cosy,
sina- siny, B 1+t () sino+sing,

s(@) = (29a)
Substituting (29a) in (28c) we obtain the following expression for
s;(z(@).

' ZT(wO)COSWO Sinwo/r(we) + sina/T (o)
Sl(C (Q)J = 1+T(w0)

sinzu- sinzw
0
2T(¢O)COS¢O SiHWO/T(WO) + nsing
1 +T(WO)

(29b)

2, 2 2
cos wo - n cos ¢

It immediately follows that sl(u) is given by

2T(Yy)cos sin¥ /T(¥ ) + nsin

Sp@ = — 2 73
lfT(wO) cos wO - N COS g

21 (Pl cosB, sing + sing, 2t (yy)cos g, ‘ {25¢)

= - - = L. -
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where

cose0 = coswo/n (29d)

It is now easy to verify that s(a) and sl(c(a)), as given by (29a,b)
do indeed satisfy (1la)-(11d). Since the only singularities of s{a)

are the poles at o = iwo and a = i(ﬂ-wo) we have no branch cut integrals

to evaluate and the electric field E(0,9) is simply given by the follow-

ing sum of four plane waves.

-jpcos (¢—EUO) jpcos (¢+IPO)

E(p;¢) =€ - €
1-TW) [ -ipcos(@Wy)  Fpcos(d-d )
- TI?T@ET_' [e - e j (30)

Also since SI(U) does not have any branch cut singularities, the electric
field inside the dielectric, El(p,¢) is given by the sum of two plane

waves, due to poles at oo =6 __ T -60.

O’
After evaluating the residues we find the following expression

for E, (p,0):

ZT(wo) r-jpncos(¢—80) jpncos(¢+60)
El(p’¢) = :{.—(qj;)" e - € (31)

The field expressions E § El as given by (30) and (31) correspond
exactly to the geometric optical solution to our problem. Thus we have
shown a way to overcome the difficulty in finding the solution to this
problem through Zavadskii's method. Unfortunately, however, the same

kind of approach does not work to other non-trivial geometries as we will

demonstrate.
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5.4 RECTANGULAR DIELECTRIC WEDGE RESTING ON A:
SEMI-INFINITE METAL PLATE

3.4.1 Zavadskii's solution:
Consider the case where a semi-infinite metallic plate is resting
against a rectangular dielectric wedge as shown in Fig3. 5. This situation

corresponds to ¢0 = 3T and q>1 = 7/2 in FigJ3.l.

2
Hence all the equations through /

o
(24) hold for this problem. Sub- E Yo ¢=0
o
stituting the values of ¢. and o é‘;’ 4 //
0 L / /
w o
: c moli £ x =z
¢l we obtain, after some simplif &j o %r@ n2
O
ication, the following expression \//
for the function t(a,B). //

Figure 3. 5. Rectangular dielectric wedge
resting on a perfectly con-
ducting semi-infinite plate.

t(2,8) = 2sh(¥y- D6 [ch 38 - (o) sh 2g]
[1+T(a)]sh2nB + v[l-r(a)]sh'rre (32)

As shown in Appendix II, eqn. {32) leads to the following expression

for the functions s(g) and sl(g(a)):

s(@) = 5 Igta-m) + 5 I(y -a-2m)
+ AI(gbO—oc—vr) + Al (1110+0L—27Y} {(33a)
51E@) = Ty (TWgram) + 1pga-2m} (33b)

where A and t are defined by
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_ 1 1-t{0) _ . .
A = 2—‘ l_ﬂ‘(a-)— = - COS5 ¢ (JJC)
and [37]
“sh xy d 1 (. 2 x(m-t) 2 x|
sh xy dy - . 2 x(m-t P . Xt
1{x) = J — = , 2sin ==5—= - (1-A)sin 55
sh Ty (chmy+A 2. < 2T 2
oo y+A) (I-A" -}ysinx L. 4
(33d)

The poles of s(a) are located at o = iwoimn where m 1is an integer.
To evaluate the Sommerfeld integral (5a) we close the contour Y by

means of two steepest descent paths D and D, as shown in Fig. 3

Then E(p,9) is given by the sum of the following three terms.

E(p,9) = Ep(p,¢) * E (P,0) + E (0,9) , (34)
where
E,(0,9) = ) Residues (35a)
B .+B
E, (0,9) = < o
3w
1 -jpcos (0-9) T<P< 5—
L ﬁ? j S(Of.)e ¢ da 2 (35b)
Bﬂ+821T
Ed(p’(p) - _;_Trl_:]_j s(a}e‘jpcosta‘¢)da (BSC)
D_+D+

3.4.1.1 pole contribution

The steepest descent paths D  and D, intersect the real axis of



@ at -7+ ¢ and T + ¢ respectively. Accordingly the combination of
poles enclosed by the contour changes as ¢ is varied. -After some algebraic
manipulation (Appendix III} s(a) may be put into the following form

which is more convenient for the evaluation of the pole solution Ep(p,¢):

%

l—A2 cos2a - cosZwO

|
1 [ : Yot 3t at 3t
- sin2y _cost—m - cos|{ — - ==
5 T 2.
. t

(2A2+A-l)(25inacosw0) - (1+A-2A2)sin2lpo
s(a) = .

(1-A%) (cos20- cos2yy) 0 T2
+ sinZasin(gQ—-- é—-sinlgz-— éil
. T 2 \m 2 J
Y.t
- 12 sin(—%—-- gz)cps (%? - ;E> (36)
(1-A" )
The residue -R(ob) at any pole a = % is then given by
1 sin2y ’ 2sind_cosy
_ % 2 0 2 0 0
R(ag)= o (“Ao‘z’\o) sinda ~ (ZAO‘”Ao‘l) stnza,
I—AO 0 0
b i a 7
- : ° nZwO cos(wOtO - EEQ) cos( Oto - 239)
- , = )
(1~A§') 51n2a0 m 2 2 )
Yot 3t ot 3t
(Yo% %) . /%t o)
+ 51n( T 3 ) 51n\ - - (37a)
where
= 37b
ty = t{y,) (37b)
and AO = A(wo) {37¢)

The residues of poles, that are of interest to us are given by
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R(-Zw+wo)= R(-ﬂ+w0) = R(ﬁ-wo)vz R(ﬂ+w0) = R{Zﬂ—wo) = R(2ﬂ+¢0) =0

2
4AO -1

R(-T-4,)
R(—lpo) = “ZAO

R@Y,) =1

R(3™-4,)

it
i
[y

(38)

The location of poles, along with the residues, are shown in Fig. 6 for
three different ranges of the incident angle. The points of intersection
of D and D+ with the real axis of a-plane are also shown. By
looking at Fig.36 we can immediately write down the pole solution E(p,¢)

for different ranges of ¢ and wo as given below.

—5f Y b L
4A% - ~280 1 O T -1
+ > : St ? o3 } & 3% ;
[
-2 —4¢$}>,’< AO w Xﬁ 2 3
D_ Dy

\ by
4nd-1 T ~2Ro { 'V\ -1
2w ow\ ; VT 37
i ~ e
at ,...a\_._msx
¢) w L ,',,OL%ZI TYotT
L
__ "Zko X , ANV ,
_;W ' -f7r o T \ T 2w 3w
-
- =7 ~
QQj-TT

Figure 36, Pole and residue structure of s{a) in relation to the contours D, and D_
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1) 0P <
P 14
Yy Ty <o<meh,
: 3m
0 <9< 3 (39a)
11) Yy<<m
/
< Pwo n-w0<¢<2 n-wo
, 3T
P - ~Y <P<m
v Pﬂ-wo 2 MY <03 (39b)
i) ey, gﬂ
/
Ep(p,¢) 0 0<p<ip -
< Pwo Vo T<p<emyg
3T
- 2 U] pe i
" PW‘W 2 ¢0<¢<2 {39¢)
0 0
\,
where
Py = o~ Jpcos (¢-6) , (394d)

When the incident wave is in the first quadrant we observe the incident

wave and the reflected wave from the dielectric boundary, until o)
approaches the value w—wo after which the reflected wave disappears.

When ¢ exceeds the value w+wo the incident wave also disappears and

we are in the dark region. When wo is in the second quadrant the incident

wave exists in the entire range 0<¢<3n/2 and illuminates both the faces
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of the wedge, thus giving riseto two reflected waves. The reflected wave
from the dielectric boundary exists in the range G<¢<ﬂ—¢0 and the
reflected wave from the metal plate'exists in the range 2ﬂ-w0<¢<3ﬂ/2.
When wo is in the third quadrant we are in the dark region until ¢
approaches the value wo—u after which we just see the incident wave.
When ¢ exceeds the value 2W—¢O the reflected wave from the metal
plate also comes into the range of observation. Thus the pole solution
is consistent with the geometrical optics theory.
3.4.1.2 Diffracted field
The integrals over the contours D and D, represent the diffracted
waves due to the edge.  We choose the paths D and D, such that the

following conditions are met for o = p+jv & D_,D_.

Re{cos (a-¢)}

cos(4-¢) chv = -1 (40a)

and Im{cos(a-¢)} -sin(#-9) shv <0 (40b)

Then U and Vv are defined through the relations

b= -gd(v) + ¢ o (41a)

and sin(u-9) = + th v - A (41b)

where gd(x) is the Gudermann function given by

gd(x) = cos—l(l/chx) . (41¢)

We should note that D and D, as defined through (41a,b) may
but the branch cuts, for certain ranges of ¢, in which case we deform
D and D+ around these branch cuts as shown in Fig.3 3, and the result-
ing branch cut and end point integrals must be evaluated separately.
However for large values of p the contribution from these integrals is
negligible compared to the dominant contribution from the vicinity of
the saddle points at o = ¢ * w. Now we proeccd to evaluate these saddle

point contributions.



3-27

Let ,Ed_(p’¢) and Ed+(p5@) denotc the integrals over D and D,

respectively. Then

Ed+(p’¢) = LJ[ s(a)e"jOCOS(O(.“(b)dOL
D

+

[ms(a)e—jp[COS(u-¢)chv—jSin(u-¢)shv](éE.+ j)dv

213 dv

el

2n3 S(a)e3p pthvbnY 1/chv+j)dv (42a)

Now we approximate s(a)(-1/chv+j) by its value at the saddle point

a=mr+$+j0 and thushv by v? to obtain

. 2
Egu (9902 5= 5(140) (-1+5) Fe”“” v
=sﬁmﬂém U@ﬁ (42b)
Similarly we obtain Ed— as
N
Ey_(0,9) = - s(-mx)ed O D pvamp (42¢)

and taking negative of the sum of (42b) and (42c) we obtain

. m
Ed(ﬂ,(i))é - {S('n'+¢) —S(—Tr+¢)}ej (p+ E)//ﬁ

2sint J t 3t ot 3t
= - 5 L sin2y coq( g 1 ;—l)sin(rﬁl-— ——l>
(1-A1~)(c052¢~c032w0) )

L
~ sinZésin thl 3t1)COS ¢t1 - Stg
o T 2 T 2/
-
2sint Yt 3t ¢t 3t ) . il
‘ 1 . {¥0"1 1 _ __! J(p+-ﬂ
+ ) Az 51n( p -5 > 51n<-fE—- 5 fL_ 4 (43a)
(1-A; ) ' V2mp
where
£ =t (43b)
and A} =A%) (43c)
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If the refractive index of the dielectric medium is made to approach

unity, thus reducing it to free space, then (43a) simplifies to

. w
ier o 3
1 1 |
E.(p,0)] =E, (p,9) = - & * 5 (44)
e 4o 2/270 AL Y
S1in 5 COS ‘“—2 B

which, with proper interpretation of ¢ and wo, corresponds to Sommerfeld's
solution {2 ] to plane wave diff:action by a perfectly conducting semi-
infinite plate.

In passing we should note that Ed(p,¢) as given by (43a) is only
good when there are no poles, of s(a), in the vicinity of the saddle

points @ = ¢+m

3.4.1.3 Branch cut integrals

The contribution due to the branch cuts enclosed within the contour
y+D_+D,_ is given by (35b). If we try to evaluate these branch cut
integrals we find that the top halves of BO ahd 1an and the bottom
half of BTr give rise to terms which incregseiexpgnentially as p in-
Creases and thus these terms fail to meet the radiation condition. On
these branch cut contours the exponential term in the Sommerfeld integral
(52) has a positive real part which is proportional to psh(|v]) where v =Ima
It can be easily verified that these exploding branch cut integrals do
not anihilate each other and the présence of these terms makes the solu-
tion, obtained through Zavadskii's method, physicaliy meaningless. In
the next section we describe several approaches to try to correct this

problem.
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3.4.2 Attempts to correct Zavadskii's solution
3.4.2.1 1Is a branch cut free solution possible?
If we replace T(a) by T(wo) in (36) the resulting function which

we call §(a) still satisfies the equation (lla) with ¢O = 31/2.

S(ar 35 = F(-ar 3 (45)

thus meeting the boundary condition at P = %;u However the modified

function §l(c(a)) as given by

5,6 = gy {g(a)-gc—oa) + T(@) [3(0) + é’(-o@]} (46)
does not satisfy the boundary condition at ¢ = -7/2. That is

5,(5(0) # 3, (5(-a-m)) (47

We note that 5S(a) as obtained above is non-periodic. In Appendix
IV we show that any branch cut free solution s(a) to (1lla) with

¢

0= 3m/2.  must be periodic in o, with period 27, so that the result-
ing function §1(C(a)) will satisfy (11b) with ¢, = /2. However, as

we shall show later, any such non-trivial periodic solution would give rise
to more than one incoming plane wave thus violating the radiation condition.
Thus it seems impossible to obtain a solution to the .functional equations
(11a-11d), with ¢O = 3n/2 and ¢l = -m/2, such that s(a) is free

of branch points. Futher, we know that, such a solution would not have

any diffracted waves since D and D, are then spaced by 27 and are

in opposite directions. We know that for the problem under consideration
there must be diffracted waves from the edge and the associated lateral

waves. Normally one would expect to obtain lateral waves from the branch

cut integrals; hence seeking a solution which is completely free of branch
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cuts seems to be a step in the wrong direction. For the trivial problem
considered in the earlier section we knew that there would be no diffracted

or lateral waves and our attempts to obtain a branch cut free solution

then met with success.

+4.2.2 Is there a solution with zero contribution from the unshaded part

of the branch cuts?
To answer this. question one must look at the most general solution

to (1la-11d). We have obtained such a general solution, in Appendix V,

which is given by

ot 3t . Ot 3t -
S((x) = JZTT(a) + pe_n_(a) cOos (—TY— - 7) + P0ﬂ51n(?--2—) (48a)

where PeTr and POTr are any even and odd functions of & with period
T and Jzﬂ(a) is any function of & with period 27 and satisfying

the condition

3y 3m.
Jzﬂ(a+ 7?9 = Jzn(-a+ > ) (48b1

The function t(a) 1is defined as in {33c). It is easy to see that
s(a) as given by (36) is indeea, in the form of (48a).

