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FORWARD

Because of the immense interest expressed during the National Radio
Science Meeting held during November 1978 in Boulder, Colorado on the
evaluation of Sommerfeld integrals ‘associated with dipole sources above
a dissipative earth, and in particular, the use of incomplete Hankel
functions in the approximation of these integrals, we feel it may be
appropriate to publish this review, which basically forms a chapter in
our book on the subject of Anténnas and Transmission Lines Above the Earth
currently under preparation. While the work is still somewhat incomplete,
it is our hope that it will bring readers up-to-date on some of the
developments made on this subject by us, as well as other research groups
" in the country. Comments and suggestions on how to improve the presen-

tation would certainly be appreciated.



1. STATEMENT OF THE PROBLEM

Let us consider a dipole of dipole moment p radiating in the
presence of a plane interface between two media. The problem is
depicted in Fig. 1. The dipole is located at a height z, above the
interface along the z-axis of a cylindrical coordinate system. The
dipole is located in medium 1, with refractive index nys which we normally
will consider to be the air, above medium 2, with refractive index Ny,
normally taken to be the earth. éoth media are assumed to be non-
magnetic, but different permeabilities may be taken into account with
Tittle additional effort.

It is well-known that the electromagnetic field in a homogeneous,
source-free region of space can be derived entirely from two scalar
potentials known as Whittaker potentials, which are the sole components
of parallel g]ectric and magnetic Hertz vectors, I, and I,»> for example.
We can therefore formulate the problem using Héz and I%z outside the
source point only, and include the source as part of the electromagnetic
field boundary conditions. In the case of a vertical electric dipole
(VED) it is not difficult to show that the electric and magnetic fields,
obtained in this manner, are given in the following tahle, where G] and
G2 are the Green's functions in air and in earth,

ik,R
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representing the contribution from the source and perfect image located



TABLE 1

ELECTROMAGNETIC FIELD COMPONENTS OF A VERTICAL ELECTRIC DIPOLE
ABOVE HALF-SPACE IN TERMS OF GREEN's FUNCTIONS AND FUNDAMENTAL

INTEGRALS
rce In the air (z > 0) In the earth (z < 0)
1 n2 k 2
D |E, = 4 ——(k +——)[ {6-6,) +—7 V(2 4203001 | E, - 205+, (2.2,30)
T €
Bz n] 0 az
2

. k n k 2
| =~B—°-—i 2 P o 3 .
Ex 4n €, X3 [__(G G) n2 V1(Z+Z )] Ex 4w € 3X3z VZ(Z’ZO’D)

1
2
k 2 n
p o 3 ] 2 k 2
E = B9 S _r1(g -G,) +—5V;(z+z 30)] _P_ 0
y 4w €, aydzony 1 72 n? 1 ) Ey-—4ﬂ ¢, 3y5z Vz(z,z 0)

o _ dwp 9 - 2 , - _ Jdwp 2 3 .
He = - 10 kg gy [nq(8)°6)) +ngVqlz+zs0)] | H == g Ky mp 5y Vp(2,2550)
b= Wy D (6 -6, tnd vz zs0)] [y = TRk ng gp Vy(zo250)
Ly 4w oax 2 1 0" iy 47r028x2 ?

at (0,0,—zo); k],2 k Ny o and k= w(uoeo)IE is the wave number in air.

The time factor of exp(-iwt) is assumed and suppressed. Fields due to a
vertical magnetic dipole are likewise expressible in terms of G], GZ’ and

the functions U](z +zo;p) and U2(z,zo;p). The four fundamental integrals

U], U2, V], and V2 which are corrections to a perfectly-conducting ground,
are known as follows:
o -k u,z
U (Z' ) =2 _e_._.(i._.l__.
11250 TR Jolky o)A (1.1)
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o -k u,z
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' o MY MY
where
go= 02-2 % 5 Relu, L) >0 (1.5)
1,2\ 1,2/ >3 Uy, 2 .

and JO is the Bessel function of zeroth-order. The objective of this
report then is to evaluate and obtain approximate forms of these integrals.
Before we can proceed however, it is important to first examine the
analytic properties of the integrands.

To start with, it is possible to express the fundamental integrals

as integrations over a path which terminates only at infinity:

o0

Q= f g(n)e
i
e

-au,tbu
T2 Hé])(kokp)xdx . (1.6)

where a and b are some nonnegative real quantities, while

g(A) = wu— for V] and V2 (1.7)
173 BN b
g(n) = —L for U. and U (1.8)
Uy + u2 1 2 )

It is well-known that the stipulation Re(u;) > 0 leads to a pair of
branch cuts in the A-plane; the condition Re(uz) > 0 (which was also
necessary to assure convergence of the integral and satisfaction of the

limiting absorption principie) will Tikewise lead to a second pair of cuts
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as shown in Fig. 1.2. Also present is a cut‘along the negative real axis
which is due to the artificially introduced Hankel function.
Since p >0 and the behavior at infinity of this branch of the

Hankel function (or any other branch where the cut proceeds to infinity in
the 1gyg£_ha1f—plane) jnvolves a factor exp(ikoxp), it will not prove
possible to deform the integration contour T to infinity in the lower half-
plane. Thus, we seldom encounter this cut in actual practice, and will
ignore it during subsequent manipulations.

The only other possible singu}arities in the »-plane are poles of the
function g(A). While it is readily verified that uj + u, is never zero if
Ny # Ay, the other so-called Sommerfeld denominator can in fact vanish at

A =%\, where
p

n.n

= 12 . 1.9)
ANy T Ty ) Im(» ) >0 . (
1 2
2 2 -
nzu]_p + n]u2p 0

and by Uip and Usp we mean the values of uj and u, at xp
respectively. In typical situations where n, is the refractive index of
the earth, we have [nzl >>|n]l, and the poles are located in close proximity

to +n, as shown in Fig. 1.2.

Although it has been established that the denominator of (1.7) «can
vanish, it might be questioned whether this actually occurs in the proper
Riemann sheet definad by'Re(u],z)_z 0, since xp must be found by
rationalizing the denominator, which could introduce a spurious solution.

To resolve this point, we define
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For media whose properties are such that

0<xy,2 ¢ w/4, it is readily shown that

1

= _. -] N
XP 5 tan

Isin 2% * |n2] sin ZX]

~

i 2
lcos 2x, + [n"] cos 2

(1.10)

(1.11)

where n2 = n%/n%. When n, is the refractive index of the earth, ang

n, that of air, we have |n2| >1 and yy =0, 1in which case it follows

that
0<% < Xp

The phase angles of Uy and sz are found by observing that

A s u

where the t signs (not necessarily the same for ulp and u2p) are to be

2p

(1.12)

specified so that Re(u]p, uzp) > 0 corresponding to the proper sheet of

the A-plane. Since

T -
-3 -<Xp Xy < 0

and

NE!

0<Xp+X2<

as follows from {1.12), we need

- T
arghﬁp) = Xp "Xz + 2'1
{
J

- T
arg(uzp)

(1.13)
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and thus

Uy = Fi Ay 5 Uy = -1 = | (1.14)

in the proper sheet and therefore ngulp + n?u2p = 0 1in the proper sheet.

e note that the presént choice of branch cuts
has been made to assure a bounded integrand as |z| = « for all integrands
at all points in the complex A-plane. It is in this proper sheet that the
pair of “real" poles is located. However, there can arise situations when
a different choice of cuts is more appropriate, eveﬁ though the integrand

is no longer bounded for all values of X .
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Vertical dipole above an interface
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Fig. 2

Singularities and integration path in the complex plane for the fundamental integrals



CHAPTER 2
APPROXIMATIONS AND EXPANSIONS FOR THE FUNDAMENTAL INTEGRALS

" t'let's consider your age to begin with - how old are
you?'
. '1'm seven and a half, exactly.'

'You needn't say '‘exactly," the Queen remarked. 'I| can

believe it without that.'

- Lewis Carroll, Through the Looking Glass
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In this éhapter we deal with the problem of evaluating the Sommerfeld
integrals U1, U2, V] and V2 in terms of which the dipq]e fields are expressed.
In general, these integrals are not expressibie in finite form in terms of well-
known or tabulated functions, and so approximate expressions must be obtained

which are valid for certain restricted ranges of the parameters.

§2.1 Exact Expressions for Special Cases

One of the few cases for which relatively simple exact expressions for
the fundamental integrals can be found is when both the source point and obser-
vation point lie on the interface (z = z, = 0). This is far from being merely
a trivial special case, since many remote sensing techniques employ electrically
small transmitting and receiving antennas on the surface of the earth, and make
use of field measurements in an attempt to infer the electrical properties of
the ground in the region between the two antennas.

The fundamental integrals U] and U2 in (1.62) and {(1.66) reduce to

Ulp) =

1t

(2.1)

= J (ke )adA
Us{osp) = Uy(o,050) 2 f —

u]+u2
0

when both source and observer are on the interface. Rationalizing the denomi-

nator of the integrand by multiplying by Up - Uy, we have

2 o0 o0 .
—2-{j tﬁdo(kpxp)xdx. - J uzdo(koxp)xdx P (2.2)

0 Q

Up) =

=

where we have abbreviated the quantity

_ 2
N =y - In(N) - 0 (2.3)

which will show up frequently in subsequent analysis. The integrals in (2.2)

can be evaluated with the aid of (1.38) and (1.43):
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2.2

where z 2 0, and u,n stand for Uysnq OF uz,nz‘as appropriate, while R2 = z2"%p .

