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ABSTRACT 20 

Because of the high costs of ground-based pavement condition methods used to monitor pavement 21 
condition, transportation agencies often limit distress surveys to their major roads. As a result, the 22 
condition of local and ancillary roads remains unknown to decision-makers. This study addresses 23 
this gap by exploring the capabilities of publicly available Synthetic Aperture Radar (SAR) data 24 
to estimate pavement roughness. This paper introduces a novel framework to address the 25 
challenges of using SAR images in evaluating pavement condition. The trunk highway network in 26 
Minnesota is analyzed to develop deep learning models that predict International Roughness Index 27 
(IRI) and associated prediction intervals. This analysis found that SAR images have a strong 28 
potential in quantifying pavement condition. The deep learning models were able to predict IRI 29 
with a mean absolute error of 14.6 inches/miles and provide intervals of pavement condition that 30 
capture actual IRI values with an accuracy of 81%. 31 

Keywords: Pavement, IRI, Deep Learning, Image Processing, Satellite Data, Remote Sensing  32 
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1. INTRODUCTION 33 

Accurate and timely assessment of pavement condition is critical in the management of 34 
transportation infrastructure, as it determines maintenance needs and funding requirements. The 35 
transportation network in the United States comprises 3.9 million miles of built street, roads, and 36 
highways: 43% of which are in a poor or mediocre condition [1,2]. While users demand more in 37 
terms of quality, safety, and accountability, the state Departments of Transportation (DOTs) are 38 
faced with challenges of aging pavements, deteriorating networks, and insufficient budgets to 39 
inspect and maintain such a large and complex network. Due to the high costs of collecting 40 
pavement condition data using ground-based approaches, DOTs often limit their monitoring to the 41 
major roads of a network, as required by federal regulations [3]. As a result, the condition of the 42 
ancillary components of a highway system such as ramps, auxiliary lanes, and frontage road 43 
pavements remain unknown to decision-makers. This raises the need for alternative solutions to 44 
monitor the condition of ancillary roads in a cost-effective manner.   45 

Satellite remote sensing has the potential to provide pavement condition information that could 46 
complement the ground-based measurements and reduce monitoring costs. Past attempts in 47 
extracting road condition from remote sensors have mainly focused on optical satellite imagery 48 
[4,5]. These approaches, however, are limited by the high cost of very high-resolution images, and 49 
the complications associated with processing optical images such as cloud covers, lighting, and 50 
weather conditions. Spaceborne Synthetic Aperture Radar (SAR) data effectively addresses these 51 
issues. Radar signals can penetrate clouds and image the whole earth during both day and night 52 
regardless of the weather condition. Moreover, C-band SAR data from Sentinel-1 satellite are 53 
available for public use at zero cost to the user. Previous studies have established SAR imagery to 54 
be successful in detecting changes in road surface with millimeter accuracy [6]. However, no 55 
studies so far have explored the potential of this publicly available bigdata in pavement monitoring. 56 
Indeed, the traditional computation techniques currently used in modeling pavement condition are 57 
ineffective in leveraging big datasets [7,8]. With the flourishment of big-data applications, deep 58 
learning has emerged as a valuable tool for data-driven decision making in the management of 59 
infrastructure assets [9,10]. Deep learning algorithms constantly learn patterns from data and are 60 
highly effective in progressively extracting higher level features from complex datasets using 61 
multiple layers of neurons. In this research, we aim to leverage the capabilities of deep learning 62 
algorithms to estimate pavement condition at a network level using state-of-the-art SAR 63 
technology. 64 

1.1. Objectives 65 
The primary objective of this study is to establish a framework to estimate pavement roughness 66 
using satellite-based SAR data and deep learning algorithms. To accomplish this, we first explored 67 
radar signal processing techniques to derive an optimal approach in processing SAR imagery for 68 
pavement condition evaluation purposes. Signals extracted from SAR imagery are then combined 69 
with relevant pavement features and modeled using deep learning algorithms to estimate pavement 70 
condition. The proposed framework was packaged as a software with a graphical user interface to 71 
facilitate its implementation by transportation agencies.  72 

2.  CHALLENGES IN USING SAR TO MONITOR PAVEMENTS 73 

Radar technology, especially Ground Penetrating Radar (GPR), has been widely used for wide 74 
variety of pavement applications including modeling pavement deterioration [11], detecting 75 
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subsurface cracks [12,13], moisture damage [14], measuring layer thicknesses [15], and material 76 
density [16]. Despite having a similar working principle, the use of SAR technology in pavement 77 
applications, however, is not well established. SAR sensors transmit microwave signals at a slanted 78 
angle and measure the backscattered signal to characterize features on earth surface [17]. Each 79 
pixel of the radar image is composed of phase and amplitude information. Phase indicates the 80 
distance between the sensor and the reflecting surface and is typically used to study surface 81 
deformations. Amplitude, on the other hand, is a measure of the strength of backscattered signal 82 
from the ground and is typically used to characterize objects on the ground [18]. The normalized 83 
measure of amplitude per unit area of a distributed target is called backscatter coefficient (𝜎𝜎0). 𝜎𝜎0 84 
depends on the surface roughness and can, therefore, be used to measure the quality of pavement 85 
surfaces [18–20]. A smooth pavement (Figure 1a) will act similar to a mirror and reflect all the 86 
incident energy in the opposite direction. As a result, the backscattering coefficient will be low for 87 
smooth pavements [21] as compared to the pavements with greater roughness (Figure 1b and 88 
Figure 1c). Based on this principle, smooth surfaces will result in low 𝜎𝜎0 values than the rough 89 
surfaces and these surfaces are represented with darker pixels in a SAR image. 90 

