

Macs: A Practical Approach to Mobile Content Sharing over Ad

Hoc Networks

by

Thomas Georges Cyrille Kooh

A thesis submitted to the

 Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

July 2010

This thesis entitled:
Macs: A Practical Approach to Mobile Content Sharing over Ad Hoc Networks

written by Thomas Georges Cyrille Kooh
has been approved for the Department of Computer Science

Shivakant Mishra, Ph.D., Chair

Kenneth Anderson, Ph.D.

Date

The final copy of this thesis has been examined by the signatories, and we
Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.

 iii

Kooh, Thomas Georges Cyrille (M.S., Department of Computer Science)

Macs: A Practical Approach to Mobile Content Sharing over Ad Hoc Networks

Thesis directed by Professor Shivakant Mishra

Mobile phones are increasingly equipped with features that allow them to self-generate

digital content, and they possess larger storage capacity. With the increased trend of information

sharing, promoted by web2.0 applications and the success of peer-to-peer in the wired world, the

ability for users to share content on their mobile devices is engaging. Most mobile content

sharing solutions work over infrastructure-based networks, such as the internet or the mobile

phone network. However, network connectivity is not always available or, at least, affordable.

On the other hand, the proliferation of feature-rich mobile devices implies that a mass of digital

content can be found nearby. In this context, mobile content sharing applications tailored to ad

hoc networks may come in handy for impromptu and ubiquitous sharing. This work studies the

feasibility of such solutions through a practical approach, consisting of developing a prototype

application. After extensive performance evaluation, it is concluded that ad-hoc-based content

sharing is efficiently possible on mobile devices.

 iv

Acknowledgments

I wish to acknowledge and thank those without whose help this work could not have been

accomplished. Special gratitude goes to my advisor, Professor Shivakant Mishra for his support

throughout this work; his guidance and expertise have been of invaluable usefulness; I am also

very grateful for him providing me with the mobile devices used for the realization of this work.

I cannot refrain from telling my deep appreciation to Professor Qin Lv for providing crucial

advice and support since the genesis of this research; she has always been available when

needed, even if it took her vacation time. A special thank to Professor Kenneth Anderson for his

acceptance to review this work in its last hours. I would also like to tell my sincere gratitude to

the faculty and staff of the Department of Computer Science for helping make my graduate

program an enjoyable and exciting experience. Words are inadequate to express my thanks to my

family – in particular my parents, the Moulema’s family, my friends, and Betty Thacker, for their

unwavering support and encouragements.

Last but not the least, I acknowledge the unwavering and unshakeable support of The

Almighty God, who gave me the strength, energy, and skills necessary to complete this thesis.

 v

Contents

Chapter 1 Introduction ... 1
1.1 Research Motivation ... 2
1.2 Objectives and Scope .. 4
1.3 Outline Structure ... 6

Chapter 2 Review of Related Literature .. 7
2.1 Background ... 7

2.1.1 Wireless Topologies.. 7
2.1.2 P2P Overlay Architectures .. 8

2.1.2.1 Unstructured P2P overlays .. 9
2.1.2.2 Structured P2P overlays .. 11

2.2 Related work ... 12
2.2.1 P2P overlay routing... 12
2.2.2 Data dissemination .. 13
2.2.3 Power conservation ... 15

2.3 Contribution .. 15
Chapter 3 Design and Implementation of the Prototype ... 17

3.1 Description of Features ... 17
3.2 System Design .. 19

3.2.1 Overview ... 19
3.2.2 Network Address Assignment .. 20
3.2.3 Content organization ... 21
3.2.4 Content Discovery Protocol .. 22

3.2.4.1 Descriptive Discovery ... 22
3.2.4.2 Identity-based Discovery .. 27
3.2.4.3 Opportunistic Discovery ... 30

3.2.5 Content Distribution Protocol ... 31
3.2.5.1 Provider selection.. 32
3.2.5.2 File integrity and Download Resumption ... 34
3.2.5.3 Simultaneous upload/download .. 35

3.2.6 Energy Management ... 36
3.3 System Implementation .. 38

3.3.1 Database .. 38
3.3.2 Messenger ... 40
3.3.3 Message Handler ... 41
3.3.4 Scheduler... 42
3.3.5 Energy Monitor ... 42
3.3.6 User Interface .. 43

Chapter 4 Performance Evaluation .. 44
4.1 Measurement Methodology .. 44

4.1.1 Query matching ... 45
4.1.2 Energy Consumption .. 46
4.1.3 File Distribution .. 48

4.2 Results and Discussion ... 50

 vi

4.2.1 Query matching ... 50
4.2.2 Energy Consumption .. 53
4.2.3 File Distribution .. 55

Chapter 5 Conclusion .. 58
5.1 Summary ... 58
5.2 Future work ... 59

References ... 61
Appendix A Message Formats .. 65
Appendix B ns-2 Simulation Script .. 66

 vii

List of Tables

Table 3-1: Messages used for descriptive content discovery.. 22
Table 3-2: Messages used for identity-based content discovery .. 28
Table 3-3: Control messages used for file transfer ... 32
Table 3-4: SharedContent relation .. 39
Table 3-5: Chunk relation ... 39
Table 3-6: LoggedSearch relation ... 40
Table 4-1: Peer configurations for the measurement of energy consumption 48
Table 4-2: Simulation environment used for the performance evaluation of file distribution 49

 viii

List of Figures

Figure 2-1 Main Wireless topologies .. 8
Figure 2-2: Unstructured P2P overlay architectures ... 11
Figure 3-1: Use case diagram of Macs ... 18
Figure 3-2: Logical organization of a file in Macs. .. 21
Figure 3-3: Illustration of simultaneous upload/download ... 35
Figure 3-4: Illustration of energy management in Macs ... 37
Figure 3-5: Software components of Macs ... 38
Figure 3-6: Sample screenshots of Macs .. 43
Figure 4-1: Query matching runtime for a non-matching search expression 50
Figure 4-2: Query matching runtime vs. number of matches ... 51
Figure 4-3: Query matching runtime vs. search expression length .. 52
Figure 4-4: Query matching runtime: normalized database vs. our design 53
Figure 4-5: Energy consumption for different peer configurations .. 53
Figure 4-6: Effects of energy management on communication efficiency 54
Figure 4-7: Delay for distributing an 8MB file to varying number of peers 55
Figure 4-8: Distribution delay of varying-size files in a network of 15 moving peers 56

 ix

List of Abbreviations

1NF First Normal Form

2.5G Second and a half Generation

3G Third Generation

AP Access Point

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

HTTP HyperText Tranfer Protocol

IP Internet Protocol

IPv4 Internet Protocol version 4

MANET Mobile Ad hoc Network

MMS Multimedia Messaging Service

P2P Peer to Peer

PC Personal Computer

PDA Personal Digital Assistant

RFC Request For Comments

SIP Session Initiation Protocol

SQL Structured Query Language

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

 1

Chapter 1 Introduction

As mobile phones are getting more capable and cheaper, many applications once limited

to desktops are now “mobile”: digital media players, games, email clients, web browsers, social

networking applications, and much more; the range of applications and services available on

mobile phones keeps on increasing. This expansion is confirmed by market statistics as Chetan

Sharma (2010) forecast a growth of overall mobile applications downloads from 7 billion in

2009 to about 50 billion by 2012. It is also expected that mobile application revenues will exceed

$25 billion by 2014 (Juniper Research, 2009). Since applications are all about helping end users

to perform specific tasks, these reports from the mobile applications market suggest that people

are increasingly interested in doing things that can be done with a PC while on the move.

At the same time, the rapid growth of Peer-to-Peer (P2P) as a computing model has

fueled the development of many internet-based applications, such as file sharing, instant

messaging, and Voice-over-IP. In a study by Cisco (2008) P2P traffic is expected to remain the

lion’s share of internet traffic over 2011, quadrupling from 1,330 petabytes per month in 2006 to

5,270 petabytes per month in 2011. One possible explanation of the popularity of P2P systems is

that they do not heavily rely on the existence of a dedicated server as it is the case with

client/server systems. This characteristic allows P2P systems to be easier to install and maintain,

and also to be more resilient to the problem of single-point of failure. In a P2P network,

participants (or peers) share resources directly with each other without (or with very limited)

central coordination; each peer is able to act as both a provider and a consumer of resources. A

particular case is P2P file sharing, an application of P2P in which the resources shared by peers

are files. P2P file sharing is by far the most famous application of P2P, generating over 42% of

 2

internet traffic in Northern Africa and 69% of internet traffic in Eastern Europe, as of 2009

(ipoque, 2009).

Although most P2P file sharing applications are PC-based – i.e. designed to run on

desktops and laptops, the trend of increased mobility and the proliferation of high-capability

mobile phones – sometimes referred to as smartphones or simply mobile phones in this thesis –

warrant the development of P2P file sharing systems for mobile devices.

1.1 Research Motivation

Mobile phones are increasingly powerful nowadays and they enable a variety of usage

scenarios. As they become feature-rich and possess larger storage capacity, the ability to share

user-generated content with others becomes socially attractive (Liu et al., 2009). Along with the

success of P2P file sharing in the fixed1 world, the proliferation of web2.0 applications has

contributed to shaping a generation of internet users for which content sharing is not really a

revolution. Allowing these users to share the content on their mobile phones while moving is

therefore a sound endeavor. However, content sharing on mobile devices is still limited

compared to its potential. Most sharing on mobile phones, today, is done through the use of

MMS messages, which usually have a size limitation of 300Kb per message. Bluetooth is

another widely used method of exchanging digital content among mobile devices; but, support

for such exchange on existing mobile phones usually requires a lot of manual configuration from

users. Following this observation, some – although very few – mobile P2P file sharing

applications have been developed: Symella (Kelényi et al., 2007), for instance, is an

implementation of a Gnutella peer for Symbian S60 smartphones; MobileMule (Emule project) is

1 “Fixed” here stands for desktops and laptops. Although laptops are portable, we do not consider them as strictly
mobile, because it is not very convenient to use one’s laptop while on the move. In this perspective, smartphones,
for instance, are truly mobile devices - they can be used while walking, shopping, driving, etc.

 3

a mobile application that allows a Java-enabled phone to remotely control an instance of eMule2;

mbit (mbit, 2007) is a mobile P2P file sharing software for Symbian S60 and Java-enabled

mobile phones, and it uses SIP as its signaling protocol.

All these mobile P2P file sharing applications, like their counterparts on PCs, make at

least two assumptions: (1) the underlay network is infrastructure-based and somewhat stable, and

(2) the device is connected to the internet. A mobile phone running Symella for instance will use

bootstrap nodes to join the Gnutella network. The implicit design assumption here is that a

bootstrap node will easily be reachable, which implies some stability in the underlay network.

mbit in return, requires that the device be connected to the internet; besides, mbit works over the

mobile phone operator’s cellular network. Mobile P2P content sharing applications that work

over infrastructure-based networks, and specifically the Internet, may have the advantage of

scalability in that they allow sharing with many users. However, they present some limitations.