The integrals in (2.2) are now obtained by differentiating (2.4) twice by z and

setting z = 0:
sk n skon
* : 1 52 e' O ‘ g0 .
J u Jo(koxp)xdx = 5 3 R T ——?—é—-{1n - ]/kop]
k V4 0 z=0 k7p
0 0 0
Thus,
) . ik n,P
2 . kP 1 LLUPAS)
U(P) = ——s {{iny - 1 ol - {in, - 7% ] e >y
ngZDZ g. 1 kop ] € 2 kOP 5

an expression containing only elementary functions.
The integrals V] and 32 in (1.62) and (1.63) become
ZIW Jo(koxp)xdx
2

v](o;p) = vz(o,o;p) = V(p) =
nouytnyl;

(2.5)

(2.7)

for source and observer on the interface. The technique for evaluating U(e)

fails in this case because the denominator in (2.7) cannot be eliminated by a

similar rationalization. But (2.7) can, however, be trans formed by an extremely

clever trick due to van der Pol. Consider the integral

n4—n4
_27h 1

nyNn 2 2
n1/n2 (Az_xzp)vz_kzp 12 npu iy,

vdv

J"Z/nl

(2.8)

where kp = n]nz/(n$+n§)% is the location of the Sommerfeld pole discussed in

Chapter 1. Inserting (2.8) into (2.7) and reversing the order of the inte-

grations, we have [ /sy n,/n
) ® J (k_AP)AdA 2 o'p e
V(p) - 2X p dv. 0 0 — 2A B e
Nn.n /32 32 7\ Nongnok o
2 ) o A D(1+1/V_) 172707 Jy /n
2

n1/n2

(2.9)
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Changing variables to t = 1/v and ihtegrating once by parts, we arrive at

. . . 2%
2 n, ik.n.p n; ik n,p no/m Tk A (1+t7) 2%
V(o) = 22A D 2 e O 7 e O 2 + 24 e O 0 it (2.10)
N°nnok p ™M N2 7. 7\ .
1727 N A n]/n2 (1+t%)

The last term in (2.10) cannot be expressed in terms of any of the usual
elementary or special functions. However, it can be identified as a combination

of the so-called incomplete Hankel functions, defined by

(1) .2
H0 (a,z) = —

in

a
j exp[lz(]+x 1
dw

The important properties of this function and some related functions are

summarized in Appendix B. From the definition, it is clear that

= o (h ik _n,p n 5]
Vip) = 22 {] L2 o1 T (]
PrE SRl — = A M, n,/nys kKX p)
N2n n lkop \n] _l 2°p 2 1° “o'p
172 L -~
T -
. 1)
+ 2 nl
2 Po (n]/nz, kolpp{}' (2.11)

Numerical evaluation of these functions is straightforward through the use of
the expansions given in Appendix B. We might note that for the case when
]nz/n]|>> 1 (a diectrically dense or highly conducting earth), the Teading terms

of expansions (B.10) and (B.15) may be used to give an approximate form for

V(p) as ‘ .
V() = gliL—— 1 g?z e1k°n]p_ El.e1k°n2] 75 lpHé])(k A p)
‘ 2 k oP n n
N nyn, 1 2
L ik A.p .
— T o"p ik
-]Ap 'l( -ik nzp) [ '2‘ikolpp } e erf ( 1po )} (2.]2)
where

1
2

2
1
P = 1k0>\pp[(1 + ng ) - 1] (2.13)
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is a special case of what is known as Sommerfeld's numerical distance. In (2.12)

Hé])(kox p) is the ordinary Hankel function of the first kind and zeroth order,

P
Eq js the exponential integral function of first order, and erf (x) is the error
function. The important properties of the latter two functions are given in
Appendix C.

Unfortunately, only some of the field components can be obtained from these
exact_expressions, since z does not appear in them, while from Table 1.3, a

number of z-derivatives must be taken in order to obtain certain of these

components. While 32/322 can be replaced by

13
p 9p
since U],2 and V],2 satisfy the Helmholtz equation, an odd number of z-derivatives
cannot, apparently, be handled by this approach. As a result, the usefulness of
(2.6) and (2.11) is somewhat restricted.

One further special case permitting a closed-form expression is that of
U](z;O) - i.e., for an observation point directly above or below the dipole,

above the earth's surface. Here

@ -k uq2
o1
2( e pra P

U.(z ; 0) =
1 u.l+u2
Om -tkOZ.
dt
PR (R — (2.14)
e
-in
1

through an obvious change of variable. Rationalizing the denominator as before,

we have
-tk z
Uz 5 0) = %J e O [t - t/tz-Nz]dt
N -in

2 -tk .z -tk z

2 \1 3 o) 1 23 2 .2 0
=0l _° e dt + — — to-N© e dt (2.15)

N2 kzazzf koazg ?

-1, -in, -
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The first integral is elementary, while the second, through the change of

W)’
variable t = N(1 + W°)?, becomes

- © . 2.4
T2 gt =2 t S Zi o
-iny in, /N (]+w )2
» o Nk z(1w)
=( .]_7.__3_ - N2> € 5 aw
k,” 9z ) nz/N(l*w )2
- (—]—-3-2——-N2> 1Ly (4 nz) - Tha( 5 22 i Nz% (2.16)
K 2 322 L? 0 0 2 o N, o

.0
using the integral representation (B.1) of the incomplete Hankel function.

Using (B.7) and (B.21) from Appendix B, we now have

. 2 . "} . —

2in n in ik n,z r‘ n \

2 2 1 1 + 720 o] i (1),: 2 . (1),. !

Uy(z 5 0) = =5 - — e + | Hy' (1 =, ik Nz)-HYy '(ik _Nz),

1 N2 k323 kZZZ _koz koZE Nkoz \ 1 N 0 0 g
o 0 - - (2.17)

2
If |n2|>> In]l , then the parameter of the incomplete Hankel function is nearly

equal to i, and thus from (B.31), we have

. 2 . . —
2in n in _] ik n,z . 7
Uy (23 0)= 2 |2 1_ 1 +—-—2-{e o'l + o (1K Nz)-Y ik Nz“ (2.18)
0" | 0" | _

wherelilis the Struve function of first order (cf. Appendix C). Of course, since
o does not appear in these formulas, we are again unable to obtain all field

components from them, and their ytility is somewhat limited.
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§2.2 Numerical Integration for Sommerfeld Integrals

For the case of arbitrary source and observer heights above -the interface,
the most direct method for evaluating the Sommerfeld integra]slis numerical
integration. A]thoughba number of techniques appropriate to infinite or semi-
infinite intervals are available, the analytic characteristics of the integrands
must be considered if an efficient routine is to be written. In this section,
we will discuss the integral V](Z;p) only, since this function incorporates all
the essential features to be found in the other integrals. The reader is referred
to the notes on this section for references Qhere detailed descriptions of
computer programs are to be found.

Consider the integral V](Z;p) in either of its alternative forms:

o =K UsZ -
e © 1
V,(z3p) = 2| —5—— (k _xo) Adx (2.19)
1 00
nou,+ns7u
2°1 172
[o]
* -k u]z
e wM) aa (2.20)
o 2 2 0 0
@ n2u1+n]u2

The first question to arise is: what quadrature formp]a should be chosen for

the actual integration? The simplest approach would be to apply Simpson's rule to
(2.19) - breaking up the integration interval from 0 to some large value L into

a number of subintervals and apply Simpson'srule to each subinterval. To be
sufficiently accurate, a large number of suSinterva1s must necessarily be taken,
and L must be increased until the value of the integral remains unchanged to
within some specified accuracy. The step sizes must be small compared to the
oscillation of the Bessel function and to any other rapid variation of the
integrand (i.e., poles or branch points). As a refinement to this, larger sub-
intervals can be taken (say, a complete oscillation of the Bessel function) and

a Romberg integration algorithm applied to each. The convergence of the summation

over the subintervals in either of these approaches can be improved by algorithms



2-7

such as that due to Shanks.
If, by a suitable change of variable, the integral under study can be cast

into one of the forms

Tt T2
e f1(t) dt or : e fz(t) dt

(o]
then a Gaussian-type of quadrature (Gauss-Laguerre or Gauss-Hermite, respectively)
can be used. Several other more'specialized quadrature formulas have also been
suggested. A sort of “fast Fourier transform (FFT)" method involves approximating

the multiplier of Jo(koxp) by a series

where a, and bm are some complex constants. Each term of this series can now be
integrated analytically and thereby an approximate value for the integral is
obtained. Along somewhat the éamé lines, we can also approximate the multiplier
of e-kou]zdo(koxp)x in (2.19) by a rational fuqction of Uy only. We shall see
in a later section that such integrals as result from this approximation can
always be expressed in terms of incomplete Hankel functions, and so the integral
is in this way reduced to a number of series evaluations.
A kind of combination of the "brute force" approach (Simpson or Romberg-

Shanks) and one of these "semi-analytical quadratures" is achieved by adding and

subtracting a term with the appropriate limiting behavior as A» <« to the integrand

of (2.19). Thus, for example,

o -koulz
Wzip) = 2| S5 3 (ko) AdA
(n5+n7)u
27"
*® -k u,z
+ 2{ FZ 1 s— - 2] —le o'l J (kre) Ada (2.21)
{22“1”‘1)“2 (nn7 )y
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The first integral is known exactly (see (2.4)), while the term in brackets in
the second integral is O(k'3) instead of 0(k'1) as A > = . The second integral
can thus be numerically integrated much nore rapidly than (2.19), and in fact,
if the integration interval is split into [O,Ao) and [xo,m), the second of these
can be evaluated approximately if AO is large by expanding the bracketed term in
inverse powers of A and using known integral relationships to compute each term.
There then remains only a finite integration oh[O,AO) to perform using any
appropriate method from those described above.

Some of these methods, notably the Simpson and Rombérg-Shanks algorithms, have
efficiencies which are quite sens1t1ve to the cho1ce of path of integration in
the complex plane. Although the rea] axis path does not require evaluation of
Besse]l functions of complex argument, this advantage can be more than offset by
slow decay and/or rapid oscillation of the integrand, particularly if k p >> 1]
and lkozl << 1. The proximity of the poles (or even branch cuts) to the real
axis can also be troublesome. These latter can be avoided by dipping below the
real axis as in r’ in Fig. 2.1, but the oscillation problem remains, and in fact,
Jo(kokp) grows exponentially as A acquires a nonzero imaginary part.

Because of this difficulty, it is more convenient for this purpose to work

with (2.20). For large argument, the Hankel function becomes

1 i(k Ap - “/4)
1)~ (i )te  Ukgrel > =)

and thus, aside from some algebraic behavior, the integrénd behaves as

exp[-koz XA n% + ikokp ], which, by virtue of the definition of the square root,
is exp[-kok(z - ip)] in the right half-plane, and exp{kok(z + ip)] in the left
half-plane as le > . Therefore, if we were to deform the path of integration

from the real axis to P] in Fig. 2.2, which forms angles of 6 = %—-tan-](z/p) = %--X

to the real axis, the oscillating part of the exponential term would disappear
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as |A|> «, and only a decaying behavior persists. Unfortunately, this path, as is,
crosses the branch cut due to Uy (if n, is real, or nearly so), and is im-
permissible because of the exponential growth of the integrand as [r| increases, but
if we modify this contour to some path Fz as shown in Fig. 2.2, we can achieve our
purpose with a permissible integration path. This new path passes momentarily into
‘an improper Riemann sheet to avoid the logarithmic singularity of the Hankel
function at the origin, then under and around the branch point at Ny and back to
® ei("/z'- %) as with r]. The pole and branch point singularities have been
avoided, but for large |x| the decay of the in?egrand (hence also the convergence)
of the integral is maximized.

