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Abstract

The propagation of small bodies in the solar system is driven by the combination of planetary encounters that cause
abrupt changes in their orbits and secular long-term perturbations. We propose a propagation strategy that
combines both of these effects into a single framework for long-term, rapid propagation of small bodies in the inner
solar system. The analytical secular perturbation of Jupiter is interrupted to numerically solve planetary encounters,
which last a small fraction of the simulation time. The proposed propagation method is compared to numerical
integrations in the solar system, effectively capturing properties of the numerical solutions in a fraction of the
computational time. We study the orbital history of the Janus mission targets, (35107) 1991 VH and (175706) 1996
FG3, obtaining a stochastic representation of their long-term dynamics and frequencies of very close encounters.
Over the past million years the probability of a strongly perturbing flyby is found to be small.

Unified Astronomy Thesaurus concepts: Asteroids (72); Near-Earth objects (1092); Astrodynamics (76); Asteroid
dynamics (2210); Close encounters (255); Opik theory (1162); Flyby missions (545)

1. Introduction

As remnants of primordial planetary formation, (NEOs) are
relevant targets for scientific exploration. The number of
discovered NEOs is expected to continue increasing with future
surveys, offering new opportunities to the scientific community
(Jones et al. 2018). The interest and availability of specific
objects is assessed with long-term predictions of their orbits.
Trajectories of NEOs are dominated by close encounters with
the inner solar system planets and secular perturbations (Michel
et al. 1996). Planetary encounters cause a high dependence on
the initial conditions as the flybys cause neighboring
trajectories to diverge (Tancredi 1998). This divergence of
the dynamics also causes the uncertainty to grow very rapidly.
Thus, an analytical model that captures the main dynamical
effects can avoid the computational cost of using high-fidelity
models while capturing the overall statistical evolution of the
orbits accurately. The semi-analytical propagation of asteroids
allows the rapid propagation of NEO orbits, in the interest of
the analysis of large databases of NEOs.

The long-term study of asteroid orbits has been achieved in
the past using a wide variety of analytical, semi-analytical and
numerical methods. Analytical methods are based on the study
of the gravity potential to obtain secular and resonant
perturbations (Milani & Knezevic 1990). Semi-analytical
methods are used to map orbital elements to the locations of
linear secular resonances, which are resonances involving one
planetary and one asteroid frequency (Michel & Froeschlé 1997;
Michel et al. 1997). Both types of solutions represent the
dynamics of asteroids in the absence of planetary encounters by
averaging the perturbing potential.

On the other hand, previous studies focus on the accumula-
tion of planetary encounters in contrast to numerical integration

(Dones et al. 1999). The effect of close encounters on the orbit
of asteroids can be computed using analytical (Öpik 1976),
semi-analytical or numerical methods. Semi-analytical solu-
tions (Alessi & Sánchez 2015) allow the computation of flybys
treating the planet as a perturbing force in the Lagrange
planetary equations (LPEs). Specific numerical integrators are
convenient to propagate orbits of asteroids in the long term, in
which symplecticity is desired along with the capacity to
accurately solve close encounters (Wisdom & Holman 1991;
Chambers 1999). Under multiple resonances asteroids start to
encounter planets while their eccentricity increases. This
increase often causes the asteroids to eventually collide with
the Sun or planets, or to be ejected from the solar system on a
hyperbolic orbit (Milani et al. 1989; Farinella et al. 1994;
Gladman et al. 1997; Dones et al. 1999; Michel et al. 2005).
In this paper we aim to provide a simulation framework for

the propagation of particles in the solar system. Our approach
consists in the analytical propagation of the particle until a close
encounter is found. The propagation is stopped when the
trajectory is close to a planet, and then the close encounter is
evaluated numerically. The evaluation of the encounters is based
on a quadrature of the LPEs around the closest approach date.
After the encounter, the analytical propagation of the orbit is
resumed. The propagation under secular perturbations provides a
realistic prediction of when the next encounter can occur as the
orbit of the asteroid drifts between different regions of the inner
solar system. This approach reduces substantially the computa-
tional time of solutions obtained entirely by numerical
integration while providing deeper insight into the dynamics.
The use of the analytical secular model allows the prediction

of long-term properties of the asteroid dynamics. Eccentricities,
inclinations, and angles of asteroid and planets drift secularly.
Thus, we can propagate the minimum orbit intersection
distance (MOID). The MOID constrains the minimum closest
approach distance between the asteroid and the planets and
defines whether asteroids are potentially hazardous (PHAs).
The long-term dynamics of the orbits of NEOs and the MOID
are studied by sampling a large number of virtual asteroids
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from their uncertainty distributions. We use the semi-analytical
propagation of these asteroids to show the stochastic nature of
the orbital evolution of NEOs.

The semi-analytical propagation allows us to track the
encounters experienced by asteroids in the inner solar system,
which can perturb the physical properties of asteroids. The
orbits of binary asteroids can be disrupted by a very close
encounter (Meyer & Scheeres 2021). In this paper we study the
orbital history of the targets of the exploration mission Janus
(Scheeres et al. 2020): the two binaries (35107) 1991 VH and
(175706) 1996 FG3. The stochastic long-term dynamics in the
past million years are modeled by sampling a large number of
particles from their current orbit uncertainties. We model the
evolution of these statistical distributions by a random walk in
semimajor axis, eccentricity, and inclination and a uniform
distribution in longitude of perihelion. Then, we compute the
probability that (35107) 1991 VH and (175706) 1996 FG3
could have been potentially disrupted by a close encounter in
this period of a million years.

This section presents the scope of the paper and is followed
by the background of this work in Section 2. Next, Section 3
describes the methodology, including a detailed study of flyby
evaluation and the derivation of an analytical N-body secular
problem solution. Section 4 shows examples of the long-term
propagation of asteroids and how the long-term dynamics can
be characterized stochastically. Section 5 discusses the
limitations of the semi-analytical propagation tool. Section 6
studies the orbital history of the Janus targets and the frequency
of close encounters. Finally, Section 7 concludes by evaluating
the aspects in which this methodology proves beneficial,
questions that remained unanswered, and future work.

2. Background

The long-term dynamics of NEOs are governed by their
gravitational interactions with the other bodies of the solar
system. The effects of the most massive and external planets
have timescales of millennia. However, planetary close
encounters can abruptly change an orbit over a timescale of
days. The accumulation of such planetary encounters causes
the orbits of NEOs to be chaotic (Tancredi 1998). This section
describes this phenomenon in more detail. The evaluation of
close encounters is necessary for the propagation of NEOs;
hence, the variety of possible flybys is demonstrated later for
the validation of the method.

Many asteroids experience long periods of time without
flybys. The dominant dynamics in those periods of time are the
secular perturbations from massive planets in the solar system.
Likewise, the orbits of the planets evolve secularly over similar
timescales. The Laplace–Lagrange secular theory qualitatively
describes the evolution of the elements of the planets at any
distant time in the future or past. As for the asteroid, the secular
solution from external perturbers represents the orbital
dynamics of asteroids between encounters.

The presence of repeated encounters is one of the main
characteristics of the long-term propagation of asteroids in the
inner solar system. Repeated close encounters cause a random
walk in the elements of the asteroids. Very close encounters occur
less frequently but change substantially the orbits of NEOs,
modifying predictions on the long-term evolution of their orbits.
Thus, we propose an informed analytical propagation of the orbits
while characterizing planetary close encounters. The proposed
methodology is born from the combination of these two

dynamical regimes: the long-term effects of secular dynamics
and the frequent changes in elements experienced in planetary
encounters. Considering the secular drift of the asteroid, we model
the seasonal variation of the possible encounters with planets.

2.1. Chaotic Dynamics in the Inner Solar System

An accurate description of the evolution of orbits of near-
Earth asteroids beyond a few centuries is challenging. This is
because a succession of planetary encounters disperse neigh-
boring trajectories to become chaotic (Tancredi 1998). Small
deviations in the orbital period change the timing of the flybys,
spreading the uncertainty along the Line of Variation (Milani
et al. 2005). After successive flybys, the resulting imaginary
stream of particles is spread in highly nonlinear distributions.
For this reason the study of long-term dynamics is often left to
a statistical analysis requiring a large number of particles and
computational efforts. In this context we propose the use of this
semi-analytical tool to obtain long-term simulations in short
computational times.
We exemplify the sensitivity to initial conditions in a

numerical integration of asteroid (35107) 1991 VH, which is
one of the two targets of mission Janus (Scheeres et al. 2020), a
NASA SIMPLEx mission. Figure 1 shows 1440 particles
generated from the uncertainty in the orbit solution of (35107)
1991 VH, which is included in Table 4 of Appendix A. These
particles are propagated in the N-body integrator IAS15 (Rein
& Spiegel 2014), including the solar system planets from
Venus to Neptune. The particles are propagated for a million
years, although in this section we study in more detail the
distributions after shorter periods of time.
After 500 yr, the initial normal distribution already becomes

a stream of particles. While the variation in the elements from
the nominal is similar for all the particles, there is a dispersion
orders of magnitude smaller that represents the stream of
particles. After 5000 yr, the distribution becomes completely
different: the presence of planetary encounters disperses the
particles around the initial orbit. The variation in eccentricities
and inclinations has a secular component. However, the
variation on the argument of the node and argument of
perihelion is dominantly secular after a few millennia. After a
million years, the particles are spread along a large region of
near-Earth space. In argument of perihelion and ascending
node we observe that the distribution becomes almost uniform
in the whole 2D angular space.
The secular drift in the arguments defines the possibility of

encounters over time. For this reason, it is important to
characterize this drift and the secular cycles under the
perturbation of the large bodies of the solar system. When
encounters are possible with the inner solar system planets, these
need to be accounted for as perturbers of the orbit evolution.
The stochastic nature of the long-term dynamics of NEOs

under close encounters implies that the precise determination of
their position after hundreds of thousands of years is
unachievable. However, we can still collect statistics that give
us insight on their orbital history. Another implication is that
the inclusion of higher-order dynamics is shadowed under the
stochastic dispersion caused by the main gravitational pertur-
bations. For example, the magnitude of the Yarkovsky effect is
typically 10−4 au Myr−1 (Vokrouhlicky et al. 2000; Nesvorny
& Bottke 2004), which is still two orders of magnitude smaller
than a typical dispersion after 10,000 yr under repeated close
encounters, as observed in the example of Figure 1. In
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Section 6.1 we show that (35107) 1991 VH is not under a
particularly high frequency of close encounters compared to
other NEOs.

