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Networks of excitable units are found in varied disciplines such as social science, neuroscience,

genetics, epidemiology, etc. Previous studies have shown that some aspects of network function can

be optimized when the network operates in the ‘critical regime’, i.e., at the boundary between order

and disorder where the statistics of node excitations correspond to those of a classical branching

process. In this thesis, we introduce and study a mathematical model of a neural network with

the goal of understanding the long-standing problem of determining the mechanisms by which a

neural network regulates its activity so as to operate in the critical regime. In particular, we

study the dynamics of a two-layered network model consisting of an excitable node network and a

complementary network that supplies resources required for node firing. More specifically, we study

the dynamics of an excitable neural network consisting of neurons (nodes) connected via synapses

(edges). Synaptic strengths are mediated by resources supplied by the complementary glial cell

network. Resources from the bloodstream are supplied to the glial network at some fixed rate,

resources transport diffusively within the glial cell network and ultimately to the synapses, and

each time a presynaptic neuron fires the resources for all outgoing synapses get consumed at some

fixed rate. We show that this natural and very compelling mechanism for feedback control can

stabilize the critical state. Additionally, the neural network can learn, remember and recover the

critical state after learning. The critical state is characterized by power-law distributed avalanche

sizes that are robust to changes in the supply, consumption and diffusion rates. Finally, we show

that our findings are fairly robust to heterogeneity in model parameters or network structure.
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Table

2.1 Literature classification with example references. The literature is divided into 4

topics as shown above: Balanced/Critical dynamics, STDP learning rule, Glia and

Multilayer networks. Each topic is further subdivided into multiple subtopics: Is it a

review? Does it include experimental work? Does it include mathematical modeling?

Some example references are provided for each subtopic. The goal is to make the

relevant literature easily accessible and to figure out the gaps in the literature space,

i.e., to figure out the areas that are yet to be explored: for instance, the literature

cited under the mathematical modeling subtopic for glia, reveals that there have

been no mathematical models connecting glia to the area of critical dynamics. Our

present work fills that gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 The specifications and relevant terminology for the two-layered multilayer network

consisting of neural and glial network layers. The neural layer is directed and

weighted while the glial layer is undirected and unweighted. Unless specified other-

wise, in all the experiments, we use the above specified parameter values. . . . . . . 63
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Figures

Figure

1.1 a) Cartoon based on existing experiments, illustrating how glia distribute metabolic

resources from the bloodstream to neural synapses. Red arrows indicate paths of

metabolite transport. b) A simplified directed graph representation of our two-layer

network model. Black arrows indicate neural synaptic interactions. Red arrows ter-

minating on black arrows represent the resource supply to the corresponding synapse.

Arrow thickness indicates synaptic strength which evolves according to STDP. (Fig-

ure reproduced from [20].) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 An example network G = (V,E) is shown in panel a) has N = 6 vertices given by

the set V = {1, 2, 3, 4, 5, 6}. The edges E are represented using an adjacency matrix

that is shown in panel b). This matrix is populated using the rule given by Eq. (2.1).

For example the edges from node 1 to nodes 2, 3, 4 are represented by the entries of

1 in the first row, i.e., the entries w21 = w31 = w41 = 1. The edges E may also be

described using a sparser representation such as the adjacency list shown in panel

c). While adjacency matrices are typically implemented in computer software using

2-dimensional arrays, adjacency lists are implemented as linked lists such that we

have a list for each vertex and this list consists of vertex ids that have edges from

the given vertex. For example, in the adjacency list for vertex 3, we put vertex ids

1, 2, 5 since we have edges to these vertices from vertex 3. . . . . . . . . . . . . . . . 11
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2.2 An example multilayer network with two layers, i.e., l = 2. The multilayer network

can be described in its entirety by G = {G, I}, where G = {G(1), G(2)} is the set

of graphs and I = {I(12), I(21)} is the set of interactions. Each graph consists of

a set of nodes and edges (as described in Sec. 2.1.1). We model the interactions

very generally as the edges from any node or edge from one layer to any node or

edge of other layers. In most studies, however, the interactions between layers are

modeled only amongst the nodes [45, 71]. Finally, we depict the interactions using

matrices I(12), I(21) shown in the bottom two panels. Note that if these matrices are

sparse (i.e., they have few non-zero entries), we could instead use an adjacency list

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The two-layered multiplex network of [76]. Panel (a) shows a multiplex representa-

tion where one of the layers models neural network synchronization dynamics and

the other layer models resource transport dynamics. In particular, synchroniza-

tion amongst model neurons (nodes) is modeled using the Kuramoto model (see

Eq. (2.2).) The global order parameter that quantifies the amount of synchrony

amongst the neurons is depicted in panel (b). The resource transport is modeled

as a biased random walk and the fraction of random walkers at a node defines the

amount of resource at that node. Inspired from biological findings, the bias of the

random walkers is modeled such that high frequency neurons receive a higher allo-

cation of walkers and hence resource. An example random walk is depicted in panel

(c). Reprinted figure with permission from [V. Nicosia, P. S. Skardal, A. Arenas, V.

Latora APS, Physical Review Letters, 118, 138302, 2017] © (2017) by the American

Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.4 A cartoon sketch showing the anatomy of a neuron. A neuron consists of three

main parts– the soma, dendrites and axons. The main cell body is called the soma.

Dendrites collect information from neighboring neuronal cells and axons transmit

information to other neurons. A synapse is a small gap or (a cleft) between the axon

terminal of one neuron and the dendrite of some other neuron. . . . . . . . . . . . . 17

2.5 States of the biological neuron model of Hodgkin-Huxley (HH) in panel (a) and the

equivalent states in the Greenberg-Hastings (GH) model in panel (b). Kinouchi-

Copelli (KC) model [11] is one of the examples of a computational model based

on the GH model. In the KC model the transition from ready to excited state is

stochastic and depends on the amount of stimulus from neighboring neuronal cells.

Transitions from excited to refractory state 1 and so on back to the ready state are

deterministic. (Figure courtesy of Daniel Larremore [47].) . . . . . . . . . . . . . . . 18

2.6 Typical stimulus-response curves from simulations on the Kinouchi-Copelli (KC)

model (The plot shows figure 2 of [11]). Each data point (circle) is obtained from

simulating the KC model on a network with N = 105 neurons, average degree 〈d〉 =

10, number of refractory states n = 5 and time window of averaging T = 103 ms. The

solid lines corresponds to a mean-field approximation of the model [11]. The inset

shows the response F0 for small r values. Reprinted by permission from Macmillan

Publishers Ltd: Nature Physics 2: 348-351, ©(2006). . . . . . . . . . . . . . . . . . . 22

2.7 Results of the Kinouchi-Copelli model reproduced from Figure 2 of their paper [11].

Panel (a) shows a stimulus-response curve for σ = 1.2. Panel (b) shows the dynamic

range, ∆ as a function of the local branching ratio, σ. Optimal signal processing

happens when ∆ is maximized at the critical value of σ = 1. Reprinted by permission

from Macmillan Publishers Ltd: Nature Physics 2: 348-351, ©(2006). . . . . . . . . 24
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2.8 Figure reproduced from [12]. Panel (a) shows the low-stimulus response F0 as a

function of varying mean degree, 〈d〉. For degree-degree correlations the value of

〈d〉 = 1 does not correctly predict the phase transition. Panel (b) shows the dynamic

range ∆ as a function of the principal eigenvalue of the network adjacency matrix,

λ. When λ = 1 the dynamic range is maximized. Reprinted figure with permission

from [D. B. Larremore, W. L. Shew, J. G. Restrepo, APS, Physical Review Letters,

106, 058101, 2011] © (2011) by the American Physical Society. . . . . . . . . . . . . 25

2.9 (a) Stimulus response curve obtained experimentally using electric shocks as external

stimulus and response measured using multielectrode arrays [9]. (b) The dynamic

range as a function of the parameter κ (see text for definition). When the activity

is balanced between hypoexcitable state (induced by drug AP5 and shown in blue)

and hyperexcitable state (induced by drug PTX and shown in red), the dynamic

range is maximized. Here, the dark black line shows the binned average. (Figure

adapted with permission from [4, 9]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Shows the amount of long-term potentiation (LTP) or long-term depression (LTD)

induced as a function of the difference of the timing between presynaptic (tpre) and

postsynaptic (tpost) action potentials. The qualitative and quantitative behavior

varies for different preparations and different species. Reprinted by permission from

Macmillan Publishers Ltd: Nature Neuroscience 3: 1178-1183, ©(2000). . . . . . . . 31
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2.11 Self-organized criticality in a model of dynamical synapses put forth by Levina et al.

[43] (see Eqs. (2.9), (2.10)). For certain parameter regimes, the model self-organizes

to a critical state characterized by power-law distributed avalanche size distributions.

The avalanche size L is plotted on the x-axis and the distribution P (L,α) is plotted

on the z-axis. The parameter α controls the synapse strengths. In particular, varying

the coupling strength α (on y-axis) we get three different regimes of operation: (1)

Subcritical for α < 1.3 (2) Critical for α ≈ 1.4 and (3) Supercritical for α > 1.6.

Reprinted by permission from Macmillan Publishers Ltd: Nature Physics 3: 857-860,

©(2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Results for the computational model in Sec. 3.1.2 using STDP learning rule. Panel

(a) shows that over time the largest eigenvalue of W , i.e., λ, goes above 1 and hence

in the supercritical state. The inset shows a magnification of the first 1500 time

steps. Panel (b) shows that the network activity, i.e., the fraction of neurons in the

‘active’ state, S, approaches 1 corresponding to a supercritical state. . . . . . . . . . 41

3.2 Actual eigenvalue λt (solid lines) and the estimated eigenvalue λt (circles) for (k, α)

equal to (100, 0.1) (blue), (20, 0.30) (black), and (50, 0.20) (red) as a function of time

(in units of 10 time steps, for a total of 100 time steps). . . . . . . . . . . . . . . . . 43

3.3 Results for the computational model in Sec. 3.1.2 using STDP learning rule along

with synaptic strength limitation (SSL). Maximum synaptic strength is capped at

w̄. Panel (a) shows that over time the largest eigenvalue of W (see Sec. 2.5), i.e.,

λ, goes above its desired value of 1. Panel (b) shows that the network activity, i.e.,

the fraction of neurons in the ‘active’ state, S, goes close to 1 corresponding to a

supercritical state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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3.4 Results for the computational model in Sec. 3.1.2 using STDP learning rule along

with synaptic scaling rule. Panel (a) shows that over time the largest eigenvalue of

W (see Sec. 2.5), i.e., λ goes above its desired value of 1. The inset shows a blow

up of the first 1500 time steps. Panel (b) shows that the spread of network activity,

i.e., the fraction of neurons in the ‘active’ state, S, decreases as λ goes above 1. This

corresponds to a network state in which some neurons are always active and some

neurons are always resting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Two-layered multilayer network consisting of neural and glial network layers. The

neural layer (bottom), represented by adjacency matrix W , is directed and weighted.

The glial layer (top), represented by adjacency matrix U , is undirected and un-

weighted. The interaction between glial cells and synapses (dotted lines) is modeled

using an adjacency matrix G that maps each glial cell to some subset of all synapses. 51

3.6 Assuming the parameter choices w̄ = 0.06, k = q = 50 and C2 = 10−5, the unshaded

or white region corresponds to all inequalities being satisfied. The parameter choices

within this region should get us a stable critical state, or more concretely, λ = 1 over

time. The regions shaded purple and orange correspond to two of the inequalities not

being satisfied, namely, Eqs. (3.63) and (3.64). The inequalities given by Eqs. (3.60)-

(3.62) do not tell us anything new. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 We plot the largest eigenvalue of the neural adjacency matrix, λ, as a function of

time t. Panels (a), (b), (c) and (d) show the results for the four settings shown in

Fig. 3.6. Panel (a) corresponds to all inequalities being satisfied and hence λ → 1

over time. Panels (b), (c) violate inequality given by Eq. (3.63). Panel (d) violates

inequality given by Eq. (3.64). Hence, in these three cases, we find that the critical

state λ = 1 is not stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
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4.1 Results of Experiment 1 : (a) Time series of λt (largest eignenvalue ofW t) reveal rapid

convergence to stable network dynamics (λ ≈ 1), independent of initial conditions.

Three different initial conditions were tested: hyperexcitable (blue, λ0 = 1.5), stable

(black, λ0 = 1), and hypoexcitable (red, λ0 = 0.5). The inset is an expanded view

of the first 5000 time steps. (b) After a longer transient the total resource R also

stabilizes to a steady value. (c) Similarly, in all three cases, the average activity S

reaches a statistical steady state with large fluctuations. . . . . . . . . . . . . . . . . 65

4.2 Results for Experiment 2 : (a) the maximum eigenvalue λ versus t, and (b) the total

resource R versus t. The data plotted in black are ‘baseline’ results obtained using

model 1 as described in Sec. 3.2. For the data plotted in red (labelled ‘instability’),

the initial evolution is the same as for the baseline data up until t = 100000 (marked

in the figure by a vertical arrow). At this point, turning off the diffusion of resources

amongst the glia results in runaway growth of λ and R. . . . . . . . . . . . . . . . . 67

4.3 Results for Experiment 3 : We divide the neurons into two equally sized groups, G1

and G2, consisting of 500 neurons each. This results in four groups of synapses:

synapses within the first group (within G1), synapses that convey signals from neu-

rons in G1 to neurons in G2 (G1 to G2), synapses that convey signals from neurons

in G2 to neurons in G1 (G2 to G1) and synapses within the second group (within

G2). Panel (a) depicts the learning protocol (see text). Panel (b) and (c) show λ and

R versus t. The learning regime spans t = [80000, 100000] (delimited by the vertical

arrows). Panel (b) shows that λ becomes subcritical during learning [109]. Panels

(d) shows the mean synaptic strength for the four groups of synapses for excitatory

synapses during learning. In accord with the STDP learning rule, the mean synap-

tic strength increases for G1 to G2 synapses. In the post-learning regime, spanning

t = [80000, 160000], panels (d) shows that the model remembers what it learned.

Panel (b) shows that after learning, λ quickly evolves back to the critical state λ ∼= 1. 69



xv

4.4 Time average of the largest eigenvalue, 〈λ〉t, as a function of C1/Ĉ1, C2/Ĉ2 and D/D̂
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4.5 Results of numerical simulations considering different initial states of the model such

as critical (black circles), subcritical (red triangles) or supercritical (blue squares)
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4.10 3-Dimensional map reproduces behavior of the full model : We show that the behavior

of the full model can be qualitatively described using the 3-dimensional map. Panels

(a) and (b) show the plots for the model simulations and the map with noise respec-

tively. The 3-D map reproduces qualitatively the plots for activity, S, the largest

eigenvalue of the neural adjacency matrix, λ, and the average glial resource, 〈Ri〉,

for a particular setting of C1, C2. For this particular setting, we see oscillations for λ

and 〈Ri〉 with peaks for S that correspond to the rising edges of λ and 〈Ri〉. Panel

(c) plots the standard deviation σ(λ) as a function of C1 for 10 different settings
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Chapter 1

Introduction

A well-established hypothesis in neuroscience is that the brain operates at a critical point,

poised between a phase where neuronal activity dies out and a phase where the activity saturates

[1]. One of the premises for this hypothesis is that a critical brain is most flexible and adaptable

to an ever-changing external environment [2, 3], such as the environment we live in. Additionally,

experiments and models have suggested that there are many functional benefits of criticality [4]

such as optimized information capacity, information transfer and dynamic range that represents the

range of inputs that can be encoded with high fidelity. There has been evidence for criticality in both

in vivo [5, 6, 7] and in vitro preparations [8, 9, 10] as evidenced by a power-law distribution for size

and duration of intermittent spontaneous bursts of neuronal activity called neuronal avalanches.

Simple computational models that treat each neuron as a cellular automaton have also shown such

signatures of criticality [8, 11, 12, 13].

Previous computational models [12, 13] consider a network of neurons (nodes) connected via

synapses (edges). Results using numerical simulations show the presence of critical dynamics: when

the largest eigenvalue, λ, of the neural network adjacency matrix is equal to 1, neuronal avalanche

sizes follow a power-law distribution with the characteristic exponent value of −3/2. In these

models λ = 1 is a necessary condition for critical dynamics and this result is robust to changes in

the network structure such as heterogeneity, assortativity and degree-degree correlations. However,

these models lack learning. Neuronal networks have the ability to evolve: learning mechanisms

allow certain pathways in the neuronal circuits to become stronger via synaptic modification [14].
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In the context of the model, varying synaptic strengths over time would effectively change the

entries of the neural network adjacency matrix, subsequently changing λ at each time step. Thus,

the following question is of significance to neurobiologists: How does the brain maintain critical

dynamics (or λ ≈ 1) in the face of learning? One of the goals of this thesis is to propose a

novel network-based computational model that accomplishes this. Other goals include studying

robustness of model parameters to the critical state using simulations and theory, quantifying the

critical state using typical measures of criticality and studying the impact of heterogeneity in model

parameters and network structure on critical neural network dynamics.