This contour is still somewhat undesirable if kop is very large, however,
because by the time T, rejoins the straight 1line segments of r], the integrand
is exceedingly small (due to the exponential factor), and the value of the
integral is almost entirely determined by the portion of r2 which deviates from ry-
Since the oscillations of the integrand have not been suppressed along this
portion of the path, we have not yet found the optimum path of integration. To
completely suppress the oscillation, we need to choose the coutour so that as A
moves along the contour, the term exp[G{r)], where G(1) = —koiﬁrij;? + 1k Ao
always represents a purely decaying factor. Since as |i|+ « toward either end
of the path, this exponential is decaying, and since the argument of the
exponential is, except for the jso]ated points A = % nys analytic, the exponential
must reach a maximum absolute value at some point along this path. By specifying
the smallest possible magnitude for this maximum, we can minimize the portion of
the contour which contributes significantly to the integral. A point A which
meets these conditions is called a saddle point, and, for a general analytic

function f(A), is a solution of

f(x)=20 (2.22)
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For the function being considered here, this becomes G/(AS) = (0, or

-k z —=—+ ik o =0
L B

>\S "n]
or in other words :
s N sin @ (2.23)

Near the saddle point, the exponential term behaves like

ey, [
eG(l)z_eG(*s) o 55Z£i:;i§szzj )

and we see that depending upon how A moves away from As’ the exponential might
increase, decrease, or oscillate, and that the path which we seek, upon which this

is | ' i WOAY(A - A2 ~
term is purely decaying, will be such that G"( S)( S) is real and negative
in the vicinity of Xs’ The entire path can be specified by

WY - 6(A )] =0 )
> (2.25)
G(Y) - 6(*) <0 for A # & ’j

Such a contour is known as a path of steepest descent (SDP).
For the present case, G“(XS)‘= -ikoR/n] cos2 ®, where R =Y 22+ 02, and
so if N is real, the SDP will make an angle of 45° with the real axis at the

saddle point as shown in Fig. 2.3. From (2.25), the entire path can be defined

by _ 2 .
G(2) - e(ls) = -k nqR T5/2 (2.26)

where T runs through the real numbers, or equivalently,

/ Vi 2

2 A-n

 _cos 8 _f___l_. - Asin s + i (2.27)
2 n, ny

It can thus be seen that if ny is real, the SDP will recross the real axis at
A= nrﬁin 0 , and evidently it must approach the same asymptotes as in Fig. 2.2,

and takes the overall form shown in Fig. 2.3. As with the path of Fig. 2.2, the



2-11

SDP also pésses momentarily onto an improper Riemann sheet before curving below

the branch point at n Fig. 2.4 depicts the SDP for three different angles of

1°
0

° 30°, 80°.

observation 6 = 0
Integration along the SDP obviously has the advantage of truncating the
path of integration according to the actual value of R, since the integral now

decays exponentially away from the saddle point. However, it can be seen from Fig. 2.4

that the SDP comes close to the Sommerfeld pole for the V integrals when the elevation
angle x= %—-e is small.. To circumvent possib]g numerical difficulties near

this point, one can either deform the path to avoid this pole (though this

retracts the advaﬁtages of going to the steepest-descent path in the first place),

or a quadrature formula can be used which takes care of the pole singularity
analytically. This can be done by explicitly displaying the pole as (¢ - rp)-],

and making use of the formulas of the next section for expressing this contribution

as an error function. Numerical integrations for the various derivatives of U].2 and
V],é needed to calculate the field components are done in éxactly the same way.

It should, of course, always be remembered to include any contributions from
singularities encountered when deforming from the real axis to any otﬁer path of
integration. Although none of the paths considered here crosses the Sommerfeld
pole, the SDP will encounter the second branch cut at Ny if the elevation angle is

small enough (see Fig. 2.5). In this case, the additional contribution around the

cut must be added on.
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§2.3 Far-Field Expansions (Method of Steepest Descent)

The calculation of the fundamental integrals by numerical integration is
usually time-consuming, and although very accurate results can be obtained, little
physical insight into the detailed radiation is gained. In the next several
sections, we will proceed to study some approximate but explicit formulas for the
fundamental integrals which afe valid in various regions of observation, or in

various ranges of the electrical parameters of the earth.

For the case when the observation distance R = /62+ 22 is much greater than
a wavelength in the air (region 1), an analytical derivation of approximate formulas
for U] and V1
of the method is based on the steepest-descent path discussed in the previous

is possible using the so-called method of steepest descent. The idea

section. If k]R is large, and the integration contour has been deformed to the
SDP, only a very small portion of the contour near the saddle point contributes
appreciably to the integral, unless some singularity comes close to the SDP at
some point. Then, while the dominant exponential behavior exp[G(A)] is retained
exactly, the remainder of the integrand can be approximated by one which can be
easily integrated, but need only be accurate near the saddle point.

To carry this out, let us consider the integral of general form

00

o =1 &M pi) da (2.28)
waT
where
Az—n] -
G(r) = -k]R — C0S 8- i “—sin o (2.29)
1 1
-ik 2p
and o (1) A
e HY ' (ko) oag for U,
h(x) = (2.30)
-ik_ap
0 D) A
e HO (kOAp) —_— for V]



2-13

Let us introduce the change of variable (2.26) and deform the contour to the SDP

“sop eG( | f e /Zi [ dde (2.31)

where the subscript SDP denotes the contribution only from the SDP contour, and

to obtain

not from any singularities which may have been encountered during the deformation.
If the bracketed term in (2.31) is slowly-varying for, say, |t|s ]k]RI“%; a first

approximation to (2.31) would be_obtained by replacing it with its value at = 0.

= 2
G(x,) j ) 4 -kqRt"/2
. _ar 1
QSDP = @ Lh )\S)j T‘ - o -e d'l' (2.32)

L G(xr.)
2 _\* da S
“(k R) h(xg) G e

1 = 0

soe]

Roughly speaking, (2.32) is valid if [kqR| is large enough, and if {h[i(ril%%-%
is smooth enough near t= 0. To make a more accurate assessment of its validity,

we expand the bracketed term as a Taylor series in t:

A &= 3 hy o (2.33)
m=0
where
1 d" d )
m ml d'rm d‘rj;= o

Generally, this series converges only for |t|< Teo where T, is its radius of
convergence. However, if we insert (2.33) into (2.31) and interchange the sum and
integral anyway, we obtain the formal series
_ ) )

G(r) = m m -k, Rt™/2

s 2 d 1
Q ~ e Y (- — h —_— e d%] (2.35)

SDP m=o( kl) 2m {dRm I_m B

which can be reworked into the form (using (2.32)):

- 8OV Ny = (2m)
“pp € S<F]_R') mZo —%—_—-2—"1(2k1R) -m (2.36)
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" Because the termwise integration is not valid over the infinite range of t, if
T, <@ this formal series will not converge. However, it does represent an
asymptotic expansion of 2gpp (denoted by the symbol ~) in the sense of Poincaré.

This means that if we denote the partial sum SM of this series by

M

(2m) th _
Sy = i LN (2.37a)
5 -G(x,)
_f2m\® T8 )
and Ay (;]R> e QSDP SM (2.37b)
then M
Big (k]R) AM =0 for all M (2.38)
(R 2

1

The proof of the asymptotic nature of such a series relies on Watson's lemma,
for which the reader is referred to the notes on this section at the end of the
chapter.

In general, since the error incurred by using the partial sum SM of an
asymptotic series is bounded by (k]R)’M, retaining only the first few terms may
provide an extremely accurate aestimate of QSDP if k]R is large. fhis occurs
essentially because only a few terms of the Taylor series are needed to accurately
represent the integrand near the saddle point. To find the leading term of this

series, we use (2.19) and (2.21):

da

H - o/ n, €OS® (2.39)
=0
Moreover, from (2.30), - \» e_1“/4
1) Tu, (8) for U
i xR wsledrupgle or Uy
h(ks) = h(n]s1n6) = 0
(2.40)

(Zn] \ g in/4 >
2 \
Tk R n2u15(6)+n]u23(e;

Y

for V]

!
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where u]s(e) = -in, coss A?
\ f (2.41)
u25(e) = (n% sinze -ng) _ :

It will be noticed that Hé]) (koxsp) has been replaced in (2.40) with the }eading
term of its asymptotic expansion. Strictly speaking, this cannot be done for
near vertical observation angles (e = 0). However, by returning to a double
integral in Chapter 1, we can carry out a two-dimensional version of the steepest-
descent process and show that the leading term in the far-field expansion remains
the same, namely:
2 TR .
Qspp = E;ﬁ e (-1n] c0s9) g(n] sing) (2.42)

where g(a) = (u]+u2)_] or (ngu]+n$u2)‘]

for U] or V], respectively.

If it is desired to retain more terms of (2.36), the analysis becomes
rather cumbersome since not only must more derivatives (2.34) be evaluated, but
more terms in the asymptotic expénsion of Hé])(koxsp) must be kept as well. An
easier way to obtain higher order terms in this expansion is to appeal directly
to the Helmholtz equétion which U] and V] satisfy in the region Z > (. By
azimuthal symmetry there can be no ¢ dependence in these expansions, and it is

clear from the discussion above and the form of the asymptotic expansion of

Hé])(koxsp) that the complete expansion of U] or V] must have the form

kR =
e ) A_(8) (2K R)”™ (2.43)

0 m=0 !

Inserting (2.43) into the Helwholtz equation,

Lo 2@y, 1 2ing M)+ idu=o (2.44)
RSsing 00 26

where W is either U] or V], and then gathering like powersof 2kOR, and setting
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the coefficients of these powers equal to zero individually, we obtain

i(m+1) Am+1 = m(mﬂ)Am + cote A'm + A"m (2.45)

where primes denote differentiations with respect to 8. This recursion relation
permits A], AZ’ etc. to be found once Ao is known, and from (2.42) we.have that

A (e) = -2in, cose g(ny sing) : (2.46)

The asymptotic series (2.43) represents the complete asymptotic expansion
for U] or V} only if no additional contfibution to the integral results from
deforming the integration contour to the SDP. The reader can easily verify that
the contributions from arcs at « in the A-plane which arise in this connection are
zero. How, for media such as we are considering, it is easily shown that the
Sommerfeld pole xp lies to the left of the line Re()) = nys and so as seen in
Fig. 2.4, this pole is never picked up during the deformation (the left 5ide of
the SDP, for small values of X, passes “under" the pole on the improper Riemann
sheet, where no pole is located.) Clearly, however, the SDP encounters the branch
cut from n, (which we will be thinking of as the earth parameter, and n that of

the air) for ail elevation angles less than some critical angle x_ given by

Lq2+p2-‘i

q2 + p2

B

cos X, (2.47)
where q = Re(nz/n]) and p = Im(v ng-n?/n]). For a highly conducting earth,

XC = 45°. In the range of X< Xc, the SDP passes on to an improper Riemann sheet
and must be reconnected to the proper sheet by an additional contour Ty as shown
in Fig. 2.6. Although F] is constrained to pass below n,, we are free to choose
the remainder of the path so that G(A) falls off most rapidly from n, into either

the proper or improper sheet as shown, i.e.s Ty, js to be a steepest-descent path.

Now in this case, the point n, is not a bona fide saddle point, and the steepest
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descent method for evaluating this integral must be modified somewhat; this can
be done, and it is possible to show that the contribution from F} has a leading

order term of the form

(sz)'2 exp {fk R [}nz - nz)l/2 Cosg -in Siné}i (2.48)
0 2 1 2 §

If medium 2 is a good conductor, this wave is heavily attenuated, in addition to
being one order smaller in kOR than the saddle-point contribution. However, in
general, this contribution must be added to the series (2.43) to obtain the
complete expansion.

