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A recurrence plot is a two-dimensional visualization technique for sequential data. These plots
are useful in that they bring out correlations at all scales in a manner that is obvious to the human
eye, but their rich geometric structure can make them hard to interpret. In this Letter, we suggest
that the unstable periodic orbits embedded in a chaotic attractor are a useful basis set for the
geometry of a recurrence plot of those data. This provides not only a simple way to locate unstable
periodic orbits in chaotic time-series data, but also a potentially useful way to use a recurrence plot

to identify a dynamical system.

PACS numbers: 07.05.Rm, 05.45.-a, 05.45.Tp

I. INTRODUCTION

A recurrence plot (RP) of a N-point sequence
Z1,Ts,...,ZN is a visualization of the recurrence matrix
of that sequence: the pixels located at (i,5) and (j,%)
on the recurrence plot are black if the distance between
the i** and jt* points in the time series falls within some
threshold corridor:

o < ||.’EZ —fj|| < Op

for some appropriate choice of norm and white otherwise.
See Fig. 1 for an example.

This technique, first introduced by Eckmann, Kam-
phorst, and Ruelle [1] and developed further by Zbilut,
Webber, Koebbe, Mayer-Kress, and others [2, 3], can be
applied to time-series data in order to bring out tempo-
ral correlations in a manner that is instantly apparent to
the eye. Unlike an FFT, for instance, a recurrence plot
lets the analyst see not only what frequencies are present,
but exactly where the corresponding signals occur. This
technique has another important practical advantage in
that it can be used to visualize nonstationary data, mak-
ing it a useful analysis tool for physiological data [3-8]
and driven systems [9], among other things, and it is are
quite robust in the face of noise [10]. Better yet, an RP of
time-series data from a dynamical system preserves the
invariants of the dynamics [11], and its structure is at
least to some extent independent of embedding [10, 12].
Note that the ordering of the data points need not be
temporal; RPs are also an effective means for analyzing
other sequences, such as the amino acids in a protein [13].
Lastly, free software for computing and analyzing RPs is
available on the world-wide web [14].

RPs of chaotic time-series data, as is visible from
Fig. 1(b), have a rich and highly characteristic structure.
The first effort in the literature to define a quantitative
metric for this structure was the recurrence quantification
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analysis (RQA) introduced in [15], which defines several
statistical measures on the black points in a recurrence
plot. These quantities measure many of the same dynam-
ical properties as do the more-traditional measures like
the Lyapunov exponent and the correlation dimension,
and they provide a useful way to quantify RP structure,
but their lumped statistical nature means that RQA can-
not elucidate the spatiotemporal details of the dynamics.
RQA results on structurally dissimilar RPs, for instance,
can be virtually identical; see Fig. 4 of [12] for an illus-
tration. Techniques for analyzing RP structure in more
detail would be extremely useful: not only to understand
the relationship between the intricacies of RP patterns
and the dynamics of a system, but also to make it possi-
ble to turn that information to advantage (e.g., to com-
pare two dynamical systems in a simple and yet meaning-
ful way, using only their recurrence plots). The authors
of the original RQA papers are taking a linear algebra
approach to structural RP analysis, combining principal
component analysis and RQA to pick out “important di-
rections” and statistics [16]. The research described in
this Letter focuses on chaotic time-series data and takes
a more geometric approach to RP structure classification.
In particular, we claim that the set of unstable n-periodic
orbits that lie within a chaotic attractor are a useful ge-
ometric basis for RPs of any orbit on that attractor.