In 1949, Donald Hebb [15] put forth his postulate for a potential learning mechanism that was

succinctly summarized by the American neurobiologist Carla Shatz as, “Cells that fire together,

wire together.” Thus a synapse between cell A and cell B is reinforced if A takes part in firing

B frequently. In 1983, Levy & Steward [16] found out that the precise timing of the firing is

more important than the firing rates. In the subsequent years, consensus developed amongst

neurobiologists that ultimately led to the formation of a new learning rule called spike-timing-

dependent plasticity or STDP [17]. For a historical review of STDP, refer to Markram, Gerstner

& Sjöström [18]. While there has been experimental evidence for STDP, incorporating it in a

computational model can lead to unstable network dynamics. In chapter 3 sec. 3.1.2, we incorporate

STDP in the model put forth by Larremore et al. [13] and show that stabilizing λ near its desired

value of 1 and, hence, keeping the neural network activity in the critical regime can be difficult.

Subsequent sections in chapter 3 show that existing regulatory mechanisms such as limiting synaptic

strengths or synaptic scaling [19] do not provide a satisfactory solution to stabilize λ ≈ 1. In this

thesis, we propose and explore a novel regulatory mechanism based on how metabolic resources

are distributed to the neurons by the glial cells. In what follows, we first introduce and give a

broad overview of two variants of our model termed as model 1 and model 2 and highlight our key

findings. The first variant, i.e., model 1 has been introduced and studied in [20].

Next, we describe the motivation and the idea behind resource-transport dynamics common

to both model variants. Glial brain cells play important and diverse roles regulating the dynamics
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glia

neurons

blood streama

b

Figure 1.1: a) Cartoon based on existing experiments, illustrating how glia distribute metabolic
resources from the bloodstream to neural synapses. Red arrows indicate paths of metabolite trans-
port. b) A simplified directed graph representation of our two-layer network model. Black arrows
indicate neural synaptic interactions. Red arrows terminating on black arrows represent the re-
source supply to the corresponding synapse. Arrow thickness indicates synaptic strength which
evolves according to STDP. (Figure reproduced from [20].)
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and structure of neural networks [21, 22], including learning-related changes in synapses [23, 24].

In this thesis we focus on one of the most important functions thought to be served by the glial

network – the transport and distribution of metabolic resources among the neural synapses [25].

This hypothesis originated from early anatomical studies which showed that the glia form a bridge

between the neural synapses and the brain vasculature [26] (Fig 1.1a). More recently, experiments

have directly demonstrated that glia, astrocytes more specifically, deliver metabolic resources to

synapses depending on how active the synapses are [27]. En route to the synapses, these resources

diffuse through an extensive network of astrocytes [25]. The biophysical properties of such diffusive

transport of resources may have a fundamental influence on the dynamics of the activity of the

neural network that consumes the resources [28, 29, 30, 31]. For example, a highly active synapse

may consume all of its local resources, thus forcing it to become less active until more resources

arrive. It may also drain resources away from less active synapses, thus shaping functional differ-

ences among synapses. Here, in order to study these possibilities, we introduce a computational

model incorporating both a neural network and a glial network.

For model 1, the neurons interact via synapses whose efficacy evolves according to activity-

dependent learning rules, namely spike timing dependent plasticity (STDP) [19, 32]. Under many

circumstances, modeling of STDP can result in unstable growth of synaptic efficacy; additional

types of learning rules must typically be added to the model to prevent such runaway growth (see

Refs. [19, 33]). The main finding of model 1 is that diffusive transport of resources via the glial

network can serve to prevent runaway synaptic growth due to STDP, thereby maintaining stable

neural network dynamics. We show that this phenomenon requires resource transport among the

glia; locally confined production and consumption of resources result in unstable neural network

dynamics. The known roles played by the glia in synaptic plasticity are diverse and numerous [34],

but, to our knowledge, this work is the first to show that metabolic resource distribution can play

such a stabilizing role.

More broadly, there are many examples of dynamical processes on networks in which the

macroscopic network dynamics undergoes a phase transition as the strength of interactions between
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the network nodes is increased, including synchronization [35, 36], Boolean models of gene regulation

networks [37, 38], and functional brain networks [39, 40]. In some important cases, it has been

argued that it is desirable for the system to operate at the onset of the phase transition. Few

examples are as follows: for Boolean gene regulatory networks, it has been proposed that operating

at the “edge of chaos” provides the network with enough flexibility to have a number of different,

useful attractors, but without being too sensitive to perturbations [37]; for neuronal networks, it has

been hypothesized that operating at a critical point where the strengths of inhibitory and excitatory

synapses are balanced provides various benefits for information processing and storage, both in

neuronal network models [4] and in coarser models based on synchronization of neuronal rhythms

[41]; for wireless networks, it has been suggested that operating just past a phase transition in

connectivity can minimize costs while achieving operational requirements [42]. A natural question

is how these networks can robustly maintain operation at the critical point without centralized

control, while at the same time experiencing functional state changes, as well as changes of inputs

and external environment. This long-standing question has been the subject of much interest, and

various mechanisms designed so that the system’s parameters self-tune to operate at the critical

point have been proposed [43, 44]. In some cases, however, there might be constraints in the

dynamics of the network that either result in a net drift of the system away from the critical point,

or prevent fluctuations due to noise or finite size effects from being controlled. In this thesis, we

introduce a mechanism based on the transport of a resource through a secondary network which

results in the stabilization of the primary network’s dynamics at the critical point. In the broad

context of network science, this mechanism illustrates one benefit of the dynamical interaction

between different networks [45], namely providing a novel avenue for organized criticality.

Model 2 is a simplified version of model 1 such that we do not have learning and inhibition.

Motivation for studying such a model is twofold: (1) some brain areas are involved in sensing

input rather than learning and require to be in the critical state so that the dynamic range of

inputs can be maximized and (2) each node in this simplified model may represent a collection of

neurons, and links between nodes represent aggregate output of the collection. We can represent
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such aggregate output using only positive synaptic weights and this results in networks that are

purely excitatory. In this simplified model we show that the neuronal avalanche sizes follow a

power-law distribution with λ ≈ 1 as the network self-organizes to the critical state. We examine

the importance of resource-transport amongst the glial cells by studying the behavior of the model

with heterogeneity in source rates or in network structure. For homogeneous networks, we derive

a 3-dimensional map that qualitatively reproduces the behavior of the full system.

The rest of this thesis is organized as follows. In Sec. 2, we review the vast literature spanning

the areas of critical dynamics, STDP and glia. We introduce and describe the two variants of our

model in Sec. 3 and present results of numerical simulations on both variants, using Erdös-Renyi

random network structure for both neural and glial networks, in Sec. 4. Our main finding is that

the diffusion of resources amongst the glial cells is required to control the largest eigenvalue λ so

that it remains close to 1. We show that this result is fairly robust to changes in model parameters.

We also demonstrate using model 1 that the neural network can learn, memorize what it learned

and after learning recover the critical state with λ ≈ 1. Finally, we present our conclusions and

discuss open problems in Sec. 5.



Chapter 2

Literature review

In this section, we review some of the vast literature that spans diverse topics such as critical

dynamics in experimental and computational neuroscience, learning in a neural network, the glial

network, multilayer networks, etc. For a quick review of the relevant areas, we classify the literature

space and provide example references in Table 2.1. We begin with a brief introduction to networks

focusing on some of the recent advancements in the area of dynamics on multilayer networks. Next,

we give a brief introduction to the anatomy of a neuron and how a neuron fires. This is followed

by a brief history of biological neuron models– and subsequently by an introduction to simplified

mathematical models of the neuron. We argue that this simplification is useful and can shed light on

the collective dynamics of neural networks. In these mathematical models, we show that Hebbian

(after Donald O. Hebb [15]) learning rules can cause the network dynamics to become unstable.

We propose a novel mechanism based on transport of metabolic resources via the glial network that

stabilizes the network dynamics as the network learns.

2.1 Networks

Networks or graphs occur in many disciplines of science such as physics, neuroscience, biology,

chemistry, etc. A network can represent a set of arbitrary interactions amongst a set of entities.

For many years, researchers from varied disciplines have studied networks both theoretically and

empirically. Networks have thus become invaluable to the understanding of complex systems. In

this section, we start by describing how networks are represented in practice and some of the basic
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Topic Subtopics Example references

Balanced cortical dynamics/ ◦ Review [1, 2, 3, 4, 46, 47, 48]
Critical Dynamics ◦ Experiments: in vivo or in vitro [8, 9, 49, 50, 51, 52, 53, 54]

◦ Mathematical modeling [11, 12, 13, 43, 47, 55]

STDP learning rule ◦ Review [17, 18, 19, 56]
◦ Experiments: in vivo or in vitro [16, 57, 58, 59]
◦ Mathematical modeling [19, 60]

Glia ◦ Review [21, 61, 62]
◦ Experiments: in vivo or in vitro [22, 25, 63, 64, 65, 66]
◦ Mathematical modeling [31, 67, 68, 69, 70]

Multilayer networks ◦ Review [45, 71]

Table 2.1: Literature classification with example references. The literature is divided into 4 topics as
shown above: Balanced/Critical dynamics, STDP learning rule, Glia and Multilayer networks. Each
topic is further subdivided into multiple subtopics: Is it a review? Does it include experimental
work? Does it include mathematical modeling? Some example references are provided for each
subtopic. The goal is to make the relevant literature easily accessible and to figure out the gaps
in the literature space, i.e., to figure out the areas that are yet to be explored: for instance, the
literature cited under the mathematical modeling subtopic for glia, reveals that there have been no
mathematical models connecting glia to the area of critical dynamics. Our present work fills that
gap.
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network terminology that we use in this thesis. Second, we review some of the literature spanning

the area of dynamics on multilayer networks.

2.1.1 Network representation and terminology

A network or a graph G = (V,E) consists of set of vertices V and a set of edges E. Typi-

cally, the vertices denote the entities and the edges denote the interactions between these entities.

Assuming N vertices and M edges, we can represent the network using a N ×N adjacency matrix

W with entries

wnm =

 1 if there is an edge from vertex m to vertex n ,

0 otherwise .

(2.1)

This representation is typically used when the network is dense, i.e., it consists of a high number

of edges (note that the maximum number of edges a network with N vertices may have is N2).

Considering computer software implementation for networks, note that if the network is sparse

storing N2 entries for the adjacency matrix could unnecessarily take up a lot of storage space.

Hence, in practice, we use a sparser representation such as the adjacency list that consists of a N

lists (one for each vertex) such that the list for vertex n stores all the vertices that have edges from

node n.

An example network along with its adjacency matrix and adjacency list representations is

shown in the Fig. 2.1. Since the example shown here is an undirected network, the adjacency

matrix, W , is symmetric with wnm = wmn for all (m,n). Also, this network is unweighted, i.e.,

the edges have a uniform strength of 1 unit. In practice, this is seldom the case as interactions

often have both directionality and varying strengths. In such cases the matrix W may not be

symmetric and may have real-valued weights with either a positive or a negative sign. In computers,

adjacency matrices may be implemented with Boolean arrays (unweighted networks) or they may

be implemented with arrays that allow for signed floating point values (weighted networks). In

contrast, adjacency lists are typically implemented with linked-list like data structures such that

each node in the list consists of two attributes: vertex id and address of the next node in the list. In
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the case of weighted networks, each linked-list node may be given an additional attribute that stores

the weight. While the example network is a simple network, i.e., one without self-loops or multiple

edges between a given pair of nodes, such a simplified representation has been quite successful to

model empirical networks with skewed degree distributions [72, 73], small-world property [74] or

community structure [75]. However, many real-world networks have multiple levels of interaction

between the same set of entities. In what follows, we describe a different view of networks called

the multilayer network that allows arbitrary levels of representation thus making networks even

more applicable in empirical contexts.

2.1.2 Multilayer networks

Consider the example of social interactions amongst a set of people. The individuals in such a

network may communicate via online social platforms such as Facebook as well as via offline social

gatherings. The level or strength of interactions is often quite different in these two cases. Offline

interactions may indicate stronger bonds as opposed to online interactions amongst the same set

of individuals. Thus, depending on the final goal, one may choose to model online and offline

interactions differently. This gives rise to multiple layers of interactions between the same set of

entities. Such networks are called as multiplex networks. Generally, however, the entities may vary

in each layer. An individual may be connected to many more individuals online than offline and

some individuals may not be available on online platforms. This gives rise to a more generalized

network view that is referred to as a multilayer network.

Formally, a multilayer network can be defined as the pair G = (G, I) where G represents the

set of graphs G = {G(1), G(2), . . . , G(l)} for each of the l layers in the multilayer network. Each

graph can be represented as a set of vertices and edges in the usual way as: G(i) =
(
V (i), E(i)

)
. Let

N (i) and M (i) denote the number of nodes and the number of edges respectively for layer i. Next,

we define a set I that represents the set of interactions between components (nodes or edges) of a

graph from one layer G(i) and the components (nodes or edges) of a graph from any other layer

G(j). Thus I = {I(12), I(13), . . . , I(1l), I(21), I(23), . . . , I(2l), . . . , . . . , I(l(l−1))}, where each entry I(ij)
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Figure 2.1: An example network G = (V,E) is shown in panel a) has N = 6 vertices given by
the set V = {1, 2, 3, 4, 5, 6}. The edges E are represented using an adjacency matrix that is shown
in panel b). This matrix is populated using the rule given by Eq. (2.1). For example the edges
from node 1 to nodes 2, 3, 4 are represented by the entries of 1 in the first row, i.e., the entries
w21 = w31 = w41 = 1. The edges E may also be described using a sparser representation such
as the adjacency list shown in panel c). While adjacency matrices are typically implemented in
computer software using 2-dimensional arrays, adjacency lists are implemented as linked lists such
that we have a list for each vertex and this list consists of vertex ids that have edges from the given
vertex. For example, in the adjacency list for vertex 3, we put vertex ids 1, 2, 5 since we have edges
to these vertices from vertex 3.
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Figure 2.2: An example multilayer network with two layers, i.e., l = 2. The multilayer network
can be described in its entirety by G = {G, I}, where G = {G(1), G(2)} is the set of graphs and
I = {I(12), I(21)} is the set of interactions. Each graph consists of a set of nodes and edges (as
described in Sec. 2.1.1). We model the interactions very generally as the edges from any node or
edge from one layer to any node or edge of other layers. In most studies, however, the interactions
between layers are modeled only amongst the nodes [45, 71]. Finally, we depict the interactions
using matrices I(12), I(21) shown in the bottom two panels. Note that if these matrices are sparse
(i.e., they have few non-zero entries), we could instead use an adjacency list representation.
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defines a matrix with dimensionality
(
N (j) +M (j)

)
×
(
N (i) +M (i)

)
such that each non-zero entry

in I(ij) defines an edge (or interaction) from a component in graph j to a component in graph i.

Although in most studies (e.g., [76]) the interactions across the different layers are modeled amongst

the nodes, in general they could be modeled between nodes/edges from one layer to nodes/edges

from another layer (e.g., [20]). Fig. 2.2 shows an example of a multilayer network with l = 2 such

that G = {G(1), G(2)} and I = {I(12), I(21)}. Though this example shows the matrices in set I as

unweighted, they may be modeled as weighted and also using a different representation such as

an adjacency list representation. In this thesis we model the interactions such that nodes in one

layer connect to the edges in the other layer. For implementation we use an adjacency-list like

representation to store these sparse matrices.

2.1.3 Dynamics on multilayer networks

There have been studies on dynamics on multilayer networks including spreading processes

[77], synchronization [71], evolutionary dynamics [78], etc. More relevant to our present study,

Nicosia et al. [76] study synchronization dynamics of a neural network that is bidirectionally

coupled to a transport network that provides nutrient support. In particular they explore a model

of a multiplex network where synchronization dynamics in one layer affects and is affected by the

transport dynamics in the other layer. Such a multiplex network is shown in panel (a) of Fig. 2.3

(figure reproduced from [76]). In this two-layer multiplex network model of N nodes, each layer

can have different topologies that govern the two types of interactions. The state of a node n in

the synchronization layer is defined as xn and it denotes the phase for node n. Thus, we have a

fully synchronized global state if all xn are equal. The firing rate for a node n (and hence its phase

xn) depends on the amount of resource at that node. Resources are modeled using biased random

walk processes across the transport layer. The state of a node n in the transport layer is defined as

yn and it denotes the fraction of random walkers at that node. This fraction of random walkers in

turn defines the amount of resource at that node. The movement of walkers across the transport

layer defines the flow of resources. Thus modeling the state variables xn and yn allows us to study
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Figure 2.3: The two-layered multiplex network of [76]. Panel (a) shows a multiplex representation
where one of the layers models neural network synchronization dynamics and the other layer models
resource transport dynamics. In particular, synchronization amongst model neurons (nodes) is
modeled using the Kuramoto model (see Eq. (2.2).) The global order parameter that quantifies
the amount of synchrony amongst the neurons is depicted in panel (b). The resource transport is
modeled as a biased random walk and the fraction of random walkers at a node defines the amount
of resource at that node. Inspired from biological findings, the bias of the random walkers is modeled
such that high frequency neurons receive a higher allocation of walkers and hence resource. An
example random walk is depicted in panel (c). Reprinted figure with permission from [V. Nicosia,
P. S. Skardal, A. Arenas, V. Latora APS, Physical Review Letters, 118, 138302, 2017] © (2017)
by the American Physical Society.
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the impact of resource-transport on synchronization dynamics. The states xn ∈ [0, 2π) evolve as

per the Kuramoto model [79]

ẋn = wn +K
N∑
m=1

a[1]
nm sin (xm − xn) , (2.2)

where K denotes the coupling strength, wn denotes the natural frequency and a
[1]
nm is an entry in the

adjacency matrix A[1] for layer one. In this case, we can define the amount of global synchronization

using the global order parameter reiψ = 1
N

∑N
n=1 e

ixn depicted in panel (b) of Fig. 2.3. The flow

of nutrients or energy is modeled as a biased random walk process on the transport layer using the

states yn that define the fraction of random walkers at node n and evolve as follows:

ẏn =
1

τy

N∑
m=1

(
a

[2]
mnχαn∑
l a

[2]
mlχ

α
l

− δnm

)
ym . (2.3)

Here τy denotes the time scale, a
[2]
nm is an entry in the adjacency matrix A[2] for layer two, and the

variables χn define node properties that are used to bias the random walk. The term
a

[2]
mnχαn∑
l a

[2]
mlχ

α
l

denotes the probability that a walker transitions from node m to node n. Additionally, the bias is

controlled using a parameter α such that α > 0 (or α < 0) results in walkers moving preferentially

towards nodes with higher χn (or lower χn) values as shown in panel (c) of Fig. 2.3. Finally, we

can recover an unbiased random walk using α = 0.

