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Understanding the nature of emulsion flows through confined geometries (i.e., packed beds, 

porous media, and the cardiovascular system) is substantially meaningful to numerous 

applications, such as food and pharmaceutical manufacturing, oil recovery and fixed-bed 

catalytic reactors, and also to many fundamental fields of science.  When the drops are 

comparable in size to the constriction pathways, the traditional approach of treating an emulsion 

flow as a continuous phase is not valid, because complex phenomena, such as pore blockage, 

circuitous flow pathways, and drop squeezing mechanisms brought on by constrictions need to 

be considered. 

To address some outstanding problems in emulsion flows with drops as large as the 

constrictions, this dissertation presents modeling and experimental observations of buoyancy-

induced drop motion through tight constrictions. It concludes determining the critical conditions, 

below which a drop becomes trapped in the throat of a constriction, and above which the drop 

passes through a constriction. The key dimensionless parameter is the Bond number, 

representing a ratio of gravitational and interfacial forces. 

It is found that the drop velocity in the constriction throat typically decelerates a 100-fold or 

more, and the drop-solid gap thickness typically decreases to 0.1%–1% of the undeformed drop 

radius.  A power-law scaling is obtained, so that the time for a drop to pass through the 

constriction is inversely proportional to the square of the difference between the Bond number 

and its critical value, when a drop becomes trapped in the constriction. 



 iv 

Highly-accurate critical Bond numbers and statically trapped drop shapes for axisymmetric 

constrictions are efficiently calculated by a special static algorithm, and for three-dimensional 

constrictions, similar results are presented using a different solution approach of an artificial 

“time-dependent” process to reach the steady state. For both the axisymmetric and three-

dimensional steady-state solution methods, a desirable benefit is that prior knowledge of the 

drop-solid contact is nonessential. Observed for both axisymmetric and three-dimensional 

constrictions, the critical Bond number nearly linearly increases with an increase in the most 

significant factor, the undeformed drop-to-hole size ratio. The critical Bond number decreases 

weakly, with an increase in the constriction cross-section, due to a smoother constriction 

pathway. Unexpectedly, increasing the tilt angle between the gravity vector and the normal to the 

plane of the constriction containing the minimum hole size, decreases the critical Bond number, 

even though the horizontal projection of the hole is decreased.  
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Chapter 1 
 

Introduction 
 
 

1.1       Background 

 

An emulsion is composed of two or more immiscible fluids, including an external, 

continuous phase and a dispersed, drop phase.  The earliest research performed to understand the 

rheology of emulsions was primarily empirical, but with the advancement of computational 

resources the problem is now studied extensively using first principles.  This dissertation is 

motivated by emulsion flows through porous media or other confined geometries with solid 

obstacles on boundaries. The primary research topic is on the motion of individual emulsion 

drops interacting with solid constrictions, under conditions when viscous forces dominate over 

inertia.   

Most research to date has used continuum models of the porous medium and emulsion fluid.  

For example, Darcy’s law,  
q = ! k/µ( )"P , where q, k, µ and !P are the flux in units of volume 

per area time, the permeability, the viscosity and the pressure gradient, respectively, states that 

the fluid flux is proportional to the pressure gradient.  The disadvantage of continuum models is 

that the details of microstructure of the medium are ignored and the fluid is assumed as a 

pseudosingle phase, with an oversimplified rheology.  When the emulsion drops are much 

smaller than the typical constriction diameter, treating the emulsion as one continuous phase may 

be valid; however, when both the drops and constriction sizes are comparable in size, continuum 



! "!
models fail (Kokal 1992). Moreover, continuum models are not able to address complex drop 

phenomena associated with emulsion flow through confined geometries, such as pore blockage 

by emulsion drops, circuitous flow pathways of the drops, and dynamics of drop squeezing 

through constrictions. 

There are many applications for emulsion flows through confined geometries (i.e., packed 

beds, porous media, and the cardiovascular system), including food and pharmaceutical 

manufacturing, oil recovery, and fixed-bed catalytic reactors.  Some key objectives for modeling 

emulsion flows through a confined geometry are determining the relationship between pressure 

drop and flow rate of each phase and determining the conditions when emulsion drops become 

trapped in the throats of the constriction pathways.  

A prototype problem for studying emulsion flow through confined geometries, related to the 

present research, is the pressure-driven creeping flow of a liquid containing a freely suspended, 

deformable drop or bubble through a channel, with or without a constriction.  When the drop 

diameter is comparable to the channel diameter, the channel walls affect the drop shape and 

motion.  Most research to date on this problem has been on drop breakup, rather than on drop 

trapping.  Drop breakup in a constricted capillary tube has been studied and observed by both 

experimental and computational methods for large capillary numbers, which is a dimensionless 

ratio of viscous to interfacial forces [Goldsmith & Mason (1963), Olbricht and Kung (1992), Chi 

(1986) and Tsai & Miksis (1994)].  

The drop-breakup mechanism in a capillary tube is different than that of the one in an 

unbounded velocity field and is caused by a viscous jet entering the trailing end of the drop that 

entrains outer-phase fluid within the drop.  The effects from the flow of an emulsion drop 

through a tube on the resistance to flow and drop deformation have been studied experimentally 
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and computationally[Martinez & Udell (1989) and (1990) and Olbricht and Leal (1983)]. A 

comprehensive literature review on the motion of a single drop through a channel is provided by 

Olbricht (1996).  The work of Leyrat-Maurin & Barthés-Biesel (1994) was the first attempt to 

simulate trapping of a deformable capsule in an axisymmetric hyperbolic constriction, but 

difficulties were encountered with resolving near-contact, drop-wall interactions inherent in this 

phenomenon, which is probably a major reason the drop trapping has been studied in less detail 

than drop breakup. 

Zinchenko and Davis (2006) simulated three-dimensional, flow-induced drop-trapping 

mechanisms for different interparticle constrictions and were able to determine the critical 

capillary number, below which trapping occurs, for a given set of conditions.  A combination of 

their boundary-integral techniques, capable of resolving close drop-particle interactions, with 

multipole acceleration has allowed simulations of a pressure-driven flow of a periodic three-

dimensional  emulsion through a cubic lattice of spheres at maximum packing [Zinchenko & 

Davis POF (2008)] and a flow of many deformable, three-dimensional drops through a random 

granular material[Zinchenko & Davis JCP (2008)], with calculation of pressure-gradient/flow-

rate relationships. Simulations close to trapping, though, are extremely computationally 

expensive, and so drop trapping was not included in this prior work [Zinchenko & Davis POF 

(2008) and JCP (2008)].  Moreover, a complete model for emulsion flow through a granular 

material needs to account for both flow-induced and buoyancy-induced squeezing and trapping 

mechanisms to accurately predict the relationship of flow rate to pressure drop, and there is an 

important difference, making gravity-induced squeezing/trapping more difficult to study.  Nemer 

et al. (2004) considered two drops being pushed together due to either an external flow or 

buoyancy settling. The fluid-film gap between the two drops was shown to reach a steady-state 
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value for the flow-induced case, but it decays asymptotically to zero for the buoyancy-induced 

case[Nemer et al. (2004)]. Similar trends are expected for the fluid-film gap between a drop and 

a solid constriction during trapping; specifically, the gap will reach a steady-state value during 

flow-induced trapping [confirmed by 3D simulations of Zinchenko and Davis (2006)] but 

asymptotically decay to zero for buoyancy-induced trapping.  Less work has been accomplished 

on modeling buoyancy-induced motion through constrictions because the problem is more 

lubrication sensitive than flow-induced squeezing, due to the smaller solid-drop spacing that 

occurs. Thus, it requires an algorithm with a high efficiency to accurately handle small drop-

solid separations. 

This dissertation considers the buoyancy-induced motion of a drop in another viscous fluid as 

it settles toward a solid constriction containing a hole that is smaller than the drop.  Of particular 

interest is determining conditions under which the drop is trapped by the constriction instead of 

passing through the constriction.  Both axisymmetric and three-dimensional constrictions are 

considered. 

 

1.2 Drop Squeezing and Static Entrapment in an Axisymmetric Constriction 

 

The first major objective of this dissertation is to study the problem of buoyancy-driven 

squeezing and trapping of a single deformable drop in a constriction having an axisymmetric 

configuration (e.g., a circular torus or ring). It is motivated by 3D drop squeezing and trapping in 

porous media, but the axisymmetric configuration allows for much more efficient and accurate 

numerical calculations.  Under near-critical conditions, the drop passes through the constriction 

with very small solid-drop separation and high resistance, making calculations challenging.  The 
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study of this model problem allows us to elucidate some relevant aspects of buoyancy-driven 

emulsion squeezing through a granular material and also determine the resolution necessary to 

simulate buoyancy-induced slow squeezing and trapping mechanisms.  An axisymmetric 

configuration reduces a three-dimensional problem to a two-dimensional problem and allows for 

much finer resolution, which is especially beneficial for buoyancy-induced drop squeezing due 

to the lubrication sensitivity of the problem.  This simplification makes it possible to study near-

critical squeezing and scaling for the squeezing time in a much greater detail than in 3D 

simulations[Zinchenko & Davis (2006) and (2008)]. The drop-torus geometry is also convenient 

for physical experiments and comparisons with theory. 

Dynamical drop motion in a porous medium or other confined geometry is also important, 

both as a precursor to drop trapping and for conditions under which the drop deforms enough to 

squeeze through the constriction.  The dynamics of the motion of deformable drops near solid 

obstacles and boundaries has been studied using boundary-integral simulations. Boundary-

integral equations are derived by applying Green’s theorem to change the form of the Stokes 

equations governing flow for Reynolds numbers (dimensionless ratio of inertial to viscous  

forces) approaching zero, from partial-differential equations over a volume to integrals over the 

boundary of the domain, including the drop interfaces.  A system of algebraic equations, 

representing different locations on the drop surface(s), is solved for the normal component of the 

surface velocities, and the drop shape is updated by numerically integrating the velocities using a 

time-stepping routine. 

Determining the critical conditions, separating the boundary between drop squeezing from 

drop trapping, by dynamical boundary-integral simulations is especially difficult for gravity-

driven motion, because the drop motion becomes very lubrication-sensitive as the critical 
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conditions are approached.  The near-critical, dynamical simulations require a high resolution on 

both the drop and solid surfaces, as well as long simulation times to accurately handle the 

extremely small drop-solid fluid gaps. Development of a special static algorithm, in the present 

research, is meaningful to avoid very costly boundary-integral calculations, and to improve the 

accuracy of the calculations of the critical conditions for trapping and the shapes of drops 

trapped in constrictions[Chi (1986) and Tsai & Miksis (1994)]. 

Under trapping conditions, the drop reaches a steady-state (static) shape. To solve the 

problem of an axisymmetric, static drop in contact with solids involves numerical integration of 

the Young–Laplace equation from the drop tip to the point of intersection between the drop and 

solid, but most research to date uses empirical information in simulations (i.e., the contact angle 

or the drop-solid contact area) [O’Brien (1991) and Hodges et al. (2004)].  Most research to date 

for determining the static shapes of deformable drops has been on the classical problems of a 

drop either resting on or hanging from a solid surface. Bashforth and Adams (1892) performed 

the first calculation of the axisymmetric shape of a drop, through numerical integration of the 

Young-Laplace equation.  Rotenberg et al. (1983) developed a method for determining the 

interfacial tension and contact angle, by fitting empirical data, from either a pendant or a sessile 

drop, to a shape calculation, performed by numerical integration of the Young-Laplace equation.  

The important, practical applications of the previous research are measurements of the 

interfacial tension of the fluid-fluid interface and the contact angle at the three-phase contact.  

Past research by Hartland & Hartley (1976) has shown that axisymmetric, drop shape 

calculations can achieve accuracy to within one part in a million.  A paper of considerable 

relevance is the work of Padday (1971), who solves different axisymmetric drop profiles and 

uses perturbations of the profiles to determine if the shape is stable or unstable by monitoring the 
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energy equations for the meniscus.  A practical applications of calculating static drop shapes is 

that they may be compared to an experimentally measured drop shape to indirectly determine 

surface tension or contact angle, as illustrated by Padday & Pitt (1972), Shanahan (1982) and 

O’Brien van den Brule (1991). Another application is determining how to remove oil drops from 

surfaces [Chatterjee (2002)].  

A static drop trapped in a solid constriction is a prototypical model for the steady-state 

consequence of an emulsion settling through confined geometries such as packed beds or porous 

media.  The important applications, related to the settling of an emulsion into solid constrictions, 

include drop infiltration into a highly porous surface, fixed-bed catalytic reactors and liquid-

liquid separation. Of particular engineering interest is determining the critical conditions 

delineating the boundary between the phenomena of a drop trapping within a constriction and a 

drop squeezing though a constriction.   

Previous related research has been performed on solving two menisci in a capillary tube.  The 

top interface is found through fitting of empirical data, and the bottom interface is found through 

a coupled set of Young-Laplace equations [Chatterjee (2007)].  A major difference in the former 

problem and the trapping of a drop in a constriction within a porous medium is that the external 

fluid is disconnected in a capillary tube. 

 

1.3 Drop Shapes Statically Trapped in a Three-dimensional Constriction 

 

The second major objective of this dissertation is to develop a method to determine drop 

trapping conditions and static shapes in three-dimensional (3D) constrictions. In the absence of 

body forces, the shape of a three-dimensional interface between two static fluids is also 
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described by the Young-Laplace equation. For the axisymmetric problem, the solution is reduced 

to solving for the contour of the drop by numerically integrating the Young-Laplace equation 

from the tips along the drop arc length to the wetted points, which is the three-phase contact, for 

both the sessile and pendant portions, and calculating the free parameters in the equations by 

Newton-Raphson iterations. The free parameters are found so that the pressure continuity 

throughout the drop and the total drop volume constraints are satisfied.  Such an approach, 

however, cannot be generalized for 3D constrictions, for example, when the constriction is made 

of nonaxisymmetric objects or is tilted.  It is not clear how to accurately calculate the three-phase 

boundaries, because the wetting points for an axisymmetric constriction become wetting curves 

for 3D constrictions, or to calculate cumbersome derivatives of the drop surface necessary for 

Newton-Raphson iterations.  

Less work has been performed on solving for 3D, fluid-fluid interfaces, but work by Brown 

et al. (1980) determined the shape of a 3D drop resting on an inclined plane, through use of a 

finite-element solution for the Young-Laplace equations along with empirical data for the wetted 

area of drop-solid contact [Brown et al. 1980].  The present goal is determination of trapping 

conditions and shapes without requiring empirical data. 

 

1.4       Dissertation Approach 

 

The focus of this dissertation is elucidating the lubrication-sensitive behavior of buoyancy-

induced motion of deformable emulsion drops through tight constrictions.  Both dynamic 

simulations, using necessary numerical techniques to improve the accuracy of boundary-integral 

calculations, and static simulations using the Young-Laplace equation are performed to 
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understand the behavior of drop squeezing and trapping, respectively in solid constrictions.  

Also, experiments were performed to validate the results obtained in the numerical simulations.  

For an axisymmetric geometry, an additional problem studied is how the contact angle at the 

three-phase boundary affects the shape and critical conditions for static drop trapping. 

Chapter 2 describes the dynamics of a single drop settling through an axisymmetric ring 

constriction using boundary-integral methods.    The algorithm uses the Hebeker representation 

for the solid-particle contribution, and a high-order, near-singularity subtraction technique, 

which are both essential for near-critical squeezing.  For a large dynamic parameter space, the 

average drop velocity and minimum drop-solid clearance are monitored versus time, to observe 

the effects of changing ring cross section and hole sizes, the fluid viscosity ratio, and Bond 

number, where the latter is the ratio of the gravitational and interfacial forces.  The critical Bond 

number may be determined by extrapolation of the squeezing times from dynamic boundary-

integral simulations, which requires a large number of trials and long simulation times. Instead, 

an axisymmetric, static algorithm combines two Young-Laplace interface solutions with a single 

drop-solid interface, and iteratively solves for the complete steady-state shape by employing 

volume and pressure continuity constraints. This method has high accuracy and is efficiently able 

to calculate statically-trapped drop shapes and critical Bond numbers.  A major advantage of this 

algorithm is that no a priori, empirical knowledge is needed to determine the drop shapes.  The 

trends of the geometric parameters versus the critical Bond number are studied in detail, and the 

drop-to-hole radius ratio is determined to be the most important factor affecting the conditions 

demarcating trapping and squeezing.     

For Chapter 3, statically-trapped drop shapes for three-dimensional constrictions are 

calculated using a novel “time-dependent” process.  The solution method uses a specifically 
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tailored artificial velocity function to advance the drop surface until the drop-fluid interface 

satisfies the Young-Laplace equation and the drop shape conforms to the solid surface in the area 

of near contact.  It is also of importance to note that the algorithm does not need prior empirical 

knowledge, because the designed, artificial “velocity” automatically determines the drop-solid 

contact area.  The 3D algorithm also determines critical Bond numbers through extrapolation for 

many constriction types, including rings, hyperbolic tubes and agglomerates of three or four 

spheres.   Again, the drop-to-hole size is determined to be the most important factor affecting the 

critical Bond number. Interestingly, increasing the tilt of the constriction decreases the critical 

Bond number, perhaps because the minimum horizontal hole in a plane normal to the isolated 

drop motion increases.  It has been observed that the type of constriction (e.g., ring versus 

hyperbolic tube) has only a weak effect on the critical Bond number.  Importantly, for validation 

of the novel method, static drop shapes and critical Bond numbers show excellent agreement 

between the axisymmetric and three-dimensional algorithms, and static drop shapes show good 

agreement between the dynamic 3D boundary-integral methods and the 3D Young-Laplace 

solution methods. 

Chapter 4 verifies the simulations in Chapters 2 and 3 by describing experiments for a 

deformable drop settling through an axisymmetric ring or a 3D constriction formed by three 

spheres joined together.  Drop stills at successive time intervals illustrate the differences between 

the dynamics of drop squeezing through the constriction and the approach to the steady state of a 

trapped drop.  Also, by varying the size of drops for a given constriction, critical Bond number 

intervals are presented that are in good agreement with calculations from the axisymmetric and 

3D Young-Laplace algorithms. 

Chapter 5 describes how to solve, for axisymmetric geometries, the statically-trapped drop 
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shapes with an arbitrary contact angle.  This study presents the trends of the critical Bond 

number versus the contact angle.  The drop shapes for a partially wetting drop are quite different 

than the shapes of  “nonwetting” drops. For example, the static shape of a partially wetting drop 

may have a pendant, or sessile, wetting point below the center of the hole. Since this observation 

was never observed for “nonwetting” drops, it suggests that a different mechanism is possible for 

partially wetting drops for the loss of the steady-state of drop trapping. 

