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Abstract

This project studies an extension of the Chen-Stein method based on the negative binomial distribution.
We prove some lemmas used implicitly in the literature to estimate the total variation distance between
a random variable of the form S ∶= ∑

n
i=1Xi, where X1, . . . ,Xn are possibly dependent binary random

variables, and a random variableW with a suitable negative binomial distribution. We also examine the
accuracy of this approximation considering different models of dependence between X1, . . . ,Xn.
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1 Introduction

The Chen-Stein method is a method developed by Stein [7] and Chen [1] to obtain bounds on the error of
approximating the distribution of a random variable by another, usually with a simpler distribution. In the
context of this project, the error of approximating one probability distribution by another one is measured
using the total variation distance. For probability distributions µ and ν over N ∶= {0,1,2, . . .}—the setting
of this project—this is defined as

∥µ − ν∥ ∶= sup
A⊂N

∣µ(A) − ν(A)∣ =
1

2

∞

∑
n=0

∣µ(n) − ν(n)∣. (1)

The later identity holds because the supremum is achieved at the sets {n ∈ N such that µ(n) ≥ ν(n)} and
{n ∈ N such that µ(n) < ν(n)}.

The Chen-Stein method has numerous theoretical applications ranging from the famous Birthday Problem to
the total number of cycles in a random graph [5]. On themore practical side, a recurring problem inmolecular
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biology requires determining whether or not two different DNA strands are similar just by chance [6]. In
this case, each strand is described by its sequence of DNA bases (A, C, G, and T). Given an integer ` > 0,
a standard way to score how similar are two strands is to compute the greatest number of matches between
any two sub-strings of length `. The Chen-Stein method is useful for approximating the distribution of this
score.

Traditionally, the Chen-Stein method has been used to approximate the distribution of a random variable of
the form∑ni=1Xi, whereX1, . . . ,Xn are binary. In the special case that these are independent and identically
distributed (i.i.d.), the Chen-Stein method provides an upper-bound to the total variation distance between
the binomial and Poisson distribution—see equation (2) for details. The method can also be applied to
approximate the distribution of ∑ni=1Xi by a Poisson distribution under various hypotheses that implicitly
assume a low level of dependence between the Bernoulli random variables in the summation.

A discrete random variable (or its probability distribution) is called under-dispersed when its expected value
is larger than its variance. If instead its expected value is smaller than its variance, it is called over-dispersed.
Dispersion can guide the selection of one probability distribution over another to approximate the distribution
of a highly complex discrete random variable.

The Poisson distribution is neither under- nor over-dispersed because its expected value and variance are
equal. This feature is undesirable in some applications when the sample mean of a random quantity is
much smaller than its sample variance. An example of this is the number of “reads” (i.e. relatively short
DNA sequences observed when sequencing DNA) that map to a given genomic window [3, 2]. This has
motivated practitioners to use the negative binomial distribution—which is over-dispersed—to approximate
the probability distribution of

S ∶=
n

∑
i=1

Xi,

when X1, . . . ,Xn are possibly dependent binary random variables.

In this project, we study an extension of the Chen-Stein method based on the negative binomial distribution.
In Section 2, we show some lemmas used implicitly in the literature to find an upper-bound for the total
variation distance between S and a random variableW with a suitable negative binomial distribution, while
referencing the techniques used in the Chen-Stein method based on a Poisson distribution approximation.
In Section 3, we study different sums of Bernoulli random variables with various levels of dependence. We
also examine their theoretical total variation distance according to [8] as well as their true total variation
distance according to experimental data.

We finish the Introduction revising some relevant distributions.

1.1 Bernoulli and Binomial Distributions

In what follows, X ∼ Bernoulli(p) denotes a random variable that follows a Bernoulli distribution with
parameter p ∈ [0,1]. In particular, its probability mass function (p.m.f.) is given by:

P(X = 0) ∶= 1 − p;

P(X = 1) ∶= p.

The event X = 1 is usually described as a success, while event X = 0 is usually described as a failure.

On the other hand, Y ∼ Binomial(n, p) denotes a random variable with a binomial distribution with
parameters n > 0 an integer and p ∈ [0,1]. The p.m.f. of Y is

P(Y = y) = (
n

y
)py (1 − p)n−y, for integers y = 0, . . . , n.
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The expected value and variance of Y are

E(Y ) = np;

V(Y ) = np (1 − p).