These two separate dynamics are intertwined such that the firing rate of node n depends on

the availability of resource at node n (in the transport layer) and the amount of resource at node n

in turn depends on the amount of local synchronization for node n (in the synchronization layer).

In particular the evolution of natural frequencies wn depends on the amount of available random

walkers at node n:

ẇn =
1

τw
[Nyn(t)− wn] . (2.4)

The motivation for this comes from the fact that higher oscillation frequency usually corresponds

to a higher energy requirement and hence an increased blood flow [80]. Thus, in this case, the

frequencies wn relax to the number of random walkers with time scale τw and hence the amount of
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resource at the respective nodes. Finally, the node parameters χn evolve

χ̇n =
1

τχ

[
sdyn
n − χn

]
(2.5)

such that χn relax to sdyn
n with time scale τχ. The term sdyn

n measures the amount of local

synchronization for node n in the synchronization layer. Since parameters χn are used to bias the

random walk, coupling to the amount of local synchronization results in the probability of transition

for random walkers to be biased towards strongly-synchronized nodes for α > 0 and vice-versa for

α < 0. This correctly models the notion that areas of the brain with higher electrical activity receive

a higher blood inflow [81, 82] or resource. Using such coupled dynamics of resource transport and

synchronization, Nicosia et al. [76] obtain interesting collective phenomena such as first-order (or

explosive) synchronization and heterogeneous allocations of random walkers (resources) across the

transport network. Our present work shares some of the ideas of modeling a coupled two-layer

neural network where one layer provides resources required by the other layer. However our work

differs from [76] in that we are interested in modeling the seemingly opposing goals of stability and

learning, and critical dynamics in neural networks.

2.2 Neuron anatomy

We now turn our attention to biological neural networks and start by describing the anatomy

of a neuron. A neuron is one of the fundamental working units of the brain. It is an excitable cell

that is capable of transmitting information to other nerve cells. Figure 2.4 shows a cartoon of the

anatomy of a neuron. As shown, each neuron has a soma (the cell body that contains the nucleus)

and projections called dendrites and axons. Two neurons may be connected via a synaptic cleft

(or a synapse) that allows for signals to pass from the axon of a presynaptic (source) neuron to

the dendrite of a postsynaptic (target) neuron. Thus dendrites bring information from neighboring

presynaptic neurons and axons transmit information to the postsynaptic neurons. A synapse is thus

a junction between the axon of a presynaptic neuron and the dendrite of a postsynaptic neuron.
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Figure 2.4: A cartoon sketch showing the anatomy of a neuron. A neuron consists of three main
parts– the soma, dendrites and axons. The main cell body is called the soma. Dendrites collect
information from neighboring neuronal cells and axons transmit information to other neurons. A
synapse is a small gap or (a cleft) between the axon terminal of one neuron and the dendrite of
some other neuron.
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Figure 2.5: States of the biological neuron model of Hodgkin-Huxley (HH) in panel (a) and the
equivalent states in the Greenberg-Hastings (GH) model in panel (b). Kinouchi-Copelli (KC) model
[11] is one of the examples of a computational model based on the GH model. In the KC model the
transition from ready to excited state is stochastic and depends on the amount of stimulus from
neighboring neuronal cells. Transitions from excited to refractory state 1 and so on back to the
ready state are deterministic. (Figure courtesy of Daniel Larremore [47].)
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2.3 Biological neuron models

A neuron is said to be in the resting/ready state when it is ready to accept inputs via its

dendrites from neighboring neuronal cells. In this state, the cell membrane potential is roughly

−70mV; this means that the electrical potential difference between the neuron and its surrounding

environment is 70mV. As the neighboring neurons fire, they transmit electrical signals and the

neuron accepts these inputs via the dendrites. This causes chemical changes both within the neuron

and its surrounding environment and the neuron becomes more and more depolarized– causing the

cell membrane potential to increase. If a neuron is depolarized above a certain threshold then there

is a burst of electrical activity and the neuron transmits a spike (or an action potential) down its

axon. This is called the excited state. Excitation causes subsequent chemical changes that cause

the neuron to start polarizing. After some time has passed, the neuron becomes hyperpolarized as

the membrane potential drops below resting state potential to roughly −82mV. In this state, the

neuron is unable to accept inputs from neighboring neurons and is hence said to be in the refractory

state. As time passes further chemical changes help the neuron to regain its ready state and the

cell membrane potential goes back near −70mV. This cycle is depicted in panel (a) of Fig. 2.5. For

a detailed review on the biology of a neuronal cell, refer to Levitan and Kaczmarek [14].

The study of biological neuron models has a long history. One of the most pioneering works

was by Hodgkin and Huxley in 1952 [83, 84, 85, 86, 87]. Using both experiments and mathematical

model, they studied the basis of generation and propagation of the action potential (or a spike)

in the giant axon of the squid Loligo– for which they received the Nobel Prize in 1963. Their

mathematical model is referred to as the Hodgkin-Huxley (HH) model and consists of a set of

ordinary differential equations that describe the chemical changes in a neuronal cell that gives the

typical plot for cell membrane potential depicted in Fig. 2.5(a). In 1961, Fitzhugh [88] proposed a

simple two-dimensional system characterizing the spike propagation in the HH model. The following

year Nagumo et al. [89] described the equivalent electrical circuit capturing the simplification of HH

proposed by Fitzhugh. This simplified two-dimensional model is hence referred to as the Fitzhugh-
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Nagumo model. Since then there have been many variants and derivatives of these models. For

in-depth reviews refer to Gerstner and Kistler [90] and Izhikevich [60].

2.4 Simplified neuron models

Biological models mentioned thus far describe neuronal firing in terms of changes in cell

membrane potential in continuous time. We can abstract out more details by using a discrete

state model such that each neuron is either in a “ready”, “excited” or “refractory” state. For

the HH model these would respectively correspond to the resting state membrane potential (in

which the neuron is “ready” to transmit a spike), the action potential (in which the neuron fires

or is “excited”) and the hyperpolarized state (in which the neuron is recovering and hence is in

the “refractory” state). Such an abstraction is provided by the Greenberg-Hastings (GH) cellular

automaton [91] that uses discrete states and discrete time [see panel (b) of Fig. 2.5].

While models based on the GH cellular automaton are biologically less plausible, they can

still be quite useful to explain certain biological phenomena. For instance, it is known that an

isolated neuron can only encode signals that span a single order of magnitude [92, 93]. However,

our senses can typically process a wide range of inputs, spanning several orders of magnitude. One

of the earliest works on relating the stimulus intensity (I) and sensation intensity (S) was done by

Weber, Fencher and Stevens [94]. Their law shows a nonlinear power relation between S and I as

S ∝ Iα, where the exponent α determines the growth of S with respect to I and is found to be

different for different types of stimuli [94]. Of particular interest to neurobiologists is the question–

What neuronal mechanisms can give rise to such psychophysical laws?

Kinouchi and Copelli [11] showed that the key to answering this question lies in emergent

complex dynamics owing to the interactions between coupled excitable neurons. Their model is

based on the cyclic GH cellular automaton. Each excitable cell (or neuron) i = 1 . . . N has n states.

We let sti denote the state of neuron i at a discrete time step t; sti = 0 denotes the ready or resting

state, sti = 1 denotes the excited state and the remaining sti = 2, . . . n − 1 denote the refractory

states. This is depicted in panel (b) of Fig 2.5. For each neuron the transition from ready (sti = 0)
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to excited state (st+1
i = 1) is stochastic and is governed by two things– (1) an external stimulus

modeled by a Poisson process with rate r that implies a transition probability 1− e−r∆t and (2) a

probability pij due to neighbor j being in the excited state in the previous time step (st−1
j = 1).

This latter point refers to the stimulus received from the neighboring neurons. In their original

work, neurons are connected in an undirected Erdös-Renyi random network. Once in the excited

state, a neuron deterministically goes through the n refractory states and back to the ready state.

Transitions happen in discrete time steps (with the assumption that ∆t = 1 ms). A local branching

ratio σj refers to the expected number of excitations caused by neuron j in the next time step

σj =

N∑
i=1

pij . (2.6)

The average of σj over the network nodes is called the branching ratio and is denoted by σ. When

σ < 1 it is expected that the network activity dies out. Similarly, when σ > 1 the network activity

saturates. At σ = 1 one neuron, on average, excites one other neuron and hence we can think of

this as a balanced cortical state. The network activity at time t, St, is defined as the fraction of

neurons in the excited state, i.e., St = N−1
∑

i s
t
i. The time averaged activity over a large time

window T is defined as:

F = T−1
T∑
t=1

St . (2.7)

In this model, one is interested in the network response F to a stimulus represented by r, the rate

of external stimulation to each node. Typical stimulus-response curves for different values of σ are

depicted in figure 2.6. In general, the network response F (on the y-axis) increases with stimulus

r (on the x-axis). If we let F0 denote the response in the limit r → 0, the inset shows that for

very low σ, F0 ≈ 0. This corresponds to the black lines of the figure. For high σ values, F0 is

non-zero and the blue curves show that the network activity is ceaseless and in general high for

all r values. There is a phase transition for F0 at a critical value of σ beyond which the network

activity becomes self-sustained even in the absence of external stimulus. This corresponds to the

red curve with σ = 1. Fig. 2.6 also shows a mean-field approximation of the model (solid lines) that
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Figure 2.6: Typical stimulus-response curves from simulations on the Kinouchi-Copelli (KC) model
(The plot shows figure 2 of [11]). Each data point (circle) is obtained from simulating the KC
model on a network with N = 105 neurons, average degree 〈d〉 = 10, number of refractory states
n = 5 and time window of averaging T = 103 ms. The solid lines corresponds to a mean-field
approximation of the model [11]. The inset shows the response F0 for small r values. Reprinted by
permission from Macmillan Publishers Ltd: Nature Physics 2: 348-351, ©(2006).
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provides a good fit to the results from simulations (circles). A notable aspect of this result is that

for low stimulus values, the exponents m obtained for the theoretical solid lines are correctly fitted

for the Weber-Fechner-Stevens law (F ∝ rm); with 1 ≤ m < 1/2 representing the subcritical state,

m = 1/2 representing the critical state and m < 1/2 representing the supercritical state. Thus

independent of the sophistication of the individual neuron model, the overall KC model provides a

result for their collective dynamics that is of significant importance to neurobiologists.

The value of σ = 1 is special for another reason: it corresponds to optimal signal processing

at a phase transition (although, as discussed below, this applies only to homogeneous networks).

Consider a typical response curve for high σ value, σ = 1.2, shown in figure 2.7(a). For low values

of r, F0 remains low but does not drop to 0 owing to σ > 1. As r is increased systematically the

response F increases and finally saturates at Fmax. The plot shows a range of values [F0.1, F0.9]

where F is very sensitive to changes in r. Note that below F0.1 and above F0.9 the network response

does not vary much and hence the neural network cannot encode r efficiently in those regimes. The

range [F0.1, F0.9] is calculated as 10% − 90% of the full range [F0, Fmax] [11]. The corresponding

range [r0.1, r0.9] is calculated by using the inverse function F−1 and represents the range of stimuli

that the neural network can encode with high fidelity. This is called the dynamic range and is

calculated in decibels (dB) using the following formula:

∆ = 10 log10(r0.9/r0.1) . (2.8)

Fig 2.7(b) shows the plot for dynamic range as a function of the mean branching ratio, σ, and

shows why σ = 1 is a special value. The dynamic range is maximum when the neural network is in

a balanced cortical state (σ = 1) as one neuron on average excites one other neuron. This is also

referred to as the critical state. The dynamic range drops for values of σ < 1 where activity is low

(sub-critical state) and σ > 1 (super-critical state). This result is robust to changes in parameters

such as the average degree 〈d〉, the number of refractory states n, etc.

Larremore, Shew and Restrepo [12] showed that this result, however, is not robust in networks

with a heterogeneous degree distribution, degree-assortativity or degree-degree correlations. For
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Figure 2.7: Results of the Kinouchi-Copelli model reproduced from Figure 2 of their paper [11].
Panel (a) shows a stimulus-response curve for σ = 1.2. Panel (b) shows the dynamic range, ∆ as a
function of the local branching ratio, σ. Optimal signal processing happens when ∆ is maximized
at the critical value of σ = 1. Reprinted by permission from Macmillan Publishers Ltd: Nature
Physics 2: 348-351, ©(2006).
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Figure 2.8: Figure reproduced from [12]. Panel (a) shows the low-stimulus response F0 as a
function of varying mean degree, 〈d〉. For degree-degree correlations the value of 〈d〉 = 1 does
not correctly predict the phase transition. Panel (b) shows the dynamic range ∆ as a function of
the principal eigenvalue of the network adjacency matrix, λ. When λ = 1 the dynamic range is
maximized. Reprinted figure with permission from [D. B. Larremore, W. L. Shew, J. G. Restrepo,
APS, Physical Review Letters, 106, 058101, 2011] © (2011) by the American Physical Society.
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instance, Fig. 2.8(a) shows the results for the KC model (circles): the response in the r → 0 limit,

F0, is shown on the y-axis as the mean degree, 〈d〉, is varied on the x-axis. Thus each circle denotes

a different network structure. The model and approximations presented in [12] are depicted by solid

and dashed lines respectively. In the presence of degree-degree correlations, it can be seen that

the value of 〈d〉 = 1 does not correctly predict the phase transition of F0. In fact it can be shown

that this phase transition occurs when the largest eigenvalue of the network adjacency matrix,

λ, is exactly one. Network structures having this property are marked by the red arrows. Thus

λ = 1 correctly predicts the phase transition. Finally, the dynamic range of the network response

is maximized when the adjacency matrix has λ = 1. Fig. 2.8(b) (reproduced from [12]) shows that

the curve for ∆(λ) is qualitatively similar to the one in the KC model (see Fig. 2.7(b)) except that

the x-axis denotes the principal eigenvalue of the adjacency matrix as opposed to the branching

ratio. This result is very robust and holds for networks with homogeneous and heterogenous degree

distributions, varying the number of refractory states, presence of delays [95] and the inclusion of

inhibitory nodes [13, 96].

The critical value of the branching ratio σ = 1 (or, more generally, λ = 1) has other important

implications for the collective dynamics of a neural network. More specifically it has been found

both experimentally and using simulations [8, 9], that when σ = 1, the distribution of avalanche

sizes shows no characteristic scale: it follows a power-law distribution. A power law distribution

has the mathematical form– P (x) ∝ x−γ , where x is the event (in this case avalanche size) and γ

is the exponent. An avalanche is defined as the cascade of activity that follows an initial stimulus.

The avalanche size can be defined as the sum of the neural activity St between t = [T1, T2] such

that T1 indicates the start time of the network activity owing to the input stimulus and T2 indicates

the time at which network activity dies out.

Using multielectrode arrays, Beggs and Plenz [8] recorded neuronal activity in cultured and

acute (short-living) rat slices (see Fig. 1A of [8]). They defined the branching ratio as the average

number of electrodes that are active in the current time interval, given that one electrode was active

in the previous time interval. To take into account the refractoriness at individual electrodes, they
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approximate the branching ratio using only the first and the second time interval. When the

branching ratio was held near its critical value, they observed neuronal avalanches with avalanche

sizes following a power-law distribution with the characteristic exponent value of γ = −3/2. This

power-law distribution has been later supported by statistical analyses as shown in [97]. This

is depicted by the dashed line in Fig. 4F of [8]. For varying the total number of electrodes

n = {15, 30, 60}, they get power-law distributions for avalanche sizes each following γ ≈ −3/2.

This signature of criticality has also been found in other experimental works both in vivo [5, 6, 7]

and in vitro [9, 10].

Shew et al. [9] showed experimentally that network activity has to be balanced delicately

between the two extremes of subcritical and supercritical states in order for the neuronal circuit

to exhibit maximum dynamic range. This was the first experimental evidence of this potential

information handling benefit of criticality. To test the deviations from criticality, they defined a

measure κ = 1 + 1
m

∑m
k=1

(
F T (Sk)− FE(Sk)

)
where F measures the fraction of avalanche sizes,

s < S, i.e. the cumulative density function (CDF). The parameter κ measures the difference

between empirical distribution FE and the theoretical reference CDF given by F T in such a way

that a perfect power law with the desired−3/2 exponent for the empirical avalanche size distribution

gives κ = 1. An empirical distribution characteristic of the subcritical state (e.g. exponential) gives

κ < 1, and one characteristic of the supercritical state gives κ > 1. Fig. 2.9 shows the results. Panel

a) shows an example of a typical stimulus-response curve. The external stimulus was provided by

electrical shocks and the response was measured using microelectrode arrays. Panel b) shows the

dynamic range (∆) as a function of κ. The presence of a drug such as AP5 (blue) makes network

activity subcritical as it suppresses a glutamate receptor (responsible for excitations), while the

presence of a drug such as PTX (red) results in inhibition of GABA receptor (responsible for

inhibition), thus making the network activity supercritical. As seen from panel b) the dynamic

range is maximized in the absence of drugs (black symbols) when the activity is well balanced

between hypoexcitable and hyperexcitable states.