II. UNSTABLE PERIODIC ORBITS

Unstable periodic orbits or UPOs make up the skele-
ton of a chaotic attractor. More formally, there are an
infinite number of UPOs, of all periods, densely embed-
ded in the attractor; indeed, an orbit on that attrac-
tor is the closure of the set of UPOs and the trajectory
can be thought of as “hopping” from one UPO to the
next [17-21]. Fig. 2 shows several examples. The set of
UPOs in an attractor is a dynamical invariant; their num-
ber, distribution, and properties “unfold” the structure
of chaotic orbits, and they can be used to calculate other
invariants, such as fractal dimension and topological en-
tropy [19]. Algorithms for finding UPOs in time-series
data are straightforward: one watches for close returns
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FIG. 1: A signal and its recurrence plot: (a) a time-series plot of the z variable from an 2000-point 4th-order Runge Kutta
integration of the Lorenz equations with (a,r,b) = (16,45,4) and At = 0.01 (b) a recurrence plot of that series with a threshold
corridor of [0, 2], using the Euclidean 2-norm. Some RP formulations use a color-coding scheme to represent a range of distances

according to hue.
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FIG. 2: Unstable periodic orbits embedded within the Lorenz attractor: (a) the full attractor (b) an unstable one-cycle
starting from (z,y, z) = (10, —2.34199, 53.8658) (c) an unstable two-cycle starting from (z,y, z) = (10, —4.08038, 55.2704) (d)
an unstable five-cycle starting from (z,y, z) = (10, —4.32395, 55.4605). Same system and integration parameters as Fig. 1. In
all images, axis ranges are z = [—40,40], y = [—40,40], z = [0.80], and the plane of section that defines the orbit period is

z = 10.

on a plane of section, then bins and averages several oc-
currences in order to reduce noise [22]. This procedure
is quite time consuming, however, for two reasons: it not
only involves an ensemble of nearest-neighbor searches,
but also relies on the ergodicity of the orbit in order to
visit each UPO. One can accelerate matters somewhat
by using estimates of the local dynamics [23, 24], but the
computational complexity is largely inescapable.

IIT. RECURRENCE PLOTS OF UPOS

The notion of a chaotic attractor as the closure of the
set of the UPOs embedded within it—a decomposition
that has been used to understand systems ranging from

semiconductors [25] to neurons [26]—is patently obvious
if one uses recurrence plots to examine a trajectory on
that attractor. Fig. 3, for example, shows RPs of the
z-component of the trajectories in Fig. 2. Note how the
repeated patterns in parts (b), (¢), and (d) of Fig. 3—
that is, the RPs of the UPOs—are building blocks in the
RP of the overall attractor that is shown in Fig. 3(a).
A two-by-two copy of the crosshatch pattern in part (b)
appears about three fifths of the way up the diagonal
of part (a), for instance, and the two-cycle pattern in
part (c)—which resembles a slice of bread with a cross
superimposed upon it—appears at least four times along
the diagonal of part (a), as well as in several other places.
These blocks simply reflect time intervals when the tra-
jectory is travelling on or near the corresponding UPO.



e iy e e L~ O SN
) . [ 4 ¢ ’K:
i e [ L
Lo : : g
| f
(a) (b) (c) (d)

FIG. 3: Recurrence plots of the z component of the trajectories in the previous Figure, constructed with a threshold corridor
of [0, 2] and the Euclidean 2-norm. All time series are 1000 points long, and hence all RPs are 1000 points square.

Note that the time scales of the RPs have to be identical
for this kind of overlay analysis to make sense, so the tra-
jectories used to construct parts (b), (c), and (d) involve
repeated transits around the corresponding UPOs [31].
Comparison of parts (c¢) and (d) shows yet another layer
of compositionality: the five-cycle appears to contain an
instance of the two-cycle. We are currently investigating
the mathematics behind this property.

These conclusions are largely independent of the pa-
rameters used to construct the recurrence plots. The
choice of the  component, for instance, is made without
loss of generality; all of the discussion in the previous
paragraph holds if one uses the y or z components in-
stead, or if one uses full state-space (zyz) trajectories.
See our website for associated images [27]. The choice of
norm and threshold corridor, while unimportant from a
theoretical standpoint, do matter for practical purposes.
Different threshold corridors make the features on an RP
thicker or thinner; this does not destroy one’s ability to
compare these features, but comparing two finely fili-
greed structures is easier that matching the edges of two
black blobs. Norms can have similar effects; using the
maximum norm on an attractor that has a high aspect
ratio, for instance, will effectively obscure dynamics along
the attractor’s thin direction. Again, see our webpage for
graphical images that demonstrate these effects.