Using the dominant term (2.42) only in conjunction with the perfect image
and source terms G2 and G] from Chapter 1, we can construct a table (Table 2.1)
of far-field (or so-called space-wave) expressions for the various elementary
dipole sources. As can be seen, if only terms of order (klRl)-] and (k]RZ)']
are retained, the fields have no radial components in a spherical coordinate
system. In all cases, there is a direct contribution from the source, and a

contribution from an image located at -z, and modified by a reflection coefficient

of e1therI}E or FTM’ where

1
2

_ 2 . .2
re (8) = €22 (n2 smze)l/ (2.49)
cos 6+(n° - sin“e)*
2 2 . 2.k
FTM () n2 cos e—(n2 s1n28)» (2.50)
n® cos 8+(n° - sin 8)*

are the Fresnel reflection coefficients for a plane wave reflected fromvthe
air-earth interface and polarized with either E or H parallel to the interface,
respectively. The reflection process is illustrated schematically in Fig. 2.7.
Since we are dealing here with a dipole source problem, it will be seen that for
certain orientations (those other than vertical), both polarizations will be

excited by the source, and the plane-wave approximation becomes progressively

"~ better as R+ =.
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Table 2.1

Space-wave expressions for the fundamental integrals and the electromagnetic

fields in the air due to dipoles located above a homogeneous earth, to order (k1R)-].

2 2,2, (.02 4 2] 5 =[ 22]1/2.
Nota§1on. n n2/n] } R] (Kz LO) +p 1 5 RZ (z+zo) +p 3

1
2

(uo/eo) .

'
1]

L
coS e-(n2 - sinze)2

Ivp (8) = 3 cos o, = (z-z,)/R
TE cos e+'(n2 - sine)’ 1 o’ 1
2 2 . 2.1k
cos 6-(n“ - sin®e)*
Ty (8) = 4 T cos © (z+z )}/R
™ n2 cos e+(n2 - sinze)12 2 0’" 2
8y = 6y =0
Fundamental Integrals
ik4R -
e ] I-/ ™
Uy (z30) R LT (98 > o
iR - RO+ et)”
SR [ ] 7
V1(Z;D) R 5 \ cos 8 = z/R

0 n, _

Elementary Dipole Fields

vED | eik]RT 4R,
By = (gg/mlfy = Qg sn® ) == " T (e) R,
E. = H o= 0

£ & T,
E¢ = '(Co/n])He = 0

HED
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For observation points on the interface, i.e., for 6= %, it will be noticed
that Trg =T = -1, and all fhe fields from Table 2.1 vanish to the order of
accuracy retained. As far as the contributions from U](Z;p) are concerned, this
simply means that higher order terms - 0(k]R)'2 at least - from the expansion
(2.43) must be kept to obtain an estimate of the field strength. For V1(Z;p),
however, as can be seen from Fig. 2.4, there is a pole in close proximity to the
SDP and saddle point, and the assumption that the jntegrand is slowly varying in
this vicinity is no Tonger valid. Table 2.1 is then strictly valid only away from
the interface.

The variation of amplitude and phase for FTE and FTM is shown in Figs. 2.8
and 2.9 as a function.of x for several values of frequency f, and typical earth
parameters o, = 12 X 1073 s/m, €5 =15 ¢4

So far, our result is valid whenever the singularities of the integrand
are sufficiently far away from the saddle point. Obviously, this 1is always trug
when k1R is sufficiently large. HoWever; the presence of the poles at iAp in the
integrand of V], where NN,

A, = : (2.51)
nytn,

leads, by virtue of the mapping (2.27), to poles in the complex t-plane at

: A A ~
- B L2 gl (2.52)
When |n| = |n2/n]l is large,
in/4 X . 1 X RE
- w o X fein Ay L X L
Toe = 2e sin 5 (sin 5+ o Cos 5 ) + 4né}
(2.53)
. 2ai7/4 X Xy lgin X 1
Tp- © 2e cos 3 (cos 5 +sing ) o+ 4n2_.2

This means that the radius of convergence Tt of (2.33), for near-grazing angles

>

=0, will be equal to hp+l which is O(n_1) and thus small. The asymptotic

expansion (2.43) can be valid only if the Taylor series (2.33) accurately represents
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the function h(x) di/dr when the exponential term is significant; in other words,
we must have lker§/21 >> 1, or, roughly,

ik R/207| >> 1 (2.54)
The import of such a condition is demonstrated by the following example. Let us
take as typical earth parameters gy = 10'3 #/m, and €y = 10 €y- At f = 6.4 kHz,
n = 37.5(1+i), and at R = 103 km, the expression in (2.54) has a value of only
about .02. For grazing angles, the space-wave solution is thus practically useless
at VLF. Even at 640 kHz, R still has to be at least 100 km or so before (2.54) is
satisfied. .

In order to obtain more useful far-field expressions in this situation, the
effect of To+ must be accéunted for in the saddle point integration. In analogy
with (2.13), we can define the Sommerfeld-Norton numerical distance P as

: *p *p 2
p = 1k]R 1 - s sing + A, cos{] = g]Rrp+/2 _ (2.55)
which reduces to (2.13) at e =-%. It is now no longer h(x) in (2.30) which is

slowly varying near the saddie point, but ﬁ(x), where

a(x) = Bl - Bl (2.56)
T 'Tp+ 1 -2p/k1R
The procedure leading to (2.35) can be repeated, to give
- o —kiRt2/2
Q T e o - - h ! dt 2.5
SDP m=0 Ky 2m | el _mrz—Zp/k1R )
where EZm are the Taylor coefficients of ﬂ(x)dx/dr :
" il— - z - m < -
h\:x(d dc -~ meo hm T It} ¢ (2.58)

and the new radius of convergence ;c is larger than the old one, lrp+l. To complete

the study of (2.57), we must therefore evaluate the integral function:



2-21

® -k]RTZ/Z
2 L e
I(p) = (—P—)zj dt {2.59)
kR e 2 2/, R |

Before doing so, however, we should note that if [p| >> 1, this result
will reduce to the previous, simpler form, and that (2.57) need be employed
only when |p| = 0(1). The most common case when this occurs is when x is small
and |n| is large. By (2.53) and.(2.55), we can then obtain an approximate
expression for p as

ik,R ' A ~
D = ; J1’+ n sinaz “i(1 - D) R Em sinx|? (2.60)
2n - 1 -

with sin X = z/R = X. The latter form has the advantage of reducing to the
exact form (2.55) when 6 = 0, and makes it clear that p is in fact a measure of
the separation between the pole at Ap and the branch point at ny-

To study the function I(p), let us change integration variables to t =

(k]R/Z)%r so0 that

© -t
I(p) = p? J_m e2 dt - (2.61)
tT-p
It is readily seen that
- 2 o
-t7x 2 i
d ( e _ -t7x _ s 2
(H§ + p) J_mtz dt = - J_we dt = - ( x ) (2.62)
-p
so that | e_tz Lo [T ePX ) " it
e D dt = -7% ____dX+€p R
t™-p ) X% R
or
L - L \
I(p) = inte pErz - v(%, -p)j
(2.63)

i}

- S
inr e P erfc (-ip?)
where y is the incomplete gamma function, which in this case reduces to the

complementary error function (Appendix C)
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. L _tz
erfe(z) = 27 * e - dt {2.64)
z

The resulting form of (2.57) is

k R)% ikyR ¢ m m .
A 2 Mo 4" (- 35
Qpp -11r<§5—> e mzo (- E;-) th EEE- e P erfc(-ip?)! (2.65)

(-

e

To leading order, this is simply

, TR op Ly 2 .
2cpp ~--ETﬁ e (zp)? e Perfe(-ip?) ﬁ1C056 g(nysing ) (2.66)
or, alternatively,
Co2i MR '] 2 . '
Qpp - E;ﬁ' e [1 - W(pz; nj cose g(n] sing) (2.67)

where W(p) is Sommerfeld's attenuation function
. L -p >
W(p) = 1 + i(wp)? e " erfc (-ip?) (2.68)

which is a measure of the correction to the space-wave expression due to the
influence of the pole (compare 2.42)). When |p| is large, the error function may be

approximated by its large argument form, giving

W) -~ - e (2.69)

which is indeed a small correction, as we might expect. For p - 0, however,
W(p) ~ 1 and a significant modification of the field structure occurs. Norton
has published numerical values for W(p) which we have reproduced in Fig. 2.10.

Expression (2.67) can be split into the space-wave (2.42) and a correction

known as a ground wave:

Qgpp = fsp ¥ fig
where
2i R 2 ,
Qp = - =€ n] COSg g(n] sing) (2.70)
. ik,R
Qg = %e 1 W(p) n% C0Sg g(n_l sing ) (27])
1

The ground wave is,in the far-field (k]R >> 1) only significant near the interface,

where the space wave is correspondingly small, as evidenced by Table 2.7. The
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correction factors to be added to the space wave terms from Table 2.1 in the ground
wave region are summarized in Table 2.2. It should be noted that derivatives of
W(p) which arise have been neglected compared to W(p), which is justified in the

range [Pl s 1 and kR >> 1 when the ground wave expression is most useful.

Table 2.2
Ground wave expressions for electromagnetic fields in the air due to

dipoles located above a homogeneous earth (k]R >> 1). Notations as in Table 2.1;

also
L. L
W(p) =1 + i(mp)*e P erfc (-ip2)
- Ap Ap
p = kR XJ - n, sime + ﬁg cosa4]
VED EB = '[Co/n1)H¢ :QE s1me (FTM - ]) W(P) k]R

2

HED
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It can be seen from (2.65) that the complete expansion for Qqpp must have

the form
ik]R

'E‘T"‘ Am(e)(2k1R)'m + (p)? &P erfe (-ip?)

0 m=0 m=0

Ih~1 8

e~ 8

R
~ {
Bm(e)(Zk]R)-m€ (2.72)

-~

~

We can proceed as with (2.43) to obtain recursion relationships for Am and Bm
to allow us to compute higher order terms in a reasonably straightforward manner.
The details are left as an exercise for the reader.