The pgriodic part ‘JZH(Q) in (48a) may be chosen such that it is
free of any branch points. However the non-periodic part contains branch
points due to t. In Appendix VI it is shown that for the branch cut con-
tributions from the unshaded branches to vanish the functions PeTr and
POw must identically vanish. As we shall see a little later any solution
of the form Jor(@) gives rise to more than one incoming plane wave which

1s again a violation of the radiation condition which requires that there

be no incoming waves other than the incident wave. Thus there is no



3-31

solution s(&) which, after integration over the contour Y, would give
fields satisfying thé radiation condition, andlwe conclude that vy is
the wrong contour to start with. This immediately gives rise to the follow-
ing questions: What other possible contours are there to start with,
so that we could write down the boundary conditions as a set of functional
equations fq; s{@)? Is it possible to combine the solutions obtained
through Y and some other contours in such a manner that the radiation
condition is uniquely met? We will make a thorough examination of these
possibilities in later sections, but before we do that we would like to
make the following comments about the periodic solution Jzﬂ(a).

If Jzﬂ(a) is free of singularities then the resultant fields would
be identically zero. Any branch cut singularities involving T(@) would
give rise to exploding waves at infinity. Thus, Jzﬂ(a) can only have

poles. We specifically require a pole at o = ¢ corresponding to the

Y
incident wave. However, because of the periodicity and the requirement
(48b), JZHGI) cannot have an isolated pole. Any pole with a residue

'a' at a =w0 gives rise to a chain of poles with residues as indicated
in Fig.37a. If we introduce a pole with a residue 'b' at o = —wo this
gives rise to a different chain of poles as shown in Fig.37b. Thus the
most general pole structure of JZw(a) 1s as shown in Fig.37c. Since the
poles at wo and —wo correspoﬁd to the incident wave and the reflected
wave from the dielectric we require that

a=1 (49a)

and b = -[1-t(y,) ]/ [1+T(¥,)] (49p)

[}

Then Jzﬂ(a) is given by
coswo l—r(wo) COSwO

sina-sing, h 1+1(yy) sina+ siny

Tym(@) = (50)

0



Pig.3,7 Pole and residue structure of J7ﬂ_(oa)
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The resulting solution for the fields is given by

. -jpcos(@-¥)  1-T(¥) -jpcos(9+y )
(Ps9) = e . I:;T$BT €

jpcos(¢+wo) 1-T(¢O) jp(¢-wo)

- e +—‘—I—-——e
1+t ()

(51)

But E(p,$) has two undesired incoming plane waves at angles T - wo
and T + wg, and is not the solution to our problem. However in the process
of the above discussion, we have found a unique solution to a 'quasi-

trivial' problem which we give next.

-4.2.3 Solution to a 'quasi-trivial! problem

Can we illuminate a rectangular dielectric wedge, resting on a semi-
infinite metal plate, in such a manner that the resuiting field wiil have
only plane waves and no diffracted waves? The answer is yes, and the

solution is the following combination of incident waves.,

| 1-T(¥,)

Einele,®) = Pwo - Pﬁ_wo * 1+r@$57‘Pw+¢O (52)

where Pe = exp[-jpcos($-6)] represents an incident wave of unit ampli-

tude, at an angle 6. The three plane waves P , - P and -RP
’ ? Yoo ™Y Vo

R = —{l—r(wo)}/{l+f{?o)]) and the corresponding reflected and refracted
waves produce continuous fields in the entire region 0<¢<2m as shown

in Fig. 8, where the incident waves are shown with solid lines and the
.refiected and refracted waves are shown with dotted lines. The discontin-

uity of I, (=Py ) at¢ = T+, 1is cancelled by the reflected wave
0



Fig. 3.8 [Illumination of a rectangular dielectric wedge, resting
on a perfectly conducting semi-infinite plate, such that
there is no net diffracted wave from the edge.

incident plane waves
———————————— refiected and refracted plane waves
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(e 5 i N . . s
R2zk Pwo} and the discontinuity of 13( RPW+¢O) 1s nulliified by the

reflected wave R21(=_RPW+¢O) which exists only in the range Of¢f¢0.
The incident wave 13 gives rise to a reflected wave R3 which precisely
fills up the shadow region of Rl. The sharow region of T2 is filled
up by Tlr which is the reflected wave corresponding to Tl'
If we let f(ﬁ) to be the diffracted field due to an incident wave

Pw, then f(¥) must satisfy the -following functional equation.
f¥) - £(m-y) - RE(M+Y) = 0 (53)

In Appendix VII we show that the most general solution to (53) is given

by

et 3

L

£y) = [(nz—coszwf2 ~ siny] \(F sin 2¥ . Fy-COS 23—“’)5 (54)

where FeTr is an arbitrary even periodic function of ¢ and F is

om
an arbitrary odd periodic function of ¢, both of period w. Thus any

solution for the diffracted field f{(Y) must satisfy (54).

-4.2.4 Solution using asymmetric contour Y.
In the previous section we raised the possibility of starting with
a contour other the% v and obtaining a solution. Such contours do exist

and the asymmetric contour Y = Y,~Y_, as shown in Fig.3.9, is just one

of these. If we write

E(p,¢) = Z%J S(wepcos(a-¢) 4y (55a)

and . Y+o
E1(o.9) = 5h }( 5, (0ye7dPReos(T-9) (55b)

T+¢



imaA

Rea

Fig. 3.9 Asymmetric contour Y (shifted by ¢) in the plane of the
complex variable a.
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with T being the mapping of 7Y under the transformation {6a,b), we

obtain the following set of functional equations for s and s

.
5 (ar %1) = - 5(-a+ —321) (56a)
s @)= 31 = - 5, [-(@)-1/2] (56b)
s(@) + 5(-0) = T() {élla(a)} + §1[—C(a}j} (56¢)
@ - 5(w) =5, [6@] - 5 [-L@) (564)

The most general solution to (56a-56d) is given by

3t

- - = .ot 3t = at
s(@) = Jzﬂ(a) + Peﬂ51n(ﬁ—-— E—a + Poﬁcos(—E-~ 7?§ (57a)

= 3m. = 37
Jzﬂ(a+ i—g = ’sz(‘a+ 779 (57b)

where jZW(a) is any function satisfying (57b) with a period 27 in

0 and ?en(a), §Oﬂ(a) are any even and odd functions of o with period

T. However, such a solution, apart from having exploding branch cut

integrals, gives rise to incoming diffracted waves. To see this we

replace 4?' by its equivalent sum of the éontours DO’ D, D+, BO; and —B?T

as shown in Fig3.10. In doing so we pick up'thg residues of poles situated
between‘the strip -m+p<Rea<m+$, and we may write the integral over Yy as

the following sum.

j g(a)e‘jpcos(a—¢)da = 2mj | Residues + [ g(u)e-Jpcos(a—¢)da
Y- B.-B
Y+¢ 0 B,
. o . ; ) —

* f S(aye IPeOstad) o | o~Jocos (a-9)

s (@) (58)
D +D+ D
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Equation (57) comtains branch cut integrals over B. and Bw' The

0
integrals over the upper half of B0 and the lower half of BTT diverge
as p becomes largé. Due to the different forms of s(a) and s(a)

it is not possible to mutually cancel the divergent branch cut integrals.
Further the solution from 35(a) contains an integral over the path DO

which, when evaluated using the steepest descent method, can be shown

to have the form

Ep (.9) = F(0)e /5 (59)
0

which represents an incoming diffracted wave, and can form no part of

a physically meaningful solution. Thus the use of the asymmetric contour
Y introduces additional difficulties. In the next two sections we
examine alternative contours of two other types but discover that any

solution obtainable by using these modified contours has identical form

to either of the solutions we discussed before.

4.2.5 Shifted symmetric contours,

Y, = (v,*2mm) + (y_-2mm)

We note that any solution obtained by integrating, s(a) of the general
form (48a) and the corresponding function sl(g(a)), over any arbitrary
contour ya+¢, where Yq is symmetric about the origin, will satisfy
Maxwell's equations and the boundary conditions. We could choose Y, to
be Yo where yh is shown in Fig3.11 for m=1. Let us examine the

solution E(m)(p,¢} over such a contour.
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omie™ (o ¢y - j s (M) gy g=3PCOS (0403

%
= f s (qeommye"IPCOS (@~9) 1 f 5™ (a-2mm)e~iPc0s (0-9) |
v," y_!
(60)
where
(m) _ . (m) (m)- -~ (oct 3t (m) . [fot 3¢t
sV @) = Jom @) + P cos S Por sin{ = - > ) (61)
and primes on Yo Y, and Y_ indicate a shift by ¢.
: TR - . (m) (m) (m)
By noting the periodicity of the functions J2Tr s pen R POW s
t and making use of the decomposition relation.
£ o+ £ = L (£,+£) + > [ (f-£) (62)
1 2 2 1720 2 _ 172
I Iy Iy [Ty
where £f,f

1°t; are arbitrary functions integrated over arbitrary contours

T1’ F2_ We can write E(m)(p,¢) in the following form

-
ZHjE(m)(p,¢) = f.{Jéﬁ)(a) + cos2mt {%

M o (og_s_t)
en ™ 2
T+
|

m) . fat 3¢t -Jjpcos (a-9)

+ POTr SIn | 5 X e da
. (m), fat  3t) _ -(m. a_éz)]

f f sin2mt {}Peﬂ_%in T 3 + PO7T CcoSs - 5 ;
Y+o

X e—jpcos(a—¢)da (63)

where Y and ¥ are Symmetric and asymmetric
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.
. . . m . .
contours that we discussed earlier. We note that E° )(p ) 1is of the

form

2mie™ (0,0 = f s(ayeIPeos @)y, f S(ayemIPeos(@-0) 4 (64)
Y+9 Y+o

while s and s are of the general form (48a) and (57a) respectively.
Thus any solution over Y% may be represented as a combination of solu-
tions over Y' and Y'. But we have already noted that any combination
of solutions over Y' and Y' will have diverging branch cut integrals
and/or incoming diffracted waves. Hence any combination of solutions over
Y&, ¥Y', Y' will have the same difficulties and fail to give a physically

meaningful solution.

-4.2.6 Shifted asymmetric contours,

Yo = O, + 20m) - (y_ - 2um)

In a manner similar to the previocus section, any solution, over an
asymmetric contour of the form ?;1= ?ﬁ + ¢, may be represented as a sum
of solutions over the contours <Y' and 7Vv'. Hence a solution over such

a contour does not possess any additional advantage.

-4.2.7 Contours with the end points separated by 2mm™ with m>1

All such contours may be decomposed as a sum of the form Yoty
or y + ?ﬁ depending upon their symmetric or asymmetric nature as shown

in Fig.312 for the case of a symmetric contour with m = 2
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Thus we have exhausted all possible symmetric and asymmetric contours
which do not cross the real axis and whose end points at infinity start
in one shaded region and end in another shaded region. The end points
of any moving contour must lie in a shaded region at infinity so that the
Sémmerfeld integral does not alter as the contour is shifted with ¢.
Further any contour whose end points at infinity are in the same shaded
region are trivial since any integral over them would identically vanish
unless they enclosed singularities by Crossing the real axis. Any
contour that crosses the real axis is not useful in our method since sgch
a contour would cut a branch cut as it is shifted with ¢.

We consider two other possibilities. Cne is to extend the branch
cuts up and down wards to infinity rather than joining them pairwise.
This is definitely not workable for our present geometry since such a
definition of branch cuts would restrict the movement of the contour to
less than 7 whereas we require it to be moveable by 3m/2 without
cutting branch cuts. However we explore this possibility in the context
of a different problem where a movement of is sufficient. The second
possibility is using finite and fixed contours.. We discuss both these
approaches in the next section, and conclude that both of the approache;

fail to give the desired solution.
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3.5 A MIXED BOUNDARY VALUE PROBLEM

Let us consider the problem of diffractiog by a rectangular dielectric
wedge, resting against an infinite plane whose upper semi-infinite segment
(¢ = m/2) is a perfect electric conductor and the lower segment {¢ = -m/2)
is a perfect magnetic conductor;_ The incident wave is éssumed to be
polarized in the z-direction as shown in Fig3.13. Because of the differ-
ent boundary conditions on the 1owér and upper segments of the infinite

plane the problem is non-trivial.

Ez=0

!
5
;
!
|
|
]
; |
*AO $-0

7

Figure 3.13. Geometry of the mixed boundary value problem.

3.5.1 Zavadskii's solution
Proceeding in the manner described before we seek the fields E(p,9)

and El(p,¢) in the following form.



—
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E(0.0) = 775 [ swe sy oot (652)
Y+

E; (0,9) - Q%E—PJ; s (e PeesE W LT o (esn)
+

where the variables a,7 and the contours y and ' have the same meaning
as before.

The boundary conditions are given by

E(p,m/2) = 0 (66a)

JE; (0,9) )

T Do = 0 {(66b)
2

E(p,0) = E{(p,0) {(66c)

e, | BE®

(66d)
% 4o % 420

and (66a)-(66d) lead to the following set of functional equations for

s(a) and sl(g(a)):

s{a) = s{~a+m) (675)
s, & @) = -s; (¢ (~a-m)) (67b)
s(a) - s(-0) = 1(0)[s;(c(@)) - s, (5(-a))] (67¢)

s(@) +s(-a) = s, (C(@)) +s;(c(-a)) : (67d)

Proceeding in a manner similar to that shown in Appendix V we obtain

the following general solution to s(a).
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ot -t2 at, t,
s{a) = Peﬁcos(—fﬁ— - —79 + Poﬂ51n(—ﬁf-- TTJ (68a)
where
. _ 1 - 1) |
COStZ = I_:—?Taj., 0 E_tz f.ﬂ . (68b)

and P__ and P__ have the same meaning as before.
em ot
If we proceed by using the t-transform, as shown in Appendix VIII,

we obtain the following particular solutions to s{a) and sl(c(a)).