In Chapter 6, concluding remarks are given to discuss the key findings for both the 

theoretical and experimental studies.  Future research is recommended that extends upon and/or 

is related to the present dissertation. 
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Chapter 2 

 

Buoyancy-induced squeezing of a deformable drop through an axisymmetric ring 

constriction 

 

 

 

This chapter was adapted from a publication in the Physics of Fluids [Ratcliffe et al. (2010)] 

 

Abstract 

 

 Axisymmetric boundary-integral (BI) simulations were made for buoyancy-induced 

squeezing of a deformable drop through a ring constriction. The algorithm uses the Hebeker 

representation for the solid-particle contribution. A high-order, near-singularity subtraction 

technique is essential for near-critical squeezing. The drop velocity and minimum drop-solid 

spacing were determined for different ring and hole sizes, viscosity ratios, and Bond numbers, 

where the latter is a dimensionless ratio of gravitational to interfacial forces. The drop velocity 

decelerates typically 100-fold or more, and the drop-solid spacing reduces to typically 0.1%–1% 

of the nondeformed drop radius as the drop passes through the constriction. The critical Bond 

number (below which trapping occurs) was determined for different conditions. For supercritical 

conditions, the nondimensional time required for the drop to pass through the ring increases for a 
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fixed drop-to-hole size with increasing viscosity ratio and decreasing Bond number, but it has a 

nonmonotonic dependence on the ratio of the radii of the drop and ring cross section. Numerical 

results indicate that the square of the drop squeezing time is inversely proportional to the Bond 

number minus the critical Bond number for near-critical squeezing. Another dynamic 

phenomenon, in addition to drop squeezing, is a drop “dripping” around the outer edge of the 

ring constriction. The initial stages of drop dripping are numerically simulated using a boundary-

integral method for slightly supercritical Bond numbers. For very large ratios of the drop-to-hole 

radii, however, a sharp maximum in the critical Bond number is reached, as there is a transition 

from the drop passing through the inside hole to dripping over the outside edge of the ring for 

Bond numbers above the critical value.  

 

2.1 Introduction 

 

 Emulsion flows through confined geometries (i.e., packed beds or porous media) have 

many important applications including food and pharmaceutical manufacturing, oil recovery, and 

fixed-bed catalytic reactors. The key objectives for modeling emulsion flows through a confined 

geometry are determining the relationship between pressure drop and flow rate of each phase and 

determining the conditions when emulsion drops become trapped in the throats of the 

constriction pathways. Most research to date has used continuum models of the porous medium 

and emulsion fluid, which ignore microstructure details of the medium and treat the fluid as a 

pseudosingle phase with oversimplified rheology. When the emulsion drops are much smaller 

than the typical constriction diameter, treating the emulsion as one continuous phase may be 

valid; however, when the emulsion drops have a comparable size to the typical constriction 
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diameter, continuum models fail [Kokal (1992)]. Moreover, continuum models are not able to 

address complex phenomena associated with emulsion flow through confined geometries, such 

as pore blockage by emulsion drops, circuitous flow pathways of the drops, and dynamics of 

drop squeezing through constrictions. 

 One prototype problem for studying emulsion flow through confined geometries is the 

pressure-driven creeping flow of a liquid containing a freely suspended, deformable drop or 

bubble through a channel, with or without constriction. When the drop diameter is comparable to 

the channel diameter, the drop shape and motion are affected by the channel walls. Drop breakup 

in a constricted capillary tube has been studied and observed by both experimental and 

computational methods for large capillary numbers (Ca =!µU/!, where µ, U, and ! are the 

external fluid viscosity, drop velocity, and interfacial tension between the drop and the external 

fluid, respectively [Goldsmith & Mason (1963), Olbricht & Kung (1992), Chi (1986) and Tsai & 

Miksis (1994)]. The drop-breakup mechanism in a capillary tube is different than that in an 

unbounded velocity field and is caused by a viscous jet entering the trailing end of the drop that 

entrains outer-phase fluid within the drop. The effects from the flow of an emulsion drop through 

a tube on the resistance to flow and drop deformation has been studied experimentally and 

computationally [Martinez & Udell (1989) and (1990) and Olbricht and Leal (1983)]. A 

comprehensive literature review on the motion of a single drop through a channel is found in 

Olbricht (1996). The work of Leyrat-Maurin and Barthés-Biesel (1994) was the first attempt to 

simulate trapping of a deformable capsule in an axisymmetric hyperbolic constriction, but 

difficulties were encountered with resolving near-contact, drop-wall interactions inherent in this 

phenomenon. 

 Zinchenko & Davis (2006) simulated three-dimensional (3D), flow-induced drop-trapping 
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mechanisms for different interparticle constrictions and were able to determine the critical Ca, 

below which trapping occurs, for a given set of conditions. A combination of their boundary-

integral techniques, capable of resolving close drop-particle interactions, with multipole 

acceleration has allowed simulations of a pressure-driven flow of a periodic 3D emulsion 

through a cubic lattice of spheres at maximum packing [Zinchenko & Davis POF (2008)] and a 

flow of many deformable 3D drops through a random granular material [Zinchenko & Davis 

JCP (2008)], with calculation of pressure-gradient/flow-rate relationships; simulations close to 

trapping, though, are extremely difficult. One limitation of the prior studies [Zinchenko & Davis 

POF (2008) and JCP (2008)] is that a complete model for emulsion flow through a granular 

material needs to account for both flow-induced and buoyancy-induced squeezing and trapping 

mechanisms to accurately predict the relationship of flow rate to pressure drop, and there is an 

important difference, making gravity- induced squeezing/trapping more difficult to study. Nemer 

et al. (2004) considered two drops being pushed together due to either an external flow or 

buoyancy settling. The fluid-film gap between the two drops was shown to reach a steady-state 

value for the flow-induced case but decay asymptotically to zero for the buoyancy-induced 

case.14 Similar trends are expected for the fluid-film gap between a drop and a solid constriction 

during trapping; specifically, the gap will reach a steady-state value during flow-induced 

trapping [confirmed by 3D simulations of Zinchenko & Davis (2006)] but asymptotically decay 

to zero for buoyancy-induced trapping. Less work has been accomplished on modeling 

buoyancy-induced motion through constrictions because the problem is more lubrication 

sensitive than flow-induced squeezing due to the smaller solid-drop spacing that occurs and 

requires an algorithm with a high level of resolution. 
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2.2 Formulation of the Problem 

 In the present work, we study the problem of buoyancy-driven squeezing of a single 

deformable drop through a constriction (circular torus or ring) in an axisymmetric configuration. 

It is motivated by 3D drop squeezing and trapping in porous media, but the axisymmetric 

configuration allows for much more efficient numerical calculations. Under near-critical 

conditions, the drop passes through the constriction with very small solid-drop separation and 

high resistance, making calculations challenging. The study of this model problem allows us to 

elucidate some relevant aspects of buoyancy-driven emulsion squeezing through a granular 

material and also determine the resolution necessary to simulate buoyancy-induced slow 

squeezing and trapping mechanisms. An axisymmetric configuration reduces a 3D problem to a 

two-dimensional (2D) problem and allows for much finer resolution, which is necessary for 

buoyancy-induced drop squeezing due to the lubrication sensitivity of the problem. This 

simplification makes it possible to study near-critical squeezing and scaling for the squeezing 

time in a much greater detail than in 3D simulations [Zinchenko & Davis (2006) and POF 

(2008)].The drop-torus geometry is also convenient for physical experiments and comparisons 

with theory. 

 The ring constriction is held stationary in the bulk-phase Newtonian fluid, which is an 

unbounded, quiescent medium. The drop motion has a negligibly small Reynolds number, and 

both the constriction geometry and fluid motion are symmetric around the vertical z-axis. (As 

shown in Figure 2.1), the two parameters that describe the geometry of the ring torus are the ring 

cross-sectional radius as and the hole radius bs. A constant interfacial tension ! between the drop 

and the external medium is assumed (no surfactants). It is also assumed that the bulk-phase fluid 

wets the ring so that there is always a film of this fluid between the drop interface and the solid 
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surface. The nondimensional parameters that affect the drop squeezing characteristics, the drop 

velocity in the throat, the solid-drop gap thickness, and the squeezing time Ts, are the Bond 

number (B=!!ga2/", where g is the gravitational acceleration and !!=!d"!e is the density 

difference), viscosity ratio (#=µd/µe), cross-section-to-hole radius ratio (as/bs), and drop-to-hole 

radius ratio (a/bs). The squeezing time Ts is defined explicitly as the interval between the 

moment when the leading drop edge is level with the torus top and the moment when the trailing 

drop edge becomes level with the torus bottom. Critical Bond numbers, below which trapping 

occurs, are accurately determined for different conditions. The calculations show the squeezing 

dynamics, including drop velocity and minimum solid-drop spacing trends inside the 

constriction, and the critical Bond number (Bc), below which trapping occurs. The high-order, 

near-singularity subtraction technique developed in the work by Zinchenko and Davis (2006) is 

modified for the axisymmetric algorithm, allowing for simulations of near-critical squeezing. 

One important goal of this work is to determine the scaling for the squeezing time, as B#Bc. 

Also, we developed an alternative and highly efficient static algorithm for subcritical Bond 

numbers based on the Young–Laplace equation, capable of calculating trapped drop shapes and 

the critical squeezing conditions (See Ch. 3). 

 

2.3    Boundary-integral Algorithm 

 

 An axisymmetric boundary-integral (BI) formulation simulates the drop deformation and 

velocity as it passes through the constriction. BI methods are useful for objects with varying 

shape because they reduce the problem to solving for the velocity on the surfaces. An 

axisymmetic geometry allows the surface integrals to be further reduced to contour integrals,  
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Figure 2.1: Buoyancy-driven drop squeezing through circular torus. 
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allowing for a much finer resolution than in 3D algorithms. Unless noted otherwise, lengths 

[Rallison & Acrivos (1978), Lee & Leal (1982), Davis (1999) and Pozrikidis (1992)], velocities 

and times are nondimensionalized by the undeformed drop radius a, the isolated drop settling 

velocity, U0=2(!+1)!"ga2/[3µe(3!+2)], and the length-to-velocity ratio a/U0.  

 

2.3.1     Formulation 

 By combining previous ideas for a solitary drop [Rallison & Acrivos (1978)] and a single 

solid particle [Hebeker (1986)], a system of second-kind integral equations is derived based on 

the Green’s function, 
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where r = x - y (integration minus observation vector), and its associated stress tensor 

(fundamental stresslet), 
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The equations for the internal and external velocities are related by taking the limits as the 

observation point approaches the drop (Sd) or constriction (Sp) surface and applying the boundary 

conditions, including velocity continuity at the drop surface, stress jump condition across Sd, 

velocity and stress equal to zero far away from both surfaces, and no-slip on Sp.  The fluid 

velocity u at location y outside of the drop interface and the torus can be represented as 

 

u y( ) = ! "1( ) u x( )  # $ r( )  # n x( )dSxSd
% + SPC y( ) + F y( ),                                                          (2.3) 

where  
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f x( ) = 2!k x( ) " #$gz,                                                                                                 (2.5) 

k(x) is the mean surface curvature at location x on Sd, and n(x) is the outward unit normal at x on 

Sd or Sp.   

The presence of a solid, stationary constriction creates an additional boundary-integral term, 

SPC (for “solid-particle contribution”),   
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where 
 
T e x( )  is the external fluid stress at integration point x. The second term inside the 

brackets vanishes due to the no-slip boundary condition. Using the single-layer form of Eq. (2.6) 

for the SPC would lead to a system of integral equations of the second kind for u on Sd, but of 

first kind for unknown tractions 

 

T e x( ) on the solid boundary.  Judging by our experience 

[Zinchenko & Davis (2006)], such an approach would be quite unsuccessful in drop squeezing 

problems due to ill-conditioning, especially for near-critical B, when high levels of surface 

discretization are required. Alternatively, representing the SPC term as a double-layer potential 

could not accommodate nonzero torque or force on the constriction.  

The Hebeker representation [Hebeker (1986)] of the SPC is used instead in our algorithm 

because it is robust for calculating the slow-squeezing and trapping cases, as observed in 

Zinchenko & Davis (2006)  Namely, SPC(y) is sought as a combination of single- and double-

layer potentials over Sp, with a proportionality factor, ! > 0, 

   
SPC y( ) = q x( )

sp
! " 2# r( ) "n x( ) +$G r( )%& '(dSx ,                                                                     (2.7) 

where q(x) is an unknown Hebeker density on Sp, which is determined simultaneously with the 

interfacial velocity u. From numerical experiments, optimal convergence is achieved by 
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choosing a value of ! ~ a/as. Wielandt’s deflation is used to avoid ill-conditioning for extreme 

viscosity ratios " « 1 or " » 1.  The deflated velocity is related to the interfacial fluid velocity on 

Sd by w(y) = u(y) – (!-1) <u> /(!+1), the angular brackets denoting averaging over the drop 

surface. Thus, the coupled system of second-kind integral equations to solve for w and q at each 

time step is 
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on the drop surface (y  Sd) and 

   
q y( ) = F y( ) + ! "1( ) w x( ) #$ r( ) #n x( )dSxSd

% + SPC( y)                                                      (2.9)
 

on the solid surface (y  Sp), where # = (" - 1)/(" + 1) [Zinchenko & Davis (2006)].  The physical 

interfacial fluid velocity is calculated from the deflated velocity by 

 

u y( ) = w y( ) +
! "1
2

w .                                                                                                             (2.10) 

 

2.3.2 Handling Singularities in the Integrands 

 

In the kernels G(r) and !(r) found in the boundary-integral terms, singularities and near 

singularities are present when the observation point is near the integration point.  Truly singular 

behavior is observed when x and y are on the same surface, while the second case is a 

characteristic of a drop in close contact to the solid surface.  The (near) singularities, if untreated, 

would make numerical solutions extremely difficult, requiring impractically large meshes, 

especially for near-critical squeezing.  Following mostly the work by Zinchenko and Davis 

(2006), various subtraction methods are used to eliminate/alleviate the singular behavior of the 

integrands when the observation point nears the integration surface, as outlined below. 
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2.3.2.1 Drop Self-interactions 

 

For y and x on the drop surface (Sd), the O(r-1) singular behavior of the integrands is removed 

from the integrals Eq. (2.4) and Eq. (2.8) over Sd using standard subtractions   

 

   

f x( )n x( ) !G r( )dSxSd
" = f x( ) # f y( )$% &'n x( ) !G r( )dSx ,
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                   (2.11) 

2.3.2.2 Solid Self-interactions 

 

For y and x on the solid surface (Sp), singularity subtraction is also made in the integral Eq. 

(2.7), 

   

q x( ) ! 2" r( ) !n x( ) +#G r( )$% &'dSxSp
( = q y( ) +

q x( ) ) q y( )$% &' ! 2" r( ) !n x( ) +#G r( )$% &'dSxSp
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( .
                             (2.12) 

The final integral term in Eq. (2.12) is analytically calculated for a circular torus by expansions 

in toroidal harmonics [for details see the Appendix in Ratcliffe et al. (2010)].   

 

2.3.2.3 Double-layer Drop-solid Contribution 

 

Modifying the 3D approach of Zinchenko and Davis (2006), an axisymmetrical version of 

high-order near-singularity subtraction is used in the algorithm so that slow-squeezing and 

trapping cases can be successfully simulated. For y on Sd and x on Sp, the near-singular behavior 

O(r!2) in !(r), when y is close to Sp, is removed from the double-layer part of the integrand in Eq. 

(2.7) by locally approximating the Hebeker density term as  
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q x( ) ! q xi( ) + A "x + B "y                                                                                                          

 

(2.13)  

The q(xi) term is the Hebeker density in the mesh node xi, on the solid surface contour, 

closest to the observation point, y (without a loss of generality, y and the contour are assumed to 

lie in the same plane). A local intrinsic coordinate system (x!,y!,z!) with right orientation is used 

for the approximation of the Hebeker density, where the point xi is the origin, the z!-axis 

direction is prescribed by the surface normal vector, n(xi), and the x!-axis in the meridian half-

plane is tangent to Sp at xi. The coefficient A is evaluated by numerical differentiation of q(x) 

along the meridian at x = xi, while B is found exactly using the axial symmetry. The expression 

for A is 

   

A =
!qi+1 x'i-1( )2

" !qi"1 x'i+1( )2

x'i+1 x'i-1( )2
" x'i-1 x'i+1( )2 ,                                                                                               

 

(2.14)
 
 

where 

    

 

!q j = q x j( ) " q xi( )                                                                                                                    

 

(2.15)  

and  

                                                                                                                      
  

 

(2.16)

 

in the intrinsic coordinates. Here, and are the intrinsic x-coordinates of the mesh nodes 

adjacent to xi on the torus contour, and ! refers to cylindrical coordinate (not to be confused with 

fluid density used earlier).  Now, the integral (2.7) is fully desingularized as 

      

 

q x( ) ! q x i( ) ! A " x ! B " y { }
S p

# $ % r( )$ n x( )dSx + A " e 1 + B " e 2[ ]$ 3
4&

r$ n x( )[ ]rrr

r5
S p

#  dSx ,
             

  

 

(2.17)
 

where and are the unit vectors of the x!- and y!-axes, respectively.  The added-back integral 
term, 
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! y( ) = 3

4"

r #n x( )$% &' rrr

r5Sp
( dSx ,

                                                                                            
  

 

(2.18)
      

is analytically calculated for a circular torus by expansion in toroidal harmonics (see the 

Appendix in Ratcliffe et al. (2010)  for details).  With A = B = 0, the form (2.17) would reduce to 

the leading-order subtraction method of Loewenberg and Hinch (1996).  It was found 

[Zinchenko & Davis (2006)], though, that such a simpler technique, which does not completely 

eliminate the singularity in integrals (2.7), is insufficient in drop squeezing problems, especially 

for near-critical and subcritical squeezing conditions, although it works well in other 

applications. This conclusion was also confirmed in the present calculations; with higher-order 

subtraction disabled, successful drop squeezing simulations could only succeed for much higher 

resolutions, making runs extremely slow. 

For the solid-drop single-layer contribution, a simple regularization method is used
                      

   
q x( )

Sp
! "G r( )dSx = q x( ) # q xi( )$% &' "G r( )

Sp
! dSx + q xi( ) " G r( )dSx ,

Sp
!                                  

 

(2.19) 

when y  Sd.  The additional integral in Eq. (2.19), handled analytically, has already appeared in 

Eq. (2.12). 

A leading-order subtraction could be made differently, using, instead of q(xi), the value of 

q(x!) at the point on Sp nearest to y found by interpolation. Our experience shows that such a 

modification, which still leaves a singular behavior of O(r!1) in the double-layer integrand, does 

not perform better than the simplest choice of q(x!) = q(xi) and is not a substitute for the high-

order subtraction technique. 
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2.3.2.4 Single-layer Drop-solid Contribution 

For the drop-solid single-layer contribution, a similar approach is used as in Eq. (2.11), 

   
f x( )n x( ) !G r( )dSxSd

" = f x( ) # f xi( )$% &'n x( ) !G r( )dSx ,
Sd
"                                                

 

(2.20) 

where xi is the mesh node on Sd closest to the observation point y  Sp. 

The drop-solid double-layer contribution subtraction technique is 

 

    

 

w x( ) ! " r( ) ! n x( )dSx
Sd

# = w x( ) $ w%[ ] ! " r( ) ! n x( )dSx
S d

# ,                                                          (2.21) 

 

where y = x + r  Sp and, following the approach of Zinchenko and Davis (2002), the subtracted 

quantity w* is calculated by minimizing the Euclidean norm of the discretized double-layer 

(2.21) after subtraction.  The calculation of w* for the axisymmetric problem is discussed further 

in the following Sec. 2.3.4 

 

2.3.3 Azimuthal Integrations 

 

For axisymmetric creeping flow, the cylindrical components of the velocity, surface unit 

normal, and local mean curvature of the drop are independent of the azimuthal angle !.  

