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Strength‑mass scaling law governs 
mass distribution inside honey bee 
swarms
Olga Shishkov1, Claudia Chen1, Claire Allison Madonna1, Kaushik Jayaram  2 &  
Orit Peleg  1,3,4,5,6,7*

To survive during colony reproduction, bees create dense clusters of thousands of suspended 
individuals. How does this swarm, which is orders of magnitude larger than the size of an individual, 
maintain mechanical stability? We hypothesize that the internal structure in the bulk of the swarm, 
about which there is little prior information, plays a key role in mechanical stability. Here, we provide 
the first-ever 3D reconstructions of the positions of the bees in the bulk of the swarm using x-ray 
computed tomography. We find that the mass of bees in a layer decreases with distance from the 
attachment surface. By quantifying the distribution of bees within swarms varying in size (made up 
of 4000–10,000 bees), we find that the same power law governs the smallest and largest swarms, 
with the weight supported by each layer scaling with the mass of each layer to the ≈ 1.5 power. This 
arrangement ensures that each layer exerts the same fraction of its total strength, and on average 
a bee supports a lower weight than its maximum grip strength. This illustrates the extension of 
the scaling law relating weight to strength of single organisms to the weight distribution within a 
superorganism made up of thousands of individuals.

When thousands of individual insects self-assemble into one coherent group, the resulting superorganism can 
perform functions that individuals cannot. Prominent examples include fire ant rafts and towers keeping a colony 
afloat during a flood and helping them get to dry land1,2, army ant bridges shortening a path of a marching colony, 
and their bivouacs forming a temporary home for their queen and brood3,4, and Western honey bees gathered 
in swarms to keep their queen safe while they search for a new hive5. In these aggregations, the majority of the 
insects reside in the bulk of the structure, and could deeply affect its mechanics. Since it is not possible to see the 
individuals inside the opaque, dense aggregation, studies of these aggregations usually rely on observations of 
the individuals on the surface of the aggregations5,6. Some studies have used two-dimensional x-ray projections 
of the aggregations2, but this method cannot quantify the distribution of individuals in all three dimensions. To 
address this gap, we use x-ray computed tomography (CT) to visualize the 3D arrangement of Western honey 
bees (Apis mellifera) in swarms, calculate how the load is distributed between bees, and use a scaling law to 
explain the reason for this weight distribution.

A honey bee swarm is a cluster made up of a queen bee and thousands of workers that hangs outside for 
hours to days while the workers scout for hives7. Swarming is a precarious step in the life of a honey bee colony: 
if the queen or too many of the worker bees do not make it to their new hive, the entire colony will be lost7. 
Bees attach to one another to support the weight of the entire swarm and keep the colony cohesive. Hence, the 
mechanical stability of these swarms plays an important role in the survival of the colony. So far, the arrange-
ment of bees inside swarms and how a swarm’s weight is distributed between bees has been unknown. Previous 
studies on honey bee swarm structures investigate how the swarm shape changes in response to environmental 
perturbations. For instance, bees flatten the swarm to keep it stable if its attachment surface shakes5, and respond 
to changing weather by packing the swarm more densely in the cold and spreading out in the heat6,8,9.

To interpret the spatial distribution of bees measured by the x-ray CT, we hypothesize that a honey bee swarm 
is a superorganism that can be described with scaling laws, analogous to those that apply to individual organ-
isms in nature. A number of scaling laws that relate the size of individuals to their physical properties have been 
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established in biology10–12. These laws are derived from dimensional analysis and can be verified experimentally. 
For instance, the metabolic rate of animals scales with body mass to the three-fourths (or two-thirds) power10,13, 
running speed scales with body mass to the one-sixth power14,15, and the strength of weightlifters scales with body 
mass to the two-thirds power16. Analogously to the relationship between weightlifter body mass and maximum 
mass lifted, the speed with which ants drag a load is not linearly proportional to the number of ants dragging 
it17. Just as an animal is an organism made up of cells, a swarm is a superorganism made up of bees, and similar 
scaling laws could apply to its physical properties. However, we do not know of any scaling laws applying to the 
arrangement of individuals within collectives in the literature thus far.