Y,-a Y, +a-m
€OSty |sin{ Oﬂ (m-ty)} sin{«EL—F——— (m-t}
s(@) = sint, SinQg-@ Sin(y, + ) —}
Y. +a ' | 11)0 -0-T N
sin{ (mr-t,)}  sin{———— (n-1t,)}
P 2. T (69a)
sint) sin(¢04-a) sin(wo-a)
zpo +q Y. -0 - )
inf—— (7-t3)}  sin{———— (7-ty)
_let(@ | MMy 2 w .
sp @) = =5y Sin@g o) sin(0, - @) sint

(69b)

s(a) may be put into the following form so as to conform with (68a)

Pat, ot at,  t,
s{a) = {g%inszcos(—%;:'-'Eg)cos('E“ - ETJ

li) T [ ot t 1
: 7072 2, - 2 2 !
+ 2sinZasin { . 77)51n( N Eig} coszwe-COSZQ
t

wotz t atz 2

- 2sin( - —;)cos(—-%—— -9 (70a)

m
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Similarly sl(c(a)) may be transformed into the following form.

Yoty ¢, at, t ' vt, t at, t

. . 2 . . 02 2 2 2

24 L ik N . P

. (o)) _1+71() sin2¥gcos ( - 2)51n§ e 2) sinZasin( p 2}cos( T 2)

1 T{Qt) ’ costhO - cos2o,
Yot t ot t
. 072 2, . 2 2 . ,
- sin( ‘ - —2-')511"1 (_'TT— + 7) Slntz {70b)

From (69b) and (70b) we obtain the following two equivalent expres-
sions for sl(a):

~ ~ AA ~ ~ A~ AN ~

Yt, t,  at, t A Yt, ot at, t
_ 02 2, . %t b . .70 2 2,2
. -(glnzwocos( 7~ 3 osin(—=*-") - sin2asin( 7 pJcos(+ )
s (@)= 2 2
L (cos™P, - cos®a)
Yt ot at, t N A
o2 f oty ot l gy
- 2sin( - 5osin(—=+ &) - sint, (71a)
271{a)
where
a = cos-l(ncosa) (71b)
t, - tz(a) (71c¢)
or
Y, +a ~ WO“Q"“ ~
R Sin{ ('ﬁ' - Lz)} Sin{ ('n-— tZ)} 1 +T(&:)
5, @) = sinf, _ Y — = (72)
sincwo + o) SinOPO - ~J @)
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It should be noted that a = cos_1 %—is not a pole of sl(a) since
sint2 also vanishes at this point. We write E and E1 as sums of three
terms corresponding to pole contribution, diffraction and branch cut

contribution as below.

E(P,9) = E (p,0) + Eq(0,9) + E_(0,0) (73a)

Ey(0,0) = E 1 (0,0) + By (0,0) + Ey (0,6) (73b)

3.5.1.1 Pole contribution

To find Ep(p,¢} we consider the following two cases:
i) 0< ¢ < wo < 1m/2

In this case the poles at -m + wo,—wo,we, and ﬂ-wo contribute to
the solution with the residues costzo,-cost20 1, and -1 respectively,
3

where - N
the = ty(¥,) (74)

ii) 0 < wo <¢ < Tm/2

In this case the poles at ﬂ+w0,-wo,wo, and ﬂ—wo contribute to the
solution with the residues costzo,—costzo,i, and -1 respectively.

Thus in both cases Ep is given by
B (,6) = o~Ipcos(@-vg) _ _+jecos ($+ho)

1- TN}O)

"ijOS(q)'*'q'}O) _ +jpcos(¢”‘§)0)‘. < b < 2
- Tff?TEgT {e e B 0< ¢ </

(75)



Similarly we consider the pole contribution from sl(a}. The only

~ A

poles of sl(u) that contribute to the solution are at o = wo and ™ - wo

both of which have a residue of Zsinwo/[v n2--c05211)0 + sinwo] and Epl

is given by

2siny ' . ~ . S
E 1 (9.0) = ! [e7IPRCOS 00D, rioncos ($990)) (74,

2 2 .
n - cos wo + 51nwo

where

wo = COS = 5 0 < wO < 7m/2 (76b)

3.5.1.2 Diffracted field
Excluding the shadow boundary regions, where ¢ = wo or ¢ = wo, we
obtain the following asymptotic expressions for the diffracted fields

Ed and Edlz

., i
(o +-5)

j
Eq(p,9) = -{s(m+¢) - s(-m9)} e ¥ vamg

(o + ) {w0—¢ t J}cost, + {w0~¢—w(ﬂ t )}
_ /Z J{p 7) j cos (- 6 cosn¢ cos (- o
TP sin(tp0 - )
Pt o-T Yo+ o
*icos{—g——ar——{w-t¢)}cost¢+-cos{ Oﬂ (W-—t¢)}]

sIn(y, + 6)

(77a)
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b (noﬁ%)
Eg (P9 = -{s (¢+m) - s (¢-m)le /¥Zmmp
1
~ ~ -
A ll) "¢-TT ~ l[} +¢ ~
2sin2t¢ cos {2 = (ﬂ—t¢)} cos{ gr (W-té]} } j(np-bgg/
= - ~ ’~ - - e Y2Tno
l-cost¢ sin(w0-¢) Sin(w0+¢) _J
;¢?~'WO: i“’-wo (77b)
where
ty = t, () (77¢)
ty = t,(0) = t,(¢) (77d)
&; = cos"l(ncosqa) ‘ , (77¢)

If we let the refractive index n to approach unity (778(77b)take the

identical form given by

! [ 1 ' jlo+—+
E . (p,¢) ! =E, (p,0) | = -4 —7 — - } . e 4/%5%5
I n=p 9 =1 0~ ? Yo+
. = n= cos( 5 ) sin( )

0 < o< /25 ¢ F P, (78)
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3.5.1.3 Branch cut integrals

The branch cut contribution Eb(p,¢) to the fields in the region

0 < ¢ <m2is given by (Figsgz.l4a,14b),

Eb(p’¢) = J‘ s(a}e_jpcos(a’¢)da + jﬂ S(u)e—jpcos(a—¢)da
B

0+ Bﬂ—

* J{‘ S(Ct)e_jpcos(u_qb)da + f S(Ol')e"'jDCOS(oh(b)doc
B

0~ Bﬁ+

7

Im « A

-2

N

Re a

/.
6 )

7 .

Figure 3.14a. Closing of the contour Y by means of the contours D+

(79)

and D_.
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v

w
o
]

§
!

Figure 3 14b. Branch cut contours B B and B in the plane of

BO+’ 0-> “m+?
the complex variable .

The integrals around B, and BTr+ are well behaved, but the integrals

O-

around BO+ and BTr are both divergent at infinity as discussed before.
In sectiom34.2 we considered all possible solutions over infinite
contours and failed to obtain a solution free of diverging waves for the
problem of rect;ngular wedge on a semi-infinite plate. In the next

section we explore two other methods of modifying Zavadskii's solution

to the present problen.

3.5.2 Attempts to correct Zavadskii's solution
In the first part of this section we aim to find a solution (é,gl)
obtained by integrating over fixed finite contours, which when added to
Zavadskii's solution would exactly cancel the first two branch cut
integrals in (79). In the second part of this section we explore the

possibility of obtaining a solution by re-defining the branch cuts

vertically to infinity.



3.5.2.1 Secondary solution using fixed finite contours around the
branch cuts

We define the fields % and El as follows.

2ﬂjE(p,¢) = -~( s(a)e—jpcosﬁa“¢)da - j‘ s(a)e“jpcos(a-¢)da

BO+ Bﬁ—

+ f [h(a) + F(a)]e IPcOS(a-8) 4,

BO—

e - e ISy,

BTr+

0<¢<m/2 (80a)

ik (0,8) = § [F@ e F@1e 7™ EDag, [ pgey - gy jeoneos -9

BO+ §’n‘-

-l (6(2) +G@)1e TSN ar s [ (o) - BeyjemIPmeos @0y

B, B,

0> ¢ > -m/2 (80b)

where the contours of integration are shown in Figgz l4c.
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Im A //// Alm
L] a-pPLANE i, _ L- PLANE
I —v—\ 18-w+
y > Re =i = > Re
A
Bo. BO+
Figured.l4c. Branch cut contours EO+’ EO-’ E_ﬂ+ , and é-w— in the plane

of the complex variable .

It should be noted that all the integrals except those over Bys and
Bﬂ_ are convergent. The integrals over BO+ and Bﬂ_ appear in E(p,¢) in
such a manner that the sum E + E yill be f;ge of any divergent waves.
Since all the branch cuts in Z-plane are along the real axis E1 and él
will be free of any divergent waves. Now we examine the possibility of

finding the functions F, ¥, G, G, h and h such that E and El satisfy the

following boundary conditions.

E(p,m/2) = 0 - (Sié)
E(p,0) = El(p,O) (81b)
E(p,0) = E!(p,0) (81¢)
Ei(p,-ﬂ/Z} =0 (81d)

By a suitable change of variable we can write E, E',AEI, and Ei as

follows.
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2nj§(p,¢) = - jas(a)e_jpcos(a_¢)da+ \f~s(-a+ﬂ)ejpcos(u+¢)da

BO+ BO+

- J~ {h(-d)*'E(-a)]e_jocos(a+¢)du4- j‘[h(a+ﬂ)«-Efa+ﬂ)]ejpcos(a—¢)da

B0+ BO+

(82a)

{-—%gﬂ%'(p,¢) = = \f sin(a-¢)s(a}e-jpcos(a—¢)da4- L{ sin(a+¢)s(—a+n)ejpcos(a+¢)da

BO+ BO+

* \f sin(o+¢) [h(-a) + W(-a)Je IPCOS (040D 4, _ &F sin(a-¢) [h(o+n) - (asm) el PO 00 4y

BO+ Bo+

(82b)

2miE (0,9) = \f [F(0) + F(0)1e 3008 @0 gr 1 5 (pmy - Fogom) jeIPReos (6+0)

By, By,

- 8 160 +Beo1eIm 0 @0y [ 6 - Trem1etIPieos Gy,
+

BO BO+

(82¢c)
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..( nsin(g-¢) [F(z) + F(g)]e IPeos(&-0),,

B0+

(- 2HE, 0,4

kf nSin(§+¢)[F[_c_ﬂ)_.?I_C_ﬂ]]ejpnCOS(C+¢)d€

hsin(c+¢)[G(-C)+ﬁ§(_€)]e'j0ncos(g+¢)

+
] Gy

- j nSin(E—(b) [G(C-‘n’) - E(C_ﬂ)]ejpncos (C—(Z))dc

BO+

(824d)

2mjE1(,0) = ‘f (£(a) + F(0))e POy, J‘[f(—a—ﬂ)—'?(—a—ﬂ)Jejpcosada

BO+ BO+

- ‘j‘[g(_a)+-g—(_a)]e—jpcosocda+ f [gla-m) —E(a—ﬂ)]ejpcoso‘da

B0+ BO+
(83)
where
f(a) = F(Z)1(a) (84a)
) = F(@)T() (84b)
gla) = G(g)t(a) (84c)
g(a) = Gg)T(e) (84d)
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Similarly we may write E&(p,O) as

298 0,0) = J S0y + F(ay1eTI P05,

The boundary conditions (81a) and 81d) lead to the following

T{a)
BO+

Jsimore ooy Famel? oSty

T{a)

BO+

T ()
0+

5 %{g(a*ﬂ) -g(a-m)]e
By,

functional equations.

h(-a)

h(-o)

(o
fla
gla

g

)

)

)

y

f)

il

h (o+m)

.-Ffa+w)
-f(-a-m)
+f (-a-m)
-g(-a-m)

g(-0-T)

+ S SIN% . (-a) + B(-a) e 3PSOy
B

jp cosa

do

(85)

(86a)
(86b)
(86¢)
(86d)
(86e)

{861)
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The boundary conditions (81b) and 8lc) at ¢ = 0 lead to the follow-

ing functional equations.

-s(0) -h(-a) - h(-a) = f(a) + £(a) - g(-a) - g(-a) (87a)
s{a) +h{a+m) - h(a+m) = -f(—a—ﬁ)+5f(—a-ﬂ)-+g(a—ﬂ)-gfa-ﬂ) (87b)
-5 (@) +h(-a) +F(-a) = ——[£(a) + F(@) + g(-a) + T(-)] (87¢)

()

1]

S(@) - hm) +Ra+1) = —rosl-£(-a-m) + F(-aom) - ga-m) +@-m)]  (87d)

Combining (87a)-(87d) with (86a)-(86f) we obtain

-s(a) - h(o+m) + h(a+m) = £(a) + () + g(a-7) - g(a-m) (885)
s(@) + h(o+m) - H(afﬂ) = f(a) + £(a) + g(a-m) - ga-m (88b)
-s(a) +h(o+m) - h(a+m) = [£(a) +F(@) - g(a-7) + g(a-T) ]/ (@) (88c)
s(@) - h(o+m) + h(a+m) = [£(0) + F(@) - gla-m) +§(a—__ﬂ)]/“f(c§) (88d)

The structure of equations (88a)-(88d) is such that they represent
four equations in three unknowns and they are incompatible. Thus we
cannot find £, ¥, g, g, h, and T such that E, El would meet the boundary

conditions (81a)-(81d). However the boundary conditions (81b) and (81c)

may also be satisfied by requiring that



-s(a) - h(a+m) + h(otm) - £(a) - £(a) - gla-m) + g(o-m) = Py (@) (89a)
s(@) +h(o+m) - h{o+m) - £(a) - £(a) - glo-m) + g(a-m) = Py (@) (89b)
-5 (@) + h(a+m) - hom) - [£(a) + £(a) - gla-m) + gla-m)]/T(@) = Py(a) (89¢)

s(@) - h(orm) + R(orm) - [£(@) +E(0) - gla-m) + Ela-m1/1(@) = P, (@) (89d)

where Pl’ P2, PS’ P4 are arbitrary functions of o without any branch

points. By solving (89a)-(89d) we find s(a) given by

s(@) = 2[Py(0) - P(@) + P,(e) - P4(e)] (90)

which is not possible since s{a) has branch points. There remains just
one more way of satisfying the conditions (81b) and (81lc), that is by
directly equating E(p,O) to El(p,O) and E' {(p,0) to E'l (p,0) which leads to

the following two integral equations.

j J‘ [s(a) +h(a+m) - h(o+m)]sin(pcosa)do

BO+

= ,f [f(a) + (o) + g(a-T) - g(a-T)cos (pcosa)da (91a)

BO+
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j f sina[s (@) - h(a+m) + h(a+m)]sin(pcosa)do

BO+

= -~ sino
= ‘r [f(a)4—f(a)-g(a—w)~+g(a-w)]%%gjcos(pcosa)du (91b)
BO+ :

Because of the nature of the pafh of integration it is difficult even to
answer the question of existence of a solution to these equations. Thus
we seem to have come to a dead end. In the next section we investigate

the possibility of obtaining a solution by extending the branch cuts

vertically to infinity.