Consequently, the surface boundary-integrals can be reduced to contour integrals in the ! = 0 

plane by analytically integrating along rings centered about the axis of symmetry.  The boundary 

integral terms can be represented as contour integrals containing coefficient matrices produced 

from the analytical integration.  The single-layer integrals over Sd and Sp are expressed as  

 

    

 

G r( ) ! n x( ) f x( ) " f xi( )[ ] dSx
S d

# = M ! n x( )
Cd

# f x( ) " f xi( )[ ] dl,                                            (2.22) 
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G r( ) ! q x( ) " q xi( )[ ]dSx
S p

# = M ! q x( ) " $ M ! q xi( )[ ]
C p

#  dlx ,
                                                        

(2.23) 

 

where xi is the closest node point to y on an integration surface (including the case xi = y), on  

and M and M! are 2x2 matrices, and Cd and Cp are the surface traces of the drop and constriction, 

respectively, in the ! = 0 half-plane.  The double-layer integral over Sd, when y  Sd, is 

expressed as  

 

      

 

! r( ) " n x( ) " w x( ) # w y( )[ ]dSx
Sd

$ = Q " w x( ) " n x( ) # % Q " w y( ) " n x( )[ ] dlx
Cd

$ ,
                            

(2.24) 

 

and the double-layer integral over Sp, when y  Sp, is 

 

      

 

! r( ) " n x( ) " q x( ) # q y( )[ ]dSx
S p

$ = Q " q x( ) " n x( ) # % Q " q y( ) " n x( )[ ]dlx.
C p

$
                                 

(2.25) 

 

For the high-order, near-singularity subtraction BI term Eq. (2.17) (when x  Sp and y  Sd), the 

equation is expressed as  

 

       

 

q x( ) ! q xi( ) ! A " x ! B " y { }
S p

# $ % r( ) $ n x( )dSx =

= Q $ q x( ) $ n x( ) ! " Q $ q xi( ) $ n x( ) !V $ A$ n x( ) ! P $ B $ n x( ){ } dlx
C p

# .

                                 

(2.26) 

 

The cylindrical components of the matrices M and M! and the third-rank tensors Q and Q! 

depend only on the cylindrical "- and z-components of x and y in the half-plane != 0.  The 

components of M, Q, and Q! are available elsewhere [Davis (1999) and Pozrikidis (1992)].  The 

new matrices, M!, due to singularity subtraction in the single-layer integral over the particle 

surface Sp are 
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  !M"" = " I10 + "2 I32 # 2""0 I31 + "0
2 I30( ),                                                                                 

 

(2.27a) 

  !M"z = M"z = " z-z0( ) "I31 # "0 I30( ),                                                                                        

 

(2.27b) 

  
!Mzz = Mzz = " I10 + z-z0( )2

I30( ),                                                                                             

 

(2.27c) 

  !Mz" = M"z = " z # z0( ) "I31 # "0 I30( ),                                                                                     

 

(2.27d)  

where x = (z, !), y = (z0, !0), 

    

 

Imn !,!o ,z " zo( ) # cosn$

z " zo( )2
+ !2 + !o

2 " 2!!ocos$% 
& ' 

( 
) * 

m/ 20

2+,  d$ =
4k m

4!!o( )m/ 2

2 cos2$ "1( )n

1" k 2cos2$( )m/ 20

+/ 2, d$,

          

  

 

(2.28)

 
and k2 = 4!!o/((z - zo)2+(! + !o)2). 

The cylindrical components of the additional third-rank tensors V and P depend on the !- and 

z-components of x, y, xi, and n(xi).  The components of V due to high-order near-singularity 

subtraction in the double-layer integral over Sp are 

    

 

V!!! = !

!3!onz
i I54 " nz

i !4 + 2!2!o
2 + !2!o!

i( ) + n!
i !2!o z - zi( )[ ] I53 +

!3 nz
i 2!o + ! i( ) + n!

i z - zi( )[ ] + !!o
2 nz

i 2! i + !o( ) + 2n!
i z - zi( )[ ]# 

$ 
% 

& 
' 
( 

I52

" !2!o + !o
3[ ] nz

i! i + n!
i z - zi( )[ ] + nz

i !2!o
2 + !2!o!

i( ) + n!
i !2!o z - zi( )# 

$ 
% 

& 
' 
( 

I51

+!!o
2 nz

i! i + n!
i z - zi( )[ ] I50

# 

$ 

) 
) 
) 

% 

) 
) 
) 

& 

' 

) 
) 
) 

( 

) 
) 
) 

,

         

  

 

(2.29a)

 

    

 

V!!z = ! z " zo( )
"nz

i!3I53 + !2 nz
i ! i + 2!o( ) + n!

i z " zi( )[ ] I52

" !o! nz
i! i + n!

i z " zi( )[ ] + !o nz
i !!o + !! i( ) + !n!

i z " zi( )[ ]# 
$ 
% 

& 
' 
( 

I51

+!o
2 nz

i! i + n!
i z " zi( )[ ] I50

# 

$ 
) 
) 

% 
) 
) 

& 

' 
) 
) 

( 
) 
) 

,

             

  

 

(2.29b)

 

    

 

V!z! = ! z " zo( )
nz

i!2!0I53 " nz
i !3 + !!o

2( ) + !!o n!
i z " zi( ) + nz

i! i( )# 
$ % 

& 
' ( I52 +

!2 + !o
2( ) n!

i z " zi( ) + nz
i! i( ) nz

i!2!o
# 
$ % 

& 
' ( I51 + !!o nz

i! i + n!
i z " zi( )[ ] I50

) 

* 
+ 

, + 

- 

. 
+ 

/ + 
,

        

  

 

(2.29c) 
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V!zz = ! z " zo( )2 -nz
i!2 I52 + ! n!

i z " zi( ) + nz
i! i( ) + nz

i!!o
#
$

%
& I51

"!o n!
i z " zi( ) + nz

i! i( ) I50

'
(
)

*)

+
,
)

-)
,

                                       
 (2.29d)

 

  
Vzzz = ! z " zo( )3

"nz
i!I51 + n!

i z " zi( ) + nz
i! i( ) I50{ },

                                                             
 (2.29e)

 

  

Vzz! = ! z " zo( )2 nz
i!!o I52 " nz

i !2 + !o!
i( ) + !on!

i z " zi( )#
$

%
& I51

+ n!
i z " zi( )! + nz

i!! i( ) I50

'
(
)

*)

+
,
)

-)
,

                                        
 (2.29f)

  

  

Vz!z = ! z " zo( )2 "nz
i!2 I52 + nz

i !!o + !! i( ) + !n!
i z " zi( )#

$
%
& I51

"!o nz
i! i + n!

i z " zi( )#
$

%
& I50

'
(
)

*)

+
,
)

-)
,

                                       
 (2.29g)

 

   

Vz!! = ! z " zo( )
nz

i!2!o I53 " nz
i !3 + !!o!

i + !!o
2( ) + !!on!

i z " zi( )#
$

%
& I52

+ nz
i !2! i + !2!o + !o

2! i( ) + !2 + !o
2( )n!

i z " zi( )#
$

%
& I51

"!!o nz
i! i + n!

i z " zi( )#
$

%
& I50

'

(
)
)

*
)
)

+

,
)
)

-
)
)

,

                        

 (2.29h)

 

where xi = (zi,!i) and n(xi) = 
  

nz
i ,n!

i( )  in cylindrical coordinates. 

The components of P due to high-order near-singularity subtraction in the double-layer over 

Sp are 

  
P!! = !3 !!o I54 " I50( ) + !2 + !o

2( ) I51 " I53( ){ },                                                                      (2.30a)  

  
P!z = !3 ! z " zo( ) I51 " I53( ) + !o z " zo( ) I52 " I50( ){ },                                                           (2.30b)  

  
Pzz = !3 z " zo( )2

I50 " I52( ),                                                                                                    (2.30c)  

  
Pz! = !3 z " zo( ) ! I50 " I52( ) + !o I53 " I51( ){ }.                                                                       (2.30d)  

The integrals Imn can be expressed [Lee & Leal (1982)] in terms of complete elliptical integrals 

of the first and second kind with argument k.  The elliptical integrals are calculated using 

recursive formulas found in Pozrikidis (1992) and by asymptotic formulas (k!1) found in Lee 
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and Leal (1982).  In Eq. (2.26), the matrix operation with V is understood as (V·A·n) = VljkAjnk; 

similarly for the P·B·n term. The free index l refers to the !- or z-component, and the repeated 

indices j and k summed over the !- and z-components. 

Based on the same azimuthal integration as in Eq. (2.24), the integral in Eq. (2.21) is 

numerically approximated as 

   
Q !w !n " #Q !w$ !n( )

xm

% &lm ,                                                                                                   (2.31)  

where xm are the mesh nodes on the drop contour and !lm are the arc lengths associated with xm 

by the trapezoidal integration rule.  Accordingly, the subtracted quantities w* are required to 

minimize  

   
Q !w !n " #Q !w$ !n%& '(

2

xm

) *lm( ) 2
,                                                                                           (2.32)  

which gives a 2x2 system of equations for  w!
"  and  wz

! .  Using w* instead of w(xi) in Eq. (2.21) 

was necessary for near-critical squeezing simulations to alleviate difficulties with drop-solid 

overlapping in the near contact region. 

 
2.3.4 Additional Numerical Details 

 

The unit normals and curvatures on Sd were found for each node point by fitting a locally 

oriented parabola through it and its adjacent neighbors [Davis (1999)].  The unit normals Sp are 

calculated analytically. 

The instantaneous drop velocity U is defined as the volume-averaged fluid velocity inside the 

drop and is calculated using the Gauss theorem, 

   
U =

1
Vd

u !n( ) x " xd
c( )  dS

Sd

# ,                                                                                                    (2.33)  



 30 

where Vd is the drop volume and  xd
c  is the drop surface centroid. 

For the algorithm based on the coupled set of Eqs. (2.8) and (2.9), successive substitutions 

are divergent. Therefore, a minimal residual method is employed instead (the same version of the 

generalized minimal residual method, as in the previous calculations) [Zinchenko & Davis 

(2006) and (2002)]. 

A nonadaptive moving mesh is used on the deformable drop contour, and an adaptive 

stationary mesh is used on the constriction contour. Following the work of Davis (1999), a 

simple mesh-redistribution algorithm is used on the drop contour to eliminate mesh-node 

accumulation, by checking the mesh spacing every few time steps and redistributing the nodes 

evenly along the drop contour when necessary. 

Both uniform and adaptive stationary meshing on the solid constriction were tested for the 

BI algorithm. For the adaptive meshing, the density of the mesh points on Sp scales with the 

distance to the center of the constriction raised to a power (typically !0.4, giving slightly more 

than twice as many node points in the interior of the constriction as the exterior). These meshings 

are weakly adaptive to avoid the loss of accuracy for global results including squeezing time. 

Next, global results are compared for the BI simulations using different meshing on Sp. In Fig. 

2.2, two drop velocity curves are shown for a squeezing case, corresponding to uniform and 

adaptive meshes on Sp. The graph shows that the adaptive mesh provides a more stable and 

accurate drop velocity than does the uniform mesh. 

A stable time step "t is chosen as 

   

!t = K
µe

"
min

i

!xi

a k xi( )
#
$
%

&%

'
(
%

)%
,
                                                                                                     

 (2.34)
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where K = O(1) is a numerical factor and the minimum is taken over all node points, xi on Sd, !xi 

is the minimum distance between xi and neighboring mesh node points, a is the nondeformed 

drop radius, and k(xi) is the local mean curvature at xi. The drop shape was updated using a first-

order Euler method. The economical first-order time integration scheme is justified in the present 

calculations since the drop moves very slowly, with high resistance, through the constriction 

[Zinchenko & Davis (2006)]. 

In the BI algorithm, drop squeezing calculations near the critical B are very lubrication sensitive, 

with drop-to-constriction minimum gaps observed as low as 0.1%–0.01% of the undeformed 

drop radius. Therefore, a geometric barrier (!, defined as the minimum drop-solid dimensionless 

gap allowed) is sometimes employed in the present simulations to avoid numerical drop-solid 

overlapping when using a lower number of surface nodes. If a drop node point xi moves closer to 

the constriction than a set barrier value, then the node point is pushed back along the normal 

n(xi) to the barrier value.  

It must be stressed that only a small portion (1%–2%) of the mesh nodes on the drop [near the 

wetting points, W1 and W2 (see Fig. 2.3), where lubrication is difficult to resolve] needed this 

correction, so the geometric barrier did not have an appreciable effect on the overall process of 

drop squeezing. Instead of the geometric barrier, we also investigated incorporation of an 

artificial, singular molecular repulsion term in the normal-stress balance to prevent drop-solid 

overlap. We performed extensive testing based on this more physical approach, but found it to be 

unsatisfactory. To prevent overlapping and also to have a negligible effect on the overall process 

of drop squeezing, the length scale of the “molecular” repulsion has to be very small, but in this 

range numerical instability could not be avoided. 
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Fig. 2.2: Drop velocity vs time for B = 0.96, a/bs = 2, as/bs = 3, and ! = 1. The solid curve is for 

300 nodes on Sd and 450 nonadaptive nodes on Sp; the dashed line is for 300 nodes on Sd and 450 

adaptive nodes on Sp.
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2.4   Static Algorithm Based on the Young–Laplace Equation  

 
In addition to the boundary-integral algorithm for a moving drop, we developed an 

alternative and very efficient static algorithm for subcritical Bond numbers based on the Young–

Laplace (YL) equation. When B<Bc and t!", the nonwetting drop asymptotically reaches a 

trapped configuration to be determined, consisting of the sessile and pendant parts plus the 

“wetted” area in contact with the torus. In Fig. 2.3, the drop (assumed to be heavier than the 

surrounding fluid) rests on the torus, and the wetted area is formed by rotating the arc W1W2 

about the torus axis of symmetry; the sessile and pendant parts are tangent to the solid surface at 

W1 and W2, respectively. Although axisymmetric static analysis based on the Young–Laplace 

equation has been widely used in literature to study equilibrium drop shapes on a plane substrate 

[see O’Brien (1991) and Hodges et al. (2004)], the novelty of the present case is that the sessile 

and pendant curves are connected through the wetted area, the solutions for the top and bottom 

parts are coupled, and there is a critical Bond number for squeezing to occur. Accordingly, this 

situation has required a new algorithm described below. 

We work with two cylindrical coordinate systems (!,z1) and (!,z2) with the origins O1, O2 at 

the drop tips (Fig. 2.3) and use the nondeformed drop radius as the length scale to 

nondimensionalize the equations. Indices 1 and 2 mark the values related to the sessile and 

pendant parts, respectively. The equilibrium condition is the Young–Laplace equation (written in 

terms of the Bond number), C1+Bz1 = 2k (sessile part) and C2#Bz2 = 2k (pendant part), where k is 

the local mean curvature of the drop surface. Constants C1 and C2 are yet to be determined. One 

obvious limitation on C1 and C2 is the total volume constraint, 
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Fig. 2.3: Static drop shape trapped in a ring. 
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F1 =V1+V2+V3 !

4"
3

= 0                                                                                                           (2.35)  

where V3 is the (nondimensional) volume of the drop part wetting the constriction (Fig. 2.3). 

Since the pressures inside and outside the drop are continuous, the Young–Laplace equations for 

the sessile and pendant parts, if rewritten in the same coordinate system, would be identical, 

which gives another constraint on C1 and C2, 

  
F2 = C1 + B H1 + H2( ) ! C2 = 0                                                                                                 (2.36)  

where H1 and H2 are the distances from the drop tips to the plane of symmetry of the torus (Fig. 

2.3). If O2 is above this plane, H2 is taken with the minus sign. The directions on the sessile and 

pendant parts are chosen from the tip to the corresponding wetting point, as indicated by arrows 

in Fig. 2.3. Let !1(i=1,2) be the angle between the directional tangent vector to the 

sessile/pendant curve and the "-axis (note: only !1 is shown in Fig. 2.3). The solution is first 

constructed on the assumptions that (i) neither the sessile nor the pendant part has an inflection 

point, (ii) !1 =  !1
">#/2 at W1, and (iii) !2 =  !2

"<#/2 at W2. All these assumptions [(ii) is self-

evident] are obviously true at B = 0, when the spherical drop rests on the torus and W1 = W2. It 

turns out, however (see below), that the same holds for all subcritical Bond numbers. The 

Young–Laplace equation yields the differential equations for the sessile and pendant parts 

[O’Brien (1991)], 

  

d !
d"i

=
! cos"i

! Ci ± Bzi( ) # sin"i

,   
  

d zi

d!i

=
" sin!i

" Ci ± Bzi( ) # sin!i

,                                                        (2.37)  

where the plus and minus signs are taken for i = 1 and 2, respectively; for convex shapes, the 

denominator in Eq. (2.37) is always positive. Eq. (2.37) is complemented by asymptotic initial 

conditions at !i!0, derived from Eq. (2.37) by Taylor expansion, 
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 (2.38)

 

Since the drop surface is tangent to the torus at the wetting points, we have 

 ! = as + bs " as sin#i   at   !i = !i
".                                                                                               (2.39)  

The algorithm works in the following manner. With an initial guess (C1,C2), Eqs. (2.37) are 

integrated numerically from sufficiently small !i using the asymptotic initial condition (2.38), 

until Eq. (2.39) is satisfied; for the sessile-part integration, the first root of Eq. (2.39) with !1<"/2 

is skipped. These integrations give  !i
" (Ci), Vi(Ci), Hi(Ci), and V3(C1,C2) and allow us to formulate 

(2.35) and (2.36) as systems of equations F(C) = 0 for C1 and C2. In addition to #(!i,Ci) and 

z(!i,Ci), the derivatives !#/!Ci, !z/!Ci, and d !i
" /dCi are calculated from an extended system of 

equations, obtained by differentiating Eqs. (2.37)-(2.39) with respect to Ci. The latter procedure, 

although somewhat cumbersome, allows us to calculate !Fi/!Cj and solve Eqs. (2.35) and (2.36) 

for C1,C2 by Newton iterations. In numerical implementation, an explicit second-order Runge–

Kutta integration with a small step "!i and linear interpolation for the roots of Eq. (2.39) was 

sufficient. With small increments in the Bond number, starting from B = 0 (when C1=C2=2), the 

previous solution provides a good initial approximation for C1, C2, requiring just a few Newton 

iterations (except at the critical conditions, see below). 

The critical Bond number Bc is detected with high precision as a value when the Jacobian, 

det[!Fi/!Cj], for the solution of Eqs. (2.35) and (2.36) approaches zero. Geometrically, this value 

of B corresponds to touching of the curves F1(C1,C2) = 0 and F2(C1,C2) = 0 so that the solution of 

Eqs. (2.35) and (2.36) cannot be extended beyond Bc. Our calculations show that this critical 

Bond number can also be characterized by  !2
"#"/2 and the wetting point W2 (Fig. 2.3) 

approaching the plane of symmetry of the torus. Both the sessile and pendant shapes are 
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observed to remain convex up to B = Bc. One can question if an equilibrium trapped state would 

exist for higher Bond numbers, with the wetting point W2 below the plane of symmetry and a 

sessile/pendant part having an inflection point. We explored such a possibility by modifying the 

above algorithm and using an alternative form of the Young–Laplace equation (2.37) with the 

arc length as an independent variable [O’Brien (1991)]. However, no solution of this kind was 

found to exist. So, Bc found by our static algorithm represents, indeed, the threshold for 

squeezing to occur, which is confirmed by the boundary-integral simulations in Sec. 2.5. Note 

that integrating the YL equations (2.37) from !i = 0 does not require knowledge of the absolute 

position of the tip. Also, this approach allows us to avoid nested Newton iterations (which would 

be inevitable, had we chosen a different direction of integration, from the wetting point to the 

tip). The algorithm can be generalized to other axisymmetrical problems, e.g., of a nonwetting 

drop trapped under gravity in the throat of a constricted tube with arbitrary cross section. 

Rotenberg et al. (1983) used axisymmetrical analysis based on the YL equation for best 

fitting of the theoretical single-piece meniscus (sessile or pendant) to the experimental shape. 