In this study, we find a universal scaling law that applies to the arrangement of bees and weight distribution 
inside both small and large swarms. Regardless of swarm size, the weight supported by each horizontal layer of 
a swarm scales with the mass of the layer to the ≈ 1.5 power. This weight distribution assures that each swarm 
layer is using the same percentage of its maximum strength. We describe our methods for taking CT scans of 
swarms in “Materials and methods”. We show that the weight distribution inside the swarm obeys a power law 
in “Results”, and present a mathematical model explaining the benefits of the distribution of bees in the swarm 
scaling with this particular power law in “Scaling law of strength and layer mass”. Finally, we discuss the results 
and conclude in “Discussion”.

Materials and methods
In this section, we provide a succinct decription of our methodology, including the honey bee swarms, our experi-
mental setup, and our procedure for obtaining and and analyzing CT scans. See the Supplementary Methods for 
a more detailed description of the methodology.

Experimental setup.  In our study, each swarm consists of a different number of worker bees (3725–9700 
individuals) and a caged queen bee. We collect data from 11 swarms, providing 57 CT scans in total. We set up 
the swarms in a laboratory lit by ambient indoor lighting at an ambient temperature of 21 ◦ C. The swarm hangs 
from an attachment surface, a 33 cm diameter wood disk. The caged queen is fixed to the center of the attach-
ment surface, and the workers gather around her to form a swarm. We measure the mass of the swarms before 
taking CT scans, and calculate the number of bees in a swarm by dividing the mass of the swarm by the average 
mass of a bee. We find the average mass of individual bees once for each swarm by freezing a sample of bees 
and then weighing a sample of 100 bees. The average mass of a bee had a range of 0.10–0.13 g over the different 
swarm trials.

We set up the swarm between the x-ray emitter and detector of a JPI DynaVue: Digital X-Ray and Fluoroscopy 
in One System, 17.7± 0.7 cm from the detector. The emitter and detector are fixed 90 cm apart. The schematic in 
Fig. 1a shows the swarm between the x-ray emitter and detector. We define the x-axis horizontal and parallel to 
the x-ray detector plane and the y-axis parallel to the x-ray emitter–detector line, so that the attachment surface 
and the xy-plane are coplanar. We define the z-axis in the direction of gravity, with the origin at the center of 
the attachment surface where the queen cage is attached. We center the origin of the axes in the field of view of 
the x-ray detector.

We motorize the swarm with a stepper motor and use a MATLAB script to continuously rotate the stepper 
motor at 7.2◦/s, and save the motor position and x-ray parameters. The motor completes a full rotation for one 
CT scan in 25 s. While the motor rotates, we use customized proprietary software by JPI to acquire x-ray projec-
tions at 15 frames per second with x-ray parameters 90–95 kV and 20 mA. As a visual illustration, we show a 
photograph of the swarm hanging in front of the x-ray detector in Fig. 1b, a sample projection of the same swarm 
in Fig. 1c, and a sample set of projections in Supplementary video V1.

CT scan processing.  To perform the 3D reconstructions, we first find the rotation angle of each projection, 
measure the length of the side of a voxel and the center coordinate, and subtract a blank background image to 
reduce noise. We then reconstruct each data set with the Matlab TIGRE toolbox, using the FDK algorithm and 
Hamming filter18. See SI Section “CT scan processing” for a more detailed description of the following process-
ing and Supplementary Table T1 for a table of all the variables we use in our analysis. Each resulting reconstruc-
tion consists of a 3D matrix, Ĩ(x, y, z) , of the brightness values in each voxel.

We set the bounds of the reconstructions to encapsulate the swarm and a small amount of empty space 
around it (unless the swarm reaches the edge of the field of view of the x-ray). The x-axis is bounded from −X/2 
to X/2 and the y-axis is bound from −Y/2 to Y/2, as shown in Fig. 1a. The z-axis ranges from 0 to the length of 
the swarm L, where 7.7 ≤ L ≤ 12.5 cm. X and Y are visually defined to encapsulate all non-zero CT brightness 
values (i.e., the physical shape of each swarm). We label all of the voxels that are encapuslated by the swarm and 
find its surface boundary as described in SI Section “CT scan processing”.