3.5.2.2 Formulation with infinite branch cuts
In this section we formulate the problem by extending the branch cuts

vertically to infinity as shown in Fig.3.15. We define E and E, as follows

2MIE(p,$) = fs(a)e'?pcos'(o"q’)da 0<¢ < m/2 (92a)
Y+¢
2w 0,0) = J 5, (e IPReOs )y, 0>¢>-1/2 (92b)
I'+¢
where [ = cos—l(czfu) (92¢)

and T' is the mapping of y into Z-plane. With such a definition of branch

cuts £{o) and t(a) satisfy the following relations
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£(@) = z(-a) (93a)
Z(a+m) = -g(@) + m ’ (93b)
(@) = -T(-a) (93c)
T(o+m) = -T(Q) (93d)

As shown in Appendix IX the boundary conditions of the problem lead

to the following functional equations in s and S

s(-a) = s(a+m) . (94a)
s;(-2) = -s (-T{a+m)) (94b)
T(la) [s(@)-s(-a)] = s;()-s,(-%) (94¢)
s(@) +s(-a) = s;(2) +s,(-0) (94d)

If we try to solve these equations, as we have done in Appendix X,
we obtain expressions for sl(c) and sl(—C] which are not compatible with

each other.
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3.6 CONCLUSIONS

In this report we have made a thorough investigation of Zavadskii's
method to try to obtain a solution to electromagnetic diffraction probiems
involving a rectangular dielectric wedge (0 >¢ >-m/2) and

i) Infinite metal plate along ¢ = * 7/2
ii) Semi-infinite metal plate along ¢ = - 7/2
1ii) Perfect magnetic conductor along ¢ = - /2 and a semi-infinite
metal plate along ¢ = m/2.

In all the cases that we conmsidered we found that Zavadskii's method,
as it is, gives a solution involving branch cut integrals that grow
exponentially in the far field thus violating the radiation condition.

For the trivial case involving an infinite metal plate we have found a
simple way of modifying the solution so as to conform with the known
exact solution. We have made several attempts to modify Zavadskii's
method to obtain a solution satisfying the radiation condition for the
cases ii) and iii) above but none of our attempts proved to be successful.
However one of the ﬁethods involving a secondary solution with branch
cut integrals alone lead to two integral equations whose solution seems
to be either very difficult or impossible. 1In the process of these
attempts we discovered the solution to the quasi-trivial problem of
illuminating a rectangular dielectric wedge resting on a semi-infinite
metal plate with plane waves such that there is no net diffracted wave

from the edge.
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APPENDIX 1

In this appendix we obtain an expression Ib for the integrals

over the branch cuts BO(=BO++BO_) and Bﬂ(=Bﬂ++Bﬂ2 and show that these

integrals grow exponentially as p-oo,

I = ( s(a)e-jpcos(a-¢) do + f S(Q)e—jpcos(a—¢) da
J

b
BO+ B0—

+ J s(a)e"jpcos(a'¢) do + J S(a)e—jpcos(a-¢) do

B'ﬂ'+ B';T_

(A1.D)

where B B B

0+, =0~ “m+’ and Bn

are shown in Fig. Al.1.

Ima. A
o 7/
L /A? S
-2 - // f”(/ T // / Re a

2
47 ,
2 Ha Y /
/ A v

Fig. Al.1 Branch cut contours BO+



By a suitable change of variable we may write Ib as

I, = f s(oye IPeos(a-0)y, ( S(_a)e-jpcos(a+¢)

b
BO+ BO+

. _ { ;C )
+ j s(a+ﬂ)ejpcos(u ¢) do - } s(—a+ﬁ)er 05 (0+9) do (A1.2)

BO+ BO+

Noting that s(-a) = s(o+7) we may write Ib as

I, = J s (@) [%—jpcos(a-¢) - ejpcos(u+¢{] da
B
0+

- f s(-0) [é-jpcos(a+¢) - ejpcos(a—¢%] do

BO+

= -2j [ s(a)e_JbSIna sin(acosa)do + 2j.f s(-a)erSlna sin(acosa)da
B B '

0+ 0+ (Al.3a)
where
a = pcosd . (Al.3b)
s(q) = Coswo. . Mesina ?Oswo. (Al.3d)
sina- 51nw0 M+sina 51na+51nw0
2 2 s
M= {n"-cos”a) {Al.3e)

and the sign of M must be chosen as shown in Fig. Al.1. Noting that
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only the second term in (Al.3d) will contribute to the branch cut

integral and choosing the proper sign for M we may write Ib as
the following sum of two line integrals.
3By
s [M|sina 1 -jbsina_.
Ib = 83cosw0 f : 3 sinor siny e sin{acosa)do.
0 n -1 o 0
, iBg
. + 8jcosy lMJ51na L erSlnasin(acosu)du
: : 0] 2 ¢ sinQ-siny
0 n -1 0
BO
- Q1 lM!shB 1 bshB .
= 8Jcosw0 f 5 TshBrsiny. © sin(achB)dB
n -1 0
0
i
. M|shf 1 -bshB .
- SJcost f 5 TshB-siny e sin(achB)dR (Al.4a)
p M -1 0
where chBO =n (Al.4b)

Since a and b are positiﬁe when 0 < ¢ < 7/2, it is immediately
clear that the first integral (Al.4a) grows exponentially as p>° while
the second integral converges for all p. We note that the diverging integral

corresponds to the unshaded branch cuts BO+ and B, -
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APPENDIX II

as given by (33a) by inverting

In this appendix we obtain s(a)
t(a,8) which is given by (32).
ch(gﬁ)—T(a)sh(gﬁ)
t(o,f) = ZShN}O_‘W/Z)B’ [1+T(0) ]sh2mB+[1-T(a)] shmB (A2.1)
s(a) = f t(a,8)e *Bag ' (A2.2)

may also be written as the sum of the following integrals.

s(a)
s(a) = f [t(a,B)+t(a,-B)]chaBdR - f [t(a,s)-t(d,-s)]shasds (A2.3)
0 0
After substituting for t(a,B) and t{a,B) we obtain
sh[(wO-swzas]{ch(ge)chas+r(a)shgeshas]
s(@) = 2 [T+ (@] [chiB+ATSh7 ds (A2.4a)
0
where
Lol-tle) cost; 0 < t<m (A2.4b)

A=3 1+T(Q)

Noting that
m T _ i i
2 {chzﬁcha8+r(a)shiﬁsha8] = [1+T(u)]ch’2 +a)8+[1—r(a)]ch(§--a)8
(A2.5)



we write s(a) as

[eo)

J Sh[($4-31/2)8] [ch(5 +a)B+2Ach (5 -0)B]
s(a) =

(ChTR+A) shuB a8
0

[>¢]

1 f sh[(¢0—ﬂ+a)6]+sh[(wo-zj_a)g]+ZA{sh[(wo—n-a)B]+sh[(¢0-2n+a)3]}
2

{chmB+A)shmR
0

.dB (A2.6)

which can be immediately put into the form (33a).
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APPENDIX III

In this appendix we transform s(a) as given by (33a) into the

form (36).
-1 1. i, N
s{(a) = 5 I(w0+a-ﬁ) + ZI(wO—a—Zn)+AI(wO a-ﬂ)+AI(w0+a 2m) (A3.1a)
where
-1 2 §(n-1) 26
1(6) = s 2sin —5 - {(1-A)sin >
(1-A")sinb |-
= 51 l;A + 1;A cos 6 - cos(6-6t/m) (A3.1b)
(1-A")sind .
and
A= -cos t (A3.1c)

We note that I(®) has a periodic and a nonperiodic component. Denoting

Sy as the periodic part of s(0) we obtain

-1/2 -1/2 1/2 A A
- + — - — + -
(1-A) 51nws 51nwd 51nwd smlps

1/2 l.'cosws 1 cosl,bd coswd costbS
T (1+A) 2 sinl,')S

i_sinwd * sinwd T A simpS
(A.3.2a)

where



Vg =Yg+ 0 | - (A3.2b)

S

by =¥, - a | (A3.2¢)
-1/2 L _ } 1

SZW(@) = {fA" QJ(SIde‘Slnws)d 1/2(c052a-cos2w0)

(1-A)

1/2
1. .. : . 1
- oA {?h—ia(posw551nwd + Coswds1nw;}%(c052a—c052w0)

- 2 o , 2 .
1/2 ‘{kZA +A—1)L251nacosw0)+(2A -A—1)51n2w01
2

cosZa—cosZwo J (A3.3)
1-A

The non-periodic part of s(a) is given by

+

s(@)-syp(a) = -siny_ siny,

1/2 {Eos{(ws-ﬂ)(l-t/ﬂ)] cos[(wd—ZW)[l—t/ﬂ)]
2

1-A

2Acos[(¥y=m) (1-t/M)]  2Acos[(¥_-2m) (1-t/m) ]}

—smlbd 51nws

2

(1-A )

1/2 cos(ws~¢%t/ﬁif) cos (¥ -wdt/EIEE)
B sing * siny

- + -
51nwd smlpS

2Acos(lpd -wdt/ﬁif) 2Acos(1yS -wst/ﬁzﬁfi}

-1/2 {;os(ws-wst/ﬂ+3t) Cos(wd'wdt/ﬁ%}
_ 2 siny * siny ‘
(1-A ) S d

= > {;Os(ws-wst/ﬁzgf)Sinwd+C05(¢d—Wdt/ﬁ)Sinwi}>/(COSZQ-C052¢O)

(1-A%)
(A3.4)
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where we have made use of (A3.1c) and decomposed the cosine products.

Upon further decomposing (A3.4) we obtain

s(@)-s, (@) = -—:léz—-{%ip(Zwo-wst/ﬁ:SE) - sin(za-wst/ﬁIEE)

(1-A)
+ sin(zwo—wdt/n) +'sin(2a+¢dt/w%}(éosZa-coszwo)
= -2 sin(Zwo—wot/ﬂ+3t/2) cos (at/m-3t/2)
(1-A)

+ cos(2a-at/m+3t/2) sin(wot/ﬂ-Bt/Zi} (cosZa-COSZWO)

-1
(1-4%)

{}sinZWocos(th/ﬁ-St/Z)f-c052¢Osin(¢Ot/ﬂ—3t/2)]cos&xt/ﬂ—3t72)

- —_— —1
+ [cos2acos (at/m-3t/2) + sin2asin(at/ﬂ-3t/2)]sin(wot/ﬂ-St/zyf(cosza—cosch

-1
(l—AZ)(COSZG-coszwo)

i

{}inZwocos(wot/ﬂ—St/Z)cos(at/ﬁZSt/z) +

sin2asin(wot/ﬂ-St/Z)sin(at/ﬂ-St/2{}

{

12 sin (¥, t/T-3t/2)cos (at/T-3t/2) (A3.5)
1-A

By adding (A3.3) and (A3.5) we immediately obtain (36).



APPENDIX IV

In this appendix we show that any branch cut free solution so(a),‘
to the functional equations (11a-11d) with ¢O = 3n/2 and ¢l =7/2,
must be periodic in o with period 2.

The functional equations are as follows:

s(@) = s(-a+3m) (Ad.1a)

(50 = s [s@es(] - 5 [s(@)+s (-a)] (A4.1b)
T{o

s;(C(@) = s, ((-a-m)) ' (A4.1c)

where (A4.la) and (A4.1c) are modified forms of (11a) and (11b) and
(A4.1b) is obtained by combining (l1lc) and (11d).

Let so(a) be any solution of (A4.la) with no branch points. Then

50(-a) = 50(a+3ﬂ) | (Ad.2a)

so(-a-ﬂ) = so(u+4ﬂ) {(A4.2b)

s, (5@) = —2 [54(@)-5,(@+3m)] + % [54 (@) +s, (0t 37 (A4.2c)
2t(a)

and
5, (5(-a-m) = ?E%T) [5,(@+47) -5 4 (0+T)] + —21—[so(oc+47r)+so(a+1r)] (A4.2d)
N
Since sl(;(u)) has two terms one involving tT(a) and the other
independent of T(a), we must equate these terms separately to the
corresponding terms in sl(z(-a—ﬂ) so that (A4.1c) is satisfied. This

results in the following two functional equations for so(u)



So(a) + SO(a+3ﬂ) = so(a+ﬂ) + so(a+4ﬂj (A4.3a)

and

so(aj - so(a+3ﬂ) - So(d+ﬁ) + so(a+4ﬂ) (A4.3b)
Taking the difference of these equations we obtain

so(a+3ﬂ) = so(a+ﬂ) (A4.3c)

which implies that SO(&) -must have a period 27 with respect to «.
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APPENDIX V

In this appendix we obtain the most general solution to the follow-

ing system of functional equations which are equivalent to

with ¢0 = 3n/2 and ¢1 = Tm/2.

s{a) = s(-a+3mM)
51(() = 3 [s(@)-5(-a)] + 3 [s(a)+s(-o)]

$;C (@) = s, (-o-m)
From (A5.la) and (A5.1b) we obtain the following relations.

s(-a) = s{a+3m)

s(-a-m) = s(a+dm) |

S E@) = 57 [s@)-s(er3m] + & [s()+s(a+3m)]
= o5 (D)5 (@ ~ (1-1)s(a3m]

5,€(-a-m) = 3¢ [(L+)s(asdn) - (1-1)s(om)]

Substituting (AS5.2c,d) in (AS5.1c) we obtain

(1+1)s(a) - (1-T)s(@+3M) = (1+T)s(0+4T) - (1-T)s(a+m)

which upon dividing by 2 (1+T) results in

%—-s(a) + Os{a+3m) = %_.5(a+4ﬂ) + Os (0+T7)

where

(1la)-(114d)

(AS.
(A5.

(AS.

(AS.

(A5.

(AS.

(AS.

(AS.

(A5.2

(AS.