Although their task is vastly different from ours, there are some similarities in the numerics. 

Both algorithms integrate YL equations from the tip(s) [with fewer terms in Rotenberg et al. 

(1983) compared to our Eq. (2.38) to start integration] and use the Bond number as a loading 

parameter. The task [Rotenberg et al. (1983)], though, requires calculating up to second 

derivatives of " and z with respect to parameters; the present algorithm is much less 

cumbersome. 
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2.5  Numerical Results 

 
2.5.1  Testing of the BI Algorithm 

 
The code was first tested by showing that the drop velocity far away from the constriction equals 

the Hadamard–Rybzynski value. The drop was placed below the constriction and allowed to 

settle away from it using 700 nodes on each surface. As shown in Fig. 2.4, the drop velocity 

(made dimensionless with the Hadamard–Rybzynski value for an isolated drop) asymptotically 

approaches unity. As another test, the code was modified to handle flow-induced squeezing, and 

the resulting calculated drag force on the ring constriction, when the drop is far away, was 

compared with the analytical solution for the drag force on a solitary torus rigidly held in a 

uniform Stokes flow [Majumdar & O’Neill (1977)]. Table 2.1 shows that the boundary-integral 

calculation of the hydrodynamic force calculation is accurate for multiple torus sizes to within 

about 0.1%. The hydrodynamic force is calculated from the BI solution as [Hebeker (1986)] 

   
Fsimulation

! = " q
torus
# dS.                                                                                                                  (2.40)  

2.5.2 The Effect of a Geometric Barrier on Squeezing 

It is expected that increasing the size of the geometric barrier will lower the squeezing time 

because the drop will not approach the constriction as closely and will experience less resistance.  

In Fig. 2.5, the drop velocity for squeezing of a drop with B = 0.45 through a ring with 

geometry parameters of as/bs = 3 and a/bs = 1.5 is shown for three barrier values. It is observed 

that increasing ! speeds up squeezing, but the overall effect of varying this artificial parameter ! 

on the squeezing time is small. For the conditions in Fig. 2.5, not more than 6–7 drop mesh 

nodes, out of 300, required the geometrical correction at any time step. Overall, using the barrier 

can slightly lower the accuracy of the calculations, but allows for cruder resolutions and, hence,  
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Fig. 2.4: Drop velocity vs distance from constriction with ! = 4, a/bs = 1.5, and as/bs = 1.5. 
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Table 2.1: Comparison of the analytical solution vs boundary-integral calculation for the 
dimensionless hydrodynamic force on a torus held in a uniform external flow. 
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much faster simulations of near-critical squeezing. As the resolution increases, there is no need 

for this correction. 

2.5.3  Squeezing versus Trapping 

 
The effect of drop deformability on the squeezing and trapping process was studied by plotting 

the drop velocity and drop-solid spacing versus time for varying B. As shown in Figs. 2.6 and 

2.7, the drop velocity and drop-solid spacing decrease as the drop penetrates the hole before 

increasing as the drop exits the hole. The minimum velocity and gap decrease with decreasing 

Bond number, as the drop becomes more difficult to deform. Accordingly, the squeezing time is 

larger for smaller Bond numbers. A second minimum in the drop velocity is observed just before 

the drop exits the constriction due to competing effects of the drop nose elongating while the 

drop tail is still “pinned” in the constriction (a similar behavior of the drop velocity was observed 

in 3D flow-induced squeezing simulations [Zinchenko & Davis 2006)]).  The B = 0.35 run in 

Figs. 2.6 and 2.7 demonstrates the trapping mechanism, where both the drop velocity and drop-

solid spacing asymptotically decay to zero. The critical Bond number for this geometry is Bc = 

0.44, defined such that for B above this value, the drop is able to deform and slowly squeeze 

through the constriction. For B below the critical value, the drop becomes stuck inside the 

constriction and reaches a steady-state, trapped configuration. 

One of the examples demonstrating the power of higher-order, near-singularity subtraction in 

the solid-to-drop double-layer contribution is a tight-squeezing case a/bs = 1.5, as/bs = 3, ! = 1, 

and B = 0.55, with the drop velocity decelerating about 100 times in the constriction. Using 300 

node points on the drop and 600 points on the solid surface, pass-through was successfully 

simulated. In contrast, with higher-order subtraction disabled, we could not proceed beyond the 

initial stage, when the drop velocity decelerates to its minimum. 
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Fig. 2.5: Drop velocity vs time for three ! = 0.004, 0.005, and 0.006, with B = 0.45, as/bs = 3, a/bs 

= 1.5, and " = 1, 300 nodes on Sd and 600 nodes on Sp. 
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Fig. 2.6: Drop velocity for squeezing through a ring constriction with as/bs = 2.25, a/bs = 1.5, ! = 

0.8, and B = 2, 1, 0.75, and 0.35; 600 node points were used on each surface, except for B = 0.35, 

where 300 node points were used on Sd and 500 on Sp. 
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Fig. 2.7: The temporal dynamics of the drop-solid spacing for squeezing through a ring 
constriction with as/bs = 2.25, a/bs = 1.5, ! = 0.8, and B = 2, 1, 0.75, and 0.35; the surface 
discretizations are the same as in Fig. 2.6. 
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2.5.4  Drop Squeezing Dynamics and Exit Times 

 
Next, the squeezing mechanism is described in detail. In Fig. 2.8(a), the drop positions and 

shapes are shown at equally spaced times during squeezing. First, as the drop approaches the 

constriction, its velocity decreases and the drop flattens due to the presence of the constriction. 

Next, the leading edge pushes through the entrance of the constriction and the sides of the drop 

deform to the shape of the constriction. If B is above the critical value, then the drop slowly 

pushes through the constriction, which requires the drop to deform substantially as it passes 

through. Then, as the drop exits, the leading edge pulls on the elongating drop because the 

velocity is much higher outside the constriction. However, the trailing edge slows the drop down 

due to the drop-solid gap being so small. The competing effects of the leading and trailing edges 

of the drop account for the local maximum of the average drop velocity observed as the drop 

passes through the constriction. In Fig. 2.8(b), for the same size drop and ring but lower Bond 

number, the drop becomes trapped in the constriction and reaches a steady-state shape. In this 

case, the interfacial tension is too high to allow the drop to deform enough to pass through the 

constriction. 

 The effect of viscosity ratio on drop velocity, squeezing time, and the minimum drop-solid 

gap was studied by performing runs with constant B and constriction geometry at different ! 

values. As shown in Fig. 2.9, drops of higher viscosity take longer to pass through the 

constriction because of higher lubrication shear stresses in the narrow gap due to the lower 

mobility of the drop interface. As a result, a more viscous drop reaches a smaller minimum gap 

and a smaller minimum velocity (for 3D flow-induced squeezing [Zinchenko & Davis (2006)], 

though an opposite trend for the gap was observed, namely, the minimum separation increases 

with !). As shown in Fig. 2.10, the squeezing time increases not only with viscosity ratio but also   
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Fig. 2.8: (a) Snapshots of the drop motion through a ring constriction with as/bs = 2.25, a/bs = 

1.5, ! = 0.8, B = 1, and 600 node points used on both surfaces Sd and Sp. (b) Snapshots of the 

drop motion leading to trapping in a ring constriction with as/bs = 2.25, a/bs = 1.5, ! = 0.8, and B 

= 0.35, and 600 and 1000 node points used on surfaces Sd and Sp, respectively. 
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with decreasing Bond number because drops with higher interfacial tension do not deform as 

easily and so are more difficult to squeeze through the constriction. 

Next, the effect of the cross-sectional size (as/a) on Ts is explored for a/bs = 2, ! = 4, and 

varying B, as shown in Fig. 2.11. A nonmonotic behavior is observed with a minimum Ts when 

the drop and the ring cross-sectional radius are roughly the same, as/a = O(1). For a constant hole 

size and Bond number, smaller rings slow down squeezing because of the higher local mean 

curvature, whereas larger rings slow down squeezing due to a longer pathway. Of interest is size 

exploring if a minimum squeezing time can be observed for other constriction types when the 

size of the drop and constriction are similar.   

A further test of the boundary-integral algorithm is to use it to determine the critical Bond 

number and then compare the result to that from the highly accurate and efficient Young–

Laplace algorithm of Sec. 2.4. To do so, accurate values of the squeezing times were found for 

slightly supercritical Bond numbers, and then the critical Bond number was determined by 

extrapolation to where the squeezing time becomes infinitely long. For a given constriction 

geometry, accurate drop squeezing times were determined for different supercritical B using the 

BI algorithm by varying the total number of surface nodes (Ns) at each B and plotting Ts versus 

1/Ns to extrapolate to infinite resolution. As shown in Fig. 2.12, a linear relationship is 

determined from Ts versus 1/Ns. The y-intercept gives the converged value of Ts, and the result 

for the conditions of Fig. 12 is Ts = 234.73±0.06 at the 95% confidence level. 

Once accurate values of the squeezing times were determined, a plot of B versus 1/Ts yields 

the critical Bond number as the limit where 1/Ts!0. As shown in Fig. 2.13, there appears to be a  
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Fig. 2.9: (a) Drop velocity and (b) drop-solid minimum spacing for drop squeezing through a 

ring constriction, with as/bs = 3, a/bs = 2, B = 1.1, and ! = 0.8, 2, and 4 (left to right). The 

squeezing duration Ts is shown for ! = 4. 
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Fig. 2.10: Squeezing time vs viscosity ratio for as/bs = 3, a/bs = 2, and B = 0.75, 1, and 2 (top to 

bottom). 
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Fig. 2.11: Squeezing time vs ring cross-section-to-drop size for a/bs = 2, ! = 4, and B = 1.25, 

1.375, and 1.5 (top to bottom). 
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power-law dependence of the form 

                                                                                                                           
 (2.41)

 

near the critical Bond number. From a nonlinear regression, the best-fit exponent is ! = 

2.00±0.01 and the best-fit intercept is Bc = 0.41±0.01, both at the 95% confidence level. 

Excellent agreement with the value of Bc = 0.410 from the Young–Laplace algorithm is obtained 

for a/bs = 1.5 and as/bs = 3 (independent of the viscosity ratio since the critical value is based on 

a static configuration). This procedure was repeated for a/bs = 1.5 and as/bs = 1.5, yielding ! = 

1.998±0.002 and Bc = 0.48±0.03 at the 95% confidence level from the BI results, again in 

excellent agreement with Bc = 0.482 from the YL algorithm. 

The value of the exponent ! may be confirmed with the aid of the results from the Young–

Laplace algorithm (see Sec. 2.4). First, an accurate value of Bc is determined from the YL 

algorithm. Then, the natural logarithm of (B!Bc), ln(B!Bc), is plotted versus ln(1/Ts), as shown in 

Fig. 2.14, and the resulting slope is !. For a/bs = 1.5 and as/bs = 3, it is found that ! = 1.9±0.2 at 

the 95% confidence level. This approach was repeated for a/bs = 1.5 and as/bs = 1.5, resulting in 

! = 2.1±0.4 at the 95% confidence level. This result confirms the scaling we assumed for when 

the Bond number approaches the critical value, namely, B!Bc is proportional to (1/Ts)!, where ! 

= 2.0. 

It would be worthwhile to analytically derive the squeezing time scaling, Ts∝(B!Bc)!1/2. In a 

related study, Bretherton (1961) considered buoyancy-induced squeezing of a long bubble (with 

" = 0) through a vertical, straight, and circular tube sealed from one end. He found that the 

bubble motion is completely arrested for tube Bond numbers (Bt = "#gr2/$, where r is the tube 

radius) below (Bt)c  =  0.842. For Bt  slightly above this critical value,  he found the drop velocity  
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Fig. 2.12: Squeezing time vs resolution for B = 0.6, a/bs = 1.5, as/bs = 3, and ! = 1, with the total 

number of nodes (Ns) distributed in the ratio 2:1 on Sp and Sd. 
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Fig. 2.13: Nonlinear regression for Bond number vs reciprocal of squeezing time for a/bs = 1.5, 

as/bs = 3, and ! = 1. 
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Fig. 2.14: Determination of the power-law exponent ! using YL for Bc and BI for Ts when B < 

Bc. The circles represent simulation results for a/bs = 1.5, as/bs = 3, and " = 1, and the squares 

represent simulation results for a/bs = 1.5, as/bs = 1, and " = 1. 
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scaling, U∝[Bt!(Bt)c]9/2, by matched asymptotic expansions. It is tempting to apply Bretherton’s 

approach to the present problem; however, there are many fundamental differences between the 

two problems, and we have not been able to succeed. First, the curved surface of the solid-ring 

constriction in the present problem contributes a nonzero, leading term to the dynamic pressure 

gradient along the lubrication area. Since the present problem is unsteady, the film-thickness 

evolution is described by a nonlinear, partial differential equation, which is quite different from 

the simpler ordinary differential equation in Bretherton’s problem. The wetting points, W1 and 

W2, limiting the lubrication area, are not known a priori, and they move as the drop squeezes 

through the constriction. So, we are unable to find the scale for the film thickness through 

matching with the outer solution, and Bretherton’s technique could not be applied herein. It is 

not clear at all how the difference, B!Bc, enters the equations in the present case. The present 

problem deals with an arbitrary viscosity ratio !, while Bretherton’s analysis was developed for ! 

= 0 only, so the internal drop motion could be ignored. Finally, in the present problem, the 

critical Bond number is found in a different manner. Equation (2.36) is a result of connectivity 

between the sessile and pendant surfaces both through the drop and external fluid domains. The 

latter does not hold for Bretherton’s problem, where the tube is sealed from one end, and Eq. 

(2.36) could not be written. 

It is interesting to compare the present scaling Ts ∼ (B!Bc)!1/2 with the result Ts ∼ 

(Ca!Cacrit)!1/3 for pressure-driven, 3D flow of a periodic emulsion through a cubic lattice, 

obtained by Zinchenko and Davis (POF 2008) from BI simulations, where Ca is the capillary 

number based on the pressure driving force and Cacrit is the critical value below which trapping 

occurs. More studies need to be conducted to determine the physical reason for the differences in 

scaling observed for gravity and flow-induced squeezing. One possible explanation is the 
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different behaviors of the lubrication gap at B!Bc. Curiously, the exponent ! found here is the 

same as in the scaling [Navot (1999) and Blawzdziewicz et al. (2002)] Ca"Cacrit ∼ 1/T2 for the 

breakup time for a single drop in an unbounded linear flow near-critical conditions. The latter 

result was derived [Blawzdziewicz et al. (2002)] from a general asymptotic analysis assuming an 

expansion for the capillary-driven drop response as a Taylor series in the deviation of the drop 

shape from the critical stationary shape. At present, though, the connection between the two, 

very different problems is not understood. More research is necessary to determine if any 

physical similarities exist between gravity-induced squeezing and flow-induced drop breakup to 

account for the similarities in scaling. 

By keeping the cross-sectional radius of the ring constant at as/a = 1 and varying the hole radius, 

different static drop shapes are generated using the YL algorithm by varying B below its critical 

value, as shown in Fig. 2.15. The dashed lines show the final drop interfaces for B!Bc. The YL 

solution for trapped shapes (B<Bc) is independent of the viscosity ratio because a static drop 

shape has no flow or viscosity effects and is independent of the drop motion to reach 

equilibrium. As B increases, so that the interfacial tension is weaker, the pendant portion of the 

drop hangs lower in the constriction, the trailing edge of the drop is lowered slightly, and the 

drop shape becomes more elongated. Also, by making the hole radius larger, Bc decreases and 

the drop cannot deform as much before passing through the constriction. 

The highly accurate YL static drop shapes are compared to the long-term drop shapes 

obtained from the BI algorithm at the same Bond numbers and geometry parameters. Fig. 2.16(a) 

shows the BI dynamically calculated drop shapes as they approach the static, trapped shape at B 

= 0.9Bc, and the final BI calculated shape is compared to the YL statically calculated drop shape 

in Fig. 2.16 (b).  In principle,  the BI algorithm could always be used to determine the static drop  
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Fig. 2.15: Steady-state trapped drop shapes for (a) as/bs = a/bs = 2.5 and B = 0.001 (dotted line), 

0.5 (solid line), and 1.584 (dashed line); (b) as/bs = a/bs = 2 and B = 0.001 (dotted line), 0.7 (solid 

line), and 1.025 (dashed line); (c) as/bs = a/bs = 1.5 and B = 0.001 (dotted line), 0.3 (solid line), 

and 0.482 (dashed line); and (d) as/bs = a/bs = 1.25 and B = 0.001 (dotted line), 0.15 (solid line), 

and 0.213 (dashed line). 

 

 

 

 

(a) (b)

(c) (d)



 58 
shape for subcritical Bond numbers at large times and with high surface resolution, but the YL 

algorithm is much more efficient for this purpose. Figure 2.16(a) demonstrates that the BI 

simulation is sufficient to attain a steady-state shape before numerical crash due to a vanishingly 

small drop-solid gap, and this shape is in excellent agreement with the one obtained by the YL 

static algorithm, as observed in Fig. 2.16(b). Due to CPU time limitations on the BI simulations, 

we use the YL algorithm for all subsequent calculations of Bc and of steady shapes for B<Bc. 

2.5.5  Drop “Dripping” Dynamics 

 
The loss of a drop steady-state on a ring constriction may be due to not only squeezing through 

the interior hole but also dripping over the exterior edge for sufficiently large drops. We have 

observed, through numerical simulation, the initial stages of the drop dripping around the outer 

edge of the ring. For the mechanism shown in Figs. (2.17) and (2.18), as the drop approaches the 

constriction, its average velocity decreases, and its perimeter becomes unstable, which is quite 

different from the center of the drop becoming unstable (as in the case of drop squeezing). Next, 

the drop begins to deform around the exterior of the ring, and the Figs. (2.17) and (2.18) show 

the central part of the drop becoming increasingly thin. It is interesting to note that, in Fig. 2.17, 

the hole is so small that the drop never enters the interior of the ring, but the center of the drop 

instead arches away from the ring as the dripping proceeds. Quite differently from Fig. 2.17 is 

the case shown in Fig. 2.18, where the hole is large enough so that the center of the drop leading 

edge protrudes slightly into the interior of the ring as the drop perimeter “drips” around the 

exterior of the ring. 
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Fig. 2.16: BI dynamically calculated drop interface shapes at the time moments t = 375 (dashed 

line), t = 750 (dotted line), and t = 2438 (solid line), and (b) comparison between the BI 

dynamically calculated (t = 2438, squares) and the YL calculated (solid line) static drop shapes, 

at B = 0.885, as/bs = 3, and a/bs = 2, with ! = 1 for the BI trial. 
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Fig. 2.17: Snapshots of drop motion for dripping around a ring with a/bs = 11.7, as/bs = 5, ! = 1, 

B = 3.25 (Bc = 3.19), with 200 nodes on Sd and 400 nodes on Sp. 

t = 1.9 t = 93.8

t = 187.5 t = 281.3

t = 375 t = 468.8
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Fig. 2.18: Snapshots of drop motion for dripping around a ring with a/bs = 3.2, as/bs = 0.567, ! = 

1, and B = 2.2 (Bc = 1.9) with 200 nodes on Sd and 400 nodes on Sp. 
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2.5.6  Critical Bond Number and Steady Drop Shapes for Trapping 

 
Critical Bond numbers, demarcating drop steady states on a ring, are calculated with high 

speed and accuracy for a large constriction geometry parameter space using the axisymmetric 

YL algorithm. As shown in Fig. 2.19, for moderate a/bs and as/bs values, increasing the drop-to-

hole size ratio increases the critical Bond number nearly linearly for multiple ring sizes. Under 

these conditions, the gravitational force required to push a drop through a ring increases with the 

inverse of the hole size. It is also observed that increasing the ring cross section weakly 

decreases the critical Bond number for both a fixed drop and ring sizes due to a smoother 

pathway. For a broader a/bs and as/bs parameter space, as shown in Fig. 2.20, a maximum critical 

Bond number is observed, for multiple rings (cross-section-to-hole values), by varying the ratio 

of the drop and the total ring radii, a/(2as+bs). The maximum Bc occurs at the drop size where 

there is a transition, when B>Bc, from the drop passing through the inside hole of the ring for 

smaller drop sizes to it dripping around the outside edge of the ring for large drop sizes. 