Finally, a general criterion for such signatures of criticality has been obtained for compu-
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Figure 2.9: (a) Stimulus response curve obtained experimentally using electric shocks as external
stimulus and response measured using multielectrode arrays [9]. (b) The dynamic range as a
function of the parameter κ (see text for definition). When the activity is balanced between
hypoexcitable state (induced by drug AP5 and shown in blue) and hyperexcitable state (induced
by drug PTX and shown in red), the dynamic range is maximized. Here, the dark black line shows
the binned average. (Figure adapted with permission from [4, 9]).
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tational models using excitatory [98] and inhibitory [13] nodes: when the largest eigenvalue of

the adjacency matrix is one, i.e., λ = 1, we see avalanche sizes being power-law distributed with

γ = −3/2. This result has been shown to be robust to homogenous and heterogenous degree dis-

tributions, degree assortativity and degree-degree correlations [12]. Thus, transition from low to

high activity, a power-law distribution of avalanche sizes, and a maximized dynamic range coexist

both in experiments and in simplified mathematical models.

Computational models considered thus far explain some of the neurobiological phenomena

such as optimized dynamic range, statistics of neuronal avalanches, etc. However, they do not in-

clude learning: the ability of neural circuits to adapt to a constantly changing external environment.

Synaptic modification is the basis for learning and memory. From the perspective of computational

models, synaptic modification could result in a constantly varying largest eigenvalue λ of the neural

network adjacency matrix. Since λ = 1 (critical state) corresponds to a balanced cortical state and

provides important functional benefits [4] such as optimal dynamic range, information transfer and

information capacity, one question of interest is: How does the brain maintain the desired balanced

cortical state in the face of constant synaptic modifications? In this thesis, we introduce and study

a novel mathematical model of a neural network to explore a possible solution to this long-standing

question. Before presenting our approach, we review some of the pertinent learning mechanisms.

In 1949, D. O. Hebb [15] put forth his postulate for learning or synaptic modification: “When

an axon of a cell A is near enough to excite a cell B and repeatedly and persistently takes part in

firing it, some growth or metabolic change takes place in one or both cells such that A’s efficiency,

as one of the cells firing B, is increased”. In other words, if A takes part in firing B frequently,

the strength of the synapse from cell A to cell B is increased. If we consider a network of neurons

and synapses, the Hebbian learning rule can be applied independently at any synapse thus making

it quite powerful. The downside, however, is that synaptic modification across the neural network

becomes difficult to manage. Without regulatory mechanisms, Hebbian learning can cause synaptic

strengths to grow or shrink uncontrollably. Abbott and Nelson [19] review some of these regulatory

mechanisms that could potentially be used to control runaway synaptic strengths. We review these
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regulatory mechanisms and put them in the context of computational models such as the models

of Kinouchi & Copelli [11] and Larremore et al. [12, 13].

2.5 Spike-timing-dependent plasticity (STDP)

In 1983, Levy and Steward [16] studied the neuronal cells in the EC (Entorhinal Cortex)

hippocampus system, an area of the brain that is primarily responsible for memories. They varied

the relative timing of inputs from one part of the EC to another part (dentate gyrus) and studied

its effects on synaptic modification. They found that synapses were reinforced (potentiated) if a

weak input preceded a strong input and the synapses weakened (depressed) if the ordering of the

inputs were reversed. This was the first evidence of timing dependence on Hebbian learning. The

long-term potentiation (LTP) and depression (LTD) thus depend on temporal order of firing and

this result varies across preparations and species as shown in Fig. 2.10, reproduced from [19]. Panel

(a) shows that for layer-5 neocortex preparation if the tpre, i.e., timing of the presynaptic action

potential (spike) is less than tpost, i.e., timing of the postsynaptic action potential (spike), then LTP

is induced. The amount induced is more for a smaller difference tpre− tpost. This behavior of STDP

is qualitatively different for other cases; for instance, panel (c) shows that the LTD as opposed to

LTP is induced in the ELL (electrosensory lateral line) of electric fish if tpre < tpost. Further studies

by Magee & Johnston [58], Markram et al. [57] and Bi & Poo [59] were in agreement with these

results. For a comprehensive review refer to Caporale & Dan [17] and Markram et al. [18].

2.5.1 Synaptic strength limitation (SSL)

In most modeling studies, synaptic strengths are capped off at a maximum value [99]. From a

biological perspective, having an upper bound for synapse strength makes sense as one can imagine

a limit on the amount of neurotransmitter or physical dimensions of a neuron. In chapter 3, we

demonstrate how this rule is inadequate to control runaway synaptic growth in computational

models considered in this thesis.



31

Figure 2.10: Shows the amount of long-term potentiation (LTP) or long-term depression (LTD)
induced as a function of the difference of the timing between presynaptic (tpre) and postsynaptic
(tpost) action potentials. The qualitative and quantitative behavior varies for different preparations
and different species. Reprinted by permission from Macmillan Publishers Ltd: Nature Neuro-
science 3: 1178-1183, ©(2000).
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2.5.2 Synaptic scaling (SS)

Another mechanism to control runaway excitability is to globally adjust all synapses incident

on a given postsynaptic neuron according to its firing rate. This mechanism is called synaptic

scaling. It was first observed in cultured neocortical neurons by Turrigiano et al. [100]. They

studied a cultured neural network generating robust spontaneous activity, which consisted of both

excitatory and inhibitory neurons. Blocking a fraction of inhibitory neurons, they observed the

network firing rates over a time scale of many hours. They found that although the firing rates

initially increase (owing to the blocking of inhibition), after many hours the firing rates return back

to the control values.

There are in general two ways of scaling input synaptic strengths [99]– (i) Additive: In

this case, synaptic strengths are changed by the same amount. (ii) Multiplicative: Changes are

proportional to the synaptic strengths. In the long run, additive adjustments result in a maximum

value for synapse strength; this well modeled by the SSL rule described in the previous section. The

synaptic scaling rule described above, is an example of a multiplicative adjustment. In chapter 3, we

discuss the issues in incorporating this control mechanism in the computational models considered

here.

2.6 Self-organized quasi-criticality

Levina, Hermann and Geisel [43] introduced a model that allows for a regulatory feedback

control of network dynamics resulting in self-organization to criticality. In particular, they define

a model of N integrate-and-fire neurons that are characterized by membrane potential hi, where

i ∈ {1, . . . , N}. At any given time t, if the membrane potential exceeds a threshold θ, i.e., hi(t) > θ,

then neuron i transmits a spike and its membrane potential, hi, is reset by subtracting the amount

θ. At time t, a random external stimulus process ξτ (t) ∈ {1, . . . , N} selects neuron i, ξτ (t) = i

with rate τ . If i is selected, its membrane potential hi increases by an amount Iext. Additionally,

there is some delay in synaptic transmission that is denoted by τd. The dynamics of the membrane
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Figure 2.11: Self-organized criticality in a model of dynamical synapses put forth by Levina et al.
[43] (see Eqs. (2.9), (2.10)). For certain parameter regimes, the model self-organizes to a critical
state characterized by power-law distributed avalanche size distributions. The avalanche size L
is plotted on the x-axis and the distribution P (L,α) is plotted on the z-axis. The parameter α
controls the synapse strengths. In particular, varying the coupling strength α (on y-axis) we get
three different regimes of operation: (1) Subcritical for α < 1.3 (2) Critical for α ≈ 1.4 and (3)
Supercritical for α > 1.6. Reprinted by permission from Macmillan Publishers Ltd: Nature Physics
3: 857-860, ©(2007).
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potential can be thus described as follows:

ḣi = δi,ξτ (t)I
ext +

1

N

N∑
j=1

uJijδ(t− tjsp − τd) (2.9)

Here, the first term denotes the external stimulus while the second term defines the intrinsic network

dynamics. In particular, Jij defines the strength of the synapse from neuron j to neuron i in terms

of some resource such as the amount of neurotransmitter. The dynamics of Jij is as follows. If the

presynaptic neuron j spikes, Jij decreases by a fraction u; this is intended to model consumption

of neurotransmitter that is required for spiking. In the absence of spiking, Jij relaxes to a value

α/u with a slow time scale, τJ = τνN , where 1 < ν � N . This results in the following update

equation for Jij :

˙Jij =
1

τJ

(α
u
− Jij

)
− uJijδ(t− tjsp) (2.10)

Note that the parameter α controls the synaptic strength. Varying this single parameter allows us

to explore different regimes of operation. Fig. 2.11 shows the avalanche size distributions P (L,α)

as a function of parameter α. As shown, for a sufficiently wide range of α (red) the model self-

organizes to a critical state characterized by P (L,α ∈ (1.3, 1.6)) ∝ L−3/2. For values of α < 1.3,

the model operates in the subcritical regime and for values of α > 1.6, the model operates in the

supercritical regime. In this thesis, we show that the models we propose also self-organize to the

critical state. For the model described above, the critical state is stable for a narrow range of

α ∈ (1.3, 1.6). In contrast, we show in chapter 4 that for the models we introduce in this thesis in

chapter 3, the critical state is stable for a large range of parameter settings.

Bonachela and Muñoz [101] showed that the scale-invariance found in slowly-driven systems

without a conservation law (such as the one discussed above) is not true scale-invariance. Instead,

in such cases, the system merely oscillates about the critical state with amplitudes based on the

rates of loading and dissipating mechanisms, i.e., in this case, the rate of resource replenishment in

the absence of spiking and the rate of resource consumption in the presence of presynaptic spike.

They call this quasi-criticality, since the system oscillates about the critical point with some am-
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plitude that does not vanish in the large N limit.

In this chapter, we have reviewed the pertinent literature focussing on diverse topics such as critical

dynamics, spike-timing-dependent plasticity and the mechanisms used to control runaway excita-

tion. We now discuss in brief the motivation behind the approach we use in this thesis.

The brain makes up only 2% of human body weight, but is responsible for over 20% of

energy consumption [102, 103]. Most of this energy is consumed at the synapses both during on-

going neural network dynamics and during learning. This energy or resource consumption impacts

learning processes such as the STDP. Delattre et al. [33] studied the STDP learning rule on

acute slices of juvenile rat somatosensory cortex. Their study revealed that the neural network

activity flips STDP-induced LTP to LTD owing to the depletion of metabolic resources. They

model a resource-dependent STDP learning rule that demonstrates a self-organized critical state

for neuronal activity. However, their mathematical model assumes a global resource that varies

according to the dynamics of STDP learning. This model, while useful, is somewhat unrealistic.

In this thesis, we consider a more general case, in which the resources transport via secondary glial

network with a particular network structure.

It is well-known that glial brain cells play important and diverse roles regulating the dynamics

and structure of neural networks [21, 22], including the transport and distribution of metabolic

resources among the neural synapses [25]. More recently, experiments have directly demonstrated

that glia astrocytes, in particular, deliver metabolic resources to synapses depending on how active

the synapses are [27]. En route to the synapses, these resources diffuse through an extensive network

of astrocytes [25]. It is thus natural to incorporate the glia network to model a resource-dependent

STDP learning rule.

In what follows, we describe two variants of a multilayered neural network model whose

first network layer is formed by neurons (nodes) connected via synapses (edges) and the second

network layer is formed by glial cells (nodes) connected via gap junctions (edges). The glial cells

provide resources to the synapses in the first layer, enabling them to transmit neuronal excitations.
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Resources are transmitted diffusively between the glial cells and between glial cells and synapses.

For model 1, the first variant, the neural network learns via STDP. Similar to Delattre et al. [33],

our results have shown that our model can control STDP learning dynamics. In addition, we also

have found that our model can learn, store a learned pattern and recover the desired λ ≈ 1 state

after learning. The second variant, i.e., model 2 does not include STDP learning and inhibition.

This simplification allows us to derive a 3-dimensional map that can reproduce the behavior of

the full system and correctly predict the good and bad parameter regimes. In this way, we gain

some insight into stability of critical state that is characterized by power-law distributed neuronal

avalanches. Finally, we show that the critical state is stable to heterogeneity in model parameter

and network structure so long as resources are allowed to diffuse amongst the glial cells.



Chapter 3

Two-layered network model

In this section, we first motivate the need for a regulatory mechanism that can mediate

synapse strengths in the presence of learning rules such as the spike-timing-dependent plasticity rule

(STDP). In particular, we include STDP in the existing cellular automata model by Larremore et al.

[13] in Sec. 3.1.2 and show using model simulations (see Sec. 3.1.3) and theory (see Sec. 3.1.4) that

the neural network can become supercritical. In the subsequent sections (Sec. 3.1.5 and Sec. 3.1.6),

we show that implementing some of the existing regulatory mechanisms introduced in the previous

chapter such as synaptic strength limitation (SSL) and synaptic scaling (SS) does not help stabilize

the critical state. We call these variants of the adapting the model from [13] collectively as model

0.

In Sec. 3.2 and Sec. 3.3, we introduce two models based on the idea of resource transport via a

complementary network that we outlined in previous chapter. These two models operate at different

levels of abstraction. In the first model (called as model 1 ), we consider the effects of learning and

inhibitory neurons and show how resource-transport dynamics can achieve the competing goals of

stability and learning. In this case, we can think of each node in our network as an individual

neuron. This work, the topic of Sec. 3.2, was published in Ref. [20]. An alternative view is to think

of each node as a functional group of neurons. In this case, a signal transmitted from a node can

be viewed as the result of aggregate activity of a collection of neurons and hence can be modeled

as a positive number leading to purely excitatory coupling. In the second model (called as model

2 ), the topic of Sec. 3.3, we show that the critical dynamics of such excitable networks can be
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stabilized using resource transport.

3.1 Background

3.1.1 Usefulness of computational models

Computational models are not only useful to gain insights but also to predict something about

the natural phenomena they are intended to describe. Additionally, with modern computers, we

can quickly simulate the model dynamics and predict model behavior to compare with actual

experiments or nature.

As an example, we reviewed models describing different aspects of a neural network and

operating at different scales in chapter 2. For instance, the pioneering work of Hodgkin-Huxley

[83, 84, 85, 86, 87] describes how a spike propagates by modeling the chemical changes at individual

neurons. In contrast, the Kinouchi-Copelli model [11], based on simple cellular automata models,

describes the collective dynamics of a neural network. Hence, in this model, the details of how

individual neurons fire are abstracted out making the model very simple. Despite this simplicity,

the model correctly predicts that at criticality the neural network can maximize the dynamic range.

These model predictions qualitatively agree with experimental findings using rat cortical slices [9].

In this section, we describe the two main variants of our model based on such simple cellular

automata models. While our models are simple, they may be useful to gain intuitions on future

experimental work. Our main point here is to show that the transport of resources amongst glia

may be an important feature of the brain that allows it to stabilize the desired critical state. More

recently, there have been experiments that highlight the importance of resource-transport amongst

glia [21]. In particular, these experiments use genetically modified rats devoid of gap-junctions,

i.e., the connections between the glial cells. In some pathological cases, signs of epilepsy [104] and

hypoglycemia [25] have been found. In the next chapter, numerically simulating model 1 and model

2 described in Sec. 3.2 and Sec. 3.3 respectively, we obtain similar qualitative results.

Finally, we note that such simple mathematical models of neural networks also form the basis
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for artificial neural networks used in different areas of machine learning such as deep learning [105].

While the learning algorithms for biological and artificial neural networks are rarely same, the idea

of activations and activity propagation uses similar simple mathematical simplicity.

3.1.2 Model 0: A computational model of learning neural networks

In this section, we describe an adaption of one of the computational models, namely, the

model of Larremore et al., [13] to the case of learning. This model considers neuronal dynamics

on a sparse network of N nodes that represent the neurons, m = {1, . . . , N}. The parameter α

denotes the fraction of inhibitory neurons. Activation of inhibitory neurons (with εm = −1) causes

neighboring neurons to fire with a lesser probability and activation of excitatory neurons (with

εm = 1) causes neighboring neurons to fire with a greater probability. In this model, unlike the

Kinouchi-Copelli model [11], there are no refractory states: at each discrete time step t any node

m can only be in one of the two states: stm = 0 (resting state) or stm = 1 (active state). We now

modify the existing model [13] by incorporating learning. We do this by defining a time-varying

N ×N network adjacency matrix, W , whose entry W t
nm gives the strength of a synapse from node

m to node n at time step t. If we let ŵtnm represent the absolute strength of the synapse from

m → n, then W t
nm = εmŵ

t
nm. Thus the presynaptic neuron m is either excitatory or inhibitory

resulting in W t
nm ≥ 0 or W t

nm ≤ 0 respectively; W t
nm = 0 indicates absence of a synapse from node

m to n. At each time step t, neuron n sums its inputs W t
nm from active presynaptic neurons, i.e.,

neurons m for which stm = 1. If the sum is positive, neuron n fires in the next time step with some

probability. Thus to get the state in the next time step we use the following rule:

st+1
n =


1 with probability σ

(
N∑
m=1

W t
nms

t
m

)
,

0 otherwise .