Since V(Y ) = E(Y ) ⋅ (1 − p), E(Y ) > V(Y ), the binomial distribution is under-dispersed.

Note that a Bernoulli random variable corresponds to a binomial random variable with parameter n = 1. In
particular, if X ∼ Bernoulli(p) then E(X) = p and V(X) = p (1 − p).

The binomial distribution can be interpreted as the total number of successes in a sequence of n independent
Bernoulli trials, each with probability p of success. Accordingly, if X1, . . . ,Xn are i.i.d. Bernoulli random
variables with the same parameter p then

n

∑
i=1

Xi ∼ Binomial(n, p).

1.2 Poisson Distribution

We write Z ∼ Poisson(λ) to denote a random variable that follows a Poisson distribution with parameter
λ > 0. The p.m.f. of Z is

P(Z = z) =
λze−λ

z!
, for integers z = 0,1, . . .

The expected value and variance of Z are

E(Z) = V(Z) = λ.

LetX1, . . . ,Xn be independent but not necessarily equally distributed Bernoulli random variables, sayXi ∼

Bernoulli(pi) with pi ∈ [0,1]. Define

S ∶=
n

∑
i=1

Xi.

The distribution of S may be approximated by that of a Poisson random variable with parameter λ ∶= E(S) =

∑
n
i=1 pi. More precisely, if

Z ∼ Poisson(
n

∑
i=1

pi)

then
∥
n

∑
i=1

Xi −Z∥ ≤
n

∑
i=1

p2i .

In particular, for example, if p1 = ⋯ = pn = p then λ = np and the above inequality translates into

max
A⊂{0,1,...,n}

∣∑
k∈A

(
n

k
)pk (1 − p)n−k − ∑

k∈A

(np)ke−np

k!
∣ ≤ np2. (2)

1.3 Negative Binomial Distribution

We writeW ∼ NegBin(r, p) to denote a random variable that follows a negative binomial distribution with
parameters r > 0 an integer and p ∈ [0,1]. Its p.m.f. is as follows:

P(W = w) = (
w + r − 1

w
) (1 − p)r pw, for integers w ≥ 0.
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The expected value and variance ofW are given by:

E(W ) =
r p

1 − p
;

V(W ) =
r p

(1 − p)2
.

Generally, we use q to denote (1− p). We note that there are different formulations of the negative binomial
distribution. The one we have adopted models the total number of successes before r failures occur in a
sequence of i.i.d. Bernoulli trials with the same parameter p.

Since V(W ) = E(W )/(1 − p), E(W ) < V(W ), the negative binomial distribution is over-dispersed—as
opposed to the under-dispersed binomial distribution, and the Poisson distribution which is neither over-
dispersed nor under-dispersed.

In [8], the distribution of

S =
n

∑
i=1

Xi, (3)

with Xi ∼ Bernoulli(pi), is approximated by W ∼ NegBin(r, p) such that E(W ) = E(S) i.e. r and p are
selected so that

r p

1 − p
=

n

∑
i=1

pi.

Assuming the above, the total variation distance between S andW can be bounded from above by [8]:

∥S −W ∥ ≤
(2 − p)(1 − pr)

r(1 − p)

n

∑
j=1

E(Xj)E∣W +U −W ∗
j ∣, (4)

where U ∼ Geometric(p) and, for each j, W ∗
j is a random variable with the same distribution as W −Xj

conditioned on having Xj = 1. Unfortunately, it is unclear how to interpret the later to compute or estimate
the expected value of ∣W +U −W ∗

j ∣ becauseW imposes no restriction onXj butW ∗
j imposes thatXj = 1.

In other words, the joint p.m.f. ofW andW ∗
j is unclear.

2 Review of the Chen-Stein Method for the Poisson Distribution

TheChen-Steinmethod is traditionally used for approximating the distribution of a sum of possibly dependent
Bernoulli random variables by a Poisson random variable with the same mean as the sum.

The Chen-Stein method provides bounds for the total variation distance between the distributions of S as in
equation (3) and Z ∼ Poisson(E(S)). It builds upon the following two results, whose proofs may be found
in [4].

Lemma 2.1. Z ∼ Poisson(λ) if and only if E(λg(Z + 1) − Zg(Z)) = 0, for all bounded function
g ∶ N→ R.