Similarly, relativistic effects can have a nonnegligible effect
in the secular rates of the argument of perihelion. These are
usually measured in arcseconds per year or century, and typical
values are 1–2 orders of magnitude smaller than the typical
secular periods of the order of 100,000 yr (Benitez &
Gallardo 2008). Even if the secular rate has an error, the
presence of encounters already causes the distributions to
become uniform in argument of the node and perihelion after a
few secular periods.

2.2. NEO Close Encounters in the Inner Solar System

Flybys can occur with multiple planets over short periods of
time. Even if the encounters are with the same planet, the closest
approach distance and relative velocities can change depending
on the timing of the flyby. The geometry of the flyby is
constrained by the heliocentric elements of the asteroid. If
shallow encounters are considered, the position in the asteroid
orbit in which the planet is encountered can significantly change
the relative velocity. These variations are not well captured by

analytical theories, but the proposed propagation tool aims to
accurately model these variations. These are different regimes of
flybys in which the evaluation tool needs to be accurate.
In order to broadly show the diversity in flybys that different

NEOs experience, we generate a list of flybys that will be used to
validate the evaluation of close encounters. From the database of
NEOs we select the ones with semimajor axis smaller than 2 au
(JPL Solar System Dynamics & Center for NEO Studies
(CNEOS) 2021). Then, we propagate their positions using the
secular model for 50 yr. For such a brief period of time the
change in the elements is insignificant for our purposes. Figure 2
shows more than 30,000 flybys generated with the described
method. Shallow encounters are much more frequent than the
very close encounters that cause large variations in orbit
elements. Thus, we want to consider them even if their
individual contribution is not as significant.
The range of possible relative velocities in Figure 2 depends

on the planet in question, with increasing maximum relative
velocity for the planet closest to the Sun. The relative velocity
is defined by the heliocentric orbit of the asteroid, with an
increasing range of possible values depending on the inclina-
tion and eccentricity of the orbit. Overall, after millions of years
asteroids experience a variety of encounters that can be

Figure 1. Chaotic dynamics of (35107) 1991 VH as obtained from numerical integration. Each axis represents the variation from the initial value of element pairs:
semimajor axis–eccentricity (left), semimajor axis–inclination (middle), and argument of the node–argument of perihelion in degrees (right). The orbital evolution is
shown at four instants of time: initial (first row), after 500 yr (second row), after 5000 yr (third row), and after 1 million years (bottom).
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computed with different methods. With this purpose the list of
generated flybys is used to decide the method to compute the
post-encounter elements of flybys. In Section 3 we compute the
error of different close encounter evaluation methods refer-
enced to numerical integration of the trajectories.

3. Methodology

This semi-analytical propagation tool consists of the
following process. First, the orbit of the asteroid is propagated
by an analytical secular solution. This perturbed motion is
interrupted when an encounter is found with a nearby planet.
Then, the trajectory during the planetary encounter is modeled
using a numerical method. Next, the secular propagation is
continued until the subsequent encounter.

The simplest way to find encounters is to track the distance
between the asteroid and planets at all times. While the regions
in which encounters are possible are determined by the
geometry of the asteroid around the central body, searching
at all times is the most generic approach. The state of the
planets is obtained from the secular solution of the eight main
planets interacting with each other. The state of the small body
is corrected given the secular dynamics model. Once we
determine the initial conditions of the encounter, the change in
orbit elements is computed through the proposed numerical
procedure.

There are many methods to compute planetary encounters
available in the literature. Analytical solutions for Keplerian
elements before and after close encounters in Öpik’s theory
(Öpik 1976) were extended for multiple applications by
Valsecchi et al. (2003, 2015). However, these analytical
expressions are constrained to encounters that are very close
and small bodies that are not comoving with the planet. Asteroid
and planet are comoving when they have a small inclination and
at least one of the node crossings close to the planet orbit.

We name shallow encounters those with large close
approach distance but nonnegligible effects. Shallow encoun-
ters are very frequent and influence the long-term evolution of
small bodies in the solar system. In order to account for shallow
encounters, semi-analytical methodologies can be used to map
before and after encounter conditions (Alessi & Sánchez 2015).
These methods are based on the quadrature of LPEs around the

encounter. In this work we derive a quadrature of LPEs in
Delaunay elements, which is solved using a numerical
integration scheme. In the case of extremely close or slow
encounters we solve the encounters numerically.
Once the solution of most encounters is obtained satisfactorily,

we focus efforts on the computation of the perturbed motion of the
asteroid in absence of encounters. We evaluate the solution of N-
bodies interacting secularly to generate the orbits of the planets.
Then, we obtain the perturbed motion of the asteroid including
only the planets relevant to its secular influence. Taking into
account the influence of only Jupiter is a valid generic approach to
estimate the secular dynamics of NEOs (Vokrouhlický et al. 2012;
Pokorný & Vokrouhlický 2013; Fuentes-Munoz & Scheeres
2020). In this work we use the Laplace–Lagrange secular model.
The secular rates as obtained by the analytical theory are
compared to numerical integration to validate the range of validity
of the solution. This defines a range of applicability of the tool, as
we discuss later.
In this section we compare the individual pieces of the semi-

analytical propagation tool to numerical methods. Lastly, we
compare the combined semi-analytical propagation tool with
trajectories obtained through numerical integration and evalu-
ate the computational efficiency of the method.

3.1. Analytical Secular Dynamics of Multibody Systems

The dynamical landscape of the solar system is complex,
with gravitational interactions between all planets. This land-
scape leads to resonances and secular motion in asteroids in the
system. Well inside the inner solar system, the dynamics are
dominantly secular. The secular solution of a planetary system
formed by N-planets can be obtained analytically to first order
in inclinations and eccentricities and in the absence of
resonances. This section derives an implementation of the
solution following the procedure in Chapter 7 of Murray &
Dermott (2000). The perturbing potential is written for the N-
bodies considered. Then, LPEs are used to compute the
equations of motion of the elements of each particle, leading to
a system of differential equations solved together.
The secular model is obtained as follows: (1) The perturbing

potential is split into a direct part and an indirect part based on
the dependency on fast angles. (2) Then, the perturbing

Figure 2. Relative velocity at closest approach of flybys generated from the propagation of NEOs with semimajor axis smaller than 2 au for 50 yr. The symbol
indicates the planet that the asteroid is encountering, and the horizontal axis shows respectively closest approach distance (au), inclination (deg), and eccentricity.
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potential is expanded in Keplerian elements. (3) The important
terms of the expansion are selected based on the averaging
principle. (4) The terms are rewritten in semi-equinoctial
elements to ease the solution of the global system of equations.
(5) Take the necessary partials to solve the set of LPEs. The
perturbing potential experienced by a mass j by a second mass
k is

R
Gm

a
R R , 1jk

k

k
jkD jk I( ) ( )= +

where ak is the semimajor axis of the external body. The
perturbing potential is separated into the direct Rjk D and
indirect Rjk I parts:
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they do not contribute to the averaged potential Rj. The secular
potential lowest order in eccentricities and inclinations is
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where the coefficients bs
k( ) are Laplace coefficients. More

details on their computation can be found in Appendix B. The
coefficients Ajj, Ajk, Bjj, Bjk form the matrices A and B. We can
rewrite the potential in semi-equinoctial elements,
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Our complete set of states includes the mean anomaly at
epoch σj and L GMaj j= . The equations of motion become
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The solution of hj, kj, pj, qj only depends on R1,j. For this
reason the perturbing potential is often only expressed with
those components. However, if we want the solution of the
mean anomaly at epoch σj, it is necessary to take into account
R0,j. In the process of averaging, the terms that would affect the
semimajor axis are removed, meaning that under this assump-
tion that element remains constant. The solution of hj, kj, pj,
qj is
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where two sets of eigenvalue problems are solved for eji, Iji, fi,
gi. The frequencies gi are the eigenvalues of A, and the
frequencies fi are the eigenvalues of B. Parameters eji and Iji are
related to the eigenvectors of A and B but need to be solved
with βi, γi given a set of initial conditions. In order to solve for
eji, Iji, βi, γi, we proceed as follows. From the matrices of
normalized eigenvectors e I,ji ji¯ ¯ and the initial conditions h, k, p,
q we form

h e S p I T

k e S q I T

sin sin

cos cos . 13

ji i i ji i i

ji i i ji i i
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These are four linear systems of equations, where Si, Ti are the
scaling factors of each eigenvector. Solving for the combined
factors S S Tsin , cos , sini i i i i i[ ] [ ] [ ]b b g , and T cosi i[ ]g , we can
reconstruct the vectors eji, Iji and the phase angles βi, γi.
Figure 3 shows the solution of Equation (12) for Mercury,

Venus, Earth, and Mars as perturbed mutually and from the rest
of the planets of the solar system. This model is compared to
two other models for 15,000 yr into the past. The first one is a
numerical integration of the N-body problem taking into
account the eight main planets of the solar system and the Sun.
Then, we also compare to the planetary ephemerides DE431
(Folkner et al. 2014). While the complete ephemerides models
show the short-period effects, the secular component is
modeled by the two simplified models.
The initial conditions of the 9BP integration and the secular

theory are obtained by averaging the full ephemeris model for
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two orbit periods. As a result, the initial conditions visually
appear to be off from the mean of the full ephemeris solution,
but they are the actual time average.

