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The nascent theory of projective limits of manifolds in the category of locally R-ringed
spaces is expanded and generalizations of differential geometric constructions, definitions,
and theorems are developed. After a thorough introduction to limits of topological spaces,
the study of limits of smooth projective systems, called promanifolds, commences with the
definitions of the tangent bundle and the study of locally cylindrical maps. Smooth im-
mersions, submersions, embeddings, and smooth maps of constant rank are defined, their
theories developed, and counter examples showing that the inverse function theorem may
fail for promanifolds are provided along with potential substitutes. Subsets of promanifolds
of measure 0 are defined and a generalization of Sard’s theorem for promanifolds is proven.
A Whitney embedding theorem for promanifolds is given and a partial uniqueness result for
integral curves of smooth vector fields on promanifolds is found. It is shown that a smooth
manifold of dimension greater than one has the final topology with respect to its set of C1-
arcs but not with respect to its C2-arcs and that a particular class of promanifolds, called
monotone promanifolds, have the final topology with respect to a class of smooth topological
embeddings of compact intervals termed smooth almost arcs.
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Chapter 1

Introduction

A promanifold ((M,C∞
M) , µ●) is a projective limit in the category of commutative locally R-

ringed spaces of a projective system SysM = ((M●,C∞
M●

)µij,N) consisting smooth manifolds

smooth and bonding maps that are smooth surjective submersions. A function f ∶ U → R

from an open subset U of M is smoothly locally cylindrical at a point m ∈ U if there exists

some i ∈ N, some Ui ∈ Open (Mi), and some function fi ∶ Ui → R such that m ∈ µ−1
i (Ui) ⊆ U

and f = fi ○ µi on µ−1
i (Ui). The sheaf C∞

M of continuous real valued functions on M consists

of all those continuous functions f defined on open subsets of M that are smoothly locally

cylindrical at every point of their domain. As was done in [20], we will use the sheaf C∞
M

of continuous real valued functions in lieu of a smooth atlas to extend many basic notions,

constructions, and results from smooth manifolds to promanifolds.

Before initiating a study of the differential geometry of promanifolds, we provide a thor-

ough introduction to limits of projective systems in the category Set and Top. In addition

to containing a review of limits in Top, this introduction also contains many new examples

and results. We find, for instance, sufficient conditions for a limit to be connected, locally

connected (prop. 2.5.5), path-connected, and locally path-connected (prop. 2.5.12). The

study of promanifolds then begins with a review of [20], which is the article that initiated

the theory of the differential geometry on projective limits of manifolds. We formulate and
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prove a generalized Whitney embedding theorem for promanifolds (thm. 11.6.5). We define

and study subsets of a promanifold that have measure 0, which then allows us to formulate

and prove Sard’s theorem (thm. 12.2.2) for promanifolds. Additionally, we show that a large

class of finite-dimensional promanifolds have locally trivial tangent bundles (prop. 9.0.2).

We show that the usual inverse function theorem (theorem 13.0.1) fails to generalize

from smooth manifolds to promanifolds. While investigating potential substitutes for the

inverse function theorem, we are led to a particularly well-behaved class of promanifolds,

called monotone promanifolds (def. 16.0.1), and to study the notion of coherence (def.

A.5.1), where we say that a space is coherent with a collection of continuous maps into it

if its topology is equal to the final topology induced by these maps. We prove that every

monotone promanifold is coherent with its set of smooth almost arcs at 0, which are those

smooth topological embeddings of [0,1] whose first derivatives do not vanish on ]0,1] and

all of derivatives vanish at 0. Knowing that monotone promanifolds are coherent with their

smooth almost arcs at 0 allows us to prove theorem 16.5.1, which provides a simple sufficient

condition for a smooth map between monotone promanifolds to be open.

We prove some substitute inverse function theorems with the first main result being

theorem 13.2.1, which gives a version of the inverse function theorem where the require-

ment of having a diffeomorphism between open subsets has been relaxed to merely having

a diffeomorphism between subpromanifolds. The second main result, theorem 13.4.1, is a

characterization of when a smooth map into a monotone promanifold is, at some given point,

a local diffeomorphism between open subsets. Theorem 13.4.2 leads to a conjecture about a

version of the inverse function theorem for promanifolds that could potentially characterize

local diffeomorphisms in terms of germs of vectors fields.
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Notation and Terminology for Elementary Concepts

The following table lists notation for some the basic concepts that the reader is assumed to

be familiar with. When using any of the following notation, we may omit writing a symbol

if it is clear from context.

Let x ∈ S ∈ Open (X) “Let S be an open subset of X containing x.” This notation will

only be used when x ∈X is already known. We may also replace

“Let” with “for some,” or “for all,” etc. or replace Open(X) with

Closed(X), Compact(X), etc.

L =
def
R “L is by definition equal to R” or if the symbol L is free then it is

shorthand for “let L = R.”

X ∖ Y Set subtraction: X ∖ Y =
def

{x ∈X ∣x ∉ Y }.

X − Y Minkowski set subtraction, where X and Y are subsets of some

additive group: X − Y =
def

{x − y ∣x ∈X,y ∈ Y }.

{0}n (resp. {c}N,

etc.)

For n ∈ N and c any object, {0}n =
def

(0, . . . ,0) (resp.

{c}N =
def

(c, c, . . .), etc.) is the n-tuple of 0’s (resp. the constantly c

sequence, etc.). {c}N also denotes the singleton set of all maps

N→ {c}, which we identify with this tuple.

(I,≤) A set I with a partial order ≤ on I.

(I,≤op) The dual order of (I,≤), where for any i, j ∈ I, i ≤op j ⇐⇒ j ≤ i.

I≥i0 , I<i0 , etc. Defined as I≥i0 =
def

{i ∈ I ∣ i ≥ i0}, where i0 ∈ I. The sets I<i0 , I>i0 ,

and I≤i0 are defined analogously.

ϕ≤j, ϕ>j, etc For ϕ = (ϕi)i∈I , ϕ≤j =
def

(ϕi)i∈I
i≤j

is ϕ’s first j ∈ I coordinates. ϕ>j,

etc. are defined analogously. If ϕ = (ϕi)i∈I then we will instead

write ϕ≤j, ϕ>j, etc.

3



Pr I→J = Pr J ,

Pr ≤i0 , etc.

For J ⊆ I, Pr J ∶ ∏
i∈I
Si → ∏

j∈J
Sj is the canonical projection onto the

coordinates in J defined by (si)i∈I ↦ (sj)j∈J . For i0 ∈ I,

Pr ≤i0 =
def

Pr I≤i0 , Pr >i0 =
def

Pr I>i0 , etc.

IdA The identity morphism of an object A.

InXS = InS The natural inclusion InXS ∶ S →X, where S ⊆X.

Ck(X→Y ) Ck-maps from X to Y , where k ∈ Z≥0 ∪ {∞}. Similarly,

Ck((X,x)→(Y, y)) denotes the Ck-pointed maps from X to Y .

Ck
X→Y (resp. Ck

X) Sheaf of Ck-maps from X into Y (resp. into R).

[G]x = Gx The set of germs at x ∈X, where G is a collection of maps defined

on neighborhoods of x in X.

(X,τX) A set X and a topology τX on X.

τX ∣
R

For R ⊆X, the subspace topology inherited from (X,τX) by R.

ClX(R) = R The closure of R in X, where R ⊆X.

IntX(R) The interior of R in X, where R ⊆X.

FrX(R) The frontier or topological boundary of R in X, where R ⊆X.

dimz Z The dimension of a (pro)manifold or vector space Z at z ∈ Z.

If z is omitted then this indicates that dimz Z is independent of

z ∈ Z and dimZ is this common value.

TM TM ∶ TM →M is the canonical projection from the tangent bundle

TM of a smooth manifold (or promanifold) M onto M .

diam(S) The diameter of S ⊆M in a metric space (M,d).

Defined as diam(S) =
def

sup
s,ŝ∈S

d(s, ŝ).

d(S,T ) Distance between S ⊆M and T ⊆M : d(S,T ) =
def

inf
s∈S,t∈T

d(s, t).

And for m0 ∈M we will write d(m0, T ) =
def
d({m0} , T ).

B
d

r(m0) Closed ball of radius r > 0 around m0 ∈M in (M,d), where

B
d

r(m0) =
def

{m ∈M ∣d(m,m0) ≤ r} should not be confused with the

notation Bd
r(m0) for the open ball’s Bd

r(m0) closure in M .

4



Bd
r(S) Open ball of radius r > 0 around S ⊆M : Bd

r(S) =
def

∪
s∈S

Bd
r(s).

f ∶D ⊆X → Y “f is a map on D with codomain Y where D ⊆X.”

We may also write D ∈ Open (X) or D ∈ Closed (X) in place of

D ⊆X.

f ∶ (X,R)→ (Y,S) “f is a map f ∶X → Y , R ⊆X, S ⊆ Y , and f(R) ⊆ S.”

If R = {x} or S = {y} are singleton sets then we omit writing { }.

co(S) The convex hull of a subset S of some vector space over R.

carr f The carrier of a map f ∶X → R, where R is contained in some

given additive group: carr f =
def

{x ∈X ∣ f(x) ≠ 0}.

supp f The support of f ∶X → R. Defined as supp f =
def

carr(f).

Im f The image or range of a map f .

f(R) f(R) =
def

{f(x) ∣x ∈ Dom(f) ∩R}, where R is any set.

f ∣
R
∶ R ∩D → S Restriction of f ∶D → Y to D ∩R considered as a map with

codomain S, where R and S are any sets such that f (R ∩D) ⊆ S.

f ∣
R

Denotes f ∣
R
∶ R ∩D → Y where f ∶D → Y and R is any set.

Set, Top, Man The category of sets (resp. topological spaces, smooth manifolds)

and maps (resp. continuous maps, smooth maps).

N, Z N = {1,2, . . .} and Z = {. . . ,−1,0,1, . . .}.

∪S (resp. ∩S) For S a set of sets, ∪S =
def

∪
S∈S

S (resp. ∩S =
def

∩
S∈S

S).

℘(X) The power set of a set X.

List of abbreviations:

LCTVS Locally Convex Topological Vector Space

LHS (resp. RHS) Left (resp. Right) Hand Side

resp. respectively

TVS Topological Vector Space
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Definition, Notation, and Convention 1.1.1. Let P be a set, S ⊆ P , and ≤ be a binary

relation on a set P , which we will identify the relation ≤ as a set of ordered pairs in the usual

way. When we write (S,≤) then we mean the restricted relation (S,≤ ∣
S×S) and we call S

an ideal of (P,≤) ([12, p. 36]) if for all s ∈ S and p ∈ P , p ≤ s Ô⇒ p ∈ S, or equivalently,

if S = ∪
s∈S
P ≤s. The binary relation ≤ on P a preorder (on P ) if it is reflexive and transitive

and it is called a partial order (on P ) if it is an antisymmetric (i.e. p ≤ q and q ≤ p implies

p = q) preorder on P . If S ⊆ P then an element p ∈ P is called an upper (resp. lower) bound

of S (in P ) if s ≤ p (resp. p ≤ s) for every s ∈ S and we say that ≤ directs P and that P is

directed (by ≤) if ≤ is a preorder and every pair of elements in P has an upper bound in P .

Notation and Convention 1.1.2. Unless indicated otherwise, (I,≤) and (A,≤) will hence-

forth denote partial orders. Elements of I will be denoted by h, i, j, and k while elements

of A will be denoted by a, b, c, and possibly d, which will prevent the rise of any ambiguity

from using the same symbol (i.e. ≤) to denote both order relations.

Definition 1.1.3. A map ι ∶ A → I is called order-preserving or an order morphism (from

(A,≤) to (I,≤)) if for all a, b ∈ A, whenever a ≤ b then ι(a) ≤ ι(b). We will say that the

order-preserving map ι ∶ A→ I is cofinal (resp. strict or increasing) if its image is cofinal in

I (resp. if a < b implies ι(a) < ι(b)).

Notation and Mnemonics 1.1.4. If the symbol ι (resp. α) represents a map between the

sets I and A then its prototype will be ι ∶ A → I (resp. α ∶ I→A) where the symbol ι (resp.

α) was chosen so that one may immediately determine that a value ι(a) (resp. α(i)) is an

element of I (resp. A). Given two order-preserving maps ι ∶ A → I and α ∶ I→A and an

element a ∈ A, we may write αι(a) =
def
α(ι(a)) to prevent an abundance of parentheses.

Remark 1.1.5. If ι ∶ A→ I is a cofinal order morphism between two preorders then A being

directed implies that I is directed.

Assumption 1.1.6. All categories will be assumed to be concrete categories. Each of

Group, Top, Man, etc. will be paired with its usual forgetful functor.
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Definition and Convention 1.1.7. If we say thatM is a manifold then we mean that it is

a Hausdorff second-countable locally-Euclidean topological space with a smooth structure.

By using the canonical identification described in remark C.0.3, we will identify the smooth

structure as either a smooth maximal atlas or equivalently by C∞
M , its sheaf of smooth R-

valued functions.

Remark 1.1.8. Observe that our definition of a manifold does not require that it be con-

nected nor that it have homogeneous dimension. This will be advantageous since even the

study of projective systems of connected manifolds may require us to work with induced

systems of disconnected manifolds whose dimensions diverge to infinity (e.g. if we wish to

apply lemma 3.2.1(6)).

Definition 1.1.9. Suppose M is a d-dimensional manifold with no distinguished metric.

Call a chart (U,ϕ) on M a (coordinate) ball (resp. box, cube) if ϕ(U) is an open ball (in the

Euclidean norm) in Rd (resp. a product of d-open intervals, a product of d-open intervals of

the same length). If (U,ϕ) is a chart onM and B ⊆M then we will say that B is an (proper)

open ball (resp. box, cube) in (U,ϕ) if ClM(B) = B ⊆ U and (B,ϕ∣
B
) is a coordinate ball

(resp. box, cube). A subset B ⊆M will be called an (proper) open ball (resp. box, cube) in

M if there exists some chart (U,ϕ) on M such that B is an open ball (resp. box, cube) in

(U,ϕ). It should be clear what is meant if we replace the word “open” in “(proper) open ball

(resp. box, cube)” with “closed” or if we add the words “centered at p”, “of radius r”, “with

sides of length l”, etc.

Convention and Remark 1.1.10. Although calling a map f open if it maps open sets

to open sets is not controversial, one finds in the literature that some authors call a map

f ∶ X → Y open if it maps every open subset of X to an open subset of Y , which is

the definition used in this paper (see def. A.0.6), while others require merely that these

images be open in Im f . To prevent this as well as other similar misunderstandings (and

their consequences), we will often rewrite the map’s prototype (e.g. we will usually write
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“f ∶ X → Y is open” or “f ∶ X → Im f is open” instead of simply “f is open”) so that the

reader may henceforth safely assume that the topological terms used in any definition (e.g.

“maps open sets to open sets”) are relative to the topologies of the domain and codomain

that presented in the prototype. The analogous assumptions can also be safely made if X

and Y are endowed with structures other than topologies, such as algebraic structures or

sheaves.

Lifts, Factorizations, Fibrations, and Sequences

Definition 1.1.11. An indexed collection of objects x● has infinite range or is infinite-ranged

if {xi ∶ i is an index } is infinite, that it is injective if whenever i and j are distinct indices

then xi ≠ xj and by a net (resp. sequence) of distinct points in a set X we mean an injective

net (resp. sequence). If x● is a net in a space X and x ∈ X then “x● → x is injective in X”

means that x● is injective, x ≠ xi for all indices i, and x● → x in X; the meanings of “let

x● → x be injective in X” and “suppose x● → x has an injective subsequence in X” should be

clear.

Let f ∶ X → Y be a map between spaces and let (yi)i∈I be a net in Y . If (yi)i∈I is

convergent in Y then by an f -lift of (yi)i∈I we mean an I-directed convergent net (xi)i∈I in

X such that f(xi) = yi for all i ∈ I. If there exists a net (xi)i∈I in X that is an f -lift of a

convergent net (yi)i∈I then we’ll say that f lifts (yi)i∈I to (xi)i∈I , that (yi)i∈I is f -liftable,

and that f can lift (yi)i∈I . When we write (xi)i∈I → x is an f -lift of (yi)i∈I → y then we mean

that (yi)i∈I converges to y in Y , f(x) = y, and (xi)i∈I is an f -lift of (yi)i∈I that converges to

x in X. ∎

Definition 1.1.12 summarizes the terminology related to expressing a given morphism in

terms of other morphisms. Most of the terminology is either based on or taken directly from

the terminology found in [5].

Definition 1.1.12. Let E,B,X, and Z be objects and let π ∶E→B be a morphism (in some
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given category). If f ∶ Z → B and f̃ ∶Z→E are morphisms such that f = π ○ f̃ then we will

call f̃ a π-lift of f (on Z to E) and call f the π-drop of f̃ (on Z to B). If for some given

morphism f ∶ Z → B there exists some π-lift of f then we will say that f is π-liftable (to E)

and that f arises as a π-drop (from E) (defined on Z).

If p ∶E→X is a morphism for which there exists a morphism p
̃
∶B→X such that p = p

̃
○π

then we will say that p factorizes through π, p is factorized through π (by p
̃
), and that p

descends (through π) to p
̃
.