Lemma 2.2. If f ∶ N → R is a bounded function such that E(f(Z)) = 0 when Z ∼ Poisson(λ), then
there exists a bounded g ∶ N→ R such that:

f(k) = λg(k + 1) − k g(k), k ≥ 0.

The function g is unique if one imposes that g(0) = 0.
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To see how the Chen-Stein method works, consider A ⊂ N and the function f ∶ N→ R defined as:

f(n) ∶= [[n ∈ A]] − P(Z ∈ A), n ∈ N;

where [[⋅]] denotes the indicator function of the proposition within. Observe that:

E(f(S)) = P(S ∈ A) − P(Z ∈ A).

On the other hand, since E(f(Z)) = 0, Lemma 2.2 asserts the existence of a function gA such that:

E(f(S)) = E(λgA(S + 1) − S gA(S)).

Hence:
P(S ∈ A) − P(Z ∈ A) = E(λgA(S + 1) − SgA(S)),

which implies that
∥S −Z∥ ≤ sup

A⊂N
∣E(λgA(S + 1) − S gA(S))∣. (5)

Observe that if S had a Poisson distribution with parameter λ then the right hand-side above would be zero.
The key of the Chen-Stein method to approximate the distribution of S by Z is that if S has an approximate
Poisson distribution with rate λ then the right hand-side above should be approximately zero.

3 Chen-Stein Method for the Negative Binomial

In this section, we state and show some results that are analogous to the ones used in applying the Chen-Stein
method to the Poisson distribution. These are likely important steps for deriving an upper-bound for the total
variation distance between a sum of Bernoulli’s and a corresponding negative binomial.

In what follows,W ∼ NegBin(r, p). First we prove the following claim.

Lemma 3.1. If W ∼ NegBin(r, p) then P(W = 0) = (1 − p)r, and

p (w + r)P(w) − (w + 1)P(w + 1) = 0, w ≥ 0.

Proof. By definition
P(W = 0) = (

r − 1

0
) (1 − p)r p0 = (1 − p)r.

On the other hand, for w ≥ 0:

(w + 1)P(W = w + 1) = (w + 1) (
w + r

w + 1
) (1 − p)r pw+1

= p
(w + r)!

w!(r − 1)!
(1 − p)r pw

= p(w + r)
(w + r − 1)!

w!(r − 1)!
(1 − p)r pw

= p (w + r)(
w + r − 1

w
)(1 − p)r pw

= p (w + r)P(w).
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Note that if for each w ∈ N we define the function gw(x) ∶= [[x = w]], for all x ∈ N, the previous result may
be restated as saying that E(p (W + r) gw+1(W + 1) −W gw+1(W )) = 0. Therefore, the following result
may be regarded as a more general version of Lemma 3.1.

Lemma 3.2. If W ∼ NegBin(r, p) and g ∶ N→ R is a bounded function, then

E(p (W + r) g(W + 1) −W g(W )) = 0.

Proof. Observe that

E(p (W + r) g(W + 1)) =
∞

∑
w=0

p (w + r) g(w + 1) (
w + r − 1

w
) (1 − p)r pw

=
∞

∑
i=1

p (i + r − 1) g(i) (
i + r − 2

i − 1
) (1 − p)r pi−1

=
∞

∑
i=1

g(i)
(i + r − 1)!

(i − 1)!(r − 1)!
(1 − p)r pi

=
∞

∑
i=0

i g(i) (
i + r − 1

i
) (1 − p)r pi

= E(W g(W )),

where for the second identity we have substituted w = i − 1.

We can now prove the following result, which is analogous to Lemma 2.2.

Corollary 3.3. Let W be random variable that can only take values in N. Then, W ∼ NegBin(r, p)
if and only if E(p (W + r) g(W + 1) −W g(W )) = 0, for all bounded function g ∶ N→ R.

Proof. Due to Lemma 3.2, it suffices to show that if E(p (W +r) g(W +1)−W g(W )) = 0 for all g ∶ N→ R
bounded, thenW ∼ NegBin(r, p). For this fix a w ∈ N and define g(x) ∶= [[x = w + 1]], for x ∈ N. Since g
is bounded, we have:

0 = E(p (W + r) g(W + 1) −W g(W ))

= E(p (W + r)[[W = w]]) −E(W [[W = w + 1]])

= p (w + r)P(W = w) − (w + 1)P(W = w + 1),

i.e.
P(W = w + 1) =

p (w + r)

w + 1
P(W = w), for all w ∈ N.