(3.1)

The model transfer function, σ, is piecewise linear; σ(x) = 0 for x ≤ 0, σ(x) = x for 0 < x < 1 and

σ(x) = 1 for x ≥ 1. We thus have a stochastic model- in presence of net excitatory input the sum

is greater than 0 and neuron n fires with some probability while in the presence of net inhibitory
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input the sum is less than 0 and neuron n does not fire. The synaptic strengths W t
nm undergo

spike-timing-dependent plasticity (STDP), a learning rule that strengthens the synapse from cell

A to cell B depending on the their temporal order of firing.

In what follows, we review the STDP learning rule along with a few control mechanisms

such as synaptic strength limitation (SSL) and synaptic scaling. We present results on simulating

the model described above and explain why the existing control mechanisms are not a satisfactory

solution to control the neural network dynamics for the considered simplified mathematical model.

3.1.3 Problems with incorporating the STDP learning rule

To incorporate STDP in model 0 described in the previous section, we simplify STDP learning

dynamics by considering discrete time: the absolute strength of synapse from neuron m to n, i.e.,

ŵnm, increases at time t + 1, if neuron m is active (st−1
m = 1) at time step t − 1 and neuron n is

active (stn = 1) at time step t. The converse is true if the temporal order of firing is reversed. That

is, if we have stm = 1 and st−1
n = 1, then ŵnm decreases at time t+ 1. The STDP learning rule can

be modeled as follows:

ŵt+1
nm = ŵtnme

εm
τ (st−1

m stn−stms
t−1
n ) , (3.2)

where the constant τ represents the learning timescale.

We now present the results of this model on an Erdös-Renyi random graph with the number

of neurons N = 1000. We build the N ×N directed weighted ER neural network adjacency matrix

W by creating a link from node m to node n (i.e., setting Wnm 6= 0) with probability p = 0.05 and

setting Wnm = 0 otherwise. This gives the mean degree of a neuron, d = (N − 1)p ≈ Np = 50 and

the expected number of edges M ≈ Nd = 50000. To specify the initial state of each synapse, at

t = 0 we set the initial value of each ŵ0
nm to be an independent draw from a uniform distribution

over [0, 1]. We then rescale all entries in W by a constant to obtain a desired largest eigenvalue

of W , λ. We set the fraction of inhibitory nodes α = 0.2, the learning timescale τ = 50, and the

initial state of the network at criticality, i.e., λ0 = 1. Finally we recall that the average activity,
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Figure 3.1: Results for the computational model in Sec. 3.1.2 using STDP learning rule. Panel (a)
shows that over time the largest eigenvalue of W , i.e., λ, goes above 1 and hence in the supercritical
state. The inset shows a magnification of the first 1500 time steps. Panel (b) shows that the
network activity, i.e., the fraction of neurons in the ‘active’ state, S, approaches 1 corresponding
to a supercritical state.
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St, is given by the fraction of neurons that are in active state at time step t,

St =
1

N

N∑
n=1

stn . (3.3)

Using the initial conditions described above, we simulate the model for a total of 3000 time

steps. Fig. 3.1(a) shows that λ becomes greater than 1. The network activity S saturates as shown

in Fig. 3.1(b). Thus, without additional regulatory mechanisms, STDP results in the undesirable

supercritical regime (see review articles [19, 106]).

3.1.4 Instability of critical state with STDP learning

In this section, we explore how spike-timing dependent plasticity (STDP) leads to instability

of the critical state in model 0. To do this, we will construct a rough estimate of how the eigenvalue

λ increases with time due to STDP. Assuming a large sparse homogeneous network, we will use the

approximation that λ is approximately given by the mean degree or, in our case, by

λt ≈ 1

N

∑
m,n

εmw
t
nm . (3.4)

Now consider how the eigenvalue changes in one time step. Since the nodes do not change their

inhibitory or excitatory nature, we have, denoting ∆λt = λt − λt−1 and ∆wtnm = wtnm − wt−1
nm ,

∆λt ≈ 1

N

∑
m,n

εm∆wtnm . (3.5)

Taking an average we get

E[∆λt] ≈ 1

N

∑
m,n

E[εm∆wtnm] . (3.6)

Conditioning on whether a node is excitatory or inhibitory, we can rewrite this as

E[∆λt] ≈ 1

N

∑
m,n

{
E[∆wtnm|εm = 1]P (εm = 1)− E[∆wtnm|εm = −1]P (εm = −1)

}
. (3.7)

Since we have a fraction of α inhibitory nodes

E[∆λt] ≈=
1

N

∑
m,n

{
(1− α)E[∆wtnm|εm = 1]− αE[∆wtnm|εm = −1]

}
. (3.8)
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Figure 3.2: Actual eigenvalue λt (solid lines) and the estimated eigenvalue λt (circles) for (k, α)
equal to (100, 0.1) (blue), (20, 0.30) (black), and (50, 0.20) (red) as a function of time (in units of
10 time steps, for a total of 100 time steps).
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To calculate E[∆wnm], we assume that the learning time τ is large so that we have

wt+1
nm = wtnme

εm
τ

(st−1
m stn−stms

t−1
n ) ≈ wtnm +

εmwnm
τ

(st−1
m stn − stmst−1

n ) , (3.9)

from which we can derive

∆wtnm ≈
εmwnm
τ

(st−1
m stn − stmst−1

n ) . (3.10)

The possible values for ∆wnm are wnm/τ , −wnm/τ , and 0. By calculating the probability of each,

we can calculate the expected values in Eq. (3.8). We neglect the probability to have simultaneous

causal and anticausal excitations to get

E[∆wtnm|εm = 1] = (wnm/τ)P (st−1
m stn = 1|εm = 1)− (wnm/τ)P (stms

t−1
n = 1|εm = 1) ,

E[∆wtnm|εm = −1] = (wnm/τ)P (stms
t−1
n = 1|εm = −1)− (wnm/τ)P (st−1

m stn = 1|εm = −1) .

(3.11)

Now we will estimate each one of these probabilities as

P (st−1
m stn = 1|εm = 1) = P (stn = 1|st−1

m = 1, εm = 1)P (st−1
m ) . (3.12)

Since we assume a large sparse homogeneous network we can assume that for all m, P (st−1
m ) = St,

the average network activity for the assumed network. Using this and Eq. (3.1) from Sec. 3.1.2, we

get

P (st−1
m stn = 1|εm = 1) = σ

∑
j

εjw
t−1
nj s

t−1
j

St−1 , (3.13)

where in the sum we condition on st−1
m = 1, εm = 1. We separate the mth term in the sum to get

P (st−1
m stn = 1|εm = 1) = σ

wnm +
∑
j 6=m

εjw
t−1
nj s

t−1
j

St−1 , (3.14)

Now we make the following two approximations. The first is to assume that we are in the linear

part of σ(·), and the second is to replace all st−1
j ’s with j 6= m by their expected value, which we

take to be St−1. This is a nontrivial assumption because the right hand side is nonlinear even after
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we remove σ (because we already replaced P (st−1
m ) = St). This gives us

P (st−1
m stn ≈ 1|εm = 1) =

wnm + St−1
∑
j 6=m

εjw
t−1
nj

St−1 , (3.15)

which we can rewrite as

P (st−1
m stn ≈ 1|εm = 1) =

wnm(1− St−1) + St−1
∑
j

εjw
t−1
nj

St−1 . (3.16)

For simplicity of notation, in the following equations we remove the t−1 superscripts and put them

back at the end. So we have, defining the in-degree
∑

j εjwnj ≡ kinn

P (st−1
m stn ≈ 1|εm = 1) =

[
wnm(1− S) + Skinn

]
S . (3.17)

Similarly, for the other cases we get

P (st−1
m stn ≈ 1|εm = −1) =

[
−wnm(1− S) + Skinn

]
S , (3.18)

P (stms
t−1
n ≈ 1|εm = 1) =

[
εnwmn(1− S) + Skinm

]
S , (3.19)

P (stms
t−1
n ≈ 1|εm = −1) =

[
εnwmn(1− S) + Skinm

]
S . (3.20)

Substituting these expressions in Eqs. (3.11), inserting the results in Eq. (3.8), and simplifying, we

get

E[∆λt] ≈ 1

Nτ

∑
m,n

[
(1− S)(1− 2α)w2

nm − (1− S(1− 2α))wnmwmnεn + wnmS(kinn − kinm )
]

(3.21)

=
(1− S)(1− 2α)

Nτ

∑
m,n

w2
nm −

[1− S(1− 2α)]

Nτ

∑
m,n

wnmwmnεn +
S

Nτ

∑
m,n

wnm(kinn − kinm ) .

(3.22)

For an undirected, random sparse network, the number of bidirectional links should be much smaller

than the number of links, so we neglect the second term compared with the first term, and get

E[∆λt] ≈ (1− S)(1− 2α)
1

Nτ

∑
m,n

w2
nm +

S

Nτ

∑
m,n

wnm(kinn − kinm ) . (3.23)

Similarly, the in-degree at the ends of a link should be uncorrelated; besides, because the network

was assumed homogeneous we have kinn ≈ kinm , and so we get the main contribution from

E[∆λt] ≈ (1− S)(1− 2α)
1

Nτ

∑
m,n

w2
nm . (3.24)
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To get a useful estimate, we assume that all the nodes have the same weight, wnm = w. Then, we

estimate w by requiring that the row sum of the matrix be λ = 1. Assuming there are k nonzero

entries per row, a fraction α of which are inhibitory, we get wk(1− α)− wkα = 1, so

w =
1

k(1− 2α)
. (3.25)

In the sum over n,m there will be Nk nonzero terms, each of magnitude w2, which leads to our

main result:

E[∆λt] ≈ St−1(1− St−1)

kτ(1− 2α)
. (3.26)

To test this, we construct Erdös-Renyi networks with different values for degree k and fraction

of inhibitory nodes α. Initially the weights are chosen so that λ = 1. We then simulate model 0

with STDP learning. Given the time series of activity {St}, the equation above can be integrated

to give an estimate λ̂t of the eigenvalue λ at time t

λ̂t ≈ 1 +
1

kτ(1− 2α)

t∑
j=1

Sj−1(1− Sj−1) . (3.27)

Figure 3.2 shows the actual eigenvalue that come from model 0 simulations λt (solid lines) and

the estimated eigenvalue λt (circles) for (k, α) equal to (100, 0.1) (blue), (20, 0.30) (black), and

(50, 0.20) (red). While the agreement is very rough, the estimate captures the trend; in particular,

the growth rate of the eigenvalue is positive, so that the critical state is unstable.

Finally, note that despite the simplifying assumptions we make in deriving Eq. 3.10, it pro-

vides the following key insight. If on average, we have more causal excitations than anticausal

excitations, the synapse strengths will keep increasing resulting in a supercritical state as shown in

the above numerical experiment. Since we assume large and sparse network structure, given a link

from node m to node n, a link from node n to node m is less likely. As a result, on average, causal

excitations are more likely as opposed anticausal excitations and this results in the supercritical

state.
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Figure 3.3: Results for the computational model in Sec. 3.1.2 using STDP learning rule along with
synaptic strength limitation (SSL). Maximum synaptic strength is capped at w̄. Panel (a) shows
that over time the largest eigenvalue of W (see Sec. 2.5), i.e., λ, goes above its desired value of 1.
Panel (b) shows that the network activity, i.e., the fraction of neurons in the ‘active’ state, S, goes
close to 1 corresponding to a supercritical state.
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3.1.5 Synaptic strength limitation (SSL)

In this section, we try to control the runaway excitation by including the SSL rule introduced

in Sec. 2.5.1. To capture this effect in model 0, we complement the STDP learning rule as given by

Eq. (3.2) by imposing a maximum synapse strength w̄:

wt+1
nm = w̄φ

(
ŵt+1
nm /w̄

)
. (3.28)

The transfer function φ is piecewise linear; φ(x) = 0 for x ≤ 0, φ(x) = x for 0 < x < 1 and φ(x) = 1

for x ≥ 1.

Using the same initial conditions and network structure as mentioned in the previous section,

we run the dynamics described by Eqs. (3.1), (3.2), (3.28) for a total of 5000 time steps. The

simulation results for λ and S are shown in Fig. 3.3. Panel (a) shows that imposing a strength

limitation does not maintain λ ≈ 1. In fact we get a similar result as λ > 1 and, even though λ is

now bounded, S still saturates.

3.1.6 Synaptic scaling (SS)

In this section, we consider the multiplicative adjustment rule to control runaway excitations.

In particular, we incorporate the synaptic scaling rule reviewed in Sec. 2.5.2 as follows:

wt+1
nm = wtnme

εm/τ [stms
t+1
n −st+1

m stn]e−βs
t+1
n [εm+1] . (3.29)

The parameter β defines the strength of the multiplicative adjustment. Since experimental evidence

for this has been mainly found for excitatory synapses [106], we introduce the factor εm + 1. It

evaluates to 0 for inhibitory synapses and 2 (i.e., a non-zero value) for excitatory synapses.

Using model simulations, we found that the resulting dynamics for a given β is sensitive to

the particular network realization. That is, prescribing a value for β given the network parameters

(N, p) and τ is quite hard; making this mechanism infeasible to implement. As an example, we

show the result for one such value with β = 0.0001. Fig. 3.4 shows the results for λ and S as a
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Figure 3.4: Results for the computational model in Sec. 3.1.2 using STDP learning rule along with
synaptic scaling rule. Panel (a) shows that over time the largest eigenvalue of W (see Sec. 2.5), i.e.,
λ goes above its desired value of 1. The inset shows a blow up of the first 1500 time steps. Panel
(b) shows that the spread of network activity, i.e., the fraction of neurons in the ‘active’ state, S,
decreases as λ goes above 1. This corresponds to a network state in which some neurons are always
active and some neurons are always resting.
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function of time. The synaptic scaling mechanism is unable to stabilize λ and hence S reaches a

low saturation state in which some neurons are always active and some neurons are always resting.

This results in S reaching a saturation value that is not close to 1 (see Fig. 3.4(b)). The inset in

Fig. 3.4(a) shows that the synaptic scaling stabilizes λ near its desired value of 1 for time steps

[1, 1500]. However, running the simulation further reveals that the network is supercritical with

λ > 1.

3.2 Model 1: Resource-transport dynamics with learning and inhibition

As shown in Fig 3.5, model 1 consists of a two-layered network whose first layer is a weighted

and directed neural network and whose second layer is an unweighted undirected glial network. The

neural network is composed of N excitable nodes that represent neurons, labeled n = 1, 2, . . . , N ,

and M directed edges, labeled η = 1, 2, . . . ,M on which synapses are located. The state stn of

neuron n at a discrete time step t is represented either as stn = 0 (quiescent) or stn = 1 (active). We

define W t as the N ×N adjacency matrix whose entry W t
nm denotes the weight of the synapse on

the edge from neuron m to neuron n at time t. If there exists a synapse from neuron m to neuron

n, then neuron m is called as the presynaptic neuron and the neuron n is called the postsynaptic

neuron. Any presynaptic neuron m can be either excitatory (εm = 1) or inhibitory (εm = −1).

That is, if we let wtnm = |W t
nm| denote the absolute value of synapse strength, then W t

nm = εmw
t
nm.

At each time step t (where t = 0, 1, 2, . . . ), the state of neuron n is updated probabilistically

based on the sum of its synaptic input from active presynaptic neurons at time t− 1,

st+1
n =


1 with probability σ

(
N∑
m=1

W t
nms

t
m

)
,

0 otherwise .

(3.30)

As in Ref. [13], the model transfer function probability σ is piecewise linear; σ(x) = 0 for x ≤ 0,

σ(x) = x for 0 < x < 1, and σ(x) = 1 for x ≥ 1.

The second layer of this model, the unweighted and undirected glial network, consists of T

glial cells labeled i = 1, 2, . . . , T . Each glial cell i holds an amount of resource Rti at time step
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Figure 3.5: Two-layered multilayer network consisting of neural and glial network layers. The
neural layer (bottom), represented by adjacency matrix W , is directed and weighted. The glial
layer (top), represented by adjacency matrix U , is undirected and unweighted. The interaction
between glial cells and synapses (dotted lines) is modeled using an adjacency matrix G that maps
each glial cell to some subset of all synapses.
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t. Resources diffuse between the glial cells that are connected to each other. While we do not

focus on a particular resource, we note that various metabolites such as glucose and lactate [25] are

transported diffusively among the glial cells. We define a T × T symmetric glial adjacency matrix

U such that entry Uij = 1 if glial cell j is connected to glial cell i and Uij = 0 otherwise. Each glial

cell serves a set of synapses by supplying resource to them. Hence we define a T ×M matrix G

with entries Giη = 1 if glial cell i serves synapse η and Giη = 0 otherwise. Consistent with recent

experimental studies [64], we assume that each synapse is served by a unique glial cell and that

all incoming synapses of one neuron (i.e., its dendrites) are served by a single glial cell. So, given

a synapse η, there is a unique glial cell i(η) such that Gi(η)η = 1. In chapter 4 we show that our

results are robust to relaxing this assumption.