E

B XZ

f̃ π

f p
̃

p

∎

It is apparent from the universal property of limits that the ability to find appropriate

lifts of a maps can be useful when working with inverse systems and their limits. This

naturally leads us to consider the homotopy lifting property, which we now generalize to a

definition that is well-suited to inverse systems in the sense that it will make the statement

of lemma 2.5.8 both concise and simple.

Definition 1.1.13. Let A,B,E, and Z be objects in a concrete category C such that A ⊆ Z

and the natural inclusion In ∶ A → Z is a morphism, and let π ∶E→B be a morphism. Say

that π has the extension lifting property from A to Z (in C) if for any morphism f ∶ A→ E,

whenever a morphism H ∶ Z → B extends π ○ f ∶ A → B to all of Z (i.e. H ○ In = π ○ f) then

there exists some π-lift, H̃ ∶ Z → E, of H extending f to Z (i.e. H̃ ○ In = f):

E

BZA
H

H̃
π

In

f

In Top, if this is true with Z = X × [0,1] and A = X × {0} then we say that π has the

homotopy lifting property with respect to X and π is called an X-fibration. If r ∈ Z≥0 then call
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π an r-fibration if it is a ∆n-fibration for all 0 ≤ n ≤ r, where ∆n is the standard n-simplex,

and where in the particular case that π is a 0-fibration we will follow [34] and say that π has

the path-lifting property. If π is an r-fibration for all positive integers r then we will call π a

weak fibration, a Serre fiber space, or a Serre fibration. If C ⊆ B then π is a fibration over C

if π∣π−1(C) ∶ π−1 (C)→ C is a fibration. ∎

Notation for Indexed Collections

The nature of inverse or direct systems regularly causes a proliferation of indices, where it is

unfortunately often the case that the more plentiful the indices then the more difficult a proof

or statement becomes to digest while simultaneously increasing the risk that the (usually

relatively simple) ideas or intuition underlying it is obscured or even entirely missed. So to

help avoid writing unnecessary indices we will now introduce some notation, conventions,

and definitions.

Definition, Notation, and Convention 1.1.14. We will denote a collection (Mi)i∈I (resp.

(mi)i∈I , (H i
α(i))i∈I , etc.) of objects indexed by some indexing set I by M● (resp. m●, H●

α(●),

etc.), where for each index i, the ith component of M● is the object Mi, which we may also

denote by (M●)i. If L is any set then M●∣L =
def

(Mi)i∈I∩L denotes the restriction of M● to L.

If f is a map and M● are sets then by f (M●) (resp. f−1 (M●), etc.) we mean the collection

(f(Mi))i∈I (resp. (f−1 (Mi))i∈I , etc.).

If S● = (Sl)l∈Λ then by S● ⊆M● we mean that Si ⊆Mi for all i ∈ I∩L whereas if we introduce

S● by saying “let S● ⊆M●” without specifying S●’s indexing set then it should be assumed that

S● is indexed by M●’s indexing set. By F● ∶M● → N (resp. G● ∶ N →M●, H●
α(●) ∶ Nα(●) →M●,

etc) we mean a collection of morphisms whose ith-component has prototype Fi ∶ Mi → N

(resp. Gi ∶ N → Mi, H i
α(i) ∶ Nα(i) → Mi, etc.) and if S● = (Sl)l∈Λ ⊆ M● then we’ll use

F● (S●) (resp. G−1
● (S●), (H●

α(●))
−1

(S●), etc.) to denote (F●(Mi))i∈I∩Λ (resp. (G−1
i (Si))i∈I∩Λ,

((H i
α(i))

−1
(Si))

i∈I∩Λ

, etc.). The meaning of ∩M●, S● ∪M●, and all other similar notation

should now be easy to deduce. ∎
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Mnemonical Notation and Convention 1.1.15. Given sets Z● (resp. Z●) and some

index λ, this index will always appear as a subscript (resp. superscript) to any element or

subset of Zλ (resp. Zλ) (e.g. we will write “let Sλ ⊆ Zλ” and never write “let S ⊆ Zλ”).

Remark 1.1.16. Although this convention does occasionally introduce an unnecessary in-

dex, by applying it consistently the net effect (in the author’s opinion) will be to increase

the overall readability of this paper if the reader adopts the perspective that this index is

nothing more than a persistent reminder of which set (i.e. which component of Z●) this

element or subset is contained within.

Definition and Convention 1.1.17. Given a collection of sets or maps (Sλ)λ∈Λ indexed

by some subset Λ ⊆ I, if we define Si =
def
∅ for all i ∈ I ∖ Λ then we will call the I-indexed

collection of sets (Si)i∈I the canonical ∅-extension (of (Sλ)λ∈Λ) (to I) and we may identify

this I-indexed collection of sets with (Sλ)λ∈Λ and thereby denote both by S●. ∎

Notation 1.1.18. We will henceforth always use M● = (Mi)i∈J and µ● = (µi)i∈J (resp.

N● = (Na)a∈B and ν● = (νa)a∈B) to denote, respectively, a collection of objects and a collection

of morphisms indexed by some subset J ⊆ I (resp. B ⊆ A) where if the subset J (resp. B)

is omitted or not clear from context then it is to be assumed that J = I (resp. B = A).

Furthermore, all µ● (resp. all ν●) will share the same domain (usually denoted by M (resp.

N)) and each µi (resp. νa) will have codomain Mi (resp. Na).

Definition, Notation, and Convention 1.1.19. Given any map ι ∶ A→ I, by a collection

of sets (resp. morphisms, maps, etc.) indexed by ι or an ι-indexed collection of sets (resp.

morphisms, maps, etc.) we will mean the pair consisting of an A-indexed collection of sets

(resp. morphisms, maps, etc.) together with ι, where if ι is understood then we may also refer

to the A-indexed collection (rather than the pair) as an ι-indexed collection. If (Sa
ι(a))a∈A is

an ι-indexed collection and ι is injective then we will drop the redundant index and instead

write this collection as Sι(●) = (Sι(a))a∈A and furthermore, we may use ι to identify this

A-indexed collection as an (Im ι)-indexed collection.
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On the other hand, if ι is not injective, say i =
def
ι(a1) = ι(a2) for a1 ≠ a2, then regardless

of whether or not Sa1
ι(a1) and S

a2
ι(a2) are equal, we will still frequently write Sι(a1) (resp. Sι(a2))

in place of Sa1
ι(a1) (resp. Sa2

ι(a2)) since it is easy to deduce from the symbols present which

of these sets we are referring to; however, we would not write “Si” since there is no way

to deduce from the symbols present if Si is referring to Sa1i or Sa2i . We further extend this

convention to the notation used when introducing the collection such a collection in the

following way: if it is the case (say in a proof or remark) that we will always be able to write

Sι(a) instead of Sa
ι(a) then rather than introducing this A-indexed collection by writing “let

S●
ι(●) = (Sa

ι(a))a∈A . . .” we will instead write “let Sι(●) = (Sι(a))a∈A . . .”.

Given any collection of sets R● = (Ri)i∈I indexed by I we will call an ι-indexed collection

of sets Sι(●) = (Sι(a))a∈A an (ι-indexed) collection of subsets (of R●) if Sι(a) ⊆ Rι(a) for all

a ∈ A. If Sι(a) = Rι(a) for all a ∈ A then we will call Sι(●) a subcollection of R●. ∎

Definition 1.1.20. If O is a collection of subsets of a set Z then if we say that G is a presheaf

of maps on O we mean that G is presheaf on O that assigns to each O ∈ O a non-empty

set of maps G(O) such that Domγ = O for all γ ∈ G(O) and that G’s restrictions are the

canonical restrictions of maps. If H is a collection of maps defined on subsets of Z and if

O is a collection of subsets of then say that H is closed under restrictions to O if for all

h ∈ H and O ∈ O, whenever O ⊆ Domh then h∣
O
∈ H. If H is closed under restrictions to

DomH =
def

{Domh ∣h ∈ H} then we will say that H is closed under restrictions and call H a

closed collection of maps (from subsets of Z).

Remark and Convention 1.1.21. To every presheaf G of maps on a collection of subsets

O of a set Z we can form the set of maps H =
def

∪
O∈O
G(O) that is closed under restrictions

while if H is a collection of maps defined on subsets of Z that is closed under restrictions

then the assignment defined by sending O ∈ DomH to G(O) =
def

{γ ∈ H ∣Domγ = O} forms a

presheaf of maps on DomH. It is clear that above constructions are inverses of each other

so we will henceforth identify collections of maps defined on subsets of Z that are closed

under restrictions with presheaves of maps on collections of subsets of Z. Consequently, this
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identification allows us to treat any presheaf of maps on a collection of subsets of Z as if

it was a closed collection of maps defined on subsets of Z and vice-versa, which we shall

henceforth do without comment.

Definition 1.1.22. Let h ∶ Z → M and h● ∶ Z → M● be maps, S ⊆ Z, and z ∈ Z. By

the h-saturation of S we mean the set h−1(h(S)) and we’ll say that S is h-saturated if

S = h−1(h(S)). Call S an h●-fiber of z or an h●-fiber containing z if there is some index i

such that S = h−1
i (hi(z)).

Germs, and Submersions and Immersions of Germs

Many of the definitions below, including that of trace, generalizes that of Bourbaki ([11]).

Definition and Notation 1.1.23. Let M be a set, Φ a collection of M -valued maps, Z a

space, z ∈ Z, z● = (zλ)λ∈Λ a net, and let R and S be two collections of sets. The trace of

R in M is trM(R) = {R ∩M ∶ R ∈R} while Φ∣R will denote the set of all restrictions ϕ∣
R

as ϕ ranges over Φ and R ranges over R. We will denote the trace of Nhdz(Z) in M by

[M]Zz and by [z●]Zz we mean [{zλ ∶ λ ∈ Λ}]Zz , where we may omit Z from the notation if it

is understood. If the domain of each map in Φ contains z and all of their values agree at

z then we’ll denote this common value by Φ(z) and call it the value of Φ at z. If m is any

point then let Φ∣
z
(resp. Φ∣

z→m) denote the set of all maps in Φ whose domains contain a

neighborhood of z (resp. and map z to m). Say that R is finer than S and that S is coarser

than R if for all S ∈ S there is some R ∈R such that R ⊆ S.

Many of the following definitions consist of definitions from Bourbaki ([11]) or their

generalizations.

Definition and Notation 1.1.24. Let Z be a set, F be a filter base on Z, z ∈ Z, G a set

of maps, and m any object. If R,S ⊆ Z then R and S have the same germ (with respect to

F) if there exists some F ∈ F such that R ∩ F = S ∩ F . This forms an equivalence relation
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on ℘(Z), the power set of Z, and the equivalence class containing a set R ⊆ Z is denoted by

[R]F and called the germ of R (with respect to F) where if Z is a space and F = Nhdz(Z)

then we will use the notation [R]z and call it the germ of R at z in Z.

Say that two maps γ and η have the same germ with respect to F ( resp. at z) or that they

have the same F-germ ( resp. at z) if there exists some F ∈ F such that F ⊆ Domγ ∩Dom η

and γ = η on F (resp. and z ∈ F ), where if Z is a topological space and F is a filter bases

for NhdS(Z) then we’ll say that γ and η have the same germ at z (in Z). This forms an

equivalence relation on G and the equivalence class containing a map g ∈ G, denoted by [g]GF ,

is called the germ of g (in G) (with respect to F) and the set of all germs in G will be denoted

by [G]F . If Z is a space, g ∈ G, and Dom g is a neighborhood of z in Z then call the germ of

g ∈ G with respect to Nhdz(Z) the G-germ of g at z in Z, denote it by [g]Gz , and let

[G]z =
def

[G∣
z
]
z

and [G]z→m =
def

[G∣
z→m]

z

If any of Z, F , or G are understood then they may be omitted from the notation. ∎

Remark 1.1.25. If G is a presheaf of maps instead of a set of maps, then the above definitions

and notation related to sets of maps generalize immediately in the obvious way.

Definition 1.1.26. Let F ∶ (M,m) → (N,n) be a pointed map, (Z, z) be a pointed space,

and G (resp. H) be a presheaf of M -valued (resp. N -valued) maps defined subsets of Z. If

γ is an M -valued map then let F∗(γ) =
def
F ○ γ. If we write F∗ ∶ G → H then we mean that

F∗(γ) = F ○ γ belongs to H for all γ ∈ G, which then allows F to descend to the following

map between germs at z:

F∗ ∶ [G]z Ð→ [H]z

[γ]z z→ [F ○ γ]z

which, by overloading notation, we will also write as F ∶ [G]z → [H]z (so F ([γ]z) =
def

[F ○ γ]z).

More generally, for Φ ∈ [G]z and Ψ ∈ [H]z, if we write either F∗(Φ) = Ψ or F (Φ) = Ψ then

we mean that there exists some γ ∈ Φ and some η ∈ Ψ such that F∗(γ) = F ○γ and η have the
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same H-germ at z, where in this case we will overload notation by letting both F∗(Φ) and

F (Φ) denote this germ. If Φ ∈ [G]z and we write either F∗(Φ) ∈ [H]z or F (Φ) ∈ [H]z then

we mean that there exists some Ψ ∈ [H]z such that F∗(Φ) = Ψ. If we write F∗ ∶ [G]z → [H]z

or F ∶ [G]z → [H]z then we mean that F∗(Φ) ∈ [H]z for all Φ ∈ [G]z.

We will write and say that

(1) F ∶ [G]z↖ [H]z is a germ submersion at m (from H germs (at z)) (to G germs) or that

F lifts H germs at z (through n) to G germs (at z) through m if for all Ψ ∈ [H]z→n

there exists some Φ ∈ [G]z→m such that Ψ = F∗(Φ).

(2) F ∶ [G]z↖ [H]z can lift germs (at z) through n if for all Ψ ∈ [H]z→n there exists some

Φ ∈ [G]z (not necessarily though m) such that F (Φ) = Ψ.

(3) F ∶ [G]z → [H]z is a germ immersion at m if for all Φ, Φ̂ ∈ [G]z→m, F (Φ) = F (Φ̂) Ô⇒

Φ = Φ̂.

(4) F ∶ [G]z → [H]z is a germ bijection atm if it is a germ immersion atm and F ∶ [G]z↖ [H]z

is a germ submersion at m.

where if we write F ∶ [G]z → [H]z instead of F ∶ [G]z↖ [H]z then we mean that in addition

to satisfying that definition we also have F ∶ [G]z → [H]z. ∎

Remark 1.1.27. The notation F ∶ [G]z↖ [H]z was chosen to emphasize that none of the

above definitions of germ submersion require F ∶ [G]z → [H]z. These definitions were moti-

vated by the situation where Z,M , and N are smooth manifolds and both G and H consist

of various sets of continuous maps from neighborhoods of z in Z into M and N , respec-

tively (e.g. say there are no additional restrictions on G while H consists solely of smooth

topological embeddings).

Example 1.1.28 (Boman Theorem). Recall ([1, p. 3], [27, cor. 3.14]) that one part of the

Boman theorem states that a map F ∶M → N between two manifolds is smooth if and only

if F ○ γ ∶ R → N is smooth for all smooth γ ∶ R → M . It is easy to see that we can express
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its equivalent formulation in terms of germs of smooth curves as: F ∶ M → N is smooth

if and only if F ∶ [C∞(R→M)]0 → [C∞(R→N)]0, where C∞(R→M) (resp. C∞(R→N))

denotes the set of all smooth curves into M (resp. N) with domain R. The second part of

the Boman theorem states that F ∶M → N is smooth if and only if f ○F ∶M → R is smooth

for all smooth f ∶ N → R.

Derivations

Definition 1.1.29. Let A be an algebra over a field F and let M be an A-bimodule. Then

a map D ∶A→M is an F -derivation into M or a derivation (over F ) into M if it is linear

over F and satisfies the product rule:

D(fg) =D(f)g + fD(g) for all f, g ∈ A.

If ev ∶A→F is an F -algebra homomorphism then we may make F into an A-bimodule by

defining

A × F Ð→ F

(a,α) z→ ev(a)α

with the right action of A on F defined analogously and we will denote the set of all F -

derivations from A into F by Derev(A→ F ). In the particular case where the F -algebra A

is a collection of either F -valued maps or equivalence classes of such maps, all of which may

be evaluated at some point p, then we will let

Derp(A→ F ) =
def

Derevp(A→ F )

where evp ∶A→F is the usual evaluation at p map (i.e. defined by evp(a) =
def
a(p)) and we

will call an element of Derp(A→ F ) an (F -)derivation at p (on A) (into F ). ∎
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Chapter 2

Limits in Set and Top

Just as a proper understanding of modern differential geometry would be made significantly

more difficult without a well-developed intuitive understanding of the topology of Euclidean

spaces and their construction from simpler spaces such as R, so too would a proper under-

standing of promanifolds (i.e. projective limits of manifolds) be made more difficult without

a well-developed intuition about their topology and construction from more basic spaces. For

this reason the introduction to limits in Top that follows is written in a way so that, to the

best of the author’s ability, the statements and their proofs obscure as little of the underlying

intuition that the author has about them. Furthermore, in addition to entirely new results

and extensions of well-known results, where “well-known” means that they can be found in

a standard reference on this subject such [11] or [12], even many of the well-known results

in this chapter have proofs that, to the best of the author’s knowledge, have not appeared

elsewhere. Before continuing, it is recommended that the reader have a basic understanding

of limits and colimits of systems where this can be obtained by reading Dugundji [12], which

was the author’s primary reference for this chapter, or Bourbaki [11].
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Introduction to Systems, (Co)Cones, and (Co)Limits

Systems

As the name suggests, limits may be thought of as the objects that would result if one were

able to “do a sequence of actions forever,” where the objects being acted upon and the rules of

these actions are encapsulated in the following definition of an inverse system. Example 2.1.8

may help clarify how, at least in the case when the system is ordered by N, the definition of

an inverse system captures these ideas. The definition of inverse system that we’ve adopted

is based the definition given in [12].