The raw reconstructions, Ĩ(x, y, z) , have a cupping artifact throughout the swarm, likely from beam 
hardening19, and noise that is caused by the short current and exposure time used to take the projections. Post-
proccesing to eliminate these artifacts (see SI Section “CT scan processing” for details) results in a brightness 
matrix I(x, y, z) that is linearly correlated to the mass of bees in each voxel. We show three views of a sample 
reconstruction in Fig. 1d, highlighting the radially symmetric shape of the swarm about the z-axis and the 
outlines of individual bees.

Converting brightness to mass and densities.  To convert the brightness values I(x, y, z) into a meas-
ure of the mass of bees in each voxel, we use an external measure of the mass of the entire swarm, Mswarm (see SI 
Section “Experimental setup” for scale specs). Assuming the brightness, I, is linearly correlated with the density 
of bees, the following relation provides an estimated mass per voxel:
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With the mass of each voxel and the boundary of the swarm at hand, we can define the density of bees ρ(z) in 
each layer (a one-voxel thick xy-slice). The length of the side of each voxel is s, and NB(z) is the number of voxels 
in a layer that are within the swarm boundary. Meausring ρ(z) shows how densely packed the bees are from the 
attachment surface to the swarm tip:

We also calculate the total area encompassing each layer of the swarm:

Mass and forces per layer.  We use the matrix of the mass in each voxel, m(x, y, z), to analyze the weight 
distribution within the swarm by measuring the mass of each layer (a one-voxel thick xy-slice) and the weight 
supported by each layer.

The schematic in Fig. 1e highlights a layer of the swarm. The mass of bees per unit distance in each layer, 
M(z), is the sum of the mass of each voxel in that layer divided by the thickness of the layer, s:

(1)m(x, y, z) = I(x, y, z)
Mswarm

∑

I(x, y, z)
.

(2)ρ(z) =
1

s3NB(z)

X/2
∑

xi=−X/2

Y/2
∑

yi=−Y/2

m(xi , yi , zi = z).

(3)A(z) = s2NB(z).

(4)M(z) =
1

s

X/2
∑

xi=−X/2

Y/2
∑

yi=−Y/2

m(xi , yi , zi = z).

Figure 1.   (a) Schematic of x-ray CT setup. The swarm hangs from a rotating board between the x-ray emitter 
and detector. As the swarm rotates about the z-axis, the emitter generates x-rays and the detector saves the 
resulting projections. (b) Photograph of a 753 g swarm taken right before a CT scan. (c) Sample projection 
of the CT scan of the swarm in (b). Darker gray pixels represent more bees in the path of the x-ray beam. (d) 
Volume rendering of a reconstruction of the swarm in (b), shown from three different orientations: top view, 
right below the attachment surface (left), front view (top right), and right-side view (bottom right). Brighter 
voxels represent a higher bee mass, and black voxels represent no bees. See Supplementary video V2 for a video 
of the rotated reconstruction. (e) Schematic of the swarm with a vertical coordinate z. The swarm is made up of 
layers with mass M(z) and thickness dz. (f) Free body diagram of a dz thick layer of the swarm. The force each 
layer of bees exerts to support the swarm, F, is equal to the weight of the layers underneath it, W(z).
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As in the free body diagram in Fig. 1f, the force that each layer of the swarm exerts upwards is equivalent to the 
weight that the layer supports. The weight that each layer has to support, consisting of the weight of the bees in 
that layer and all of the layers underneath it, W(z), is:

where g is the graviatational acceleration.
We discuss the implications of the trends in M(z) vs W(z) in “Results”. When applying curve fitting, we 

neglect data for M(z) and W(z) at the top and bottom edge: 1 cm at the top of the swarm, where M(z) has not 
yet reached its peak, and the few bees in the tip of the swarm, where W(z) ≤ 5 g. This allows us to limit our 
analysis of the weight distribution of the swarm to the trends in the bulk of the swarm and neglect outlying data 
from edge effects.

Finally, we measure the mean force each bee supports in a layer, Fbee , assuming that each bee in a layer bears 
an equal fraction of the weight W(z). Since the voxel edge length is smaller than the length of a bee, we obtain 
the mass of individuals available to support the bees beneath them with a moving sum over the voxels that span 
the length of an individual bee, l = 1.5 cm long. We then divide W(z) by the mass of supporting bees:

Maximum force per bee.  We measure the maximum force that a bee can support by tying an elastic band 
to two bees, getting the bees to hold on to one another, and pulling them apart until they disconnect. We measure 
the initial length and final length of each elastic band and then use Hooke’s law to measure the force between the 
bees. See SI, section “Calculation of bee grip strength” for details.