 91 
(a) (b) (c) 

Figure 1: SAR backscatters depend on the surface roughness. (a) Smooth surfaces will have 92 
lower backscattering coefficients than (b) intermediate, and (c) rough surfaces. Image adapted 93 

from [22] 94 

Despite the working principle of SAR imagery is promising to quantify pavement roughness, the 95 
interpretation of SAR backscatters from pavements is not straightforward. SAR data presents a 96 
number of practical challenges that are described below and addressed in the proposed framework. 97 
The first challenge is related to traffic noise, as pavement backscatters are greatly affected when 98 
vehicles and other objects are present on the road. In the presence of traffic (Figure 2), the SAR 99 
signal will suffer a double bounce effect and result in higher backscatter coefficients represented 100 
with brighter pixels. A smooth pavement may therefore appear brighter due to the presence of 101 
traffic, objects, trees, and tall buildings near the roads. Therefore, it is essential to filter out the 102 
reflected signals from traffic and other similar obstructions on or near the roads to accurately model 103 
road surface condition from SAR backscatters.  104 
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 105 
(a) (b) 

Figure 2: SAR backscattering in the (a) presence, and (b) absence of traffic. Image adapted from 106 
[21] 107 

Similar to traffic noise, SAR images suffer from speckle noise when backscatters from different 108 
individual ground scatterers interfere with each other, resulting in either strong or weak return 109 
signals. This gives the SAR images a grainy appearance. To ensure accurate relationships between 110 
pavement condition and SAR responses, it is necessary to remove these speckles from SAR 111 
images. Lee filter is commonly used as an effective solution to suppress speckles in SAR images 112 
[23]. Lee filter, however, fails to preserve the edges and texture of the linear features well, which 113 
are critical in roadway applications. While pavement related studies [21,24] have applied several 114 
different filters to deal with speckles, the performance of these filters have not been evaluated 115 
quantitively. 116 

Also, there is no agreement on the most effective polarization of radar signals to capture pavement 117 
roughness. The polarization (i.e., orientation of the plane of oscillation) of a propagating signal 118 
affects how a signal interacts with an object on the ground. Since SAR has its own source of 119 
illumination, it can control the polarization of both the transmitted and backscattered signal. A 120 
vertical-vertical (VV) polarization indicates that the radar signals are transmitted and received 121 
vertically. Similarly, a vertical-horizontal (VH) polarization means the radar signals are 122 
transmitted vertically and received horizontally. Meyer et al. [24] found VV polarization to be 123 
highly sensitive to rough surface scattering and recommended it for investigating roads and paved 124 
surfaces. Suanpaga and Yoshikazu [20], however, found HH polarization to be the most useful for 125 
modeling the International Roughness Index (IRI) of pavements. 126 

Furthermore, the terrain contained in the pre-processed SAR images introduce geometric 127 
distortions due to the side-looking imaging technique of SAR systems. This results in over and 128 
under exposed pixels creating a barrier in correlating backscatter strengths to condition of the 129 
pavements located in different terrains. To address these challenges, we propose a structured 130 
approach that effectively improves post-processing of SAR images for pavement applications.  131 

3. PROPOSED FRAMEWORK 132 

This paper introduces a novel framework to leverage SAR imagery and deep learning in estimating 133 
pavement roughness. The proposed framework (summarized in Figure 3) provides a process that 134 
improves the standard SAR data processing method [22] to better address the issues associated 135 
with using SAR to monitor pavements. Our framework provides guidance on the polarization 136 
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channel that should be used to capture pavement roughness, which filters should be applied to 137 
remove speckles without compromising the linear road features, and how to remove traffic noise 138 
and the effect of terrain to accurately model pavement condition from SAR backscatters. Once 139 
these processes are completed, data is modeled using deep learning algorithms and results in a 140 
predictive tool that is developed, tested, and ultimately deployed. The critical components of the 141 
proposed framework are discussed in detail in the subsequent sections.  142 

 143 
Figure 3: Proposed framework to estimate pavement condition using SAR imagery 144 

3.1. Data Processing 145 

3.1.1. Post-Process SAR Image 146 
The proposed framework leverages SAR imagery captured by the Sentinel-1 satellite and, more 147 
specifically, the pre-processed Level-1 ground range detected high resolution dataset acquired 148 
from the Alaska Satellite Facility [25]. The acquired imagery typically have geometric and 149 
radiometric distortions due to the oblique observation geometry. These data, therefore, requires 150 
post-processing before they can be analyzed in a geographic information system (GIS) 151 
environment. Standard routine in post-processing these data include applying precise orbit file, 152 
radiometric calibration, speckle filter, radiometric terrain flattening, and geometric terrain 153 
correction. In this paper, we recommend a standard post-processing routine for pavement 154 
applications. Readers interested in a more detailed review of these processes can refer to [22]. 155 