Repeated applications of the above recursion for the p.m.f. ofW then gives that

P(W = w) = (
w + r − 1

w
)pw P(W = 0), for all w ∈ N.
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Finally, since we must have
∞

∑
w=0

P(W = w) = 1,

the above identity implies that

P(W = 0) =
1

∞

∑
w=0

(
w+r−1
w

)pw
=

(1 − p)r

∞

∑
w=0

(
w+r−1
w

)pw (1 − p)r
= (1 − p)r,

where for the last identity we have used that (
w+r−1
w

)pw (1 − p)r is the p.m.f. of a negative binomial
distribution. As a result:

P(W = w) = (
w + r − 1

w
)pw (1 − p)r, for all w ∈ N;

which shows thatW has a negative binomial distribution, as claimed.

Finally, we prove a result that is analogous to Lemma 2.2 but for the negative binomial distribution.

Corollary 3.4. If f ∶ N→ R is a bounded function such that E(f(W )) = 0, whenW ∼ NegBin(r, p),
then there exists a bounded function g ∶ N→ R such that:

f(w) = (1 − p) (w + r) g(w + 1) −wg(w), for all w ∈ N. (6)

Furthermore, g is unique if one imposes that g(0) = 0.

Proof. To determine the function g, assume that the identity in equation (6) is satisfied. Multiplying both
sides of this equation by (1 − p)w−1(w + r − 1)!/w!, we obtain for n ≥ 2 that

n−1

∑
w=1

(1 − p)w−1
(w + r − 1)!

w!
f(w) =

n−1

∑
w=1

{(1 − p)w
(w + r)!

w!
g(w + 1) − (1 − p)w−1

(w − 1 + r)!

(w − 1)!
g(w)}

= (1 − p)n−1
(n + r − 1)!

(n − 1)!
g(n) − r! g(1)

= (1 − p)n−1
(n + r − 1)!

(n − 1)!
g(n) −

(r − 1)!

1 − p
f(0),

where the second to last step is justified by telescopic summation, and the last step is due to the fact that
f(0) = (1 − p) r g(1). Thus:

g(n) =
(n − 1)!

(n + r − 1)! (1 − p)n−1

n−1

∑
w=0

(1 − p)w−1
(w + r − 1)!

w!
f(w), for n ≥ 1.

Clearly, the steps that led to this identity are reversible; in particular, the function g not only solves equation

(6) but it is also uniquely defined for n ≥ 1. Furthermore, if we interpret
−1

∑
w=0

≡ 0, the above is the only

function g such that g(0) = 0.

It remains to show that g is bounded. For this, recall that E(f(W )) = 0. In particular:

∞

∑
w=0

(1 − p)w−1
(w + r − 1)!

w!
f(w) = 0,
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which implies that

g(n) = −
(n − 1)!

(n + r − 1)! (1 − p)n−1

∞

∑
w=n

(1 − p)w−1
(w + r − 1)!

w!
f(w)

= −
(n − 1)!

(n + r − 1)!

∞

∑
k=0

(1 − p)k
(k + n + r − 1)!

(k + n)!
f(k + n).

As a result:
∣g(n)∣ ≤ sup

w∈N
∣f(w)∣ ⋅

(n − 1)!

(n + r − 1)!
⋅
∞

∑
k=0

(1 − p)k
(k + n + r − 1)!

(k + n)!
. (7)

But note the following about the ratio of consecutive terms in the above sum:

(1 − p)k+1
(k+1+n+r−1)!
(k+1+n)!

(1 − p)k
(k+n+r−1)!
(k+n)!

= (1 − p)
k + n + r

k + n + 1
≤ (1 − p)

n + r

n + 1
,

where we have used that the transformation k → (k + n + r)/(k + n + 1) is a decreasing function of k ≥ 0.
Since lim

n→∞

n+r
n+1 = 1 and (1−p) ≤ (1−p/2), the argument of the well-know ratio-test for infinite series implies

that for all n large enough:

∣g(n)∣ ≤ sup
w∈N

∣f(w)∣ ⋅
1

n
⋅
∞

∑
k=0

(1 −
p

2
)
k

.