Results
In this section, we discuss 57 reconstructions of 11 swarms. We show three sample volume renderings of recon-
structions of example swarms with small, median, and large masses in Fig. 2a, and a reconstruction rotated to 
show the base, the tip, and different sides of the swarm in Supplementary video V2. For the rest of this paper 
we consider the bulk properties of the swarm, leaving the positions of individual bees a subject for future study.

(5)W(z) = g

X/2
∑

xi=−X/2

Y/2
∑

yi=−Y/2

L
∑

zi=z

m(xi , yi , zi).

(6)Fbee(z) =
1

g
∑zi+l

zi=z sM(zi)
W(z).

Figure 2.   (a) Volume rendering of three different swarm reconstructions, in order of increasing mass: 495 g, 
694 g, and 970 g. (b) Experimental data from all 57 reconstructions showing the relationship between weight 
underneath a layer, W(z), and mass of bees in that layer, M(z). Plotting W(z) and M(z) on a log-log scale 
shows that this relationship scales with the same power law for swarms weighing 480–970 g: W(z) = CM(z)a , 
a = 1.53± 0.12 . (c) Plotting a vs. the swarm mass shows that a is independent of swarm mass. (d) The density 
of bees in a swarm layer, ρ(z) , for all 57 reconstructions as a function of distance from the attachment surface to 
the tip of the swarm, z. (e) The area of layers of a swarm, A(z), for all 57 reconstructions as a function of distance 
from the attachment surface to the tip of the swarm, z. In (b–e), each color repesents a different swarm, colored 
according to the mass: purple represents lighter swarms, and green represents heavier swarms.
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Weight distribution inside swarms.  How do bees distribute themselves throughout the swarm to sup-
port its weight? To answer this question, we calculate the mass of bees in each layer of the swarm, M(z), as in 
Eq. (4) and the weight supported by those layers, W(z), as in Eq. (5). We plot W(z) vs. M(z) on a log-log scale in 
Fig. 2b for swarms weighing 447–970 g (containing 3725–9700 bees). Despite the varying swarm sizes, the W(z) 
vs. M(z) curves all fall on a universal line, suggesting that swarms have the same fundamental structure at small 
and large scales. To further characterize this scaling law, we apply a linear best fit to each curve. The slope of this 
fit is the exponent a in the power law relating M(z) to W(z):

where a = 1.53± 0.12 and the constant C = 250± 110 . We plot a for each swarm mass in Fig. 2c and find that 
there is no trend in a as a function of the swarm mass, further supporting that weight distribution does not 
depend on the swarm mass.

Figure 2b shows that layers with the largest M(z) support the largest swarm weight W(z) (with W(z) = gMswarm 
at z = 0 , where the top layer is supporting the entire swarm). Correspondingly, the three sample reconstructions 
in Fig. 2a and the plot of the area of each layer in Fig. 2e show that the area of swarm layers near the attachment 
surface is greater than the area of the layers near the tip of the swarm. To quantify the effect of packing density 
on layer mass, we plot the density of each layer of the swarm vs. z-coordinate for all 57 reconstructions using 
Eq. (2) in Fig. 2d. The bees are most densely packed at the top of the swarm, and the density decreases towards 
the tip of the swarm, confirming that most of the bees are found near the base of the swarm.

To quantify the arrangement of swarm layers from the attachment surface to the tip of the swarm, resulting 
in the power law described in Eq. (7), we plot M(z) vs. z in Fig. 3a. M(z) is high near the attachment surface, 
z ≤ 2 cm, and then decreases with z toward the tip of the swarm. This is visible in x-ray projections of the swarm, 
such as the one in Fig. 1c. A darker shade of gray represents more bees in a horizontal layer between the x-ray 
emitter and x-ray detector, and white represents no bees. In this projection, there is a wide layer of darker gray 
representing a larger mass of bees per horizontal layer near the attachment surface, followed by narrower layers 
of lighter gray representing fewer bees per horizontal layer towards the swarm tip. The large mass of bees in the 
topmost layer creates a stable support structure for the bulk of the swarm, distributing the load between the bees.