Select Effective Polarization 156 
Radar sensors typically collect data in multiple polarizations. The backscatters received for the 157 
same object on the ground varies based on the polarization channel of a sensor. Therefore, using 158 
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the image captured in a polarization that is more sensitive to pavement roughness is of utmost 159 
importance in modeling IRI using SAR backscatters. Given the lack of agreement on what 160 
polarization channel is more effective for pavement applications, the first step of the proposed 161 
framework is to explore the suitability of Sentinel-1 polarization channels (i.e., VV and VH). SAR 162 
responses along the roads from both the VV and VH images were compared against their 163 
corresponding levels of roughness to quantify the ability of these channels at capturing differences 164 
in pavement condition.    165 

Speckle Filtering 166 
To remove speckles, especially from the pavement pixels, six different adaptive filters were 167 
considered in this study: Lee, Frost, Gamma-map, Intensity Driven Adaptive Neighborhood 168 
(IDAN), Refined Lee, and Lee Sigma. The goal of this analysis is to identify the filter that is most 169 
effective in suppressing speckles from pavement pixels while preserving the sharpness of edges 170 
and linear road features. The effectiveness of these filters was assessed using the following metrics:  171 

• Speckle Noise Index (SNI): This index measures the intensity of speckle noise in an 172 
image. Lower SNI values indicate better speckle noise suppression. SNI is defined as 173 
follows [26]:  174 

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝜎𝜎
𝜇𝜇

 (1) 175 

Where, 𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of the filtered image.  176 

• Equivalent Number of Looks (ENL): To smooth out noises, ground range detected (i.e., 177 
phase information removed) SAR images are subject to multi-looking (i.e., averaging the 178 
intensity of neighboring pixels) during the pre-processing. This concept of multi-looking 179 
was used to coin the term Equivalent Number of Looks (ENL), which is a measure of the 180 
degree of speckle suppression in post-processing. While ENL is similar to SNI, the 181 
second power in the formulation is useful in differentiating among similarly performing 182 
filters. Higher ENL indicates greater speckle suppression at the expense of edges and 183 
texture information. The choice of an ideal filter is, therefore, a compromise between 184 
noise removal and details preservation. ENL is estimated as [27]: 185 

𝐸𝐸𝑆𝑆𝐸𝐸 = �
𝜇𝜇
𝜎𝜎
�
2

 (2) 186 

• Normalized Mean (NM): This metric is used to evaluate if a filter results in an unbiased 187 
estimate. It is estimated as follows [28], with NM values close to 1 indicating that the 188 
original information was perfectly preserved [29].  189 

𝑆𝑆𝑁𝑁 =
𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝜇𝜇𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓

 (3) 190 

Where, 𝜇𝜇𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝜇𝜇𝑜𝑜𝑓𝑓𝑓𝑓𝑜𝑜𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓 is the mean of the pixel values before and after filtering the 191 
image. 192 
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Radiometric Terrain Correction 193 
Each pixel of a Level-1 pre-processed SAR image essentially indicates the value of a backscatter 194 
coefficient (𝜎𝜎0) resulting from the measured return signals. As a result, this image is often referred 195 
to as a Sigma Naught image. This image, however, suffers from the effect of topography, resulting 196 
in misleading 𝜎𝜎0 values for locations where the signals are affected by an uneven terrain. Rather 197 
than capturing straight-down, the SAR sensors use a side-looking imaging technique which causes 198 
geometric distortions leading to geolocation errors. This worsens in the presence of slopes, 199 
resulting in deceptive 𝜎𝜎0. Since the proposed framework is based on measures of SAR amplitude 200 
(i.e., strength of the backscatter), it is critical to apply radiometric terrain correction to ensure 201 
accurate measurement of backscatters. Radiometric terrain correction refers to the process of 202 
removing the influence of topography from SAR images. This process moves the SAR pixels into 203 
correct spatial relationship to each other and the corrected backscatter coefficients are denoted by 204 
𝛾𝛾0. Therefore, the resulting image is referred to as a Gamma Naught image, where each pixel of 205 
the image indicates the value of corrected backscatter coefficient 𝛾𝛾0. 206 

3.1.2. Remove Traffic Noise 207 
To remove traffic or any other temporary noise from the pavement pixels, the framework 208 
recommends an image stacking solution. With this approach, multiple images collected within a 209 
time window are bundled together. The stack is then used to generate a minimum intensity 210 
projection image where each pixel intensity is the minimum of all the pixels at that location across 211 
all the images in the stack. Traffic or other temporary objects on road create stronger backscatter 212 
(i.e., brighter pixels). Since the minimum intensity projection filters out the brighter spots which 213 
are not present in all the images, the temporary noises are removed while the brighter signals from 214 
permanent objects are preserved as they are similarly bright in all the images of the stack. Including 215 
a large number of images in the stack would increase the probability of filtering out heavy traffic 216 
noise. Given the proposed stacking solution requires a time window for image acquisition, a 217 
seasonal variability analysis of SAR responses was performed to derive recommendations on how 218 
to select this time window for a specific region. An example of this method applied to the 219 
pavements in Minnesota is described in the ‘Case Study’ section. 220 

3.1.3. Extract SAR Responses 221 
To extract backscatters from SAR images along the roads, a road network shapefile is first created 222 
based on the location information stored in the pavement features dataset. Then, reference points 223 
are generated along the road lines at a distance equal to the size of a pixel (i.e., spatial resolution) 224 
as illustrated in Figure 4(a) with a satellite image in the background. These reference points are 225 
carefully reviewed to remove any points where the backscatters are not representative of the 226 
pavement condition. For example, traffic signals, signposts, overpasses, or any other visible 227 
objects on or near the road are not included in the extraction, as they cause double bounce scatters 228 
and result in stronger backscatters. An example of this is shown by overlaying the reference points 229 
on top of a SAR image in Figure 4(b), where an overpass causes significantly higher backscatters 230 
that result in a high pixel value (i.e., bright pixels). The final reference points are then used to 231 
extract 𝛾𝛾0 values along the roads. Pavement conditions are typically reported every 0.1 mile, 232 
extracted 𝛾𝛾0 values are, therefore, averaged over every 0.1 mile. 233 
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 234 
(a) (b) 