Definition 2.1.1. An inverse or projective system (over I) (in a concrete category C ) is a

quadruple (M●, µij, I,≤), which we may also denote by (M●, µij) or SysM , where (1) (I,≤) is

a partial order, (2)M● = (Mi)i∈I withMi an object in C for each index i ∈ I, (3) µij ∶Mj →Mi

is a morphism for all i, j ∈ I with i ≤ j with µii = IdMi
if i = j, and where these morphisms

satisfy the compatibility condition:

µij ○ µjk = µik whenever i ≤ j ≤ k

The morphisms µij are called the connecting maps or the bonding maps of the system.

If SysM = (M●, µij, I,≤) is a quadruple consisting of objects M●, morphisms µij, and a

partial order (I,≤), then call the quadruple

Sys op
M =

def
(M●, µij, I,≤op)

the dual or transpose of SysM , where ≤op represents the dual order of (I,≤). A direct system

is a quadruple (M●, µij, I,⪯) whose transpose (M●, µij, I,⪯op) is an inverse system. If SysM

is a projective or direct system ordered by (I,≤) then we will say that SysM is:

• directed if its partial order (I,≤) is a directed set.
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• surjective (resp. injective, etc.) if all connecting maps are surjective (resp. injective,

etc.).

• compact (resp. connected, etc.) if all objects are compact (resp. connected, etc.)

topological spaces.

• smooth (resp. smooth submersive) if all objects are smooth manifolds and all connecting

maps are smooth (resp. smooth submersions).

• pointed if all objects and maps are pointed. ∎

Remarks 2.1.2.

• Some authors (e.g. [5]) reserve the term bonding map for the particular case of I = N

and then only for connecting maps of the form µi,i+1.

• By viewing a partial order as a category in the usual way, a system may be viewed as

a functor from a partial order (I,≤) into C.

• The class of all inverse (resp. direct) systems in some given category will itself become

a category if we use definition 3.0.1 to define its morphisms. The same holds true of the

class of all inverse (resp. direct) systems when their orders (i.e. (I,≤)) are required to

belong to a certain category (e.g. systems indexed by directed partial orders, systems

indexed by N, etc).

• In the notation (M●, µij, I,≤), the symbol µij in this tuple actually represents a col-

lection of morphisms where there is one morphism for each pair of indices i, j ∈ I such

that i ≤ j; this tuple should properly be written as (M●, (µij)(i,j)∈ ≤, I,≤), where ≤ is

viewed a collection of ordered pairs from I × I. ∎

Convention 2.1.3. Since we will only be working in concrete categories, whenever we refer

to SysM as a system in Set then we are actually referring to the system that results from

applying the category’s forgetful functor to all of SysM ’s objects and connecting morphisms.
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Assumption and Notation 2.1.4. Unless indicated otherwise, we will henceforth assume

that SysM = (M●, µij, I,≤) and SysN = (N●, νab,A,≤) are projective systems where both

(I,≤) and (A,≤) are partial orders. If we declare that SysM and SysN are direct systems

then unless indicated otherwise, we will assume that these systems are the tuples SysM =

(M i, µji , I,≤) and SysN = (Na, νba,A,≤). Whenever we write “µpq” or “µqp” (resp. “νpq” or

“νqp”) then unless indicated otherwise, it should be assumed the p and q are indices in I

(resp. A) with p ≤ q. We will also usually assume that all Mi and Na are non-empty, where

it should be clear from context when this assumption is or is not being made. ∎

Example and Definition 2.1.5. Given any space Z and any partial order (I,≤) we can

form the constant or trivial system over I by letting Zi = Z and µij = IdZ for all i ≤ j in I.

We will denote this system by (Z, IdZ , I,≤), (Z●, IdZ , I,≤), or simply ConstSysZ .

Example and Definition 2.1.6. If J ⊆ I then the restriction of SysM = (M●, µij, I,≤) to

J , denoted by SysM ∣
J
and called a subsystem of SysM , is the system (M●∣J , µij, J,≤ ∣

J×J)

that consists of all those Mi and µij for which all indices belong to J .

Example and Definition 2.1.7. If J ⊆ I, i0 ∈ I, and Si0 ⊆Mi0 then the system induced by

Si0 and J (and i0) is

SysM ∣
J,Si0

=
def

(Sj, µjk∣Sk , J)

where for all j, k ∈ J with j ≤ k,

Sj =
def

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µ−1
j0,j

(Sj0) if j ≥ i0

Mj otherwise

and µjk∣Sk ∶ Sk → Sj. By the system induced by Si0 , denoted by SysM ∣
Si0

, we mean the

system induced by Si0 and J = I≥i0 .

Example 2.1.8. Let M● = (Mi)i∈N be any sequence of objects and let µ●,●+1 = (µi,i+1)i∈N be

a sequence of morphisms where µi,i+1 ∶Mi+1 →Mi for all i ∈ N. This collection of objects and

20



morphisms induces a projective system SysM =
def

(M●, µij,N,≤) when we define µii =
def

IdMi

and

µij =
def
µi,i+1 ○ µi+1,i+2 ○ ⋯ ○ µj−1,j ∶Mj→Mi

for i, j ∈ N with i+1 < j. Similarly, if given sequences of objectsM ● = (M i)i∈N and morphisms

µ●+1
● = (µi+1

i )i∈N where µi+1
i ∶M i→M i+1 for all i ∈ N then define µii =

def
IdM i and

µji =
def
µjj−1 ○ ⋯ ○ µi+2

i+1 ○ µi+1
i ∶M i →M j

for i, j ∈ N with i+1 < j so as to obtain a direct system. It is clear that the above definitions

of µii and µij (resp. µii and µji ) are the only ones that would make (M●, µij,N,≤) (resp.

(M ●, µji ,N,≤)) into an inverse (resp. direct) system.

Convention 2.1.9. Henceforth, we may define inverse (resp. direct) systems directed by N

by specifying only the bonding maps µi,i+1 (resp. µji ) where it should then be immediately

assumed that the bonding maps µij (resp. µji ) are defined as above for all i ≤ j.

Example and Definition 2.1.10. Suppose that R● = (Rj)j∈J is a collection of sets indexed

by some set J and give J the partial order induced by reverse set inclusion on R● (i.e.

j ≤ k ⇐⇒ Rk ⊆ Rj). For all i ≤ j, let Inij ∶ Rj → Ri, Ini ∶ ∩R● → Ri, and Ini ∶ Ri → ∪R●

denote the natural inclusions. It is straightforward to verify that if (J,≤) is directed then

(∩R●, In●) is a limit of the inverse system (R●, Inij, J,≤) while if (J,≤op) is directed then

(∪R●, In
●) is a colimit of the direct system (R●, Inij, J,≤

op).

If J is directed or contains a minimum element then let I = J where otherwise we will

stipulate that J not contain the symbol −∞ and then define I = J ∪ {−∞}. If I ≠ J and if

there is also some distinguished set X that contains each Rj as a subset then let R−∞ = X

and otherwise let R−∞ = ∪
j∈J
Rj, where in either case we also give I the partial order induced

by reverse set inclusion on (Ri)i∈I , which clearly extends J ’s original partial order and makes

−∞ into I’s minimum. By the (canonical) inverse system induced by R● (and inclusions) we

mean the inverse system SysR =
def

((Ri)i∈I , Inij, I,≤) where each Inij ∶Rj→Ri is the natural
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inclusion.

The next definition generalizes the definition, found in [45, Sheaves], of a presheaf of

objects of a category on a basis of a topology.

Example and Definition 2.1.11. Let C be some category, (Z, τZ) be a topological space,

and B be a basis for Z. A presheaf (of objects) in C on B is a direct system SysM =

(M(A), µBA,B,≤) in C where the partial order (B,≤) is reverse set inclusion and where we

writeM(A) instead ofMA in order to conform with the standard notation for presheaves.

If B = τZ then we call SysM a presheaf in C on Z and by a morphism of presheaves we mean

a direct system morphism (def. 3.0.1) between presheaves.

A prototypical example of a presheaf is CZ→M where for every open subset U of Z,

CZ→M(U) =
def
C(U →M) consists of all continuous maps from U into the given space M and

where the connecting maps are the usual restrictions of domains of functions (i.e. µVU (f) = f ∣V
for V ⊆ U open in X). It should now be clear that a presheaf (and indeed any system) may

be viewed as nothing more than an indexed collection of information (e.g. maps indexed by

open subsets of Z) where information between different indices are related to each other in a

consistent way (i.e. via the connecting morphisms, which satisfy the consistency condition).

By taking this point of view, it is natural to extend the definition of a presheaf by considering

direct system indexed by an arbitrary collection B of subsets of Z that is partially ordered

by reverse set inclusion; we will call any such direct system a presheaf on B. ∎

Example 2.1.12. Let (qj)∞j=1 be a sequence of natural numbers greater than 1 and for all

j ∈ N, define

ρj ∶ S1 Ð→ S1 ⊆ C

z z→ zj

and µj,j+1 =
def
ρqj , which gives us a projective system SysM =

def
(S1, µij,N). Suppose that for

each j ∈ N, we’ve written qj as the product qj =
λ(j)
∏
l=1

pj,l for some λ(j) ∈ N and some natural
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numbers pj,1, . . . , pj,λ(j) greater than 1. Let Sys
M̂

= (S1, µ̂ab,N) denote the system that is

defined just as SysM , except that the sequence p1,1, . . . , p1,λ(1), p2,1, . . . , p2,λ(2), p3,1, . . . is used

in place of q1, q2, . . ..

It is clear that SysM can be obtained from Sys
M̂

by restricting Sys
M̂

to some cofinal

J subset of N. Once the reader has knowledge of limits and lemma 2.1.37, this example

will entail that if we replace q1, q2, . . . with p1,1, . . . , p1,λ(1), p2,1, . . . , p2,λ(2), p3,1, . . . then (up to

a unique isomorphism) we would not have changed the limit of SysM . In particular, this

implies that to understand the limits of systems of the form defined above, it suffices to

understand the limits of such systems where every qj is prime. ∎

Example 2.1.13. Suppose that M is a smooth manifold and let T0M = M . We can

inductively define for every k ∈ N, the kth-order tangent bundle by TkM =
def

T(Tk−1M),

where for all k ∈ Z≥0, we will denote the canonical projection by Tk←k+1
M ∶Tk+1M →TkM or

by TTkM←Tk+1M . This gives us the following projective system of manifolds whose bonding

maps are smooth surjective submersions:

SysT∞M =
def

(TkM,Tk←k+1
M ,Z≥0).

Cones and Cocones

Definition 2.1.14. Let SysM be an inverse (resp. direct) system in some category C

where SysM = (M●, µij, I,≤) (resp. SysM = (M ●, µji , I,≤)), let Z is an object in C , and let

hi ∶ Z → Mi (resp. hi ∶M i→Z) be a collection of morphisms indexed by I, which we will

denote by h● (resp. h●). We will say that h● (resp. h●) is compatible or consistent with SysM

if µij ○ hj = hi (resp. hj ○ µji = hi) whenever i ≤ j, i.e. if the respective diagram commutes:
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Z

Mi Mj

hi hj

µij

Z

M i M j

hi hj

µji

cone (resp. cocone)

in which case we will call the pair (Z,h●) a cone (in C ) (from Z) into SysM (resp. call

(Z,h●) a cocone (in C ) from SysM (to Z)). The object Z is called the vertex of the cone

(resp. cocone) and we may also abuse terminology by referring to the collection of morphisms

h● (resp. h●), rather than the vertex and morphisms pair, as a cone (resp. cocone). Call

a cone or cocone epi (resp. mono., surjective, injective, etc.) if all hi ∶ Z → Mi (resp. all

hi ∶M i→Z) have that property. ∎

Observation 2.1.15. If SysM is a system in Set and h● = (hi)i∈I is any collection of maps

valued in M● with a common domain Z, then (Z,h●) is a cone into SysM if and only if hi is

constant on each fiber of hj for all i ≤ j in I.

The proof of the following remark is straightforward.

Remark 2.1.16 (Extending a cone from a cofinal collection). Suppose that SysM = (M●, µij, I)

is an inverse system, I is directed, and J ⊆ I is cofinal in I. If (hj)j∈J is a collection of mor-

phisms compatible with SysM ∣
J
then this collection can be uniquely extended to a collection

of morphisms (hi)i∈I compatible with SysM , which can be defined for each i ∈ I by hi =
def
µij○hj

for any choice of j ∈ J such that j ≥ i. Similarly, if SysM = (M ●, µji , I) is a directed direct

system then any collection of morphisms (hj)j∈J compatible with SysM ∣
J
can be uniquely

extended to a collection of morphisms (hi)i∈I compatible with SysM , where for each i ∈ I,

the ith component of h● can be defined by hi =
def
hj ○µji for any choice of j ∈ J such that j ≥ i.

In particular, if (I,≤) has a greatest element γ ∈ I (i.e. i ≤ γ for all i ∈ I), which implies

that (I,≤) is directed, then in fact every cone h● (resp. cocone h●) is completely determined

by its γth component and the system’s connecting morphisms. ∎
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Example 2.1.17. This original example shows that the extension in remark 2.1.16 may fail

to exist if (I,≤) is not directed: Let L, C, R, and ⋆ be any non-zero distinct objects and

define Z = {⋆}, ML = {L,C}, MR = {C,R}, M0 = {L,C,R}, I = {0, L,R}, and partially order

I by i ≤ j ⇐⇒ i = j or i = 0. For all i ∈ I, define µii = IdMi
and let µ0L and µ0R be the

natural inclusions (i.e. µ0L(L) = L, µ0L(C) = C = µ0R(C), and µ0R(R) = R) where observe

that SysM = (M●, µij, I,≤) is a partially ordered inverse system in Set.

Let J = {L,R} so J is cofinal in I and define

hL ∶Z Ð→ ML

⋆ z→ L

and hR ∶Z Ð→ MR

⋆ z→ R

Observe that since L /≤ R and R /≤ L, the partial order on J is i ≤ j ⇐⇒ i = j so the maps

(hL, hR) form a cone from Z into SysM ∣
J
= ({ML,MR},{µLL, µRR}, J) (and furthermore,

once we define the limit of a system it will be clear that the limits of both SysM and SysM ∣
J

are non-empty sets). Since (µ0L ○ hL)(⋆) = µ0L(L) = L is not equal to R = (µ0R ○ hR)(⋆),

there is no map h0 ∶ Z → M0 that would allow for {h0, hL, hR} to be a cone from Z into

SysM . ∎

Example 2.1.18. If (I,≤) has a greatest element γ ∈ I (i.e. i ≤ γ for all i ∈ I) then

µ●γ =
def

(µiγ)i∈I is a cone from Mγ into the inverse system SysM = (M●, µij, I). Similarly,

µγ● = (µγi )i∈I would be a cocone from the direct system (M ●, µji , I) into Mγ.

Example and Definition 2.1.19. If (M,µ●) is a cone into a system SysM then each

morphism h ∶ Z → M into M gives rise to a cone (Z,µ● ○ h), called the (canonical) cone

induced by h (and µ●), where µ● ○ h =
def

(µi ○ h)i∈I . Similarly, if (M,µ●) is a cocone from

SysM then each morphism h ∶ M → Z into M gives rise to a cocone (Z,h ○ µ●), called the

(canonical) cocone induced by h (and µ●).

If the map h ∶ Z → M from example 2.1.19 is a morphism in Set then it is possible for
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each µi ○ h ∶ Z →Mi to be surjective while h ∶ Z →M fails to be surjective. This motivates

the following definitions.

Definition 2.1.20 (µ●-surjective, µ●-open, etc.). Let (M,µ●) be a cone into SysM , h ∶ Z →

M be a map, and S ⊆M . Say that

• h ∶ Z → M is µ●-surjective (resp. µ●-open, etc.) if the same is true of the canonical

cone (Z,µ● ○ h), that is, if each µi ○ h ∶Z→Mi is a surjective (resp. open, etc.) map.

• S is µ●-open (resp. µ●-compact, µ●-dense, etc.) (in M●) if the same is true of µ●(S) in

M●, that is, if each µi(S) is an open (resp. compact, dense, etc.) subset of Mi.

• S is µ●-surjective if the same is true of the inclusion map InMS ∶S→M .