How does this arrangement affect the forces experienced by individual bees in the swarm? If the weight sup-
ported by an individual bee is close to its limit, that bee will be more likely to break its bond when the swarm is 
mechanically perturbed. To investigate how much weight individual bees support, we calculate the mean force 
supported by a bee in a layer, Fbee(z) , as in Eq. (6). We plot Fbee vs. z in Fig. 3b and find that each bee supports a 
maximum of 3.8 bee weights. The weight supported per bee decreases from attachment board to swarm tip. Our 
experiments with pairs of bees show that one bee can support a maximum weight of 35± 14 bees (see SI section 
“Calculation of bee grip strength”). Hence, the bees bearing the weight of the swarm are not at their strength limit.

Scaling law of strength and layer mass
Our experimental data reveals a scaling law between the mass of a layer along the vertical coordinate, M(z), 
and the weight that it supports, W(z), namely: W(z) ∼ M(z)a with a ≈ 1.5 . To better understand the physical 
mechanism that yields this scaling law, we derive the force balance equation of a layer of the swarm and solve 
for W(z). We then equate the analytical expression for W(z) with the experimentally determined scaling law, 
W(z) ∼ M(z)a , to connect the swarm mass distribution to the exponent a and formulate the expressions for M(z) 
and W(z) in terms of a. We then consider a dimensional analysis of the strength of each layer of the swarm, S, or 
the maximum weight that it can support before the grip of the bees on one another breaks. As will be described 
in detail below, we find that S ∼ M1.5 , which is close to the experimentally determined a = 1.53 . Deviation from 
this value increases the fraction of maximum strength exerted by different parts of the swarm.

Force balance model of the weight distribution in the swarm.  We assume that the swarm is at 
quasi-equilibrium (the shape does not change although individual bees may move), that all of the bees in each 
layer contribute equally to supporting the weight of the bees underneath that layer, that the layer thickness is 
very small, and that the swarm is radially symmetrical about the z-axis. We use a cylindrical coordinate system 
with a vertical coordinate z, as shown in Fig. 1e, and we consider layers of the swarm along the z-axis of thickness 
dz. Variables labeled with a tilde, as in W̃(z) , represent analytically derived expressions; variables without a tilde, 
as in W(z), represent values determined with power law fits to experimental data.

We begin our analysis by applying the force balance principle to each layer of a swarm. As shown by the 
free body diagram in Fig. 1f, the force with which each layer of bees has to grasp the layer above it is equal to 
the weight of that layer and all of the layers underneath it: F̃ = W̃(z) . We express W̃(z) using the force balance 
equation (a continuous version of the discrete definition in Eq. (5).):

where the mass of bees per layer is M̃(z) , the swarm length is L, and g is the gravitational constant. Inspired by 
our experimental observation that the mass of the layers near the base is highest and the mass of the layers at 
the tip of the swarm is lowest in Fig. 3a, we model M̃(z) as a monotonically decreasing function of z. To keep the 
units consistent, we normalize the z coordiante by the length of the swarm:

(7)W(z) = CM(z)a,

(8)W̃(z) = g

∫ L

z
M̃(z)dz,
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where the c factor in this expression ensures that the units of the mass per layer are mass/length, and b̃ is an 
unknown exponent. Choosing this function form allows us to easily integrate the expression for W̃(z) when we 
substitute M̃(z) into it, set this force balance derivation for W̃(z) equal to the experimentally determined expres-
sion W(z) = CM(z)a , and compare the exponents a and b̃.

To solve the expression for W̃(z) , we substitute the expression for M̃(z) , Eq. (9), into Eq. (8) and integrate. We 
then express b̃ in terms of the experimentally determined a by equating this expression for W̃(z) to the scaling 
law we observe in our experiments, Eq. (7), W(z) = CM̃(z)a . The exponent in the expression for ˜M(z) , Eq. (9), is

The weight supported by each layer is then:

(9)M̃(z) = c
(

1−
z

L

)b̃
,

(10)b̃ =
1

a− 1
.