Figure 4: Road reference points overlaid on top of (a) satellite, and (b) processed SAR image 235 

3.1.4. Compile Final Dataset 236 

The average 𝛾𝛾0 values are then labeled with the IRI for corresponding sections. Additional features 237 
of these sections such as surface type (i.e., concrete or asphalt), age (i.e., measured as number of 238 
years since last major maintenance or construction), thickness of the surface layer, thickness of the 239 
base layer, and average annual daily traffic (AADT) are included as pavement features in the final 240 
dataset.  241 

3.2. Deep Learning Tool 242 

3.2.1. Model Development 243 
To leverage the improvements resulted from the proposed framework a Deep Neural Network 244 
model is developed to estimate pavement IRI from the processed SAR imagery. To account for 245 
the uncertainties associated with the point predictions of IRI, a Gradient Boosting Machine model 246 
is also developed. The Gradient Boosting Machine model is used to estimate prediction intervals 247 
for corresponding estimations of IRI from the Deep Neural Network model. For both models, the 248 
dataset is split into 80% for training and 20% for testing. 249 

IRI Prediction 250 
The Keras API with Tensorflow backend is used to define a sequential Deep Neural Network 251 
model which uses the feedforward backpropagation algorithm to learn from the training samples. 252 
The input layer consisted of 6 neurons with 1 neuron in the output layer. A normalization layer is 253 
added before the input layer to scale the features for efficient computation. Several different 254 
combinations of number of hidden layers, number of neurons in each hidden layers, and activation 255 
functions are tested to identify the optimum model architecture. Adam optimizer with a decaying 256 
learning rate starting from 0.001 is used to train the model to facilitate both better optimization 257 
and generalization. To prevent the model from overfitting, a smaller batch size of 100 samples is 258 
used. The training is stopped early for the same purpose by monitoring the performance of the 259 
model on a validation set with 20% of training samples. The optimum architecture of the final 260 
Deep Neural Network model consisted of 2 hidden layers with 24 neurons in the first and 18 261 
neurons in the second hidden layer. For both the hidden layers, Rectified Linear Unit (ReLu) 262 
activation resulted in the best performance. 263 

Prediction Intervals 264 
A Gradient Boosting Machine (GBM) model is trained to estimate the errors produced by the Deep 265 
Neural Network model. GBM algorithm makes predictions by averaging results obtained from an 266 
ensemble of decision trees. These trees are completely different from one another based on the 267 
features they use to make decisions at each node. Each of these trees are trained sequentially in a 268 
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way that they try to minimize the errors made by the previous trees, which results in a successive 269 
decrease of error in subsequent tree ensemble. This leads to a greater prediction accuracy [30] and 270 
both faster and efficient computation as compared to neural networks [31]. GBM is also commonly 271 
used to estimate prediction intervals to quantify the uncertainties associated with point estimates 272 
[32]. Therefore, to estimate the prediction intervals for the point IRI estimates, the errors are 273 
calculated first by squaring the difference between the predicted and actual IRI.  Then the Gradient 274 
Boosting Regressor algorithm from the scikit-learn library is used to fit the GBM model for errors. 275 
A grid-search approach covering a range of learning rates, number of boosting states, minimum 276 
number of samples required to split an internal node, minimum number of samples required to be 277 
at a leaf node, and maximum depth of individual regression estimators is used to optimize the 278 
model. The standard deviation for each IRI prediction is computed by taking the root of the error 279 
predicted by the Gradient Boosting Machine model. The standard deviation is finally adjusted to 280 
construct the prediction interval around a predicted IRI. 281 

3.2.2. Model Testing 282 
The most commonly reported metrics to evaluate the goodness-of-fit of regression models in 283 
pavement research are the coefficient of determination (𝑅𝑅2), Root Mean Squared Error (RMSE), 284 
and Mean Absolute Error (MAE) [33–37]. 𝑅𝑅2 measures the variance in target variable explained 285 
by the independent variables. Although it is often very misleading as inclusion of more variables 286 
always result in higher 𝑅𝑅2 values, it was reported in this paper considering similar studies. MAE 287 
describes the average error and RMSE is more useful in limiting larger errors as they assign 288 
relatively higher weight to larger errors (i.e., the errors are squared before averaging). The 289 
performance of the models during the training and testing phases were evaluated in terms of the 290 
following metrics: 291 

𝑅𝑅2 = 1 −
∑ �𝑆𝑆𝑅𝑅𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑅𝑅𝑆𝑆𝚤𝚤� �2𝑜𝑜
𝑓𝑓=1

∑ (𝑆𝑆𝑅𝑅𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑅𝑅𝑆𝑆𝚤𝚤�����)2𝑜𝑜
𝑓𝑓=1

  (4) 292 

𝑁𝑁𝑀𝑀𝐸𝐸 =
1
𝑛𝑛
��𝑆𝑆𝑅𝑅𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑅𝑅𝑆𝑆� 𝑓𝑓�
𝑜𝑜