The short-term components have a significant effect in the
evolution of hj, kj. In the case of pj, qj, the secular component is
the dominant effect of the evolution. Because of the
assumptions of small eccentricities and inclinations, the
predicted frequencies are not perfectly accurate, as observed
in the drift between the 9BP solution and the analytical theory
of Figure 3, especially in pj, qj.

A similar agreement in these elements is found for the gas
giants. However, only the inner solar system planets are shown,
as they are the bodies that are encountered by NEOs. Thus,
these are the planets for which we want to guarantee an
accurate model of their secular dynamics. The analytical
propagation of Mercury drifts the most from the full ephemeris
solution, although it is the least relevant inner planet. Close
encounters with Mercury are infrequent and have a small effect,

as Mercury is the least massive planet and is encountered with
very high relative velocity.
As a result of the averaging of the perturbing potential, the

semimajor axis of the bodies remains constant. The complete
set of secular solutions includes the mean anomaly at epoch σj.
Short-term applications benefit from the improved character-
ization of the position of the bodies in their orbits. Solving for
σj is straightforward if we ignore the contribution of R1,j, which
has a small effect compared to R0,j. The equation of motion for
σj becomes


R

L n a

R

a

2
, 14j

j

j j j

j
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0, ( )s = -
¶
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¶

¶

and the solution depends on whether the perturber is external or
internal:
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Figure 3. Semi-equinoctial elements of the inner solar system planets obtained using three models. The analytical secular model derived is shown in blue, the
integration of the 9BP of the main planets and the Sun is shown in red, and the ephemeris file DE431 is shown in gray. The initial conditions are obtained from the
time average of the ephemeris file over the first orbital periods of the planets.
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where c a ajk j k
2¯ = in the case of an external perturber and

c a1jk j¯ = - if the perturber is internal. The solution of the
equation is simply a constant drift given by the rate s. This
element completes the set of elements of the secular model.

3.2. Analytical Secular Dynamics of Near-Earth Asteroids

The secular dynamics of asteroids can be modeled as a
particular case of the secular dynamics of multibody systems
described above. In the present work we apply this solution to
the evolution of the asteroid under the external perturbation of
Jupiter. The solutions of Equation (13) simplify in the case of a
system of two bodies with a massless internal body. We follow
the same process to obtain the solution. Matrices Ajk and Bjk

simplify to

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

A B A B
B B

0 0 0 0
, 16jk jk

12 12 12 12 ( )= = -

where the subindices 1, 2 correspond to the massless particle
and the external perturber, respectively. The coefficients of the
matrices are found as in Equations (5)–(8) above. The solution
to the eigenvalue problem yields the secular frequencies of the
secular propagation g1= B12, g2= 0, f1=−B12, f2= 0. As
expected, the elements of the perturber h2, k2, p2, k2 remain
constant. The eigenvectors are the columns of the matrices:

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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where the constant κ is found as the ratio between Laplace
coefficients:
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b
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=

Note that the vector (e12, e22) is not normalized. This is not
necessary because in the process of obtaining the integration
constants from the initial conditions the scaling of the
eigenvectors is found. The solution of the elements of the

massless particle becomes
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The time evolution of the Keplerian elements set can be
obtained from the relationships with the semi-equinoctial set in
Equation (9). The solutions ofϖ(t), Ω(t) are the secular drift with
frequencies g1, f1 that are equal with opposite signs. The solutions
of e(t), i(t) are oscillations with frequencies g1, f1 as obtained
from the development of eccentricity e t h t k t1 1

2
1
2( ) ( ) ( )= +

and inclination i t p t q t1 1
2

1
2( ) ( ) ( )= + . The maximum and

minimum values of eccentricity and inclination are
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The secular model is computed for the fictitious asteroid of
Case 1 of Table 2, with the perturbation of Jupiter given by the
elements of Table 1. These cases are used later to demonstrate
the propagation tool. For a nominal eccentricity of 0.15 the
minimum eccentricity is 0.14946 and the maximum eccen-
tricity is 0.17466. For a nominal inclination of 10°, the
minimum inclination is 7°.41823 and the maximum inclination
is 10°.02508. The characteristic period of the secular motion
Tsec is 154,116 yr.
This model assumes small eccentricities and inclinations.

While these conditions are usually not fulfilled, it is important
to remark that eccentricity and inclination are under frequent
disturbance owing to close encounters. Most importantly, the
secular drift in Ω, ω controls the evolution of the possible
planetary encounters.
The assumptions on the heliocentric orbit of the asteroid for

the analytical secular perturbation solution are not always

Table 1
Initial Conditions of the Solar System Propagation in Figure 3

Planet a (au) e i (deg) Ω (deg) ω (deg) M0 (deg)

Mercury 0.39703 0.21337 6.936 48.264 31.991 52.745

Venus 0.73096 0.012687 3.378 76.799 45.020 16.566

Earth 1.0030 0.018402 0.001 154.979 296.322 8.654

Mars 1.5177 0.093083 1.852 49.461 288.507 322.879

Jupiter 5.1904 0.047388 1.305 100.514 273.897 353.761

Saturn 9.5499 0.05412 2.487 113.612 339.598 91.261

Uranus 19.207 0.04628 0.772 73.997 96.864 189.506

Neptune 30.109 0.0091006 1.770 131.780 265.440 291.693

Note. From ephemeris DE431 at epoch JD0 = 2,455,562.5 (2011 January 1) TDB.
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fulfilled among the NEO population. In this section we show
that the analytical theory represents the dynamics of the
perturbation by Jupiter. For this reason, we integrated the orbits
of 4462 NEOs with e< 0.7 and i< 0.5 rad for 50,000 yr. Note
that in the solution of Equation (19) if the terms of the external
perturber are small, the solution tends to a linear drift of the
angles Ω, ϖ. In addition, given the relationship between the
frequencies g and f, the relationship between the argument rates
is  2w = - W.

Figure 4 shows the secular rates computed from linear
regression of the time histories of Ω, ω. Note that from an
initially larger list of NEOs a significant fraction (12%) was
discarded because either eccentricity or inclination was larger
than 0.5. An additional 11% of the solutions were discarded
because the error in the regression was too large or during the
propagation close encounters with Jupiter moved the orbit of the
NEO to a completely different location than the initial
conditions. While the linear regression secular rates are not
equivalent to the frequencies of the analytical solution, they
serve as a comparison between the two dynamical models. The
error is computed in percent relative to the rate measured from
the regression of the numerically integrated trajectories, given by

  


E 100 . 22BP

BP

sec 3

3
( ) ( )w

w w
w

=
-

As observed in Figure 4, the rates obtained with the two
methods agree toward the smaller end of semimajor axis. Since
these are NEOs, the condition of being in the vicinity of Earth
means that eccentricity increases with semimajor axis. We can
see that past 1.5–2 au the difference between the two models is
increased, and the secular rate values themselves also increase.
This difference is also appreciated in the rates as a function of
semimajor axis, in which we show the agreement in the NEO
region. Using the current model, we find secular rates for 60%
of the population with an error less than 30% in both w and v.
If we limit the application of the secular theory to semimajor
axes between 0.8 and 1.4 au (dashed region in Figure 4), we
find that this agreement improves to 88%. It is important to
note that the examples chosen to demonstrate the semi-
analytical propagation tool fall within this region. Outside of
this region we can determine whether the secular rates found
are reliable by using numerical integration. This test integration

must be long enough to observe the secular rates, but still
orders of magnitude shorter than the timescales that we can
more efficiently study using the semi-analytical propagation.
At larger semimajor axis the effect of mean motion

resonances becomes important, and Lidov–Kozai dynamics
may better represent the dynamics for large eccentricities and
inclinations (Michel et al. 1996; Morbidelli et al. 2009). The
implementation of additional analytical long-term dynamics
models to model any generic asteroid is left as future work.

3.3. Finding the Subsequent Encounter

The analytical propagation of particles is interrupted when
an encounter with a planet is detected. In principle it is not
necessary to track the distance to planets at all times, since
the regions in which encounters are possible are determined
by the geometry of the asteroid around the central body. If the
inclination relative to the planet is high, then the encounters are
only possible in the vicinity of the ascending and descending
node. However, the most generic approach is to track the
distance between the asteroid and the crossing planets at all
times. Thus, the results in this work follow the latter approach
to find encounters within a closest approach distance of 0.1 au.
When the two bodies are close, the unperturbed closest
approach distance is found using a bisection method where
the function is the derivative of the distance as obtained by
finite differences. This process results in less evaluations of the
relative distance function based on the heliocentric elements of
the bodies.
The elements of the planets and the asteroid are propagated

using the secular solution at the date of start of the encounter,
which is defined below. The transition between models consists
in the conversion between the sets of elements, obtaining the
necessary Keplerian elements in the process. These are semi-
equinoctial elements for the analytical perturbed propagation as
in Equation (9) and Delaunay elements for the quadrature of
the LPEs.