1la)
ib)

ic)

2¢c)

2d)

2e)

2g)



Now we rewrite (AS5.2a) and (AS.2f) which are equivalent to (AS5.la) -

(A5.1c); as follows

s(a) = s(3m-0) : (A5.3a)

%-[S(d)—s(a+4ﬂ)] = 0fs(a+m)-s(a+3m)] (A5.3b)

We add and subtract s(o+2m) to the left hand side of the last

equation and write

%—[s(a)—s(a+2w)] + %—[s(a+2n)—s(a+4w)] = O[s(a+m)-s(a+3m) ] (A5.4)

Let

s(a)-s(a+2m) = g(a) ‘ (A5.5a)
so that (AS5.4) becomes

gla)+glo+2m) = 20g(o+m) (A5.5b)

We divide (A5.5b) by g(a+w) and obtain.

h(a)+1/h(a+m) = 20 (AS.6a)

where

h(a) = gla)/g(a+m) : (A5.6b)

Since ¢ is periodic, with period =, h(a) must be periodic of the
same period, satisfying
h+1/h = 2¢ (A5.7a)

or
2

h =~ - 2ch+l = 0 (AS5.7b)

We may write the solution to h as

2 +1q
h = 0t/6 -1 = costtjsint = eIt (A5.8)
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Now
it
gl@)/g(a+m) = e (A5.9)
We let
+3 .
g(0) = f(a)e JOt/T (A5.10a)
so that
+jat/m .
f(a)e _*jt
Sat/m - © (A5.10b)
fla+myeIH/ T |
and hence
f(a) = f(a+m) = Fﬂ(u) (A5.10¢)
Since (A5.5b) is linear in
£©) = F@e T4 6 e = g (o) 4 g,00) (A5.11)

Since (AS5.5a) is linear, s(a) is the sum of the particular solutions

of

s{a) - s(a+2m) = g1 (A5.12a,b)

E Ral ]

and the homogeneous solution of

s(a) - s(a+2w) = 0O (A5.12¢)
i.e. Hzﬂ(a), any function of period 27.
Consider

s(a) - s(o+2m) = gl(a) (AS5.12a)
and let

sa) = p(a)gl(a) (A5.13a)
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which gives

p(0) - plar2me 2t = 1 (A5.13b)

Now we make the substitution
r —.Zt -
p(a) = q(a)/(1-e77°%y (A5.14a)

which results in

q(@) - qas2am)e It <y LTIt (A5.14b
Let

q@) = 1 +k() (A5.15a)
giving

-j2t -j2t

1+ k() - e /“"[1+k(@+2m)] = 1-e (A5.15b)
and hence

k(@) = k(a+2me )2t | (AS-15¢)
Now let

K@) = m(a)el /T (A5.16a)
which gives

m(a)ed /T (w2 IO/ T (A5.16b)
whose solution is

m{a) = m{o+2m) = Mzﬂ(a) (A5.16c¢)
Therefore

- jat/w
) = Bty e 71 et/
(1_6—32%

4

\ N -Jar/w,
. Gﬁ(a)[1+N2W(m)e i ejat/ﬂ

- + H, (o) (A5.17)
(l_ej ) 2m
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which may be written as

s(@) = 3, (@) + F_(@e 0T, G (@)edt/T (A5.182)
where
Tpn@ = Hy (@) + Fr(@Mpq(0), Gy (N, (@) (A5.18b)
1e7J2t 0 g Gd2t
F (o) = Fﬁ(d)(l-e‘th) o (A5.18c)
and
G (@) = Gﬂ(a)(l_e+j2t) " (A5.184d)

e Nop

are arbitrary functions of period 2m, Fn’ G, are also arbitrary

Since Fw’ GTT are arbitrary functions with period T and M

functions with period m, and J is an arbitrary function of period

2w
2m. This follows from the fact that t is periodic in 0o with period
T.

.Equation (A5.18a) is the most general solution to (A5.3b). But

s(®) must also satisfy (AS5.3a), which means

= -jat/m = jot/m
Jzﬂ(a) + Fﬁ(a)e + Gﬂ(a)e
= J, (3m-a) + F_(~0) e IO/ M35 gy emiut/mr (3t (A5.19)
2m Ll T
so we require that
Jop(@) = J, (31-0) (A5.20a)
j3t

Fﬂ(u) = Gﬂ(—a)e (A5.20b)
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G (@) = F_(-aye™5t (AS5.20c)

Equations (A5.20b) and (A5.20c) are self-consistent. Now substituting

from Gﬂ in terms of F" from the last equation and letting

P (a) = F_(a)e %2 (A5.21)

we obtain

s(@) = J, (@) + P (o)) O3/, pw(-a)ej(%g'- Se/2) (AS5.22)
which may be written as

s(a) = JZW(a) + Peﬂcos(at/ﬂ~3t/2)+PO“ﬂsin (at/m-3t/2) (A5.23a)
where

Iy (9 = J, (31-a) (A5.23b)

and Peﬂ 1s an arbitrary even function of o with period W

and POTr is an arbitrary odd function of o with period .
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APPENDIX VI

In this appendix we examine the branch cut integrals (35b) and show

that, for the contribution from unshaded region to be zero, the functions

PeTr and POH must identically vanish. From (35b) we have

213, (0,9) = f s(aye PS80y,
B.
where
BO + BW 0< ¢ <
B =
Bn+BzTr T <Y < 3m/2
and
BO = BO+ + BO_
B_ =B +B
b T+ -
Bom = By * By
As we note from Fig. A6.1, BO+’

range 0 < ¢ < 7. In this range of ¢ we may write

213y (0,0) = By (0,0) + By (0.0)

where

Epp(0:0) = f s (o) 7008 () g

BO++Bﬂ-

and

(A6.1a)

(A6.1b)

(A6.1c)

Bﬂ_ are in unshaded region for the

(A6.2a)

(A6.2b)
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E, ,(0,9) J s(we  Pc0s (0= 4 (A6.2¢)

B0-+Bﬂ+

82v+

y

] 271 -
//// Re a
g
BZW-%

9

F}gure A6.1 Branch cut contours Bo+’ Bo—’ BW+. Bﬂ_, B27T+ and 82Tr

(@)
e
£

AN

AN
N
ii‘\

The most general solution to s(a) is given by {48)

at 3t ._ ot 3t
= — - == — - A6.3a
s(a) Jzﬂ(a) + Pen(a) cos(TT 2) + Poﬂ(oc)sm(TT 2) ( )

where Jzﬂ(a) is any periodic function, of period 2, satisfying the

relation
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Jzﬂ(a-+3ﬂ/2) = JZN(—a+3ﬂ/2) (A6.3b)

and Peﬁ and PO7T are arbitrary even and odd periodic functions,

Tespectively, of a of period w. t is defined by

cost= - %-[1-T(&)]/[1+T(a)] (A6.3¢)

We may choose sz(a) to be free of branch points, so that it does

not contribute to Eb(p,¢). Now let us examine the branch cut integrals

in unshaded region which are given by (A6.2b), and write

P cos(%}-- %;0 + Poﬂsin(%ﬁ-— %;J e IPcos (A=) 4,

Ebl(p,¢) = oT

!
ey,

0+ “m-

at _ 3t in (2t 3ty0 -3pcos(a-g)
j Pencos(TT 2) +P0Nsm(Tr 2) e do

0+

H

B

at t
f pewCOS(7F'+ 59 + P
BO

]
Oﬂsin(%§-+ %?; e+Jpcos(a+¢)da

(A6.4)

where we have made use of the periodicity of PeTr and P and transformed

om
the integral over BTr to an integral over B

0+°
In (A6.4) we do not see any possibility of the mutual cancellation
between the two integrals because of the different nature of the exponential
terms in the integrand. The only way in which Eb {(p,$) could vanish
1

for all p and ¢ is that the non-exponential parts of the integrands

be either identically zero or be free of branch point. Since t does have
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a branch point we conclude that the integrands must be identically zero

which implies that PeTr and P must separately vanish. We arrive

omw

at similar conclusions for the range T < ¢ < 3m/2.
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APPENDIX VII

In this appendix we find the most general solution to the following

functional equation.
£(¢) - £(r-¢) - RE(T+$) = 0 (A7.1a)

where

1 1
R = [sin¢- (nz—cosz¢)6]/[sin¢+(n2—cosz¢)2] (A7.1b)
Substituting for R and rearranging we obtain

£00) [sind + (n°-cos?0)? ] - £(1-4) [sind + (n>-cos%)]

+ £(7+¢) [sin(T+¢) + (nz-cosz(ﬂ+¢))%1 =0 (A7.2)
Lef
£ (6) = g(8)[(n>-cos?)? - sind] C(A7.3)
then
g(9) - g(m-9) + g(m+d) = 0 (A7.3b)

putting -¢ for ¢ we obtain

g(-9) - g(m+p) + g(m-¢) = 0 (A7.3c)

Adding (7.3b) and (7.3c) we obtain
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g(d) + g(-9) =0 (A7.4)

Hence g 1s an odd function of ¢.

Let
g(®) = [ sind¢ FQ)dr (7.5)
0

and substituting in (7.3b) we get

f f(A) [sinip - sinA(m-¢) + sinA(m+¢)] dx = 0 (A7.6)
0
which gives
J f(A) (1+2cosAm)sinAgdr = O (A7.7)
0
Hence cosim = - %; X =2n=+2/3 | (A7.8)
and
g¢) = 7§ A sin 2¢(n+1/3) + y B sin 2¢(n-1/3) (A7.9)
0 0

which, after combing the terms, may be rewritten as

- cos 22 ¥ ¢ sinzp + sin 2 ' A7.10
g(¢) = cos 3 g C,sin2y + sin <=} D _cos2np (A7.10)

or~1 8

The series in (7.10) represent odd and even periodic functions of ¢

with period 7. So that g(¢) 1is given by
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S P sin 2 2
g(9) Feﬂsm 3 i FOfrcos 3 (A?.lla)

and

2

£(¢) = [(DZ-C‘052¢)1/2 -5in¢] < F _sin 232 + Foﬂcos —32 (A7.11b)

et
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APPENDIX VIII

In this appendix we obtain a particular solution to equations (67a)-(67d)

using the t-transform.

Defining t(a,B), tl(a,B) to be the transforms of s(a) and sl(g(u))

and continuing the represehtation s(a) = t(a,B) beyond the pole at

a = wo, we obtain the followinghgystem of functional equations in t

and t_.

1
By -8By
[t(a+m/2,8) + e O]e"Bﬁ/2 = [t(-0+m/2,-B) + e O]GBW/Z (A8.1a)
t,(@,B) = —tl(—ot,—ﬁ)e'TrB (A8.1b)
t(a,p) - t(-a,-B) =t(@)[t; (@,8)-t, (-a,-B)] (A8.1c)
t(a,B) + t(-a,-B) = t (@,B) + tl(-a,—B) (A8.1d)
The first of these equations may be transformed to

t(,8) = t(-a+m,-B)e ™+ 26"/2 sh[8 (/291 (A8.2a)

Eliminating ty from the last three equations we obtain the following

relationship between t(a,8) and t(-o,-B).

-e
—AeﬂB

|

t(-a,-B) = t(o,B) (A8.2b)
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where

- - 1-T(a)
A= cost2 = T7(a) (A8.2¢c)

Combining (A8.2a) and (A8.2b) we obtain the following single functional

equation for t(q,B).

-1B
t@,8) = felwm,8) + ze“B/Zsh[s(wo-n/z)]} i—;ﬁ* (A8.3)
which has the following periodic solution.
= 9.TB/2 p(a,B)

t(a,8) = 2™ shiB(yy/2)] (Rt (A8.42)
where p (0,8) = (¢ ™-1)/(A-e"P) (A8.4D)
Upon simplification we obtain

1+) ) si 2)-{1-X)ch » 2
t(8) = shB(p,n/2)] (EASREUZANAET/D) -y
We obtain s(a) by inverting (A8.5)
s@ = [ tas)e %
= f [t{a,B)+t(a,-B)]chaBdR - [[t (a,B)-t (o, -B)]shaBdB (A8.6)
0 0

Substituting for t(a,B) we obtain
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H

(1+k)sh[8(w0—w/2)]sh(Bﬂ/2)chaB+G—k)sh{B(wO—W/Z)]ch(ﬁB/Z)shuB

s(@) = ChTB—X d8

N
© e 8

h[B (¥-1/2) | sh[8 (7/2+) ] +Ash [ (¥ -7/2) ] sh{8 (1/2-0) ]

1]
(3%
o 8

chmB-A dp

o« W P w

ch[B(¥y+a)]-ch[B (¥ -a-m)] ch[B(¥y-0)]-ch[B (Y +a-T)]
) dg + A dB
chmf-A B chmB-A
’ ’ (A8.7)
We make use of the following integral relationship [37]
T a(m-t,)
sin[———F% ]

chax B
ch’rrx—cost2 dx = Sintzsina A (A8.8)

0

and obtain

s(a) =

sint SIn (P, +a) * sIn(,-a)

) {sin[cw0+a)cn-t2)/n] sin[@O—a—ﬂ)(ﬂ-tz)/ﬂ}}
2

+ - - + 0
51nt2 51n(¢o-a) 51n(wo+a)

cost2 {sin[(tpo—a) (mt?/ﬂ] sin[(xp0+oc—‘rr) (ﬂ—tz)/ﬂ]}
(A8.9)

sl(E(a)) is obtained through the relation

;
o - R <o) s5.10
J
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APPENDIX IX

In this appendix we derive the functional equations (94a)-(94d).
The branch cut structure in c-and C-planes is shown in Fig.3.15. We
introduce a small amount of loss factor in the dielectric constant of the
medium so that the branch points are slightly displaced from the real
axis in the a-plane. When the branch cuts are defined as in Fig3.15,

t(a) and T(a) satisfy the following relations.

L) = Z(-o) : (A9.1a)
C(a+T) = -T(o)+T : ) (A9.1b)
T(@) = -1(-a) (A9.1c)
T(0+T) = -T(a) | (A9.14)

We define the fields E and El as in (92a) and (92b) , and

write

2mjE(P,9)

i

f s(a+d)e IPCO5%y,
Y++Y_

f [s(0+¢)-s (~a+p)Je IPCOSyy (A9.2)
”

+

For the field El(p,¢) in the dielectric we write

Zn‘JEl(p,q)) = f sl(C+¢,)e‘JpnCOSCdg
r +T

+ .

| [51@+0)-s, (-cep) o7 IPRe0E g
r

+
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= [ T(@) [s) (£+6)-s5; (-c+0)]e I090%%q (A9.3)
v

+

Now we obtain expressions for the ¢-derivatives E'(p,¢) and E;(p,¢).