𝑓𝑓=1

 (5) 293 

𝑅𝑅𝑁𝑁𝑆𝑆𝐸𝐸 = �
1
𝑛𝑛
��𝑆𝑆𝑅𝑅𝑆𝑆𝑓𝑓 − 𝑆𝑆𝑅𝑅𝑆𝑆� 𝑓𝑓�

2
𝑜𝑜

𝑓𝑓=1

(6) 294 

4. CASE STUDY 295 

To evaluate the capabilities of the proposed framework, a case study analyzing the Minnesota’s 296 
trunk highway network was undertaken. Minnesota Department of Transportation’s (MnDOT) 297 
trunk highway system is composed of approximately 14,300 roadway miles of pavement. The 298 
entire trunk highway system is surveyed annually to record pavement roughness and surface 299 
distresses since the late 1960s [38]. For this project, pavements within the Metro District, covering 300 
an area of 3,237 square miles were analyzed. 301 
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4.1. Pavement Condition and Feature Data 302 
The condition of pavements in the area of study was surveyed using a digital inspection vehicle 303 
driven on the outer lane of all trunk highways [38]. Three laser sensors mounted on the front 304 
bumper of the vehicle recorded roughness and faulting on both the wheel paths and center of the 305 
lane. IRI is estimated as the ratio of a standard vehicle’s accumulated suspension motion (inches) 306 
and the distance traveled by the vehicle during the measurement period (miles) [20]. This process 307 
follows the ASTM E 1926 specifications, where a quarter-car is driven along the longitudinal 308 
profile at a speed of 50 miles/hour and the suspension deflection is estimated using measured 309 
profile displacement and standard car structure values [39]. Smooth roads result in smaller 310 
accumulation of suspension deflection resulting low IRI and rough roads result in high IRI values 311 
as illustrated in Figure 5. Two lasers mounted on the back of the vehicle were used to capture 3D 312 
images of the pavement surface for rut measurements. A camera mounted on the back of the 313 
vehicle was used to capture pavement distresses such as cracking and patching. The distresses 314 
were recorded at every 1/8 inches as the van travelled at a driving speed, although the 315 
measurements were processed at every 0.1 mile. For this study, the pavement condition dataset 316 
included IRI data for the entire trunk highway network at every 0.1-mile. In addition to this, 317 
pavement features such as age, surface type, layer thicknesses, base type, traffic, and maintenance 318 
history (i.e., time and type of last maintenance activity), reference points and their coordinates for 319 
the corresponding 0.1-mile segments were compiled to produce a pavement features dataset. 320 

           321 
(a) (b) 

Figure 5: US-169 pavement surface showing locations with (a) low, and (b) high IRI values.  322 

In terms of pavement condition indices, this study analyzed pavement roughness (i.e., measured 323 
in terms of IRI) and Ride Quality Index (RQI). We decided to use IRI because it is a well-324 
recognized pavement performance indicator and transportation agencies around the world use IRI 325 
to measure road surface roughness [7,40]. RQI, in turn, is estimated to reflect the users’ perceived 326 
roughness while driving on a road. To develop a correlation between IRI and RQI, MnDOT asked 327 
32 citizens to rate 120 test sections with different levels of roughness. After driving on each of the 328 
0.25-mile test sections, the panelists rated the quality of their rides on a scale of 0 to 5 based on 329 
how they felt about the roughness of these roads. Based on these ratings, the following equations 330 
were developed to estimate RQI for asphalt and concrete pavements [41]: 331 

𝑅𝑅𝑅𝑅𝑆𝑆𝑜𝑜𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑓𝑓𝑓𝑓 = 5.697 − 0.264 × √𝑆𝑆𝑅𝑅𝑆𝑆 (7) 332 
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𝑅𝑅𝑅𝑅𝑆𝑆𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 6.634 − 0.353 × √𝑆𝑆𝑅𝑅𝑆𝑆 (8) 333 

Where, IRI is the International Roughness Index of the pavements in inches/mile. 334 

RQI is an unitless quantity estimated on a numeric scale of 0 to 5, where 5 represents the smoothest 335 
ride possible. Newly constructed roads have RQI values greater than 4, whereas pavements are 336 
typically rehabilitated for a terminal RQI value of 2.5. MnDOT road categories based RQI are 337 
given in Table 1.  338 

Table 1: RQI performance categories 339 

RQI Range Performance Measure Category 
4.1 − 5.0 Very Good 
3.1 − 4.0 Good 
2.1 − 3.0 Fair 
1.1 − 2.0 Poor 
0 − 1.0 Very Poor 

 340 

RQI was deemed a valuable indicator of condition, in addition to IRI, because it allows to 341 
categorize roughness into a few ordinal categories. Also, RQI is one of the indices currently used 342 
by MnDOT for decision-making purposes. 343 

4.2. SAR Imagery 344 
For this project, 91 SAR images captured by Sentinel-1 satellite were obtained from the Alaska 345 
Satellite Facility (ASF) [42]. The Sentinel-1 constellation is comprised of two polar orbiting 346 
satellites (1A and 1B) which images the earth using a C-band SAR sensor. To keep traffic 347 
interferences to a minimum, images from 1A satellite were analyzed in this project as it passes 348 
over the study area during midnight. The details of the collected data are summarized in Table 2. 349 