It is of interest to note that, because the integral function Ui does not
possess any poles in its integrand and hence contains no ground wave contribution,
it vanishes completely as we allow both the source and observation points to be
on the earth's surface (though only in the asymptotic sense). As a resﬁlt, the
electric field in the far-field zone (k1R >>1) is vertically-polarized (TM) on
the earth's surface for a vertical electric dipole as well as a horizontal electric
dipole. It is seen for a given dipole moment. The ratio of the two electric fields

is given by
EG(HED) coss (2.73)

E, (VED - - (n2-1)%

where ¢ is the angle measured from the horizontal dipole axis. This means for most
practical cases where ln{2 >>1, the electric field produced by a horizontal

dipole (HED) on the earth surface is substantially less than the one produced by a
vertical electric dipole (VED). The situation is even more dramatic in the case of
a magnetic dipole. We see from Table 2.2 that, while the VMD will not produce any
significant field strength in the far-field zone (agéin, to the order of R"), the
HMD actually allows the propagation of waves of both polarization. The ratio of
the two fields is given in this case by

E¢ (HMD)

- cote (2.74)
[% HMD )

" Thus, the field strength of the TM wave (i.e., Ee) is substantially greater than that

of the TE wave (i.e., E ), except in the direction along the dipole axis.
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§2.4 Expansions for Earth with lLarge Refractive Index

The restriction k]R >> 1 of the previous section is often too stringent for
applications when near fields of antennas are required, or at ELF or VLF frequencies
when the space wave and ground wave solutions are valid only at unrealistically
large distances. It is the objective of this section to obtain expansions which
assume only that Inzf >>1.

By way of preface to these discussions, let us investigate a éeneral pro-
cedure for the transformation of Sommerfeld integrals. Consider the integral

—kou]z

0o

I Jo(koxp) Adx (2.75)

bu2

where .y(u]) = u]g(k)e and a = koz (cf. (1.76)). 1If y(u1) can be expressed

as the Laplace transform of a function ;(t) over some contour:

wal G
e~ —k0u1t
Y(u]) = y(t)e dt (2.76) -
0
then from (2:4) and (2.75) we have
ig ik,R
-2 g - e]t
Q =i v(t) R dt (2.77)
o jo t

where Rt =y p2 + (Z+t)2, provided the phase angle g can be chosen so that the

interchange of integrations leading to (2.77) is vaTid. This transformation is

essentially an application of a convolution theorem, and represents  as an integral
ik4R

ofe | t/R . the field of a source at z = -t, with a suitable weighting function
t

fromt =0 tot = =e'® . Thus (2.77) is a generalized image representation of
(2.75), which will prove useful in subsequent manipulations.
A special class of functions y(u1) which leads to closed-form expressions

from (2.77) is the set of rational functions of Uy - In particular, consider
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the integral (for Re(b) > 0 to start with):

{e=]

-k u,z
Ry = e ol
X,(zs03b) = . —— 3 (k) AdA (2.78)
(u]+b)‘u
1
By expressing -
k Vv
- -1 -k _t(uy+b)
(u+b)™0 = =9 t9! e o TP 4t (Re v >0) (2.79)
AR O

we obtain the following special case of (2.76):

k! J o kbt TR
X,(z, o3b) = OB 0 t e Ry dt (2.80)

Although Xv is an entire function of the index v, we are primarily interested in
the case when v is a positive integer, in which case

(_1)m—] am-]X

) 1 |
Xo = (=177 (2.81)

3p™ ]

By the successive changes of variable u = t+z, and

whence also

//____
2
sz+u + i %—u Swls u(1 + 9——-) sw- i worc?

C
1 n% N
2
(=02 (1+2%))
ny
we get _
k bz * ik1 w2+c2
X, = € ° < dw
1 7‘7"2_’w o (2.82)
z+i%—R

1
By an obvious change of integration variable, this can be jdentified with the

incomplete Hankel function from Appendix B:
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k bz (’ 1 . —-2
x, = xie 1) [k o (n2+b2) J-H“) ‘ , k_p(n%sb?) (2.83)
1 2k, l\ 0 0o®'\" 1% (n§+b2)% sing = © 1 ‘5

where tans = z/p as before. From the properties of Hé])(a,z) given in Appendix

——

LS.

—

B, it is clear that Xm is expressible as a combination of complete and incomplete
Hankel functions of order zero and one, together with elementary functions.

A few relations which are easily verified from (2.78) or (2.80) are:

aX
A -
57 kova kOXv-1 (2.84)
ax
i Y (2.85)

To extend the definition of Xv to Re(b) < 0, we note that as b passes into the

left half of its complex plane, a pair of poles (if v is an integer) or branch
points (if v is not an i?teger) of the integrand of (2.73) will appear in the
A-plane at A= t(n% + bz)/2 (for definiténess, let us specify the imaginary part of
this square root to be positive). As Re(b) becomes negative, Xv as defined by
(2.78) will remain analytic until the poles (or branch points) in fhe r-plane reach
the contour of integration of (2.78), i.e., the real axis. Let us trace the
movement of these singularities in the A-plane as b passes into the left half-
plane as shown in Fig. 2.11, along the path AA'. At the starting point A, the
configuration in the A-plane is as shown in Fig. 2.12 {as in Chaptér 1, the
branch cuts cannot cross the real axis; if v is an integer, the points * (n% + bz)l/2
are poles, so of course no branch cuts are present). As b moves from A to A,

the singularities in the x-plane rotate 180° to the positions indicated in Fig. 2.13.
It is clear that the values of the integral X from (2.78) at the positions A

and A' must be different due to the different values taken by (u] + b)Y along

the portion of the contour adjacent to the branch cuts in Figs. 2.12 and 2.13 (if

v is an integer, the difference will be equal to the residue contribution from the



2-28

pole). As a result, we conclude that, as a function of b, XV must possess a
branch cut at in] as indicated in Fig. 2.11, and that the definition (2.78) leads

2
consistently to the Riemann sheet specified by Im(n% + b2) > 0. In this manner

L
we can analytically continue the result (2.83) to all complex values of b.

By decomposing a rationai function y(u]) into partial fractions, the
corresponding Sommerfeld integral (2.75) can now be expressed in closed form using
incomplete Hankel functions supplemented by more common functions, eliminating
the need for numerical integration. This is especially valuable if fields are
required at a number of points, in which case repeated numerical integration can
become quite costly. Moreover, if an arbitrary function y(u]) can be well approxi-
mated by a rational function of Uy (particularly one with only a few terms in its
partial fraction expansion), then the corresponding Sommerfeld integral can be
efficiently evaluated to reasonably high accuracy, again without numerical integration,

if a routine for evaluating H(l)(a,z) by the series expansions of Appendix B is

available.
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§2.4.1 Asymptotic Expansion for |k, R|[>> 1

We are now in a position to obtain expressions for U; and V, when |k2R| >> 7,
The integral U1 can be reworked in a straightforward manner, once again by rationali-

zing the denominator:

. ® ek usz
] e O 1
Ul(Z,p) = 2[0 -—W—'Jo(kokp) adx (286)

) -k U,2 0 'k U,z
2 o1 o1
—E-JO ue Jo(koxp)xdx - I u,e Jo(koxp) Adx

N 0

2
ngZ 822 koR N2

ik,R =

2 1% -k uyz

3 . & 2_ J u, e 17 5 (k.ap) Adr
o o‘"o

where N2 = ng - n% as in the analysis of §2.1. An asymptotic series for

|k2R| >>1 can now be obtained by expanding

2 2% Uy s
uy = (uy - N°) = -iN(T - EE )
© 2.
SR S “?”‘ (2.87)
=-in e () (- E? )

L . .. .
where ( ; ) = F(%J/F(%—— m) T{m + 1) is the binomial coefficient, since the
contribution to the integrand comes mainly from small Xx. By integrating the

remaining integral in (2.86) term by term, we find that

» [ kR
L
5 2 - AR I 1_2_ ™ X _pp.q (25030) (2.88)

5 )
koN 3z 0 m=o0 N

U] (Z;P) ~

where, because of (2.84) and the fact that

ik,R
1
.h) = &
Xo(z,p,b) = koR (2.89)

we have
2ml 2mt] Pk]R}

€ (2.90)
322m+1 L koRJ

X_Zm_] (Zap;o) = (' ;—o')
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k

ik,R.
Since each z derivative of e 1 /R increases the power of R in the denominator by

one, (2.88) is evidently an asymptotic expansion in inverse powers of (kONR)Z,

which for'|n32 >> 1, is essentially (k2R)2, and we have achieved the desired series.

To leading order we have

ik,R
2n e 1

1
U](Z;p) * Cosg koR (lk]RI >> 1) (2.91)

Comparing this with the space-wave expression from Table 2.1, we see that (2.89)

will be accurate provided that

1 1
(nz..])!‘/2 cose+(n2-sin

ZI:
—

1
26)2

which is true within the restriction that ]n2| >>1. However, by retaining the
terms of (2.88) which cannot be neglected if we assume only that {kZR] >> 1, we
have a solution which is valid down to much smaller distances than is the space-
wave solution.

The Sommerfeld integral V] requires somewhat more gpecia]‘handling since
its denominator cannot be completely rationalized in the same way as U1. However,

this function can be expressed as

2n§ {m e—kou]z Zn% Jm e—kou]z
Vy(z3p) = ng-nlf o G, J (kae) adr - a3 B Jo(kre) adx  (2.92)
2 1
where, from (1.84):
_ 1n$ _ —ing
Ll (n§+n2§)l/2 , 2p - (n]ZJrng);2 (299

This splitting of V] enables us to treat the first integral exactly as described
above, while the second can be asymptotically expanded for large Ik2R| in a manner

similar to that of U;. Thus, for lnzl >> 1, the first integral, which is muitiplied

1
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by a constant n2 times larger than that of the second integral, and clearly is

the more important term, is expressible in terms of X]:

-koul

2 o
2n
vlo)d o 2 J £ J (k_xp)ada
4 4 o u]—u]p 0''0

ny=My

&
u -k u,z
1 1 o 1
+—1| e J (k. xp)ada (2.94)
[‘: [U]-U]p u] u]] o' 0

——
(]

——

2 ik,R . =0
It will be noted that for z = 0, the form of the incomplete Hankel function reduces
to Hél)(n]/nz, koxpp), as was encountered in the exact expression {2.11) for z = 0.
We can see that when the parameter of the incomplete Hankel function in
(2.94) is small, which will occur for small elevation angles e, the leading term
of expansion (B.10) may be used, giving

2 ik R 1
i L 7}

2n 1 -1k oMpP ink,R

(0) .2 e ai o*p® (1) ImkR % i0%)

v = =7 c R ——k Re H (k A 0)- (ZA sins) erf(- |> (2.95)
ny-ny 0 D =

where p is the Sommerfeld-Norton numerical distance given by (2.55). In the
far field Ik]R] >> 1, we can further replace the Hankel function in (2.95) by its

large argument form, resulting in

2 ik,R
2n 1 mik R
(o) 2 _ e -p ik
L e i 1+ uy, € (ZA s1n3) erfc( ip?) (2.96)

since erfc(z) = 1 -erf(z). If 1n2| >>1, and X <<1, then it is easily verified
(cf. (2.60)) that the term in brackets in (2.96) is approximately equal to Wip),
the Sommerfeld attenuation function which arose in the ground wave portion of the

far-field analysis of V]‘
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For higher elevation angles, when the parameter of the incomplete Hankel

function in (2.94) is large - especially for @ near 0O , we may use the leading

term of (B.15) to obtain the approximation

2 ik, R
2n 1 -k uq. .z
(o), 572 )e 0"'1p . }
Ml 0 J

where again the inequality |n2| >> 1 has been invoked.
The second integral in (2.92) can be expanded asymptotically for [k,R| >> 1

as was (2.86), by using the expansion

<] -

2m

1 7 au (2.98)
= L "mT
u2+u2p m=0
where
o (s -1
a, = (-iN + “2p) (2.99)
a, = -ia2/2N : (2.100)
1 o - A )
and
2 . . By (i) 1o2m 3}
u]p a. = an + 0 ) (iN) m=1,2,... (2.101)