In particular, observe that S is µ●-surjective if and only if µi(S) =Mi for every index i. ∎

Observation 2.1.21. If SysM is a system in Top and (Z,h●) is any cone of quotient maps

into SysM then SysM is completely determined by the maps h● and the partial order ≤.

Limits and Colimits

Definition 2.1.22 (Limit and Colimit). Let SysM be a projective (resp. direct) system

where SysM = (M●, µij, I,≤) (resp. SysM = (M ●, µji , I,≤)). A cone (M,µ●) to (resp. cocone

(M,µ●) from) SysM is said to be an projective limit or limit (resp. direct limit or colimit)

of SysM if whenever (Z,h●) (resp. (Z,h●)) is any other cone into (resp. cocone from) SysM

then there exists a unique morphism h ∶ Z → M (resp. h ∶ M → Z) such that µi ○ h = hi

(resp. h ○ µi = hi) for all indices i, which we may abbreviate by writing µ● ○ h = h● (resp.

h ○ µ● = h●). In this case, the (respective) following diagram will commute for all i ≤ j in I,
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Z

M

Mi Mj

h

hi hj

µi µj

µij

Z

M

M i M j

h

hi hj

µi µj

µji

limit (resp. colimit)

and for each index i we will call µi (resp. µi) the ith projection (resp. ith insertion) morphism,

write (M,µ●) = lim SysM (resp. (M,µ●) = colim SysM), and call the unique morphism h the

limit of (Z,h●) (resp. of (Z,h●)) (into (M,µ●) (resp. from (M,µ●)) or simply into M

(resp. from M). We may also call the limit h ∶M → Z of the cocone the colimit of (Z,h●)

(from (M,µ●) or from M). We will denote the limit of SysM by whichever of the following

notations is most convenient,

lim←Ð SysM , lim←ÐM●, lim←Ð
i

Mi, lim←Ð
I

Mi, or lim←Ð(M●, µij)

where for direct limits, we will reverse the arrow and possibly replace “lim” with “colim.”

We may also omit writing any arrow by agreeing to take lim to mean lim←Ð and never limÐ→. We

will usually denote the vertex of this limit (resp. colimit) by M and if the projections are

understood then we may also refer to the vertex of the limit cone (resp. cocone) (i.e. M) as

the limit (resp. colimit) of SysM . Furthermore, we may use analogous notation (e.g. lim←Ðh●)

for the limit of a cone (resp. cocone).

In the above situation, we will say that (M●, µ●, µij, I,≤), (µ●, SysM), or (if (I,≤) is

understood) (M●, µ●, µij) is a projective representation of M . Call a representation of M

epic (resp. mono., surjective, injective, etc.) if this is true of the limit cone (M,µ●) and of

all connecting morphisms µij ∶Mj →Mi. ∎

Remarks 2.1.23.

• If a limit (resp. colimit) exists then it is unique up to unique isomorphism so we will
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frequently abuse language by referring to a particular limit (resp. colimit) as the limit

(resp. colimit) of a system.

• The ith insertion morphism µi of a colimit is sometimes referred to as the ith projection

by some authors, despite it not necessarily being a component of any cone. In par-

ticular, this means that the morphisms of a cone and of a cocone are sometimes both

called projections.

Notation and Convention 2.1.24. Unless indicated otherwise, we will henceforth assume

that (M,µ●) (resp. (N,ν●)) denotes a limit of SysM (resp. SysN), where recall from notation

2.1.4 that SysM (resp. SysN) denotes the system (M●, µij, I) (resp. (N●, νab,A)).

More generally, if an inverse system is denoted by (P●, παβ,Ω,≤) then unless indicated

otherwise, by the symbol P (i.e. P● with the subscript removed) we mean to denote the

vertex of a limit cone of this system and similarly, we will use π● = (πα)α∈Ω to denote this

limit cone’s morphisms, where πα ∶ P → Pα for each α ∈ Ω. Conversely, if P is the vertex of

the limit cone of some system then unless indicated otherwise, SysP should be assumed to

denote this system and P● should be assumed to denote this system’s objects. Analogous

notation will be used for direct systems and their colimits. ∎

The following convention will allow us to talk about and write many important set

equalities, such as the equality in corollary 2.3.10, in a natural way. It is well-known that

intersections of sets can be defined as limits.

Example and Convention 2.1.25. Suppose that R● = (Rj)j∈J is a collection of sets indexed

by some set J and let I, R−∞, and SysR =
def

(R●, Inij, I,≤) be as in definition 2.1.10. It is

straightforward to verify that ( ∩
j∈J
Rj, In●) is a limit of SysR where Ini ∶ ∩

j∈J
Rj→Ri is the

natural inclusion for each i ∈ I.

If for each j ∈ J , Rj was defined as a subset of some set Z (e.g. as in corollary 2.3.10)

and if we write lim←ÐR● without it being clear from context what projective system we are

28



taking the limit of, then it should be assumed that we are taking the limit of the above

canonical system and furthermore, if we write lim←ÐR● then unless explicitly stated otherwise

we will mean the cone ( ∩
j∈J
Rj, In●), which consequently justifies writing lim←ÐR● in place of

∩
j∈J
Rj. ∎

Characterizations of Limits

It is straightforward to verify the following well-known proposition.

Proposition 2.1.26. Let SysM be a projective system in Top and suppose that (M,µ●) is

a limit of SysM in Set. If M is given the weakest topology τ making all µ● continuous then

((M,τ), µ●) is a limit of SysM in Top.

The following lemma shows that when working in the category Set, to prove that a

particular cone is a limit of a system we need only to fix some singleton set {⋆} and then

check for the existence of unique limits of cones with vertex {⋆}. Similarly, it shows that

when working in the category Group it suffices to show existence of unique limits of cones

with vertex (Z,+). Except for the assertions (1) and (2), which are well-known, this lemma

is otherwise original.

Lemma 2.1.27. Let SysM be an inverse system in Set (resp. Group), (M,µ●) be a cone

into SysM in Set (resp. Group), and let D = {⋆} (resp. D = (Z,+)) where {⋆} denotes an

arbitrary singleton set. Then (M,µ●) = lim←Ð SysM in the category Set (resp. Group) ⇐⇒

for all cones (D,h●) into SysM there exists a unique map h ∶D→M satisfying µi ○h = hi for

all i ∈ I. Furthermore, if this is the case then

(1) for all m,m̂ ∈M , m = m̂ ⇐⇒ µi(m) = µi(m̂) for all i ∈ I.

(2) M = ∅ ⇐⇒ the only cone into SysM is the cone of empty maps (i.e. (∅, (∅)i∈I)).

Proof. In the category Set (resp. Group), for any set (resp. group) Z and any element

z ∈ Z define cz ∶D→Z by cz(⋆) = z (resp. cz(n) = nz).
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(Ô⇒ ) is immediate so to prove (⇐Ô ) let (Z,h●) be a cone into SysM and for all z ∈ Z

and i ∈ I define hzi =
def
hi ○ cz ∶D→Mi and observe that (D,hz●) is a cone into SysM in the

category of Set (resp. Group). For each z ∈ Z let hz ∶D→M be such that µi ○ hz = hzi for

all i ∈ I and define the map h ∶ Z →M by h(z) = hz(⋆) (resp. h(z) = hz(1)). For all z ∈ Z

and i ∈ I, in the category Set

(µi ○ h)(z) = µi(hz(⋆)) = hzi (⋆) = hi(z)

while in the category Group the same equality holds when ⋆ is replaced by 1, which shows

that µi ○h = hi for all i ∈ I. If k ∶Z→M is another map such that µi ○ k = hi for all i ∈ I then

for all i ∈ I and z ∈ Z we have

µi ○ k ○ cz = hi ○ cz = hzi

where the uniqueness assumption now implies that k ○ cz = h ○ cz so that k(z) = h(z), which

proves that h = z. This proves that (M,µ●) is the limit of SysM in Set.

If SysM is in the category Group then we must still show that h is a homomorphism so

let w, z ∈ Z and observe that for any index i,

(µi ○ ch(w)+h(z))(1) = µi(h(w) + h(z)) = µi(h(w)) + µi(h(z)) since µi is a homomorphism

= (µi ○ h)(w) + (µi ○ h)(z)

= (µi ○ h ○ cw)(1) + (µi ○ h ○ cz)(1)

= (hi ○ cw)(1) + (hi ○ cz)(1) = hi ○ (cw + cz)

= (hi ○ cw+z)(1) = (µi ○ hw+z)(1)

which implies that µi ○ ch(w)+h(z) = hi ○ cw+z so the uniqueness assumption now implies that

ch(w)+h(z) = hw+z where evaluating at 1 gives us h(w) + h(z) = h(w + z).

If (M,µ●) is the limit of SysM in Set and m,m̂ ∈M are such that µi(m) = µi(m̂) for all

i ∈ I then we obtain m = m̂ by considering the cone ({⋆}, h●) from the singleton set {⋆} into
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SysM where for each i ∈ I, hi ∶{⋆}→Mi is defined by hi(⋆) = µi(m). (2) is immediate since

(M,µ●) is a cone into SysM and maps with non-empty domains have non-empty images. ∎

The following example is well-known.

Example 2.1.28. If (I,≤) has a greatest element γ ∈ I then any inverse system SysM =

(M●, µij, I,≤) in a category C will have (Mγ, µ●γ) as a limit, where µ●γ = (µiγ)i∈I . This is

because if (Z,h●) is any cone into SysM then hγ ∶Z→Mγ is its unique limit morphism into

(Mγ, µ●γ). In particular, if (M̂, µ̂●) is any other limit of SysM in C then µ̂γ ∶ M̂ →Mγ is an

isomorphism in C.

The following proposition implies that in a category with limits, the vertex of a limit cone

of any system SysM indexed by a set is canonically the vertex of limit cone of a canonical

totally ordered system. Due to the simplicity of its statement, the author suspects that

following proposition may have already been discovered, in which case the author claims

merely to have discovered it independently.

Proposition 2.1.29. Let SysM = (M●, µij, I) be a partially ordered system with limit

(M,µ●), let I denote the set of all non-empty ideals in I (def. 1.1.1), partially order I

by set inclusion, and let A be a totally ordered subset of I such that I = ∪
a∈A

a. For all

a ∈ A, let SysNa =
def

SysM ∣
a
and suppose that (Na, ν●a =

def
(νia)i∈a) is a limit of SysNa .

For all a, b ∈ A with a ≤ b, since both (Nb, ν●b∣a = (νib)i∈a) and (M,µ●∣a) form cones into

SysNa , we will let νab ∶ Nb → Na and νa ∶ M → Na denote their respective limits. Then

SysN =
def

(N●, νab,A) defines a canonical inverse system, (M,ν●) defines a canonical cone into

SysN , and (M,ν●) = lim←Ð SysN .

Proof. Note that by the universal property of limits of cones we have µij ○νja = νia, νia ○νab =

νib, and νia○νa = µi for all i, j ∈ I with i ≤ j and a, b ∈ A with j ∈ a ≤ b. If a, b, c ∈ A with a ≤ b ≤

c then νab ○νbc = νac since for all i ∈ a, νia ○(νab ○νbc) = νib ○νbc = νic = νia ○νab. Let (Z, (ha)a∈A)

be a cone into SysN . For any i ∈ I, if i ∈ a and a ≤ b then νia ○ ha = νia ○ νab ○ hb = νib ○ hb so
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that hi =
def
νia ○ ha is well-defined and independent of the choice of a ∈ A that contains i. If

i ≤ j are in I and j is contained in a ∈ A then µij ○ hj = µij ○ νja ○ ha = νia ○ ha = hi, which

shows that (Z,h● =
def

(hi)i∈I) is a cone into SysM . Let h ∶ Z → M be the limit of (Z,h●) so

that µi ○ h = hi for all i ∈ I. If a ∈ A then by the uniqueness of limit morphisms we have

νa ○ h = ha since for all i ∈ a, νia ○ (νa ○ h) = µi ○ h = hi = νia ○ ha. If H ∶ Z →M is a morphism

such that νa ○H = ha for all a ∈ A then for any i ∈ a, µi ○H = νia ○ νa ○H = νia ○ ha = hi so

that the uniqueness of limits of cones implies that h =H. ∎

The Canonical Limit

It is straightforward to verify that the following cone is always a limit of SysM in Set.

Definition 2.1.30 (Bourbaki [11, I.4.4]). (Canonical Limit): If SysM = (M●, µij, I,≤) is a

projective system in the category of sets then we will call the following limit of SysM the

canonical limit (of SysM) (in Set):

M =
def

{m = (mi)i∈I ∈ ∏
i∈ I
Mi ∣µij(mj) =mi for all i ≤ j}

where the elements of M are called threads and where the projections are the restrictions to

M of the canonical projections onto the ith coordinate:

µi =
def

Pr i∣M ∶M Ð→ Mi

m = (ml)l∈I z→ mi

If SysM is a projective system in the category Top then we will giveM the weakest topology

making all µi’s continuous. For i ∈ I, by a µi-subbasic open set (in M) we mean a subset

of M of the form µ−1
i (Ui) for some Ui ∈ Open (Mi). By a (µ●-)subbasic open set (in M) we

mean a subset of M that is a µi-subbasic open set in M for i ∈ I, where in the case that

(I,≤) is directed then we will also call such a set a (µ●-)basic open set (in M).

Suppose that SysM is a system in the category of semigroups (resp. topological semi-
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groups) and write all groups multiplicatively. If for every i ∈ I we define

hi ∶M ×M Ð→ Mi

(m,m′) z→ µi(m) ⋅ µi(m′)

then it is readily verified that (Z,h●) is a cone in the category Set (resp. Top) from M ×M

into SysM whose limit map h ∶M ×M →M is a binary operation on M making M into a

semigroup (resp. topological semigroup). It is clear that this binary operation on M makes

every µ● into a morphism of semigroups (resp. continuous semigroups) and makes (M,µ●)

into the limit of SysM in the category of semigroups (resp. topological semigroups).

Now suppose that in addition everyMj has a unique identity element, which we’ll denote

by 1j, and that µij(1j) = 1i for all i ≤ j . Then there exists some element in M , which we’ll

denote by 1M , such that µ●(1M) = 1● where it is clear that 1M is an identity element of M .

Suppose that SysM is a system in the category of groups (resp. topological groups). Then

for any m ∈ M observe that µij((µj(m))−1) = (µij(µj(m)))−1 = (µi(m))−1 so that there is

some element in M , which we will denote by m−1, such that µ●(m−1) = (µ●(m))−1. It is clear

that for all m ∈M , this element m−1 is m’s multiplicative inverse inM . This group structure

on M makes every µ● into a homomorphism (resp. continuous homomorphism) and makes

(M,µ●) into the limit of SysM in the category of groups (resp. topological groups). ∎

Notation and Convention 2.1.31. If M is a pointed space with distinguished point

m0 ∈ M then SysM will be identified with the pointed system whose pointed spaces are

(Mi, µi(m0)), which then clearly makes all bonding maps and projections into pointed maps.

If each Mi has a uniformity Ui then we will henceforth assume that M has the weakest

uniformity, call it U , making all projections µi ∶M →Mi uniformly continuous. This is just

the relative uniformity on M induced from the product uniformity on ∏
i∈ I
Mi so that if all Mi

are Hausdorff then if all Ui are complete then so is U . The uniform topology onM generated
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by U is the same as the weakest topology making all µ● continuous. Note that all µi will be

uniformly continuous even if none of the bonding maps were but in case all bonding maps

are uniformly continuous then we will say that the inverse system is a uniform system. If the

index set is countable and all M● are metrizable (resp. completely metrizable) then so too

is M , where if di is the metric associated to Mi then we can associate to M the well-known

metric

d(m,m̂) =
∞
∑
i=1

di(mi, m̂i)
1 + di(mi, m̂i)

where m = (mi)i∈N and m̂ = (m̂i)i∈N.

Example 2.1.32. Working in either Set or Top, if (M,µ●) is the canonical limit of SysM

and (Z,h●) is a cone into SysM then it is immediately verified that

h =
def

(hi)i∈I ∶Z Ð→ M

z z→ (hi(z))i∈I

has range in M and is the limit of (Z,h●).

Properties of Limit of Cones

The next proposition lists either well-known properties or simple observations that the reader

may use to gain insight into how the components of a cone relate to its limit map.

Proposition 2.1.33. Let (Z,h●) be a cone of continuous maps into SysM with limit h.

(1) Suppose J ⊆ I and S● = (Sj)j∈J are sets such that Sj ⊆Mj for all j ∈ J . Then

h( ∩
j∈J
h−1
j (Sj)) = ∩

j∈J
µ−1
j (Sj) ∩ Imh

so in particular, for any i ∈ I and Si ⊆Mi, h(h−1
i (Si)) = µ−1

i (Si) ∩ Imh.

(2) If M is the canonical limit of SysM then M ∩ ∏
i∈ I
hi(S) = ∩

i
µ−1
i (hi(S)) for any S ⊆ Z.
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(3) If SysM is directed and S ⊆ Z then h(S) is a dense subset of ∩
i
µ−1
i (hi(S)) so that in

particular,

• if in addition M is both Hausdorff and the canonical limit of SysM then h(S)

being compact will imply that h(S) =M ∩ ∏
i∈ I
hi(S).