3.4. Evaluation of Planetary Encounters

Close encounters are commonly solved using the analytical
Öpik theory (Öpik 1976). While this theory requires the least
computational resources, its accuracy is limited to specific
circumstances. The quadrature of LPEs can be used to solve

Figure 4. Error in the secular rates of NEOs as obtained by linear regression of the propagation using Laplace–Lagrange secular theory and compared to numerical
integration of the three-body problem in percent. Secular rates in ascending node (left) and argument of perihelion (center) shown as a function of the initial conditions
of semimajor axis and inclination. Secular rates in the angles as obtained with the two methods as a function of the initial semimajor axis (right). The dashed lines
indicate the region in which we compute the average errors. This region includes the initial conditions used throughout the paper, indicated with crosses.
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close encounters (Alessi & Sánchez 2015). In this work we
derive a solution using this method for generic close encounters
using Delaunay elements. The two methods are compared to
the integration of the three-body problem from the same date
and during the same period of time.

3.4.1. Öpik Theory of Close Encounters

An analytical solution to the planetary close encounter
problem was derived by Öpik (1976). This solution was
extended and studied in detail by Valsecchi et al. (2003, 2015).
The encounter solution uses a linearized mapping from orbital
elements to a planetocentric Cartesian frame, which is later
expressed in B-plane coordinates. Then, the encounter is
assumed to be instantaneous, and the incoming asymptote and
B-plane both rotate. The new B-plane coordinates are mapped
back to the orbit element space.

The analytical solution is derived for a hyperbolic flyby
around a point secondary mass. This mapping between B-plane
coordinates and orbit elements is linearized in the impact
parameter. Thus, the encounter must be close for the method to
be reliable. Additionally, if the inclination is small, the relative
velocity coordinates become undefined. A possible way to
avoid this is by using a method sometimes referred to as
pseudo-Öpik (Greenberg et al. 1988). In this case the relative
velocity vector is computed directly and defines the turn angle
γ at the time of closest approach:

m

bU
tan

2
, 23

2
( )g

=

where m is the mass of the planet in units of the mass of the
Sun, b is the impact parameter, and U2 is the relative velocity in
units of the circular velocity of the planet. Here we use the
unperturbed trajectory of the planet and asteroid to find these
quantities. That is, the impact parameter and relative velocity
are found as the planetocentric distance and velocity at closest
approach.

3.4.2. Lagrange Planetary Equations

The proposed computation of the encounter effect is
computed as follows. The variation in elements over the
encounter event is obtained from a quadrature of the LPEs
assuming the geometry of the unperturbed flyby. The elements
used are obtained from the secular propagation of the asteroid.
The LPEs describe the evolution of orbit elements due to a
perturbing potential. The derivation of LPEs can be found in
some references for different sets of orbit elements (Brouwer &
Clemence 1961; Roy 2005). In general, they have the form of

D D
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¶
¶

where D is the set of elements of choice and L(D) is a function
of the elements that depends on the chosen elements. In this
case the perturbing potential R is the gravitational potential of
the encountered planet. Note that without further simplifying
assumptions the partials of the perturbing potential are a
function of the elements and a function of time. For the
elements of choice we take the partial derivatives that relate the
set of elements to Keplerian elements K= [a, e, i, Ω, ω, σ] and
Cartesian coordinates. From the orbital element representations
available to choose, the current implementation uses the

Delaunay elements:
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The LPEs with the perturbing potential of Equation (1),
with j being the asteroid and k the encountered planet, can be
written as
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The proposed solution is the integration of these differential
equations around the encounter date te and assuming the
unperturbed geometry of the flyby. Hence, the asteroid
coordinates are obtained from the heliocentric elements
secularly propagated until the start of integration date D0,
and the quadrature is only a function of time:

D D D t dt, . 27
t t

t t

0
e

e

( ) ( )òD =
d

d

-

+

The integration is conducted for a fraction of the orbit period
around the closest approach distance. This fraction is a constant
set large enough that the effect of the encounter is captured
completely. In this work we use a self-coded fast quadrature
function based on the midpoint rule and a total integration time
of 20% of the orbital period. This method avoids the frame
transformation to the center of the planet, since it considers the
planet as an external perturber of the asteroid motion around
the Sun. For this reason, it is not possible to obtain a closed-
form solution of the integral. Nonetheless, this approach does
not imply further assumptions that limit its range of applic-
ability. Future work will be done in finding the optimal set for
this application. This approach is accurate for the vast majority
of encounters, but it is less accurate for the closest ones, as we
explore in the following section.
Using the list of flybys generated in Figure 2, we computed the

errors of Öpik theory and the quadrature of LPE compared to the
solution of the encounter using the three-body problem. The error
E(K ) is relative to the variation and in percent, given by

E K
K K

K
100 . 28QLPE 3BP

3BP
( ) ( )=

D - D
D

The results of this evaluation are described in Figure 5.
Using pseudo-Öpik theory, there is a region in the space of
relative velocity and closest approach distance in which flybys
can be computed accurately. However, this region is not
constant for all Keplerian elements. In addition, most flybys are
not computed correctly using this method. Slow flybys break
the assumption in Öpik theory that the behavior during the
flyby is modeled by the two-body hyperbolic interaction. Many
of the faster flybys occur with Venus and Mercury. The two-
body hyperbolic flyby model fails to characterize the effect of
flybys with these less massive planets even if they are faster.
Using the quadrature of the LPEs, 99% of the flybys in the

list are computed with less than 3% of error, and more than
88% with less than 0.1% error. The flybys that are not
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computed accurately with this method are very close and with a
slow relative velocity. These flybys can break the assumption
of the unperturbed geometry of the flyby. Given that these
encounters also cause significant variations in the elements,
these infrequent encounters are solved using a three-body
problem integration in Cartesian coordinates. The criterion to
solve these encounters using the alternative method is by
defining three threshold regions in the encounter parameters:
with very small V∞, very small closest approach distance, and a
combination of both close to zero. This process simplifies the
detection of collisions with the planets during the numerical
integration in Cartesian space in the heliocentric frame.

3.5. Semi-analytical Propagation versus Numerical Integration

In the previous sections we validate the individual pieces of
the semi-analytical propagation tool. Once combined, we want
to compare the resulting trajectories with trajectories obtained
using numerical integration. With this purpose, we generate a
fictitious NEO population and propagate their orbits using both
methods.
The fictitious NEO population we define consists of normal

distributions for the perihelion distance, eccentricity, and
inclination. The distributions are centered respectively around
0.8 au, 0°.2, and 10° and with standard deviations of 0.05 au,

Figure 5. Logarithm of the errors in the computation of the final Keplerian elements given by pseudo-Öpik theory (PÖpik; first and second rows) and the quadrature of
LPE (QLPE; third and fourth rows). The list of flybys used is shown in Figure 2 and generated as described in the text. The flybys are represented in the plane of
relative velocity at closest approach Vinf (km s−1) and distance of closest approach (au). The dashed area in the QLPE error plots separates the region in which the
encounters are computed using an integration of the 3BP during the semi-analytical propagation.
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0°.05, and 3°. Arguments of the node, perihelion, and initial
mean anomalies are defined as uniform distributions in the [0°,
360°] range. We sample 1000 particles from these distributions
as our test set for the comparison between the two methodol-
ogies. We set up the numerical integration of the asteroid orbits
considering the planets as third-body perturbers. The model we
use for the orbits of the planets is the secular theory developed in
Section 3.1.

Figure 6 shows the results of the propagation using both
methods, as well as the distributions that defined the initial
conditions. In addition, we find that the cumulative distribution
of the mean number of encounters versus closest approach
distance is matched very closely. After 200,000 yr, the
presence of planetary encounters causes a dispersion of the
initial distributions. The distribution obtained through semi-
analytical propagation is able to track this drift.

The main difference between the results using the two
methods is that the numerically integrated distribution shows a
small drift in the center of the distribution but very similar
dispersions. In terms of the longitude of the perihelion, the
resulting distributions after 200,000 yr remain uniform using
either of the two propagation methods. The other significant
difference between the two methods is in the required
computational time, which is discussed next.

3.6. Computational Time of the Semi-analytical
Propagation Tool

The semi-analytical propagation of near-Earth asteroids
reduces the computational time required to obtain long-term
trajectories. The use of numerical techniques is limited almost
exclusively to the computation of planetary encounters, which
represent a fraction of the simulation time.

In order to estimate the speedup of the propagation, we
generate a fictitious population of NEOs and propagate them
for 100,000 yr with the semi-analytical propagation tool and
with numerical integration. The semi-analytical propagation
tool uses the secular solution of the solar system to compute the
orbits of the planets over long periods of time. Then, planetary
encounters can occur with any planet. The secular propagation
of the asteroid is derived as described in the text accounting
only for Jupiter, which accurately represents the asteroid
motion in the absence of resonances. The semi-analytical
propagation of 100,000 yr with this setup is computed in
around 5 s. In order to account for these effects in numerical

integrations, we use the N-body problem integrator IAS15
(Rein & Spiegel 2014) with all the planets and the asteroid.
The simulation is setup using a high-level programming

code that runs libraries in more efficient low-level code. This is
the case for both numerical integrations and semi-analytical
propagation, running in the same 2.5 GHz Intel Core i7
processor. The result is a speedup of ×500 to ×1000 of the
semi-analytical propagation tool as compared to the numerical
integration. The current implementation allows room for
significant speedup that is left for future work. The perturbed
long-term propagation could be extended to use other suitable
models of interest. The computational cost is not expected to
increase while we use analytical solutions of these long-term
perturbations.