Since the right hand-side above tends to 0 as n tends to infinity, the function g is bounded, which completes
the proof of the lemma.

This project did not determine if it is possible to combine the lemmas in this section to obtain upper-bounds
similar to the ones in [4] for the Poisson approximation of a sum of Bernoulli random variables.

4 Performance on Numerical Experiments

In what follows
S =

n

∑
i=1

Xi,

where X1, . . . ,Xn are Bernoulli random variables, while

W ∼ NegBin(r, t)

is a negative binomial random variable. In this section we examine various numerical experiments that range
in terms of the dependency between the Bernoulli random variables, and examine how the distribution ofW
approximates that of S for suitable values of the parameters r and t such that E(S) = E(W ).

4.1 Independent and Identically Distributed Bernoullis

Let q = 1−p. Let n = 100 and consider the case whereX1, . . . ,Xn are i.i.d. Bernoulli(p) random variables.
In particular, S ∼ Binomial(100, p). From [8]:

∥S −W ∥ ≤
(2 − q)(1 − qr)

r(1 − q)
np(p +

1 − q

q
) .
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In Figure 1, we observe how the TVD changes as a function of r when p ∈ {0.2,0.4,0.6,0.8}. As can be
seen, in all cases the total variation distance or its theoretical upper-bound appear both to decrease to an
asymptotic value.

The theoretical upper-bound for the total variation distance, which is depicted in Figure 1(b), is above 1 for
r < 500. However, as r increases, the bound seems to decrease slowly towards the corresponding value of p.

In Figure 2(a)-(d), we examine and compare the exact p.m.f.’s that correspond to the cases in Figure 1(a). As
can be seen, in all cases, the approximation in Figure 2(a) is much better than the approximation in Figure
2(b), which is in turn better than the approximation in Figure 2(c), and so on.

(a) (b)

Figure 1: Comparison of the TVD for identically and independently distributed Bernoullis. Total
variation distance between S andW as a function of r when n = 100, and p = 0.2 (blue), 0.4 (orange), 0.6
(green), and 0.8 (red). (a): observed total variation distance between S andW . (b): theoretical upper-bound
for total variation distance between S andW .

4.2 Independent but Not Identically Distributed Bernoullis

Again consider the case with n = 100 but now let X1, ...Xn be independent Bernoulli random variables
such that Xi ∼ Bernoulli(pi) with pi ∈ [0,1]. These parameters were selected at random. We display their
histogram in Figure 3(c).

Let q = 1 − p. Using the formula from [8], we end up with the following upper bound:

∥S −W ∥ ≤
(2 − q)(1 − qr)

r(1 − q)

n

∑
j=1

pj (pj +
1 − q

q
) .

As can be seen in Figure 3(a), the TVD appears to continuously decrease as r increases, seemingly converging
to an asymptotic value of approximately 0.3, which is less accurate than the minimum total variation distance
encountered in Section 4.1 and Section 4.4, but more accurate than the minimum distance encountered in
Section 4.3. Figure 3(d) compares the p.m.f.’s of S andW for when r = 140. It is clear from the plot that the
p.m.f.’s appear rather different, despite retaining the same shape and center. As of the plot of the theoretical
upper-bound for total variation distance between S andW as a function of r, it appears to converge towards
an asymptotic value of roughly 0.65. Thus, overall it can be concluded that the theoretical upper-bound is a
huge overestimate and unlikely to be useful in practice.
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(a) (b)

(c) (d)

Figure 2: Comparison of the distribution of S and W for identically and independently distributed
Bernoullis. The plots display the p.m.f. of S (blue) andW (orange) when n = 100, r = 150, and (a) p = 0.2,
(b) p = 0.4, (c) p = 0.6 and (d) p = 0.8.

4.3 Identically Distributed Bernoullis with Constant Correlation

Let c ≠ 0 be a real constant. In this section, we consider the case whereX1, ..,Xn are identically distributed
Bernoulli random variables but cov(Xi,Xj) is non-zero and constant for all i ≠ j.

To show that the above model is feasible, consider X ∼ Bernoulli(p). If X = 1, define Z1 = . . . = Zn = 0.
Instead, if X = 0, let Z1, . . . , Zn be i.i.d Bernoulli(q). Define

Xi ∶=X +Zi, for i = 1, . . . , n.