Table 2: Description of the acquired SAR data 350 

Item Description 
Sensor Sentinel-1A 
Band C 
Wavelength 5.6𝑐𝑐𝑐𝑐 
Spatial Resolution 10𝑐𝑐 × 10𝑐𝑐 
Revisit Frequency 12 days 
Path 165 
Frame 144 
Acquisition Mode Interferometric Wide (IW) swath 
Flight Direction Ascending 
Polarization VV + VH 
Level of Preprocessing L1 Ground Range Detected High Resolution 
Number of Images Collected 91 
Period Covered Jan 2017 – Dec 2019 
Time of acquisition 00:05 

 351 
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The acquired SAR imagery, in conjunction with the pavement features, and condition dataset were 352 
then processed using the framework proposed in Section 3. The Data Processing module of the 353 
framework resulted in a dataset consisting of 5,774 samples of road segments. For each segment, 354 
the dataset included surface type (asphalt/concrete), surface age in years, pavement layer thickness 355 
in inches, base thickness in inches, annual average daily traffic (AADT), 𝛾𝛾0, and IRI. The thickness 356 
of the pavements ranged from 2 to 16 inches with base layers ranging from 0 (i.e., no base layer) 357 
to 17 inches. The age of the pavements ranged from 0 (i.e., newly constructed) to 66 years. 358 
However, only a smaller number of sections were found to have higher levels of roughness, as 359 
MnDOT maintains the trunk highway network at a very high standard. This resulted in a right-360 
skewed distribution of the IRI values as shown in Figure 6(a). The extracted 𝛾𝛾0 values were also 361 
overserved to have a similar distribution with a slightly longer upper tail (Figure 6b).  362 

 363 
(a) (b) 

Figure 6: Distribution of (a) IRI, and (b) 𝛾𝛾0 values in the final dataset. 364 

5. RESULTS 365 

5.1. Data Processing 366 
This section describes the improvements in processed SAR data, specifically for the purpose of 367 
evaluating pavement condition, resulting from the proposed methodology.  368 

5.1.1. Selection of Appropriate Polarization  369 

The extracted 𝛾𝛾0values were observed to have a clear pattern when grouped together based on their 370 
RQI class (Figure 7). Roads in poor condition exhibited stronger backscatters as compared to the 371 
roads in better condition, which is consistent with the concepts illustrated in Figure 1 (i.e., rough 372 
surfaces scatter higher energy as compared to smooth surfaces). This trend is a strong indication 373 
of the potential of SAR data in evaluating pavement condition. Figure 7 shows that the differences 374 
in backscatters for pavements in different condition is more evident in VV polarization compared 375 
to the VH polarization. Therefore, using the VV image would be more suitable in modeling 376 
pavement condition. This observation is aligned with the recommendations found in the literature 377 
[21,24].   378 
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 379 
(a) (b) 

Figure 7: Backscatters in (a) VV, and (b) VH polarization for pavements in different condition 380 

5.1.2. Speckle Suppression Performance 381 

The performance of six speckle filters (i.e., Lee, Refined Lee, Lee Sigma, Gamma-map, Frost, and 382 
Intensity-Driven Adaptive Neighborhood (IDAN)) were tested to identify the most effective filter 383 
in suppressing speckles along the roads. While Lee filter is commonly used for filtering narrow 384 
road segments [21], comparative analysis of the filtered pavement pixels showed that IDAN and 385 
Refined Lee perform better than Lee in suppressing speckles across all the performance metrics 386 
(Figure 8). IDAN resulted in significantly less speckles (𝑆𝑆𝑆𝑆𝑆𝑆 = 0.77) and offered higher 387 
equivalent number of looks (𝐸𝐸𝑆𝑆𝐸𝐸 = 1.68) as compared to Refined Lee (𝑆𝑆𝑆𝑆𝑆𝑆 = 1.03,𝐸𝐸𝑆𝑆𝐸𝐸 =388 
0.93). Both IDAN (𝑆𝑆𝑁𝑁 = 1.08) and Refined Lee (𝑆𝑆𝑁𝑁 = 1.07) performed similarly in 389 
preserving original information along the roads. However, when it came to preserving the linear 390 
features and texture information, Refined Lee performed significantly better than IDAN and Lee 391 
(Figure 9). Since preserving this information is critical for a road network, especially for narrower 392 
roads, Refined Lee filter is recommended to effectively suppress speckles along the road pixels. 393 

 394 
Figure 8: Performance of filters in suppressing speckles in pavement pixels 395 
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     396 
(a) (b) 

     397 
(c) (d) 

Figure 9: (a) Original image as compared to (b) IDAN, (c) Lee, (d) Refined Lee filtered image 398 

5.1.3. Effect of Radiometric Terrain Correction 399 
Radiometric terrain correction was found to be effective in removing the slope impacts on the SAR 400 
backscatters. While the backscatters from the highway network considered in this case study were 401 
not affected due to its flat terrain, Figure 10a shows that the roads located near the Mississippi 402 
riverbank were severely affected by the over exposed pixels. A radiometric terrain correction 403 
removes the influence of terrain on measured radar brightness (Figure 10b). Removing such local 404 
biases is essential in establishing meaningful insights from pavement backscatters over a large 405 
network. Therefore, it is recommended to apply a radiometric terrain correction as part of the SAR 406 
image post-processing in pavement applications.  407 
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     408 
(a) (b) 

Figure 10: Processed SAR image (a) without, and (b) with radiometric terrain correction 409 