Learning : Let η denote the synapse that connects presynaptic neuron m to postsynaptic

neuron n, i.e., the synapse η that corresponds to the neural network edge m→ n. We assume that

the absolute strength of synapse η, i.e., wnm, depends on its past learning history as determined

from the STDP learning rule, via an auxiliary variable, ŵtnm, and on the amount of resource, Rtη,

at synapse η,

wtnm = f
(
Rtη, ŵ

t
nm

)
, (3.31)

where ∂f(x, y)/∂x ≥ 0, ∂f(x, y)/∂y ≥ 0, and ŵtnm evolves according to the STDP learning rule:

ŵt+1
nm = ŵtnm exp

[εm
τ

(
st−1
m stn − stmst−1

n

)]
. (3.32)

Moreover, we implement synaptic strength limitation, by requiring f not to exceed a maximum

value w̄, f ≤ w̄. For excitatory synapses (εm = +1), causal firing corresponds to firing of the

presynaptic neuron m at the previous time step t − 1 (i.e., st−1
m = 1), followed by the firing of

the postsynaptic neuron n at the current time step t (i.e., stn = 1). Thus for causal excitations

ŵt+1
nm > ŵtnm and the excitatory synapse is reinforced. Similarly, for anticausal excitations excitatory

synapses are weakened, ŵt+1
nm < ŵtnm. The corresponding analogous conditions hold for inhibitory

neurons (εm = −1). The constant τ sets the learning timescale.
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Resource-transport dynamics: Resources diffuse amongst glia through their connection net-

work (characterized by the adjacency matrix U) and between glia and the synapses they serve (via

the glial-neural connection network characterized by the adjacency matrix G). Our model for the

evolution of the amount of resource Rti at glial cell i and the amount of resource Rtη at synapse η is

Rt+1
i = Rti + C1 +DG

T∑
j=1

Uij
(
Rtj −Rti

)
+DS

M∑
η=1

Giη
(
Rtη −Rti

)
, (3.33)

Rt+1
η = Rtη +DS

(
Rti(η) −R

t
η

)
− C2s

t
m(η) , (3.34)

where DG is the rate of diffusion between glial cells, and DS is the rate of diffusion between glia

and synapses. Moreover, we enforce Rη ≥ 0, i.e., if Eq. (3.34) yields Rt+1
η < 0, then we replace it

by 0. The first term on the right hand side of Eq. (3.33), Rti, is the amount of resource in glial

cell i at time t. The parameter C1 denotes the amount of resource added to each glial cell at each

time step (e.g., supplied by capillary blood vessels). For simplicity, we assume each glial cell has

the same C1, although we later discuss the effect of heterogeneous source rates. The last two terms

are the amount of resource transported to (or from) glial cell i, respectively, from its neighboring

glial cells and from the synapses that it serves.

In (3.34), the first term denotes the amount of resource at synapse η at time t. The term

proportional to DS denotes the amount of resource gained (if Rti(η) > Rtη) or lost (if Rti(η) < Rtη)

from glial cell i(η) that serves synapse η. If the presynaptic neuron m(η) fires at time step t

(stm(η) = 1), then all outgoing synapses for neuron m(η), including η, consume some resource, thus

decreasing the resource at each synapse by an amount C2 (where C2 is a model parameter).

3.3 Model 2: Resource-transport dynamics without learning or inhibition

In this section, we present the second version of our model, i.e., model 2. In this version,

we use Eq. (3.30) to describe the evolution of state sn of the neuron n. Reflecting increasing

synaptic strengths with increase in resource, we model synapse strengths by taking f in Eq. (3.31)
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as f(x, y) = xy, i.e.,

W t
nm = wnmR

t
η (3.35)

where wnm > 0 denotes the initial strength of that synapse chosen from a uniform distribution.

Since resource Rη is always positive, this effectively amounts to removing inhibitory links from this

model. Also, unlike the model in the previous section, we remove STDP learning rules applied to

the synaptic weights and thus consider the no learning case. Finally, to model resource-transport

dynamics, we use Eq. (3.33)-(3.34).

One of the advantages of using the above mentioned simpler model is that by assuming

homogeneous network structure for both the neural and the glial networks, we can derive a three

dimensional map that reproduces the behavior of the full model and thus we can gain insights on

the effect of changing various parameters. We approximate the largest eigenvalue, λt, of the neural

network adjacency matrix as the mean degree [107], λt ≈ 1
N

∑
n,mW

t
nm = 1

N

∑
n,mwnmR

t
η(n,m) and

define the average resource in glial cells as Rt = 1
T

∑
iR

t
i. Summing Eq. (3.33) over i and Eq. (3.34)

over n and m, we obtain

Rt+1 = Rt + C1 +
Dλt

w̄
− qDRt , (3.36)

λt+1 = λt + qDw̄Rt −Dλt − C2w̄kS
t . (3.37)

The above equations are coupled to the average activity, St = 1
N

∑
n s

t
n, which is stochastic.

We model St considering the following two options:

(1) A deterministic approximation near the critical point is to assume that

St+1 = λtSt . (3.38)

This neglects the nonlinear effects that keep St bounded between 0 and 1. We refer to this

option along with Eqs. (3.47), (3.48) as the 3-D map without noise. While this approxima-

tion neglects the effects of noise and is valid only close to the fixed point, it is useful since

the stability properties of the fixed point λ = 1 underlie the robustness of the critical state

to changes in model parameters.
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(2) Another approximation is to assume

St+1 = max
(
0,min

(
1, λtSt + rt + µt

))
, (3.39)

where rt is a noise term which has zero mean and standard deviation given by
√
St(1− St)/N

as estimated in [13] while µt represents the external stimulus,

µt =

 1/N with probability ζ ,

0 otherwise .

(3.40)

In this case, one neuron fires every time step with probability ζ. Coupled with eqs. (3.47),

(3.48), this is referred to as the 3-D map with noise. Since in the full model, S is stochastic,

this variant of the map is useful to make comparisons and to predict the behavior of the

full model. This is shown in chapter 4.

We now present the detailed analysis and derivation for the two variants of the 3-dimensional map.

3.3.1 Simplification of model 2 to a 3-dimensional map

In the absence of learning, we can assume without loss of generality that the weights in

the coupling network are completely determined by the associated resource, Wnm = Rη. Let

w̄ = 〈wnm〉M , i.e., the average synaptic strength at time step, t = 0. The synaptic strength W t
nm

can be expressed as W t
nm = w̄Rtη. Further, assuming that the network is homogeneous, the largest

eigenvalue λt can be approximated well by the mean degree, or

λt ≈ 1

N

N∑
n,m

W t
nm =

w̄

N

∑
η

Rtη , (3.41)

where the sum over the entries of W is expressed as a sum over synapses. Summing Eq. (3.34) over

η, we get

λt+1 = λt +
Dw̄

N

∑
η

Rti(η) −Dλ
t − C2w̄

N

∑
η

stm(η) . (3.42)

Next, we define Rt = 1
N

∑
iR

t
i to be the average amount of resource per glial cell at time t. If the

number of synapses served by glial cell i is qi, and the qi have a narrow distribution with qi ≈ q
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then
∑

η R
t
i(η) =

∑
i qiR

t
i ≈ q

∑
iR

t
i, and so

λt+1 = λt + qDw̄Rt −Dλt − C2w̄

N

∑
η

stm(η) . (3.43)

In the term 1
N

∑
η s

t
m(η) we have to sum stm for each synapse starting from neuron m. If the out-

degree distribution of the neuronal network is narrow with mean k, this can be approximated as

k 1
N

∑
m s

t
m = kS(t), where S(t) = 1

N

∑N
n=1 s

t
n:

λt+1 = λt + qDw̄Rt −Dλt − C2w̄kS
t . (3.44)

To get the evolution of Rt, we sum Eq. (3.33) over i and divide by N . The third term vanishes by

symmetry, yielding

Rt+1 = Rt + C1 +
D

N

M∑
η=1

∑
i=1

Giη(R
t
η −Rti) . (3.45)

Since there is a unique glial cell serving synapse η, we have D
N

∑M
η=1

∑
i=1GiηR

t
η = D

N

∑
η=1R

t
η =

Dλt. Furthermore,
∑M

η=1

∑
i=1GiηR

t
i =

∑
i=1R

t
i

∑M
η=1Giη =

∑
i=1R

t
iqi, where again qi is the

number of synapses served by glial cell i. Assuming the distribution of qi’s is narrow and qi ≈ q,

then this is approximately qNRt:

Rt+1 = Rt + C1 +
Dλt

w̄
− qDRt . (3.46)

Therefore, for homogeneous networks we obtain the coupled equations

Rt+1 = Rt + C1 +
Dλt

w̄
− qDRt , (3.47)

λt+1 = λt + qDw̄Rt −Dλt − C2w̄kS
t . (3.48)

These equations were obtained under the approximation that both the neural and glial networks

are homogeneous. Although they look simple, the complication is that they are coupled to St,

which is a stochastic variable whose evolution depends on λt. To model S we use one of the two

options given by Eqs. (3.38), (3.39) mentioned before. In this way, we have two variants of the

3-dimensional map: (i) without noise (Eqs. (3.36), (3.37), (3.38)) and (ii) with noise (Eqs. (3.36),

(3.37), (3.39)).
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3.3.2 Analysis of 3-D map without noise

As described in the previous section if we use the map without noise, we get the following

closed system for three variables:

Rt+1 = Rt + C1 +
Dλt

w̄
− qDRt ,

λt+1 = λt + qDw̄Rt −Dλt − C2w̄kS
t ,

St+1 = λtSt,

which has the fixed point

λ̄ = 1, S̄ =
C1

kC2
, R̄ =

C1

qD
+

1

qw̄
. (3.49)

The stability of the fixed point is determined by whether the eigenvalues of the Jacobian,

J =


1− qD D

w̄
0

qDw̄ 1−D −kC2w̄

0
C1

kC2
1

 (3.50)

are inside the complex unit circle. We obtain the following characteristic polynomial for J :

p(t) = t3 + [D (q + 1)− 3] t2

+ [−2D (q + 1) + C1w̄ + 3] t

+ [qDC1w̄ +D (q + 1)− C1w̄ − 1] (3.51)

We can use the following transformation– p(t) → (z − 1)3p( z+1
z−1) = p′(z) – to map the inside of

the unit circle into the left half open complex plane and apply the Routh-Hurwitz criterion to

determine the stability of the fixed point. Doing this, we obtain

p′(z) = (C1Dqw̄) z3 + (2C1w̄ − 3C1Dqw̄) z2

+ (4D + 4Dq − 4C1w̄ + 3C1Dqw̄) z1

+ (8− 4D − 4Dq + 2C1w̄ − C1Dqw̄) z0 . (3.52)
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This equation is of the form a0z
0 + a1z

1 + a2z
2 + a3z

3. We thus have,

a0 = 8− 4D − 4Dq + 2C1w̄ − C1Dqw̄ , (3.53)

a1 = 4D + 4Dq − 4C1w̄ + 3C1Dqw̄ , (3.54)

a2 = 2C1w̄ − 3C1Dqw̄ , (3.55)

a3 = C1Dqw̄ , (3.56)

with the following conditions for the stability of the fixed point:

ai > 0 ∀i , (3.57)

a1a2 > a3a0 . (3.58)

Since the activity S ∈ [0, 1], we have the following additional constraint:

C1

kC2
< 1 . (3.59)

This results in the following set of inequalities for the stable critical state:

Dq − 2

3
< 0 , (3.60)

1

qD
− 1 + q

C1qw̄
− 3

4
< 0 , (3.61)

C1qDw̄

8
− C1w̄

4
+
Dq

2
+
D

2
− 1 < 0 , (3.62)

C2
1D

2q2w̄ − 2C2
1Dqw̄ + C2

1 w̄ + C1D
2q2 + C1D

2q − C1D < 0 , (3.63)

C1

kC2
< 1 . (3.64)

Since we have numerous parameters, an exhaustive validation of the inequalities using nu-

merical simulations is infeasible. As an illustrative example, we choose w̄ = 0.06, k = q = 50 and

C2 = 10−5 and plot the inequalities in Fig. 3.6 by varying parameters D and C1 on x-axis and y-axis

respectively. The white region corresponds to all the inequalities being satisfied. As an example,

we consider the four settings for the model parameters– C1 = {0.00006, 0.00006, 0.00006, 0.0006}

and D = {0.0002, 0.0005, 0.0000005, 0.0002}. This is shown in Fig. 3.6 with the points marked as
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a, b, c, d. The largest eigenvalue of the neural network adjacency matrix, λ, is shown in Fig. 3.7

with panels (a)-(d) corresponding to the respective settings. As expected, since only setting (a)

satisfies all inequalities (since a is in the white region), in this case λ converges to 1 and hence the

critical state is stable. In all other cases, the critical state is unstable as seen from panels (c)-(d) in

Fig. 3.7. Although, here we show the results for a few settings, in Sec. 4.2 we show the results for

parameter search along the C1 axis and show how the 3-dimensional map can be used to predict

model behavior.
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Figure 3.6: Assuming the parameter choices w̄ = 0.06, k = q = 50 and C2 = 10−5, the unshaded
or white region corresponds to all inequalities being satisfied. The parameter choices within this
region should get us a stable critical state, or more concretely, λ = 1 over time. The regions shaded
purple and orange correspond to two of the inequalities not being satisfied, namely, Eqs. (3.63) and
(3.64). The inequalities given by Eqs. (3.60)-(3.62) do not tell us anything new.
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Figure 3.7: We plot the largest eigenvalue of the neural adjacency matrix, λ, as a function of time
t. Panels (a), (b), (c) and (d) show the results for the four settings shown in Fig. 3.6. Panel (a)
corresponds to all inequalities being satisfied and hence λ → 1 over time. Panels (b), (c) violate
inequality given by Eq. (3.63). Panel (d) violates inequality given by Eq. (3.64). Hence, in these
three cases, we find that the critical state λ = 1 is not stable.



Chapter 4

Numerical Experiments

4.1 Model 1: Results on model with learning and inhibition

In this section, we present results of numerical experiments on model 1 that includes learning

and inhibition. For simplicity, we assume that both the neural network and the glial network

have an Erdös-Renyi (ER) network structure. Following the terminology described in Chapter. 3

the experimental setup is as follows. We build the N × N directed weighted ER neural network

adjacency matrix W by creating a link from node m to node n (i.e., setting Wnm 6= 0) with

probability p and setting Wnm = 0 otherwise. This gives the mean number of incoming and outgoing

synapses per neuron, kN = (N − 1)p, and the expected total number of synapses M = NkN . To

specify the initial state of each synapse, at t = 0 we set the initial resource at synapse η R0
η = 1

and take the initial value of each ŵ0
nm to be an independent draw from a uniform distribution over

[0, 1]. We then rescale all entries in W by a constant to obtain a desired largest eigenvalue of W ,

as discussed below.

The glial network, represented by the matrix U having T nodes that represent glial cells, is

taken to be an undirected and unweighted ER network. If the glial cell j is connected to the glial

cell i, then Uij = Uji = 1; and Uij = 0 otherwise. If the probability of forming a link is q, then

the mean degree of a glial cell is kG = (T − 1)q. Recent evidence suggests that the number of glial

cells is roughly equal to the number of neurons [63], and hence in our experiments we set T = N .

The initial resource for each glial cell is taken to be R0
i = 1. Based on this setup we now present

various numerical experiments that illustrate our results.
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Layer Nodes Adjacency Prob. of Mean Mean no.
matrix an edge degree of edges

Neural N W p kN = Np M = NkN
(weighted, directed) 1000 0.05 50 50000

Glial T U q kG = Tq E = TkG/2
(unweighted, undirected) 1000 0.05 50 25000

Table 4.1: The specifications and relevant terminology for the two-layered multilayer network
consisting of neural and glial network layers. The neural layer is directed and weighted while the
glial layer is undirected and unweighted. Unless specified otherwise, in all the experiments, we use
the above specified parameter values.
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In all our experiments, for simplicity, we take the function f in Eq. (3.31) to be f(x, y) =

xy for xy < w̄ and f(x, y) = w̄ for xy ≥ w̄, i.e., we take wtnm = Rtη(n,m)ŵ
t
nm. We make two

random draws of an ER random graph: first for the directed neural network and second for the

undirected glial network. We use the parameter settings described in Table 4.1. For all our

numerical experiments we take DG and DS to be the same, DG = DS = D; we also set the fraction

of inhibitory nodes to be 0.2 [108] and use the following additional parameter choices

C1 = 0.0188, C2 = 0.001,

D = 0.005 , w̄ = 0.14.

We chose these parameter values somewhat arbitrarily but, as shown later, our results are fairly

robust to the choice of these values.

In the following, we report the three main findings from model 1. First, we show that network

dynamics are stable (i.e., that the network robustly self-tunes to operate at the critical point λ ≈ 1),

avoiding saturation or extinction of neural activity. Second, we show that resource transport among

the glia is essential to maintain this stability. Third, we verify that the neural network can learn,

i.e., external input can result in long-lasting synaptic changes.