4. Semi-analytical Propagation Results

In this section we demonstrate the semi-analytical propaga-
tion tool in a variety of scenarios. First, we want to compare the
semi-analytical model with trajectories obtained through
numerical integration. Matching very accurately trajectories
obtained with more complex models is outside the scope of the
comparison. Even if the models were identical, trajectories
under encounters are very sensitive to the initial conditions, and
under small perturbations they diverge into different paths. This
effect was visualized in Figure 1 using only numerical
integration. For this reason, long-term simulations may focus
on the statistical analysis of the dynamical evolution rather than
individual trajectories. Throughout the section, the simulations
include Jupiter as the only planet secularly perturbing the
asteroids. All the inner solar system bodies are considered to
evaluate planetary encounters. These are secularly evolving
owing to mutual perturbations and the perturbations of the
outer solar system planets, as described in Section 3.1.

4.1. Short-term Propagation of Near-Earth Objects Using
Different Models

The asteroid chosen for the tool demonstrations is the binary
(35107) 1991 VH. The first reference trajectory is obtained
from the HORIZONS system of JPL (Giorgini & JPL Solar
System Dynamics 2021). The second model is the numerical
integration of the asteroid motion under the influence of the
Sun, Earth, and Jupiter. Jupiter is the main driver of the secular
motion, which is observed as a linear drift in the argument of

Figure 6. Comparison between the 1000 trajectories obtained using numerical integration (blue) and semi-analytical propagation (orange) of a fictitious population of
NEOs after 200,000 yr. The probability density function is shown for the perihelion distance, inclination, and argument of perihelion. The analytical probability
density function of the initial conditions is shown as a solid red line. On the right, we show the mean number of encounters found as a function of the closest approach
distance for both methods.
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perihelion and argument of the ascending node. Given the
current orbit of (35107) 1991 VH, it only experiences planetary
encounters with Earth in the next few centuries. In Figure 7, we
compare these two models from numerical integration with the
present semi-analytical propagation tool.

In the three trajectories we observe similar behavior,
although it manifests differently in every element. First, there
is a close agreement in the encounter dates of the Sun−Earth
−Jupiter integration and the encounters found by the propaga-
tion tool that shows in all elements. The encounter dates can be
distinguished as the discontinuities in the trajectories, espe-
cially in the semi-analytical propagation trajectory. The
variation of the semimajor axis is characterized by a random
walk from the planetary encounters. In both eccentricity and
inclination there is a relevant role of the encounters with an
additional secular component that the secular model is able to
model.

The dynamics of the argument of the ascending node are
dominated by the secular drift. There is not a significant effect
that can be perceived by the planetary encounters, and this is
expected when the encounters occur with a unique planet and
close to the node. What we observe is that the secular dynamics
including the complete effects of Earth and Jupiter are very
similar, and the analytical secular drift is off by about a degree
after the 500 yr of the propagation. The secular drift rate in the
argument of perihelion is not as trivial to compare since it must
be observed between encounters, although good agreement is
found too. Last, the mean anomaly at epoch evolves over time
with an increasing amplitude present in all three models.

4.2. Long-term Propagation and the MOID

The MOID indicates what the minimum distance between
any two points of the two heliocentric Keplerian orbits is. In
this case we focus on the orbit of Earth and the orbit of the
asteroid. The MOID is also used as one of the criteria to define
an asteroid as a potentially hazardous asteroid. There are many
algorithms available in the literature to compute the MOID
(Gronchi 2005; Armellin et al. 2010; Wiśniowski & Rickman
2013). In this paper we use the tool derived in Hedo et al.
(2018, 2020) based on an asymptotic approach.
The MOID constrains the minimum distance of a possible

close encounter. In other words, the periods with a large MOID
are absent of close encounters. Three examples are used to
visualize time histories of close encounters and the evolution of
the MOID for 100,000 yr. These are obtained for high and low
eccentricities and inclinations, and the initial conditions are
found in Table 2.
The distributions of closest approach distances are shown in

Figure 8, and the unperturbed relative velocity V∞ at those
encounters is found in Figure 9. Case 1 is an example of an
NEO with relatively low eccentricity and inclination. In these
conditions, close encounters are only possible with Earth and at
a low relative velocity. The MOID oscillates secularly with
long periods of low MOID. Case 2 is an example of an opposite
scenario in which both eccentricity and inclination are large. In
the secular evolution of the MOID this translates into short
periods of low MOID and long periods absent from encounters.
This is a scenario in which the semi-analytical propagation of
the asteroid allows a rapid propagation until the next period of

Figure 7. Trajectories of a particle that mirrors the binary asteroid (35107) 1991 VH for 500 yr. Three methods are compared: numerical integration of the heliocentric
orbit of the asteroid with two external perturbers in constant sets of elements, Earth and Jupiter (4BP; red); full ephemeris as accessed in HORIZONS (Giorgini & JPL
Solar System Dynamics 2021; green); and the semi-analytical propagation method (SA-prop; blue).
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frequent encounters. Case 2 faces high-velocity close encoun-
ters with Venus, Earth, and Mars.

Case 3 is an example of an NEO with high eccentricity and
low inclination. This combination of factors leads to a large
frequency of close encounters with the inner planets. In this
case, encounters are very frequent with Venus, Earth, and
Mars. The close encounters experienced by Case 3 are with a
relative velocity smaller than in Case 2 given the reduced
inclination. Even under the elevated frequency of close
encounters, the secular signature of the MOID is maintained.
The structure shows until the event of an energetic close
encounter. The occurrence of such encounters is just a matter of
probability of having the right timing during the low-MOID
intervals of the secular propagation.

4.3. Statistics of Long-term Propagation

The chaotic nature of the dynamics implies that the study of
the orbital evolution over long timescales should be done
statistically. Given the uncertainty in the orbit solution of an
asteroid, we can sample a large number of particles and study
the dynamical paths that the different particles take. Because of
the sensitivity to initial conditions in planetary encounters, very
well determined distributions diverge in a few centuries to
widely different paths. We demonstrate these effects by
propagation of 500 particles that sample uncertainty distribu-
tions around a nominal asteroid orbit for 500,000 yr. We
inspected seven examples: first, in detail, the orbit solution of
(35107) 1991 VH; then, the orbit solution of (175706) 1996

Table 2
Near-Earth Objects Used as Example Cases for the Demonstration of the Semi-analytical Propagation Tool

Asteroid a (au) e i (deg) Ω (deg) ω (deg) M0 (deg) JD (TBD)

Case 1 1.1 0.15 10 90 90 90 2,451,545.0

Case 2 1.2 0.35 40 90 90 90 2,451,545.0

Case 3 1.3 0.5 10 90 270 90 2,451,545.0

Case 4 0.95 0.07 20 90 90 90 2,451,545.0

Case 5 0.9 0.25 15 90 90 90 2,451,545.0

1991 VH 1.1373 0.14426 13.912 139.37 206.88 302.39 2,456,902.5

1996 FG3 1.0543 0.34987 1.9903 299.88 23.930 147.277 2,454,796.5

Note. The elements of asteroids 1991 VH and 1996 FG3 were retrieved from HORIZONS (Giorgini & JPL Solar System Dynamics 2021). Using DE431 and SB431-
N16. 1991 VH: orbit solution date of 2021 April 15; 1996 FG3: orbit solution date of 2021 April 26.

Figure 8. Close encounters in the semi-analytical propagation of the fictitious NEOs Cases 1−3 with initial conditions given in Table 2. Shown is the closest approach
distance dCA (au) of the encounters and MOID with the planets. Circles indicate close encounters, and solid lines indicate the MOID. The color-code indicates the
planets: Venus (green), Earth (blue), Mars (red).
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FG3; and last, the previous Cases 1–5 of Table 2 with artificial
orbit uncertainties as described in Tables 4 and 5 and
Appendix A.

Figure 10 shows the time histories of the individual runs of
the cloud of points originally neighboring (35107) 1991 VH,
showing that the cloud of particles distributes over a wide
region of near-Earth space. On the order of hundreds of
thousand years, the dispersion is accomplished by the less
frequent very close encounters. Eccentricity and inclination
show the secular component but are dispersed by the presence
of encounters. The dynamics of argument of ascending node
and argument of perihelion remain mainly secular with a
degree of dispersion because of the presence of encounters.
Note that the initial uncertainty on the orbit of (35107) 1991
VH is very small as shown while demonstrating the chaotic
dynamics nature in Figure 1 of the background section. As was
observed in the detailed analysis of a shorter simulation in
Figure 7, the mean anomaly at epoch changes completely with
small changes in the semimajor axis. This fact reflects in the
long-term simulations as a complete uniformization after just a
few centuries.

The binary (35107) 1991 VH currently presents an MOID
that is decreasing. This means that after a few millennia the
probability of experiencing very close encounters increases. In
the statistical analysis, this probability shows in that a fraction
of the fictitious asteroids experience such encounters. We
observe that toward the end of the simulation there is a large
dispersion in inclination and perihelion distance. By the end of
the simulation, the angles Ω− ω are dispersed along a linear
drift as caused by numerous close encounters that not only
change these angles but also modify the secular dynamic
frequencies.