2TIE(0,0) = { s(a)e IPCos(@-9) 4, (A9.4)
Y44

C2hE (0,6) = | sin(e-0)s (e 17000 (0

Y+
= fsinas(a+¢)e—jpcosada'
J
= ! sin[s (o) +s (-a+d) Je I POy (A9.5)
Y+ :
2TIE, (0,9) = f 5, (e PReos -0y, (A9.6)
T+¢

(:%EJEi(O,¢) = f nsin(C-¢)51(C)e-jpncos(g_¢)dc
+¢

nSinCsl (5+9) e'jpl'ICOstC
nsinC[sl(C+¢)+sl(_C+¢)]e'jOnCOSCdt

-jpcosay

= f sina[sl(C+¢)+sl(—c+¢)]e (A9.7)
¥
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where we have made use of the relation T(a) = sine/nsinz. Using the relations
(A9.2), (A9.3), (A9.5), and (A9.7), and enforcing the boundary conditions

at ¢ = 0,*T/2 we obtain the desired functional equations. By equating

the field E(p,$) to zero at ¢ = m/2 gives (94a), and by equating E(p,0)

to El(p’o) and E'(p,0) to Ei(p,O) we obtain (94c)‘and_(94d). By equating

Ei(p,—ﬁ/Z) to zero we obtain

5, (6-m/2) = - 5, (-C-7/2) (A9.8)

which is equivalent to

$1(&) = -s;(-zm (A9.9)
or

$;(€) = -s; (™M (A9.10)
Now we make use of (A9.1b) and write

$1(=%(®)) = -s, (-T(a*m)) (A9.11)

which is same as (94b).
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APPENDIX X

In this appendix we attempt to obtain a solution to the functional

equations (94a)-(94d) which we reproduce here.

s{a+m) = s(-a) (Al10.1a)
$1(-2) = -5, (-z(0+m)) (A10.1b)
@501 = s, (@-s,(-0) (A10.1c)

S(@)+5(-0) = 5, (£)+s,(-0) : (A10.14)

From (A10.1c) and (A10.1d) we have

s;(-¢) = 51?[(1”)5(—0&)-(14)5(00] (A10.2a)

and

s)(-2larm) = 31 [(1-D)s (amm) - (1+7) s(avm) ]

= % [(A-1)s(a+2m) - (1+7)s (a+m) ] (A10.2b)

where we have made use of (A9.1d) and (Al0.la). Substituting

the last two equations in (Al10.1b) we obtain
(I+t)s(a*m)-(1-1)s(a) = (1-T)s(a+2m)-(1+T)s (a+) (A10.3)

Dividing (A10.3) by (1+T) and rearranging we obtain
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As (0) =5 (0+T) = s (0+T) -As (0+2T)

where
A= (1-1)/(1+1)

Dividing (Al0.4a) by VA we have
A s(@) - - sem = L s@Eem) - A s(oe2m)
VA YA

Noting that
Alo+m) = 1/
we have

P(a)-P(a+m) = P(a+m)-~P (a+2m)

where
P(a) = vAs(a)
Let
Q(a) = P(a)-P(o+m)
then
Q@) = Qloxrm) =Q (a)

where Qﬂ(a) is an arbitrary function of o with period .

Substituting (Al10.7b) in (Al0.7a) we have

«

P(a)-P(atm) = Qﬂ(a)

Therefore the most general solution to P(a) is given by,

P(a) = F (0)+aG (o)
50 that
qw=[%mﬁwﬁmyﬂ

(A10.4a)

(A10.4Db)

(A10.5)

(A10.6a)

(A10.6b)

(A10.6c¢)

(Al10.7a)

(A10.7b)

(A10.8a)

(A10.8b)

where Fr, G, are arbitrary periodic functions of o, with period 7.
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But s(a) must also satisfy (Al0.la). We decompose FTr and Gﬂ into

their even and odd parts and write

Fﬂ(a) = Fe(a) + Eo(a) (A.10.92a)
and
Gﬂ(a) = Ge(a) + Go(a) (A10.9b)
Then
; .
s(-a) = i?e(a) - Fo(u) - aGe(a) +aGo(a)~> VA (AlO.lOg)
and

\

s(a+m) = {:Fe(a) * Fy(@) +al6 () + G ()] +1[G () + G (@]} VA

(A10.10b)
Now to safisfy (Al0.1la) we must have

ZFO(a)+2a Ge(u)+ﬂ[G¢(a)+GO(a)] =0 ; (Alo.11)
which requires that

Ge(a) =0 “ (A10.12a)

- -2 o)

and GO((X) = FO((X) (A10.12b)
so that

s(a) = [Fe(a)+(1-2a/n)Fo(a)]//x (A10.13)
which may be written in the following form,

s(a) = [pe(a)+(a_w/2)p0(a)]//x (A10.14)

where Pe and PO are arbitrary even and odd periodic functions of «a with

period .
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Now we must verify if the resulting functions sl(c) and sl(-g)
are consistent.

From (A10.2a) we have

F )
1 } 2 2 !
$,(-¢) = 5;-\/1—r [Pe+(a+ﬁ/2)PO]—/1-T [Pe+(a-n/2)PO];
. J
ﬁ(l—Tz)2
5T Pple) (A10.15)
and ~
5,(2) = 5= «%(ur)s(a)-(l-r)s(-a)
3
/2
=1 Jd+1)
= g [P (e-/2)P
21 (1_T)% e ! 0]
3
/2
(1-1)
- 1 [P +(a+m/2)P,]
(1+T)%~ e 0
-2 [Pg+aPy] - %—-1i33—~z-P (A10.16)
‘/1_1-2 T (1~T2)<2 0
Equations = (Al0.15) and (Al0.16) are inconsistent and thus it appears

that there is no solution to the equations (Al0.la) - (Al0.1d).






AN ANALYSIS OF THE METHOD OF
ALEKSANDROVA AND KHIZHNYAK FOR INVESTIGATING A SOLUTION
TO THE PROBLEM OF DIFFRACTION BY A RECTANGULAR DIELECTRIC WEDGE

ABSTRACT

A detailed study of Aleksandrova and Khizhnyak's method of obtaining a
solution to the pfoblem of electromagnetic plane wave diffraction by a
rectangular dielectric wedge . is made. The spatial integrals involved in
deriving the integral equation by their method are systematically carried
out in full detail and the implied convergence criteria are thoroughly
discussed. Besides pointing out some typographical and expository errors
and a mix up on the sign convention in the time variation in their paper,
it is shown that Aleksandrové and Khizhnyak omit some terms which, if
properly’accounted for, would lead to an integral equation that is not only
different from the one they have solved but is alsc not amenable to solution
using presently known standard techniques. A formulation using a modified
contour of integration was attempted with a view to obtaining a singular
integral equation for the weighting function that migh} be amenable to solution,
but the attempt did not prove to be successful. It is concluded that the
problem of wave diffraction by a rectangular dielectric wedge has not been
solved by the method under review, and that this conclusion must hold also
for the later work on arbitrary wedge angles using the identical method -

though since no details are given no detailed analysis can be made.
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4.

1 INTRODUCTION

The problem of wave diffraction by a perfectly conducting metallic
wedge has been solved [1;2]. The analogous problem of diffraction by a
wedge with impedance faces has also been solved [3-10]. A generalization
of this solution to the case of dielectric wedge, either free or resting
on a semi-infinite metal plate, eﬁtails serious mathematical difficulties.

Apart from being a classical boundary value problem the diffraction
of electromagnetic waves by a dielectric wedge is of particular interest
in the theory of dielectric wave guide matching [11,12], radio propagation
over the earth [13,14], and in radar, for the effect of scattering by
dielectric radomes [15]. An analogous problem to that of the dielectric
wedge is encountered in the field of acoustics [16] and in seismological
situations involving the behavior of Rayleigh waves at the boundary between

the ocean and the earth [17,18]. It is not surprising, then, that consid-

‘erable research effort has been directed towards the problem of diffraction

by a dielectric wedge [19-30].

The ﬁroblem of electromégnetic diffraction by a dielectric wedge, with
or without a semi-infinite metal plate on one face, is a special case of
scattering by sectoral media. The specific problem of the diffraction of an
E-polarized plane wave by a right angled dielectric wedge, whose refractive
index is limited to a certain range of values, has been solved theoretically
by a number of authors. Radlow [19], Kuo and Plonus [20] and Kraut and
Lehman [21] offer solutions to the probiem by a generalization of the
function theoretic method of the Wiener-Hopf technique [22] from one to

two complex variables. However they do not simplify the final results and



as remarked by Kuo and Plonus [20] i'+..the solutions are too complicated

to be used practically". Kraut and Lehman [21] claim that Radlow's solution
[19] is incorrect. Kurilko [23,24] obtains a solution in the form of a
rather complicated system of Fredholm integral equations which have to be
solved by numerical techniques. Latz's [25-27] final result ends up as an
infinite system of Hilbert singular integrals which he states are suitable
for numerical computation. However he does not actually obtain any explicit
results of practical use.

Karp and Solfrey [14] have used an approximate technique known as the
Raleigh-Gans-Born (R-G-B) approximation [28], to solve the problem of a
dielectric wedge, whose refractive index is near unity, placed on a perfectly
conducting infinite plane.

Rawlins [29] formulated the boundary value problem, of the diffraction
of an E- or H-polarized electromagnetic line source by an arbitrary angled
dielectric wedge, and obtained a éolution in the form of a Fredholm integral
equation. Using a standard perturbation technique he obtained a Neumann
series solution, to the integral equation, which converges when 1 <n < V2
where ﬁ is the refractive index of the dielectric wedge.

A.number of years ago Zavadskii [30] proposed a method, which, he claimed,
would give exact analytic solution to a class of two-dimensional wedge
diffraction problemsincluding the problem of diffraction by a rectangular
dielecﬁric wedge resting upon a semi-infinite perfectly conducting plate.
However the solution obtained by his method contains branch cut integrals
which give rise to waves "diverging" at infinity in complete violation of
the radiation condition. 1In an earlier work [31] we made several attempts
to modify Zavadskii's method so as to remove these drawbacks but did not

meet with success.



Recently Aleksandrova and Khizhnyak [32], hereafter referred to as
AK-1, claimed to have obtained a rigorous solution for the problem of
plane-wave scattering by a rectangular dielectric wedge and in a later
paper [33], hereafter referred to as AK-2, to scattering by a wedge of
arbitrary angle. Their method seems to be quite appealing. They start
with the integral form of Maxwell's'gggations and reduce the problem to a
singular integral equation which lends itself to exact solution. However,
in their first paper, on scattering by a rectangular dielectric wedge [AK-1],
the authors omit numerous details, supposedly for the sake of brevity and
in their later paper [AK-2], on scattering by a dielectric wedge of an
arbitrary angle, they give only the final expressions for the total electro-
magnetic field with a statement that the method used is the same as in
[AK-1]. Hence it was felt that, in order to make use of their results, a
thorough understanding of their work on the rectangular dielectric wedge
is essential. While doing so we found that, besides a number of typo-
graphical and expository errors, the authors' expression for the incident
wave has the wrong sign in the exponent to start with. Further, in obtain-
ing the singular integral equation the authors ignored some terms which,
if properly accounted for, would make it impossible to obtain a solution.
In this repert we give a detailed exposure of these discrepancies. We
looked at several possibilities of modifying their approach with a view
to obtain a singular integral equatioﬁ that can be solved using standard
techniques [34,35]. Among these methods a scemingly promising approach,
as described in this report, was to seek the diffracted fields in the
wedge in the form of a weighted plane wave integral on the real axis of
the complex t-plane. However this method also failed to give the desired

singular integral equation for the weighting function.



In section 4:20f this report we give a brief account of their method
and point out the discrepancies in their evaluation of the integrals and
the interpretation of the residues. In section 4.3 we start with the
correct expression for the incident wave and systematically reduce the
integrals involved to the desired form and show the missing terms in their
integral equation. We conclude that if these terms are properly included
the resulting equation is.not amenable to solution using techniques known
to us. The finer details involved in proper evaluation of the spatial
integrals, which are not mentioned in [AK-1] are given in appendices.

In section 4.4we give a brief account of our modified approach to this
problem. Conclusions are given in section 4.5. In our analysis we will
make frequent reference to their paper on rectangular dielectric wedge
[AK-1], and equation numbers quoted from it will be annotated with the

letters 'AK'.



4.2 FORMULATION OF DIELECTRIC WEDGE PROBLEM USING THE INTEGRAL

FORM OF MAXWELL'S EQUATIONS

4.2.1 The integral form of Maxwell's equations
Maxwell's equations, in integral form, give the electric field E and

the magnetic field H everywhere via the equations

E(D) = B (@) + — (grad div + k%) { (e-E@E") £(|F-7'])dz!
0 4T v

« 2K f -DHEEDYE(F-7)dF" (2.1a)
4m v

HE = H @ + —%:(grad div + k%) f w-DAEY (|53 )as'

4 \
) %%-curl J (e-DEFEH£(|F-2])dr’ (2.1b)
Vv
ik |E-7'
£f(l7-3]) = 2 (2.1¢)
|£-3'|

where k = w/c; € and | are the relative dielectric and magnetic constants
of the medium; Es and ﬁ; are the electric and the magnetic fields in the
incident wave; V is the volume of the scattering body and a time dependence

-iwt .
of e is assumed.



The first feature of the solution of (2.1) is that the internal field
in the medium (re V) is directly determined through the unperturbed field
of the incident wave. The scattered field for (r3V) is determined through
the known internal field by the same relations (2.1).

The second feature is that a formal expression for the desired field
in the medium is the sum of the fields of the unperturbed incident wave
and of the waves formed by the integral terms [36]. In evaluating all
integrations this term should yield a series of terms including a wave with
a propagation constant coinciding with that of the unperturbed incident
wave. In accordance with the Oseen-Ewald "extinction principle" [37-39]
this wave must exactly cancel the unperturbed incident wave. By imposing
this condition one obtains the amplitudes and the directions of propagation

of the penetrating plane waves.

4.2.2 Plane wave scattering by a rectangular dielectric wedge
‘We now consider the specific problem treated by Aleksandrova and

Khizhnyak i.e. the scattering of a plane electromagnetic wave

ik, y+k_ .z)
B (F) = E_ e 207 30 (2.2a)

_ ilk, . .y+k,.2)
H () = H_ e 20" 730 (2.2b)

by a rectangular dielectric wedge (Fig.4.l) with a relative permittivity
€ (:nz), and a relative magnetic permeability of unity. The incident wave

is polarized in the x-direction so that E = (EX,O,O) and H =(0,H ,Hz).

Y



| INCIDENT
RAY

Fig. 4.1 Geometry of the rectangular dielectric wedge showing the
incident ray and the ray refracted at the face z = 0.



From (2.1) we then have the following fundamental integral equation for the

determination of the internal fields (TeV):

2 ik| F-F'|
- - k (E-l) . —t e —1
E(r) =E, (¥) + ——— f E{(r) — d7 (2.3)
X ox 4y v X if-fW
The magnetic fields are given by
ik|F-7'|
H (f) =H (7) - KE-1 29 f E (7" & dF" (2.42)
y oy 4t dz v EXY
: ik|T-7']
H(F) = H_(F) + KED 2 j E(F) & 45 (2.4b)
Z oz 41 ay v X If“f'l

where the region of integration V is the first quadrant (-@ < x < o,
y >0, z > 0).