Experiment 1 : To quantitatively assess the stability of the network dynamics we study λ,

the largest eigenvalue of the matrix W . Previous studies on purely excitatory networks [12] and

networks having inhibitory nodes [13, 96] show that λ dictates the nature of the network’s dynamics:

λ < 1 corresponds to a hypoexcitable, or subcritical, state where activity dies out; λ = 1 corresponds

to the stable, critical state where activity is balanced, neither growing nor decaying on average; and

λ > 1 corresponds to a hyperexcitable, supercritical state where the activity grows until nearly all

neurons are firing at every time step. In this first experiment we choose different initial conditions

for λ (obtained by rescaling the initial W ), i.e., at t = 0 we start in the critical, subcritical and

supercritical states respectively, λ0 = {1, 0.5, 1.5}. Figure 4.1(a) shows a plot of λ as a function of

time, t. In all three cases we find that after a brief transient, the network dynamics become stable,

i.e., λ settles near 1 after sufficient time has passed. Fig. 4.1(b) shows the total resource R held in
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Figure 4.1: Results of Experiment 1 : (a) Time series of λt (largest eignenvalue of W t) reveal
rapid convergence to stable network dynamics (λ ≈ 1), independent of initial conditions. Three
different initial conditions were tested: hyperexcitable (blue, λ0 = 1.5), stable (black, λ0 = 1), and
hypoexcitable (red, λ0 = 0.5). The inset is an expanded view of the first 5000 time steps. (b) After
a longer transient the total resource R also stabilizes to a steady value. (c) Similarly, in all three
cases, the average activity S reaches a statistical steady state with large fluctuations.
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all glia and synapses as a function of time t, where R is given by

Rt =

T∑
i=1

Rti +

M∑
η=1

Rtη . (4.1)

In all three cases R reaches a steady state value. Fig. 4.1(c) shows that the average activity,

S =
1

N

N∑
n=1

stn , (4.2)

is initially below the activity for the critical case for λ0 = 0.5 and above the activity for the critical

case for λ0 = 1.5, indicative of the subcritical and supercritical regimes. Starting in these regimes,

over time, the dynamics of S becomes statistically similar to the dynamics of S for the critical initial

state of λ0 = 1. Thus this model naturally operates in the stable regime. This can be understood

on the basis that high activity rapidly consumes resources at the synapses, thus reducing their

weights, and leading to decrease in λ; while, with low activity, synapses consume at a low rate,

allowing buildup of resource with time and consequent increase of synaptic weights. As an example,

starting in the subcritical state (red triangles) results in an initial build up of resource owing to

low activity. However, as the activity increases, the resource gets consumed; this feedback control

results in a steady-state for R as shown in Fig. 4.1(b).

Experiment 2 : The previous experiment demonstrated that STDP and resource distribution

dynamics are both active during the stabilization. Next, we pose the question: Is the diffusion

of resources via the glial network important for stable cortical dynamics? Or can we still get

stability if we switch off transport among the glia (i.e., set DG = 0)? To do this experiment, for

t = 1, 2, . . . , T1 = 80000, we let the system reach a steady state with the glial network operative

as in Fig. 4.1, using Eq. (3.33), and define an equivalent time averaged resource supply rate Ci for

each glial cell i,

Ci =

〈
DG

T∑
j=1

Uij
(
Rtj −Rti

)〉
T1,T2

+ C1 . (4.3)

In the above equation 〈.〉T1,T2 represents the time average over the interval t = (T1, T2). We switch



67

t ×10
4

5 10 15

λ

0.8

1

1.2

1.4

1.6

1.8

2
baseline
instability

(a)

t ×10
4

5 10 15

R

×10
4

1

1.5

2

2.5

3

3.5

4
(b)

Figure 4.2: Results for Experiment 2 : (a) the maximum eigenvalue λ versus t, and (b) the total
resource R versus t. The data plotted in black are ‘baseline’ results obtained using model 1 as
described in Sec. 3.2. For the data plotted in red (labelled ‘instability’), the initial evolution is the
same as for the baseline data up until t = 100000 (marked in the figure by a vertical arrow). At
this point, turning off the diffusion of resources amongst the glia results in runaway growth of λ
and R.
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off transport among the glia at t = T2 by setting DG = 0, and replace (3.33) by

Rt+1
i = Rti +DS

M∑
η=1

Giη
(
Rtη −Rti

)
+ Ci . (4.4)

In this way, the average rate of total nonsynapse resource supply to each glial cell is preserved after

the glial diffusion is turned off. Replacing Eq. (3.33) by Eq. (4.4) we run the dynamics for a total

of 160000 time steps. Since the total resource R stabilizes by time step 80000 and we sever the

links amongst glia at time step 100000, choosing T1 = 80000 and T2 = 100000 results in a good

approximation of the Ci term in Eq. (4.4).

For initial condition λ0 = 1, Fig. 4.2 shows the results for two runs– one in which we use the

dynamics described by Eq. (4) (baseline) and the other in which we switch off the glial network and

run the dynamics as described in the previous paragraph (instability). Fig. 4.2(b) shows that after

the glial network is switched off, Rt increases as resource starts to accumulate at some synapses

and get used up at others. Such increases and decreases in Rη change the weights of the matrix

W , resulting in an increase in λ as shown in Fig. 4.2(a). This suggests that the dynamical nature

of the diffusion plays an important role in stabilizing the neural network learning dynamics.

Experiment 3 : In the next experiment we demonstrate that the neural network can learn and

memorize while maintaining λ close to the stable value of 1. To do this we divide the neurons into

two equally sized groups, G1 and G2, consisting of 500 neurons each. This results in four groups:

synapses that connect neurons within G1, synapses from G1 to G2, synapses from G2 to G1 and

synapses that connect neurons within G2.

The aim of this experiment is to differentiate these groups of synapses in terms of their mean

synaptic strengths. In particular, we employ a learning protocol that results in a higher mean

synaptic strength for the group of synapses from G1 to G2 and a lower mean synaptic strength for

the group of synapses from G2 to G1. Per the STDP learning rule described in chapter 2, we would

require causal excitations for the group of synapses from G1 to G2 and anticausal excitations for

the other. Additionally, noting that there is an inherent delay in STDP learning of two time steps,

we use the learning protocol depicted in Fig. 4.3(a). The entire experimental setup is described
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Figure 4.3: Results for Experiment 3 : We divide the neurons into two equally sized groups, G1 and
G2, consisting of 500 neurons each. This results in four groups of synapses: synapses within the
first group (within G1), synapses that convey signals from neurons in G1 to neurons in G2 (G1 to
G2), synapses that convey signals from neurons in G2 to neurons in G1 (G2 to G1) and synapses
within the second group (within G2). Panel (a) depicts the learning protocol (see text). Panel
(b) and (c) show λ and R versus t. The learning regime spans t = [80000, 100000] (delimited by
the vertical arrows). Panel (b) shows that λ becomes subcritical during learning [109]. Panels (d)
shows the mean synaptic strength for the four groups of synapses for excitatory synapses during
learning. In accord with the STDP learning rule, the mean synaptic strength increases for G1 to
G2 synapses. In the post-learning regime, spanning t = [80000, 160000], panels (d) shows that the
model remembers what it learned. Panel (b) shows that after learning, λ quickly evolves back to
the critical state λ ∼= 1.
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below.

We run the dynamics for a total of 160000 time steps, observing three distinct phases: pre-

learning (1 ≤ t ≤ 80000), learning (80000 < t ≤ 100000) and post-learning (t > 100000). In the

pre-learning phase, the dynamics are as described in the previous section. The total resource R

reaches a steady-state value and the eigenvalue λ fluctuates near 1 (viz., Figs. 4.3(b), 4.3(c)). In

the learning phase, for neurons in group Gν (ν = 1 or 2) we modify Eq. (3.30) by introducing a

time-dependent external stimulus, ζ
(ν)
t ,

st+1
n =


1 with prob. σ

(
N∑
m=1

W t
nms

t
m + ζ

(ν)
t

)
,

0 otherwise .

(4.5)

where ν is the group to which neuron n belongs, and, letting ζ = 0.15, the learning protocol

defining ζ
(ν)
t is as shown in Fig. 4.3(a). That is, starting at the beginning of the learning phase

(t = T1 = 80000), we stimulate neurons only in G1; then, in the next time step, we stimulate

neurons only in G2; then, in the next two time steps, no stimulus is applied to either group. This

four step sequence is successively repeated until the end of the learning phase (t = T2 = 100000),

past which no stimuli are applied. We plot the mean synaptic strength for the four groups of

synapses in Fig. 4.3(d). As expected, sequential firing of G1 neurons followed by G2 neurons results

in strengthening of excitatory synapses from G1 to G2 and weakening of excitatory synapses from

G2 to G1. Importantly, these learning-related changes in strengths of the four groups of synapses

are preserved in the post-learning phase (after time step 100000), thus confirming that the neural

network model remembered what it learned.

Finally, Fig. 4.3(c) shows that during the learning phase there is a corresponding decrease in

total resource R. The increased resource consumption and the consequent decrease in R can be

attributed to the increase in neuronal firing rates owing to the external stimulus. As the stimulus

is removed in the post-learning phase, the plots in Figs. 4.3(b), 4.3(c) show that the resource R

is replenished and λ resets to 1 with fluctuations. Hence, in the post-learning phase we have a

balanced cortical state, and the neural network remembers what it learned. Thus, although the
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Figure 4.4: Time average of the largest eigenvalue, 〈λ〉t, as a function of C1/Ĉ1, C2/Ĉ2 and D/D̂
where Ĉ1, Ĉ2 and D̂ are the parameter values used for Fig.4.1-4.3. All three curves show that this
model is fairly robust to parameter changes, e.g., a 25% change in C1 or C2 yields a change in 〈λ〉t
of about 0.3%.
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glial transport stabilizes a unique attracting macrostate with λ ∼= 1, it, nevertheless, still potentially

allows for distinct microstates representing stored information.

The qualitative results reported here are robust to parameter variations over a 25% range in

C1 and C2 and an even larger range for D. One indication of this is shown in Fig. 4.4 where we plot

the time averaged largest eigenvalue 〈λ〉t of W versus the parameters C1, C2 and D normalized

to their values used in Figs. 4.1-4.3. We note that 〈λ〉t changes by roughly 0.3% when C1 or C2

changes by 25%. This approach used to quantify robustness is somewhat arbitrary. However, for

the simplified model without learning and inhibition we derive a 3-dimensional map (see Sec. 3.3.2)

that allows to more robustly predict the good and bad parameter regimes.

4.2 Model 2: Results on model without learning or inhibition

In this section, we present the results of numerical experiments on the model with only

excitatory nodes and no learning. The goal here is twofold: (i) to quantify the critical state using

a typical signature of criticality [4, 12], power-law distributed avalanche size distributions with

the characteristic exponent of −3/2 for the power law and (ii) to gain insights on the good and

bad parameter regimes for the stable critical state. Additionally, we quantify robustness using

both simulations on the full model as well as using the 3-dimensional map. We show that the

3-dimensional map with noise (introduced in Sec. 3.3) can robustly reproduce the behavior of the

full model. Finally, in all the experiments, we use the parameter values for the two layers as shown

in Table 4.1.

In the first experiment, we show that using suitable parameter choices the resource-transport

dynamics causes the system to self-organize to the critical state corresponding to λt = 1 after a

transient period (see panel (c) of Fig. 4.5). We consider three different initial conditions λ0 =

{1, 0.95, 1.05} (obtained from rescaling the initial W ). Panel (b) of Fig. 4.5 shows that the average

glial resource, R, reaches a steady state in all three cases. Additionally, we run the 3-D map with

noise (see Eqs. (3.36), (3.37), (3.39) and the accompanying explanation) for the same parameter

settings and qualitatively recover the results shown as the dotted (subcritical case) and dashed
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Figure 4.5: Results of numerical simulations considering different initial states of the model such
as critical (black circles), subcritical (red triangles) or supercritical (blue squares) states. Panel
(a) shows the evolution of the largest eigenvalue, λ, of the neural network adjacency matrix. In all
three cases, λ ≈ 1 after a transient period. Panel (b) shows that the average glial resource, 〈Ri〉,
settles to a stable value over time. In both panels, the dotted (subcritical case) and the dashed
(supercritical case) lines show that the predictions from the 3-D map with noise [Eqs.(3.36), (3.37),
(3.39)] qualitatively agree with the simulations from the full model for both λ and 〈Ri〉.
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4 6× 10−8 2.5× 10−5 3 −1.45
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Figure 4.6: The critical state is robust to changes in model parameters. For a fixed C2 = 10−8,
panel (a) shows the avalanche size distributions, P (L) for different parameter settings shown in
panel (b). As shown, the exponent for the power-law fit (γ) is near the characteristic value of −3/2
for fits spanning 3 (red) or 4 (blue) decades. In all these cases, we get a plausible p-value for the
power-law fit found by using maximum likelihood methods [73].
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(supercritical state) lines in Fig. 4.5. Thus, we show that starting with different initial states, the

full model can self-organize to the stable critical state. Also, owing to the simplification of model

2, we could predict this result using the 3-dimensional map.

Although in the previous experiment, we quantified the critical state regime by λ ≈ 1, experi-

mentally (e.g. [4, 8]) it is often quantified by avalanches whose sizes follow a power-law distribution

with the characteristic exponent of −3/2. We define neuronal avalanches as the excursions of

activity S above a certain threshold S∗ [13]. In particular, we calculate an avalanche size L as

follows:

L = N

t2∑
t=t1

St . (4.6)

Here we define d = t2 − t1 as the duration of the excursion of S > S∗. Thus, the sum is an

approximation of the area under S over the duration d. Finally, we scale the sum by N so as to

count the number of spikes (excitations) in an avalanche. Fig. 4.7 shows the average neural network

activity, S, obtained by simulating the model. In this example plot we use a threshold S∗ = 0.15.

Each avalanche is shown in a different color.

In the next experiment, we simulate the model for a total of 107 time steps and calculate

avalanche sizes using the time series for S. Panel (a) of Fig. 4.6 shows that for S∗ = 0.15, the critical

state regime as characterized by avalanche size distributions P (L) ∝ Lγ is robustly observable over

a wide range of parameter settings. Panel (b) of Fig. 4.6 shows the parameter settings used and

the corresponding power-law fit exponent, γ ≈ −3/2. We use standard fitting techniques based on

maximum-likelihood estimation and the Kolmogorov-Smirnov statistic [73] with one key difference–

we allow for an upper cutoff for the fitting procedure, similar to some of the previous studies

quantifying neuronal avalanche size distributions [52, 97, 110]. That is, we fit a power law with

three parameters {γ, Lmin, Lmax} where Lmin and Lmax are lower and upper cutoffs respectively.

Given {Lmin, Lmax} we can find the best γ using a grid search over the typical range for γ [−1.1,−4]

[73]. The best fit is found by minimizing the KS-statistic. Additionally, we discard a power-law

fit if the KS ≥ 1/
√
Nsamp where Nsamp is the sample size in the fitted range. This empirical rule
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Figure 4.7: Avalanches are defined as the excursions of activity S above a threshold S∗ [13]. We

calculate an avalanche size using the sum

t2∑
t=t1

St, i.e., the area under the S curve over the duration

d = t2 − t1 of the excursion. For each avalanche we use a different color to depict the area under
the S curve. Finally, in order to count the number of excitations (or spikes) in an avalanche, we
scale this sum by N to get the actual avalanche size L given by Eq. (4.6).
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comes from [52] (see supplementary information therein), which generalizes the existing tabulated

values approach used in [111]. When introducing an upper cutoff, it is important to make sure that

we fit a large enough range, since we can always make Lmax and Lmin close enough to get a “good”

(or plausible) fit. To address this, we select {Lmin, Lmax} that maximizes log

(
Lmax

Lmin

)
.

Given a choice of C2, we find that choosing a C1 such that C1 < C2kI , where kI denotes the

average number of synapses served by a glial cell, results in stable critical state. If C1 does not

satisfy this inequality, the system receives more resource than the synapses can consume, resulting

in a build-up of resource and a supercritical state. In this model, we find that, for the tested

range C1 = [3 × 10−8, 12 × 10−8], choosing smaller values of C1 results in power-law fits over

more decades, i.e., with larger log

(
Lmax

Lmin

)
. For example, as shown in panel (b), using smaller C1

resulted in power-law distributions spanning 4 decades as opposed to 3. This numerical finding will

be validated with the results obtained from the 3-D map in Sec. 3.3.

For homogeneous undirected glial networks, if we use the same source rate C1 for all glial

cells the diffusion of resource amongst the glial cells can be shown to be unnecessary. In particular

summing Eq. (3.33) over i and dividing by T gives us an equation for average glial resource Rt and

the term for diffusion amongst the glial cells vanishes by symmetry. Thus setting DG = 0 does not

result in any instability.

However, if we consider the likely realistic situation of heterogeneous source rates, the neural

network dynamics can become supercritical if DG = 0. We note that the sources of heterogeneity

are diverse such as heterogeneous source, consumption or diffusion rates and heterogeneous network

structures. Here, as an illustrative example, we consider heterogeneous source rates by choosing a

Gaussian distribution for C1i, i.e., the source rate for glial cell i. We draw C1i ∼ N (µ, σ) with µ

and σ such that approximately 5% of the C1i > C2kI , i.e., approximately 5% of glial cells violate

inequality Eq. (3.64) shown in Sec. 3.3.2. The other 95% source rates do not violate this inequality.