5.1.4. Seasonal Variability of SAR Response 410 
Weather conditions such as snowfall and stagnant water in pavements can significantly influence 411 
the backscatter signals in SAR data. To better understand the impacts of weather conditions, we 412 
investigated the seasonal variations in SAR backscatter. The objective of this analysis is to identify 413 
the appropriate window for SAR data acquisition to avoid the effects of weather on SAR 414 
backscatter. One SAR image for each season for the years 2017 to 2019 were used to extract 𝛾𝛾0 415 
values at road reference points after making necessary radiometric and geometric adjustments. 416 
Backscatters in winter were constantly lower across all the years as compared to the other seasons, 417 
possibly because of the snow reflecting most of the incident signal away. The same is true for 418 
spring 2018, when the Twin Cities area received about 26.1 inches of snowfall at the time the 419 
image was captured. This snowfall was significantly higher than the ones recorded in 2017 and 420 
2019, which were less than 8 inches over the month of April. These results confirm that snowfall 421 
significantly impacts the SAR backscatters.  422 

The backscatter pattern in Summer and Fall were found to be the most consistent over the years. 423 
Historical weather data for this area, however, indicates trace amount of snowfalls during the 424 
months of September and October [43]. Therefore, the SAR images captured during the summer 425 
(i.e., June-August) would be more appropriate to avoid the effects of snowfall. It is also 426 
recommended to carefully review the weather conditions for the dates of image acquisition at a 427 
specific location to exclude the images including snow from analysis. The remaining analyses of 428 
this project has been conducted based on the images acquired during a summer season only. 429 
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 430 
Figure 11: Seasonal variations in VV backscatter values from pavements over the study period 431 

5.1.5. Removing Traffic Noise 432 
Images from Sentinel-1A collected during the months of June, July, and August were used to create 433 
stacks for different years. These stacks were then used to generate minimum intensity projection 434 
images for corresponding years. A visual comparison of the optical satellite images, individual 435 
SAR images, and the corresponding minimum intensity projection image indicated that the 436 
proposed methodology is highly effective in removing traffic and other temporary noises from the 437 
pavement pixels. For example, for the section shown Figure 12(a), a SAR image captured on June 438 
4, 2018, had a noise on the road surface (Figure 12(b)). While it cannot be confirmed as a noise 439 
coming from traffic, it was not present in any of the other images on the 2018 stack. The minimum 440 
intensity projection image, shown in Figure 12(c), was able successfully remove this temporary 441 
noise while preserving the backscatters coming from the permanent object such as the signposts. 442 
A careful inspection of all the minimum intensity projection images revealed a similar 443 
performance. Therefore, the proposed solution is recommended to effectively minimize traffic and 444 
other temporary noises from the road surfaces.   445 

 446 
(a) (b) (c) 

Figure 12: (a) Satellite image, (b) an individual SAR image, and (c) the minimum intensity 447 
projection image generated from a stack. 448 

Backscatters from temporary objects 

Permanent 
objects 

Backscatters from 
permanent objects 
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5.2. Deep Learning Tool 449 

5.2.1. IRI Prediction 450 
The optimal architecture of the Deep Neural Network model was found to be 6-24-18-1 with ReLu 451 
as the activation function for both the hidden layers. The model was able to achieve an 𝑅𝑅𝑁𝑁𝑆𝑆𝐸𝐸 of 452 
19.41 inches/mile, an 𝑁𝑁𝑀𝑀𝐸𝐸 of 13.96 inches/mile with and an 𝑅𝑅2 of 0.68. As illustrated in Figure 453 
13, a similar performance was obtained for the test set, indicating that the model does not suffer 454 
from overfitting. The predictive performance of the model was further investigated by analyzing 455 
the residuals. The residuals were observed to be randomly distributed along the range of predicted 456 
values, as shown in Figure 14a, indicating that the model does not suffer from heteroscedasticity. 457 
The Q-Q plot (Figure 14b) also confirms that the residuals are normally distributed. The right tail 458 
deviating upwards, however, is indicative of an inferior performance of the model for high IRI 459 
values (i.e., residuals are high for higher IRI values). 460 

        461 
     (a) (b) 

Figure 13: Performance of the model during (a) training, and (b) testing. 462 

                 463 
     (a) (b) 

Figure 14: (a) Residual plot, and (b) normal Q-Q plot showing the distribution of residuals.  464 
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The value added by the deep learning approach can be assessed when the performance of Deep 465 
Neural model is compared traditional regression models. A simple linear regression model 466 
performance for the same training set is shown Figure 15(a), where IRI is predicted using the 𝛾𝛾0 467 
values extracted from the SAR imagery. The multiple linear regression model, as shown in Figure 468 
15(b), is trained with all the features in the dataset. While the multiple linear regression model 469 
results in a slightly higher correlation between the actual and predicted IRI values, the Deep Neural 470 
Network model captures significantly higher amount of variability in data and results in smaller 471 
errors in predictions. A similar outcome is observed when the performance of the Deep Neural 472 
Network model is compared with the exponential regression model presented in Meyer et al. [24], 473 
which results in very high errors values (>30 inches/mile) for IRI values lower than 100 474 
inches/mile. 475 

 476 
     (a) (b) 

Figure 15: Performance of (a) simple linear regression model based on 𝛾𝛾0, and (b) multiple linear 477 
regression based on all the features. 478 