Figure 3.   (a) Mass of swarm layers, M(z), plotted for all 57 reconstructions. M(z) peaks and then decreases 
with the z coordinate. (b) Mean force supported by a bee in a layer, Fbee(z) , vs z. The maximum force per bee 
is 3.8 bee weights, and the force decreases along the z axis. The lowest possible Fbee(z) is one bee weight—a bee 
only supporting its own weight. (c) Theoretical mass distribution between the layers of a of a 1000-g, 12.5-cm 
long swarm with varying exponent a, with normalized z-coordinate z/L on the x-axis and mass per layer M̃(z) 
on the y-axis. The shaded gray region is the range of values for the experimental data in (a). (d) Theoretical 
mean force per bee for a 1000-g, 12.5-cm long swarm with varying exponent a, with z/L on the x-axis and force 
per bee F̃bee(z) on the y-axis. The shaded gray region is the range of values for the experimental data in (b); 
the shaded purple region for F̃bee(z) > 35 bee weights represents the maximum number of bees that a single 
bee can support. In (c) and (d), the solid black line corresponds to a = 1.5 : the experimentally measured mass 
distribution, with more massive layers near the attachment surface ( z/L = 0 ). Dashed green line corresponds 
to a = 1.01 : a swarm with most of its mass concentrated in the top layer of the swarm, and very few bees found 
beneath that layer. Dash-dot orange line corresponds to a = 1000 : a swarm in which all of the layers have equal 
mass. Dotted purple line corresponds to a = −0.2 : a swarm in which the layers near the attachment surface 
have a lower mass than the layers at the bottom of the swarm.
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Next, we test how well our force balance model predicts the data by comparing the predicted value of b̃ using the 
force balance to the value of b calculated using experimental fits. We first separate the expression for the layer 
mass, Eq. (9) into the product of the layer area, Ã(z) and the layer density, ρ̃(z):

To simplify our analysis, we model Ã(z) and ρ̃(z) with a similar monotonically decreasing function to that in 
Eq. (9):

and

we can then separately measure the effect of the changes in area and density on the exponent in the mass per 
layer expression in Eq. (9), b̃ = b̃1 + b̃2.

We first calculate b̃ using the expression derived from the force balance, Eq. (10), and our experimental result 
for a, which yields b̃ = 2± 0.47 . Second, we calculate b by separately calculating power law fits to the data for 
A(z) in Fig. 2e according to Eq. (13) and ρ(z) in Fig. 2d according to Eq. (14), which yields b1 = 1.38± 0.2 and 
b2 = 0.51± 0.09 . Thus, b = b1 + b2 = 1.89± 0.25 . See Supplementary Fig. S5(a–c) for log-log plots of M(z), 
A(z) and ρ(z) , and Supplementary Fig. S5(d–f) for plots of the resulting b, b1 , and b2.

We calculate the deviation of b̃ from b, b̃−b

b̃
= 0.03± 0.11 , and plot the deviation of b from b̃ in Supplementary 

Fig. S5(g) as a comparison for the individual CT scans. The values of b and b̃ being on the same order of magni-
tude validates the model and allows us to compare W̃(z) to a maximum strength of each layer, which we find 
with dimensional analysis in the following section.

Strength of a swarm layer and individual bees.  The strength of the layer, S̃(z) , or the maximum weight 
that it could support, can be greater than or equal to W̃(z) : S̃(z) ≥ W̃(z) . If the weight of the bees underneath 
a layer were to exceed its strength S̃(z) , the layer would not be able to support the weight of those bees, and the 
swarm would break apart. We perform a dimensional analysis on the strength of each layer to find the relation-
ship between the mass of a layer and its maximum strength, S̃(z) ∼ M̃(z)α . Force is proportional to mass, which 
is proprtional to volume, or a length cubed, so a layer’s strength scales with length cubed, S̃(z) ∝ L3 . The mass of 
each layer, with units of mass/length, is proportional to an area, or a length squared, so M̃(z) scales with length 
squared, M̃(z) ∝ L2 . Thus, α must be 1.5 for S̃(z) ∼ M̃(z)α to be dimensionally correct. This is similar to the 
relationship between weightifting capacity and body weight in Ref.16.

Estimating W̃(z)/S̃(z) gives a measure of how much of its maximum strength each layer uses to hold up the 
rest of the swarm:

The average number of bees that a bee in a swarm layer supports, F̃bee(z) , is equal to the mass of bees supported 
by a layer divided by the sum of the mass of bees in a layer of bees that has the thickness of the length of a bee, 
l ≈ 1.5 , as a continuous version of the discrete equation in Eq. (6):

After integrating, we get an expression for F̃bee(z):

We use the expression for W̃(z)

S̃(z)
 , Eq. (15), and F̃bee(z) , Eq. (17), in the next section to evaluate how the force 

distribution in the swarm would change for swarms with different values of a.