The insets in Fig. 2.20 for as/bs = 5 show two typical steady-state drop shapes for slightly 

subcritical Bond numbers on the squeezing (top inset) and dripping (bottom inset) branches. 

Although the shapes for the dripping branch are different from the one depicted in Fig. 2.3, the 

generalization of the YL algorithm from Sec. 2.4 still applies. As shown in Fig. 2.21(a), when Bc 

= 7.35 is approached from below, the wetting point W1 outside the ring hole is practically 

insensitive to changes in B, while the wetting point W2 inside the ring hole moves sharply to the 

center of the hole. In contrast, as follows from Fig. 2.21(b), when Bc = 2.38 is approached from 

below, W2 inside the ring hole is practically insensitive to changes in B, while W1 outside the ring 

hole shows a strong variation. These results clarify the physical nature of the two branches for 

each line in Fig. 2.20. 
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Fig. 2.19: Critical Bond number values vs drop-to-hole ratio a/bs at cross-section-to-hole ratio 

as/bs = 1, 2, 3, 4, and 10 (top to bottom). 
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Fig. 2.20: Critical Bond number vs drop-to-total ring radius for as/bs = 0.05, 1, 5 and 10 (bottom 

to top). The insets show two steady-state, slightly subcritical drop shapes for as/bs = 5, with B = 

7.35, a/(2as+bs) = 0.5545 (top) and B = 2.38, a/(2as+bs) = 1.28 (bottom). 
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      Overall, for realistic values of a/bs and as/bs, the critical Bond number is a strong, nearly 

linear function of drop-to-hole size, and a weak, decreasing function of constriction-to-drop size, 

whose effect could be ignored except for tight rings. Also, the critical Bond number reaches a 

maximum value versus the drop-to-total ring radius because the drop becomes too large for the 

ring and will start to drip around the edges instead of passing through the hole. The maxima are 

sharp due to the bifurcation that occurs at this junction between the drop passing through the hole 

(which becomes harder as the drop size increases) and dripping over the outside edge (which 

becomes easier as the drop size increases). 

2.6  Concluding Remarks 

 
An axisymmetric BI algorithm has been developed to study buoyancy-driven deformable drop 

squeezing through a ring constriction. This problem is a prototype for emulsions settling through 

porous media. Interesting features of the problem include the reduction in drop velocity as it 

passes through the constriction, the minimum drop-solid spacing during squeezing, and the 

conditions for which trapping occurs. The algorithm uses the Hebeker representation for the 

solid-particle contribution to the boundary-integral equations, which is a proportional 

combination of the single- and double-layer potentials. The high-order, near-singularity 

subtraction technique used in the solid-to-drop contributions was necessary to simulate slow-

squeezing cases, when the Bond number is close to critical. The coupled system of equations for 

the fluid velocity on the drop and the Hebeker density on the ring constriction was successfully 

solved by a minimal residual technique, while traditional “successive substitutions” are 

divergent. For cases when the drop is trapped, an alternative, highly efficient static algorithm is 

developed based on YL equation for the sessile and pendant parts, coupled through the “wetted” 

area. 
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Fig. 2.21: The vertical position of wetting points W1 and W2 for as/bs = 5 as the critical Bond 

number is approached for the (a) squeezing, with Bc = 7.35 and a/(2as+bs) = 0.55, and (b) 

dripping, with Bc = 2.38 and a/(2as+bs) = 1.28, branches. 
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We found for gravity-induced squeezing that squeezing time for the drop to pass through the 

constriction is proportional to (B!Bc)!1/2, as the Bond number B approaches the critical value Bc 

from above. The drop squeezing time increases and the minimum drop-solid spacing decreases 

with increasing viscosity ratio. The time for the drop to pass the constriction increases with 

increasing viscosity ratio and decreasing Bond number. The squeezing time scaling for gravity-

induced drop motion through a constriction found herein differs from the scaling 

Ts∝(Ca!Cacrit)!1/3 obtained from numerical simulations by Zinchenko and Davis (POF 2008) for 

flow-induced, 3D squeezing of a periodic emulsion through a cubic lattice of spheres near a 

critical capillary number Cacrit. The present axisymmetric code, capable of higher accuracy, can 

be modified in future work for flow-induced drop squeezing through a ring constriction to verify 

the !1/3 versus !1/2 scaling exponent. 

For two example geometries, the BI and YL calculations were shown to compare favorably 

(both for static trapped drop shapes and critical Bond numbers); however, since the critical B 

results generated from the YL algorithm are more accurate and computationally faster, the YL 

algorithm is used exclusively for calculating critical Bond numbers and static trapped drop stapes 

given a specific set of geometry parameters. For moderate and realistic geometry parameters, Bc 

increases nearly in proportion to a/bs, but it is only a weakly decreasing function of as/a. For a 

larger parameter space, the critical Bond number is an increasing function of the relative drop 

size until a maximum value is reached. Larger drops drip over the edges of the ring instead of 

passing through it at supercritical Bond numbers. 

Drop squeezing and trapping mechanisms were observed experimentally using an apparatus 

with canola oil bulk phase and water or water/glycerol drop phase. Critical Bond numbers Bc 

were experimentally determined by placing increasingly larger drops on a ring and detecting the 
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transition from squeezing to trapping. The experimentally determined Bc compares favorably 

with the theoretical values obtained from the axisymmetric YL algorithm. The transition between 

squeezing and trapping is strongly dependent on the hole size of the ring and the fluid properties 

of the drop but only weakly dependent on the cross-sectional size of the ring, in good agreement 

with theory. Also, experimental trapped drop shapes show good agreement with those calculated 

using the axisymmetric YL algorithm. Our future work will include development of a three-

dimensional YL algorithm for trapped drop shapes in channels of complex geometry and 

interparticle constrictions and determining corresponding critical Bond numbers for squeezing to 

occur. 

 

2.7 Acknowledgements 

 

This work was supported by grants from the National Aeronautics and Space Administration 

(Grant No. NNC05GA55G) and Petroleum Research Fund of the American Chemical Society 

(Grant No. 40430-AC). T.R. was supported by a fellowship from the Department of Education 

Graduate Assistantships in Areas of National Need (GAANN) Program (Contract No. 

P200A060265). 

 

 

 

 

 

 



 

 
 

69 
 
 
 

Chapter 3 
 
 

Trapping of a deformable drop in a three-dimensional constriction 
 
 

 
Abstract 
 
 

An artificial “time-dependent evolution” method is devised to determine trapping conditions 

for a drop moving due to buoyancy into a three-dimensional constriction. During the simulation, 

the drop surface advances by a rationally-devised normal “velocity,” containing both a local 

deviation of the Young-Laplace equation and the drop-solid clearance.  Neither shape-solution 

iterations nor knowing the drop-solid contact area a priori are required, to solve the three-

dimensional Young-Laplace equation via this artificial “time-dependent” process.  For 

conditions near critical, where the trapped-drop steady state ceases to exist, severe surface-mesh 

distortions are treated by ‘passive mesh stabilization,’ mesh relaxation and topological 

transformations through node reconnections.  For Bond numbers above a critical value, a drop is 

deformable enough to pass through the hole of the constriction, with no trapping.  The critical 

Bond numbers are determined by extrapolation, through linearly fitting minima of the root-

mean-squared surface velocities versus corresponding Bond numbers greater than critical.  For 

ring and hyperbolic-tube constrictions, the results, including statically-trapped drops and critical 

Bond numbers, using both the present algorithm and a previous, axisymmetric method with 

extremely-high accuracy, show excellent agreement.  Three-dimensional Young-Laplace and 

boundary-integral methods also give good agreement for the static shape of a drop trapped in a 
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tilted three-sphere constriction. For the following constriction types, including circular rings, 

hyperbolic tubes and agglomerates of three and four spheres, the critical Bond number increases 

nearly linearly with an increase in the drop-to-hole size ratio, which is also observed to be the 

most important geometry factor.  Quite differently, the constriction type and tilt angle, which is 

the angle between the gravity vector and the normal to the plane of the constriction hole, only 

weakly affect the critical Bond number.  Surprisingly, increasing the tilt angle, so that the 

horizontal projection of the hole is decreased, decreases the critical Bond number.  

 

3.1  Introduction 

 

In the absence of body forces, the shape between two, static fluids, i.e. an emulsion drop at 

rest on a solid, is described by the Young-Laplace (YL) equation, relating the pressure difference 

!p across the interface and the curvature of this interface.  Most research to date on deformable 

drops at a steady-state shape is of the classical problems of a drop either resting on or hanging 

from a solid surface. Practical applications of these previous research efforts include measuring 

the properties of the interfacial tension and contact angles associated with fluid interfaces in 

contact with solids and removing oil drops from surfaces.   

Bashforth and Adams (1892) performed the first calculation of the axisymmetric shape of a 

drop, through numerical integration of the Young-Laplace equation.   Rotenberg et al. (1983) 

developed a method for determining the interfacial tension and contact angle, by fitting empirical 

data from either a pendant or a sessile drop to a shape calculation, performed by numerical 

integration of the Young-Laplace equation.  Chatterje (2002) calculated the critical Eötvös 

number, or half the Bond number, for the detachment of an oil drop due to buoyancy, by finding 



 

 
 

71 
the conditions where the solution of the Young-Laplace equation ceases to exist [Chatterje 

(2002)].  Related to the previous problems, a static drop trapped in a solid constriction is a 

prototypical model for the steady-state consequence of an emulsion settling through confined 

geometries, i.e. packed beds or porous media.  The important applications, related to the settling 

of an emulsion through solid constrictions, are food and pharmaceutical manufacturing, oil-

recovery, drop infiltration into a highly porous surface, fixed-bed catalytic reactors and liquid-

liquid separation. Of particular engineering interest is determining the critical conditions 

delineating drop trapping within a constriction and drop squeezing though a constriction.  

Determining these critical conditions by dynamical boundary-integral simulations is especially 

difficult for gravity-driven motion, because the drop motion becomes very lubrication-sensitive 

as the critical conditions are approached.  The near-critical, dynamical simulations require a high 

resolution on both the drop and solid surfaces and long simulation times to accurately handle the 

extremely small drop-solid fluid gaps. Therefore, a special static algorithm is meaningful to 

avoid very costly boundary-integral calculations and to improve the accuracy of the shape 

solutions for drops trapped in constrictions and of the critical conditions for demarcating the 

boundary between a drop becoming trapped within or squeezing through a constriction 

[Zinchenko & Davis 2006 and Ratcliffe et al. (2010)].   

The shape calculation for trapped drops requires combining the solution of a fluid-fluid 

interface from the Young-Laplace equation with the solution of fluid-solid interface, which is 

assumed to be the same as the solid surface.  Previous related research has been performed on 

solving for the shapes of two menisci in a capillary tube.  The shape of the top interface is found 

through fitting of empirical data, and the shape of the bottom interface is found through a 

coupled set of Young-Laplace equations [Chatterje (2007)].  A major difference in this problem 
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and the trapping of a drop in a constriction is that the external fluid is not connected in a 

capillary tube.    

Previous research has been performed for calculating the shape of a drop trapped in a ring 

constriction [Ratcliffe et al. (2010)].  For this axisymmetric problem, the solution is reduced to 

solving for the contour of the drop by numerically integrating the Young-Laplace (YL) equation 

from the tips along the drop arc length to the wetted points, which are the points of three-phase 

contact, for both the sessile and pendant portions, and calculating the free parameters in the 

equations by Newton-Raphson iterations. The free parameters are found so that the pressure 

continuity throughout the drop and conservation of the total drop volume are satisfied.  Such an 

approach, however, cannot be generalized for three-dimensional constrictions, for example, 

when the axis of symmetry for an axisymmetric constriction is tilted relative to the gravity vector 

driving the motion of the drop.  It is not clear how to accurately calculate the three-phase 

boundaries, because the wetting points for an axisymmetric constriction become wetting curves 

for 3D constrictions, or to calculate cumbersome derivatives of the drop surface necessary for 

Newton-Raphson iterations. Less work has been performed on solving three-dimensional (3D) 

fluid-fluid interfaces, but work by Brown et al. (1980) determined the shape of a three-

dimensional drop resting on an inclined plane, through use of a finite element solution for the 

Young-Laplace equations, and empirical data for the wetted area of drop-solid contact. 

 

3.1.1  Problem Description 

 

For the present problem, we study the shape of deformable drops trapped due to gravity in an 

assortment of three-dimensional constrictions, including circular rings, hyperbolic tubes, three 

spheres, and four spheres. Fig. 3.1(a) depicts the initial conditions of a spherical, deformable 
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drop settling towards a constriction between three spheres.  The constriction is held stationary in 

an unbounded and quiescent bulk-phase fluid with density !e   and viscosity µe.  The drop has an 

undeformed radius a and fluid properties of density !d and viscosity µd, respectively. A constant 

interfacial tension " between the drop and external fluid is used, so the absence of surfactants is 

assumed. The surfaces of the drop and solid(s) are Sd and Sp, respectively, and the unit direction 

and magnitude of gravity are represented separately as d and g, respectively.  In Fig. 3.1(b), the 

drop statically trapped is a prototype for the steady-state consequence of emulsion flows through 

constrictions. It is assumed that the suspending fluid preferentially wets the solid and drop fluid 

is “nonwetting.” Then, the drop shape has a contact angle that is tangent to the solid surface, and 

protrudes into the hole by deforming between the spheres. Of note is that the viscosity ratio of 

the drop and external fluid phases is a dynamic property, and therefore does not affect the static 

solutions. The relevant length parameters for the multiple constriction types are illustrated in Fig. 

3.2, where the minimum circle inscribing the interior of all the constriction types has a radius bs, 

and where the ring cross section and sphere radius are as. 

   The nondimensionalized parameters, affecting the trapping of a drop in a constriction, are the 

Bond number (B = #!ga2/", where #! = !d - !e, and g is the magnitude of the acceleration due to 

gravity), the cross-section-to-hole radius ratio as/bs and the drop-to-hole radius ratio a/bs. The 

Bond number is the ratio of the gravitational and interfacial forces, and so a drop with a small 

Bond number tends to stay more spherical and a drop with a large Bond number tends to deform 

more easily. Important calculations include determining how the drop shape trapped in 

constriction is affected by the Bond number and the constriction geometry, and determining the 

critical Bond number Bcr, delineating the boundary between trapping, with B < Bcr, and  
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Fig. 3.1: (a) Deformable drop settling toward spheres. (b) Drop trapping inside the constriction at 

the steady-state shape for Bond number = 1, drop-to-hole radius ratio = 2.8 and sphere-to-hole 

radius ratio = 2.6. 
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Fig. 3.2: (a) Ring constriction has length parameters of the hole and cross-sectional radii bs and 

as, respectively. (b) Cross section of a hyperbolic tube is represented by solid lines, and the 

surface is described by the quadratic equation 
  

x2

bs
2 +

y2

bs
2 -

z2

cs
2 = 1,  bs is the skirt (hole) radius and cs 

is the vertical length scale. (c) Three non-touching spheres are described by an inscribed circular 

radius bs and a sphere radius as. 
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static results from an efficient, axisymmetric algorithm for the ring constriction.  squeezing, with 

B > Bcr.  Results from the 3D Young-Laplace method presented below are accurate, static results 

form an efficient, axisymmetric algorithm for the ring constriction.    

 

3.2  Numerical Methods 

 

As mentioned previously, boundary-integral algorithms may be used to simulate the 

gravitational settling of a deformable drop into a three-dimensional constriction for both of the 

consequential drop phenomena: dynamic pass through and steady-state trapping.  However, for 

conditions near the critical point separating the phenomena, simulating drop motion is 

computationally prohibitive, so an accurate and efficient algorithm is desirable to elucidate both 

the steady-state branch and the critical point of separation.  The surface of a trapped drop in a 

constriction contains two separate portions: (1) the interface (i.e. the portion of the drop interface 

that is not adjacent to the solids), governed by the Young-Laplace equation, and (2) the drop-

solid interface (i.e. the portion of the drop interface in near-contact with the solid, separated by a 

very thin layer of the suspending fluid).  Thus, it is not clear how to proceed with the seemingly 

feasible approach of numerically integrating the three-dimensional Young-Laplace (YL) 

equations from the drop tips to intersection of the distinct, drop-surface portions, without 

empirical knowledge used for an iterative solution.   

 

3.2.1  Three-dimensional Young-Laplace Solution Approach 

 

We have developed an artificial dynamic process, the 3D YL algorithm, presented herein, to 

efficiently calculate statically trapped drops in three-dimensional constrictions.  During a 

simulation, the drop surface Sd advances with a specially designed ‘velocity’ Un, where the 
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subscript n refers to the outward-normal direction of motion.  Tailored as the product of two 

functions, each relating to the separate portions of the drop surface, Un(x) is explicitly calculated, 

for x on Sd, as 

                                              
     

Un x( ) = CYL+Bd !x " 2k x( )#$ %&F' x( ) ,                                     (3.1a) 

 

where                                                

 

F! x( ) =1" exp "#! x( )[ ].                                                (3.1b) 

 
In (3.1b), !(x) is the distance between a point x on Sd and the nearest intersection on the solid 

surface in the n(x) direction (n(x) is the outward unit normal on Sd at x), and ! is subsequently 

referred to as the drop-solid clearance. The term " in (3.1b) is a numerical constant used for 

simulation stability, where " = O(1) is observed to be optimal.  On the R.H.S. of (3.1a), k(x) is 

half of the local mean curvature at x on Sd.  In (3.1a), d is the unit direction of gravity and the 

isolated drop-settling motion, ignoring solids. In the ‘velocity’ expression (3.1a), CYL is a 

constant containing a reference pressure difference across the interface, and is continuously 

calculated by setting the flux across the drop surface, equal to zero, 
   

Un x( )dS = 0
Sd

! , due to 

volume conservation: 

                                        

 

CYL = Bd ! x + 2k x( )[ ]F" x( ){ }
Sd

# dS F" x( )
Sd

# dS .                               (3.2) 

With a proper choice of the forcing function F!, the drop artificially “evolves” to the steady state 

of a drop trapped in a constriction.  The static shape is solved, when Un = 0 throughout both 

portions of the drop surface, because [CYL + Bd!x + 2k(x)] ! 0 as the drop-fluid interface 

satisfies the YL equation, and    
F! x( )" 0  as the drop conforms to the solid.  The form of F! is an 
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exponentially decaying function, because the drop “evolution” is observed to be both 

numerically stable and quickly convergent to the steady state.  

 

 

 

 

3.2.2 Meshing Details 

 
The initial triangular mesh is created by dividing regular polyhedra faces (i.e. icosaedron and 

dodecaedron) into triangles and projecting the vertices onto a unit sphere, whereupon further 

triangle subdivision can be made using previous methods [see Kim & Karrila (1991) and 

Zinchenko & Davis (2004)].  To avoid numerical instability during the drop motion simulations, 

the ‘passive mesh stabilization’ technique was employed to maintain triangle quality by 

introducing a mesh velocity field tangent to the drop surface.  The tangential velocity field is 

calculated iteratively by minimizing a ‘kinetic energy’ of the mesh [Zinchenko & Davis (2002) 

and (2003)].  From previous boundary-integral studies, the ‘passive mesh stabilization’ technique 

is adequate for maintaining the overall triangle quality during long simulation times and large 

drop deformations, when the volume remains intact.   