First of all, internet-based mobile P2P content sharing applications do not take into

account the potential of short-range communication. Bluetooth is available in most mobile

phones nowadays, so is Wi-Fi in almost every smartphone; these wireless technologies bring the

potential of exchanging files with nearby devices – although this remains a very manual

operation in general. An internet-based mobile P2P file sharing solution makes the assumption

that content is located on the Internet. However, mobile phones are increasingly equipped with

features that not only make them “content consumers”, but also “content producers”. As an

example, every smartphone nowadays is shipped with at least one built-in digital camera, and

many phone owners use their mobile devices to take pictures; most mobile phones also have

audio and video recording capabilities, which increase the potential of producing self-generated

content. Since mobile phones are somehow ubiquitous nowadays, one can conclude that a great

2 A P2P file sharing application for Microsoft Windows PCs.

 4

deal of digital content is always in our vicinity. In this context, it is not excluded that the file one

is looking for is not only on the Internet, but also right next to them.

Another limitation of internet-based mobile content sharing is that internet connectivity is

not always a reality in mobile environments; even when it is, usage may imply a cost. Despite

the wide deployment of 2.5G and 3G cellular networks, data transfer over these networks is

generally not free; therefore, the cost of performing P2P file sharing over the mobile phone

network may be a deterrent factor for many users, especially in developing countries. To avoid

this cost, an alternative solution could be to use the Wi-Fi interface of the mobile phone to

connect to the internet. The problem is that public Wi-Fi coverage is far from being a universal

service. In a 6-month study conducted in a US urban area from September 2006 to February

2007, Rahmati and Zhong (2007) found that only 49% of the participants’ everyday life was

spent under accessible Wi-Fi network3. Considering that people generally carry their phone with

them, this result implies that one’s mobile phone is most of the time unable to connect to the

internet via Wi-Fi.

1.2 Objectives and Scope

To address the aforementioned limitations, the main focus of the thesis is to study the

feasibility of P2P file sharing applications for mobile devices in ad hoc environments.

Specifically, peers are smartphones that collaborate in an infrastructure-less network to exchange

files. A typical usage of such mobile P2P content sharing applications is the impromptu sharing

of files with people in the vicinity in the absence of internet connection. In this case, phones (or

peers) that are within easy reach of each other form a mobile ad hoc network (MANET), and run

an overlay protocol to discover and download content. This thesis considers that peers use IEEE

3 Infrastructure-based Wi-Fi network providing access to the internet.

 5

802.11 (Wi-Fi) as the wireless medium to communicate in the MANET. The preference for

802.11 is motivated by the fact it specifies an ad hoc mode of operation and the fact that

smartphones are generally equipped with this technology; besides, Wi-Fi provides longer

communication range compared to Bluetooth. In this work, the underlay physical network is

assumed to be a single-hop ad hoc network where a mobile phone only interacts with other

phones in its wireless coverage, and no peer forwards messages destined to others.

To study the feasibility of the concept, a prototype application is developed, and through

a hybrid approach consisting of both simulation and empirical analysis, the effectiveness of the

solution is evaluated in terms of: file search speed, file distribution speed, and energy

consumption.

The overall aim of this research is to stimulate the development of full-fledged mobile

content sharing applications tailored to ad hoc environments. Specifically, within the context of

higher education, the objectives of this thesis are to:

• Discuss the relevance of mobile P2P content sharing applications for ad hoc networks.

• Evaluate critically previous works in the area of P2P sharing over MANETs.

• Identify some key features that mobile P2P file sharing applications for MANETs should

have, and develop a proof of concept.

• Explore the elements that affect the performance of such applications.

The introductory chapter addressed the first objective by providing some background

information, and then by showing the limitations of internet-based content sharing solutions for

mobile devices. The remainder of this document addresses the other objectives.

 6

1.3 Outline Structure

After this introductory chapter, Chapter 2 presents the background knowledge useful to

understanding the rest of the thesis. It then explores related works and shows how our work

differs from those. The following two chapters constitute the core of the thesis. Chapter 3

describes the design and implementation of the prototype application. The file discovery and

distribution protocols are presented in details, along with a thorough discussion of our design

choices. Chapter 4 is a continuation of the previous one and focuses on assessing the efficiency

of P2P file sharing applications for mobile devices in ad hoc environments by using the

prototype as a working tool. Chapter 5 concludes the thesis and introduces potential areas of

future work.

 7

Chapter 2 Review of Related Literature

Understanding the rest of this thesis may require some background knowledge.

Therefore, relevant concepts are first introduced. After presenting the general concepts, this

chapter reviews previous works and clarifies the contribution of our research.

2.1 Background

This section defines some terms and introduces some concepts, namely wireless

topologies, and P2P overlay architectures. These concepts are useful to understanding the rest of

the document. However, the reader who is familiar with them can skip to section 2.2.

2.1.1 Wireless Topologies

Since mobile communication essentially happens on wireless links, devoting some

attention to wireless topologies seems worthwhile. Nodes in a wireless network can typically be

interconnected in two ways as shown in Figure 2.1: (a) through a central infrastructure - a special

node usually referred to as base station or access point (AP), or (b) through point-to-point links

directly connecting one node to another. Although other topologies exist, they are either a

repetition of (a) or (b), or a combination of both.

 8

 (a) Infrastructure-based (b) Ad hoc

Figure 2-1 Main Wireless topologies

A network is infrastructure-based when it includes at least one central infrastructure,

whereas an ad hoc network is one without any infrastructure – nodes are connected directly to

each other. A mobile ad hoc network or MANET is an ad hoc network in which nodes are

mobile devices – e.g. Laptops, PDAs, smartphones, etc – (Chlamtac, 2003). However, this thesis

considers homogenous MANETs essentially composed of mobile phones.

It is important to note that mobile communication happens in general over infrastructure-

based networks. As mentioned by Fitzek et al. (2009), this is due in part to the fact that wireless

communication is based on radio propagation, which limits the range of device-to-device

communication. In this situation, the base station/AP plays the role of a relay point to allow

communication between devices afar from each other.

2.1.2 P2P Overlay Architectures

A P2P system can be defined as a distributed system in which participants (or peers)

share a part of their resources (processing power, storage capacity, etc.) to provide a service –

file sharing in our context; this should be done without (or with very limited) central

coordination (Schollmeier, 2002). P2P systems differ from client/server systems in that in the

latter, each participant is either a service requester (and is called a client) or a service provider

 9

(and is called a server). In P2P systems however, a peer can play both roles; hence the name of

“servent” given to a peer to express its ability to be both a server and a client (ibid.). It is very

important to note that a P2P system runs on the application layer. For the system to provide the

service, peers communicate with each other forming a virtual network, otherwise called overlay.

In other words, the P2P system is an overlay network that runs on top of an actual physical

network (or underlay) which follows one of the topologies introduced earlier, namely

infrastructure-based or ad hoc.

Two important components of any P2P file sharing system are the overlay architecture

(the topology of the virtual network) and the mechanism by which the system locates a peer that

can serve a specific file. According to these two properties, P2P systems can be classified as

unstructured and structured. Furthermore, unstructured P2P can be divided into centralized,

decentralized, and hybrid.

2.1.2.1 Unstructured P2P overlays

In an unstructured P2P system, the overlay is formed arbitrarily (Wang et al., 2003), and

the subcategories: centralized, decentralized, and hybrid, denote the process by which a resource

is located in the system. For the sake of simplicity and to make the next sections more relevant,

we will assume here that resources of interest in the P2P overlay are files.

2.1.2.1.1 Centralized architecture
This architecture uses a special peer, sometimes called super-peer, to index all the files

available in the P2P overlay (Figure 2.2). Ordinary peers typically upload meta-information of

files they own to the super-peer. A peer x requesting a specific file will always query the super-

peer. If a match is found, the super-peer sends to peer x the address of a peer, say y, that actually

owns the requested file. Further communications happen directly between peer x (the requester)

 10

and peer y (the actual file provider). In this architecture, the super-peer is only used as a central

directory but it does not own the files.

The vulnerability of the centralized architecture is that it introduces a single point of

failure, namely the super-peer; besides, it assumes a certain level of stability in the underlay

network1, which is not characteristic of MANETs. Napster, one of the first P2P music sharing

system, followed this architecture (Howe, 2002).

2.1.2.1.2 Decentralized architecture
This architecture, also called the pure P2P architecture (op. cit.), differs from the

previous one in that the P2P overlay here is exclusively composed of ordinary peers; there is no

super-peer playing any special role. Instead, all peers are equipotent. A peer x requesting a given

file will broadcast a query to its neighbors. When a peer y receives the query, it responds to the

requester if peer y owns the file; otherwise, it forwards the query to its neighbors. This process

will continue until either a peer responds to the requester or until a set timeout. The pure P2P

architecture has the advantage of no single point of failure. It also appears to be more

independent on the underlay network because there is no need to contact a central entity (super

peer). However, it presents a scalability issue due to the flooding nature of the search. The

earliest version of Gnutella (Gnutella v0.4) follows this architecture.

2.1.2.1.3 Hybrid architecture
A combination of the centralized and the decentralized architectures, this architecture

addresses the scalability issue of the pure P2P architecture while limiting the single-point-of-

failure risk of the centralized architecture. In the hybrid architecture, the P2P overlay is made of

many super-peers and many ordinary peers. Each super-peer is responsible for indexing the

1 A requester peer must always send its query to the super-peer; this assumes that the underlay is stable enough to
guarantee that the requester peer will reach the super-peer.

 11

meta-information of files owned by a subset of ordinary peers, and is also connected to other

super-peers. When an ordinary peer, say x, searches for a file, it will always query its assigned

super-peer, say xx, as in the centralized architecture. The super-peer xx will respond by providing

the address of a peer that owns the file if a match is found; otherwise, the super-peer xx will

forward the query to other super-peers. The process continues until a match is found or a timeout

value is reached. If a match is found, further communications happen directly between the

requester peer and the provider peer. This architecture has the advantage of being highly

scalable, and somewhat resilient to super-peer failure (compared to the centralized architecture).

However, it still relies on a relatively stable underlay network because an ordinary peer must

always be able to connect to its assigned super-peer in order to start a file discovery. FastTrack

(Liang et al., 2006) and the modern Gnutella (Stutzbach et al., 2007) follow this architecture.

To summarize unstructured P2P overlays, Figure 2-2 is provided as a visual

representation of the various architectures.

Figure 2-2: Unstructured P2P overlay architectures

2.1.2.2 Structured P2P overlays

A structured P2P system is one in which the formation of the overlay network is strictly

controlled so as to make subsequent searches easier to satisfy. A P2P system which follows this

 12

architecture is typically viewed as a distributed hash table (DHT). The idea is to introduce a hash

function which always returns values within a known domain, and to distribute the domain of the

hash function among all peers in the P2P overlay. Thus, every peer in the overlay knows about at

least one copy of each file that hashes within its range, if any. Files are inserted in the overlay by

specifying a pair (key, file); where key is the application of the hash function on the file name.

Having key, the P2P overlay will know on which peer to store the entry (key, file), since each

peer is responsible for a unique range of keys. When a peer x searches for a file, it computes the

requested file key, say key_R, by hashing the name of the file using the known function. Peer x

then queries the appropriate peer, say y, whose key range comprises key_R. If an entry (key_R,

file) is found in peer y, it means that peer y owns the requested file. In that case, peer y will

respond accordingly to the requester; otherwise the file is considered to be missing.