5.2.2. Prediction Intervals 479 
The prediction intervals estimated from the Gradient Boosting Machine model were observed to 480 
capture 81% of the actual IRI values within their upper and lower limits. Figure 16 shows the 481 
estimated prediction intervals for 50 randomly sampled IRI predictions. This figure indicates that 482 
the prediction intervals can efficiently capture trends in actual IRI data. Higher values of the 483 
prediction intervals were associated with the most erroneous predictions. These examples are 484 
observed for the red dots located way outside of the interval limits in Figure 16. The uncertainties 485 
captured by these intervals largely stem from the coarser resolution of the SAR pixels. High 486 
resolution SAR images with smaller pixel sizes will help filtering out the noises originating from 487 
the objects along the side of the roads and can be expected to result in more accurate predictions 488 
and smaller prediction intervals. 489 
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 490 
Figure 16: Prediction intervals associated with point estimations in comparison to actual IRI 491 

values 492 

5.2.3. Classification Accuracy 493 
RQI classes estimated based on the predicted IRI resulted in an overall accuracy of 83%. As 494 
illustrated in Figure 17, the model performs significantly better for the pavements in Good and 495 
Fair condition. When compared to the classification accuracy of 87% as reported for the L-band 496 
SAR data based binary logit model presented in Suanpaga and Yoshikazu [20], the Deep Neural 497 
Network model underperforms for the extreme categories. This performance was observed to be 498 
highly influenced by the sample size of the corresponding categories. Classification accuracy 499 
sharply dropped to 31% for the Poor RQI class, as the representation of this class is only 1.4% in 500 
the dataset. The extreme classes constituted less than 1% of dataset and, as a result, the model 501 
rarely classifies a segment as very poor or very good. While the model performs satisfactorily for 502 
the common range of IRI values, a more balanced dataset will improve the model performance 503 
over a greater range of RQI classes. 504 

 505 
Figure 17: Classification accuracy of the model for different RQI classes 506 
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5.3. Model Deployment 507 
To facilitate an easy deployment of the developed models by transportation agencies worldwide, 508 
a program with a graphical user interface was developed using Python’s Tkinter library. Given a 509 
properly processed SAR image and pavement features, the SAR based Condition (SAR-C) 510 
evaluation tool (Figure 18) estimates IRI, associated prediction intervals, and RQI class for the 511 
road segments of interest. The user manual of the program describes in detail the steps of 512 
processing SAR images with an example following the proposed framework. The user manual can 513 
be accessed here: https://github.com/infra-health/sar-c  514 

 515 
Figure 18: SAR-C user interface 516 

6. CONCLUSIONS AND RECOMMENDATIONS 517 

This paper introduces a novel framework to estimate pavement IRI using deep learning and 518 
spaceborne SAR imagery. A case study analyzing the trunk highway network in Minnesota was 519 
undertaken to identify the improvements in SAR image processing for pavement applications as 520 
well as to demonstrate the predictive performance of the developed deep learning tool. Specific 521 
conclusions and recommendations derived from this project are summarized below. 522 

6.1. Conclusions 523 

• Sentinel-1 SAR images were found to have a strong potential in quantifying pavement 524 
roughness. While it is not as highly accurate as the IRI measured by digital inspection 525 
vehicles, it can be used to evaluate the condition of local, ancillary, or low priority roads 526 
which are not typically monitored, and where a very accuracy is not necessarily needed. 527 

• The proposed framework is highly capable in improving SAR image processing for 528 
pavement applications as it effectively addresses the challenges of removing traffic noises 529 
from pavements, suppressing speckles without comprising the road features, and 530 
eliminating the effects of terrain on SAR backscatters. 531 

• The deep learning tool can predict IRI with an 𝑁𝑁𝑀𝑀𝐸𝐸 ranging from 13.9 to 14.6 inches/mile. 532 
The associated prediction intervals were found to capture 81% of the actual IRI values 533 

https://github.com/infra-health/sar-c
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within their upper and lower limits. The tool is also effective at classifying RQI classes, 534 
with an overall classification accuracy of 83%. 535 

6.2. Recommendations  536 

• The VV polarization image was found to be more sensitive to pavement roughness as 537 
compared to the VH polarization. 538 

• Refined Lee filter is recommended to remove speckles, as it preserves the edges and texture 539 
of linear road features. 540 

• The analysis of SAR images should include a radiometric terrain correction to remove the 541 
effect of slopes on SAR backscatters. 542 

• Identifying an appropriate time window for collecting SAR images over a specific region 543 
is critical to avoid the effects of weather on SAR backscatters.  544 

• The generation of a minimum intensity image from a stack of SAR images is an effective 545 
solution to eliminate traffic noises from the pavement pixels.  546 

6.3. Limitations and Future Research 547 
The proposed framework is currently limited by the resolution of Sentinel-1 images as in many 548 
cases the width of the roads can be less than the size of the pixels. This raises an interesting future 549 
avenue for research using high resolution X-band SAR images captured by the Cosmo-SkyMed 550 
satellite.  551 

The limitations of the deep learning tool in predicting higher IRI values can also be addressed by 552 
including examples in the dataset from a wider range of road classes. It will be particularly 553 
important to include examples of pavement in Very Good and Very Poor condition to have a more 554 
balanced dataset.  555 

Finally, calibrating and testing the model for roads with different physical attributes (e.g., wider 556 
highways, narrower ancillary roads) and geographic locations using transfer learning will enhance 557 
the scale of implementation of the SAR-C software developed in this project. 558 
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