Substituting (2.98) and integrating termwise, we obtain the remainder term in the

expansion of V]:

2 -k uyz
2n o1
(1) 1 e
Vy ‘=z - J {k _ap)ada
1 ni-n? 0 u2+u2p oo
2n2 (2.102)
T e x (2,030)
- - — a Z,p30
nda mo M -2m-1
2 1]
The leading term of (2.102) is
n2 ik R-1
1 -4 4 N+iu 2.2 e Cco0sy {2.103)
n,-n 2p k7R
2 1 o

4
Since this quantity is O(lni's) compared to Vgo), it is possible to neglect V§?>

under the assumption that [k,R[ >> 1.
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§2.42 Asymptotic Expansion for |k NR| ~0(1) and |n2]>>1

Returning now to (2.86), suppose we expand u, as a descending series in Uy

rather than the ascending series (2.87):

(1 T”Z )% 7 (%) N ) (
U, = U - =y 2 (- =5 2.104)
2 1 Uy | Vo @ u%

Clearly, such an approximation is valid in the case when the contribution to the
integral comes mainly from large A. Integrating termwise, we obtain in place of

(2.88):

.2 Sk 2,\m .
Uybzse) "z mzl( 2N Xyp 5 (25p30) (2.105)
Roughly,5the»terms in this series acquire an additional factor of (kONR)2 for

each successive m, and so constitute a series valid for IkONRI s 0(1) if the
decrease in successive terms continues sufficiently far. Again, however, since
(2.101) does not converge over the entire range of integration, (2.102) is only
an asymptotic series for the case we are considering (lnzl s> 7).

(1)

A similar procedure can be applied to V1 by writing

- E i 1 (2.106)
u2+"2p M=o u?+
where |
By = 1 (2.107)
| P17 = | (2.108)
and 5 ,
"mz " | “ipn (m odd)
m . P
' 7t (2.109)
2 5\ (w222 |
m = 0!19 é & é U1pb + (%+ _>( N ) (m even)

Termwise integration now gives, in place of (2.102),

V(i)« - 2“ . ) ,
1 m (z,p30) {2.110)
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§2.5 Quasi-Static Forms of U] and V] (Quasi-Static Image Theory)

An important special case often encountered in practice is when |k1R| << 1,
the so-called quasi-static range. This is equivalent to saying that the fields
in region 1 need only satisfy the static field equations, but makes no restriction
on the magnitude of k2R. One can approach this problem directly and obtain the

quasi-static forms of U] and V] by letting up > A in the respective integrands,

giving W (z50) = 2 ” e-koxz J (k. ap)Ad (2.111)
Zip) = s Ap JAdA .
1 Jo " &2_n§ o' o _ _
-k Az
Qs > e 0
vy (z50) = 2 j R Jo(koxp)xdx (2.112)
0 n,x tny f2 2
2 1V -n,

These forms are commonly employed simplifications of U1 and V], but estimates of
the error incurred in this approximation are rarely given. A simple way of provi-
ding such an estimate is to evaluate the difference between (2.111) or (2.112) and
U] or V] respectively in the limit as z and p = 0. The resulting integrals are

elementary, we find easily that

. S o
AUy = 2im [U (z;p)-UQ (z;p)] - [ [1 ! T
1 1 1 =2 - Adx
Z5p> 0 o1 MAzZ 7|
2 .
2 )
n, 21n] (2.113)

2 (In] >> 1)

3 n]+n2 3n

AV = eim [\l](z;p)-V?S(z;p)} =2f rz ]2 - = ; ‘!xdx'

Z,p+ O 0 | nsjustnyu n, n
"2 2 T /Xz__ng
(2.114)

2 2.k Lo
29020’ 0y no+(n+n)? n nZt(ng-nT)* |/

_cM% 1 1 MM 2 2 \M™ My
T R My el 2 | (i) [ B
7™ Nt Le Mt Meny2 0 M L 2
s

= 51 (lnl 5> ])
nn
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Since U?S and V?S possess 1/R singularities as R +0, while (2.113) and (2.114)
vanish as n,/n, = 1/n> 0, the approximate forms (2.111) and (2.112) should be
quite accurate within these restrictions.

Unfortunately, even the simplified integrals U?S and V?S cannot be expressed
in finite form as known functions except in certain special cases. However, if
|k2R| >> 1, we may take the asymptotic expansions of §2.4.1 and simplify them
under the assumption of Ik]RI << 1 to obtain approximate results over part of the

quasi-static range. For U], for instance, we take only the first term and the

leading term of the sum from (2.88), and make the quasi-static approximation; the

result is B :_g_gs s 207 + 21 cose (2.115)
0

It can be observed that all of the terms of (2.115) are also obtained as the leading

terms of the expansion of

Q. 1 _ 1 | (2.116)

for !koNRI >> 1, where

2 2 s _ 2
Rd = + (z+d) 3 d koN (2.117)

Clearly, the second term of (2.116) represents the effect of an image source at

a complex distance d from z = o. If region 2 is a good conductor, so that

kON = k2 = “+1)62._
where 62 is the skin depth in region 2, then d = (1+i)62. The approximation {2.116)

is known as the complex image representation for U?S .

For V?S we similarly take the quasi-static approximation on (2.94); for

|k1R]<< 1 << IkZRI, we thus have

2
VQS - 2n2 1

1
nzzx_n% KR (2.118)
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No complex image interpretation is either possible or necessary for (2.118), which
is quite simple as it stands.
Formulas (2.116) and (2.118) are restricted in their range of applicability
as has been indicated, but within these ranges they provide quite acceptable accuracy
using only elementary functions, and thus are useful when quick ca];u]ations are

needed.
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§2.6 Unified Approximations for Uy and ¥, (ln2[->> 1)

In vieﬁ.of the considerations of the §2.4, it is clear that if the terms
involving u, in the Sommerfeld integrals can be accurately approximated by a

rational function of Uy for both small and large A, then a single expression can

be obtained which is valid in both near and far field. Although this accuracy
can be made arbitrarily high by taking a flexible enough rational function, an
expression containing only a few terms can be dealt with much more conveniently
when it comes to performing the differentiations necessary to compute individual
field components.-

When |h2| >>1, it is appropriate to write u, as:

(u%-Nz)?/2 = (Zu]—iN)z + Ziu]lﬂlé

—

21u N 5 (2.119)
—1N)(: ]
(u1—1N)

The second term inside the square brackets in now small for both Id]/Nl << 1 and

Uz

|u]/N{ >>1, and is only equal in magnitude to % when uy = -iN. Thus, over the

entire range of integration, we can write

>F21” : .1 | (2.120)
]-1

8
3 W\

= -iN (
Uy (g] iN) L

A very simple, unified approximation for U] and V1 should thus be obtained if we

retain only the m=o term of (2.120) and replace it in the appropriate integral

representation:
- —kou]z
U (z5p) = 2 Jo %E}iﬁir‘ 3, (ko) Adh
ik]R ) L (2.121)

_ & iN . _IN
= Syt N(zes )

On the other hand, V(?) has already been expressed exactly in (2.94), so we need



.oﬁly approximate Vgl):

2 ~k u,z
2n 01
(1) 1 Jé e
v 2 - - - J_(k_xp)ada
] n4—n4 o u]-1N+u2p o' 0
21
2n§ e1k1R ) .
= - 3 7t (1N-u2p) X1{z,05 -iN +u2p) (2.122)

These approximate expressions even have the correct behavior as n§-+n$, and therefore

might be expected to be accurate for quite a wide range of the physical parameters
of the problem. This conjecture is subject, of course, to numerical confirmation
by direct comparisbn with numerically "exact" values, as will be discussed in the
next section. '

These approximate representations for U] and V] can be seen to be similar to
those arrived at in the analysis of a dipole over an impedance surface (Problem 1. -}).
The form of Vgo) in (2.94) in particular is quite similar to the.integral appearing

in the problem of a VED over an impedance plane.

§2.7 Numerical Results and Discussions:

Extensive numerical computatioh of the exact integrals as well as those
based upon various approximate f?rms will not be included in this report.
The readers however are referred to the nofes given in the following section
for numerical results available in the literature. We should point out that in
the work of Chang and Fisher [1974], approximate results based upon the use
of the incomplete Hankel function were shown to agree well with the numerically

"exact" ones for a surprisingly wide range of earth parameters and observation

distances.
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Notes on Chapter 2

§2.1 The expression for U(p) is undoubtedly nearly as old as the Sommerfeld
problem itself. It can be traced back at least as far as the work of Fock (Fock
and Bursian [1926]; Fock {1933] ) and can be found mentioned by many authors since
then. The more difficult investigation of V(p) has been taken up by Wise [1931, 1933] ,
Fock [1933] , Rice [1937] and Ryazin [1946] , who obtain various series expansions,
not always rapidly convergent, but equivalent to the incompiete Hankel function
representation. The very clever trick of using (2.8) was suggested by vander Pol
[1931], and is known as the vander Pol substitution. The formula (2.10) was
acually obtained earlier byAThomas [1930] , but in a much more cumbersome form.
However, it was apparently not until 1965 that anyone recognized that the result
of this substitution could be expressed in terms of incomplete Hankel functions
(Agrest and Maksimov (19711 ). Formulas for U](z;o) similar to (2.18) have been

given by Wait [1953], Bhattécharyya {1963a] , and Kochmanova and Perov [1974].

§2.2 Only recently has it become reasonably economical to evaluate Sommerfeld
integrals by direct numerical integration, the first such work apparently being

that of Siegel and King [1970]. Direct numerical integration using Simpson's rule
or some other straightforward quadrature are applied in Kong, Tsang and Simmons [1974],
Tsang, Brown, Kong and Simmons [1974], Kong, Shen and Tsang [1977], as well as King
and Sandler [1977]. The application of Shanks' algorithm to accelerate convergence
is discussed by Lytle and Lager [1974] and Lager and Lytle [1975], who also discuss
various possibie contour deformations. Other semi-analytical quadrature methods

as well as contour deformations are to be found in Wait and Fuller [1971] ; Koeffoed,
Chosh and Polman [1972] , Fuller and Wait [1976], Haddad and Chang [1977], Bubenik
[1977], Sarkar [1977], Kuo and Mei [1978] and Rahmat-Samii, et al. [1978]. For

all these techniques, the reader is referred to the papers for programming details

and additional literature citations.