There are many DHT approaches (Ratnasamy et al., 2001; Stoica et al., 2001; Rowstron

et al., 2001; Hildrum et al., 2002); however, one of their limits is that a peer has to know exactly

the name (or the key) of a file in order to find it in the overlay network.

2.2 Related work

2.2.1 P2P overlay routing

Mobile P2P content sharing in ad hoc environments is a relatively new area of study and

still demands a lot of attention. Nevertheless, most existing research activities have concentrated

on the issue of P2P overlay routing for MANETs; in other words given a MANET, how to

design the overlay protocol so as to enable efficient file lookup and yet reduce message overhead

and redundancy in communication. In a theoretical study, Ding et al. (2004) argues for cross-

layer approaches. Because the network is very dynamic in MANETs, and since P2P protocols

 13

run at the application layer, cross-layer approaches integrate the network layer with the

application layer in order to optimize the routing of messages among peers in the overlay. This

solution has also been reclaimed by several other studies. Pucha et al. (2004) develops Ekta, a

system that integrates a structured DHT-based P2P protocol with a MANET multi-hop routing

protocol at the network layer; this is done by mapping the IP addresses of the mobile nodes to

their node IDs in the DHT namespace. Tang et al. (2005) follows the same approach by

integrating FastTrack (op. cit.) with the AODV routing protocol. Conti et al. (2005), on the other

hand, presents a cross-layer optimization of Gnutella for MANETs. While these studies are

promising, they focus on routing and make the assumption that the underlay network is multi-

hop – i.e. every node can route messages. However for this to be true, each node must be

configured with a routable IP address, which is far from being guaranteed in real world mobile

scenarios. Enabling transparent – with no user configuration – content sharing among mobile

phones in ad hoc environments will most likely require the use of link-local IP addresses, which

are not routable. Having said this, there is not even a single implementation of a MANET routing

protocol on mobile platforms to the best of our knowledge. This also explains why the

aforementioned studies lack prototype implementations for mobile platforms, since they tie the

P2P application-layer protocol to the network protocol. Instead of following a cross-layer

approach, this thesis focuses on the application layer and do not deal with the issue of routing at

all.

2.2.2 Data dissemination

Papadopouli et al. (2001) presents 7DS, a mobile P2P data sharing system for MANETs.

The system defines two modes of operation, namely prefetch – where information needs of users

are anticipated, and on-demand – where information is searched for when a peer fails to access

 14

data via the internet. One limitation of 7DS is that shared data objects must be identified by

URLs in order to be discovered by the system. Consequently, data objects are transferred over

HTTP, which requires that each mobile device run a web server. However, the impact of running

such a server on power consumption is not studied. On the same note, while the authors study the

effects of various elements – e.g. wireless coverage – on data dissemination, they omit to

evaluate the effectiveness of their data dissemination schemes with increasing object size.

Wolfson et al. (2007) studies data dissemination on mobile devices with energy, bandwidth, and

storage constraints. The authors develop a dissemination algorithm that provides an integral

treatment of the three constraints for optimal performance. One of the operations defined in the

algorithm, namely query-response happens when two peers encounter each other. It consists of

having the peers mutually exchange their queries – list of needed files – and eventually receive

reports matching the queries. However, the work does not specify the mechanism by which this

encounter is done. We assume that it involves the periodic transmission of heartbeat messages,

which will bring some communication overhead. Si et al. (2009) considers cases in which a file

search in the mobile P2P overlay results in multiple potential providers. The study presents a

distributed algorithm for selecting one of the providers from which to download the file in such a

way that bandwidth is maximized while power consumption is minimized. The proposed

algorithm involves the multicast of control messages – ITREQ, ISIMUL, and SIMUL – between

the potential file senders and the file requester prior to the file transfer itself. We argue that this

introduces some computational load and communication overhead unnecessary in highly

dynamic environments such as the one of interest in this thesis.

 15

2.2.3 Power conservation

Energy management should be a very important aspect of mobile P2P file sharing

systems for MANETs because the peers are not only battery-driven, but also wireless

communication is power-consuming – especially in the case of 802.11. Though the P2P protocol

runs at the application layer, various protocols will result in different power consumption. For

instance, Kelényi et al. (2008) studies the energy consumption of a mobile P2P application that

implements a DHT-based protocol. The study finds that phones running the application would

only be usable for a couple of hours if they functioned as full peers in the DHT. The authors

show that the short operational time is due to the large amount of messages that are exchanged

among peers to maintain the DHT. For this reason, we argue for a simplistic overlay protocol

that minimizes the number of messages. In general however, energy management strategies are

implemented at the link layer and consist of periodically putting the wireless interface to sleep

(Zheng et al., 2003; Kravets et al., 2005).

2.3 Contribution

Instead of only carrying out a theoretical or a simulation-based analysis, our work

conducts a feasibility study of ad-hoc-based mobile P2P content sharing by performing – for the

most part – empirical analysis based on an actual prototype implementation. The developed

prototype implements several file discovery schemes, the most important of which is keyword-

based. In the system, users can tag files they share to simplify their discovery; this allows the

sharing and discovery of any type of files contrary to a system such as 7DS, which only enables

searches for textual files. Besides, the prototype implements advanced keyword-based file

search options that bring capabilities that none of the above works support. Specifically, a user

can search for:

 16

• Files that match any word in a search expression

• Files that match all words in a search expression

• Files that match exactly a search expression

The prototype also implements a file distribution protocol that is resilient to node failure and

connection disruption. The last important aspect of the prototype is the definition of an energy

management strategy to maximize the operational time of host mobile phones.

Via extensive measurement, we evaluate the effectiveness of our solution, and show that mobile

P2P content sharing for ad hoc networks is definitely feasible with current smartphones.

 17

Chapter 3 Design and Implementation of the Prototype

This chapter gives a description of Macs, the mobile P2P content sharing prototype

application used throughout this study. Expected features are first identified as a basis for the

design. Next, a detailed presentation of the system design is given. The chapter ends with precise

information about how Macs is implemented.

3.1 Description of Features

The overall function of Macs is to allow the exchange of digital content among mobile

phones in an ad hoc environment with minimal user interaction. In particular, devices which are

in the same vicinity should connect together transparently to form an ad hoc network; that is, no

manual user intervention or special configuration server is needed for the devices to connect

together. However, actions such as searching for or downloading a specific content may require

some intervention from the user.

The following are the key features Macs should have; in other words things that the user

should be able to do through the application:

• Share a file. The user can select any file on their mobile phone and make it public to

other devices in the vicinity.

• Tag a shared file. The user can choose to tag a shared file to make related searches in the

network easy to satisfy. A tag is a word or expression that describes the shared content.

• Stop sharing a file. The user can choose to make private a file that was previously shared.

• List shared files. The user can view the list of shared files on their phone.

 18

• Search for a file. The user can search for a file in the network either through the use of

keywords – terms that describe the needed file, or by specifying a predefined search

criterion – e.g. the most recent shared file, or the most downloaded file. The search may

provide no result when no matching file is found in the network.

• Save a search. When a search is not satisfactory, the user can choose to save it for later.

In that case, Macs will periodically search for that file and notify the user when it is

found.

• Cancel a saved search. The user can delete a previously saved search.

• Download a file. The user can download a discovered file from the network. The

download may not complete in a single attempt; therefore the application should allow

partial downloads to resume automatically.

A graphical representation of Macs’ features is given in the use case diagram of Figure 3-1.

Figure 3-1: Use case diagram of Macs

From the above description, many scenarios in which Macs may come in handy are

imaginable. Here is a simple example: Lisa, a recent graduate, is riding the bus on her way to

work. For some reason, she suddenly feels bored and decides to use our application to search for

 19

the latest pictures taken by other people on the bus; at least that way she can have some fun

before the bus reaches her destination. So she brings up the application and searches for files

matching the expression ‘mountain pictures’. Fortunately, one of the bus riders, who just

returned from climbing Mount Kilimanjaro last weekend, happens to have shared on his

smartphone some nature pictures taken from the top of the mountain that he tagged ‘beautiful

mountain’. So, Lisa is pleased to discover that her search results in some hits. Based on the meta-

information of matched files (size, additional tags, date, etc.), she decides to download a couple

on her own mobile phone and enjoys looking at them.

Notice that in the previous example, Lisa is not aware of the devices from where the

content is downloaded. Her access to the network is totally transparent and does not require any

prior configuration. The only thing she has to do is take her phone and enter her search

expression. Similarly, no intervention is requested from the owner of the phone which provides

the content at the time Lisa is downloading it. The only thing he had to do was to take the

pictures, tag them, and share them.

3.2 System Design

3.2.1 Overview

As a P2P system, Macs is distributed, which means that the service is provided through

the cooperation of multiple peers. In the following, the term peer refers to a mobile phone

running an instance of Macs. Specifically, we model Macs as an unstructured, decentralized

mobile P2P system (see section 2.1.2.1). In other words, there is no such concept as central peers

or ultra-peers; instead, all peers are equipotent and play the same role. Such a pure P2P model is

accurate because Macs captures the interaction among mobile phones in an ad hoc environment;

 20

thus, the transience of the underlay network will render any attempt to connect to a central peer

needless if not impossible. For the same reason, Macs does not specify an explicit mechanism to

form or maintain the overlay network. In other P2P systems, peers exchange heartbeat messages

to actively discover other peers in the overlay network or to join the overlay. In Macs, however,

a peer implicitly (or passively) discovers its neighbors as it searches for content.

While some works address the issue of routing in MANETs, we are not aware of any

implementation for mobile phones. Macs targets the application layer and do not deal with the

issue of routing at all. Consequently, the underlay is a single-hop ad hoc network where a peer

only interacts with other peers in its wireless coverage, and no peer forwards messages destined

to others.

3.2.2 Network Address Assignment

Each mobile phone running Macs must have a unique IP address assigned to it in order to

participate in the P2P overlay. A manual IP configuration is prohibited according to our

requirements because it will necessitate the user intervention. Besides, a manual configuration is

not even feasible because the user would have to know the IP addresses of other peers in the

vicinity to avoid duplicates, and ensure that the assigned IP address has the same network prefix

as the addresses currently used by other peers. On the other hand, the ad hoc nature of the

underlay network implies the absence of a DHCP server for dynamic IP configuration.

Therefore, Macs uses link-local addressing as specified in RFC 3927 (Cheshire et al., 2005); a

peer is automatically assigned an IPv4 address in the special range 169.254/16. One of the

characteristics of link-local addresses is that they are not routable according to the specification,

which reinforces our focus on single-hop communication.

 21

3.2.3 Content organization

In the following, the terms content and file are used interchangeably. However, content

can also refer to the information or data contained in a file. The exact meaning of one term or the

other will be obvious from the context in which we use it.

The logical organization of files in Macs is fundamental to both how content is

discovered and how it is distributed in the overlay network. Each file has a unique identifier or

hash value, which is not the name of the file. This identifier is actually computed by applying a

cryptographic hash function on the file data; therefore, two files with the same content are

considered identical no matter what names they have. Files may also have one or more tags

attached to them. These tags play an important role in the discovery of files in the network, as

explained later. Because Macs operates in transient environments, each file is logically split into

fixed-size pieces, called chunks – eventually the last chunk of a file can be smaller than the

standard chunk size. To guarantee the correctness of file transfer, a hash is also computed for

each chunk allowing the receiver of a chunk to verify its integrity. The logical structure of a file

is given in Figure 3-2. As one can see, some chunks are shaded to illustrate the fact that a shared

file can be incomplete on a peer.