Effect of a on the mass of each layer, the fraction of its maximum stregnth it uses, and the 
average force per bee.  We now consider the effect of varying a on the mass and force distribution inside 
the swarm. To visualize the effect of a on the distribution of bees, we plot the mass per layer of a 1000-g, 12.5 cm 
long swarm, M̃(z) vs. z/L, with a = 1.5, 1.01, 1000 , and −0.2 in Fig. 3c and the corresponding average force per 
bee, Fbee(z) vs. z/L in Fig. 3d. These values of a are example values for the four possible cases of mass distribution 
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in the swarm. We then evaluate how these values of a affect the fraction of maximum strength each layer uses to 
support the layers underneath it using Eq. (15).

If a ≈ α , as we found in our experiments, layers with higher mass near the attachment surface support the less 
massive layers under them, as in the solid black line in Fig. 3c. Correspondingly, Fig. 3d shows F̃bee(z = 0) ≈ 3 
at the top of the swarm, and decreases towards the tip. The strength of each layer and the weight it supports 
are proportional to one another, W̃(z)/S̃(z) ∼ 1/3 , meaning that the fraction of maximum strength used by a 
layer is the same for all z. If 1 < a < α , the swarm approaches one massive layer of bees, as in the dashed purple 
line in Fig. 3c. The dimensional analysis results in a very small fraction of the total strength used by this layer, 
W̃(z)/S̃(z) → 0(1− z

L )
−∞ . The force supported by each bee in Fig. 3d shows F̃bee(z) = 1 for the entire swarm, 

meaning that each bee only supports its own weight. This configuration would either require packing a large 
number of bees into one very dense or one very wide layer. A swarm with one very dense layer at the top would 
compress all of the bees; a swarm with one very wide layer would require a large surface area, which would 
put the swarm in danger from predators and changes in weather. Thus, despite a potentially lower fraction of 
strength used by the largest layer of bees, this configuration would put the swarm in danger by requiring a large 
surface area.

For values of a > α , as a → ∞ , all the layers of the swarm have the same mass, as in the dash-dot red line in 
Fig. 3c. The force per bee in Fig. 3d shows F̃bee(z = 0) ≈ 8 at the top of the swarm, 2.5 times that of the a = α 
configuration. In this configuration, the top layers use a higher percentage of their available strength than the 
lower layers, W̃(z)/S̃(z) → (1− z

L ) . Thus, for large swarms, the bees that support the swarm would be under 
more strain, and the swarm would be more likely to break under external perturbation.

Finally, a < 0 ( 0 ≤ a ≤ 1 results in negative values for W̃(z) ) would suggest that the top layers of the swarm 
have a lower mass than the bottom layers, as in the dotted orange line in Fig. 3c. This is not a realistic range of 
values for a, but we include it here as a demonstration of a potential mass distribution with the largest layers 
being on the bottom of the swarm. This configuration would put even more strain on the layers of bees at the top 
of the swarm, as smaller layers near the attachment surface have a smaller maximum strength. As a → 0 on the 
a < 0 side, W̃(z)/S̃(z) → ∞(1− z/L)1.5 , and bees in the top layers use a much greater fraction of their strength 
than bees in the bottom layers. Accordingly, the mean force per bee in Fig. 3d exceeds the maximum bee grip 
strength of 35 bee weights, and the swarm could not support itself in this configuration.

The swarm configuration with a ≈ 1.5 uses the full strength of each layer and puts a lower strain on the 
bees than most other values of a, and avoids weight distributions that could expose a large number of bees to 
external danger.