• if in addition Imhi is dense in Mi for each index i then Imh is dense in M .

(4) If Imhi is dense in Mi for some index i then Imµi is dense in Mi and M = ∅ ⇐⇒ Z =

∅ ⇐⇒ Mi = ∅.

(5) If S ⊆ Z and Vi =
def
hi(Z ∖S) for each i, then V =

def
Imh∖ ∩

i
µ−1
i (Vi) is a subset of h(S).

(6) For any index i and open subset Ui of Mi, h(h−1
i (Ui)) is open in Imh.

(7) If for some i, hi ∶ Z → Mi is injective (resp. a topological embedding) then for every

j ≥ i, the same is true of hj ∶ Z →Mj, h ∶ Z →M , µij ∣Imhj
, and µj ∣Imh

and furthermore,

µij ∣Imhj
= hi ○ h−1

j on Imhj, and µj ∣Imh
= hj ○ h−1 on Imh.

(8) If Z ⊆Mi then µi ○ h = IdZ ⇐⇒ µij ○ hj = IdZ for each index j ≥ i.

Proof. (1): Observe that

h−1( ∩
j∈J
µ−1
j (Sj)) = ∩

j∈J
h−1(µ−1

j (Sj)) = ∩
j∈J
h−1
j (Sj)

which implies the second of the following equalities:

∩
j∈J
µ−1
j (Sj) ∩ Imh = h(h−1( ∩

j∈J
µ−1
j (Sj))) = h( ∩

j∈J
h−1
j (Sj))

(2): Observe that µ−1
i (hi(S)) =M ∩ Pr −1

i (hi(S)) =M ∩
⎛
⎜
⎝
hi(S) ×∏

l∈I
l≠i

Mi

⎞
⎟
⎠
, where hi(S) is

intended to be in the ith position in the product, and so ∩
i
µ−1
i (hi(S)) =M ∩ ∏

i∈ I
hi(S).
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(3): If S = ∅ then each hi(S) is empty so h(S) = ∅ is a dense subset of ∩
i
µ−1
i (hi(S)) = ∅.

Hence, assume that S ≠ ∅. Let m ∈ ∩
l∈I
µ−1
l (hl(S)) and let µ−1

i (Ui) be an arbitrary basic

open neighborhood of m in M , where i ∈ I and Ui is open in Mi so that in particular,

µi(m) ∈ hi(S)∩Ui. Since (S, (hk∣S)k∈I) is a cone intoM with limit h∣
S
∶S→M we may apply

(1) to deduce that

µ−1
i (Ui) ∩ Im(h∣

S
) = h∣

S
(hi∣

−1

S
(Ui)) = h(S ∩ h−1

i (Ui))

so that if µ−1
i (Ui) ∩ h(S) = h(S ∩ h−1

i (Ui)) was empty then S ∩ h−1
i (Ui) = ∅, which would

imply that hi(S) ∩ Ui = ∅ and hence contradict µi(m) ∈ hi(S) ∩ Ui. Since by proposition

2.2.1 µ−1
i (Ui) was an arbitrary non-empty basic open subset of M , we’ve thus shown that

h(S) is dense in ∩
l∈I
µ−1
l (hl(S)).

(4): Since h(Z) ⊆M , M = ∅ implies Z = ∅ while if Z = ∅ then since ∅ = Imhi is dense

in Mi, it follows that M = ∅. That Imµi is dense in Mi follows from the fact that hi = µi ○h

and Imhi is dense in Mi.

(5): Let v ∈ V so that there exists some z ∈ Z such that v = h(z). Since v ∉ ∩
i
µ−1
i (Si)

there exists some index i such that v ∉ µ−1
i (Si). This implies that hi(z) = µi(h(z)) = µi(v) ∉

Vi = hi(Z ∖ S) so that in particular we must have z ∈ S. Thus v = h(z) ∈ h(S) so that

V ⊆ h(S).

(6): If Ui is an open subset of Mi then h(h−1
j (Uj)) = µ−1

j (Uj) ∩ Imh is open in Imh.

(7): The claims follow immediately from lemma A.7.1 and the equalities hi = µij ∣Imhj
○hj =

µi∣Imh
○ h and µi∣Imh

= µij ∣Imhj
○ µj ∣Imh

.

(8): If µij ○hj = IdZ for all j ≥ i then applying lim←Ð
j≥i

to both sides and using the functoriality

of inverse limits gives us µi ○ h = IdZ . ∎

Remark 2.1.34. Examples 2.3.11 and 3.4.4 give surjective cones who limits fail to be sur-

jective.
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The following lemma is a list of observations that we will henceforth use without comment.

Lemma 2.1.35. Let h ∶ Z →M be a continuous map from a space Z, let h● = µ●○h ∶ Z →M●,

S = Imh, and S● = Imh●. If i is any index then

(1) hi ∶ Z →Mi is injective (resp. an embedding) ⇐⇒ the same is true of hj ∶ Z →Mj for

all j ≥ i.

(2) µij ∣Sj ∶ Sj →Mi is injective (resp. an embedding) for all j ≥ i ⇐⇒ if the same is true

of µj ∣S ∶ S →Mj for all j ≥ i.

(3) If the statements in (1) hold then so do the statements in (2) and furthermore h ∶ Z →M

is injective (resp. an embedding), µij ∣Sj = hi ○ h
−1
j on Sj, and µj ∣S = hj ○ h−1 on S for

all j ≥ i.

(4) If Z ⊆Mi then µi ○ h = IdZ ⇐⇒ µij ○ hj = IdZ for each index j ≥ i.

Proof. (1) and (2) follow immediately from lemma A.7.1 by observing that hi = µij ○ hj and

µi∣S = µij ∣Sj ○ µj ∣S as does the fact that if any of the statements in (1) hold then so do the

statements in (2). Since h = lim←Ðhi, it follows from (1) that if any hj ∶ Z → Mj is injective

(resp. an embedding) then so is h ∶ Z → M . For any j ≥ i, it is clear from hi = µi ○ h that

µj ∶ S → Sj is injective we have that µi ○ (µj ∣S)
−1 = µij on Sj so that

hi ○ h−1
j = µi ○ h ○ h−1 ○ (µj ∣S)

−1 = µi ○ (µj ∣S)
−1 = µij ∣Sj

That µj ∣S = hj ○ h
−1 on S is apparent.

(4): If µij ○hj = IdZ for all j ≥ i then applying lim←Ð
j≥i

to both sides and using the functoriality

of inverse limits gives us µi ○ h = IdZ . ∎

The Canonical Colimit

Definition 2.1.36 (Canonical Colimit). Suppose that SysM = (M i, µji , I,≤) is a directed

direct system in Set and define an equivalence relation ∼ on the disjoint union ⊔
i∈I
M i by
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declaring mi ∈ M i and mj ∈ M j equivalent ⇐⇒ there exists some k ≥ i, j such that

µki (mi) = µkj (mj). Let

[⋅]∼ ∶ ⊔i∈IM
i→( ⊔

i∈I
M i)/ ∼

denote the natural map onto the identification space M =
def

( ⊔
i∈I
M i)/ ∼, which we may also

write as [⋅] SysM
or simply [⋅], where recall that ( ⊔

i∈I
M i)/ ∼ is the set of equivalence classes

of ∼. Observe in particular that if m ∈M then m = ([⋅]∼)
−1 (m), where this equality makes

sense since every equivalence class of ∼ is a subset of ⊔
i∈I
M i.

For each i ∈ I, let Ini ∶M i→ ⊔
l∈I
M l denote the canonical inclusion and let µi ∶M i→M

denote the composition

µi ∶ M i IniÐ→ ⊔
l∈I
M l

[⋅]∼Ð→M = ( ⊔
l∈I
M l)/ ∼

which we may also denote by [⋅]i∼, [⋅]
i
SysM

, or simply [⋅]i.

We will call the cocone (M,µ●) = (( ⊔
i∈I
M i)/ ∼, (µi)i∈I) the canonical colimit or the

canonical direct limit (of SysM) (in the category Set). If (Z,h●) is a cocone from SysM into

Z then let ⊔
i∈I
hi denote the map

⊔
i∈I
hi ∶ ⊔

i∈I
M i Ð→ Z

mi ∈Mi z→ hi(mi)

It is straightforward to verify that for every m ∈ M the image of the set m = ([⋅]∼)
−1 (m)

under this map is a (non-empty) singleton set and so we may denote the induced map by

h ∶M →Z

which may equivalently be defined as the map sending each µi(mi) ∈ M to hi(mi). It is

again straightforward to verify that h ∶ M → Z is the limit of (Z,h●) from (M,µ●) so that
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we will call this map the canonical (co)limit (of (Z,h●)) (from (M,µ●)), where we may write

h● or M in place of the respective cocone. For each m ∈ M , we may identify h(m) with

the singleton set ( ⊔
i∈I
hi)(m) = {h(m)} whenever this would not cause confusion so that in

particular, we would be justified in abusing the equality sign by writing h(m) = ( ⊔
i∈I
hi)(m).

If SysM is also a direct system in Top then we will give ⊔
l∈I
M l the strongest topology

making all Ini ∶M i→ ⊔
l∈I
Ml continuous and we will give M =

def
( ⊔
i∈I
M i)/ ∼ the strongest topol-

ogy making [⋅]∼ ∶ ⊔i∈IM
i→M continuous (i.e. the identification topology on M , which is the

same as the strongest topology making all µi ∶M i→M continuous). Observe that a subset

S ⊆ ⊔
l∈I
M l is open in ⊔

l∈I
M l ⇐⇒ (Ini)−1 (S) is open in M i for all i ∈ I and that a subset

T ⊆M is open in M ⇐⇒ (µi)−1 (T ) is open in M i for all i ∈ I. ∎

Cofinal Subsystems

The following lemma establishes the well-known fact that if we restrict a directed system to

a cofinal subset J of the indexing set then simply forgetting those µi whose index does not

belong to J results in the limit of the restricted system.

Lemma 2.1.37. If SysM = (M●, µij, I) is directed inverse system, J ⊆ I is cofinal in I, and

(M,µ● = (µi)i∈I) is a limit of SysM then (M, (µj)j∈J) = lim←Ð SysM ∣
J
.

Proof. Given a collection of morphisms hj ∶ Z → Mj indexed by j ∈ J that are compatible

with SysM ∣
J
= (Mi, µij, J) we may extend this collection to a system indexed by i ∈ I by

defining, hi = µijhj where j ∈ J is any element such that j ≥ i. By the universal property of

the limit (M, (µi)i∈I) there exists a unique morphism h ∶ Z →M such that µi ○ h = hi for all

i ∈ I and hence for all j ∈ J . If k ∶Z→M is any other morphism such that hj = µj ○ k for all

j ∈ J then for any i ∈ I, picking j ≥ i arbitrarily we have µi ○ k = µij ○ µj ○ k = µij ○ hj = hi

so that by the uniqueness property of h, we have that h = k. Thus (M, (µi)i∈J) is a limit of

this subsystem. ∎
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Convention 2.1.38. If I is directed, J ⊆ I is cofinal in I, and (mj)j∈J are such that mj ∈Mj

and µjk(mk) = mj for all j ≤ k in J , then we will henceforth without comment identify this

J-tuple (mj)j∈J with the element of M that is contained in the singleton set ∩
j∈J
µ−1
j (mj).

Remark 2.1.39. It is straightforward to verify that if (I,≤) is a countable directed partial

order then I contains a cofinal subset that is order isomorphic to a subset of N so that if

we are only concerned with a system’s limit up to isomorphism then lemma 2.1.37 allows us

replace a system indexed by (I,≤) with a subsystem indexed by a subset of N.

The following example is original.

Example 2.1.40. Lemma 2.1.37 may fail if (I,≤) is not directed: Let SysM and J be

as in example 2.1.17 and observe that the canonical limit of lim←Ð SysM is the singleton set

{(C,C,C)} while the canonical limit of SysM ∣
J
is ML ×MR, a set of cardinality 4.

Examples

Smooth Functions

The following example is original.

Example 2.1.41. Smooth functions defined via limits: Let Ω be a convex open subset of R,

a ∈ Ω,M0 = C(Ω) be the algebra of continuous R-valued functions on Ω, and letMi = Ri×M0

for all i ≥ 1. For each i ∈ Z≥0 define:

µi,i+1 =
def
µai,i+1 ∶Mi+1 Ð→ Mi

(p0, . . . , pi,A) z→ (p0, . . . , pi−1, pi + (x − a) 1

i + 1
A(x))

where by pi+(x−a) 1
i+1A(x) we mean the continuous function x↦ pi+(x−a) 1

i+1A(x) defined

on Ω. Observe that each µi,i+1 is injective: if µi,i+1(p0, . . . , pi,A) = µi,i+1(q0, . . . , qi,B) then

from pi + (a − a) 1
i+1A(x) = qi + (a − a) 1

i+1B(x) we can conclude that pi = qi and since then
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(x − a)A(x) = (x − a)B(x) on Ω ∖ {a} we can conclude that A = B. Hence, by lemma 2.2.8

we can identify the limit of SysM =
def

(M●, µij,Z≥0) with
∞
∩
i=1

Imµ0i.

Now suppose that f ∈ M0. Then f ∈ Imµ01 ⇐⇒ f = p0 + (x − a)A1(x) for some p0 ∈ R

and A1 ∈ M0 = C(Ω). If (p0,A1) ∈ Imµ12 then A1(x) = p1 + (x − a)1
2A2(x) for some p1 ∈ R

and A2 ∈ C(Ω) so that

f =p0 + (x − a)[p1 + (x − a)1

2
A2(x)]

=p0 + p1(x − a) +
1

2
(x − a)2A2(x)

If (p0, p1,A1) ∈ Imµ23 then A2(x) = p2+(x−a)1
3A3(x) for some p2 ∈ R and A3 ∈ C(Ω) so that

f =p0 + p1(x − a) +
1

2
(x − a)2[p2 + (x − a)1

3
A3(x)]

=p0 + p1(x − a) +
p2

2
(x − a)2 + (x − a)3

3!
A3(x)

It is clear that this pattern continues so we may conclude from Taylor’s theorem that for

k ∈ Z≥0, f is k-times continuously differentiable ⇐⇒ f ∈ Imµ0k and hence that f is smooth

⇐⇒ f ∈
∞
∩
k=1

Imµ0k, which we identified as the limit of SysM . Observe that the real numbers

p0, p1, p2, . . . are, respectively, the zeroth, first, second, etc. derivatives of f at a. It should

also be clear that if Ω was a convex open subset of Rd for some d ∈ N (instead of simply

a subset of R) then by introducing more indices and appropriately modifying the bonding

maps, we could extend this construction of Ck-functions to convex open subsets of Rd.

Observe that this constriction shows that one need not have ever even seen the usual

definition of the derivative (as a limit of divided differences) in order to define the Ck-

functions on Ω for k ∈ {1,2, . . . ,∞}, where we used Taylor’s theorem only to identify the set

of maps constructed above as the usual set of all Ck-functions. To gain intuition for why these

particular bonding maps produced the Ck-functions and for insight into the motivation that

led to their definitions, consider an arbitrary map f taken from C(Ω). If f was a polynomial
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then it is often the case that one wishes to factor out some linear factor, say for instance

that we would like to factor out x − a. However, in general f(a) need not be 0 so if this is

not possible then the next best alternative that one may reasonably hope for would instead

be to vertically shift f to f − f(a) and then attempt to factor out x − a. Generalizing this

to the case where f is not necessarily a polynomial, let us say that we can “shift-factor out

x − a from f ” if there exists some g ∈ C(Ω) such that f(x) − f(a) = (x − a)g(x). The maps

in the image of µ01 are exactly the continuous maps for which this is possible. Analogously,

the more linear factors that one may “shift-factor out” of f then the higher its order of

differentiability. Also, observe that if â ∈ Ω then f ∈ Imµa01 ⇐⇒ f is C1 ⇐⇒ f ∈ Imµâ01,

which simply means that if it is possible to “shift-factor out” some linear term then it is

possible to do so with any linear term.

The bonding maps of the above characterization of k-times continuous differentiability via

limits shows that if we wish to study Ck-maps on Ω then it is only natural to try to somehow

construct manifolds (or promanifolds) from the lists of constants pa0, pa1, . . . as a varies over

Ω that hopefully would also induce in some way a natural map from this construction onto

Ω. However, we would of course also prefer for any such construction to be diffeomorphism

invariant. The search for such a construction leads naturally to the kth-order jet bundle. ∎

Topological Limits and Inverse Limits

When first introduced to limits and colimits, it may not be clear why although we write

lim
n→∞

1

n
= 0 for this famous topological limit, we use the term “limit” to mean “inverse limit”

rather than “direct limit,” where in addition the arrow in the notation for a limit (i.e.

lim←Ð SysM) may appear to be “pointing in the wrong direction.” In this subsection, it is

hoped that the reader will conclude that it is natural have “limit” mean “inverse limit” and

that the aforementioned discord stems from using the notation lim
n→∞

xn, rather than lim
∞←n

xn,

for topological limits of sequences. We will first show in proposition 2.1.43 how topological

limits can be described in terms of an inverse system and its limit.
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Definition 2.1.42. By a possibly non-proper filter on a set X we mean a non-empty subset

F of ℘(X) that satisfies (1) and (3) of definition A.0.1. Clearly, every possibly non-proper

filter on X is either a filter on X or otherwise the powerset of X so for any subset S ⊆ ℘(X),

if S ≠ ∅ then there exists a unique smallest possibly non-proper filter on X containing S,

which we’ll call the possibly non-proper filter on X generated by S, while if S = ∅ then this

will refer to ℘(X). For any F ⊆ ℘(X) and any U ⊆X call the set

F ∣
U
=
def

{F ∈ F ∣F ⊆ U}

the restriction of F to U .