Figure 3-2: Logical organization of a file in Macs.
Shaded boxes denote missing chunks

 22

3.2.4 Content Discovery Protocol

The Macs content discovery protocol defines the ways in which peers interact over the

overlay network to discover, or to find, files. It specifies a set of messages1 used for

communication between peers and a logic governing the inter-peer exchange of messages.

Although Macs is a pure P2P system, we use some terms for the sake of clarity: client peer refers

to a peer benefiting from the service of other peers, and server peer refers to a peer providing the

service to other peers. Of course, a peer can be involved in two communication sessions

simultaneously, acting as both a client and a server peer. There are three ways to find a file in

Macs: (1) descriptive discovery, (2) identity-based discovery, and (3) opportunistic discovery.

3.2.4.1 Descriptive Discovery

This is a keyword-based file discovery. In this scheme, a peer discovers a file in the

network by broadcasting a query describing the needed file. Typically, the description consists of

a search expression supplied by the user. The following table defines the control messages used

for this type of discovery. The table lists these messages in the order in which they would be

exchanged in a normal usage scenario.

Table 3-1: Messages used for descriptive content discovery
Message Description Communication

method
Protocol

FileSearch Starts the discovery process.
Broadcast by a client peer when
searching for a file. The message
embeds a search expression, and its
purpose is to query the network for

Broadcast to all
peers

UDP

1 The formats of all messages used in Macs are provided in Appendix A.

 23

files that match the search
expression.

QueryHit The response to a “FileSearch”.
Only sent by a server peer if it
finds one or more local shared files
that match the expression specified
in the previously received
“FileSearch”. The “QueryHit”
message embeds a reference
number later used by the requester
peer to retrieve the metadata of
matched files.

Unicast to the
requester peer
from which this
peer received a
“FileSearch”

UDP

MetadataRequest The follow-up to a “QueryHit”.
Sent by a client peer to each server
peer that issued a “QueryHit”
message. This denotes the client
peer’s intent to receive the
metadata of matched files. This
message embeds the reference
number contained in a previously
received “QueryHit”.

Unicast to each
peer from which
this peer received
a “QueryHit”

UDP

InitMetadataTransfer On receiving a “MetadataRequest”,
a server peer reads the embedded
reference number to determine
which shared files are concerned. It
then sends the
“InitMetadataTransfer” message to
initiate the metadata transfer of
those files. This message contains
the TCP port to which the client
peer must connect to download the
metadata.

Unicast to the
peer from which
this peer received
a
“MetadatRequest
”

UDP

The main goal of the descriptive content discovery is to find files in the network that

match a search expression – if any, and to provide the requester peer with metadata of those files.

Pieces of information composing a file metadata are: the file hash, its sharing name, its size, its

 24

type, its tags, its sharing date, the number of times it was downloaded, and its relevance. The

metadata helps the user on the requester peer to choose which file to download in the case of

multiple matched files. At the end of the descriptive discovery, a peer will also know addresses

of all peers in the network that possess a given matched file. This information is stored in a

temporary hash table, called PROVIDER_LIST. This table is indexed by file hash so that a call to

PROVIDER_LIST[hvalue] will return the IP addresses of all peers that possess the file with hash

hvalue. In actuality, an element of PROVIDER_LIST is a structure defined as follows:

Struct Provider {

 Integer provider_addr;

 String available_chunks;

};

Where provider_addr is the IP address of the provider peer, and available_chunks is a bit

string denoting which chunks are available on the provider peer. For example, if the file in

question has four chunks, a value of “0011” would mean that only the last two chunks are

available.

An important restriction by the protocol is that a file has to be in a complete state

(without missing chunks) on a peer in order to be considered a possibly matching file. Therefore,

each entry in PROVIDER_LIST added as a result of the descriptive discovery will have its

available_chunks field set to all “1”.

The “InitMetadataTransfer” message initiates a TCP connection. On receiving

“InitMetadataTransfer”, a client peer will connect to the TCP port specified in the message, and

then the metadata download of matched files will follow. In other words, the actual metadata

transfer happens over TCP instead of UDP. This is because a file metadata comprises sensitive

 25

pieces of information that should be exchanged reliably. Metadata is not transferred over HTTP;

instead raw TCP sockets are used for simplicity. HTTP would require a running instance of an

HTTP server on each peer, which would bring additional complexity to the system.

3.2.4.1.1 Query Matching
An important aspect of the descriptive content discovery is the query matching performed

by a server peer after reception of a “FileSearch” message and before the send of a “QueryHit”

message. The purpose of the query matching is to return the list of shared files on a peer that

match the search expression specified within a received “FileSearch” message. The query

matching consists of matching the search expression in a “FileSearch” message to tags of shared

files. Formally, let F1 denote a shared file on a peer, and (tag1, tag2,…, tagN) the collection of

tags associated to F1. Furthermore, let expression = word1 word2 … wordM be the search

expression embedded in a “FileSearch” message – the search expression may be composed of

multiple words. We consider that F1 matches the “FileSearch” if one of the following conditions

is met:

i. []Mi ,1∈∃ , such that ()Ni tagtagtagword ,...,, 21∈

ii. [] ()Ni tagtagtagwordMi ,...,,,,1 21∈∈∀

iii. []Ni ,1∈∃ , such that itag = expression

The first condition (i) is true when any word in the search expression matches at least one

file tag; the second condition (ii) when all words in the search expression match at least one file

tag; and the third condition (iii) when there is at least one file tag that exactly matches the whole

search expression. The matching condition to meet is specified in the “FileSearch” message (see

format of “FileSearch” message in Appendix A).

 26

3.2.4.1.2 Ranking of matched files
Each matched file according to the above algorithm is also associated a rank, which

denotes the relevance of the file with respect to a received “FileSearch” message. The rank is

simply the number of words in the search expression that were matched. This implies that all

words in a search expression are checked even if the “FileSearch” message requested an “any

word” type of match (condition i. above). For exact matches (condition iii. above), the rank is the

maximum value.

We conclude the presentation of the descriptive discovery scheme by giving general algorithms

modeling the inter-peer exchange of messages. We use the generic variable fhash to refer to the

hash of a file.

Client peer

[Broadcast FileSearch]

While ([Receive QueryHit] AND (Not timeout))

 [Send MetadataRequest] to sender of QueryHit

 If ([Receive InitMetadataTransfer]) Then

 Connect to sender’s TCP port

 Download file metadata

 Add metadata sender to PROVIDER_LIST[fhash]

 End if

End while

Server peer

If ([Receive FileSearch]) Then

 Run [query matching]

 27

 If (match found) Then

 Cache metadata of matched files

 [Send QueryHit]

 End if

End if

If ([Receive MetadataRequest]) Then

 Open TCP port

 [Send InitMetadataTransfer] to sender of MetadataRequest

 Wait for incoming TCP connection

 If (incoming TCP connection) Then

 Upload metadata to connected peer

 Else

 Timeout

 End if

End if

3.2.4.2 Identity-based Discovery

The key difference between this type of discovery and the descriptive discovery is that in

the latter, the peer does not know the identifier of the file searched for; instead, a search

expression is supplied by the user to find the file. In the identity-based content discovery, the

peer knows the hash of the file searched for, hence the term “identity-based”. This type of

content discovery is always performed automatically by the peer without the user intervention.

An identity-based discovery is triggered on failure of a file download (we will cover file

download later). When the download of a given file fails, the downloading peer will lack some

 28

chunks of the file in question and that file will be in an incomplete state on the peer. The goal of

the identity-based discovery is to find any peer in the network that can provide at least one of the

missing file chunks. When such peer is found, a new entry is added to the hash table

PROVIDER_LIST. In order words, the identity-based discovery serves the purpose of filling in

the table PROVIDER_LIST so as to prepare subsequent downloads. The following table defines

the messages used for this type of discovery. Once again, the messages are listed in the order in

which they would be exchanged in a typical scenario.

Table 3-2: Messages used for identity-based content discovery
Message Description Communication

method
Protocol

FileProbe Starts the discovery process.
Broadcast by a peer to probe the
network for a specific file. The
hash of the needed file is
embedded, as well as the indexes
of missing chunks.

Broadcast to all
peers

UDP

FileProbeHit The response to a “FileProbe”.
Only sent by a peer if it happens to
possess the probed file and at least
one of the chunks needed by the
requester peer. The “FileProbeHit”
message embeds the hash of the
file in question, as well as indexes
of actual chunks that the server
peer can provide.

Unicast to the
peer from which
this peer received
a “FileProbe”

UDP

Through the identity-based content discovery, a peer having an incomplete file –

typically due to a previously interrupted download – can detect the existence of missing chunks

in the network. This discovery is generally followed by the download of the actual file chunks

 29

(this will be covered in the section dealing with content distribution). An important note is that a

peer does not need to have the complete file to respond to a “FileProbe”. Instead, a peer may

send a “FileProbeHit” as long as it can provide at least one chunk needed by the requester peer.

The general algorithms defining the inter-peer exchange of messages for the identity-

based content discovery are given below. We use the generic variable fhash to refer to the hash

of the file causing the execution of the discovery.

Client peer

While (PROVIDER_LIST[fhash] is empty)

 [Broadcast FileProbe]

 If ([Receive FileProbeHit]) Then

 Add sender of FileProbeHit to PROVIDER_LIST[fhash]

 Else

 Sleep for some time

 End if

End while

Server peer

If ([Receive FileProbe]) Then

 If (probed file exists) AND (chunks available) Then

 [Send FileProbeHit] to sender of FileProbe

 End if

End if

 30

3.2.4.3 Opportunistic Discovery

The opportunistic discovery is similar to the identity-based discovery in that it allows a

peer to detect the existence of missing chunks in the overlay network. However, the

opportunistic discovery is triggered by the reception of a report from a peer that just completed

the download of a file; it is therefore a passive discovery process.

When a peer completes the download of a file, it will broadcast a “FileReport” message

to inform other peers in the vicinity of the availability of the recently obtained file. The file hash

is included in the “FileReport” message. On receiving the message, a peer still missing some

chunks of the referenced file will detect the existence of a provider. Download of the missing

chunks can eventually follow (but this is part of the content distribution protocol described later).

Note that a “FileReport” message is sent by a peer that completed the download of a given file.

Therefore, a peer sending this message possesses the totality of the file chunks.

The general algorithms used in this type of discovery are given in the following. We use

the generic variable fhash to refer to the hash of the file causing the execution of the discovery.

Client peer

If ([Receive FileReport]) Then

 If (referenced file is incomplete) Then

 Add sender of FileReport to PROVIDER_LIST[fhash]

 End if

End if

Server peer

If (file download completed) Then

 31

 [Broadcast FileReport]

End if

3.2.5 Content Distribution Protocol

While the content discovery protocol specifies the ways in which files are found in the

network, the content distribution protocol specifies the way in which they are distributed from

peer to peer. Files are distributed in chunks, which makes a chunk the smallest transferable unit

of file data. This allows a peer to download a given file in multiple attempts and from different

providers, which is certainly desirable in mobile environments. A peer can start downloading a

specific file from peer x, and complete the download from peer y thirty minutes later. When all

chunks of a given file are received without corruption, the file is considered to be completely

downloaded. The transfer of a file involves the exchange of control messages between the client

peer and the server peer. This control messages are exchanged even before the actual chunks

transfer occurs. The following table gives a description of the messages, which are listed in the

order in which they would be exchanged in a typical scenario.