 
3.2.3  Algorithm Details 

 
A drop-surface point x is updated by the semi-implicit, Euler equation, x!+1 = x! + 

Un(x!)n(x!)!", for a “time-interval” !"  and subsequent iterations ! and ! +1. To finish 

calculating the drop “velocity” Un, curvatures and normals k(x) and n(x), respectively, are 

calculated by a quadratic approximation of the local drop surface, through fitting using the 

nearest neighboring vertices of the triangular mesh, as illustrated in Fig. 3.3.  A stable “time-

interval” (!") is calculated at each velocity iteration by using the empirically tested expression 
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!" = K min
i

!xi

max k1 xi( ) k2 xi( )( )
#
$
%

&%

'
(
%

)%

 

with                                                                                                ,                                            (3.3)  

                                                

!xi is the shortest distance on Sd between connecting nodes of the mesh.  Also, the denominator  

in the brackets of Eq. (3.3) is the maximum of the two principal curvatures k1(xi) and k2(xi) at !xi  

and K = O(10-2-10-3) is a constant, empirically-determined to achieve numerical stability .   

The surface integrals used in the algorithm are calculated on the triangular mesh by the 

trapezoidal rule, where for any smooth surface function,    
! xi( ),  on Sd, 

                                                                                                                             (3.4)                                          
                                                                                                

where !Si is the one-third  of the sum of flat-triangle areas sharing a drop vertex i.    

Volume rescaling is performed at each time step during simulation to avoid loss of mass due 

to numerical error.  The drop volume is maintained by scaling the surface in the direction of the 

drop centroid. Simulation lengths, velocities, and times are nondimensionalized by the 

undeformed drop radius a, the magnitude of the isolated-drop “velocity” B from Eq. (3.1a), and 

their ratio a/B, respectively.  

 

3.2.4 Solution Details of the Drop-solid Clearances 

 

A key component of the artificial dynamic process used for the 3D YL solution is calculation of 

the drop-solid clearance normal to the drop surface !(xi), which is illustrated in Fig. 3.3.  

Beneficially, for both a multi-sphere constriction and a hyperbolic tube, !(xi) is analytically 

calculated for a circular ring, through solving quadratic equations.  However, the calculation of 

!(xi) for a ring requires a more computationally costly,  two-part iterative scheme, where one part  
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Fig. 3.3: The distance !, in the outward-normal direction to the drop, is between the drop surface, 

represented by a triangular mesh, and the solid surface, represented by a solid gray surface, with 

a close-up view. 
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determines if a solution exists at (xi), by solving the minimum distance between it and the solid 

surface.  The other part iteratively solves !(xi), either using the previous time-interval solution or 

the calculated value of !(xi), when the !-coordinate (cylindrical) of L is  bs
2 as the initial 

approximation.  

The two-part iterative scheme for a ring is described in detail herein.  Initially at " = 0, the 

drop shape is a sphere and either calculating or determining the existence for !(xi) is analytical. 

For all " > 0, a !(xi) scheme proceeds to one of the two iterative calculations, depending on 

whether or not !(xi) existed on the previous time step.  So, without a !(xi) solution on the 

previous time step, a one-dimensional Newton method is used to determine the minimum 

distance between the line in the outward normal direction L = xi +qn(xi) starting at xi, and the 

circle formed by rotating the center of the solid cross section of the ring around the axis of 

symmetry, where the parameter q represents the positions of the points on L .  If the above 

mentioned minimum distance is less than the cross-section of the ring as, then L intersects the 

ring, and !(xi) exists.  Otherwise, L does not intersect the ring, and F!(xi) is set to unity.   

The other Newton method determines the square of the minimum distance (F(#), where # is 

the angle of rotation around the ring in the azimuthal direction) between L and the circle, around 

the axis of symmetry of the center of the solid-ring cross section.   The dependent variable # is 

iteratively solved as 

                                                         
!"+1 = !" + F! !"( ) / #F! $"( )                                                 (3.4) 

The expressions for the minimum distance squared and its derivative F# and , respectively, 

are 

 

F! = C1 sin
2! +C2 sin! +C3 cos! +C4 cos!sin! +C5 ,                                                             (3.5) 
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! F " = 2C4sin2" + 2C1 sin"cos" + C2 cos" #C3 sin" #C4 ,                                                         (3.6) 

with constants C1 = 2bsnxny, C2 = xi(1-nx
2)-nx(yiny+zinz), C3 = yi(ny

2-1)+ny(xinx+zinz), C4 = bs(nx
2-

ny
2), and C5=-bsnxny, and where (xi, yi, zi) and (nx, ny, nz) are the Cartesian coordinates of xi and 

n(xi), respectively, with ! and !+1 representing consecutive iterations of ", F" and !F" .  The initial 

guesses for the integration of " are either the converged value from the previous time step or, for 

no convergence, the value where the #-coordinate (spherical coordinates) is bs
2 .  After " 

converges, if F" > as
2, then Fd(xi) = 1, else a solution for $(xi) exists.

If either the solution for $(xi) existed on the previous time step or if $(xi) is shown to exist, 

then the Newton method in Eq. (3.7) solves for $(xi) by 

 

!" +1 xi( ) = !" xi( ) #F! !" xi( )[ ] $ F ! !" xi( )[ ] ,                                                                                  (3.7) 

where ! and !+1 are ! th iterations of $, F$ is the smallest intersection of L with the ring, and is 

the derivative of F$ with respect to $.  The equations for F$ and  are 

  

 

F! = r " bs( )2 + Lz
2 " as

2                                                                                                                 (3.8) 

and                                            

 

! F " = 2 r # bs( ) / r( ) * C6nx + C7n y( ) + 2nzC8 ,                                   (3.9) 

where Lz is the z-coordinate of L, C6 = xi+$nx, C7 = yi+$ny, and C8 = zi+$nz.  Also, if both more 

than 8 iterations of $(xi) are calculated and the other Newton method has not been used, then the 

existence of $(xi) is checked, before continuing with the calculations in (3.7) .  By using the two-

part iterative scheme, the drop-solid clearances normal to the drop are calculated if they exist, 

else the forcing function is set to unity. 
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3.4  Results 

 

3.4.1  Interaction of the Drop and Solid  

 

The 3D Young-Laplace algorithm was tested using dynamic three-dimensional boundary-

integral methods.  A drop with a small Bond number is not deformable enough to pass through 

the constriction, but instead becomes trapped inside the constriction.  With a drop-to-hole radius 

ratio a/bs = 2.8, a sphere-to-hole radius ratio as/bs = 2.6, 8640 triangles on each surface and B = 

1, snapshots at increasing times are shown in Fig. 3.4 (a-c), and Fig. 3.4 (d) shows the steady-

state trapped shape.  The leading edge of the drop flattens as it settles towards the opening of the 

three-sphere constriction.  Then, the drop velocity decreases considerably as it deforms to enter 

the constriction.  Since the Bond number is less than critical, the drop is not deformable enough 

to pass through the constriction and a steady state is achieved with the drop trapped in the 

constriction. 

   Alternatively, the motion of a drop settling through a three-sphere constriction with the same 

geometry and number of surface triangles as before but with a higher Bond number of 1.7 is 

shown at increasing times in Fig. 3.5(a-d). As before, the drop flattens as it settles towards the 

opening of the reduced constriction.  However, the drop deforms more easily as it passes through 

the constriction. To reduce computational costs, the simulation is stopped once it is clear the 

drop will pass through.   

There is a critical Bond number Bcr that delineates the boundary between the two 

consequential branches of drop behavior. For the conditions shown in Fig. (3.4) and (3.5), the 

time-intensive, boundary-integral simulations yield Bcr ! 1.5.   
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Fig. 3.4: Snapshots of the drop motion approaching three (nearly touching) spheres to the steady-

state  of trapping using BI algorithm with a/bs = 2.8, as/bs = 2.6, B = 1 (Bcr = 1.42 ± 0.04 90% CI) 

and 8640 triangles used on each surface Sd and Sp, respectively at (a) ! = 2.5, (b) ! = 6.25, (c) ! = 

10 and (d) ! = 100. 
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Fig. 3.5: Snapshots of the drop motion approaching three spheres (nearly touching) for squeezing 

using BI algorithm with a/bs = 2.8, as/bs = 2.6, B = 1.7 (Bcr = 1.42 ± 0.04 90% CI) and 8640 

triangles used on each surface Sd and Sp, respectively at (a) ! = 3.75, (b) ! = 25, (c) ! = 46.25 and 

(d) ! = 67.5. 
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The more efficient and accurate 3D YL algorithm yields Bcr = 1.42 ± 0.04 90% CI. The near-

critical, boundary-integral simulations are computationally expensive and highly sensitive to the 

resolution of both the drop and solid surfaces, due to the small drop-solid clearances. Therefore, 

our more accurate and efficient 3D YL solution method (and axisymmetric YL algorithm, where 

appropriate) is used for the remaining calculations of critical Bond numbers. 

Next, we examine the behavior of the 3D YL solution method for Bond numbers on both 

sides of the critical value for a ring constriction, because the results can be easily verified using 

the highly-accurate, axisymmetric YL algorithm.  For Bond numbers less than critical, the 

artificial dynamic process for the 3D YL solution converges to the steady state of a drop trapped 

in the constriction.  However, for Bond numbers above the critical value, the artificial dynamic 

process will artificially simulate drop pass-through, due to the lack of a static solution.  During 

the artificial dynamic process, the root mean square (rms) of the specially-designed “velocity” 

over the drop surface is defined as 

                                                            

 

rmsUn x( ) =
Un
2

Sd

! dS

SAd
                                                 (3.10) 

and provides a measure of the rate of drop deformation. In Fig. (3.6), rmsUn versus simulation 

time ! is shown using the three-dimensional Young-Laplace algorithm for B = 1.8, 1.7, 1.6, 1.5 

and 1.45 from top to bottom for two surface resolutions of 5120 and 8640.  The velocity curves 

show excellent agreement for the trials away from the critical Bond number, with increasing 

sensitivity to resolution is observed near the critical point.  In Fig. (3.7)  rmsUn versus simulation 

time t is shown using the three-dimensional boundary-integral algorithm for B = 1.75, 1.7, 1.65 

and 1.6 from top to bottom for two surface resolutions of either 5120 and 8640 for B = 1.75 and 

1.7 or 11520 and 15360 for  B = 1.65 and 1.6.   The boundary-integral algorithm results are more 
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sensitive to resolution than are the Young-Laplace algorithm results, with much higher surface 

resolution needed for the boundary-integral trials near the critical point.   

Next, using the Young-Laplace algorithm, the critical Bond number (Bcr = 1.42 ± 0.02 90% 

CI) is extrapolated in Fig. (3.8) by plotting the trend of the minimum observed rmsU during each 

trial at the higher resolution versus the Bond number.  By comparison, using the boundary-

integral algorithm, the critical Bond number (Bcr = 1.45 ± 0.07 90% CI) is extrapolated in a 

similar fashion in Fig. (3.9) by plotting the trend of the minimum observed rmsU during each 

trial at the higher resolution versus the Bond number. Determination of the critical Bond number 

using both the Young-Laplace and boundary-integral algorithms is easier using supercritical 

Bond numbers, because large Bond number trials are faster and, by varying the Bond number 

and observing the minimum of the rmsUn, a critical Bond number is easily determined by linear 

extrapolation to B!Bcr as rmsUn!0.  The difference between the critical Bond numbers 

extrapolated by the two algorithms are statistically equivalent, and the discrepancy between the 

mean critical Bond numbers and the uncertainty between the two algorithms is due to a lack of 

sufficient resolution to accurately obtain minimum rmsU values near the critical point for the 

boundary-integral algorithm.  Since the Young-Laplace algorithm is less affected by surface 

resolution and much more computationally efficient, all further critical Bond number 

extrapolations are made using this algorithm. 

Multiple comparisons of critical Bond numbers versus drop size for hyperbolic tubes and 

rings using both the 3D YL solution method and the highly-accurate axisymmetric algorithm are 

shown in Fig. (3.10a) and (3.10b) for hyperbolic tubes and rings, respectively, with the curves 

representing the axisymmetric algorithm results and the symbols representing the 3D YL 

algorithm results.   As observed in Fig.  (3.10a)  and (3.10b),  the 3D YL algorithm results  show  
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Fig. 3.6: The root mean square velocity of the drop surface versus simulation time using a 3-

sphere constriction and the three-dimensional Young-Laplace algorithm with a/bs = 2.8 and as/bs 

= 2.6, for B = 1.8, 1.7, 1.6, 1.5 and 1.45 from top to bottom. Simulations using 5120 triangles for 

the drop surface are represented by solid lines and ones using 8640 triangles for the drop surface 

are represented by dashed lines. 
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Fig. 3.7: The root mean square velocity of the drop surface versus simulation time using a 3-

sphere constriction and the three-dimensional boundary-integral algorithm with a/bs = 2.8 and 

as/bs = 2.6, for B = 1.75, 1.7, 1.65 and 1.6 from top to bottom.  For B = 1.75 and 1.7, simulations 

using 5120 triangles on the drop and sphere surfaces are represented by solid lines and ones with 

8640 triangles on the drop and sphere surfaces are represented by dashed lines. For B = 1.65 and 

1.6, simulations using 11520 triangles on the drop and sphere surfaces are represented by solid 

lines and ones using 15360 triangles for the drop and sphere surfaces are represented by dashed 

lines.   Of note is that for the two B = 1.65 trials, the two curves are almost identical and are very 

hard to distinguish. 
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Fig. 3.8: Critical Bond number extrapolation from results using the three-dimensional Young-

Laplace algorithm for a 3-sphere constriction with a/bs = 2.8 and as/bs = 2.6 and 8640 surface 

triangles representing the drop surface. The minimum observed root mean square velocity during 

each simulation versus Bond number is shown with solid circles representing simulation results 

and the line representing the extrapolation curve.  The resulting critical Bond number determined 

is Bcr = 1.42 ± 0.04 90% CI. 
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Fig. 3.9: Critical Bond number extrapolation from results using the three-dimensional boundary-

integral algorithm for a 3-sphere constriction with a/bs = 2.8 and as/bs = 2.6 and 8640 or 15360 

surface triangles representing the drop and solid surfaces. The minimum observed root mean 

square velocity during each simulation versus Bond number is shown with solid circles 

representing simulation results and the line representing the extrapolation curve.  The resulting 

critical Bond number determined is Bcr = 1.45 ± 0.07. 
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excellent agreement with the highly-accurate results from the axisymmetric algorithm, and the 

difference between the two methods falls within the uncertainty of the extrapolation.  Not only 

do the critical Bond numbers compare favorably for the two algorithms, but the static shapes for 

trapped drops are in excellent agreement as shown in Fig. (3.10) for a hyperbolic tube 

constriction and three subcritical Bond numbers.  

 
3.4.2 Effect of Constriction Shape and Tilt Angle 

 
Through use of the 3D YL algorithm, multiple factors affecting the critical Bond number, 

separating trapping from squeezing, were studied in detail.  Understanding which conditions lead 

to trapping or to squeezing is necessary for the proper design of a system that has a drop settling 

through a constriction.  The critical Bond numbers of multiple constriction types, including rings, 

hyperboloids and both three and four spheres, are shown in Fig. (3.12).  As was seen, the critical 

Bond number increases with the drop-to-hole size ratio, as more deformation is needed for the 

drop to squeeze through a smaller hole.  Remarkably, the critical Bond number only weakly 

depends on the shape of the constriction.  As also seen in Fig. (3.10b), there are some modest 

differences based on the geometry of the constriction.  For example, a drop squeezes more easily 

through a 3-sphere constriction than a 4-sphere constriction, with the same hole radius bs, 

presumably because the projected area of the hole in the plane normal to gravity is larger for 3 

spheres than for 4 spheres. 

For the hyperboloid constriction, we also studied the effect of the angle (!) between the 

gravity vector and the center axis of the tube on the critical Bond number for the trapping of a 

drop in hyperbolic tubes.    The trends for the  critical Bond number versus  the drop-to-hole  size 

ratio are shown in Fig.  (3.13)  for a hyperbolic tube with  cs/bs  !  0.84 and multiple   tilt   angles  
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Figure 3.10 (a) Critical Bond number versus drop-to-hole size ratio for hyperbolic tube 

constrictions with cs ! 0.26; the solid curve represents results from the highly accurate 

axisymmetric method and the square symbols represent 3D YL algorithm results. 
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Figure 3.10 (b) Critical Bond numbers versus drop-to-hole size ratio for ring constriction; the 

curves represent results from the highly-accurate, axisymmetric method and the symbols 

represent 3D YL algorithm results. 
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Fig. 3.11: The 3D YL algorithm and the highly-accurate axisymmetric YL algorithm are 

compared for drop shapes statically trapped in a hyperbolic tube, with solid black curves 

representing the cross-section of the tube, gray surfaces representing drop shapes from the 3D 

algorithm, and dotted curves representing the drop contours from the axisymmetric algorithm 

using geometry parameters a/bs ! 3.22 and cs/bs ! 0.84, and using 8640 triangles for all the 3D 

drop shape calculations, and with (a) B = 0.5, (b) B = 1.5 and (c) B = 2.  The critical Bond 

number is Bcr = 2.62. 
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Fig. 3.12: Critical Bond numbers versus the drop-to-hole ratio for multiple constrictions 

including a ring with as/bs = 2, a hyperbolic tube with cs/bs ! 0.52, four spheres (touching) with 

as/bs ! 6.5, and three spheres (touching) as/bs ! 2.4.    
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including ! = 0°, 5°, 10° and 25°.  An overall observation of the data is that the tilt angle has  

only a small effect on the critical Bond number, and with the difference falling within the 

uncertainty of the extrapolation at ! = 0° and 5°.  Surprisingly, the data in Fig. (3.10) show that 

increasing the tilt angle decreases the critical Bond number.  Physically, for constrictions at a 

small tilt, the minimum hole size perpendicular to the motion of the drop does not change much 

and so the critical Bond number only changes slightly from the value for a constriction without a 

tilt.  However, for constrictions with larger tilt angles (i.e. 10° and 25°), the minimum hole size 

in a plane perpendicular to gravity increases with increasing tilt angle, so a drop requires less 

force to squeeze through a constriction with a tilt, and the critical Bond number is lowered. 

In addition to determining the critical Bond number, the shapes of trapped drops are analyzed for 

the tilted hyperboloid constrictions (Fig. 3.14).  For the low Bond number 0.5, the drop deforms 

by a small amount, rests on the lower constriction surface, and only slightly protrudes into the 

hole.  For B =1, the drop is more deformable, so it flattens on the bottom surface of the 

constriction and protrudes slightly more into the hole. With B = 2, which is slightly below Bcr = 

2.1, the drop is very deformable and spreads on the lower surface of the constriction so that the 

leading edge occupies the entire hole of the constriction.  It is clear that the last case is near the 

critical value, because, if the drop becomes more deformable, then the leading edge should pass 

through the hole and bring with it the rest of the drop.  The last still is a blow-up of the leading 

edge of the drop shape with B = 2, showing the triangular mesh of the drop surface. 
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Fig. 3.13: Critical Bond numbers versus drop-to-hole size ratio for hyperbolic tubes with as/bs ! 