A solution to (2.3) is sought in the following form, which consists
of a superposition of a plane refracted wave and an unknown wave from the

*
edge (AKS5) :

1(k,y+k,z) . f Jity+isz

- F(oyat | (2.5a)

Ex(f) = Ae

Aleksandrova and Khizhnyak use the same functional notation for the
weighting functions in t- and n-planes which is potentially confusing.

We denote the weighting function in t-plane by f£(t) to distinguish it
from f(n).
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where

2 2 2
R 2.5b
k2 + k3 ek ( )
tz +'s2 = €k2 (2.5¢)

and the contour a, as implicitly defined later, is shown in Figa42. 1In
this report we will only consider the case where the incident wave is in
the fourth quadrant (3#/2 < ¢O < 2m) and illuminates the face ¢ = 0 of the
wedge.

To evaluate the integral on the right-hand side of (2.3) the following

representation for the Hankel function is used.

ik|F-%'|
. . 2 2
J e dx' = 7i Hél)(kféy—y') +(z-2")%)
co | E-T|
_ i { exp[in]y-y L+1Vlz-2 14, @6
-0
where
2 2 .
v=Vk” -w" ; Imv >0 when w is real . (2.7)

In doing so it is assumed that the surrounding space is characterized by a
small loss [k = ko(l + 18); 6 > 0] which ensures convergence of the integrals

at infinity [exp(iky) = 0 as y - «].
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Ty

Fig. 4.2 The contour of integration a in the plane of the complex
variable t.

> Re



We now write

RENE '
f E(') —————— dr' = 5,(0,0) + 5,(0,9)
|z-7'] '

where, after integration over V (Appendix I), we obtain

ad iwy+ik32 ®

wn
1]

o eiwy+ivz
iA 32 dw J

! (k) (2 v7)

-0

[o o]

A I

So far we are in full agreement with Aleksandrova and Khizhnyak.

~ ( d iwy+isz iwy+i
i y+ivz
. foyde jf 2™ , e
S, =1 j j dw :ﬁi;:ETTE:VT'dw

3

dw
vk, 0) (K, -v) J

(2.8a)

(2.8b)

(2.8c)

However it must be pointed out that the expressions for S1 and S5, as given

by (2.8b) and (2.8c), are true only if the following conditions, (Al.4)

and (Al.6), are met for Wreal and tea.
Imk, > 0
Im Kg + v) >0
Imt > 0

*
Im{(s + v) >0

*

This condition is not met on &. However as shown in Appendix IV the

(2.9a)

(2.9b)

{(2.9¢)

(2.9d)

expression (2.8c¢c) for SZ is still correct provided that the contour o is

deformable, into a cofjtour on which this condition is met, without crossing



4.2.3 Transformation to &- and n- planes
The following transformations are introduced which convert the w-

and t-plane integrations into contour integrals in &- and n- plane

respectively,
w =k cos § (2.10a)
v = k sin § (2.10b)
t = nk cos n : (2.11a)
s = nk sin n {(2.11b)

giving equations (AK9) and (AK10)

_ -iA {:2 J_exp[ikp(cos £ cos ¢+ n sin ¢ sin ¥)]sin & 4§
517 72 2 .2 . 2
k E (n cos Y -cos &) (n"sin"Y -sin"E)
1‘
explikp cos(&-¢)]1dE .
h J (n cos Y -cos &) (n sin Y -sin &) (2.12a)

F

2

s - 2i J £n)dn einkp sinn sin¢ fexp[ikﬂ cos & cos ¢ Jsin & d§

. A
2 kz (n cos n -cos E) (nzsmz n-sin E,'
G Fl
0
i f exp[ikp cos (£-9)1dE 2.12b ¥
- k2 J!’f(n)dn J (n cos n-cos §)(nsinn -sin §) ( :
G0 F,

*

The term sin £ is missing from £-integral over F. in (AK10).

1
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where
f(n) = %(t) = g(nk cos n) {(2.12¢)
and
k2 = nk cos ¥ o (2.13a)
k3 = nk sin ¢ (2.13b)
y = p cos ¢ (2.143a)
z = p sin 6 (2.14b)

The contours Fl’ F2’ and G are shown in Figs. 3a and 3b and Go 1s shown in

n/2 + ie

/2 - iW) , are defined

Fig.44. The contours a and G_, which depend on G (_

below (see Appendix II for a discussion about the choice of the contour G):

Y
1

cosh™! (1/cos Er); sin g» sinh Eiji 0 (2.15a)

for E_ + 1. = E€G

by i
Cosﬁl( Coi ° ) = NE G, when Eeg (2.15b)
nk cosn = t€ & when NE& GO {(2.15¢)

The shaded portions inFigd.3a and Fig.4.3b correspond to the regions where

Imcos £ > 0 and Im cos (£ - ¢) > 0 respectively.
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cos™! (i/n)

2

S|

/
-1 -7/2 (0] I
|
i
|
i
I
|
{
|
I
|
}
{

Fig. 4.4 The contour of integration GO(GO+ + Go—\] in the plane

of the complex variable n(§ = 0).
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4.2.4 -Deformation of contours in the E-plane
The crucial step, in Aleksandrova and Khizhnyak's method, of obtaining
a singular integral equation, involves the closing of the contour Fl at

infinity and deforming FZ onto G. In what follows we will make a careful

examination of these steps.

4.2.4.1 Reduction of integrals”in Sy

Let us consider S1 as given by (2.12a). According to Aleksandrova and
Khizhnyak the first term in S1 gives rise to poles at cos El =1 cos Y and
sin 52 = 1n sin Y and the second term in Sl gives rise to poles at cos El =
n cos Y and sin 52 = n sin Y. They seemingly, conclude that the residues,
at sin Ez =1 sin Y, in the first and the second terms of S1 cancel each

other, and write down the following expression (AK11l) for Sl’

2mA } 2 exp [ikpn cos (¢-9)]

S =
1 k2 (n2_1)
exp[ik(ny cos y+ ¢4—n2 coszw z) ]
{n sin ¥ —/é—nzcoszw) Vé—nzcoszw
. i [ 5 A explikp cos(¢-£)dE ’ §§_5. o < om
k"(n cos Y -cos £)(n sin ¢ -sin &) °

G

(2.16)



where the first and second terms in (2.16) correspond to residues at
cos gl = n cos Y in the first and second terms of (2.12a). Further, they
claim that if A and § are given by [equations (AK18) and (AK14)]

2EO sin ¢o

A= n sin Y+ sin ¢O (2.17a)

n cos Y = cos ¢o (2.17b)

then the first term gives rise to a wave which is exactly equal to the
refracted wave A exp[ikzy + iksz] and the second term gives rise to a wave
However there

which exactly cancels the incident wave Eoexp [ik, .y + ik

20 3021

are several inconsistencies in their statements, as described below.

i) With the time dependence of the form exp[-iwt] the correct expression
for the incident wave, in the fourthAquadrant,.is given by exp[-ikp cos (¢—¢0)]
with 3n/2 < ¢o < 2m. Since from (2.7) Imv > 0, the square root expression
k.Vl-nzcoszw, in (2.16) must be interpreted such that it has positive

imaginary part. This in view of . (2.17b) and the fact that sin ¢o is

negative implies that kl[i - n2 coszw = -k sin ¢0. Consequently, the second

term in (2.16) takes the form
constant X exp [+ikp cos (¢ + ¢O)]

which cannot cancel the incident wave.

ii) When k, and k; are given by (2.13) [equation AK8] the first term
in (2.5a) [equation (AKS)] becomes A exp [+inkp cos (¢ - ¥)] which is not the
correct éxpression for the wave refracted at the face ¢ = 0. The correct

expression must have a negative sign in the cxponent. This might lead us to
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suspect that the time dependence that they used is actually of the form
e+iwt. However this will not account for the discrepancy (i), regarding the
extinction wave. Also the far field diffracted wave that results from their
solution has a space variation of the form exp [+inkp + iﬂ/4]/vqﬁa;.which
“would be an incoming cylindrical wave if a time dependence of exp [+iwt]
is assumed. More importantly the type of Green's function wused in (2.3)
implies a time dependence of e_iwt. Hence we rule out the possibility of
the exp [+iwt] time dependence and conclude that their expression for the
refracted wave is incorrect.
Since they do not explicitly state the values of k20 and kSO one may still

use (2.2) [equation AK2] to represent the incident wave provided that kZO

and k30 are interpreted as

k20 = -k cos ¢o (2.18a)

ot
1
1}

30 -k sin ¢0 » (2.18b)

iii) Matters will not be resolved by simply taking k2 and k3 to be

[contrary to equation AKS8]

P
I

2 -nk cos P (2.19a)

e
I

5 = -nk sin ¥ (2.19b)

because, with ¢o and hence ¢ being in the fourth quadrant, k, will now have
a negative imaginary part which is in violation of a necessary condition
{(2.92) for obtaining (2.8b). Newvertheless kz and k3 must be given by (2.19)

so that EX(EU as given by (2.5a) will contain the correct refracted wave.



Later in section 4.3 we show a way of getting around these difficulties,
which involves the decbmposition of the y-integral in S1 into two integrals.
We will find that the result would not only contain the correct refracted

wave but also the correct extinction wave as well.

4.2.4.2 Reduction of integrals in s,
Aleksandrova and Khizhnyak write down the following expression for 52
[equation AK13] without any clear explanation, except saying that '"We consider

the singularities in S2 in similar fashion...",

S, = —5—:%K~——‘J exp[inkp cos(n-¢}]}£f(n)dn
k"(n"-1) GO
i . : f(n)dn
- ;__-J exp[ikp cos(£-¢)dg j (n cos n-cos £)(n sin n- sin &)
G G
)

(2.20)"

where in the last integral, as pointed out by them correctly, the order of
integration is interchanged in accordance with a corollary to the Poincaré-
Bertrand formula [34].

Their contention,seemingly, is that when F1 is closed at infinity and
F2 is deformed into G the first double integral in (2.12b) gives rise to
two residues at the poles n cos n = cos § and n sinn = sin & and the second
double integral gives rise to a residue at the pole n sin n = sin £ and a

singular double integral which is the second term in (2.20). The first integral

*
The negative sign in front of 4w is missing in their paper, which we

believe is a typographical error.



in (2.20) corresponds to the residue of the pole n.cos n = cos §. Appar-
ently they conclude that the residues due to poles at n sin 1 = sin £ in
the first and the second terms of (2.12b) cancel each other. However a
careful analysis, given later, shows that this is not true. Further, since
G is a singular path (cos £ = n cos n when ne:GO and £ €G) one has to give
due regard, to the pole cos £ = n cos n, when deforming F2 onto G. In
point of fact one must add a term»cdr;ésponding to half a residue, due to
this pole, so that the remaining singular double integral may be legiti-
mately ipterpreted as a Cauchy principal value integral.

In the next section, afte? obtaining the correct expression for Sl’
‘we go on to consider the above mentioned points in detail and show that
the expression for S2 as given by (2.20) is incorrect. The correct expres-
sion for S2 will be shown to contain additionai terms one of which corres-
ponds to half a residue, due to the pole cos £ = n cos 1, and the rest of
the terms arising due to the non-cancellation of the residues corresponding

to the poles sin & = % n sin n in the first integral and the pole

sin €& = n sin n in the second integral in (2.12b).
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4.3 CORRECTED EVALUATION OF THE VOLUME INTEGRAL

Consider the volume integral (2.8a) which is reproduced here for conven-

ience.

ik |F-5'] (3.1)
E(r') & 45" = S, * S,
v 5-5"| |

where V is the volume of the dielectric wedge and E(r) = Ex(;) is given by
{(2.5a). S1 and 52 represent the contributions to the integral from the

first and second terms of Ex in (2.5a). Hence

S1 dr' (3.2a)
Vv lf—f']
and
ity *'+isz' ik|F-7'|
e ~ e
SZ = ‘{ j S f(t)dt — dr! (3.2b)
V o lr'r l

Now, we will consider S, and S, separately.

4.3.1 Derivation of an expréssion for S1 containing the correct refracted
and the extinction waves
Keeping the discussion in the prévious section in mind let us reaffirm
that, with an assumed time dependénce of the form exp [-iwt], and with
EO(;) and EX(E) being given by (2.2a) and (2.5a) respectively, the constants
k20’ k30’ k2 and k3 must satisfy equations (2.18) and (2.19) which are

reproduced here,
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k20 = -k cos ¢o (3.3a)
k30 = -k sin ¢0 (3.3b)
kz = -nk cos ¥ (3.4a)
k3 = -nk sin § ~ (3.4b)

where A and Y are related to ¢O through (2.17), and with the implication that
Y as shown in Fig.41 is in the foufth quadrant (31/2 < ¢ < 2m).

Now, we write Sl as

© - | S '
ik,y +ik_z > >
= AJ( dy'j dz' e 2 {ri H(El) (k/[y—y') +(z-27)7)}
° 0 (3.5)
which may be split into the following sum,
S1 = S10 + S11 (3.6a)
where
< < ik, y'+ik, z' 1 5 —
S10 = AJ dy'f dz' e 2 3 {ri Hé )[k/(y—y') +(z-2)7)}
~% 0 (3.6b)
and
2 P ikzy'*"ikszl ) (1) V/ 5 5
§;; = A { dy' f dz' e tmi HS (kV/(y-y ) +(z-2")")}
-—;o 0 (3.6(:)



510 - = 412r E e-lkp cos (¢-9,) A e—lnkp cos (q>-(p)f (3.72)
k“ (n°-1) °©
" iwy+ik.z " iwy+ivz
i e 37 dw e
S = iA 2[ _{ — — du (3.7b)
11 J,-w (k§+w2_k2) J v (ky-w) (k4-v)

Let u$ note the physical significance of decomposing S1 into two parts namely
S10 and 511' The term SlO represents the integral over the half space

(z' > 0) and S11 represents the negative of the integral over the quarter
space (y' < 0, z' > 0). If we were to consider the problem of plane wave
incidence on a dielectrié filled half space the integral equation for the
fields in the dielectric half space would still be the same as given by

(2.3) with the range of integration, now, being the entire half space

(z' > b). Since we know that the fields inside the dielectric are completely
given by the single term A exp [ikzy + iksz], with k2’ k3, A, and ¥ being

given by (3.4) and (2.17), we expect that the following equation must hold.

ik, y+ik_z .
A e 2 37 _ Eo e-lkp cos (¢-9,)
Ry 1 - t . _—_—l
kz(n2_1) ¢ ik,y'+ik,z elk]r 7' .
+ 7 A e ——y— df
4m J T-F |
z>0
. 2l
- g aikpcos(e-¢,) , Kk (n-1) o (3.8)

o 4t 10



It is a trivial matter to verify this if we substitute for S1

0 from (3.7a)
and note that
kzy + ksz = -nkp cos (¢ - ¥) (3.9)

Thus by decomposing S1 we have simply separated the scattered fields corres-
ponding to the half space problem.