 32

Table 3-3: Control messages used for file transfer
Message Description Communication

method
Protocol

FileDataRequest Sent by a client peer to request a file
transfer. The file hash is embedded in
the message as well as the indexes of
the needed file chunks. Note that at the
time of sending this message, a peer
knows that the destination peer
certainly possesses the chunks to
download.

Unicast to a server
peer

UDP

ReadyToSendFile The response to a “FileDataRequest”.
Sent by a server peer to a client peer to
prepare a file transfer. This message
contains the TCP port to which the
client peer must connect in order to
download the file.

Unicast to the peer
from which this
server peer
received a
“FileDataRequest”

UDP

3.2.5.1 Provider selection

The download of a file is always subsequent to its discovery. Therefore, at the time of

sending a “FileDataRequest”, a client peer already has at least one provider in the hash table

PROVIDER_LIST. Having multiple providers for a file is not a necessary condition for its

download; but when there are multiple providers, a client peer will always start sending the

“FileDataRequest” to the provider with the most number of chunks. When there is more than one

such provider, the choice of the one to start with is random. This selection scheme is possible

because all potential providers are stored in the table PROVIDER_LIST. Besides, each element

of the table has a field available_chunks (see definition of the structure in section 3.2.4.1), which

makes it possible to determine the number of chunks the corresponding peer can provide. When

 33

a client peer sends the “FileDataRequest”, it activates a timer. If the peer receives a

“ReadyToSendFile” before the timer pops, the timer is stopped and the chunks download starts.

However, if the peer does not receive a “ReadyToSendFile” before the timer expires, the peer to

which the “FileDataRequest” was sent is deleted from PROVIDER_LIST and the process restarts

with the next provider in the list that has the most number of chunks. When PROVIDER_LIST

becomes empty, the identity-based discovery is executed as explained earlier in section 3.2.4.2 of

this document. The following algorithms illustrate the selection of a file provider. We use the

generic variable fhash to refer to the hash of the file to download.

Client peer

While (PROVIDER_LIST[fhash] is NOT empty)

 SelectedProvider =

 GetProviderWithMostNumberOfChunks(PROVIDER_LIST[fhash])

 [Send FileDataRequest] to SelectedProvider

 [Wait ReadyToSendFile]

 If (Timeout) Then

 DeletedFrom(PROVIDER_LIST[fhash], SelectedProvider)

 Else

 Connect to TCP port

 Download chunks from SelectedProvider

 End if

End while

Server peer

 34

If ([Receive FileDataRequest]) Then

 Open TCP port

 [Send ReadyToSendFile] to sender of FileDataRequest

 Wait for incoming TCP connection

 If (incoming TCP connection) Then

 Upload chunks to connected peer

 Else

 Timeout

 End if

End if

3.2.5.2 File integrity and Download Resumption

As stated earlier, files are transferred by chunks. However, Macs does not use HTTP to

transfer chunks, instead the transfer is performed via raw TCP sockets in two steps as follows:

i. First, the server peer sends hashes of all chunks to be transferred.

ii. After step (i), the server peer sends the actual chunks (pieces of the file data), one at a

time. The chunks are sent in random order to increase the opportunity of exchanging data

among peers.

On receiving a chunk, a client peer determines the success of the transfer by computing

the hash of the received chunk and comparing it with the hash received as a result of step (i). If

the two hashes match, the integrity of the chunk is verified. Otherwise, that chunk is considered

to be corrupted and still missing, which will result in an incomplete file download. Another

cause of incomplete file download is the TCP connection break which may result from the peers’

mobility.

 35

In any case, an incomplete download triggers the execution of the download resumption.

Resuming a download is in fact identical to the provider selection algorithm presented in the

previous section. If a download does not complete successfully, the downloading peer will

execute the same algorithm described in section 3.2.5.1 above. Once all chunks are successfully

received, the receiver peer considers the file as complete and automatically broadcasts a

“FileReport” message (see section 3.2.4.3).

3.2.5.3 Simultaneous upload/download

Note well that since files are organized and transferred in chunks, a peer can

simultaneously upload chunks of a given file to another peer as it downloads other chunks of the

same file from another peer; an illustration of this is given in Figure 3-3. In Chapter 3 –

Performance Evaluation and Results – we explore the benefit of simultaneous download/upload.

Figure 3-3: Illustration of simultaneous upload/download

The shaded boxes represent chunks available on a peer. The peer on the left has all the

file chunks available. The peer in the middle is downloading chunk 1 from the peer on the left.

Simultaneously, the peer in the middle is uploading chunk 2 of the same file to the peer at the

bottom-right (which happens to be out of the wireless coverage of the peer on the left).

 36

3.2.6 Energy Management

Energy consumption of battery-driven devices is a crucial concern for users. The longer

the operational time of the device, the better the user’s experience. Taking this fact into

consideration in the design is therefore appropriate, especially since Macs is essentially a

network application and previous works already established the high energy consumption of

wireless communication in mobile devices (Balasubramanian et al., 2009; Rahmati et al., 2007;

Flinn et al., 1999). A naïve design would consist of keeping the wireless interface of a peer

always turned on to ensure all incoming messages are received and processed appropriately.

However, this would imply significant energy consumption due to the high cost of maintaining

Wi-Fi interfaces up. Therefore, Macs adopts an adaptive duty cycling approach, which consists

of alternating a peer between awake and sleep modes periodically. A peer in awake mode has its

wireless interface turned on, and can participate in the overlay network. On the other hand, a

peer in sleep mode cannot communicate in the network because its wireless interface is turned

off. Therefore, the length of time spent in either mode has an impact on the efficiency of the

overlay network. Spending a long time in awake mode will result in high responsive peers, but

also high energy consumption and short operational time. On the other hand, spending a long

time in sleep mode will result in low responsive peers, but also low energy consumption and

long operational time. So, there is a trade off between efficiency and energy. In Macs, a peer

does not blindly switch from awake mode to sleep mode; instead, the transition is based on

previous observations. The assumption is that if a peer receives an incoming message at time t0,

it is likely that it will receive another one at time t1; thus, Macs will keep the peer awake for time

t1.

 37

We now give a formal description of the energy management in Macs. The execution

time is divided into time periods (or time intervals) of equal length. For a time period Ti, a peer is

either in awake mode or in sleep mode. The problem is to determine which mode the peer will be

in for the next time period Ti+1. This decision is made as follows:

 (a) A peer always starts in awake mode; thus, for T0 a peer is always awake.

(b) If a peer was in sleep during Ti, always switch the peer to awake for Ti+1.

(c) If a peer was awake during Ti, switch the peer to sleep for Ti+1 only if

i. No message was received by the peer during Ti,

 OR

ii. The peer had already been awake for MAX_AWAKE consecutive time periods.

The following figure is a graphical illustration of the energy management used in Macs.

In the figure, the high energy value means that the peer is awake; the sleep mode is represented

by the low energy value. The dots on the energy curve at T2, T3, and T4 denote received

messages. Finally, MAX_AWAKE = 3 in this illustration.

Figure 3-4: Illustration of energy management in Macs
Transitions of a peer between awake and sleep modes.

 38

3.3 System Implementation

Macs consists of six components, each delivering one or more functions necessary to

meet the features identified in section 3.1. The components, represented in Figure 3.5, are not

isolated pieces but they interact with one another by invoking each other’s services.

Figure 3-5: Software components of Macs

Macs is currently implemented on Symbian S60 3rd edition FP1 devices (Nokia, 2006).

We specifically use Qt for Symbian version 4.6 (by Nokia) as our development and UI

framework, coupled with SQL for the database engine. In the following, we describe each

component of the application.

3.3.1 Database

The database is implemented in SQLite, an in-process, software library that models an

SQL-based relational database engine. We use the version embedded in the “Qt for Symbian”

package. The purpose of the database is to logically organize shared files on a peer. It essentially

consists of three relations as shown below:

 39

Table 3-4: SharedContent relation

Column Type Description

Content_id Integer Primary key

Hash Varchar(20) File hash

Path Varchar(75) File path on the local file
system

Alias Varchar(150) Sharing name. This is the
name seen by other peers

Type Integer File type. Currently
support: unknown(0),
audio(1), image(2), and
video(3)

Shared_date Integer Date the file was shared

Downloads Integer Number of times the file
was downloaded

Size Interger The file size

Tags Varchar(1000) Comma-separated list of
file tags

Table 3-5: Chunk relation

Column Type Description

Chunk_id Integer Primary key

Chunk_index Integer The index of a file chunk

Hash Varchar(20) The chunk hash

Downloaded Integer 1: the chunk has been
downloaded; 0: the chunk is
missing.

Ref Integer Foreign key referencing
column “Content_id” of
relation “SharedContent”

 40

Table 3-6: LoggedSearch2 relation

Column Type Description

Search_id Integer Primary key

Search_term Varchar(250) The search term

Strictly speaking, the above database design is not compliant with the 1NF of database

normalization. The relation SharedContent contains a column with non atomic values, namely

Tags. This column stores the list of tags associated to a shared file. A 1NF-compliant design

would consist of removing that column from the “SharedContent” relation and creates two new

relations: One that will store single tag strings, say TagString, and another that will link the

current “SharedContent” relation with “TagString”, say Tagged_content. Such a design would

bring the benefit of not duplicating tag values; however, it would require a joined query to return

the list of tags associated to a file. Join queries are complex operations that require processing

power that current mobile phones may not provide. In fact, in Chapter 4 we show the

performance gain of not using the 1NF-compliant design.

3.3.2 Messenger

This component is simply the application’s interface to the overlay network. Running as a

thread, it is the communication layer responsible for sending and receiving messages. All values

are transferred over the wireless medium in a defined binary format. The “Messenger”

component is responsible for making conversions from (respectively, to) the binary format. The

following specifies the binary encoding of supported types.

Integers encoded in big endian.

Characters encoded in UTF-8.

2 This relation stores file searches for later processing, as defined earlier in the document.

 41

Strings encoded in UTF-8, prepended with an encoded integer denoting

the length of the string.

The “Messenger” component also implements a queue through which it receives

messages to be sent out from the “Message Handler” component. Similarly, when “Messenger”

receives a message from the network, it passes it to “Message Handler” by putting it to a queue

owned by “Message Handler”.

3.3.3 Message Handler

Implemented as a thread, its main purpose is to process incoming and outgoing messages

as dictated by the content discovery and the content distribution protocols. It processes file

searches and issues responses. The query matching (as defined in section 3.2.4.1.1) is performed

by this component. To find which files match the search expression specified in a received

“FileSearch” message, the “Message Handler” component submits an SQL query to the database

requesting the list of files whose tags include any, or all words in the search expression. Each

row in the list of files returned by the database has the following columns (all taken from the

“SharedContent” relation):

 Hash | Alias | Type | Size | Shared_date | Downloads | Tags | rank3

Once “Message Handler” receives the list of files from the database (in case there are any

matched files), it saves the list to a temporary file on disk and forms the “QueryHit” message;

this message is sent as a response to the previously received “FileSearch”. Later on when a

3 Computed at query time by the database engine (see section 3.2.4.1.2)

 42

corresponding “MetadataRequest” message is received, the “Message Handler” component will

transfer the items in the temporary file to the requester peer.