The following proposition is original.

Proposition 2.1.43 (Topological Limits as Inverse Limits). Let (X,τX) be a non-empty

topological space, x ∈ X, I be the set of all neighborhoods of x in X, and F a filter on X.

Partially order I by reverse set inclusion (i.e. V ≥ U ⇐⇒ V ⊆ U) and make ℘2(X) =
def

℘(℘(X)) into a category by defining for all objects R,S ∈ ℘2(X),

Mor℘2(X)(R,S) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

InSR if R ⊆ S

∅ otherwise

For all U ∈ I, let FU denote the possibly non-proper filter on X generated by F ∣
U
. Then

F ⊆ FV ⊆ FU for all U,V ∈ I with V ≥ U , SysF =
def

(F●, InFUFV , I,≤) is an inverse system in

℘2(X), and (F , (InFUF )
U∈I) is a cone into SysF . Furthermore, F → x in (X,τX) if and only

if (F , InF●F ) = lim←Ð SysF in the category ℘2(X).

Proof. For each U ∈ I, observe that FU = ℘(X) ⇐⇒ ∅ = F ∣
U
⇐⇒ U has no element of

F as a subset. Now if FU ≠ ℘(X) then there is some F0 ∈ F such that F0 ⊆ U so that if

F ∈ F then F ∩ F0, being an element of F that is a subset of U , is an element of F ∣
U
where
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now F0 ∩ F ⊆ F implies that F ∈ FU , which shows that F ⊂ FU . But if FU ≠ ℘(X) then

F ∣
U
≠ ∅ so that FU is a filter that is contained in F from which it follows that F = FU . Thus

FU ≠ ℘(X) ⇐⇒ FU = F , which in particular implies that F ⊆ FU . Now if U,V ∈ I and

V ⊆ U then since F ∣
V
⊆ F ∣

U
we have FV ⊆ FU . That SysF is an inverse system in ℘2(X)

and that (F , InF●F ) is a cone in SysF is now obvious.

If F → x in (X,τX) then FU = F for all U ∈ I so that SysF is just the constant

system whose limit is consequently (F , InF●F ). So assume now that F does not converge

to x in (X,τX) and pick a set U ∈ I that contains no element of F as a subset. Since

any V ∈ I with V ≥ U also contains no element of F as a subset we have FV = ℘(X)

which implies that SysF ∣
I≥U

is just the constant system whose limit in the category ℘(X)

is (℘(X), (InFV℘(X))V ∈I≥U). Since I≥U is cofinal in I and I is directed it follows that ℘(X) is

the limit of SysF in the category ℘2(X) so that, in particular, F is not a limit of SysF . ∎

The following example, which is essentially a lemma for example 2.1.45, will be used

to aid in the construction of some examples of promanifolds where by slightly varying the

systems’ objects or bonding maps, one can frequently use it as a basis for constructing

counterexamples.

Example 2.1.44. Obtaining the limit of a system as a subset of a surjective system’s limit:

Let SysM = (M●, µij, I) be an inverse system in Set with limit (M,µ●) where we will consider

the Mi’s to be pairwise disjoint. For each b ∈ A =
def
I, let Nb =

def
⊔
h≤b
Mh and let

νab ∶Nb Ð→ Na

mh ∈Mh z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mh if h < a

µbh(mh) otherwise

Let SysN = (N●, νab,A) and observe that this is an inverse system since the νab’s are clearly
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continuous and if a ≤ b ≤ c then for mh ∈Mh with b ≤ h ≤ c we have

νac(mh) = µah(mh) = µab(µbh(mh)) = µab(νbc(mh)) = νab(νbc(mh))

while the case of h < b is immediate.

Let us specialize to the case of I = N and we will now “arrange the Mi’s over the real

line” in the following sense: for each i ∈ N identify Mi with {1
i
} ×Mi and M with {0} ×

M where this identification extends to these sets’ elements (e.g. (0,m) is identified with

m). In particular, this means that Na is identified with ⊔
h≤a

( 1
h ×Mh). Let N be the set

({0} ×M)⊔(⊔
h
( 1
h ×Mh)). For all a ∈ N, define

νa ∶N Ð→ Na

n z→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µa(n) if n ∈M

n if n ∈Mh with h ≤ a

µah(n) if n ∈Mh with h > a

Observe that under our identifications we have M = ∩
b∈N
ν−1
b (Mb) while for all a ∈ N we have

Ma = ν−1
a+1(Ma). This construction is summarized in the following diagram:
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(0 ×M) ⊔ [ ⋯ ⊔( 1
a ×Ma)⊔ ⋯ ⊔ (1

3 ×M3) ⊔ (1
2 ×M2) ⊔ (1 ×M1) ]

( 1
a ×Ma)⊔ ⋯ ⊔ (1

3 ×M3) ⊔ (1
2 ×M2) ⊔ (1 ×M1)

(1
3 ×M3) ⊔ (1

2 ×M2) ⊔ (1 ×M1)

(1
2 ×M2) ⊔ (1 ×M1)

1 ×M1

IdIdIdIdµa

IdIdIdµ3a

IdIdµ23

Idµ12

Figure 2.1: From the bottom row going up: the sets are N1, N2, N3, Na, and N while the
maps are ν12, ν23, ν3a, and νa. This construction occurs in the category Set, not Top.

We will now show that (N,νa) = lim←Ð SysN in Set. Let (Z,ha) be an inverse cone into SysN

so that ha = νab ○ hb for all a ≤ b, where ha ∶Z→Na. Let z ∈ Z and first suppose that there

exists some a ∈ N such that ha(z) ∈Mk with k ≠ a. If for any b ≥ a we had hb(z) ∈Mk′ with

k′ > a then

ha(z) = νa,k′(hk′(z)) = µa,k′(hk′(z)) ∈Ma

contradicting ha(z) ∈Mh while if k < k′ ≤ a then

hk(z) = νk,k+1(hk+1(z)) = hk+1(z) = νk,k′(hk′(z)) = hk′(z) ∈Mk′

contradicting hk(z) ∈ Mk. Thus for all b ≥ a, hb(z) ∈ Mk so we can define h(z) = ha(z) ∈
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Ma ⊆ N where for all b ≥ a we have νb(h(z)) = νb(ha(z)) = ha(z) = hb(z). Now suppose

that there is no such a ∈ N so that ha(z) ∈ Ma for all a ∈ N. Observe that µab(hb(z)) =

νab(hb(z)) = ha(z) for all a ≤ b so that h∞(z) = (h1(z), h2(z), . . .) ∈M is defined and we will

write h(z) =
def
h∞(z) ∈ N to denote its consideration as an element of N , where observe that

νa(h(z)) = µa(h(z)) = ha(z) for all a ∈ N. We have thus defined the desired map h ∶Z→N

that satisfies νa ○ h = ha, where the uniqueness of this map is immediate. If SysM was an

inverse system in Top then by giving N the weak topology induced by the νa’s it will become

the limit of SysN in Top. ∎

The following example ties together the usual geometric intuition underlying the notion of

a sequence converging in a topology to the categorical definition of a limit. It also provides

intuitive justification for using the word “limit” (rather than “colimit”) to refer to inverse

limits instead of direct limits by showing how inverse limits geometrically relate to the

topological limit lim
n→∞

1

n
in R of the sequence ( 1

n
)
n∈N.

Example 2.1.45. Let us now specialize the above example to the case where M1 is a single

point. For all i ∈ N, let Mi be a distinct copy of M1, say Mi =
def

1
i ×M1, which we will identify

withM1, and let µij ∶Mj →Mi be IdM1 for i ≤ j. Continuing with the notation from example

2.1.44, in this case we can identify each Na with {1, . . . , 1
a
} and N with {0} ∪ {1, . . . , 1

a , . . .}

where explicitly,

νa,a+1 ∶Na+1 Ð→ Na

na+1 z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
a if na+1 = 1

a+1

na+1 otherwise

Since a basis neighborhoods of 0 ∈ N when N is given the weak topology (induced by the

νa’s) consists of sets of the form ν−1
a ( 1

a
) = {0} ∪ { 1

a ,
1
a+1 , . . .} it is clear that the subspace

topology that R induces on N is the same as the weak topology on N induced by the νa’s.

We have thus explicitly related the topological limit of the sequence 1, 1
2 ,

1
3 , . . . to categori-
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cal limits since, to summarize, we have shown that the limit in Top of the sets Na = {1, . . . , 1
a
}

(with the νab’s as the connecting maps) is {0} ∪ {1, . . . , 1
a , . . .}, which is just the sequence

{1, . . . , 1
a , . . .} together with the limit point (in R) lim

a→∞
1

a
= 0. In fact, since each Na is a mani-

fold the space N = {0}∪{1, . . . , 1
a , . . .} can be given the structure of a promanifold, which will

make N a simple non-trivial example of a promanifold (however, it space of global sections

is a subset of the restriction to each map in C∞
R (R) to N).

Let S = {⋆} be any singleton set and for each a ∈ N define

ha ∶ S Ð→ Na

⋆ z→ 1

a

It is clear that (S,h●) is a cone into SysN whose limit map, h∞ ∶S→N , is h∞(⋆) = 0.

Intuitively, therefore, the cone of maps ha ∶S→Na makes rigorous the geometric notion of

“following the sequence of points” ha(⋆) = 1
a to their topological limit h∞(⋆) = 0.

Remark 2.1.46. Recall that the filter generated by (1/i)∞i=1 is generated by the filter base

{Bi =
def

{1/j ∣ j ∈ N≥i} ∣ i ∈ N} and observe that each Ni in the above example was simply the

complement of Bi in {1/j ∣ j ∈ N}. So the intuition given by the above example is in this sense

more closely related to an intuitive understanding of what it means for a filter to converge

than it is to the usual intuitive understanding of what it means for a sequence of points to

converge (i.e. of “following a sequence of points to its limit”).

Intersections of Sets

We can say more than what was already mentioned in example 2.1.25 about expressing the

intersection of a collection of sets through limits.

Example 2.1.47. More on expressing intersections of sets via limits: Let J be any set that

does not contain the symbol −∞, let I = J ∪{−∞}, and let M● = (Mj)j∈J be any collection of

sets. Let M−∞ be any set that contains ∪
i
Mi where, in particular, if there is some Mj0 that
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contains ∪
j∈J
Mj then we may define M−∞ =Mj0 . If these M● are topological spaces then give

M−∞ the indiscrete topology.

Partially order I by declaring i ≤ j ⇐⇒ Mj ⊆Mi and observe that −∞ is a lower bound

of (I,≤). Let M = ∩
i∈I
Mi and for all i ≤ j in I let Inij ∶Mj →Mi and Ini ∶M →Mi denote the

natural inclusions. Then SysM =
def

(Mi, Inij, I,≤) is an inverse system in Ens and if each Mi

is a topological space, say with topology τi, and every Inij is continuous then it is also an

inverse system in Top. It is straightforward to verify that (M, In●) = lim←Ð SysM in Set, while

in Top, this will be true if M is given the topology τM generated by ∪
i∈I

(τi∣M), where τi∣M is

the subspace topology that M inherits from (Mi, τi). In particular, if all Mi are topological

subspaces of some space (X,τX) then τM will simply be the subspace topology τX ∣
M
. Since

the intersection of sets may result in the empty set, this example shows in particular that it

is possible for the limit of an inverse system to be the empty set even if every object of this

system is a non-empty set.

If it happens to be the case that j ≤ k ⇐⇒ j = k for all j, k ∈ J (i.e. Mk ⊆Mj ⇐⇒ j = k)

then ∏
j∈J
Mj = lim←Ð(Mi, Inij, J,≤) which is generally drastically different from M = ∩

j∈J
Mj =

lim←Ð(Mi, Inij, I,≤). In particular, this shows that the introduction of the lower bound M−∞

into the inverse system may drastically change the limit. In contrast, if (J,≤) is directed,

that is, for all i, j ∈ J there is some k ∈ J such that Mk ⊆Mi ∩Mj, then it is easy to verify

that the introduction of M−∞ is redundant since we could have defined I as I =
def
J and still

have obtained ∩
j∈J
Mj as the limit of (Mi, Inij, I = J,≤). ∎

Products

The following example and definition is well-known.

Example 2.1.48. The product of sets is an inverse limit: Let I be any set and let M● =

(Mi)i∈I be any collection of sets. If we partially order I by declaring that i ≤ j ⇐⇒ i = j

then we obtain an inverse system SysM =
def

(Mi, Inij, I,≤) whose limit is (∏
i∈I
Mi,Pr ●), where

each Pr i is the canonical projections onto Mi.
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The following lemma is an exercise that can be proved by using the universal property

of inverse limits or by using the facts that products are limits and that limits commute.

Lemma 2.1.49 (The limit of the products is the product of the limits). Let SysMα =

(Mα
i , µ

α
ij, I

α) be a collection of inverse systems indexed by α ∈ A (where A is some indexing

set) and for each α ∈ A let (Mα, µαi ) = lim←Ð SysMα . Let I =
def
∏
α∈A

Iα have the usual product

order and for all i = (iα)α∈A ∈ I let µi =
def
∏
α∈A

µαiα ∶ ∏
α∈A

Mα→ ∏
α∈A

Mα
iα and define the product

system by

Sys∏Mα =
def

(Mi =
def
∏
α∈A

Mα
iα , µij =

def
∏
α∈A

µαiαjα , I)

Then (∏
α∈A

Mα, µ● = (µi)i∈I) = lim←Ð Sys∏Mα . Furthermore, in the case where all Iα are order

isomorphic then we can use I = Iα (α ∈ A arbitrary) in place of the product order.

The following example and definition is well-known.

Example and Definition 2.1.50 (Fibered Products and Coproducts). Let I consist of the

three distinct objects L, B, and R, and partially order I by declaring i ≤ j ⇐⇒ i = j or i = B.

Suppose that µBL ∶L→B and µBL ∶R→B are morphisms and let µLL = µLL, µBB = µBB, and

µRR = µBR denote the identity morphisms on the objects L, B, and R, respectively. This

makes SysM =
def

({L,B,R}, µij, I,≤) into an inverse system that is frequently denoted by

L
µBLÐÐ→ B

µBR←ÐÐ R. If (M,µ●) is a limit of this system then (M,{µL, µR}) is called a pullback

or fiber(ed) product of ML
µBLÐÐ→ MB

µBR←ÐÐ MR and its vertex is often denoted by L ×B R. If

working in the category Set, Top, or Man then the reader may have seen L ×B R defined

to be the set {(l, r) ∈ L ×R ∣µBL(l) = µBR(r)}, which is readily seen to just a simplification,

tailored to this system, of the definition of the vertex of the canonical limit of SysM .

If we instead had morphisms µLB ∶B→L and µRB ∶B→R then ({L,B,R}, µji , I,≤) is a direct

system that is usually denoted by L
µLB←Ð B

µRBÐ→ R. If (M,µ●) is a colimit of this system then

(M,{µL, µR}) is called a pushout or fibered coproduct of L
µLB←Ð B

µRBÐ→ R. ∎
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The Space of Sequences

The following topological vector space will be an important frequently recurring example of

a promanifold.

Example and Definition 2.1.51. For all 0 ≤ i ≤ j, let Pr ≤i,j ∶ Rj → Ri be the canonical

projections of the first i coordinates and let SysRN = (Ri,Pr ≤i,j,N). If I = {i1, i2, . . .} is a

(possibly finite) subset of N where i1 < i2 < ⋯ (< i∣I ∣ if I is finite) then SysRN ∣
I
= (Ri,Pr ≤i,j, I)

and the canonical limit M of this system consists of all elements of
∞
∏
i=0
i∈I

Ri of the form m =

((m1, . . . ,mi1), (m1, . . . ,mi1 , . . . ,mi2), . . .) where the canonical limit’s projection onto Ril

maps this element to (m1, . . . ,mil). This repetition of information becomes unwieldy so

for this system we will use the cone (
sup I

∏
i=1

R,Pr ≤i● =
def

(Pr ≤il)
sup I
l=1 ) as the canonical limit of

SysRN ∣
I
, where

Pr ≤il ∶
sup I

∏
i=1

R Ð→ Ril

m = (mi)sup I
i=1 z→ (m1, . . . ,mil)

The most important case for infinite-dimensional promanifolds occurs when I = N, in

which case RN is called the space of real sequences, which is described in more detail the

appendix. ∎

Solenoids

Example and Definition 2.1.52. Let SysM =
def

(S1, µij,N) be the system from example

2.1.12 where recall that for all j ∈ N, qj > 1 is an integer and µj,j+1 ∶S1→S1 is the map

µj,j+1(z) = zqj , where we consider unit circle S1 as a subset of C. The limit of such a system

is called a solenoid and if p is a prime and it happens that all qj are the same prime p then

the limit is called the p-adic solenoid. By lemma 2.1.37 and example 2.1.12, for the limit

(M,µ●) of SysM to be a p-adic solenoid it suffices that for all sufficiently large j, each qj

be some positive integral power of p. Since each S1 is a topological group and each µij is a

continuous homomorphism, SysM is an inverse system in the category of topological groups
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so that M is also a topological group.