2-N-2

§2.3 The method of steepest'descents is described in many texts; see, for
example, Banos [1966], Bleistein and Handelsman [19751, Brekhovskikh [1960],

Budden [1966], or Felsen and Marcuvitz [1973]. The situation is complicated
§newhat when evaluating the saddle point for U2 or V2, since the presence of

kouzz] in the exponent requires the solution of an equation of higher order than
quadratic for Xp. This case can be treated by making use of appropriate approxi-
mations (e.g., inzl >> 1), and the reader is referred to Banos [1966] for a fuller
discussion; Two saddle poihts actually arise in this case, and the method may

need to be generalized to account for this (see Budden [1966] or Felsen and
Marcuvitz [1973]). The idea for the recursion relation (2.45) is due to Wise
[1933] and to Sherman [1973]. Details of the evaluation of (2.48), sometimes
called a head wave or lateral wave, can be found in Brekhovskikh [1960] or

Banos 19661 . The exact form (2.55) for the numerical distance is not often used
because (2.60) is more than adequate for cases of practical interest, and is the
form most often quoted (see, e.g., Wait [1970al ). The data in Fig. 2.10 is based
on more extensive graphs and tables published by Norton {1936, 1937] . A more
formal and in some ways easier approach to finding the leading terms only of
asymptatic expansions such as those of this section.has been given by Yokoyama
[1969,.1972, 1974, 19751, who was able to clarify several approximations implicit
in the work of Banos and others. The extension of the method to treat double

0's
by its asymptotic expansion ) is done in Banos [ 1968 (See also Bleistein and

integrals directly (and thus avoid the rather shaky step of replacing H(])(k X p)
0

Handelsman [ 1978 ).

§2.4 There are a number of generalized image representations for Sommerfeld
integrals in the literature. While the images in (2.77) are distributed along a
line below the source and perpendicular to the interface, van der Pol [1935] gives
a form with images distributed over an entire volume - a half-space below the

source. Image representations distributed over a plane have been given by Briquet
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and Filippi [1977] and Filippi and Habault [1978]. The Xv functions of (2.80) are
general{zations of those considered by Sommerfé]d [19097, which in our notation
are essentially Xv(z,p;o). Subsequent discussions of this special case were ¢iven
by Wolf [1913], Niessen [1937], Brekhovskikh [1948], Krylov and Makarov [1960],
Krylov [1961] and Brittingham et al. [1978]. The integral X](z,p;b) appeared
very early on in the study of the dipole problem, since it can be used in the exact
representation of the problem of a dipole source above an impedance surface, which
can be a good approximation to the half-space problem if !n%/n% | >> 1. Among
the authors who discuss the integral form (2.80) of X] are Weyl [1919], Sommerfela
(1926} , van der Pol and Niessen {19311, Murray [1932, 1933], Niessen [1933] ,Sawicki
(19541, Dobrovol'skii [1958], and Furutsu [1959]. Abraham [1922], Malyuzhinets [104(]
and Diaz and Ludford [1955] obtain this solution for the impedance sﬁrface by a
method which avoids the use of Sommerfeld integrals. Expansions for X1 (in the
form of (2.78))in terms of Xm(z,p;O) were, in essence, given by Krylov and Makarov
[1960] . It was apparently Chang and Fisher [1974] , however, who first identified
X] in terms of incomplete Hankel functions explicitly. The convergent series
expansions of Sommerfeld integra]s given by Krylov and Makarov [1960} and by
Brittingham et al. [1978] are essentially expansions in functions similar to
Xm(z,p;O). The method of Kuo and Mei [1978] , on the other hand, consists of
expressing the Sommerfeld integral as a finite combination of X](z,p;bi) for some
set of bi' The approximate form for V1(O) given by (2.97) was given by Chang and
Wait [ 1970 }, and, under the additional restriction that Ik]R/n|<< 1, can be found
in somewhat simpler form in Wait [1962, 1969b, 1970b] . The asymptotic expansions
(2.88) and (2.102) for IkZRI >> 1 are derived here using the method of Wise [ 1929 .
The splitting of V] into V%O) and V%l) to preserve the effect of the pole was a
modification suggested by Murray [ 1932 ] Asymptotic expansions (2.105) and (2.119)
resemble the convergent seriés given by Krylov and Makarov [1960] and Brittingham

et al. [1978 to some extent, and may in fact converge if (n?-1) s small enough

(Brekhovskikh [ 1948 ). However, the convergence rate of these series is extremelv
slow, and their useful range would seem to be limited in the same way as (2.105) and
(2.110).
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§2.5 The quasi-static forms (2.111) and (2.112) go back to the work of Foster [1931]
and Fock [1933]; the reader should consult Wait [1961] and Banos [1966] for a more
detailed discussion of this approximation, as well as for further references and
expansions. Expansions for (2.111) have also been given by Bhattacharyya [1963b],
illustrating the nontrivial nature of this function. The complex image idea can

be traced back to A.D. Watt in an unpublished work in 1966. A formal derivation

of (2.116) directly from (2.111) has been given by Wait [1969a] and Wait and

Spies [1969]. The particU]ar choice of d results from the happenstance that so many
terms of (2.115) can be matched by the function (2.116) with this value. Wait
[1969a] éerforms a similar matching of terms in an expansion of the integrand of
(2.111) in powers of A. Much work in the area of complex image theory has been

done by Bannister (see Bannister [1967], Bannister and Dube [1978] and Bannister
(19781 . In the last of these, the compiex image method is generalized to eliminate

the restriction Ik]RI << T).
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Apgendix B

Incomplete Hankel Furctions and Related Functions

In this Appendix, we define and derive a number of properties of incompiete
Hankel functions and certain allied functions which play an important role in the
description of the fields of sources in the vicinity of the earth’s interf.__ace° The
primary source for this Appendix is the book of Agrest and Maksimov [1971], but
many of the results can be found only scattered throughout the literature. The
references consulted have been collected at the end of this Appendix (see alsc
further references given in these works) but individual results are not attributed
to individual papers since in most cases numerious authors have indrpendently obtained
identical formulas, and we have rather attempted to collect the most useful of
these here.

The incomplete Hankel functicn (finite form) is defined as

L/ A

a - - .
] { - 2\1/2 ! 1 o0 ’:‘

Hé )(a,z) =Tg‘ eﬁpsz(;+¥ L= dw; Re(HwZ)2 >0 - (B.1)

' L JO (]'*‘W )2 : 7

vy S e
1 ~% L
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The compliete (ordinary) Hankel function of the first kind is then readily identified

as

———
SNoir®
N
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=
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ja¥)
s
N
S

(M - w0
HO (z) = HO

[?m(z) > é]

la]>e
3 Ao J:(-i) hE <
through a well-known integral representation 01 HO (z). Two convergent series
expansions for Hé})(a,z) can immediately be chtained through the use of (B.1).
First, we may write the exponential in (B.1) as a Taylor series and integrate

term by term, obtaining

(a5 - 1 025 ¢ ]
o' '(asz) = 25 7 ¢, (a) (8.2)
where .
ra 5 {k-1)/2 ,
Ck(a) =2 {T+w™) dw (B.3) =
im ‘0 ~ | ; S
R ook e ;
e ¢ ‘}L‘
é& cﬁ.f / c;)\ *».\“ g
C, ~ i~ | EET
< Tdl-e® (&;z} \ et




B-2

Integrating (B.3) by parts gives the recurrence relation

? (k+1)/2
_ ktl 2 a(l+a")

Caz®) = hz Gl v T (8.4)

and therefore all these coefficients can be evaluated from a knowledge of the first

two, which are elementary integrals:

21,2 2.4
Co(a) = 37 sinh (a) = 7= 2 |at(1+a )_j
B.5)
\__25 (

. L

If a is to be extended into complex values the value of (?+a2)2 is to have non-
negative real part and the logarithm its srincipal value. The series (B.2) converges
for all a and 'z, but is most useful if neither |a] nor |z| is large.

We can likewise define an incomplete Hankel function of first order as

ra 2 i, 257
! i
Hsi)(a,z) = - %f‘ 1 " ethJS(;+W ) = dw (B.6)
! | (T+w7)

0

-

By differentiating (8.1} and integrating by parts, we have

(M)
EH (a,z) { 1 2 1/2
I I - T (8.7)

which generalizes the weli-known form for Hé})(z). We can obtain an expansion for

Hg])(a,z) similar to {B.2) either by operating directly on (B.6), or by using (B.7)

to exprass the series in terms of Cg(a):

—

(o] f
.Gk {
1) oGzt L. 28 4,20
H( = . L a o + H .8
1 (@2) =y T L_Ck+?( ) (#a) (8.8)
oy, ) .
A second type of series expansion for H: “(a,z) is found by changing the
p P o
. .. . . . 2.5
variable of integration in {8.1) to t = (1+w")?® - 1:
b i ~ / S.ia) T o
L1 ~ IR - R <
(1) >z exp dz{tr1)dr (= ’ ) (
A (2,2) B 5y Vi S . 8.9)
J s} L R«Z'H*:) T \\
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i -—;
where b = (1+a2)2 -1. By expanding (1+t/2)* as a binomial series in t and integrating

term by term, we obtain

[+]

(1 * iz -1 k-1 .
1D (a,2) o™ L (7 )(-2i2)7F % K(ks-izb) (8.10)
sy
where (kz) = T(%)/T(%k)r(k+1) is the binomial coefficient, and y{(a,z) is the

incomplete gamma function (finite form):

(Z oot ta—i

lo dt (B.11)

Y(a 92) =

for which we have the recurrence formula (Appendix C)

The initial term is expressible in terms of the error function
1 . — anE | -111'/4
v(%, -izb) = /merf (e Yzb) (B.13)
for which series deveiopmenté for large and small argument are available (see

Appendix C). The series (B.10) converges at Teast for |bj < 2, and thus is most
J ., Sor \zbl = dorso; see Rorewom

Es 9?\1‘“ <
ful when |a] is small.  LaE prise A
useful when [al is small.  ppF T pp i35

When |al is large, it is more convenient to work with a complementary form of

H(])(a,z). Thus, if Im{z) > 0, we have

-
. 2.1
1Y, XD1 i’}‘r‘ } 2 ;
Hm(a,z) - a2 -?-I EXpLIZy TW ) ] dw (Re(a) » 0)\/
O O iw a 'i.LWZ‘\/Z
\ J &
21157 {
/ 2 ool W2y l
= —H‘1>(z) + f { xph}Zé iﬁ ) dw (Re(a) < O}J
© o J-w (1+w<) 2
or
< PTTIAt .
WD (auz) = 0Dy 3 22 [ exeudzlind )2l (B.14)
0 0 iw jia (?+WL>5

the upper and lower signs corresponding to Ra(a) greater or less than zero,

respectively. The change of variable t = {itw



(B.14) leads to , (m eizt

S di
()% ()

with Re(‘cz-l)l/2 > 0. If |a] is large, then we can expand

2 =% _ -1 2v-% _ =1 ) ey =2k
(t -]) =t (3‘}/t ) =t k:O (l( )(—t )

2

which can be made to converge over the entire path of integration if |1+a%] > 1.