All outgoing message is formed by this component and simply passed to the “Messenger”

for effective transmission over the network.

3.3.4 Scheduler

The scheduler is responsible for performing automatic (non-user initiated) tasks, namely

executing saved file searches and resuming failed downloads. After every defined period of time,

the scheduler will check the database to determine whether a task should be executed. For saved

file searches, it checks the “LoggedSeach” table to see whether it has any row. In the positive

case, it issues an appropriate “FileSearch” message corresponding to the table entry. Of course,

the scheduler itself does not form the message; this is done in “Message handler”. For failed – or

incomplete downloads, the scheduler checks the database for files that have missing chunks (i.e.

attribute “Downloaded” of table “Chunk”). It then contacts the “Message handler” to send out

the appropriate message if such a file is found.

The scheduler execution frequency is a parameter of the application modifiable by the

user. By default the value of that parameter is one minute.

3.3.5 Energy Monitor

This component implements the energy management algorithm as defined earlier in

section 3.2.6. It switches a peer to sleep mode by disabling the “Messenger” and the “Scheduler”

components. The peer is put in awake by enabling the same two components.

 43

3.3.6 User Interface

It implements the graphical interface that users manipulate to interact with the

application. The interface may also update the database depending on the actions of the user,

hence its relation with the database as represented in Figure 3-6. The following figure is a

snapshot of the application user interface.

Figure 3-6: Sample screenshots of Macs

 44

Chapter 4 Performance Evaluation

Central to our study is the evaluation of the feasibility of mobile P2P file sharing

applications for ad hoc networks. A necessary step was to implement a prototype application,

which was described in the previous chapter. This chapter focuses on assessing the efficiency of

such solutions by using the prototype as a working tool. Although we use a specific

implementation, the conducted experiments concentrate on aspects which we believe are

characteristic of all mobile P2P file sharing applications, namely the search speed, the energy

consumption, and the efficiency of file distribution. The main goal of these experiments is to

identify factors/elements that influence the application performance. We start by describing our

measurement methodology. Then, we show the experiments results and discuss each of them.

4.1 Measurement Methodology

As mentioned above, we measure the search speed, the energy consumption, and the

efficiency of file distribution of Macs. For the first two aspects we use observations from running

the prototype on actual mobile devices. We deploy Macs on two Nokia N95 devices all running

Symbian OS v9.2. Each device is equipped with a WLAN 802.11b interface, two ARM-11

processors at 332 MHz CPU clock rate, and 18MB of executable RAM. Furthermore, each

device is equipped with a 1GB micro SD card for secondary storage and powered by a BL-5F

3.7V 950mAh battery.

 45

4.1.1 Query matching

The file search procedure is specified in the content discovery protocol, especially the

descriptive content discovery1. Briefly, a file search consists of three main tasks: (1) the

exchange of control messages between the requester peer and the provider peer, (2) the query

matching that happens locally on a provider peer to compute the list of files that match the search

expression, and (3) the metadata transfer of matched files. Steps (1) and (3) are inherently

influenced by several factors: the distance between peers, the peer density of the overlay, and the

peers’ mobility. Therefore, we focus on step (2) and investigate how the query matching scales

with the number of locally shared files, the overall number of file tags, the number of matched

files, and the length of the search expression. Another section will deal with the effect of peer

density.

To investigate the scalability of the query matching with respect to the number of shared

files and the overall number of file tags, we use one mobile phone, say DEVICE1, to initiate file

searches. On the other mobile phone, say DEVICE2, we measure the time it takes to run the

query matching on receipt of each “FileSearch” message. We run this experiment on the

measured device with varying number of shared files – from 100 to 1000 files, and varying

number of tags per file – from 3 to 12 tags per file. For this experiment, we always tag the files

on DEVICE2 (the measured device) in such a way that none will match searches coming from

DEVICE1. This allows us to eliminate the overhead of caching matched files, and to consider

only the effect of the number of shared files and the number of tags.

The second experiment is similar to the one above, except that this time, we choose

search expressions from DEVICE1 that will yield varying number of hits on DEVICE2. This

1 The identity-based discovery and the opportunistic discovery are really just precursors of file download

 46

allows us to measure the scalability of the query matching with respect to the number of matched

files.

The last experiment is similar to the second one, except that this time, we specify multi-

word search expressions of varying number of words – specifically from 2 to 5 words; the multi-

word search expressions are selected from DEVICE1 in such a way that each word in an

expression will match a number of files on DEVICE2.

In all the above experiments, we measure the time it takes DEVICE2 to run the query

matching on receipt of each file search.

4.1.2 Energy Consumption

To measure the energy consumption of a phone running Macs, we use the Nokia Energy

Profiler (Nokia, 2009) tool. We are interested in standby energy consumption, which is the

amount of energy consumed when the application runs in the background without user

interaction. We think this is an important measurement because the standby mode represents the

bulk of a phone’s operational time. Nokia Energy Profiler (NEP) computes the power

consumption of a phone by reading the built-in voltage meter once every 10s, and the current

meter periodically (by default every 250ms). We configure NEP to read the current meter every

1s, in order to minimize the measurement activity overhead. To compute the amount of energy

consumed by a peer, we multiply the power consumption reported from NEP by the length of

time of an experiment.

We specifically run two experiments. In the first one, we use NEP to profile the power

consumption of a single phone running Macs for an hour; at the end of the hour, we compute the

energy consumption as described above. Because only one phone is running, we guarantee that

 47

no communication will occur; therefore, this first experiment captures cases in which a peer is

isolated – i.e. there is no other peer to interact with.

In the second experiment, we use the two phones as follows:

• On one phone, say DEVICE1, we modify the logic of Macs to automatically broadcast a

file search after every x seconds; the value of x is randomly chosen between [1s, 300s),

and the search expression is specified to a fixed string, namely “test”. We keep track of

all sent messages in a file on disk.

• On the other phone, say DEVICE2, we run the standard version of Macs and tag a shared

file with the value “test”. This ensures that all file searches received from the other phone

result in hits (remember from section 3.2.4.1 that in this case, a lot messages are

exchanged to transfer metadata of the matched file). We also keep track of all received

messages in a file on disk.

This second experiment is run for an hour. At the end of the hour, we compute the energy

consumption on DEVICE2. This experiment captures cases in which a peer is not isolated, but is

involved in communication with other peers. By randomly broadcasting file searches from

DEVICE1, we emulate a real environment in which multiple peers may be querying the network.

Since we keep track of sent and received messages, we are able to compute the percentage of

messages sent by DEVICE1 that were received on DEVICE2.

Remember that the energy management of Macs consists of dividing the execution time into

intervals of equal length. During a time interval, a peer’s wireless interface can either be on or

off (see section 3.2.6 for more detail). Let us call T, the length of a time interval in seconds; the

following table describes peer configurations used in the aforementioned experiments:

 48

Table 4-1: Peer configurations for the measurement of energy consumption

Peer configuration Description

Naïve The peer runs a modified version of Macs that do not
implement energy management – i.e. the wireless interface is
always on

Macs with T=30 The peer runs the standard version of Macs with energy
management, and a time interval T = 30 s.

Macs with T=60 Same as above, but with T = 60 s.

4.1.3 File Distribution

The content distribution protocol described in section 3.2.5 specifies how files are

distributed in the overlay network. The current section aims for determining how fast this file

distribution is, and how it is affected by the peer density and the mobility of the network. Due to

a limited number of devices and hence the difficulty to setup a realistic test bed, we resort to

simulation to reach our goal; we use ns-2 (McCanne et al.), a discrete event simulator for

networking research. In what follows, we first describe our simulation environment, and then a

description of the experiments run is given.

The simulated environment is any outdoor field populated with individuals moving at a

pedestrian speed. An example of such environment can be students walking on a campus. In ns-

2, we define a topology of 500m x 500m where peers move with a speed uniformly chosen from

[0m/s, 1.5m/s] according to the random waypoint mobility model (Broch, et al., 1998). In this

mobility model, each peer starts from a different position and moves to a new randomly chosen

destination with a constant speed. When a peer reaches its destination, it pauses for some time,

and then starts moving again towards another randomly chosen destination. For our simulation,

we define a 3-minute average pause time between movements. Each peer is equipped with an

802.11b wireless interface transmitting at a rate of 5.5Mb/s within a range of 100m. In all

 49

experiments, we select the two-ray ground reflection model as the radio propagation model; this

model considers both the direct path and a ground reflection path for radio waves transmission

between peers. After setting up the simulation environment, we run two experiments.

The first one is the distribution of an 8MB file to varying number of peers. Only one peer

has the file initially, and the others probe the network in order to download the file. In this

experiment, the peer that initially owns the file is not counted; therefore, if we say the file is

distributed to 5 peers, it means that there are actually 6 peers – one owning the file at the

beginning. We run the experiment several times, each time with a different number of peers to

distribute the file to. For each run, we measure the time it takes for all the peers to completely

download the file. By varying the number of peers to which the file is distributed, this first

experiment investigates the effect of peer density on file distribution.

The second experiment is the distribution of files of varying size to a fixed number of

peers, namely 15. The purpose is to see how the file distribution scales with the file size. As with

the first experiment, we run this experiment several times, each time with a file having a

different size. We then measure for each run, the time it takes for the 15 peers to completely

download a file.

A very important note is that for both experiments above, we run two variants. In variant1, a

peer can simultaneously upload and download (see section 3.2.5.3). In variant2, the

simultaneous upload/download is disabled. The following table summarizes the simulation

environment.

Table 4-2: Simulation environment used for the performance evaluation of file distribution

Parameter Value

Mobility model Random waypoint

Peer pause time 3 min

Peer speed [0m/s, 1.5m/s]

 50

Peer transmission range 100m

Peer transmission rate 5.5Mb/s

Propagation model Two-ray ground reflection

Topology 500m x 500m

4.2 Results and Discussion

4.2.1 Query matching

The query matching execution time as a function of the number of shared files and the

number of file tags is shown in Figure 4-1.

Figure 4-1: Query matching runtime for a non-matching search expression

The above figure reveals that the query matching execution time increases with the

number of shared files. However, for the same amount of shared files, the execution time

increases with the number of file tags. This makes sense because tags are the unit of comparison

when determining matches. Therefore, the more tags the more comparison to perform. Despite

this, the overall performance is satisfactory since the query matching still takes less than 190 ms

 51

even on a database of 1000 shared files, each of which having 12 tags. To consider the effect of

the number of matched files, Figure 4-2 shows the query matching runtimes for searches yielding

varying number of matches.

Figure 4-2: Query matching runtime vs. number of matches
The query matching is executed on a database of 500 shared files and 6000 tags.

From the above figure, one can see that the query matching runtime increases linearly

with the number of matched files. This is in fact expected since in this case, the peer caches the

matched files to prepare the transfer of their metadata. However, the performance is still

satisfactory as it only takes about 152 ms to match 60 files. Another aspect of interest is how the

length – number of words – of a search expression can affect the performance of the query

matching. Therefore, Figure 4-3 plots the runtimes for multi-word search expressions.