This obvious geometric decomposition of recurrence
plot block structure suggests several interesting and po-
tentially useful applications. Not only do RPs of UPOs
play the role of geometric basis elements for the structure
of an RP of a chaotic attractor, but they are also a useful
way to identify those UPOs—a task that is algorithmi-
cally complex and computationally expensive. To find
a UPO, one would simply construct the RP of a trajec-
tory on a chaotic attractor, look for repeated structures,
and use that information to index into the trajectory and
find the associated state variable values. This does not
sidestep all of the complexity, of course; the time required
to construct an RP grows as the square of the number NV
of points if it is coded naively—or O(N log N) if coded in-
telligently, using k-d trees or some other appropriate data

structure [28]. The basic algorithms [22-24] for finding
UPOs in experimental data, however, are at least O(N?),
so using RPs is much faster. The geometric decomposi-
tion suggested by Fig. 3 also provides a useful way to do
a quick, qualitative comparison of two chaotic systems.
The set of UPOs in an attractor uniquely identifies it,
and in a well-defined way. Thus, if RPs of two trajecto-
ries have different building blocks in their structure, the
trajectories are probably not from the same system; con-
versely, identical block RP structure suggests identical
dynamics.

In practice, of course, there are several caveats. No
two trajectories on a chaotic attractor will visit exactly
the same UPOs, and no finite-length trajectory will visit
all UPOs. A UPQ’s stability properties dictate how tra-
jectories travel upon and around it; consider a ball bear-
ing rolling around the apex of a bagel versus one rolling
around the rim of a fine porcelain teacup. The one-cycle
in Figs. 2(b) and 3(b), for instance, appears very fre-
quently in any trajectory on this attractor, while the five-
cycle in Figs. 2(d) and 3(d) is comparatively rare. One
can quantify these effects by integrating the variational
equation along the orbit and observing the behavior of
the transverse component, as is very nicely depicted in
the work of Helwig Loffelman and other members of the
Institut fiir Computergraphik in Vienna [29]. If the Lya-
punov exponents and stable/unstable manifold geome-
try of the dynamical system are such that a small per-
turbation off the UPO grows very quickly—the teacup
situation—then trajectories are not only more likely to
diverge from that orbit but also less likely to visit it in the
first place, and so that UPO will leave its signature nei-
ther in the trajectory nor on the RP. High-period UPOs
pose particular challenges in this regard, as their length
provides more opportunity for the unavoidable [32] trans-
verse perturbations to grow. This means that the claims
made in this Letter, while true in general, cannot be used
in practice to find every UPO. Using a longer trajectory
improves matters, of course, and there is evidence that
a system’s short, low-period UPOs provide “good” de-
scriptions of its dynamics [19], so this limitation is by no



means fatal. Incidentally, the algorithms in [22-24] suf-
fer from the same problems, since they too rely on the
system dynamics to cause the trajectory to visit each or-
bit. In order to find high-period and/or highly unstable
UPOs, one must fall back on analytical methods [30], but
such methods cannot be used unless one has the system
equations and thus are all but useless in experimental
situations.

IV. SUMMARY

Unstable periodic orbits are a useful geometric basis
for the complex structure of a recurrence plot of a tra-
jectory on a chaotic attractor. Their locations in state
space and in time, as well as the compositional nature
with which they make up the structure of the attractor,
are immediately apparent to the eye, and in a manner
that aids one’s understanding of a chaotic attractor as the
closure of the UPOs that are embedded within it. These
ideas suggest several practical applications. The RP rep-
resentation is useful not only for identifying and locat-

ing UPOs—a task that is computationally demanding—
but also for comparing one dynamical system to another:
the practical task termed “modeling” by engineers, “sci-
entific discovery” by artificial intelligence practitioners,
and “system identification” by control theorists. Because
RPs preserve a system’s invariant dynamical structure,
and because the UPOs that appear so prominently on
a RP are dynamical invariants, one can draw sensible
qualitative conclusions about the similarity or difference
between two systems from comparisons of the obvious
block structures in RPs of their trajectories.
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