The long-term dynamics of six more examples are integrated
for 500,000 yr. These are the cases that we used to illustrate the
long-term dynamics with initial conditions in Table 2. The case
of the binary (175706) 1996 FG3 is also added to the
discussion, as it is the other target of exploration of the Janus
mission (Scheeres et al. 2020). The uncertainties of (175706)
1996 FG3 and (35107) 1991 VH are sampled based on their
publicly available orbit solutions. In the case of the fictitious
asteroids we used an arbitrary distribution. Both approaches are
explained in detail in Appendix A. The statistical distributions
after 100,000 and 500,000 yr are shown in Figure 11. The
combined final and initial distributions are shown in Figure 12.
The recorded number of encounters is shown in Figure 13, and
more details on the statistical distributions over time are shown
in Figure 14. Next, we describe the dynamical evolution of
these test cases.
In Figure 12, the 500 virtual asteroids that are generated at

the initial time per case are in the same bar of the histogram.
The effect of repeated encounters causes the distributions to
spread along near-Earth space. This dispersion is clearly shown
in the perihelion distance in all cases, with a general trend of a
decrease in the distance. Figure 12 additionally shows this
spread of all the cases together.
The presence of mean motion resonances in the inner solar

system can protect asteroids from close encounters (Milani
et al. 1989). In the semi-analytical propagation of near-Earth
asteroids the orbits may drift to these regions, as observed in
Figure 12. The resonance regions are found for semimajor axes
larger than a= 1 au. In these cases encounters with Earth stop
occurring for a period of time. However, this clustering of
particles is not found in numerically integrated populations or

Figure 9. Close encounters in the semi-analytical propagation of the fictitious NEO Cases 1−3 with initial conditions given in Table 2. Shown is V∞ at closest
approach of the encounter (km s−1). The color-code indicates the planets: Venus (green), Earth (blue), Mars (red).

14

The Planetary Science Journal, 3:257 (27pp), 2022 November Fuentes-Muñoz, Meyer, & Scheeres



in the discovered population of near-Earth asteroids. Thus, we
investigate the trajectories obtained through NBP dynamics.

The process of obtaining the secular long-term perturbation
eliminates the short-period perturbations. The latter perturbations
cause an oscillation in the orbit elements of nonnegligible
amplitude. In order to measure the influence of this effect, we
included an analytical oscillation in the semimajor axis with the
frequency of the orbital period and an amplitude of the order of
0.01 au. This extension completely eliminates the artificial mean
motion resonance regions. The analytical characterization of the
short-period perturbation is left as future work, as its contribution
must be considered for the complete set of orbital elements and
is not expected to significantly modify the obtained distributions.

In general, we observe that asteroids encountering the
planets more frequently disperse their distributions faster. This
is the case for the Janus targets and Case 1, which present the
largest standard deviation increase in the simulation time
(Figure 14). This dispersion is shown not only in the elements
but also in the number of encounters (Figure 13).

The evolution of the distribution as caused by encounters
could be modeled as a random walk. If this hypothesis is true,
then the standard deviation in the population increases linearly
with the square root of time. Figure 14 tests graphically this
hypothesis for semimajor axis, eccentricity, and inclination.
Initially in all cases there is a fast increase in the standard
deviations. After the first few millennia, some of the
distributions follow the hypothesis of the linear relationship

ts µ , especially in the semimajor axis.
In eccentricity and inclination, we observe that there is a

secular component in the evolution of the distribution. The

secular component is observed in both the evolution of the
standard deviation and the mean of the variations (Figure 14).
These are shown with respect to the initial values to have a
common reference in the comparison of cases.
The dispersion in semimajor axis modifies the secular rates

of the drift in argument of perihelion and argument of the node.
This effect, combined with the direct variation of the angles
during planetary encounters, leads to the uniformization of the
distribution in ω, Ω. In the duration of our simulations of
500,000 most cases approach this uniformization as we showed
in Figure 11.
We can compute more rigorously whether the distributions

can be considered uniform by conducting the χ2 test on the
longitude of perihelion ϖ= ω+Ω. Figure 15 shows the result
of the χ2 test of a uniform distribution over the simulation time
for all cases. If the p-value is larger than our threshold of
p= 0.05, we can consider that our null hypothesis of the
uniform distribution of ϖ is true. Cases 1, 3, 4, (175706) 1996
FG3, and (35107) 1991 VH reach this threshold, while Cases 2
and 5 do not approach the significance by the end of the
simulation time. It is interesting to show the evolution of the p-
value compared to the mean number of encounters. In
Figure 15 we show how the distribution of Case 3 tends to
the uniformization in ϖ with less encounters than other cases
that achieve this distribution earlier in the simulation time. This
is expected since this case experiences more frequent
encounters with the most massive planets and with a slower
relative velocity, which means that the impact of these
encounters in the dispersion of their distributions is larger.

Figure 10. 500,000 yr Monte Carlo semi-analytical propagation of asteroid (35107) 1991 VH. Initial conditions are given in Table 2 as obtained from HORIZONS
(Giorgini & JPL Solar System Dynamics 2021), and uncertainties in the distribution are obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API
Service 2021) as described in Appendix A. Elements shown are perihelion, eccentricity, inclination, argument of the ascending node, argument of perihelion, and
MOID. Gray lines show individual simulations, and black lines are the median of the 500 simulations of each parameter shown.
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From the general trends that we observed, the only case that
is very different is Case 2, which experiences much fewer
encounters. As we illustrate in Figure 8, Case 2 experiences
close encounters much less frequently than the other cases. The
relative velocity is also larger in this case, which means that the
effects of the encounters are not as strong. The case of
(175706) 1996 FG3 is more difficult to fit in the general
description of the dynamics, as the close encounters do not
cause such a fast dispersion of the distribution. This binary
asteroid is studied in more detail in Section 6.

5. Discussion

The semi-analytical propagation tool shows the main
dynamical effects observed in long-term numerical integration
of the inner solar system. The secular drifts caused by Jupiter

move the asteroids between the vicinities of the different
planets of the inner solar system. This effect causes a seasonal
presence of strong close encounters that can disturb both the
orbit of the asteroid and its physical properties. While the
timescales of these events are millions of years (Fang &
Margot 2012), if we sample a large enough number of particles,
we can measure the probabilities of collisions or the potential
disruption of other physical properties of asteroids. The
measurement of the collision probabilities was outside the
scope of this paper, but in this work a few collisions were
detected in the uncertainty sampling of the asteroids.
The analytical modeling of the dynamics far from the planets

was done using the Laplace–Lagrange theory, which works well
in a large fraction of the NEO population. For this reason we
defined a region in near-Earth space in which the secular model
works best, as shown in Figure 4. However, we could extend the

Figure 11. Semi-analytical propagation of asteroid Cases 1–5, (35107) 1991 VH, and (175706) 1996 FG3 for 500,000 yr. Histograms are at the initial time, after
100,000 yr, and at the final time. Initial conditions are given in Table 2 as obtained from HORIZONS (Giorgini & JPL Solar System Dynamics 2021), and
uncertainties in the distribution are obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API Service 2021) as described in Appendix A.
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modeling in the regions of large eccentricity and inclination. In the
previous section we describe the low frequency of encounters that
is characteristic of asteroids with high inclination, specifically with
Case 2. An asteroid with these characteristics would be likely to

be dominated by the Lidov–Kozai effect, in which there is an
exchange between high-inclination/low-eccentricity periods and
low-inclination/high-eccentricity periods. This would mean that
Case 2 evolves to become a case closer to Case 3, in which

Figure 12. Dispersion in the distributions of the five asteroids in Table 2, (175706) 1996 FG3, and (35107) 1991 VH after 100,000 yr (top) and 500,000 yr (bottom).
Shown are semimajor axis vs. eccentricity (left) and semimajor axis vs. inclination (right). Initial uncertainty distributions are detailed in Appendix A and shown in
red. See text for the explanation of the resonances found in the semi-analytical propagation.

Figure 13. Number of encounters experienced by the five test cases given in Table 2, (175706) 1996 FG3, and (35107) 1991 VH during 500,000 yr. Shown are the
mean of the distributions of 500 particles (solid lines) and 1σ bounds (shadowed area).
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Figure 14. Statistical evolution of the distributions of the five test cases given in Table 2, (175706) 1996 FG3, and (35107) 1991 VH during 500,000 yr. Shown are the
standard deviation of semimajor axis, eccentricity, inclination as a function of the number of encounters (top row) and square root of time (middle row), and variation
of the mean value over time with respect to the initial value of semimajor axis, eccentricity, and inclination (bottom row).

Figure 15. P-value of the χ2 test of the uniform distribution of the longitude of perihelion ϖ = ω + Ω for the five test cases given in Table 2, (175706) 1996 FG3, and
(35107) 1991 VH during 500,000 yr. P-value is shown as a function of the mean number of encounters (top) and function of time (bottom).
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encounters are more frequent. The use of analytical models of the
Lidov–Kozai model (Kinoshita & Nakai 2007) for the perturbed
propagation is left for future work.

Using the semi-analytical propagation tool, we observe the
stochastic nature of the dynamics. However, the effect is different
on each of the elements. While in semimajor axis we observe
what could be described as a random walk process, the angles Ω
and ω become uniformly distributed. Eccentricity and inclination
show a mixed effect between a random walk that adds dispersion
to the distribution and the oscillations driven by the secular theory.