Integrating term by term results in:

() (D) ne 2 T (K8 2k . 2% > \
HO (a,z)—tHO (z)¥ T k5o (k*)zz ” (-z5)°r(-2k,-iz(1+a"}?) , Re(a) <0 (B.15)

where r{a,z) = r(a)-y(a,z) is the complementary form of the incomplete gamma

function. The recursion formula is

-2k-2

L=

f(<2k-2,x) = [P(-2k,x) - X 2K e (x2ke1) [/ (20 ) (252) (5.16)

and the initial term is the exponential integral function

r(0; -iz(1+a2)%) = £, (-iz(1+a%)?) . (8.17)

-
l

Again, small and large argument series expans1ons are ava11ab1e in Appendwx

Ao o wp ot 120ﬂ*ﬁ5i>>1
This series is clearly most useful for }a[ >> 1. We can a1so obta1n expan§1ons
S - “,,) £ eo, ('t

for Hgl)(a,z) similar to {B.10) and (8.15) through the use of (B.7) or by working
directly on the definition (B.6).

The series derived above permit us to write efficient computer subroutines
for calculating Hé])(a,z) and H§1)(a,z} for all ranges of the parameters except
whenlz| >> 1 and a is arbitrary. In principle, we could deal with.this case by
starting from the representafion (B8.9), only now we proceec to integrate by parts

Thus we have



izt
[(z) = [° &—F dt
o t3(2+t)?
5 (P -n izt b yize T -n -y
=2 Jte dt+Jt (2+t) 2 - 272 {4t
) 0
b
. -3 s 1 (=% izt 5 N
(-2iz) * y(%,-1zb) + = LF e Tr((2+t) 2 -2 Z3o
b L AL ]
-I—ZJ e”t%{[‘c ({2+t) = -2 2)_{ dt (B.18)
0
-l E
L 2 - i
=(-2iz) * y(%, -izb) + %—— 2+b) * -2 2} 12b
b o ( fopiyB o5 IR
"7%'J izt -% ;;(2+t%& 2 (2+t) 3/2 % gt
0 - v i

Clearly, this process can be repeated, adding and subtracting to the factor in the

. izt, =% ., ) . .
integrand of e tt ? its value at t=o at each step. In this way, we generate an

asymptotic expansion for H(])(a,z) of the form

0
iz ’/‘co A w B i
Hé])(a,z) - 2?“ ; ) -—Jg—j;g:— v(5,-1zb) + ¥ k_ s 1?0 . (B.19)
(k=0 (-12)" k=0 (-1z) o
where, from (B8.18),
-5 -~k ]
A =27F B, = b 2277 - (210) 77| (8.20)

0

The expansion {B.19) will simply be a rearrangement of (B.10), with like powers of
.-iz grouped into one term. Unfortunately, neither this observation nor a continuation
of the process of (B.18) seems likely to yield recurrence relations for the Ak and
Bk very easily.

A simple technique for obtaining these relations is to use a differential
equation satisfied by Héz)(asz) {or more precisely, I{z)). If we apply Bessel's

differential operator to {B.1) and make use of (B.6) and (B.7), we find that

1 o L e e )
Hé )(a,z) satisfies the inhomogeneous differential equation



2 T . e 245 .
L i-— i (]) :..2_.a_ 12(!"'& )
{5 322 5 Z_LHO (a,z) — e (B.21)
It follows at once that

2 .
Z ﬁ—%-+ (2iz+1) 2L+ 41 = j2e'?P (8.22)
Y oz

By inserting the bracketed formal series from (B.19) for I in (B.22), and equating

coefficients of identical powers of (-iz) to zero, we obtain the recurrence formulas

2 § — ~
(k+3%) Ak + Z(kf1)Ak+~§ = (B.23)
b(b+2)B, ., +k%B, . +(2k+1)(b+1)B, = b ? $1k*1)’4k+1)-(k+b)2(b+;ﬂA ‘ (B.24)
k+1 k=1 ¢ : kK~ Z2(krly U0 \ 2 “j k :
It is to be understood that A_;, B_35 A_,s B_,, etc. are zero. From the initial

values (B.20) these relations will produce all the coefficients in the expansioﬁ
(B.19).

The differential equation (B.21) can also be used to express Hé1)(a,z) in
terms of some related special functions which arise in applications. To achieve
this, we multiply (B.21} by Hé?)(z), the analogous homogeneous equation for

Hél)(z) by_Hé})(a,z), and subtract the two equations. The result is

(1) A1y
. H:' ' (a,z) sHY ' {(z) | 2B
(W) y "o ), oy 2o | _2a iz(1+a%)* (1)
9z KEHO (z) ) ZH o (a,2) 3z .j T ° H0 (z)
Upon integrating, we have
T\ rZ . 2}/2 12
el ((rad)n2) = | oTHIF) " 4l ey gt (.25)
o] JG (8] :
— . . 5 fraa2\E ic (a)
o 2 D D -t D e () raeTH T i () + =2
da LO H i 0 a

Y

The integral on the left side of (8.25) is known as an incomplete Lipschitz-Hankel

v

integral, or somewhat more simply, a Schwarz function, and we have obtained a

representation for it in terms of the incomplete Hankel functions of order zero and



B-7

one. On the other hand, we could have performed exactly the same set of manipulations

with Hél)(z) replaced by Hézl(z), with the result

L zZ .. 2%
Heéz)((1+a2)é,z) - [ e1t(’i+a )

n
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o
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o~
NS
St
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ct
——
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e

The incomplete Hankel function of zeroth order can now be eliminated between (B.25)

and (B.26) and we get
1 (a,2) = ¢ (a)g() + g—-{: 2)itel 1+ %,2)-Hy N(2)ne BX(1+42)%,2)) (8.27)

b
A similar form can be obtained for H§')(a,z).
If we temporarily assume that Im(z) is strictly greater than zero in (B.25)

and (B.26) and let |z] -~ =, we find that

iC (a) -1

(D14a2y% oy = 002 _2 sinh”‘a_ \
Hel V((1+a%)%, =) = —3 - £ - (8.28)

and, under the additional assumption that Re g-iz-{(_%“az)l/2 —[I} > 0,

iCO(a)

P (B.29)

HelB((14ad)", o) = -

and these can be extended by analytic continuation to all values of a in the cut
complex plane.

It might be remarked that in the special case when a = i, the integral
representation (B.1) can be identified as a combination of Bessel and Struve functions

(see Appendix C):

(Ds v < C8a
Hy' ' (1,2) = 3o(2) + T Hy(z) (8.30)
From (B.7) it then foilows that

Hgn(x 2) = 3q(2) + 1 Hy(z ' (B.31)
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To summarize the results of this Appendix, then, we coliect the various expan~

sions for Hé])(a,z) in Table B.1 together with their regions of utility.

Table B.1

Expansions for the Incomplete Hankel Function

Equation Applicability Leading Term
(B.2) with (B.4),(B.5) Moderate |a| and |z| Hé})(a,z): %;-sinh']a; lz]<< 1

Lo 113 93 2 3 s .
(8.10) with (B.12),(8.13) [(1+a8)% -1} < 2 H'1(a,2)=(-20) e Zerf(e” ™/ */EB);

(B.15) with (B.16),{(B.17) §3+a2] > ] Hé}){a,z)thg])(z);%:E]7:12\1+a )%:},
Re(a) < 0; lal>> 1
T » .
(8.19) with (8.20),(B.23), Large |z| H) @, 2)=(-20) e 2erf(e™ ™4 /B)
0 nZ
(B.24) 5 2.\%
+1k£2b)-5-i/57e12(]+a 'l ;
lz] >>1

The incomplete Hankel functions and a number of related functions have been tabulated
for real argument, and in a few cases for purely imaginary argument, in Harvard
Computation Laboratory [1949] and in Agrest and Maksimov [19717]. Tabuiation for
general complex values of the arguments has apparentiy proved too cumbersome a task,

since no such tables seam to exist.
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Appendix C

Some Useful Special Functions

In this Appendix, we shall summarize the basic properties of a number of
special functions frequently encountered in our investigations. All material is
found in Abramowitz and Stegun [1965], to which the reader is referred for further

formulas and references.

>

§C.1 Incomplete Gamma Functions

The finite and infinite forms of the incomplete gamma functicn are defined,

respectively, as

v(a,z) = JZ et 31 gt (Rea > 0) (c.1)
¢0
r{a,z) = Jm ot ta_] dt (C.2)
z
= F(a) - Y(aﬁz)

The recurrence relations

z

I

v(a+l ,z) = ay(a,z) - 2%~ (C.3)
r(a+l ,z) = a T(a,z) + z%77 (C.4)
follow easily by integration by parts. For v(a,z) we have the everywhere convergent

series expansions

_La~z )y __I(a) m
v(a,z) = z"e meo T(armeT] 2 (C.5)
o2y (=)
2 peo {a+mim! (C.6)
while for r(a,z) we have the asymptotic expansion
r{a,z) ~ 2172 L Ia z” " (|z]+ =, larg z|< r ) (C.7)
i m=0¢ T(z-m ? 2
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§C.2 Exponential Integral Functions

A special case of I'(a,z) is the exponential integral function of first order:

[»o]

£, (2) = 1(0,2) = et ¢

z

dt (C.8)

An ,asymptotic expansion for E] is obtained by letting a -~ o in (C.7), while a

convergent power series is given by

(larg zj <) (C.9)

§C.3 Error Functions

Another special case of the incomplete gamma function occurs for a = %t

erf(z) (C.10)

it
g—_—ﬁ
N
[1°]
)
d.
[\V]
Q.
(—'-
1"
\d._‘
<
o
N
“
™~

erfc(z)

A1 (5,2°) (c.11)

™

L2
1 -erf(z) = 7%- [ et gt
z

Small and large argument expansions follow immediately by putting a =’ in (C.5) -

(C.7), and using the definitions (C.1), (C.2), (€C.10), and (C.11).

§C.4. Struve Functions

A function related to the cylindrical functions is HL(Z), the Struve function

of hth order: 1

2 2)" 2\n-% _.
Hn(z) = o= 'é%%ﬁéy Jo (1-t5)""2 sin (zt)dt (C.12)
N 3 -
= Yn(z) + %;- %%ﬁééj- [ e'Zt (1+t2)“'2 dt {larg z|< §-) (C.13)
0

There are a variety of recursion relations for the Struve functions; in particular,



fio(2) = & - W (2) | (€.14)

We have the convergent series

@ 2 m .
+ -
W (2) = (z/2)" ) g Z4) 3 (C.15)
m=0 r(m+—2-)1‘(m+n+~2— )
The asymptotic behavior of the Struve functions is
Y -1-2
H(z) < v (z)+ 1 LT g pynei-an (c.16)

I'(n+-m)
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