In this way, some glial cells receive more resource than what can be consumed by the synapses that

the glial cells serve. Fig. 4.8 shows the results. Panel (a) shows that in the absence of resource-

transport amongst the glial cells, i.e., setting DG = 0, the network converges to a supercritical state
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Figure 4.8: Using heterogeneous source rates, the critical state is stable only in the presence of
resource-transport amongst the glial cells. Panel (a) shows that when there is diffusion amongst
glia, i.e., DG = D (blue circles), the largest eigenvalue of the neural network adjacency matrix,
λ ≈ 1. However, if resource transport amongst the glial cells is absent, i.e. DG = 0, the neural
network becomes supercritical with λ > 1 (red triangles). The dashed line shows λ = 1 for
reference. Panel (b) shows that the total resource R reaches a steady state when diffusion is turned
on (blue circles) and keeps increasing over time if diffusion is turned off (red triangles). This further
highlights the importance of resource-transport dynamics on the stability of the critical state.
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such that λ > 1. However, in the presence of resource transport amongst the glial cells (DG = D),

λ = 1 is stable. Panel (b) of Fig. 4.8 shows that for DG = 0 case, the total resource R keeps

increasing while for DG = D case, R reaches a steady-state. We conjecture that this model can

protect the system against other sources of heterogeneity such as heterogeneous consumption and

diffusion rates so long as the inequalities are satisfied and we leave the required analysis for future.

In the next experiment, we study the impact of network heterogeneity on the critical state.

More specifically, we make the interaction network, G, heterogeneous such that some glial cells serve

a much larger number of synapses while others serve few. To do this, we use the following arbitrary

rule: every glial cell i = x serves one incoming synapse of neuron n = x while glial cell i = x + 1

serves all the incoming synapses of neuron n = x+ 1 and the remaining synapses of neuron n = x.

We repeat this process for half of the glial cell network, i.e., from glial cell i = {1, 2, . . . , T/2}.

Each of the remaining glial cells serve all of the incoming synapses for only one neuron. While this

might seem arbitrary, the aim of this experiment is not to test the stability of the critical state by

exhaustively varying the amount of heterogeneity in the interaction network. Instead, we want to

provide one example of a heterogeneous interaction network structure that shows that the presence

of resource transport amongst glia is an important feature of the model that is crucial for both

stability and criticality.

Fig. 4.9 shows that the critical state is stable only if resources are allowed to diffuse via the

glial network (blue circles). Panel (a) of Fig. 4.9 shows that λ is near its critical value and panel (b)

shows that R reaches a steady state. If diffusion amongst the glial cells is absent (red triangles),

panel (a) shows that λ goes supercritical. Also, R keeps increasing over time.

In the final experiment, we show that the 3-dimensional map can qualitatively reproduce the

behavior of the full model. In this case we use two variants of the 3-D map: with (Eqs. (3.36),

(3.37), (3.39)) and without (Eqs. (3.36), (3.37), (3.38)) noise. In the first part of this experiment,

we show that the map with noise can be used to predict full model behavior for some arbitrary

parameter setting. As an illustrative example, we fix arbitrary values for source and consumption

rates C1 = 48× 10−4, C2 = 8× 10−4 and diffusion rate, D = 5× 10−5 and simulate the model and
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Figure 4.9: In a heterogeneous interaction network, G, the critical state is stable only if resources are
allowed to transport amongst the glial cells. Panel (a) shows that when there is diffusion amongst
glia (blue circles), the largest eigenvalue of the neural network adjacency matrix, λ ≈ 1. However,
if resource transport amongst the glial cells is absent, the neural network becomes supercritical
with λ > 1 (red triangles). The dashed line shows λ = 1 for reference. Panel (b) shows that
the total resource R reaches a steady state when diffusion is turned on (blue circles) and keeps
increasing over time if diffusion is turned off (red triangles). This further highlights the importance
of resource-transport dynamics on the stability of the critical state.
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setting C1 C2

1 6× 10−8 10−8

2 6× 10−7 10−7

3 6× 10−6 10−6

4 6× 10−5 10−5

5 6× 10−4 10−4

6 12× 10−4 2× 10−4

7 24× 10−4 4× 10−4

8 48× 10−4 8× 10−4

9 96× 10−4 16× 10−4

10 192× 10−4 32× 10−4

(d)

Figure 4.10: 3-Dimensional map reproduces behavior of the full model : We show that the behavior of
the full model can be qualitatively described using the 3-dimensional map. Panels (a) and (b) show
the plots for the model simulations and the map with noise respectively. The 3-D map reproduces
qualitatively the plots for activity, S, the largest eigenvalue of the neural adjacency matrix, λ, and
the average glial resource, 〈Ri〉, for a particular setting of C1, C2. For this particular setting, we
see oscillations for λ and 〈Ri〉 with peaks for S that correspond to the rising edges of λ and 〈Ri〉.
Panel (c) plots the standard deviation σ(λ) as a function of C1 for 10 different settings for C1, C2

shown in the table in panel (d). For any given setting, since λ fluctuates about its mean value
near 1, lower values of σ(λ) indicate a tighter control near criticality. As seen, increasing C1 or C2

results in a higher σ(λ) and thus lesser control of the critical state. Furthermore, there is excellent
agreement between values of σ(λ) from the 3-D map without noise (dashed black line), map with
noise (blue circles) and those obtained from model simulations (red triangles). Additionally, the
grey area highlights the region of parameter space for C1 or C2 where the critical state is predicted
to be unstable by the 3-D map without noise (see text for explanation).
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the 3-D map with noise for a total of 20000 time steps and plot the average activity, S, largest

eigenvalue of the neural adjacency matrix, λ and the average glial resource, 〈Ri〉. Panels (a) and

(b) of Fig. 4.10 show the results of the model simulations and the 3-D map with noise respectively.

These images demonstrate that the 3-D map qualitatively reproduces the model simulation. Though

not shown here, note that such an agreement holds for a wide range of parameter settings.

In the second part of this experiment, we are interested in quantifying the deviation of

the system from criticality as we vary model parameters. To quantify this, we use the standard

deviation in the time series of λ that we denote as σ(λ). Since λ fluctuates about 1 for any selected

parameter setting, σ(λ) captures the deviation of the system from criticality. Since an exhaustive

search of parameter space is infeasible, we select parameter settings along the C1 axis of Fig. 3.6 in

Sec. 3.3.2. That is, fixing D = 5× 10−5, we plot σ(λ) as a function of parameter C1 in panel (c) of

Fig. 4.10. The parameter values for the 10 settings are shown in panel (d) of Fig. 4.10. As shown,

we increase C2 proportional to C1. Panel (c) shows that increasing C1 or C2 results in reduced

control of λ = 1 as σ(λ) increases.

Furthermore, panel (c) shows that both 3-D map variants quantitatively recover the curve for

σ(λ) as the agreement with model simulations is quite excellent. Finally, the grey area highlights

the region of parameter space for C1 or C2 such that one of the inequalities that governs the stability

of λ = 1 fixed point, i.e., Eq. (3.63), is violated (see Sec. 3.3.2). This inequality serves as one of the

conditions, derived from the map without noise, that must be satisfied for a stable critical state.

The map without noise thus predicts roughly the onset of instability, with results from the 3-D

map with noise and model simulations agreeing quite well.

Finally, we calculated the avalanche size distributions using the time series for S for all 10

setting from the model simulations. For the first four settings (see panel (d) of Fig. 4.10) where

σ(λ) is small, we obtain plausible power-law fits with the exponent near its characteristic value of

−3/2. For the remaining 6 settings where σ(λ) starts to increase, we do not get plausible power-

law fits and the fitted region is confined to a very small range of avalanche sizes. In particular,

the number of samples in the fitted region denoted by Nsamp is so small that the value of the
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Kolmogorov-Smirnov (KS) statistic, KS > 1√
Nsamp

. Thus, the 3-D map can be quite helpful in

predicting good and bad parameter regimes for the stability of the critical state.



Chapter 5

Conclusions & future work

The study of neural network learning mechanisms has a long history– from Aristotle’s early

observation that repeated causal activation sequences are necessary to link mental representations

[112] to the most current view on the subject such as the STDP learning rule. While there is ample

experimental evidence for STDP [18], incorporating it in a computational model is nontrivial. In a

recurrent network of neurons, STDP, or indeed any other Hebbian plasticity mechanism, results in

synapses becoming either too strong or too weak resulting in saturation or dying out of the neural

network activity respectively. As pointed out in [19, 113], some homeostatic plasticity mechanisms

are needed to dynamically adjust synapse strengths in the correct direction so as to promote network

stability.

In some computational models of neural networks, the dynamics can be well-characterized

by the largest eigenvalue, λ, of the neural network adjacency matrix [12, 13]. Incorporating STDP

in such existing computational models [13], we observe that, over time, λ becomes greater than 1.

This results in saturation of the network activity (i.e., attainment of a supercritical state). Thus it

is vital to answer the question– How can the neural network maintain λ ≈ 1 in the face of learning?

In this thesis, we described a novel answer to this fundamental question; that the transport of

resources in the secondary glial cell network can play a crucial role in stabilizing the dynamics of

the primary neural network. In particular, we studied the following two variants of this idea:

(1) Model 1 operates at the scale of individual neurons such that we have both excitatory

and inhibitory synapses and learning via spike-timing-dependent plasticity. In this case,
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we were interested in providing a plausible hypothesis to the long-standing question– How

does the human brain achieve the opposing goals of stability and learning? Using numerical

simulations of this model, we collected promising results: (i) regardless of the initial state,

our model can effectively stabilize the dynamics of learning, (ii) diffusion of metabolic

resources amongst the glial cells is vital to maintain stable overall dynamics, (iii) our

model can learn and remember. During learning, the neural network becomes subcritical

and during rest, it is restored back to a balanced cortical state recovering λ ≈ 1. Although

the model does not maintain the critical state during learning we are encouraged that a

similar observation has also been made for in vivo experiments on human beings [109].

(2) Model 2 operates at a mesoscopic scale such that a node may be considered as a group of

neurons and the edges can be modeled with only positive weights, making the model purely

excitatory. This can be useful in practical contexts where recordings are obtained from an

aggregate response of a set of neurons that are modeled as a single node. We used this model

to provide a plausible hypothesis for how critical dynamics can be stable. In a simplified

version of our model, without learning and inhibition, we have shown that the resource-

transport dynamics complements the neuronal dynamics such that the system is poised at

the desired critical state. For this version of the model, our main results are as follows:

(i) Under suitable model parameters, the simplified model can self-organize to a critical

state that is characterized by power-law distributed avalanche sizes with an exponent value

near the characteristic −3/2 exponent found in various experimental studies, (ii) this state

is robust to a wide range of model parameters, (iii) using heterogeneous source rates or a

heterogeneous interaction network, the critical state is stable only if the diffusion of resource

between the glial cells is turned on that further emphasizes the need for resource transport,

(iv) theory correctly predicts the evolution of λt and Rt. Finally, we show that (v) the

3-dimensional map with or without the noise term can correctly reproduce the behavior of

the full model.
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Adding more realistic features to any variant of our model such as refractory states for neu-

rons, time delays for synaptic transmission, recycling of resources via the glial network, etc. may

provide potential avenues for future studies. While in our present work we study the dynamics

for simple homogeneous networks, the study of network dynamics with more complicated network

topologies such as networks with communities may be closer to biologically observed network struc-

ture. To conclude, we outline some possible avenues to further the ideas presented in this thesis

and discuss how some of the ideas used here may be applicable outside the field of dynamics on

complex networks.

5.1 A more realistic view of resource-transport dynamics

Glia perform several regulatory roles that enable neurotransmission [114]. Astrocytes, a par-

ticular type of glial cells, surround pre and postsynaptic terminals. During neurotransmission, as-

trocytes convert glutamate into glutamine and release it to the surrounding environment. Neurons

consume glutamine to produce glutamate and GABA, the excitatory and inhibitory neurotrans-

mitters respectively. Introducing this recycling mechanism of resource in our resource-transport

dynamics would help add more realistic transport dynamics to our model.

5.2 Effect of refractory states and time delays

The idea of resource production and consumption may indirectly model both refractoriness

and time delays. For instance, assume that a certain neuron fires consistently for some number of

consecutive time steps. Since the synaptic resource gets consumed at a certain rate, such persistent

firing can result in a state where all the outgoing synapses of such a neuron run out of resource.

Thus, in the subsequent time steps the neuron cannot excite any of its neighbors until at least one

of its outgoing synapse receives some resource from the glial network. Thus, local resource con-

sumption may force the neuron to be in a refractory period. Additionally, since there is an inherent

delay in moving resources via the glial networks, some synapses might have to wait before they are

able to transmit a signal from the presynaptic neuron to the postsynaptic neuron. Indirectly, then,
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there may also be some delay in synaptic transmission as well.

Modeling these effects explicitly would allow us to have a finer control on refractoriness or

transmission delay. As shown in panel (a) of Fig. 2.5, after a node is active, it becomes hyper-

polarized and is unable to fire immediately. To model this we can introduce rn − 1 refractory

states so that the rn + 1 possible states for node n are: stn = 0 (resting), stn = 1 (active) and

stn = {2, 3, . . . , rn} (refractory).

Introducing time delays and refractoriness in their model, Larremore et al. [95] found that the

critical state is preserved with λ = 1 maximizing the dynamic range for homogeneous distributions

of the number of refractory states and the amount of time delay. Also, considering synchronization

dynamics, time delays can play an important role when modeling neural network dynamics; they

can enhance synchrony in certain neuronal models such as in a network of Hindmarsh-Rose neurons

[115], while they may have more subtle effects in other neuronal models such as the Rulkov map

[116].

To match biology, we could also introduce axonal conduction delay, i.e., the time required for

an action potential to travel from the neuronal cell body to its axon terminals [14]. This addition

to the model could be used to study both critical and synchronization dynamics. We can model

this by modifying Eq. (3.30) as follows:

st+1
n =


1 with probability σ

(
N∑
m=1

W t
nms

t−τnm
m

)
,

0 otherwise .

(5.1)

That is, if the postsynaptic neuron n is resting at time step t, i.e. stn = 0, then a presynaptic

neuron m can excite n in the next time step, i.e. st+1
n = 1, with probability that now depends on

the time delay for the action potential to travel from neuron m to neuron n. This is introduced

by τnm. Finally, to study both refractoriness and time delays we can initially make a homogeneous

assumption where rn = r or τnm = τ and latter study the likely realistic scenario of heterogeneous

distributions for the number of refractory states and the amount of time delay. One of the ques-

tions of interest here could be– does the resource-transport dynamics stabilize the critical state on
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including these realistic modeling choices?

5.3 Extensions of the learning experiment.

To illustrate our point in Experiment 3 of Sec. 4.1, we stimulate half the neural network in

one time step. However, a more realistic experiment would be to divide the neural network into

smaller communities of neurons, each representing some brain regions. Some questions of interest

here are: Can memory be better retained in smaller communities? Does competing for resources

impact learning simultaneously in two different regions of the brain?

5.4 Effects of complex network topologies.

The experiments in this thesis use the Erdös-Renyi network structure for both the neural and

the glial networks. However, there is some evidence that the brain network structure is motivated

by a tradeoff between minimizing wiring costs for synapses and maximizing navigability of infor-

mation [117]. The Nash equilibria network structures could result in realizations of small-world

network or other random networks. In any case, it is important to test our model using different

network structures. How robust are the resource-transport dynamics of Sec. 3 to changes in network

structure? Is the result, λ ≈ 1, also robust to such changes? These questions are left for future

work.

5.5 Quantifying critical dynamics in neural networks.

Criticality in brain network dynamics is an often debated topic [46]. The classical signature

of criticality, a power-law distribution for neuronal avalanche sizes, is often criticized as power laws

can potentially emerge from noise (which can be exacerbated by learning) and hence they might

not be representative of optimal brain function [118]. Also, we note that as shown in [101], quasi-

critical behavior obtained for models like the ones described here can result in oscillations around

the stable critical state. In this thesis, we showed that in general choosing smaller values of source

rate (loading rate) and consumption rate (dissipating rate) reduces the amplitude of the oscillation
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around the stable critical state resulting in power-law distributed avalanche size distributions for

a wide range of parameters. Thus, to distinguish between quasi-critical and critical behavior,

quantifying the critical state using avalanche size distributions may not be enough. Due to these

reasons, we must look for different quantitative ways to establish critical dynamics.

One of the potential ways to do this is to consider entropy measures such as the Shannon

entropy measure for the neural network activity, S. For supercritical or subcritical regime, entroopy

would be, in general, lower than that for the critical regime. We could do statistical tests to assess

the difference between the entropy measures for the λ ≈ 1 state (the learning case, using our model)

and for the λ = 1 state (the no-learning case using the existing mathematical model of [13]).

5.6 Applications to machine learning

Biological neural networks inspire many of the modeling philosophies in artificial neural

networks. In the recent past, the idea of deep learning [105] (inspired in part from the multilayer

structure of the human brain) has helped advance the field of artificial intelligence in diverse

areas such as natural language processing, computer vision, etc. Machine learning algorithms

frequently use the idea of regularization to prevent overfitting of model parameters to training

data. Regularization techniques such as dropout [119] are also inspired by biology, namely, the idea

that synaptic transmission fails at a certain rate. In the particular case of neural network learning

algorithms, the idea of regularization is to penalize large values for model parameters, i.e., large

values of synaptic weights. This ensures that the neural networks generalize well as they do not

overfit the training data. Indeed, one of the potential ideas for regularization would be to constrain

synaptic weights using resource-transport dynamics. Presently, the best learning algorithms for

computer vision or natural language processing perform worse than or match humans. While

the idea of resource-transport seems to be computationally costly, the following could be a very

interesting theoretical question of interest to both neuroscience and machine learning communities-

does the regulation of resource via the glial network makes the human brain generalize well? If

this is indeed the case, it may be very useful to mimic this behavior in neural network learning
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algorithms.
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