6. Orbit Histories of the Janus Mission Targets

The binary asteroids (175706) 1996 FG3 and (35107)
1991 VH are the targets of the exploration mission Janus

(Scheeres et al. 2020). The long-term orbital dynamics of the
asteroids are studied in this section with two goals: first, char-
acterizing the stochastic nature of their long-term dynamics,
and second, estimating the probability that they have been
potentially disrupted by a very close encounter. With these
purposes, we study their orbital origins by sampling 1000
particles and propagating them for 1 Myr into the past using
the semi-analytical propagation tool.
The orbit time histories of (35107) 1991 VH and (175706)

1996 FG3 are shown in Figures 16 and 17, respectively. For
clarity, we show only a subset of the runs and the median of the
full distribution of 1000 runs. The MOID is shown for the inner
solar system planets Venus, Earth, and Mars. These metrics
show when close encounters with these planets are possible.
The presence of frequent close encounters causes the dispersion

Figure 16. Orbit history of (35107) 1991 VH in the past million years. Initial conditions are given in Table 2 as obtained from HORIZONS (Giorgini & JPL Solar
System Dynamics 2021), and uncertainties in the distribution are obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API Service 2021) as
described in Appendix A. Elements shown are perihelion distance, eccentricity, inclination, argument of the ascending node, argument of perihelion, and MOID with
Venus, Earth, and Mars. Gray lines show individual simulations, and black lines are the median of the 1000 simulations of each parameter shown. Only 50 example
runs and the median of the full distribution are shown in orbit elements (top two rows).
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of the orbit histories. This feature manifests in the orbit history
of (175706) 1996 FG3, in which the period of very low Venus
MOID corresponds with a dispersion in the overall statistical
representation of the orbit.

Similarly to the long-term dynamics into the future studied in
Section 4, the initially very close distribution becomes a wide
statistical distribution when propagated far into the past. In
Figure 18 we show histograms of the orbit elements and the
number of encounters recorded below a closest approach
distance threshold of 0.1 au. The orbit evolution of (35107)
1991 VH is mostly a spread around the initial conditions.
However, (175706) 1996 FG3 is in a particular initial orbit with
low inclination. On average, the very low inclination and high
eccentricities drift toward a smaller eccentricity and higher
inclination that are more frequent in the secular cycle. In both

cases, the longitude of the perihelion becomes uniformly
distributed. In the next section we characterize this uniformiza-
tion process.

6.1. Stochastic Modeling of the Long-term Dynamics

In Section 4 we show that we can model the long-term
dynamics with a random walk in semimajor axis, eccentricity,
and inclination. In addition, the last two present also the
influence of the oscillations of the secular theory. We also want
to study the uniformization in the longitude of the perihelion, as
this process occurs with time but also with a repeated number
of close encounters.
The random walk model can be characterized by a linear

increase in standard deviation with the square root of time.

Figure 17. Orbit history of (175706) 1996 FG3 in the past million years. Initial conditions are given in Table 2 as obtained from HORIZONS (Giorgini & JPL Solar
System Dynamics 2021), and uncertainties in the distribution are obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API Service 2021) as
described in Appendix A. Elements shown are perihelion distance, eccentricity, inclination, argument of the ascending node, argument of perihelion, and MOID with
Venus, Earth, and Mars. Gray lines show individual simulations, and black lines are the median of the 1000 simulations of each parameter shown. Only 100 example
runs and the median of the full distribution are shown in orbit elements (top two rows).
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Figure 19 shows the standard deviation of the 1000 Monte Carlo
experiments that we conducted into the past of the two Janus
targets (35107) 1991 VH and (175706) 1996 FG3. We fit a
linear model to the standard deviation evolution and measure the
slopes to compare the evolution of the two targets. In the case of
(35107) 1991 VH we avoid the use of the full simulation time, as
the standard deviation bends from the initial linear increase. The

slower increase after this period occurs when the distribution
migrates from a configuration with slower encounters. The
opposite case occurs with inclinations, in which the rapid
increase of (175706) 1996 FG3 from the low-inclination initial
regime slows down after the initial growth.
The measured slopes are reported in Table 3, showing that

the random walk of (175706) 1996 FG3 is faster in semimajor

Figure 18. Histograms of the orbit history of (35107) 1991 VH and (175706) 1996 FG3 at the initial time, 100,000 yr ago, and 1 Myr ago. Initial conditions are given
in Table 2 as obtained from HORIZONS (Giorgini & JPL Solar System Dynamics 2021), and uncertainties in the distribution are obtained from JPLʼs SSD/CNEOS
Small-Body DataBase (SSD/CNEOS API Service 2021) as described in Appendix A.

Figure 19. Random walk statistical modeling of the evolution of semimajor axis, eccentricity, and inclination of (35107) 1991 VH (top) and (175706) 1996 FG3
(bottom). Shown is the standard deviation of the 1000 Monte Carlo runs as a function of the square root of time and random walk model fit.
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axis and inclination. However, because of the bends in the
progression after a few hundred thousand years, the final
standard deviations are not substantially larger than the ones of
(35107) 1991 VH after the million years into the past in
eccentricity and inclination.

The process of uniformization of the longitude of perihelion
is shown in Figure 20. We conduct the χ2 test of the uniform
distribution over the 1Myr simulation, to find when the
hypothesis of the uniform distribution is significant. In Table 3
we show the first time in which this criterion is satisfied, in both
time and mean number of encounters: −434,000 yr and a mean
of 11,800 encounters for (35107) 1991 VH, and −797,000 yr
and a mean of 29,800 encounters for (175706) 1996 FG3.

The uniformization of (35107) 1991 VH is faster than the
uniformization of (35107) 1991 VH in both time and mean
number of encounters. It is remarkable that (35107) 1991 VH
takes a much lower mean number of encounters. This is
explained by the faster relative velocities of the encounters of
(175706) 1996 FG3 and a larger fraction occurring with Mars,
a less massive planet. The relative velocities of a few of the
recorded flybys are shown in Figures 21 and 22 in the context

of studying the probability that a close encounter could
potentially disrupt the binaries.
The comparison between the two binary systems highlights

how the effect of the encounters depends on the relative
velocities and the mass of the planets. In general, slow
encounters with larger planets are more efficient at causing the
distributions to become uniform. However, depending on the
heliocentric orbit, these encounters may be more or less
frequent. Thus, leveraging both effects is required to obtain a
stochastic representation of the long-term dynamics of NEOs
under frequent encounters.

6.2. Potentially Disruptive Planetary Encounters

The two binary targets of the Janus mission present different
relative orbits as observed by radar and photometry (Pravec
et al. 2016; Meyer et al. 2021), showing that (175706) 1996
FG3 is in a stable orbital state and (35107) 1991 VH is in a
chaotic state. The perturbed state of (35107) 1991 VH could be
explained by a recent very close encounter with the inner solar
system planets (Heggie & Rasio 1996). Thus, it is of interest to

Table 3
Stochastic Modeling of the Long-term Dynamics of the Janus Targets

Target Random Walk kx Constant (s k tx x= ) ϖ Uniformization

Name ka ke ki Time Number of Encounters < 0.1 au
(au/ yr ) · 10−3 (1/ yr ) · 10−3 (deg/ yr ) · 10−3 (yr) · 103

(35107) 1991 VH 0.2661 0.1799 6.0055 −434 11,800

(175706) 1996 FG3 0.3688 0.0944 11.598 −797 29,800

Figure 20. P-value of the χ2 test of the uniform distribution of the longitude of perihelion ϖ = ω + Ω of (35107) 1991 VH (top) and (175706) 1996 FG3 (bottom). P-
value is shown over the past 1 Myr (left) and as a function of the mean number of encounters (middle). The mean number of encounters of the 1000 Monte Carlo runs
is shown over time with the corresponding 1σ bounds (right).
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Figure 21. Potentially disruptive encounters recorded by the 1000 virtual (35107) 1991 VH binaries during a million years into the past. The background contour
represents the logarithm of the mean variation in binary eccentricity during a close encounter with a planet: Earth (blue, top) or Mars (red, bottom). The encounters
found during the propagation in this threshold are shown by their closest approach distance (au) and V∞ (km s−1). The radius of the planet is shown as a dashed line.
The initial uncertainty distribution of (35107) 1991 VH is detailed in Appendix A.

Figure 22. Potentially disruptive encounters recorded by the 1000 virtual (175706) 1996 FG3 binaries during a million years into the past. The background contour
represents the logarithm of the mean variation in binary eccentricity during a close encounter with a planet: Venus (green, top), Earth (blue, middle), or Mars (red,
bottom). The encounters found during the propagation in this threshold are shown by their closest approach distance (au) and V∞ (km s−1). The radius of the planet is
shown as a dashed line. The initial uncertainty distribution of (175706) 1996 FG3 is detailed in Appendix A.
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characterize the frequency of such encounters in the orbital
history of asteroid binaries.

Using the semi-analytical propagation tool, we obtain the
history of flybys over a long period of time. The perturbation in
the orbit of a binary system during a planetary close encounter
is studied in detail as described in Meyer & Scheeres (2021). In
this section we combine both results to predict the frequency of
a disrupting flyby.

The effect of the close encounter on the binary can be modeled
as an impulsive variation in the binary Keplerian elements. In
Meyer & Scheeres (2021) the effect of close encounters to singly
synchronous binary asteroids is studied. The variation in
semimajor axis, eccentricity, and inclination obtained with
numerical methods was compared to analytical expressions for
the impulsive variation in binary Keplerian elements (Fang &
Margot 2011). We used these analytical expressions because they
provide an estimate of the variation as a function of the relative
velocity and distance of closest approach.