We first show that X1, ...,Xn are equally distributed, noting from the construction that

P(Xi = 0) = P(Zi = 0∣X = 0) ⋅ P(X = 0) = (1 − q)(1 − p);

P(Xi = 1) = 1 − P(Xi = 0) = p + q − pq.

So X1, . . . ,Xn are equally distributed Bernoulli random variables with parameter p + q − pq.

On the other hand:

E(XiXj) = P(Xi =Xj = 1)

= P(Zi = Zj = 1∣X = 0) ⋅ P(X = 0) + P(Zi = Zj = 0∣X = 1) ⋅ P(X = 1)

= q2(1 − p) + p.
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(a) (b)

(c) (d)

Figure 3: Comparison of the distribution of S and W in the independent but not identically distributed
case. (a): experimental total variation distance between S andW as a function of r when n = 100 and the
parameter pi ∈ [0,1] of all the Bernoullis were randomized. (b): theoretical total variation distance between
S andW as a function of r when n = 100. (c): distribution of randomized pi’s. (d): p.m.f. of S (blue) and
W (orange) when n = 100, and r = 53.

11



As a result, for i ≠ j:

cov(Xi,Xj) = E(XiXj) −E(Xi) ⋅E(Xj) = q
2
(1 − p) + p − (p + q − pq)

2
,

which does not depend on i and j, as claimed.

Recall that S = ∑
n
i=1Xi. The p.m.f. of S is:

P(S = s) =

⎧⎪⎪
⎨
⎪⎪⎩

(1 − p) (ns)q
s(1 − p)n−s , s = 0, . . . , n − 1;

(1 − p) qn + p , s = n.

We can use the above to compute explicitly the total variation distance between S and W ∼ NegBin(r, t)
where (r, t) are such that E(S) = E(W ).

Figure 4: Comparison of the total variation distance for summation of identically distributed Bernoullis
with a constant correlation. Total variation distance between S and W as a function of r when n = 100,
p = 0.5, and q ∈ {0.2,0.4,0.6,0.8}.

In Figure 4, we observe how the total variation distance changes as a function of r when p = 0.5 and
q ∈ {0.2,0.4,0.6,0.8}. As can be seen, when q ∈ {0.2,0.4,0.6} the total variation distance has a local
minimum, and eventually increases and seemingly reaches an asymptotic value. For q = 0.2,0.4,0.6 the
minimum total variation distance can be observed at r = 1,4,14 and takes on the values 0.792, 0.765, and
0.719, respectively. However, when q = 0.8, the total variation distance continues to decrease, seemingly
approaching an asymptotic value of about 0.63. Through various other experiments, we have observed
that regardless of how q and p vary, all plots display one of the two types of behavior just described. We
note that even as q approaches 1, the total variation distance seems to approach the asymptotic value of 0.6
approximately—though never lower. The reason for these large total variation distance values, and as seen
in Figure 5(a)-(d), is that even for the value of r that that minimizes ∥S −W ∥ the p.m.f. of W is a bad
approximation of the p.m.f. of S.

4.4 Bernoullis with a Markovian Dependence

Our final numerical example considers a stationary Markov chain (Xn)
n
i=1 with state space {0,1}. The

motivation for this is that, because the state space is finite, the dependence between Xi and Xj decays
exponentially fast with ∣i − j∣ > 0. This contrasts with the previous experiment where the correlation
remained fixed.

The probability transition matrix (p.t.m.) of the chain is given by

M ∶= (
1 − α β
α 1 − β

) ,
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(a) (b)

(c) (d)

Figure 5: Comparison of the distribution of S and W for identically distributed Bernoullis with a
constant correlation. The plots display the p.m.f. of S (blue) andW (orange) when n = 100, p = 0.5 and
(a) q = 0.2, r = 1, (b) q = 0.4, r = 4, (c) q = 0.6, r = 14 and (d) q = 0.8, r = 150.

which we have represented visually in Figure 6. It is assumed from now on that (α + β) > 0.

Figure 6: Visual representation of Markov chain with state space {0,1}.

A simple calculation shows that the stationary distribution of the chain is

π ∶= (
β

α + β
,

α

α + β
) .