Let us now consider Sll as given by (3.7b). The first integral on the
right hand side may be evaluated by closing the w-contour with a large semi-
circle in the upper half plane. In the second integral we may deform the

w-contour into a branch cut contour, o as shown in Fig4.5, with due consid-

eration to the pole locations. The poles at wy = k2 = -k cos ¢0 and
w, = -k\/(l-—n2)+ c052 ¢0 lie below the real axis and do not contribute
to the integrals. The pole at ws = +k\f(1-n2) + cos2 ¢O gives rise to equal

and opposite residues and hence does not make any net contribution to Sll'

Hence S11 may be simply written as

r eimy +ivz )
- s : 3.10
511 1AJ vk <o) (koovy @ (
LN 2 3
a
which after transforming into the &-plane becomes
i -
s - iA elkp cos(&E-¢) i
11 .2 . . > (3.11)
k (n cos ¥ + cos E)(n sin Y +sin &)

G
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One may as well transform the w-integrals in (3.7b) into the &-plane and
then make proper contour deformations and arrive at the same result. In any

event S1 may finally be written as

S - kz 4; _EO e—ikp cos (¢-9,) + A e—inkp cos(¢—w?}
(n"-1) L

(3.12)

A oiko cos (&-9)

* ;i-f (n cos Y + cos £)(n sin ¥ + sin £) dé
G

4.3.2 Reduction of the volume integral 82 and the derivation of the
singular integral equation

In sectiomd3.1 we obtained an expression for Sy which contained the
correct form of refracted wave and the extinction wave. First we noted
that k2 and k3 must be given by (3.4) so that the first term,
A exp [ikzy + iksz], in (2.5a) would represent the correct refracteg wave.
Since k2 as given by (3.4a) violates a necessary condition (2.9a) for
obtaining (2.8b) we had to go through a different route which involved the
decomposition of S1 into two parts. This not only resolved the above
difficulty but also resulted in the correct forms of refracted wave and
the extinction wave. However the expression (2.8c¢) for 82 is still correct
as it stands (Appendix IV) because the o-contour is in the upper half plane
of the complex variablert and hence the requirement Imt > 0 is always met.
After transforming the integrations into £- and n-planes S2 is given by

(2.12b,c) which may be rewritten as



4-28

Sz = 821-+ 822 (3.138)
where
- r - . . r A .
s, = %J £(n)dn eiMKP sinn sin¢ exp[ikp cos&cos d)%smz«idi >
“ k G (n cos n-cos &) (n"sinn -sin“g)
0 F1 (3.13b)

exp[ikp cos(£-¢)]d¢

S,y = ;i_j £(n)dn f (3.13¢)
k (n cos n-cos £)(n sin n - sin §)
GO FZ .
f(n) = ;(t) = %(nk cos n) (3.13d)

However a careful consideration of the loci of the poles cos £ = n cos n
and sin £ = * n sin n, as n is varied on Go,(=Go+ + GO_), shows that the
expression (2.22) for 52 is incorrect. In Fig.4.3b, G, and G_ denote
respectively the parts of G that iie in the upper and 1owér half planes of
€. The contours GO+ and Go— in Fig.44 have similar meaning with regard to
Go in the n-plane,

Let us first consider 821. When ne;Go+ the locus of the pole
sin & = n sin n is given by [+ 2m in Fig.4.3a while for ne:go_ it is given
by I' + 2mw. Since ' '+ 2m is outside the contour Fl the only contribution
to 521, from the pole sin £ = n sin n, comes when ne:Go+. In a similar
manner we note that the pole sin £ = -n sin n contributes to 821 only for

. . 2 2 .2
ne:Go_. Hence the total contribution to S21 from the term {sin” & - n” sin” n)

is given by



o f exp[ikp cos (g, -¢)]f(n)dn o { expiko cos(Z,+¢)]f(n)dn

2

K (cos Ql—n COS n)cos

1 k2 é {cos Cl-n cos N)cos El

G
o+ o- (3.14)

where g, = sin”t (n sin n)
However the pole cos £ = n cos 1 lies within Fl for all ne:Go. Hence when

F1 is closed we obtain the following result

S,, = —E—lgz—~— J exp[inkp cos(n-¢)]1f(n)dn
k" (n"-1) G
o

o J f(n)exp[ikp COS(C1-¢)}
- = dn
k

G

{cos C.-n cos n)cos ¢
o+ 1 1

T2

>t J f(n)exp[ikp cos(cl+¢)]dn
k

(cos Cl—n cos n)cos Cl

G
O_.

(3.15)

To consider 822 let us revert to Fig.4.3b. The locus of the pole

sin £ = n sin n is given by T (= F+ + T ) forne GO and for the pole

cos £ = n cos n it is given by G (= G+ + G_). When F2 is deformed onto G
only the lower segment F_ is crossed. Hence the contribution‘due to the

pole sin £ = n sin n is given by
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o J exp[ikp cos(Z -¢) £ (n)dn

GO_(COS Cl-n €oS Mn)cos Cl

where Cl is again given by (3.14).

Since G is the locus of the pole cos £ = n cos n we cannot bring F2 into

coincidence with G without considering this pole. We may first write 822

as

S

22

3E.J exp[ikp cos (¢, -¢)1£(n) o
2 : :
k Go_(cos Cl-n Ccos n)cos El
- _%_J £(n)dn exp[ikp cos(§-¢)] dE
k o GiA (cos & -n cos n)(sin & -n sin n)
o ' (3.16)

where A is a very small but finite quantity. To convert the last term in

(3.16) into a "Cauchy principal value" integral we must add a term équal

*
to half a residue due to the pole cos & = n cos n resulting in

This was related to Aleksandrova and Khizhnyak in a private communication.

To date there has been no response from them.



o { expliko cos(Z;-¢)f{Mlin
22 2 [ (cos ¢, cos n)cos Z,

e

G
o-

o explikp cos(C,-¢)]f(n)dn
- ;f'i sin £, (sin Z,-n sin n)
)
i i N f(n)dn
- ;%-j exp[ikp COS(E_¢)}ng(COS £-n cos n)(sin & -n sin n)
G
G o (3.17a)
Cz = cos-1 {n cos n) (3.17b)

where, in the last term, we have changed the order of integration which

1s permissible according to a corollary to the-Poincaré-Bertrand formula.
The n-integral, in the last term of (3.17a), may now be correctly inter-
pretted as a '"Cauchy principal value" integral. Combining (3.15) and (3.17)

we arrive at the following expression for SZ'

aindll j exp[inkp cos(n-¢)]Jf(n)dn

G
o

S, = -1
2wl

; . N f(n)dn
- ;%'J exp[ikp cos(£-¢)]dE J (cos &-n cos n)(sin £-n sin n)

G Go

o exp[ikp cos(cl—¢)]f(n)dn o [ exp[ikp.cos(gl+¢)]f(n)dn

- ;fhj (cos Cl—n cos n)cos Cl h k2 J (cos Cl—n cos njcos Cl
o+ o=

f explikp cos(Z,-¢)]1f(n)

sin Cz(sin CZ -n sinn )

o d
- n

+

k2

o { explike cos(z,-¢)Jf(n)dn
i {cos Cl—n cos nJjcos Cl K

G
o~ 0

(3.18)



which has four additional terms as compared with the expression (AK13)

obtained by Aleksandrova and Khizhnyak for S.. If we

substitute for S1 and SZ’ which determine the volume integral in (2.3), from

(3.12) and (3.18) we obtain the following integral equation for f(n).

) . A ( £f(n)dn
J exp[ikp cos(E QQ)]dg%%os &+n cos Y)(sin § +n sin y) ‘J (cos £-n cosn){sin&-n sinr
G G0
exp[iko cos(g;-¢)]£(n)dn r exp[ikp cos(z +$)]f(n)dn
+ 27i f + 2mi
{cos Cl—n cos n)cos Cl J {cos T -n cos n) cos Cl
G 1
o+ o-

exp[ikp cos (5, -9)Jf(n)dn
- 27 J

(cos Cl—n COs njcos Ci

G
o_

. [ exp[ikp cos(C2—¢)]f(n)dﬂ
+ Ti

Go 51n‘§2(51n gz-n sin n)

(3.19)

where Cl and Qz are defined by (3.14) and (3.17b). If the last four terms
were not present in (3.19) the resulting equation could be solved exactly,
by using standard techniques [34,35], as has been done by Aleksandrova and
Khizhnyak. We see no way of avoiding the presence of these additional terms
and hence conclude that Aleksandrova and Khizhnyak's method fails to lead

to a tractable integral euqation for the weighting function £(n).



4.4 FORMULATION USING A MODIFIED CONTOUR

Aleksandrova and Khizhnyak seek the solutien for the diffracted fields
in the form of an integral over a branch cut contour a. It was felt that
such a representation of the diffracted fields might not be complete. An
.integral over the real axis seemed to be more appropriate. With this idea

in mind we could seek a solution in.the following form

i(k2y+k32) eity+isz .
Ex(f) =Ae + J -———g————-f(t)dt (4.1a)
¢ .
where, as in previous sections

2 2 2,2 N

k2 + k3 =n" k (4.2a)

2+ 52 = n2 i 2 (4.2b)

k2 = -nk cos ¢ (4.3a)

k3 = -nk sin ¢ (4.3b)

cos P = (cos ¢o)/n (4.4a)

2E sin 9
A = 9 0 (4.4b)
n sin Y + sin ¢O
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It is assumed that the incident wave is in the fourth quadrant as given by
(2.2) while k20 and k30 are defined by (3.3), and as shown in Figq .6 the
contour of integration C (_: : ;2) in the t-plane is chosen to lie just

above the real axis (A > 0). In the limit we let A - O with the under-~

standing that any poles of f(t) that lie on the real axis of t are indented

with clockwise semi-circles. We split the volume integral appearing in

(2.3) into the sum S1 + S2 where Sl; éz are given by (3.2). In the sum
Sl = SlO + Sll the expressions for S10 and S11 are given by (3.7) which

are reproduced here

s = 4w j_ B -Eikp cos{$-,) + A e-inkp cos {(§-P) (4.5)
10 2.2 } 0
kKT(n"-1) L

o0 <o

eiwy+ik32 eiwy +1vz
1A (2 f dw - dw
(k2~w)(w2-k2+k§) j v(szw)(ks—v)

Sll

I

(4.6)

-0 -0
The first integral in S11 may be evaluated by closing the w-contour with a
large semi-circle in the upper half plane and in the second integral the

path of the integral may be shifted slightly above the real axis with the

following result.

iwy +ivz

'v(kz—w)(ks-v)

i\/kz-k§ y+ik,z
~-2TA e

S, = _iA
11 NI,
(kz-Jk -ks)\/k -«

dw (4.7)

In writing (4.7) we note that the pole w = k2 is below the real axis and
hence does not contribute any residue. We choose A sufficiently close to
zero such that the above deformation in the second integral is possible
without crossing the poles at w = i/ K% - k§ . This is always possible
except for the special case when ¢o = 3r/2 which we may exclude from

consideration here.



Im

Fig.

4.6 The contour of integration
complex variable t.

C 1iIn the plane of the

—» Re
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Proceeding in a manner sipilar to that in Appendix I we obtain the

following expression for S2

~ . lwy +isz - iwy +ivz [
. t(t) Jf 2e [ e ‘f
S. =i j dt dw - e dw (4.8)
2 2 2 v{t-w) (s-v
) s . (t-w) (s2v2) A (t-w) (s-v)
subject to the conditions
Imt > 0 L (4.9a3)
Im(s + v) >0 (4.9b)

which are satisfied for any arbitrarily small A > 0.

The first w-integral in (4.8) may be evaluated by closing the contour
with a large semicircle and the second integral may be converted into a
""Cauchy principle value integral" by properly accounting for a half residue

corresponding to the pole at w = t. When this is done 82 is given by

sz—sz y +isz

A ) . 2 i .
s, - — 42 J fit) Sty visz o f(t)e : gt
2 < 2 2

k (1'1 "l) C C S(t—AZ—SZ) /k -S

By At eyt f E(e)at
- f s(s \/f(TtZ) 5 t2 dt -1 f S (5
C - - -

(4.10)

. / 2 . B
where the square root expression k2 - s is to be interpreted such that

vk?-s2 > 0 , tecC (4.11)
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If we substitute for Sl and 82 in (2.3) we obtain the following integral

A

equation for f(t).

iwy +ivz _ R
€ A . f{t)dt
J v (k7ﬂﬂ)(k3~v)> * J s(t-w) (s-v)
C - C

> j 5
k%K y +ik.z N ik%es? y viss
. 3 3
27iA e i [ f(t)e at
i | ) N
(x, -/@Z-ké)/iz-kg Lose-Alosy Ak s?

%(t)eity +i/k2—t2 z

mi J B 7/
¢ s(s—/kz—tz)/kz—t2

dt = 0

(4.12)

Because of the presence of the last three terms, which are not self-cancell-

ing, it is not possible to solve (4.12) for the weighting function f(t) by
using the standard technique that was employed by Aleksandrova and Khizhnyak
to solve eqn (AK13). Thus, choosing the contour of integration along the

real axis does not seem to avoid the difficulties underlying the method of

Aleksandrova and Khizhnyak.
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4.5 CONCLUSIONS

In this report we have made a detailed examination of Aleksandrova and
Khizhnyak's method [32] of obtaining a solution to the problem of electro-
magnetic plane wave diffraction by a rectanguiar dielectric wedge. By
carrying out the spatial integrals, involved in the problem in full detail
and by a careful look at the subsequent contour deformations, we have
shown that Aleksandrova and Khizhnyak, besides mixing up the sign convention
in the time variation, omit some terms which, if properly accounted for,
would lead to an integral equation that is not only different from what
they have finally solved, but is also not amenable to solution by presently
known techniques. We have attempted a formulation using a modified contour
of integration in the t-plane but failed to obtain an integral equation that
can: be solved. We conclude that not only is the solution given by
Aleksandrova and Khizhnyak incorrect but also that their method as presented
is not capable of leading to a tractable integral equation for the unknown
weighting function. Thus the problem of wave diffraction by a dielectric
wedge remains, as yet, unsolved, even for the special case of a rectangular
wedge, but for the solution of Radlow [19] which has been questioned by
others {[20,21]. |

The solution, of Aleksandrova and Khizhnyak, to the problem of
diffraction by an arbitrary angled dielectric wedge [33], is also open to
debate since the results are said to be based on a method identical to the

one used in their earlier paper [32] which we have discussed in this report.
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