For every binary and encountered planet we can generate
contours of the variation of the eccentricity. In Figures 21 and
22 we show these contours for (35107) 1991 VH and (175706)
1996 FG3, respectively. In every figure we highlight two
levels, a variation of 0.1 in eccentricity and a variation of 1,
which would mean that the binary is completely separated. The
probability of disruption in the binary orbit increases as the
relative velocity and closest approach distance are reduced.

Using the semi-analytical propagation tool, we track the
close encounters below the threshold of 0.003 au, above which
the variation in the binary Keplerian elements becomes
negligible. For each binary we generate 1000 trajectories for
a million years into the past. All the encounters that are found
in this threshold are plotted in Figures 21 and 22 and separated
by encountered planet.
The potentially disruptive encounters recorded for (35107)

1991 VH with Earth and Mars are shown in Figure 21. Less
than 1% of the recorded encounters are with Venus, so the map
with this planet is not included. The relative velocities of the
flybys are mostly found between 5 and 15 km s−1. In the case
of (175706) 1996 FG3 this range of possible relative velocities
is larger in all the planets. In addition, many encounters are
found with quite slower V∞, which means that even if they are
not as close they can still potentially cause a disruption.
As we observed in Figure 13, (175706) 1996 FG3

experiences more frequent encounters. However, the regions
in which the encounters are potentially disruptive depend on
the current orbital configurations of the binaries. In this case,
(175706) 1996 FG3 requires closer and slower encounters to
obtain the same mean variation in binary elements.
Considering the orbit history in a million years, a

nonnegligible probability exists that both binaries have been
potentially disrupted at some point. However, it is possible that
the signatures of these potential disruptions vanish if there is
energy dissipation in the system. Thus, it is relevant to study

Figure 23. Top: potentially disruptive encounter time history in the most recent periods of close encounters of (35107) 1991 VH and (175706) 1996 FG3. In the most
recent 50,000 yr, (35107) 1991 VH experiences Earth and Mars encounters. In the latest 10,000 yr, (175706) 1996 FG3 experiences Venus and Earth encounters. The
close encounters below the line of mean variation in binary eccentricity of 0.1 are highlighted with a black circle, and the dashed line marks the radius of Earth.
Bottom: probability of disruption based on the number of encounters found below thresholds of mean Δe = 0.1 for low disruption and Δe = 1 for high disruption.
Confidence intervals on the probability of disruption prediction are shown with dashed lines.
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the probability that the binary orbits have potentially been
disrupted recently in the orbit histories. We can study the first
fraction of the long-term secular periods, in which the particles
still have not mixed. Figure 23 shows the history of potentially
disruptive encounters in the recent periods of frequent
encounters.

The last period of possible very close encounters that we find
for (35107) 1991 VH starts beyond the last 10,000 yr. As
determined by a mean variation in binary eccentricity of 0.1,
we find that 61 of the 1000 test runs experience a potential
disruption in the period of time up until the last 30,000 yr.
When we incorporate the next period of close encounters, the
probability of a potential disruption increases to 131 out of
1000 runs in the last 60,000 yr.

Given the current orbit state of (175706) 1996 FG3, we find
very close encounters with Venus in the last millennia. Because
of the more restrictive closest approach distance for a potential
disruption to happen, only 10 out of the 1000 test runs
experienced this potential disruption in this period of frequent
encounters. If we consider the last 10,000 yr, then the
probability increases to 54 cases in which at least one
potentially disruptive encounter was found.

If we keep increasing the time in which we consider all the
potentially disruptive encounters, we can estimate the prob-
ability that a potentially disruptive encounter occurs. These
probabilities are shown in Figure 23 with the corresponding
95% confidence intervals. The probability of suffering a
disruptive encounter of (175706) 1996 FG3 increases faster
than the probability of (35107) 1991 VH. This is explained by
the significantly higher number of recorded close encounters.
Thus, it is not possible to explain the chaotic state of (35107)
1991 VH only from the long-term probability of experiencing
such encounters. However, a low probability in recent times,
combined with the incapability to dissipate the perturbation in a
long time, could explain the chaotic state of (35107) 1991 VH.
Thus, future work will be done along the lines of characterizing
the timescales of the dissipation of perturbations due to close
encounters.

7. Conclusions

In this paper we present a rapid semi-analytical propagation
tool for asteroids in the inner solar system. The tool combines
an analytical solution for the secular dynamics and the
evaluation of planetary encounters. The derived solution of
planetary encounters proves to accurately model the effect of
the majority of flybys that asteroids experience in the inner
solar system.

The long-term effect of the perturbation by Jupiter is
captured by the analytical secular solutions in a large fraction
of the NEO population. The combination with detection and
evaluation of close encounters recreates the full dynamics as
we demonstrate for the case of (35107) 1991 VH.

The description of the orbits of NEOs in long-term
timescales must be done statistically. We showed how the
different elements can be represented by different distributions

and how the time it takes for the elements to become statistical
depends on the frequency of close encounters. Through the
sampling of different NEO cases we inspect the stochastic
models that represent the long-term evolution of the orbital
elements.
The use of a fast semi-analytical propagation tool allows an

efficient study of the dynamics of asteroids. We studied in
detail the orbital histories of the Janus mission targets: (35107)
1991 VH and (175706) 1996 FG3. We characterized the
encounters that can cause a potential disruption of the binary
orbits and computed the frequency of such encounters.
Additional modeling of the effects of close encounters to

other physical properties of asteroids will allow the study of the
frequency of disruptive events. These are just a few potential
examples of the benefits of a fast propagation tool for solar
system studies in the fashion of the presented tool.
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Appendix A
Initial Conditions and Uncertainties

The statistical representation of the uncertainty in the orbit
solutions can be done using the covariance matrix. This
information is available for multiple asteroids in JPLʼs SSD/
CNEOS Small-Body DataBase (SSD/CNEOS API Service
2021). The covariance matrices for (175706) 1996 FG3 and
(35107) 1991 VH that are used in this work are shown below in
Tables 4 and 5.
In the case of the artificial cases used to illustrate the long-

term dynamics, we set the covariance matrix to be a diagonal
matrix of 1e-6 in the Keplerian set {a, e, i, Ω, ω, σ}. While this
is orders of magnitude larger than the uncertainties of (175706)
1996 FG3 and (35107) 1991 VH, the uncertainty without
further observations increases exponentially after only tens of
encounters. Thus, it is adequate for the studies in long-term
simulations of this work.
The individual particles are sampled considering a multi-

dimensional normal distribution centered around the nominal
values shown in Table 2. Then, we use the Cholesky
factorization of the covariance matrices to add the corresp-
onding perturbation from the nominal.
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Appendix B
Computation of Laplace Coefficients

The expansion of the potential requires the computation of
Laplace coefficients, as introduced by Laplace (1798). Brouwer
& Clemence (1961) Murray & Dermott (2000) detail both the
expansion and computation of coefficients. In the case of the
expansion in Equation (4),
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This integral can be rewritten in a series expansion that
simplifies the computation of the Laplace coefficients numeri-
cally as a function of the rising factorial or Pochhammer
symbol. However, it is found to be computationally more
efficient to compute the quadrature integral above. There are
many recursion and derivative rules that avoid computing the
coefficients based on the definition. These expressions use the
nomenclature of D being the derivative operator d
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Table 5
Initial Covariance of the Orbit of NEO Binary (175706) 1996 FG3

1996 FG3 e q (au) tp (TDB) Ω (deg) ω (deg) i (deg)

e 1.2362e-16 −1.3026e-16 7.9966e-15 −4.1649e-14 3.9787e-14 −2.3726e-14

q (au) −1.3026e-16 1.3752e-16 −9.0726e-15 4.7436e-14 −4.5397e-14 2.5036e-14

tp (TDB) 7.9966e-15 −9.0726e-15 2.9877e-12 6.6638e-11 −6.6225e-11 −2.4698e-12

Ω (deg) −4.1649e-14 4.7436e-14 6.6638e-11 7.0256e-09 −6.9647e-09 −6.8055e-11

ω (deg) 3.9787e-14 −4.5397e-14 −6.6225e-11 −6.9647e-09 6.9046e-09 6.7284e-11

i (deg) −2.3726e-14 2.5036e-14 −2.4698e-12 −6.8055e-11 6.7284e-11 6.7136e-12

Note. As obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API Service 2021). Using DE431 and SB431-N16, orbit solution date 2021 April
26 for epoch JD = 2,454,796.5.

Table 4
Initial Covariance of the Orbit of NEO Binary (35107) 1991 VH

1991 VH e q (au) tp (TDB) Ω (deg) ω (deg) i (deg)

e 3.0691e-16 −3.5095e-16 −8.8918e-14 −7.2651e-15 −5.2217e-14 3.6255e-15

q (au) −3.5095e-16 4.0175e-16 1.0484e-13 8.2268e-15 6.1722e-14 −4.1006e-15

tp (TDB) −8.8918e-14 1.0484e-13 7.5479e-11 −7.8662e-12 6.4146e-11 −3.8102e-12

Ω (deg) −7.2651e-15 8.2268e-15 −7.8662e-12 3.104e-11 −3.4282e-11 −4.876e-12

ω (deg) −5.2217e-14 6.1722e-14 6.4146e-11 −3.4282e-11 8.1951e-11 1.9766e-12

i (deg) 3.6255e-15 −4.1006e-15 −3.8102e-12 −4.876e-12 1.9766e-12 8.4244e-12

Note. As obtained from JPLʼs SSD/CNEOS Small-Body DataBase (SSD/CNEOS API Service 2021). Using DE431 and SB431-N16, orbit solution date 2021 April
15 for epoch JD = 2,456,902.5.
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