In particular, if P(X0 = 0) = π(0) and P(X0 = 1) = π(1) then X1, . . . ,Xn are identically distributed
Bernoulli(π(1)) random variables. However, these are dependent random variables though their dependence
decays exponentially fast. To see this, note the diagonalization of the p.t.m.:

M = (
β/α −1
1 1

) ⋅ (
1 0
0 1 − α − β

) ⋅ (
π(1) π(1)
−π(1) π(0)

) .
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In particular:

Mn
= (

β/α −1
1 1

) ⋅ (
1 0
0 (1 − α − β)n

) ⋅ (
π(1) π(1)
−π(1) π(0)

) ,

i.e. for 0 ≤ i < j ≤ n:

P(Xj = 0∣Xi = 0) = π(0) + π(1) ⋅ (1 − α − β)j−i;

P(Xj = 1∣Xi = 0) = π(1) − π(1) ⋅ (1 − α − β)j−i;

P(Xj = 0∣Xi = 1) = π(0) − π(0) ⋅ (1 − α − β)j−i;

P(Xj = 1∣Xi = 1) = π(1) + π(0) ⋅ (1 − α − β)j−i.

Observe that in this case
S =

n

∑
i=1

Xi

represents the number of visits to state 1© in the first n transitions of the chain. One should expect S to be
well-approximated by a negative binomial because this distribution can be expressed as a sum of independent
geometric random variables and, each time state 1© is visited from 0©, the total number of visits to 1© is
geometric. Nevertheless, the distribution of S is not negative binomial because the number of visits to 1©
from 0© is random, and because S keeps tracks of the visits to state 1© only up to time n.

In Figure 7, we observe how the total variation distance between S and W changes as a function of r
when β = 0.5 and α ∈ {0.2,0.4,0.6,0.8}. As seen in the figure, when α = 0.2, the total variation distance
seemingly reaches a minimum of around 0.0117 at r = 89. When α = 0.4,0.6,0.8, the distance continues
to decrease with r and apparently reaches an asymptotic value of around 0.155, 0.3, 0.43, respectively. We
had observed similar behaviours in Section 4.3, however, there is a key difference: while the approximation
in Section 4.3 tended to improve as q increased, in this case the approximation worsens as α increases.
Nevertheless, the total variation distance appears to approach 0 as α and β also approach 0, making this a
much more suitable approximation.

In Figure 8(a)-(d), we compare the p.m.f. of S with the one of W associated with the parameter r that
minimizes ∥S −W ∥. As can be seen in the figure, the approximation worsens as α increases. Through
various other experiments, it appears that the total variation distance is at a minimum when both α and β
approach 0, but as either α or β increase, the distance increases dramatically.

Figure 7: Comparison of the TVD for Bernoullis in a Markov Chain. Total variation distance between S
andW as a function of r when β = 0.5, n = 100, and α ∈ {0.2,0.4,0.6,0.8}.
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(a) (b)

(c) (d)

Figure 8: Comparison of the distribution of S and W for Bernoullis in a Markov chain. The plots
display the p.m.f. of S (blue) andW (orange) when n = 100, β = 0.5, and (a) α = 0.2, r = 89, (b) α = 0.4,
r = 150, (c) α = 0.6, r = 150, and (d) α = 0.8, r = 150.

5 Conclusions and Future Work

In this project, we have stated and proved various lemmas related to finding a bound for the total variation
distance between a sum of Bernoulli’s and a corresponding negative binomial. We could not deduce an
explicit and practical upper bound for the distance, though.

On the other hand, the upper-bound proposed in [8]—see equation (4), has an ambiguous interpretation that
renders it impractical in some situations. Thus, we proceeded to explore the exact total variation distance in
various experimental cases, which vary in how correlated the Bernoulli’s in the summation are.

When computing the total variation distance between S and W as a function of r, we observed two types
of behaviours. In one type, the distance starts out by decreasing to minimum value before increasing to a
seemingly asymptotic one. In the other type of behavior, the distance seems to continuously decrease to
certain asymptotic value. Overall, it appears that the theoretical upper-bound of the total variation distance
is overly conservative. In fact, it can sometimes be much greater than one. Furthermore, the total variation
distance may be quite high; rendering the approximation of a sum of Bernoulli’s by a negative binomial often
impractical.

For future work, it would be significant to correct or clarify the bound of total variation distance found in
[8], and possibly deriving a different bound. In addition, it would be useful to apply the approximation of
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over-dispersed sums of Bernoulli random variables to real-world situations.
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