It is well-known that solenoids are compact, connected, metrizable spaces that are neither

path-connected nor locally connected. Although the fact that solenoids are connected is a

simple corollary to proposition 2.5.24, for the reader who has not yet encountered it we

will now present the well-known standard proof that solenoids are connected; a proof that

is highly specialized to solenoids and that differs drastically from the proof of proposition

2.5.24: Let q0 = 1 and for each j ∈ N let γj ∶ R→ S1 be γj(θ) = eθ
√
−1/(qj−1⋯q0) and observe that

(R, γ●) is a cone of continuous surjective homomorphisms into SysM whose limit, γ ∶ R→M ,

is therefore a continuous homomorphism whose image is dense inM by proposition 2.1.33(3).

Since the closure of a connected set is connected it follows that M is connected.

Let 1M denote the multiplicative identity of M , let θ ∈ R be such that γ(θ) = 1M , and let

n ∈ N be such that θ = 2πn. From γ●(θ) = 1 it follows that θ = 2πn
q0...qj

for every j ∈ N which

implies that θ = 0 and thus that γ is injective. Also, γ is not surjective since, for instance,

if all qj are odd and we let mj =
def
eπ

√
−1(1−2/(q0⋯qj−1)) for each j ∈ N, then these m● define an

element m ∈M that is readily verified to not belong to the image of γ. Solenoids are among

the simplest non-trivial examples of promanifolds that may be embedded in R3, which allows

one to gain intuition about their construction. Furthermore, it will be clear the path γ is

smooth when considered as a map into the promanifold M . ∎

Limits of Systems of Tori

Example 2.1.53 ([2]). Let T n = S1 ×⋯×S1 denote the n-torus. If k ∈ N then any separable

metrizable compact connected k-dimensional Abelian topological group G is isomorphic to

the limit of an inverse system SysT = (Ti, τij,N) where each Ti = T k is the k-torus and each

τij ∶Tj→Ti is a surjective continuous homomorphism, and conversely. Furthermore, either G

is the k-torus or else Hk(G) is isomorphic to an infinitely generated subgroup of (Q,+). In

particular, ifM is a regular orientable n-dimensional manifold and G is a compact connected

topological group embedded in M with dimension n or n − 1 then G is a torus.
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Gluing

The following example illustrates why the operation of “gluing sets together” is often thought

of in terms of colimits of a certain direct system.

Example 2.1.54 (Gluing and k-spaces). LetM ● = (M i)i∈I be any collection of sets, letM =
def

∪
i∈I
M i, partially order I by declaring i ≤ j ⇐⇒ M i ⊆M j, and for all i ≤ j, let Inji ∶M i→M j

and Ini ∶M i→M be the natural inclusions. Observe that SysM =
def

(M ●, Inji , I,≤) defines a

direct system in Set and that the partial order (I,≤) is not necessarily directed. Assume that

at least one of the following is true: (1) (I,≤) is directed and/or (2) {M i ∣ i ∈ I} forms a base

for a topology on M . It is readily verified that the cocone (M, In●) is the colimit of SysM in

Set, where the colimit of any cocone (Z,h●) in Set from SysM is the map h =
def

∪
i∈I
hi ∶M →Z.

The assumption that at least one of (1) and (2) holds was included since with the help of

proposition 2.1.55 it is not too difficult to come up with examples of M ● that satisfy neither

(1) nor (2) and where the cocone (M, In●) fails to be a colimit of SysM in Set.

Suppose now that the M i were endowed with topologies τM i making SysM into a direct

system in Top (i.e. making all Inji ∶ (M i, τM i)→ (M j, τMj) continuous). Define a topology

τM on M by declaring a subsets U ⊆ M to be open ⇐⇒ for each index i, U ∩M i is open

in (M i, τM i). Then ((M,τM), In●) is the colimit of SysM in Top: since it is already know

that (M,µ●) is the colimit of SysM in Set, to prove this assertion it suffices to show that

(a) each Ini ∶ (M i, τM i)→ (M,τM) is a morphism in Top (i.e. continuous) and (b) whenever

((Z, τZ), h●) is a cocone in Top from SysM into (Z, τZ) whose limit morphism in the category

of Set is the map h ∶M → Z then h ∶ (M,τM)→ (Z, τZ) is a morphism in Top. But (a) follows

from the definition of τM and (b) is immediate from the continuity of each hi = h ○ Ini and

the fact that M i ∩ h−1 (W ) = (h ○ Ini)−1 (W ) for all W ⊆ Z.

Now suppose that τ is a topology on M and that in addition to the sets M ● satisfying

at least one of (1) and (2) above, each (M i, τM i) is a topological subspace of (M,τ). Then

((M,τ), In●) = colim SysM in Top ⇐⇒ τ is coherent with (M i)i∈I . In particular, if M ●
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denotes the set of all compact subspaces of (M,τ) then this becomes a characterization of

when (M,τ) is a k-space. Now, by simply translating the universal property of colimits

we obtain the well-known result that (M,τ) is a k-space if and only if the following condi-

tion holds: whenever f ∶ M → Z is a map into a space (Z, τZ) then f ∶ (M,τ)→ (Z, τZ) is

continuous ⇐⇒ f ∣
K
∶ (K,τ ∣

K
)→ (Z, τZ) is continuous for all compact K ⊆M . ∎

Disjoint Unions

The following proposition defines and characterizes a disjoint union of sets as colimits of a

particular direct system, where this result is well-known since in terms of category theory,

this system is essentially just the coproduct diagram expressed as a direct system.

Proposition and Definition 2.1.55 (Disjoint Union). LetM ● = (M i)i∈I be any set of (not

necessarily pairwise disjoint) sets, partially order I by declaring i ≤ j ⇐⇒ i = j, and let

µii =
def

IdM i ∶M i→M i for all i ∈ I. Then SysM =
def

(M ●, µji , I,≤) is a direct system in Set and

every I-indexed collection of maps h● ∶M ●→Z into a set M is a cocone in Set from SysM .

Furthermore, if (M,µ●) is a cocone from SysM then (M,µ●) = colim SysM in Set ⇐⇒

(1) each µi ∶M i→M is injective, and (2) (Imµi)i∈I is a partition of M .

Call any cocone (M,µ●) that is a colimit of SysM , which clearly always exists, a disjoint

union of M ●, where if µ● is understood then we’ll instead say that M is a disjoint union of

M ●. The vertex of a disjoint union will usually be denoted by ⊔
i∈I
M i, ⊔

I
M i, or ⊔M ●.

Proof. If h● ∶M ●→Z is any collection of maps then it is immediately verified that (Z,h●)

forms a cocone from SysM .

(Ô⇒ ) Suppose that i ∈ I is such that µi ∶M i →M is not injective and let mi
1,m

i
2 ∈M i

be distinct elements of M i such that m =
def
µi(mi

1) = µi(mi
2). Let Z =

def
{mi

1,m
i
2} and for each

j ∈ I with j ≠ i let hj ∶M j→Z be arbitrary and define hi ∶M i → Z by hi ≡mi
2 on M i ∖ {mi

1}

and hi(mi
1) = mi

1. Since (Z,h●) is a cocone from SysM it has a limit h ∶ M → Z, which in

particular satisfies hi = h ○ µi. But for k = 1,2 we have mi
k = hi(mi

k) = h(µi(mi
k)) = h(m) =

h(m) so that mi
1 =mi

2, a contradiction. Thus each µi is injective.
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Now suppose that i, j ∈ I are distinct indices for which exists some m ∈ Imµi ∩ Imµj

and let mi =
def

(µi)−1 (m) and mj =
def

(µj)−1 (m). Let h● ∶M ●→Z be any collection of maps

such that hi(mi) ≠ hj(mj) and let h ∶ M → Z be the limit map of (Z,h●). Since hi(mi) =

h(µi(mi)) = h(m) = h(µj(mj)) = hj(mj), we have a contradiction.

Now suppose that S =
def

∪
i∈I

Imµi is not equal to all of M and let c ∈M ∖S. If S = ∅ then

let Z = {z1, z2} consist of two distinct elements and let zM1 (resp. zM2 ) denote the constantly

z1 (resp. z2) map on M . That each Imµi = ∅ implies that each M i = ∅ so that we trivially

have zM1 ○ µi = zM2 ○ µi for each index i so that tje uniqueness of limit morphisms gives us

zM1 = zM2 , a contradiction. Thus S ≠ ∅ so that we may pick some d ∈ S and define a map

h ∶M →M by letting h∣
M∖{c} be the identity map and then letting h(c) = d. Clearly, IdM

is the limit of the cocone (M,µ●) but since h ○ µi = IdM∖{c} ○µi = µi for each index i the

map h is also a limit of (M,µ●) so that uniqueness of limit morphisms gives us h = IdM , a

contradiction.

(⇐Ô ) Let (Z,h●) be a cocone from SysM . Since (Imµi)i∈I partitionsM for eachm ∈M ,

there exists a unique index ι(m) ∈ I such thatm ∈ Imµι(m), where observe that for all i ∈ I and

mi ∈M i we have ι(µi(mi)) = i. Define the map h ∶M → Z by h(m) =
def
hι(m)((µι(m))−1 (m)),

which is clearly well-defined. If i ∈ I and mi ∈M i then

h(µi(mi)) = hι(µi(mi))((µι(µi(mi)))
−1
(µi(mi))) = hi((µi)−1(µi(mi))) = hi(mi)

so that for all i ∈ I, hi = h ○ µi.

Now suppose that k ∶M →Z is any map such that k ○ µi = hi for all i ∈ I. Let m ∈ M ,

i =
def
ι(m), and mi = (µi)−1 (m), and observe that

k(m) = (k ○ µi)(mi) = hi(mi) = hi((µi)−1 (m)) = h(m)

which shows that k = h, as desired. ∎
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Systems Having Properties Locally/Eventually/Cofinally

To motivate the introduction of the original definition 2.1.60, we will begin by describing

some of the recurring issues that it was designed to solve.

Definition 2.1.56. Call a system in Top monotone if all of its connecting maps are mono-

tone.,

Remark 2.1.57. One issue with definition 2.1.56 is that such a system may be equivalent

to some other system that fails to have this property. By using example A.0.11 or example

A.0.12 it is not difficult to construct a monotone system that is equivalent to a system that

fails to be monotone. In particular, the requirement that all connecting maps be monotone

may prevent this property from being dependent only on the equivalence class of SysM .

Definition 2.1.58. Say that a system SysM = (M●, µij, I) in Top is compact (resp. locally

compact) if all M● are compact (resp. locally compact) and that it is proper if all of its

connecting maps are proper.

Remark 2.1.59. Despite how natural the above definitions are, an issue arises with them

for if we wish to describe in terms of SysM when its limit M is locally compact then as

proposition 2.5.25 shows, these definitions do not by themselves provide a satisfactory de-

scription. Similar problems occur when attempting to describe in terms of SysM when M

(or its projections) has other ”local” properties (e.g. locally connected, locally open map,

etc.).

Many of the results in this paper relating to the limitM and its projections are proved un-

der the assumption that all M● or all connecting maps have some given properties. However,

many of these results, in particular those describing local properties of M or its projections,

do not require that all M● or all connecting maps have these properties and instead weaker

hypotheses would suffices for the conclusion to be true. Often, once we have proved some
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result under the hypotheses that all M● or all connecting maps have certain properties then

it will be readily seen from the proof or from lemma 2.1.37 that the same conclusion would

still hold under the weaker hypotheses mentioned in the next definition. Remarks 2.1.57

and 2.1.59 and the definition and properties of locally cylindrical maps all motivated the

following definitions.

Definition 2.1.60. Suppose that P is a property that an inverse system can posses (e.g.

P may be the property that all of the system’s connecting maps are surjective). If SysM =

(M●, µij, I,≤) is a directed inverse system with limit (M,µ●) then we will say that

(1) SysM eventually has property P or SysM is eventually P if there exists an index i0

such that the subsystem indexed by I≥i0 has property P .

(2) SysM cofinally has property P or SysM is cofinally P if there exists a cofinal subset

J ⊆ I such that the subsystem indexed by J has property P .

If m ∈M is given then we will say that

(3) SysM eventually has property P at m or SysM is eventually P at m if for every index

h ∈ I there exists an index j0 ≥ h and some neighborhood Nj0 of µj0(m) in Mj0 such

that the inverse system induced by Nj0 and I≥j0 has property P .

(4) SysM cofinally has property P at m or SysM is cofinally P at m if for every index

h ∈ I there exists some subset J ⊆ I≥h that is cofinal in I, some index j0 ∈ J , and some

neighborhood Nj0 of µj0(m) in Mj0 such that the inverse system induced by Nj0 and

J has property P .

If we add the word “locally” to the above two definitions then (analogously to what it means

to be “locally connected at a point” or “locally compact at a point”, etc.) we mean that for

every open neighborhood U of m in M , the index j0 and neighborhood Nj0 in the above

definition can be chosen so that µ−1
j0
(Nj0) ⊆ U . To clarify this, we write the definitions

explicitly:
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(5) SysM locally eventually has property P at m or SysM is locally eventually P at m if

for every m ∈ U ∈ Open (M) and for every index h ∈ I there exists an index j0 ≥ i and

some neighborhood Nj0 of µj0(m) in Mj0 such that the inverse system induced by Nj0

and I≥j0 has property P .

(6) SysM locally cofinally has property P at m or SysM is locally cofinally P at m if

for every m ∈ U ∈ Open (M) and every index h ∈ I there exists some cofinal subset

J ⊆ I, some index j0 ≥ h in J , and some neighborhood Nj0 of µj0(m) in Mj0 such that

µ−1
j0
(Nj0) ⊆ U and the inverse system induced by Nj0 and J has property P .

If we omit mention of the point m ∈ M in definition (5) or (6) then we mean that it holds

for all m ∈M . ∎

Remark 2.1.61.

• Of course, if P consists solely of conditions dependent on the individual bonding maps

or the individual spaces (and not, say, on some more complicated relationship be-

tween them) then the index h in the above definition is redundant and, along with the

condition j0 ≥ h, can be ignored.

• Observe that (1) Ô⇒ (2) ∧ (3), (2) ∨ (3) Ô⇒ (4), (5) Ô⇒ (3) ∧ (4) ∧ (6) and that

all of these imply (4).

• Recall that the property of being a monotone system is generally not solely dependent

on the equivalence class of the system. However, clearly in some subcategories of inverse

systems of Top the property of cofinally being a monotone system is dependent only

on the equivalence class of the system.

Non-empty Limits and Surjectivity of Projections

Since limits in Set and Top always exist, when we say that the limit M of some system

exists then we will mean that M ≠ ∅. Although the empty set is important and has (often
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unintentionally) been studied extensively by many people, we will be primarily interested in

studying non-empty limits, which are the main focus of this section.

The next proposition consists mainly of well-known results found in [12], slight general-

izations of well-known results found in this reference, or straightforward observations. We

provide their full proofs in this introductory section as they may be instructive to a reader

who is uninitiated with limits in Top where in particular, the proposition’s proof of 4a has

not, to the author’s knowledge, appeared elsewhere and is also written in manner that, in the

author’s opinion, is more amenable to gaining geometric intuition than the standard proof.

Proposition 2.2.1. Let SysM = ((M●, τ●), µij, I,≤) be an inverse system in Top and let

((M,τM), µ●) denote its canonical limit.

(1) If each M● is, respectively, T1, Hausdorff, regular, or completely regular then M will

also have this property.

(2) If all M● are Hausdorff then M is a closed subspace of ∏
i∈I
Mi so that in particular, if

all M● are compact and Hausdorff then so is M .

(3) If I is directed then the intersection of finitely many subbasic open sets is again a

subbasic open set. In particular, this implies that

(a) the collection of all subbasic open sets form a basis for τM .

(b) a subset S ⊆M is dense (resp. nowhere dense) in M if and only if µi(S) is dense

(resp. µi(M ∖ S) dense) in Imµi for all i ∈ I.

(4) If all M● are non-empty compact Hausdorff spaces and I is directed then

(a) M is non-empty.

(b) Imµi = ∩
j≥i

Im(µij) for each index i.

(c) If µi(M) ⊆ Ui for some i ∈ I and Ui is open in Mi then there exists some j ≥ i such

that Imµij ⊆ Ui.
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(d) If in addition all M● are connected then M is also connected.

(5) If I is directed and contains a cofinal countable subset and if all M● are first (resp.

second) countable then so is M .

Proof. (1): Observe that each of these properties is preserved under arbitrary products and

subspaces so (1) follows immediately from the definition of the canonical limit.