Discussion
In this study, we obtained x-ray CT scans of western honey bee swarms and analyzed trends in the bulk distribu-
tion of bees. We find that, regardless of swarm size, bees are arranged such that the weight supported by each 
layer scales as the mass of the layer to the ≈ 1.5 power. This supports our hypothesis that scaling laws can be used 
to describe a superorganism such as a honey bee swarm, analogously to past descriptions of individual animals 
and plants in the past10. Examples of scaling laws which have previously been used to understand collective 
behavior in groups of animals include studies relating the number of ants pulling an object to the speed of that 
object17,20, spatial and temporal correlation of motion in insect swarms21, and size of fish groups over time22,23. 
Our scaling law relating the mass of layers to the weight they support is unusual in that, rather than relating the 
strength of a swarm to the number of individuals within the swarm, it relates the force distribution within the 
swarm to the arrangement of individuals inside it. Regardless of the number of individuals in the swarm, the 
same scaling law can describe its structure.

We found that bees are arranged to distribute the weight between each other without overloading individual 
bees, which can leave some bees free to scout for new hive locations. We primarily consider the bulk properties 
of the swarm. X-ray CT data provides a 3D image of all of the bees inside the swarm, and there is a wealth of 
untapped data in our scans regarding how the bees are distributed within the layers. Our preliminary analysis 
of the internal structure of the swarm suggests that bees form a “scaffold” inside the swarm that leaves other 
bees free to move within the swarm and scout for new hives, as shown in the slices in Supplementary Fig. S4 and 
Supplementary videos V3 and V4. Our future studies will investigate how bees might use this internal scaffold-
ing to navigate throughout the swarm. X-ray CT may also yield additional insights as to how the structure of 
the swarm changes under perturbations to improve stability, as in Ref.5. Experiments combining macroscopic 
CT scans to visualize overall swarm structure with micro-CT to visualize the leg–leg bonds between individual 
bees can help determine the local rules governing honey bee behavior and division of labor as a swarm forms 
and maintains a stable shape.

We focused this study on swarms at an ambient room temperature. Different ambient temperatures might 
result in swarms deviating from a ≈ 1.5 to adjust the swarm configuration for thermoregulation. Heinrich 
proposed an internal structure for swarms in cold or hot ambient environments9: homogenously packed bees 
within a dense shell in cold weather to generate heat, and air channels within the swarm for ventilation at hot 
temperatures. However, measurements of the shape change of the swarm in response to heating and cooling show 
that the swarm’s shape does not always directly correlate with temperature8. X-ray CT provides an opportunity 
to see inside swarms in varying environmental conditions and investigate how the arrangement of bees changes 
to maintain a comfortable core temperature. Shape change in response to environmental conditions may also 
result in a tradeoff between stability and thermoregulation, such as rearrangements that minimize surface area 
to keep heat inside the swarm or decrease the packing density to ventillate heat into the environment, with a 
different value for a.
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There are some questions remaining regarding the analysis of CT scans. The calibration of brightness in our 
CT images to mass per voxel has potential for improvement. In this study, due to artifacts in the raw reconstruc-
tions and inconsistent quality between reconstructions, we had to normalize each scan such that all stationary 
bees have approximately the same brightness. An experimentally-determined correlation with brightness and 
location in the swarm as inputs and mass in a voxel as an output would be time-consuming to create but would 
give more precise results. Additionally, we do not include the variation in distribution of mass between bees 
throughout the swarm, or that moving bees likely do not support the mass of the swarm, in our analysis. The 
power law model for the density and area of each layer is also an imperfect fit; however, we use these models 
primarily to explain the reason for the a ≈ 1.5 result, and they are not intended to be a full description of the 
swarm structure. A more thorough investigation of which bees form a supporting structure, and how other bees 
are connected to them, could yield additional insight into the mass distribution.

The insight gained from this study on how honey bee swarms support their weight is both a fascinating addi-
tion to our understanding of the process by which honey bee colonies reproduce, and can also serve as a starting 
point for bioinspired engineering applications24. A swarm can be thought of as a living material that can adjust 
to environmental conditions and repair itself when damanged. Engineering materials that similarly respond to 
their environment and self-heal might have applications in medicine, building and aircraft design, and smart 
sensors25,26. Biological swarms can provide design inspiration for novel robotic swarms27. For instance, collectives 
of insect scale robots28,29 hanging30 from a building as they repair part of it may be inspired by the arrangement 
of bees in the swarm, ensuring that their assembly is stable. These practical applications in combination with 
quantitative ethological studies of the collective intelligence of these social insects could inform future studies 
of honey bee swarms.

Data availibility
We provide the CT reconstructions and analysis code in https://​doi.​org/​10.​5061/​dryad.​n2z34​tn0q.
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