 52

Figure 4-3: Query matching runtime vs. search expression length

Multi-word search expressions slow down the query matching. For instance while it takes

250 ms for a 3-word expression to return 45 matches (Figure 4-3), it only takes 152 ms for a

single-word expression to return up to 60 matches (Figure 4-2). Multi-word search expressions

take longer because the query matching runs against each word in an expression to rank the

matched files as described in section 3.2.4.1.2. Nevertheless, the performance is still acceptable

as it takes about 350 ms for a peer to match a 5-word search expression resulting in 120 matches,

as shown in Figure 4-3. Besides, since mobile phones usually provide small-size keyboards, we

argue that search expressions of more than 4 words will be very rare in real usage scenarios.

Remember that in section 3.3.1 we alluded to the fact that the database of Macs is non-

1NF compliant. But, this is purposefully done as an optimization effort. To show the

performance gain of our non-1NF design over a normalized design as described in section 3.3.1,

Figure 4-4 plots the query matching runtimes of the two approaches.

 53

Figure 4-4: Query matching runtime: normalized database vs. our design

The performance gain of our design is clear; a normalized database would require

unacceptable query matching runtimes as the number of matched files increases. This is due to

the fact that a normalized database will have to use joined queries to return the list of matched

files, the file tags and the other file attributes being in separate tables.

4.2.2 Energy Consumption

Figure 4-5 plots the energy consumption of Macs for the different peer configurations as

defined in Table 4-1 above.

Figure 4-5: Energy consumption for different peer configurations

 54

As one can see in the above figure, Macs with energy management provides the smallest

energy consumption. For instance, when a peer is isolated (i.e. there is no message transmission),

Macs with energy management and 60-second time interval yields a save of energy of 29%

compared to an approach keeping the wireless interface always on. This performance gain is

however less important when a peer is involved in communication (participating peer), because

the length of time spent in sleep mode is reduced. But even when a peer is involved in

communication, Macs still consumes less energy compared to what an isolated peer with the

naïve approach would consume. Another interesting finding from the above figure is the effect of

the time interval length, T, on energy consumption. It appears that smaller values of T results in

lower save of energy. Therefore, from an energy point of view, it is beneficial to choose T big.

To show the effects of energy management on the efficiency of a Macs P2P overlay,

Figure 4-6 adds to the plot of energy consumption, the percentage of messages lost due to our

energy management implementation.

Figure 4-6: Effects of energy management on communication efficiency

 55

As the above figure shows, our energy management has a negative impact on the

communication efficiency of peers. However, for T = 60, we save 19% of energy for only 21%

messages lost. Another interesting finding from the above figure is that, while it is beneficial to

choose high values for T from an energy-consumption point of view (see Figure 4-5), the reverse

is true from a communication point of view. Basically, a smaller value of T will yields a lower

message loss percentage. This is understandable because when the time interval is long, a peer

switching to sleep mode will remain unreachable for a long period of time and likely miss

incoming messages.

4.2.3 File Distribution

Figure 4-7 plots the time it takes to distribute an 8MB file to several number of peers.

Remember from section 4.1.3 that Variant1 denotes the fact that a peer in the network can

simultaneously upload and download chunks, whereas Variant2 precludes that possibility.

Figure 4-7: Delay for distributing an 8MB file to varying number of peers
Only one peer has the file initially, and that peer is not counted.

 56

The above graph reveals that Variant2 outperforms Variant1, which means it is better to

avoid simultaneous upload/download. This is due to the half-duplex nature of 802.11b, making it

less efficient for a peer to simultaneously send and receive data, especially in a dense network.

As the graph shows, the difference between the two variants is intensified as the number of peers

in the overlay network increases. Another interesting fact from these results is that the fraction of

distribution delay to number of peers decreases linearly with the number of nodes. This implies

that the file distribution performs better in dense networks. For instance, while it takes about 13

minutes to distribute the file to 5 moving peers, it only takes 20 minutes to distribute the same

file to 25 peers, hence an average download time of 48 s per peer. Although Figure 4-7 shows

that the file distribution delay decreases in a network of 15 peers for variant2 (compared to 10

peers), the reader should not interpret it as an inconsistency, but as the result of the random

mobility pattern used in the experiment. It happens that the mobility pattern file used in this

particular case keeps the peers close to each other as they move.

Figure 4-8 plots the delay for distributing files of varying sizes to 15 mobile peers.

Figure 4-8: Distribution delay of varying-size files in a network of 15 moving peers

 57

The graph confirms the statement that variant2 outperforms variant1. Furthermore, it reveals that

the file distribution delay increases very slightly with the size of the file for variant2. For

instance, the overhead of distributing a 10MB file compared to a 2MB is only 2 minutes.

 58

Chapter 5 Conclusion

5.1 Summary

In this work, we have explored the concept of mobile content sharing for ad hoc

environments. We first demonstrated that most existing content sharing solutions on mobile

phones were limited due to the fact that they either require a lot of manual configuration from

users – e.g. pairing two devices for data transfer over Bluetooth, or they require the existence of

an infrastructure-based network, such as the internet or the mobile phone network. Our claim for

mobile content sharing tailored to ad hoc environments was motivated by the fact that, mobile

phones are increasingly feature-rich and used by many people to self-generate content (pictures,

video, etc.); besides, mobile internet is not always available (or at least affordable).

We then studied the feasibility of the concept of ad-hoc-based mobile sharing through a

practical approach, consisting of developing a working prototype application. The prototype,

Macs, is an unstructured, decentralized mobile P2P file sharing application for ad hoc

environments that uses existing tools and provides capabilities that many internet users are

familiar with, namely tagging, and keyword-based searching. Users tag the files they want to

share, and they can discover content in the vicinity by specifying advanced keyword-based

search options, such as “list of files that match any word or all words in a search expression”.

Using the prototype, we carried out an extensive performance evaluation and found that ad-hoc-

based content sharing is feasible on mobile devices. Specifically, the results of our research can

be summarized as follows:

 59

• Advanced keyword-based searching is efficiently possible on mobile P2P systems for ad

hoc environments, though the time required to match local files on a device, slightly

increases with the number of shared files and the number of tags.

• The density of mobile devices in the network positively contributes to the efficiency of

file distribution.

• Energy consumption of wireless communication is a limiting factor of mobile P2P

content sharing for ad hoc networks; but, it is possible to mitigate this with appropriate

power conservation techniques.

• An energy management strategy based on duty cycle may provide not inconsiderable

save of energy, but this would also have an effect on the communication efficiency of a

peer.

5.2 Future work

Our current work does not propose any mechanism to ensure consistency between the

actual content of a shared file and its tags. A malicious user can tag a corrupt file with commonly

used expressions to enable the discovery of that file by other peers. Requester peers could then

end up downloading files that are not related to their needs. Preventing such issue from

happening is a complex task, which can hardly be done in the absence of a central entity.

Investigating this possibility in mobile P2P content sharing for ad hoc networks constitutes an

area of future research.

On the other hand, due to the fact that wireless communication on mobile devices is

energy-consuming, mobile content sharing applications for ad hoc networks can be deterrent to

 60

users. Therefore, exploring incentive mechanisms is a worthwhile effort. However, our current

work does not define any such mechanism yet. This is an item for future work.

 61

References

Chetan Sharma Consulting (2010). ‘Sizing up the Global Mobile Apps Market’
[online]. Available at:
http://www.chetansharma.com/Sizing_up_the_Global_Mobile_Apps_Market.pdf. Last
accessed: June 6, 2010.

Balasubramanian, N., Balasubramanian, and A., Venkataramani, A. (2009). 'Energy
consumption in mobile phones: a measurement study and implications for network
applications', in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement, New York, NY, USA, pp. 280-293.

Broch, J., Maltz, D., Johnson, D., Hu, Y., and Jetcheva, J. (1998). 'A performance
comparison of multi-hop wireless ad hoc network routing protocols' in Proceedings of
the 4th annual ACM/IEEE international conference on Mobile computing and
networking, Dallas, Texas, USA, pp. 85-97.

Cheshire, S., Aboba, B., and Guttman, E. (2005). 'Dynamic Configuration of IPv4
Link-Local Addresses', RFC 3927 [online]. Available at:
http://www.ietf.org/rfc/rfc3927.txt. Last accessed: June 21, 2010.

Chlamtac, I. (2003). 'Mobile ad hoc networking: imperatives and challenges'. Ad Hoc
Networks, 1(1): 13-64.

Cisco (2008). Global IP Traffic Forecast and Methodology, White Paper.

Conti, M., Gregori, E., and Turi, G. (2005). 'A cross-layer optimization of gnutella for
mobile ad hoc networks' in Proceedings of the 6th ACM international symposium on
mobile ad hoc networking and computing, Urbana-Champain, IL, USA, pp. 343-354.

Ding, G., and Bhargava, B. (2004). 'Peer-to-peer file-sharing over mobile ad hoc
networks' in Proceedings of the 2nd IEEE annual conference on pervasive computing
and communications workshops, pp. 104-109.

Emule Project: MobileMule (No date). [online]. Available at: http://mobil.emule-
project.net. Last accessed: June 8, 2010.

Fitzek, F. H., and Charaf, H. (2009). 'Mobile Peer-to-Peer Networks: An Introduction
to the Tutorial Guide', in Mobile Peer to Peer (P2P), ed. by Fitzek, F.H., and Charaf,
H.: John Wiley & Sons, Ltd, pp. 3-18.

Flinn, J., and Satyanarayanan, M. (1999). 'Energy-aware adaptation for mobile
applications', ACM SIGOPS Operating Systems Review, 33(5): 48-63.

 62

The Gnutella Protocol Specification v0.4 Document Revision 1.2 [online]. Available at:
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf. Last accessed: June
13, 2010.

Hildrum, K., Kubatowicz, J., Rao, S., and Zhao, B. (2002). 'Distributed object location
in a dynamic network', in Proceedings of the 14th annual ACM symposium on parallel
algorithms and architecture, Winnipeg, Manitoba, Canada, pp. 41-52.

Howe, A. (2002). 'Napster and Gnutella: a comparison of two popular peer-to-peer
protocols' [online]. Available at:
http://members.tripod.com/ahowe_ca/pdf/napstergnutella.pdf. Last accessed: June 13,
2010.

ipoque (2009). 'ipoque Internet Study 2008/2009' [online]. Available at:
http://www.ipoque.com/resources/internet-studies/internet-study-2008_2009. Last
accessed: June 8, 2010.

Juniper Research (2009). Mobile Apps ~ Taking a bite of the apple. White paper.

Kelényi, I., Csúcs, G., Forstner, B., and Charaf, H. (2007). 'Peer-to-Peer File Sharing
for Mobile Devices', in Mobile Phone Programming and its Application to Wireless
Networking, ed. by Fitzek, F.H., and Reichert, F., Dordrecht: Springer, pp. 311-324.

Kelényi, I., and Nurminen, J.K. (2008). 'Energy aspects of peer cooperation -
Measurements with a mobile DHT system' in Proceedings of cognitive and cooperative
wireless networks workshop in the IEEE international conference on communications,
Beijing, China, pp. 164-168.