0.52 and tilt angles " = 0, 5, 10 and 25°, from top to bottom. 
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3.5 Concluding Remarks 

 

The modeling of deformable drops settling through solid constrictions is numerically 

challenging, especially near the critical conditions, as it is a problem of high lubrication 

sensitivity when the drop is very close to the solid.  While results from boundary-integral 

simulations could be used to extrapolate the critical Bond number, separating trapping and 

squeezing phenomena, these results are computationally expensive. Such simulations would 

require extremely fine resolutions of both the drop and solid surfaces to accurately calculate the 

hydrodynamics, due the small drop-solid clearances observed during the buoyancy-induced drop 

motion.  Therefore, a special algorithm, based on the Young-Laplace equation, to calculate the 

static shape of a drop trapped in a three-dimensional constriction and to determine the critical 

conditions is useful to avoid the challenges of the boundary-integral simulations.   

Instead of simulating the full hydrodynamics, an artificial evolution of the drop shape and 

position converges asymptotically to the static shape trapped in a three-dimensional constriction. 

The algorithm simultaneously determines both the drop fluid-fluid interface by the Young-

Laplace equation and the fluid-solid interface by conforming to the shape of the constriction.  

One major advantage of the current algorithm is that the area where the drop is in near 

contact with the solid is directly calculated, through use of the specially designed velocity, 

without requiring empirical data or an iterative solution.  For use in the artificial velocity, the 

local mean curvature and surface normal at a mesh point on the drop surface are found, through 

representing the local surface by using nearest neighboring mesh points to fit a quadratic 

approximation.  The mesh quality of the drop is maintained during the simulation by using a 

tangential mesh velocity. The present three-dimensional Young-Laplace algorithm is more 

efficient and accurate than boundary-integral algorithm, because the solution of the artificial  
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Fig. 3.14: Static drop shapes trapped in a hyperbolic tube, represented by solid black lines with 

a/bs = 2.84, cs/bs = 0.84 and tilt angle ! = 25°, and B = 0.5, 1 and B =2, with a close-up view of 

the B = 2 case showing the triangular meshing and leading edge protruding into the hole.  The 

critical Bond number is Bcr = 2.1 



 

 
 

101 
velocity at each location on the drop surface is explicit, instead of requiring numerical surface 

integration, and only the drop position has to be resolved instead of the full hydrodynamics on 

both the drop and solid constriction.  

A key dimensionless parameter is the Bond number, representing the ratio of gravitational 

and interfacial forces. Drops with higher Bond numbers are more deformable, and so are able to 

squeeze through a constriction.  Conversely, drops with small Bond numbers are less deformable 

and become trapped in the constriction.   

The critical Bond number increases nearly linearly with the drop-to-hole size ratio, as a drop 

must be more deformable to pass through a smaller hole, and is only weakly affected by the 

shape of constriction.  Also, the tilt angle of the constriction weakly affects the critical Bond 

number, which remains nearly unchanged for small tilt angles. Interestingly, the critical Bond 

number decreases with increasing tilt angle, because the minimum hole size perpendicular to 

gravity increases with increasing tilt angle.  The static drop shapes trapped in a constriction show 

that a drop remains nearly spherical at small Bond numbers, but a drop with larger Bond number 

is more spread out on the lower constriction wall and the leading-edge protrudes into the hole.  

The critical point of trapping is when the drop is deformable enough for the leading edge to 

completely pass through the hole, pulling the rest of the drop through. 

Currently, it is not clear how to extend the three-dimensional Young-Laplace solution 

method to handle a trapped drop with an arbitrary contact angle.  For contact angles not equal to 

180°, difficulties will arise in a three-dimensional numerical scheme from the need to accurately 

calculate the three-phase contact curves and to achieve stability of the artificial evolution of the 

drop, when the steady-state has a discontinuity in the second derivative of the drop surface at the 
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contact line.  Our hope is that future research efforts will overcome the challenges of calculating 

the shape of a drop trapped in a three-dimensional constriction with an arbitrary contact angle. 

Of future research interest is developing a special algorithm for calculating the static drop 

shape trapped in constriction due to an external flow.  Presently, it is not clear how to model the 

drop-solid fluid gap, due to the external flow, with the static solution of the drop shape.  

Also, it is of interest to apply the present methods to calculate the trapped shape of a static, 

deformable drop in a solid constriction with an arbitrary wetting angle, instead of 180° in this 

work, at the three-phase boundary.  Presently, it is not clear how to handle the discontinuity of 

the second derivative of the drop surface, at the point of departure for the drop from the solid 

surface.  It is our hope that future-research efforts will overcome the difficulty imposed from an 

arbitrary wetting angle, and study the consequential effects on the shape of a drop trapped in a 

solid constriction and the critical conditions.  
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Chapter 4 
 
 
 

Experimental observation of drop squeezing and trapping 
 
 

  
Abstract 

 

Drop squeezing and trapping mechanisms were observed experimentally in both a ring and 

an agglomerate of three spheres. The measured critical Bond numbers and trapped drop shapes 

compare favorably with theoretical calculations from the axisymmetric and three-dimensional 

Young–Laplace algorithms, respectively.  For tightly-packed spheres, the sphere radius scales 

with the square root of the Bond number for constant material, drop properties and drop-to-hole 

size ratios.  This scaling is useful for designing systems of emulsions settling through tightly 

packed solids. 

 

4.1 Introduction 

 

To confirm the validity of the computational results, experimental studies were performed to 

observe gravity-driven drop squeezing and trapping through a constriction. The goal of the 

experiments is to capture squeezing and trapping dynamics and determine critical Bond numbers 

for comparison with the axisymmetric and three-dimensional YL algorithms. 
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4.2 Materials and Methods 

 

The experimental apparatus is composed of a small tank (10!15!15 in.3) filled with canola 

oil. Two different constrictions are used.  First, a rubber O-ring constriction is suspended using 

white, 100% polyester threads tied down to supports that allow for fine adjustments in the thread 

tension. Second, and agglomerate of three, acrylic spheres, which are touching, is shown in Fig. 

4.1. The agglomerate of touching, acrylic spheres was formed by using the solvent ProWeld©, 

containing methanol chloride, as “glue.”  Small acrylic bridges connect the spheres forming the 

agglomerate, and a small rubber band is placed around the exterior perimeter of the spheres at 

their equators for support.   We know from our previous experimental and theoretical knowledge 

[Ratcliffe et al. (2010)], that, for the current agglomerate (as/bs " 6.48), static drop shapes that 

drip around the outside perimeter of the sphere equators and possibly come into contact with the 

rubber band will not be observed.  Therefore, in the present experiments, it is a reasonable 

assumption that the presence of the rubber band will not affect the statically trapped drop shapes 

or critical Bond numbers.  Due to their static nature, these calculations are only affected by the 

solid surface in near contact with the drop.  Thin polyester strings are glued to both the rubber 

band and the agglomerate exterior perimeter at the equator, and the agglomerate is suspended by 

tying strings, outside the tank, which allow for fine adjustment. Both the rubber O-ring 

constriction and the agglomerate of three spheres are suspended in the viscous canola oil at the 

center of the tank so that the walls of the tank, do not interact with the drop.  

Deformable drops used in experiments are composed of water-glycerol mixtures, including 

100%,  75%,  and  16% by  weight water, and  drop delivery was performed using Hamilton gas- 
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Fig. 4.1: The experimental agglomerate of three, acrylic Spheres (touching), with a dimensional 

sphere radius as ! 0.95 cm.  Since as/bs ! 6.46 for three touching spheres, the radius of the circle 

that just touches each sphere at the mid-plane location within the constriction is bs ! 0.15 cm. 
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tight syringes with sizes of 100, 250 µl and 1 ml. Drop stills were captured using a Nikon 

Coolpix© digital camera. Temperature was recorded for the physical property measurements and  

tight syringes with sizes of 100, 250 µl and 1 ml.  Drop stills were captured using a Nikon 

Coolpix© digital camera.  Temperature was recorded for the physical property measurements and 

at the start of each laboratory session (22–23°C) for the O-ring trials and (21-22°C) for the 3-

sphere trials. 

The fluid density (!e) of the canola oil was measured using hydrometers, and the density (!d) 

of the water-glycerol solution was determined from a temperature versus density relation 

obtained from the work of Adamenko et al. (2006). Interfacial tension " was measured by the 

drop-weight method described in Davies & Rideal (1963). Viscosities were determined using a 

Cannon Fenske viscometer for canola oil (µe), and viscosity values for water-glycerol solutions 

(µd) were taken from the literature [Stengel et al. 1982]. To determine the critical Bond number, 

the O-ring or 3-sphere geometry is set (as/bs is constant) and the drop size is slowly increased 

(a/bs increases) to observe the region where drop squeezing transitions to drop trapping. Physical 

properties of the drop phases and bulk phase used in the experiments are shown in Table 4.1, and 

the O-ring sizes and resulting as/bs values are shown in Table 4.2. 

 

4.3 Experimental results 

 
4.3.1 O-ring constriction 
 
 
First, drop squeezing and trapping are observed in Figs. 4.2 and 4.3, respectively. The two 

figures have the same drop and ring sizes, but Fig. 4.2 is for a drop of 75% water and 25% 

glycerol, while Fig. 4.3 is for a pure-water drop. Squeezing occurs for the former, where the  
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           Table 4.1: Properties of the three water-glycerol/canola oil systems used in experiments. 

System 

wt. % 

H2O 

µd, µe 

(g cm!1 s!1) 

!d, !e 

(g cm!3) 

" 

(dyn cm!1) 

T 

(°C) 

1 100 0.0096, 0.72 1.00, 0.91 20 22 

2 75 0.0184, 0.72 1.03, 0.91 17 22 

3 16 0.748, 0.72 1.20, 0.91 14 22 

 

 

Table 4.2: O-ring sizes and the resulting as/bs values used in experiments. 

O-ring 

O.D. 

(cm) 

I.D. 

(cm) as/bs 

1 0.70 0.275 0.773 

2 0.75 0.274 0.864 
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Fig. 4.2: Experimental stills of a 75% water drop squeezing through an O-ring constriction with 

a/bs = 1.22, as/bs = 0.567, µd/µe = 0.026, and B = 0.29; the successive photos were taken about 2 s 

apart. 
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Fig. 4.3: Experimental stills of a 100% water drop being trapped in an O-ring constriction with 

a/bs = 1.22, as/bs = 0.567, µd/µe = 0.013, and B = 0.21; the first three drop stills were taken about 

2 s apart, and the last still was taken after a 20 s interval. 
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latter has a lower density and higher interfacial tension, leading to a smaller Bond number and 

trapping. 

Next, the critical Bond number is determined experimentally by increasing the drop size 

(a/bs) until trapping is observed. As observed in Fig. 4.4 for water drops, the experimentally-

determined Bc values show very good agreement with theory. Increasing the hole size at nearly 

constant ring cross section [O-rings 2–4 from Table 4.2] requires larger drop sizes and critical 

Bond numbers for trapping. In contrast, increasing the ring cross section while keeping the hole 

size constant [O-rings 1 and 2 in Table 4.2] has little effect on the critical drop size and Bond 

numbers; this experimental result confirms the model prediction that the critical Bond number is 

only weakly dependent on the cross-sectional size in this parameter range.  

In Fig. 4.5, the effect of the drop fluid on the critical Bond number is observed for three 

different fluid compositions. With increasing amount of glycerol, the surface tension decreases 

and the density difference increases [Table 4.1], so that the Bond number and its critical value 

increase. For the fluid with only 16% water, the drop is sufficiently deformable that trapping 

does not occur. 

In Fig. 4.6, the predicted shape using the axisymmetric YL algorithm is overlaid on a photo 

of a trapped drop from the experiments for the same parameters. Again, the experimental trapped 

drop shape is in good agreement with theory, and it validates the not-wetting assumption in the 

axisymmetric YL algorithm. 
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Fig. 4.4: Experimental determination of the critical Bond number for different ring sizes using 100% 

water drops and the four different O-rings from Table 4.2: O-ring 1 with as/bs = 0.773 (theoretical Bc is 

dashed curve and triangles represent drop sizes), O-ring 2 with as/bs = 0.864 (theoretical Bc is solid curve 

and circles represent experimental drop sizes), O-ring 3 with as/bs = 0.567 (theoretical Bc is dotted curve 

and squares represent experimental drop sizes), and O-ring 4 with as/bs = 0.444 (theoretical Bc is dashed-

dotted curve and diamonds represent experimental drop sizes). The open symbols are for drops that pass 

through the O-ring, the closed symbols are for drops that become trapped in the O-ring, and the ! 

symbols are for drop sizes where both trapping and squeezing are observed in repeated trials. 
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Fig. 4.5: Experimental determination of the critical Bond number for three different drop phases 

using O-ring 3 from Table 4.2 with as/bs = 0.567. The circles represent 100% water drops, the 

squares represent 75% water drops, the triangles are for 16% water drops, and the solid curve is 

the predicted critical Bond number. The open symbols are drops that pass the through the O-ring, 

the closed symbols are for the drops that become trapped in the O-ring, and the ! symbols are for 

the drop sizes where both trapping and squeezing are observed in repeated trials. 
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Fig. 4.6: Comparison of theoretical (axisymmetric YL algorithm) and experimental trapped drop 

interfaces for as/bs ! 0.773, a/bs ! 1.3, µd/µe ! 0.013 (experiment only), and B ! 0.13, where the 

dotted white curve is the theoretical drop interface and the gray circles represent the 2D cross 

section of the torus. 
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4.3.2 Agglomerate of three, touching spheres 
 
 

The critical Bond number is experimentally determined for an agglomerate of three spheres 

(touching) with as/bs ! 6.46, by varying the drop size (a/bs) until the transition from drop 

trapping to squeezing is observed.  As shown in Fig. 4.7, interfacial tension of pure water is too 

high and all the drops within the size range studied become trapped in the agglomerate.  

Conversely, the drops with 16% water are too deformable and they all passed through the 

agglomerate.  Finally, for drop with 75% water, a transition between squeezing and trapping was 

observed.  However, the theoretical critical Bond number curve is close to all of the data points 

using the 75% water phase, and so accurate comparison of theory and experiment is not possible.   

A trapped drop shape for the 75% water phase is shown in Fig. 4.8.  The shape of the trapped 

drop is very similar to the ones computed using the 3D YL algorithm from Ch. 3, with a 

spherical cap at the top, three large dimples caused by the solid spheres and a small leading edge 

protruding into to the hole.  Note that the theoretical curve for the critical Bond number, 

separating the parameter space for squeezing (B > Bc) and trapping (B < Bc) is independent of the 

fluid composition.  
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Fig. 4.7: Experimental determination of the critical Bond number for three different drop phases 

using an agglomerate of three spheres from Figure 4.1 with as/bs ! 6.46. The squares represent 

100% water drops, the triangles represent 75% water drops, the diamonds are for 16% water 

drops, and the solid curve is the predicted critical Bond number from the 3D YL algorithm in 

Chpt. 3. The open symbols are drops that pass the through the agglomerate, the closed symbols 

are for the drops that become trapped in the agglomerate, and the " symbols are for the drop 

sizes where both trapping and squeezing are observed in repeated trials. 
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Fig. 4.8: A deformable drop statically trapped in an agglomerate of three spheres with as/bs ! 

6.46, a/bs ! 3.65 and B ! 2.0 using the 75% water phase for the drop. 
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4.4 Sphere radius versus Bond number scaling 

 

Of practical note, since the Bond number, B = !"ga2/#, is proportional to the square of the 

drop radius, then increasing the size of the agglomerate while keeping a/bs and as/bs constant 

increases the Bond number for constant fluid properties.  The relationship between the solid 

sphere radius and the Bond number is then 

                                                                
as ! K1 a / bs( ) B ,                                                      (4.1) 

where                                                 
  
K1 a/bs( ) = 6.45bs

a !"g/#
,                                                     (4.2) 

 

for three touching spheres. The scaling in Eq. (4.1) is also more general for any agglomerate of 

touching spheres, ring, hyperboloid tube or any solid constriction described by a single 

nondimensional geometric parameter that is fixed, but the numerical constant is Eq. (4.2) will be 

different for each constriction.  The scaling of Eq. (4.1) is a worthwhile consideration of practical 

importance, when designing a system such as an emulsion settling through a tightly packed bed 

of stationary spheres, which is used for liquid/liquid separation.  

 

4.5 Concluding Remarks 

 

Drop squeezing and trapping mechanisms were observed experimentally using an apparatus 

with canola oil bulk phase and water or water/glycerol drop phase. Critical Bond numbers Bc 

were experimentally determined by placing increasingly larger drops on both a ring and an 

agglomerate of three spheres and detecting the transition from squeezing to trapping. The 

experimentally determined Bc compares favorably with the theoretical values obtained from both 

the axisymmetric YL algorithm and the 3D YL algorithm. The transition between squeezing and 
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trapping is strongly dependent on the hole size of the ring and the fluid properties of the drop but 

only weakly dependent on the cross-sectional size of the ring, in good agreement with theory. 

Also, experimental trapped drop shapes show good agreement with those calculated using the 

axisymmetric YL algorithm. For designing a system of an emulsion settling through tightly 

packed spheres, or another porous medium with uniform spheres, the size of the spheres scales 

with the square root of the Bond number of drops with constant a/bs. Potential future work 

includes fitting an empirical drop shape using the agglomerate using the 3D YL algorithm, 

discussed in detail in Chpt. 3, as an attempt of a new method to calculate physical properties, 

such as contact angle or interfacial tension. 
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Chapter 5 
 
 
 

Drops statically trapped in rings with varying contact angle 
 
 

  
Abstract 

 

The shape of a deformable drop statically trapped in an axisymmetric ring constriction with a 

prescribed contact angle is numerically calculated using the Young-Laplace equations.  The two 

drop-fluid interfaces are simultaneously determined, and the wetting area is automatically found 

from knowing the wetting points of the three-phase contact.  An iterative scheme is used to 

converge the solutions of two differential equations to satisfy both volume constraint and 

pressure continuity.  For contact angles near 180°, the critical Bond number is weakly dependent 

on the contact angle, so previous calculations for nonwetting drops may be used in this situation 

for a good approximation.  Far away from 180°, the critical Bond numbers are observed to 

substantially decrease with decreasing contact angle.  Also, a special case for a neutrally-buoyant 

deformable drop (Bond number of zero) statically trapped in a ring with a prescribed contact is 

considered and found to consist of two spherical caps joined by a fluid bridge in contact with the 

ring. 

 

5.1 Introduction 

 

As previously mentioned, there is a vast amount of past research on calculating static 

deformable drop shapes using the Young-Laplace equation.  Most of the research has been 
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focused on sessile or pendant drops on solid surfaces, but less work has been performed for drop 

trapping until the recent paper by Ratcliffe et al. (2010), which calculates the shape of a 

deformable drop, assumed to be “nonwetting,” statically trapped in an axisymmetric ring 

constriction.  The present work is an extension of the previous research, but with varying contact 

angle between the drop and solid surfaces at the wetting points, to study the effects of the contact 

angle on the critical Bond number and trapped drop shapes.  This study is restricted to contact 

angles between 90° and 180°, because additional changes to the algorithm are needed for contact 

angles less than 90°. It is important to note that the shape of a trapped drop with arbitrary contact 

angle is calculated using first principles only, and no empirical or a priori knowledge of the 

wetted area is needed for the calculation. 

 

5.2 Numerical Methods 

 
Most of the theory and numerical methods of the current problem are directly borrowed from 

our research discussed in Sec. 2.4 of a deformable drop statically trapped in an axisymmetric 

ring.  The geometry parameters of a, as and bs are the undeformed drop, the solid cross-section 

and the hole radii, respectively. A key difference in the current work is that the drop interface is 

no longer restricted to depart tangent to the solid surface, but instead the contact angle is 

arbitrary.  This change requires modification of the numerical methods, and convergence to the 

solution of a deformable drop statically trapped with an arbitrary wetting angle in an 

axisymmetric ring is observed to be much more computationally intensive than the problem in 

Sec. 2.4. 