Kravets, R., and Zheng, R. (2005). 'On-demand power management for ad hoc
networks' Ad hoc networks, 3(1): 51-68.

Liang, J., Kumar, R., and Ross, K. (2006). 'The KazaA overlay: a measurement study',
Computer Networks: The international Journal of Computer and Telecommunications
Networking, 50(6): 842-858

Liu, Y., Rahmati, A., Huang, Y., Jang, H., Zhong, L., Zhang, Y., and Zhang, S. (2009).
'xShare: supporting impromptu sharing of mobile phones', in Proceedings of the 7th
international conference on Mobile systems, applications, and services, Krakow,
Poland, pp. 15-28.

MBIT.TV (2007). 'Mobile File Sharing' [online]. Available at: http://mbit.tv/index.jsp.
Last accessed: June 8, 2010.

McCanne, S., and Floyd, S. 'The Network Simulator - ns-2' [online]. Available at:
http://www.isi.edu/nsnam/ns. Last accessed: July 5, 2010.

 63

Nokia (2006). 'S60 Platform SDKs for Symbian OS, for C++' [online]. Available at:
http://www.forum.nokia.com/info/sw.nokia.com/id/4a7149a5-95a5-4726-913a-
3c6f21eb65a5/S60-SDK-0616-3.0-mr.html. Last accessed: June 28, 2010.

Nokia (2009). 'Nokia Energy Profiler' [online]. Available at
http://www.forum.nokia.com/info/sw.nokia.com/id/324866e9-0460-4fa4-ac53-
01f0c392d40f/Nokia_Energy_Profiler.html. Last accessed: July 19, 2010.

Nokia (2010). 'Qt - Cross-platform application and UI framework' [online]. Available
at: http://qt.nokia.com/. Last accessed: june 28, 2010.

Papadopouli, M., and Schulzrinne, H. (2001). 'Effects of power conservation, wireless
coverage and cooperation on data dissemination among mobile devices' in Proceedings
of the 2nd ACM international symposium on mobile ad hoc networking & computing,
New York, NY, USA, pp. 117-127.

Pucha, H., Das, S., and Hu, Y. (2004). 'Ekta: An efficient DHT substrate for distributed
applications in mobile ad hoc networks' in Proceedings of the 6th IEEE workshop on
mobile computing systems and applications, Washington, DC, USA, pp. 163-173.

Rahmati, A., and Zhong, L. (2007). 'Context-for-wireless: context-sensitive energy-
efficient wireless data transfer', in Proceedings of the 5th international conference on
Mobile systems, applications and services, San Juan, Puerto Rico, pp. 165-178.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001). 'A scalable
content-addressable network', in Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer communication, San Diego,
California, United States, pp. 161-172.

Rowstron, A., and Druschel, P. (2001). 'Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems', in Proceedings of the 18th IFIP/ACM
international conference on distributed systems platforms (middleware 2001),
Heidelberg, Germany.

Schollmeier, R. (2002). 'A Definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications', in Proceedings of the First International
Conference on Peer-to-Peer Computing (P2P'01), Washington, DC, USA.

Si, P., and Yu, R. (2009). 'Distributed sender scheduling for multimedia transmission in
wireless mobile peer-to-peer networks', IEE transactions on wireless communications,
8(9): 4594-4603.

Stoica, I., Morris, R., Karger, D., Kaashoek, M., and Balakrishnan, H. (2001). 'Chord:
A scalable peer-to-peer lookup service for Internet applications', in Proceedings of the
2001 conference on applications, technologies, architectures, and protocols for
computer communication, San Diego, California, United States, pp. 149-160.

 64

Stutzbach, D., Zhao, S., and Rejaie, R. (2007). 'Characterizing files in the modern
Gnutella network', Multimedia Systems, 13(1): 35-50.

Tang, B., Zhou, Z., Kashyap, A., and Chiueh, T. (2005). 'An integrated approach for
P2P file sharing on multi-hop wireless networks' in Proceedings of the IEEE
International Conference on wireless and mobile computing, networking and
communication, Montreal, Canada, pp. 268-274.

Wang, C., and Li, B. (2003). 'Peer-to-Peer overlay networks: a survey', Technical
Report, Department of Computer Science, HKUST.

Wolfson, O., Xu, B., and Tanner, R. (2007). 'Mobile peer-to-peer data dissemination
with resource constraints' in Proceedings of the 2007 international conference on
mobile data management, Washington, DC, USA, pp. 16-23.

Zheng, R., Hou, J.C., and Sha, L. (2003). 'Asynchronous wakeup for ad hoc networks'
in Proceedings of the 4th ACM international symposium on mobile ad hoc networking
& computing, Annapolis, Maryland, USA, pp. 35-45.

 65

Appendix A Message Formats

FileSearch

QueryHit

MetadataRequest
Bit

offse
t

0 1 2 3 4 5 6 7
Bit

offse
t

0 1 2 3 4 5 6 7
Bit

offse
t

0 1 2 3 4 5 6 7

0

Search ID

0

Search ID

0

Hit ID
8 8 8
16 16 16
24 24 24
32 Match option1 32

Hit ID

32 Metadata count2
40 Content type3 40 40

Page index

48
…

Search expression

48 56
56
64

InitMetadataTransfer FileProbe FileProbeHit

Bit
offse

t
0 1 2 3 4 5 6 7

Bit
offse

t
0 1 2 3 4 5 6 7

Bit
offse

t
0 1 2 3 4 5 6 7

0
TCP port

 0

Hash of probed file

 0

Hash of probed file
8 8 8
16

Page count
 16 16

24 24 24
 32 32
 40

…
Indexes of chunks needed4

 40
…

Indexes of available chunk

 FileDataRequest ReadyToSendFile

Bit
offse

t
0 1 2 3 4 5 6 7

Bit
offse

t
0 1 2 3 4 5 6 7

0

File hash

 0

File hash

8 8
16 16
24 24
32 32

 40

TCP port

 48

1 Specify how to match the search expression. Three possible values: any word -1 -, all words -2 -, exact - 3 -.
2 Maximum number of matched files whose metadata to return
3 What file type to match: - 0 - all, - 1 - audio, - 2 - video.
4 Represented as a bit field; a set bit means the chunk is available

 66

Appendix B ns-2 Simulation Script

#===
Initialization
#===
Phy/WirelessPhy set bandwidth_ 5.5Mb ;# Data rate
Phy/WirelessPhy set Pt_ 0.1 ;# Transmit power
Phy/WirelessPhy set RXThresh_ 9.55722e-10 ;# Receive power threshold
Phy/WirelessPhy set freq_ 2.442e9 ;# Data rate
Mac/802_11 set dataRate_ 5.5Mb ;# Rate for Data Frames
Mac/802_11 set basicRate_ 5.5Mb ;# Rate for Controle frames
Mac/802_11 set bandwidth_ 5.5Mb ;# Bandwidth
Mac/802_11 set RTSThreshold_ 2347 ;# Rate for Control Frames
Application/ThesisControlApp set sche_interval_ 60 ;# Rate for broadcasting FPROBE

==
Define options
==
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) [lindex $argv 0] ;# number of mobilenodes
set val(rp) DumbAgent ;# routing protocol
set val(x) 500 ;# Side of the simulation grid
set val(pt) 180
set val(sc) "scen_out/scen-$val(x)x$val(x)-$val(nn)-$val(pt)-1.5-1" ;# node movement pattern
set val(stop) 3600 ;# simulation duration(seconds)

==
Main Program
==

Initialize Global Variables

set MESSAGE_PORT 5566 ;# UDP port to listen to
set FILE_SIZE [lindex $argv 1] ;# File size (in chunks)
set ns_ [new Simulator]
set tracefile traces/thesis_test232_${val(nn)}n_${FILE_SIZE}c
set tracefd [open ${tracefile}.tr w]
set nf [open thesis_test2.nam w]
set proid [lindex $argv 2]
$ns_ use-newtrace
$ns_ namtrace-all-wireless $nf $val(x) $val(x)
$ns_ trace-all $tracefd

puts $tracefile

 67

set up topography object
set topo [new Topography]

$topo load_flatgrid $val(x) $val(x)

Create God

create-god $val(nn)

Create the specified number of mobilenodes [$val(nn)] and "attach" them
to the channel.
Here two nodes are created : node(0) and node(1)

configure node

 $ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan) \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace OFF \
 -macTrace OFF \
 -movementTrace OFF

 for {set i 0} {$i < $val(nn) } {incr i} {
 set node_($i) [$ns_ node]
 $node_($i) random-motion 0 ;# disable random motion
 }

Define nodes initial position in nam
for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ initial_node_pos $node_($i) 20
}

Attach UDP Message agents to nodes.
for {set i 0} {$i < $val(nn) } {incr i} {
 set udp_ag($i) [new Agent/MessagePassing]
 $node_($i) attach $udp_ag($i) $MESSAGE_PORT
}

Attach TCP agents to nodes.
for {set i 0} {$i < $val(nn) } {incr i} {
 set src($i,0) [new Agent/TCP/FullTcp/ThesisTcp]
 set sink($i,0) [new Agent/TCP/FullTcp/ThesisTcp]
 set src($i,1) [new Agent/TCP/FullTcp/ThesisTcp]
 set sink($i,1) [new Agent/TCP/FullTcp/ThesisTcp]

 68

 $ns_ attach-agent $node_($i) $src($i,0)
 $ns_ attach-agent $node_($i) $sink($i,0)
 $ns_ attach-agent $node_($i) $src($i,1)
 $ns_ attach-agent $node_($i) $sink($i,1)
}

Attach a ThesisControlApp application to each UDP agent (and therefore, each node)
for {set i 0} {$i < $val(nn) } {incr i} {
 set app($i) [new Application/ThesisControlApp]
 $app($i) attach-agent $udp_ag($i)
 # By default, each node is looking for file 1
 $app($i) need 1 $FILE_SIZE
}
Only node 3 owns the file
$app($proid) own 1 $FILE_SIZE

Attach Traffic generator/consumer to each TCP agent
for {set i 0} {$i < $val(nn) } {incr i} {
 $app($i) attach-tcpsource $src($i,0)
 $app($i) attach-tcpsink $sink($i,0)
 $app($i) attach-tcpsource $src($i,1)
 $app($i) attach-tcpsink $sink($i,1)

 set sender($i,0) [new Application/TcpApp/ThesisDataSender $app($i)]
 set rcver($i,0) [new Application/TcpApp/ThesisDataRcver $app($i)]
 set sender($i,1) [new Application/TcpApp/ThesisDataSender "$app($i) 1"]
 set rcver($i,1) [new Application/TcpApp/ThesisDataRcver "$app($i) 1"]
}

Define movement model
puts "... Loading movement file"
source $val(sc)

Start application for each node.
for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at [expr $val(pt) + 1*$i] "$app($i) start"
}

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at 3600.0 "$node_($i) reset";
}
$ns_ at $val(stop).0 "stop"
$ns_ at $val(stop).01 "puts \"NS EXITING...\" ; $ns_ halt"
proc stop {} {
 global ns_ tracefd nf
 $ns_ flush-trace
 close $tracefd
 close $nf

 69

exec nam thesis1.nam &
 exit 0
}

puts "Starting Simulation..."
$ns_ run