The following methods are unchanged from the problem in Sec. 2.4, including using 

constraints Eq. (2.35) and (2.36) for volume conservation and pressure continuity, respectively, 
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to numerically converge to the steady state, by simultaneously solving the sessile, pendant and 

wetted portions of the drop shape by numerically integrating the differential form of the Young-

Laplace equation (Eq. (2.37)) and using asymptotic initial conditions Eq. (2.38) for the first 

integration step. 

Since the assumption that the contact angle is 180° is no longer used, the criterion to stop the 

numerical integration of Eq. (2.37), because the wetting point Wi, is reached, changes from Eq. 

(2.39) to the following expression: 

   
0 = ! " bs + as sin # "$i

%( ) "1&
'

(
) ,                                                                                                 (5.1) 

where ! is the radial coordinate (in a cylindrical coordinate system) of the drop interface,  !i
"  is 

the angle between the tangent vector of the drop surface and the !-axis at Wi, and " is the 

prescribed contact angle at both W1 and W2.  Changing the criterion for wetting from Eq. (2.37) 

to Eq. (5.1) also changes some of the derivative terms used in the iterative scheme to converge to 

F(C) = 0.   

The critical Bond number is still determined by monitoring the determinate of the Jacobian 

matrix for the derivatives of F(C), and calculated at the Bond number where the determinate 

equals zero, which mathematically corresponds to the loss of a steady state.  The curves for F(C) 

are steep, so Newton-Raphson iterations diverge from the steady state.  Instead the method of 

steepest descent is used to converge to the steady state; however, this convergence scheme is 

much more computationally intensive than Newton-Raphson iterations.  Additionally, using C1 = 

C2 = 2 for an initial approximation (spherical drop) for the drop shape near the critical Bond 

number is no longer valid, since there is a prescribed contact angle.  So, we have to slowly step 

down contact angles from 180° and use the converged C1 and C2 values from the previous 

contact angle for the initial guess.   
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5.3 Numerical results 

 
First, critical Bond numbers Bcr are shown in Fig. 5.1 versus drop size for several contact 

angles near 180°.  It is clear that the critical Bond number calculations for “non-wetting” drops 

with contact anlge of 180° are an excellent approximation for critical Bond numbers for drops 

with contact angles of 165° ! ! ! 180°.  Since calculating the trapping shape of “non-wetting” 

drops is much more computationally inexpensive, the rest of the work will focus on wetting 

angles further away from 180°. 

The critical Bond number significantly decreases with decreasing contact angle away from 

180°, as observed in Fig. 5.2.  Static drop shapes, just below the critical Bond number, are shown 

in Fig. 5.2 for the geometry parameters a/bs = 1.5 and as/bs = 3.  The critical Bond number is 

observed to decrease by more than half as the contact angle is decreased from 165° to 135°.  It is 

clear from the drop shapes that decreasing the contact angle allows trapped drops to protrude 

farther into the hole for the same Bond number, due to the additional intermolecular forces 

accounted by the contact angle.  Of important note is that, for contact angles below 180°, the 

bottom wetting point may fall below the centerline of the ring (as seen in Figure 5.2), which was 

never observed for “nonwetting” drops.  The pendant portion of the drop shape has an additional 

force term accounted by the contact angle, which pulls upward on the drop, allows the pendant 

portion to hang lower into the hole without loss of a steady state. 

As shown in the Fig. 5.3, a neutrally-buoyant, deformable drop is statically trapped in ring 

constriction with ! = 127°, a/bs = 1.5, as/bs = 3 and of course B = 0.  The deformation of the drop 

is a three-portion, force balance (excluding gravity) including intermolecular forces between the  
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Fig. 5.1: The Critical Bond number vs the drop-to-hole radius ratio for rings with as/bs = 3, and 

contact angles of 180°, 175°, 165° and 155° from top to bottom. 
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Fig. 5.2: Drops trapped just below the critical Bond number in a ring with a/bs = 1.5, as/bs = 3 

and contact angles 165° and B = 0.376, 145° and B = 0.252 and 135° and B = 0.172 from top to 

bottom. 
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Fig. 5.3: A neutrally-buoyant (Bond number B = 0) deformable drop, with arbitrary interfacial 

tension !, statically trapped in a ring constriction, where the black curves represent the drop and 

solid gray circles represent the cross section of the ring constriction.  The contact angle " = 127°, 

the drop-to-hole radius ratio a/bs = 1.5, and the solid cross-section-to-hole radius ratio is as/bs = 

3. 
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solid and both fluid phases, which prescribe the contact angle, due to the pressure difference 

sustained across the drop-fluid interfaces, which is constant for neutrally buoyant drops, and the 

forces normal to the drop surface, due to the interfacial tension between the two fluid phases. 

It is important to note that this special case employs a numerical calculation using theory, and 

may have not been empirically observed before.  Also, the solution of this case for neutrally-

buoyant drops might be unstable; therefore, empirical observation of this special limiting case of 

trapping might be impossible.  More research is needed on this special, limiting case of trapping 

such as exploring the stability of the solution mathematically, and empirically attempting to 

observe this special case.   

 

5.4 Concluding remarks 

 

The algorithm presented in Ch. 2 for calculating the static shape of a “nonwetting” 

deformable drop trapped in an axisymmetric constriction has been extended to solve for an 

arbitrary wetting angle.  The solution of the static shapes requires an iterative method, and with 

the addition of the arbitrary wetting angle the calculations become much more computationally 

expensive.  For contact angles near 180°, the critical Bond number is very weakly dependent on 

the contact angle, and approximations of the critical Bond number from the “nonwetting” 

calculations should be used to avoid additional computational costs.  However, for contact angles 

further away from 180°, the critical Bond number is strongly affected by the contact angle, 

because drops with smaller contact angles are able to protrude farther into the ring hole for the 

same Bond number.  The shape of a neutrally-buoyant deformable drop (B = 0) statically trapped 

with a prescribed wetting angle of 127° is calculated.  This is an interesting calculation deserving 

more attention, to determine if this theoretical calculation is stable, and therefore, experimentally 
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observable.  Since gravitational force is absent for neutrally-buoyant drops, this special limiting 

case of trapping may have potential for many different applications including microfluidics and 

measuring physical properties between solids and fluids. 
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Chapter 6 

 

Concluding Remarks and Recommendations for Future Work 

  

 

Emulsion flows through confined geometries such as packed beds and porous media have 

many important applications, including food and pharmaceutical manufacturing, oil recovery and 

fixed-bed catalytic reactors.  Treating an emulsion flow as a continuous phase may be valid when 

the drops are much smaller than the constriction pathways.  However, when the drops and 

constrictions are of comparable size, continuum models fail because complex phenomena 

including drop-solid interactions are ignored, such as pore blockage, circuitous flow pathways, 

and complex squeezing mechanisms brought on by constrictions. 

The objectives of this dissertation are to model buoyancy-induced drop motion through tight 

constrictions and to determine the critical conditions, below which a drop becomes trapped in the 

throat of a constriction.  To effectively model and design a process of an emulsion flow through 

solid constrictions, it is essential to know the critical conditions, delineating the boundary 

between the two consequential flow behaviors of dynamic drop squeezing through the 

constriction and static drop trapping by the constriction.  Simulation models were developed for 

both axisymmetric and three-dimensional (3D) constrictions, and experiments were performed to 

validate the simulation results.  The key result of this work is determination of the critical Bond 

number, below which the drops become trapped in the constriction and above which the drops 

deform enough to squeeze through the constriction. Other results of interest are the static shapes 
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of trapped drops for subcritical Bond numbers and the dynamic shapes and squeezing times to 

pass through the constriction at supercritical Bond numbers. 

 

6.1    Buoyancy-induced Drop Motion in an Axisymmetric Ring 

 

The relevant nondimensional parameters affecting the drop motion in an axisymmetric 

constriction are the Bond number, which is a ratio of the gravitational and interfacial forces, the 

ratio of the drop fluid to external fluid viscosities, the cross-section-to-hole size ratio of the 

constriction and the drop-to-hole size ratio. At successive times, simulation snapshots illustrate 

the differences between the drop motion for pass through and for the approach to the statically 

trapped shape. Theoretical results using axisymmetric boundary-integral simulations are 

presented as a function of the nondimensional parameters, for both the squeezing dynamics and 

the static shapes of drops in constrictions made of toroidal rings.  The drop velocity in the throat 

typically decelerates 100-fold or more, and the drop-solid separation typically decreases to 

0.1%–1% of the undeformed drop radius.  For near-critical squeezing, the drop is considerably 

slowed by the constriction, as measured by an increase in the time for the drop to pass through 

the constriction as the Bond number is decreased toward its critical value. 

Using axisymmetric simulations to fully resolve the hydrodynamics on both the drop and 

solid surfaces, drop pass-through times are accurately calculated for Bond numbers above the 

critical value.  The critical Bond number is then determined by extrapolation of these results as 

the drop pass-through time approaches infinity.  A power-law scaling is observed for which the 

drop pass-through time varies inversely with the square of the difference in the Bond number and 

its critical value.  
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Near the critical conditions, dynamic boundary-integral simulations for buoyancy-induced 

drop motion in constrictions become computationally prohibitive.  A special, static algorithm, 

based on the Young-Laplace equation, was developed to efficiently and accurately calculate both 

the static drop shapes trapped in axisymmetric constrictions and the critical Bond numbers.  The 

critical Bond numbers extrapolated from the dynamic algorithm compare favorably to the values 

from this special, static algorithm.  Calculated from the static Young-Laplace algorithm, the 

critical Bond number was found to nearly linearly increase with an increase in the most 

significant factor, the drop-to-hole size ratio, because the drops must be more deformable to pass 

through tighter holes.  The critical Bond number weakly decreases, with an increase in the cross-

section, due to a smoother constriction pathway. 

However, the critical Bond number versus drop-to-ring radius ratio was found to have a 

sharp peak.  Beyond this point, the drops are so large that they drip over the exterior edge of the 

ring, rather than pass through the interior hole. The dripping phenomenon for large drops was 

verified by dynamic boundary-integral methods. 

Interesting future research on this topic include modifying the axisymmetric boundary-

integral algorithm to simulate flow-induced drop motion in constrictions.  For the flow-induced 

drop motion, if would be interesting to see if the power-law exponent of -2 for the drop pass-

through time scaling versus B-Bcr is also observed, as preliminary research indicates a power-law 

exponent of -3 for flow-induced drop motion, using less-accurate, three-dimensional boundary-

integral simulations as in Zinchenko and Davis (2008). It may also be possible to analytically 

derive the drop pass-through time scaling using asymptotic analysis. 
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6.2    Trapping of a Deformable Drop in a Three-dimensional Constriction 

 

The shape of a deformable drop, statically trapped in a three-dimensional constriction (3D) 

due to buoyancy, was found using an artificial evolution of the drop surface.  Advancement of 

the drop surface is controlled by a specially-designed, normal “velocity,” containing both a local 

deviation from the Young-Laplace equation and the drop-solid clearance normal to the drop 

surface. The benefits of using a simple, artificial motion to solve the 3D Young-Laplace equation 

are that prior knowledge of the drop-solid contact and iterations of the shape solution are 

nonessential.  This method is also much less computationally intensive than using dynamic 

boundary-integral simulations to track the drop motion as it enters the constriction and then 

approaches a static, trapped shape.   

 For conditions near critical, where the steady-state shape ceases to exist, severe surface-

mesh distortions are treated by ‘passive mesh stabilization,’ mesh relaxation and topological 

transformations through node reconnections.  For Bond numbers above critical, the drops are 

deformable enough to pass through the hole of the constriction, but their motion is slowed as 

they squeeze through it. The artificial approach determines critical Bond numbers by linear 

extrapolation of the Bond numbers above critical versus the corresponding minima of the root-

mean-squared surface velocities.  

 Calculations from the present algorithm, including the statically, trapped drop shapes and 

critical Bond numbers, for both ring and hyperbolic tube constrictions, show excellent agreement 

with highly-accurate calculations from the axisymmetric Young-Laplace method. For the hole 

between three fixed spheres, drop shapes from the 3D Young-Laplace algorithm and laborious, 

3D boundary-integral simulations are in excellent agreement.   
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The critical Bond numbers from the 3D Young-Laplace algorithm are presented for holes of 

different constriction types and sizes, including circular rings, hyperbolic tubes, and 

agglomerates of three or four spheres. Of primary importance is that the critical Bond number 

almost linearly increases with the increase in the drop-to-hole size ratio.  Quite differently, the 

constriction type and the tilt angle, which is the angle between gravity and the normal to the 

plane containing the minimum hole area, only weakly affect the critical Bond number.  

Unexpectedly, increasing the tilt angle decreases the critical Bond number, because the minimum 

hole size of the constriction increases in a plane that is normal to the gravity vector.  

Interesting future research, which could potentially use the new “time-dependent” approach 

to solve statically trapped drop shapes without prior knowledge of the contact area, include 

calculating the static shape of drops resting on a rough or porous surface, or resting on a bed of 

loose particles, such as a flat surface covered with sand. Another potential area of research is 

combining this new algorithm for statically trapped drop shapes with a 3D boundary-integral 

algorithm to model many emulsion drops settling through a collection of solid constrictions.  If it 

is possible to determine if a drop is going to be temporarily trapped in a constriction, the 

boundary-integral simulation can be stopped temporarily, so that a special “time-dependent” 

approach can be used to more accurately determine the static drop shape, before switching back 

to the dynamic boundary-integral simulation. 

 

6.3    Experiments 

 

An experimental set-up, composed of either a tethered ring or an agglomeration of three and 

four spheres for the constriction, canola oil for the external fluid and water-glycol mixtures for 

the drop phase, is used to observe drop squeezing and trapping for comparison and validation of 
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the physics from the simulation results.  The experimentally-observed physics of drop squeezing 

through and trapping in a ring are in very good agreement with the simulation results.  The 

experimental shape of a statically trapped drop in the ring coincides within measurement 

accuracy with the shape calculated by the highly-accurate, Young-Laplace algorithm.  The nearly 

linear increase of the critical Bond number with increasing drop-to-hole size ratio, calculated 

using the axisymmetric Young-Laplace algorithm, are inside the small uncertainty intervals of 

the experimental critical Bond numbers, determined by increasing the drop size until it is 

statically trapped in a ring of fixed size.  

 

6.4    Future Related Research 

 

Closely related to the present research, it would be interesting to simulate deformable capsule 

motion through tight constrictions as a model for the problem of blood cells flowing through 

capillaries, since the blood cells are larger than the diameters of the smallest capillaries.  The 

capsule would be treated as a deformable drop with a membrane, so that the physics of squeezing 

and trapping might be quite different than for regular emulsion drops. Other related problems of 

potential interest include drop breakup when passing through narrow constrictions and the 

motion of deformable drops or cells through the narrow and complex channels of microfluidic 

devices.  Perhaps most important would be to return to the original motivation for the 

dissertation: the flow of an emulsion of many drops through a packed bed or other porous 

medium.  The findings and methods of the current research could be used to determine which 

drops, would become trapped within the pore throats, and the squeezing times for those drops 

which pass through the constrictions, ultimately allowing for separate determination of the 
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pressure-drop/flow-rate relationships for the drop and surrounding fluids and for the gradual 

plugging of the porous medium as the drops become trapped. 
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APPENDIX: ANALYTICAL 
CALCULATIONS OF SINGULAR AND 
NEAR-SINGULAR INTEGRALS OVER 
A TOROIDAL SURFACE 
According to Zinchenko and Davis,11 the following general formulas apply to Cartesian components of the 
additional integrals in Eqs. (11,16):  

 

 
where r = x!y, ∇j = "/"yj, ! = x!xpc, R = y!xpc, xpc is an arbitrary reference point conveniently chosen to 
be the constriction center, and Dp is the volume inside Sp. Calculation of the additional integrals is therefore 
reduced to Newton surface and volume potentials of a torus with constant and linear densities and their 
derivatives. 
The toroidal coordinates !, " are introduced and related to the cylindrical coordinates #, z as31  

 
where $ = cosh " and % = cos !. The torus Sp becomes a coordinate surface " = "0 = const if $0 = 1+bs/as 
and c = as sinh "0. For y = (# cos &,# sin &,z) outside the torus, the three independent surface 
potentials in Eq. (A1) have the expansions  

 

 

 
where An0, An1, and An3 are unknown coefficients, Bn!1/2($) are half-integer Legendre functions of the first 
kind regular at $ = 1,  
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and Bn!1/2m($) = ($2!1)m/2dmBn!1/2($)/d$m are the associated functions. For !2 instead of !1 in Eq. (A5), the 
expansion is the same, with cos & replaced by sin &. To derive An0, An1, and An3, the left hand side 
potentials (A4,A5,A6) are also considered inside the torus Sp, where they have similar expansions with 
different coefficients and Bn!1/2,Bn!1/21 replaced by the second-kind Legendre functions  

 

 
Using the generating function [Eq. 3.10(3)] from Bateman and Erdelyi,32  

 
the continuity and normal-derivative jump condition for the surface potentials at Sp, and the explicit form 
for the Wronskian W[Dn!1/2,Bn!1/2],33 a system of equations may be obtained for the coefficients of the 
expansions, yielding  

 

 

 
where 'ij is the Kronecker delta. 
The volume potential (A2) outside the torus is also expanded into toroidal harmonics,  
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To derive the coefficients an0, an1, and an3, the left hand side potentials (A14,A15,A16) 

are also considered inside the torus where they are expanded in a similar form, with 

Dn!1/2(Dn!1/21) instead of Bn!1/2(Bn!1/21) and with additional terms [!2!z2, 

!!"3 cos#/2, and !2!z3/3 for Eqs. (A14,A15,A16), respectively], to satisfy the Poisson 

equation. Differentiating (A10) gives suitable series representations for these 

supplementary terms. Continuity of the potentials (A14,A15,A16) and their normal 

derivatives at Sp then yields the equations for the expansion coefficients. Omitting the 

algebra, we have  

 

 

 
Here, the D($)-functions and their derivatives up to the fourth order are evaluated at $ = $0; in Eq. (A17), 
Dn!3/2" and Dn!3/2# must be omitted when n = 0. 
Upon substitution into Eqs. (A1,A2), the potentials (A4,A5,A6,A14,A15,A16) are differentiated as 
compound functions of y, with  

 
taken into account, where  

 
The convergence of all the series is typically fast and about 20–30 terms suffice. Stable and efficient 
calculation of the necessary derivatives Dn!1/2(m)($) (for m # 4) and Bn!1/2(m)($) (for m # 3) requires 
some attention, though. For the largest n = Nmax, we use the series (A7,A8) to compute Dn!1/2 and Bn!1/2, 
while the elliptical integral representations are used to find D!1/2($) and B!1/2($). The intermediate values of 
Dn!1/2, Bn!1/2 for 0<n<Nmax are then recovered by the Thomas algorithm for tridiagonal systems via recurrent 
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relations. The elliptical integral representations for D!1/2, B!1/2 also yield D!1/2#($), B!1/2#($), which are 
used to calculate D!1/2(m)($) (m # 4) and B!1/2(m)($) (m # 3) recursively. Finally, Dn!1/2(m)($) is 
expressed via Dn!3/2(m)($) and Dn!1/2(m!1)($) by a stable recurrent relation, similar for Bn!1/2(m)($). 
 