(2): That M is closed in ∏
i∈I
Mi can be seen immediately by considering a net (mα)α∈A

contained in M that converges in ∏
i∈I
Mi to some m0 ∈ ∏

i∈I
Mi and then observing that the

canonical projections ∏
h∈I
Mh→Mj and the connecting maps µij ∶Mj →Mi are continuous for

all i, j ∈ I with i ≤ j. The compactness claim then follows from Tychonoff’s theorem.

(3): A basic open subset of M is of the form U = µ−1
i1

(Ui1)∩⋯∩µ−1
iq

(Uiq) for some indices

i1, . . . , iq ∈ I and some open subsets Uip of Mip (p = 1, . . . , q). Since (I,≤) is directed, we can

pick j ∈ I such that j ≥ ip for all p = 1, . . . , q. It follows from the continuity of each µip,j that

U =
q
∩
p=1
µ−1
ip (Uip) = ∩

p
(µip,j ○ µj)

−1 (Uip) = ∩
p
µ−1
j (µ−1

ip,j (Uip)) = µ
−1
j (∩

p
µ−1
ip,j (Uip))

is a sub-basic open subset of M . Since every basic open set is also a sub-basic open set the

characterization of when S ⊆M is dense inM follows immediately, which in turn implies the

characterization of when S is nowhere dense in M since (by definition) S is nowhere dense

in M if and only if M ∖ S is dense in M .

(4a): The proof of (4a) can be found in [12, pp. 428-429, 435], where it is shown that

(I,≤) being directed leads to the following closed subsets of the compact space ∏
i∈I
Mi

Sj =
def

{(pi)i∈I ∈∏
i∈I
Mi ∣ i ≤ j Ô⇒ pi = µij(pj)}, for j ∈ I

having the finite intersection property, which results in their intersection being non-empty.

However, by proving (4) with nets instead we obtain a simple proof that shows how an

arbitrary element of p = (pi)i∈i ∈ P =
def
∏
i∈I
Mi can be used as a seed for obtaining an element
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of M . To construct a non-constant net in P from p it is only reasonable to use (I,≤) as the

domain of our net and to consider the net:

I Ð→ P

j z→ pj = (pji)i∈I

where pji =
def

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µij(pj) if i ≤ j

pi otherwise

Since P is compact there exists a convergent subnet, meaning that there is a cofinal order

morphism ι ∶ (A,≤)→ (I,≤) from some directed set (A,≤) such that the net

A Ð→ P

a z→ pι(a)

converges in P to some point m = (mi)i∈I ∈ P .

It is now easy to see that m ∈M : the assumption that all connecting maps are continuous

(and the fact that the canonical projections Pr i ∶ P →Mi are always continuous) allows us

to permute lim
a∈A

and with these maps while the Hausdorff assumption gives us uniqueness

of limits of convergent nets, which allows us to show that the equalities necessary for m to

belong to M hold. We will now fill in these details for the interested reader: For any i ∈ I,

we have mi = Pr i(m) = lim
a∈A

Pr i(pι(a)) = lim
a∈A

µi,ι(a)(pι(a)) where the last equality holds since

there exists some a0 ∈ A such that i ≤ ι(a) for all a ≥ a0. For any i ≤ j in I we thus obtain

µij(mj) = lim
a∈A

µij(µj,ι(a)(pι(a))) = lim
a∈A

µi,ι(a)(pι(a)) =mi.

(4b): This result is derived as corollary 2.2.11 but it can also be immediately proven

as follows: To prove the non-trivial inclusion fix i ∈ I, assume that mi ∈ ∩
j≥i

Imµij, and let

Ni = {mi}. For all j > i observe that the set Nj =
def
µ−1
ij (mi) is compact, Hausdorff, non-empty

and that if k ≥ j then µjk(Nk) ⊆ Nj so that we can define nujk =
def
µjk∣Nk ∶ Nk → Nj. The

system SysN =
def

(Nj, νjk, I≥i) then satisfies the conditions of part (4a) of this theorem so that
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there exists some element n in the canonical limit of SysN . Since I≥i is cofinal in I it follows

that n ∈M and since µi(n) = νi(n) ∈ Ni = {mi}, the result follows.

(4c): Assume that Cj
i =

def
Imµij ∖ Ui ≠ ∅ for each j ≥ i. It is easy to see that (Cj

i )j∈I≥i

has the finite intersection property so that the set ∩
j≥i
Cj
i = ( ∩

j≥i
Imµij) ∖ Ui = Imµi ∖ Ui is

non-empty. Alternatively, one could define for each j ≥ i the set Nj =Mj ∖ µ−1
ij (Ui), observe

that µjk(Nk) ⊆ Nj, and then show that defining νjk and SysN as in the proof of (4b) leads

to existence of an impossible element of M .

(4d): Suppose that U and V are disjoint open subsets of M such that U ∪ V = M . For

each index i ∈ I, let Ui (resp. Vi) be the largest open subset of Mi such that µ−1
i (Ui) ⊆ U

(resp. µ−1
i (Vi) ⊆ V ) and observe that U = ∪

i∈I
µ−1
i (Ui) (resp. V = ∪

i∈I
µ−1
i (Vi)), Ui ∩ Vi = ∅,

and that i ≤ j implies µ−1
ij (Ui) ⊆ Uj (resp. µ−1

ij (Vi) ⊆ Vj). For each i ∈ I, let Wi = Ui ∪ Vi

and observe that (µ−1
i (Wi))i∈I is an open cover of M so that we may pick a finite subcover

indexed by i1, . . . , iq. Let j ∈ I be such that j ≥ ip for all p = 1, . . . , q and observe that

µ−1
ip,j

(Wip) ⊆ Wj for all p = 1, . . . , q, which implies that M = µ−1
j (Wj). By (4c) there exists

some k ≥ j such that Imµjk ⊆ Wj, which implies that Mk = µ−1
jk (Wj) = µ−1

jk (Uj) ∪ µ−1
jk(Vj).

But µ−1
jk (Uj) ⊆ Uk and µ−1

jk (Vj) ⊆ Vk implies that Mk = Uk ∪ Vk where Uk ∩ Vk = ∅ so that the

connectedness of Mk implies that one of Uk and Vk is ∅, say Uk = ∅, so that Vk =Mk. But

then M = µ−1
i (Vk) = V so that U = ∅.

(5) follows immediately from (3) and the facts that I is countable and that the union of

a countable collection of countable sets is again countable. ∎

Remark 2.2.2. Since the canonical limitM is a purely set theoretic construction (recall def.

2.1.30) so is the question of whether or not M = ∅. This means that proposition 2.2.1(4a)

shows how the existence of certain topologies on the sets M● can force a purely set theoretic

result (i.e. M ≠ ∅). Conversely, we can also use set theoretic results with proposition 2.2.1

to prove the non-existence of topologies with certain properties (e.g. as a simple example,

does there exist any Hausdorff topology on R making all open intervals of the form ]a, b[

with a, b ∈ R and a < b compact?).
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Example 2.2.3. The conclusion 4a of proposition 2.2.1 may fail without the Hausdorff

condition: For each i ∈ N, let Mi =
def

]0,1/i[ and form the inverse system directed by N where

eachMi is given the indiscrete topology and the bonding maps are the canonical inclusions.

Example 2.2.4. Let Mi =
def

]0,∞[i for all i ∈ N and let µi,i+1 be the canonical projection

so that the limit is M =
def

∞
∏
i=1

]0,∞[ with the canonical projections. Let S =
∞
∏
i=1

]1/i,∞[ and

observe that S =
∞
∏
i=1

[1/i,∞[. For any index i and any (m1, . . . ,mi) ∈ Mi the element m =
def

(m1, . . . ,mi,
1
i+2 ,1,1, . . .) belongs to µ−1

i (m1, . . . ,mi) but not to S. Since S does not contain

any fiber of any µi it follows from proposition 2.2.1(3) that S, and hence S =
∞
∏
i=1

]1/i,∞[, is

nowhere dense inM =
∞
∏
i=1

]0,∞[. In particular, observe that S is nowhere dense inM despite

how the ]1/i,∞[’s become “increasingly larger in ]0,∞[”. ∎

Generalized Mittag-Leffler Lemma

The following generalization of the Mittag-Leffler Lemma (Bourbaki II, 3.5 thm. I) and its

corollaries can be found in [35, pp. 310-313].The results of this subsection will not be used

anywhere else in this paper.

Lemma 2.2.5 (Generalized Mittag-Leffler Lemma). Suppose that each (Mi, di)i∈N is a com-

plete metric space and each µi,i+1 ∶ (Mi+1, di+1) → (Mi, di) is non-expansive. Let Si ⊆Mi be

non-empty for every index i ∈ N. If there exist positive (εi)∞i=1 such that for each i ∈ N

(1) ri =
def

∞
∑
j=i
εj <∞,

(2) di(si, µi,i+1(Si+1)) < εi for every si ∈ Si.

then the sets Bi0 =
def

∞
∩
i=i0

∪
si∈Si

µ−1
i (Bdi

ri
(si)) are non-empty (subsets ofM) and di(si, µi(Bi)) ≤ ri

for all indices i ∈ N and si ∈ Si. In particular, if Si ⊆ µi,i+1(Si+1) for all indices i then

Si ⊆ µi(M) for each index i.

According to [35], the first Mittag-Leffler lemma is likely Theorem 2.4 of Arens [4]. We

summarize Arens’ theorem as the following corollary of lemma 2.2.5.
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Corollary 2.2.6 (Mittag-Leffler Lemma [4, Thm. 2.4]). Suppose that all M1,M2, . . . are

non-empty complete metric spaces and that each µi,i+1 has an image that is dense in Mi.

Then (M,µ●) = lim←ÐM● is a complete metric space and the image of each µi is dense in Mi.

Observe that the generalized Mittag-Leffler lemma 2.2.5 follows immediately from the

next lemma, whose statement was obtained by inspection of the proof of lemma 2.2.5 in [35,

pp. 310-313] but whose proof, which is original, was inspired by imagining the set Rj (from

the proof) being “positioned above Ri” and then “falling” (via µij) onto the subset µij(Rj)

of Ri.

Lemma 2.2.7. Suppose that for each index i, (Mi, di) is a complete metric space, µi,i+1 ∶

(Mi+1, di+1) → (Mi, di) is non-expansive, Si ⊆Mi is a non-empty subset, and εi is such that

di(si, µi,i+1(Si+1)) < εi <∞ for all si ∈ Si. Assume that ri =
def

∞
∑
j=i
εj <∞ for some/all indices i.

Then for any index i0 and any si0 ∈ Si0 there exists some m ∈M =
def

lim←Ð SysM such that

(1) di0(µi0(m), si0) < ri0 , and

(2) di(µi(m), µij(Si)) < rj for all j ≥ i ≥ i0.

So in particular, di(µi(m), Si) < ri for all i ≥ i0.

Proof. Observe that for the conclusion to hold we need only to consider the subsystem

SysM ∣
I≥i0

indexed by I≥i0 so we will assume without loss of generality that i0 = 1. Having

picked s1, . . . , si such that sl ∈ Sl for all l = 1, . . . , i and dl−1(sl−1, µl−1,l(sl)) < εl for all

l = 2, . . . , i our assumption allows us to pick si+1 ∈ Si+1 such that di(si, µi,i+1(si+1)) < εi.

Since all µi,i+1 are non-expansive, it is clear that so too are all µij = µi,i+1 ○⋯○µj−1,j. It is

now straightforward to verify that for all i < j, di(si, µij(sj)) <
j−1

∑
l=i
εl: Fix i ∈ N, observe that

64



it’s true for j ∶= i + 1, and also that if it’s true for j ≥ i + 1 then we have

di(si, µi,j+1(sj+1)) ≤ di(si, µij(sj)) + di(µij(sj), µi,j+1(sj+1))

≤ di(si, µij(sj)) + dj(sj, µj,j+1(sj+1))

< (
j−1

∑
l=i
εl) + εj.

Since each µij is non-expansive, whenever i ≤ j ≤ k we have

di(µij(sj), µik(sk)) ≤ dj(sj, µjk(sk)) <
k−1

∑
l=j
εl

so that for each index i the sequence (µil(sl))∞l=i is Cauchy and letting k → ∞ we obtain

di(µij(sj), lim
k→∞

µik(sk)) <
∞
∑
l=j
εl = rj, which becomes di(si, lim

k→∞
µik(sk)) < ri when i = j.

For each index i, Ri =
def

{µil(sl) ∣ l ≥ i} is totally bounded and since (Mi, di) is complete

the set Ki =
def
Ri is compact. Observe that µij(Kj) ⊆ Ki so proposition 2.2.1(4a) gives us

that the vertex of the limit (K,µ●) of the inverse system (Ki, µij ∣Kj ,N) is compact and

non-empty. Let m ∈ K and observe that whenever i ≤ j, the compactness of Kj = Rj gives

us µij(Rj) = µij(Rj) so that µj(m) ∈Kj implies

µi(m) ∈ µij(Kj) = µij(Rj) = {µil(sl) ∣ l ≥ j} = {lim
l→∞

µil(sl)} ∪ {µil(sl) ∣ l ≥ j}

Since limits of convergent sequences are unique, we have ∩
j≥i

{µil(sl) ∣ l ≥ j} ⊆ {lim
l→∞

µil(sl)} for

each index i, which implies that

µi(m) ∈ ∩
j≥i

[{lim
l→∞

µil(sl)} ∪ {µil(sl) ∣ l ≥ j}] = {lim
l→∞

µil(sl)} ∪ ∩
j≥i

{µil(sl) ∣ l ≥ j} = {lim
l→∞

µil(sl)}

Thus for each index i, µi(m) is the limit of the Cauchy sequence (µil(sl))∞l=i so that, as was

shown above, di(si, µi(m)) < ri and di(µij(Sj), µi(m)) < rj for all j ≥ i. ∎
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Surjectivity of Projections

One direction of the equivalence in the following lemma, as well as the statement following it,

is well-known while the equivalence’s other direction appears to have either gone unnoticed

or unremarked upon for some reason.

Lemma 2.2.8. If (M,µ●) = lim←Ð(M●, µij, I) in Set (or in Top) and I is directed then the

following are equivalent:

(1) µi ∶M →Mi is surjective (resp. injective) for all indices i.

(2) µij ∣Im(µj)
∶ Im(µj)→Mi is surjective (resp. injective) for all i ≤ j.

Let Mi = Imµi, µij = µij ∣Mj
∶Mj→Mj, and µi = µi ∶M →Mi. Then SysM =

def
(M●, µij, I) is a

surjective inverse system with surjective limit (M,µ●) in Set (or in Top). Furthermore, if

(M,µ●) is the canonical limit of SysM then (M,µ●) is the canonical limit of SysM .

Proof. If (1) holds for surjectivity (resp. injectivity) then the surjectivity (resp. injectivity)

of µij ∣Im(µj) follows from the surjectivity (resp. injectivity) of µi and the equality µi = µij○µj =

µij ∣Im(µj)
○ µj. If (2) holds for surjectivity then

Mi = Im(µii∣Im(µi)
) = Im(IdMi

∣
Im(µi)

) = IdMi
(Im(µi)) = Im(µi)

so (1) holds for surjectivity. Now assume that (2) holds for injectivity and thatm,m̃ ∈M and

i ∈ I are such that µi(m) = µi(m̃). If j ≥ i then µij(µj(m)) = µi(m) = µi(m̃) = µij(µj(m̃))

and the injectivity of µij ∣Im(µj)
∶ Im(µj)→Mi implies that µj(m) = µj(m̃). Since (I,≤) is

directed and j ≥ i was arbitrary, it follows that m = m̃.

It is obvious that SysM is an inverse system and lemma 2.1.27 makes it is straightforward

to verify that (M,µ●) is a limit of SysM in Set. If SysM was a system in Top, then observe

that for any index i and any open subset Ui of Mi we have µ−1
i (Ui) = µ−1

i (Im(µi)∩Ui) =

µi −1 (Ui ∩Mi) so that the canonical sub-basic open subsets, and hence topologies, on M
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induced by µ● and µ● are identical, which shows that (M,µ●) is also the limit of SysM in

Top.

Now assume that (M,µ●) is the canonical limit of SysM and let M denote the object

of the canonical limit of SysM . If m = (mi)i∈I is in M then since mi = µi(m) we have

m = (mi)i∈I = (µi(m))i∈I ∈ ∏
i∈I

Im(µi) so that m ∈ M . Since we clearly have M ⊆ M the

equality of sets follows. It is now immediate from the definition of the canonical limit that

(M,µi) is the canonical limit of SysM in Set. ∎

A Sufficient Condition for a Non-empty Limit

If an inverse system is directed by N and if we can find a sequence of elements m =
def

(mi)i∈N ∈

∏
i∈N
Mi such that mi+1 ∈ µ−1

i,i+1 (mi) then m belongs to the canonical limit M so in particular,

M is necessarily non-empty. It is for the construction of such a sequence of elements that the

following lemmata will be useful. Another one of their uses is to give a sufficient condition

that will, under certain conditions, allow us to replace one directed inverse system with an

inverse system of subsets, all of whose connecting maps are surjective.

Lemma 2.2.9. Suppose (M,µ●) = lim←Ð SysM , where SysM = (M●, µij, I) is directed, and for

each index i, let Ri =
def

∩
l≥i
µil(Ml). Then

(1) for any cofinal subset J ⊆ I≥i we have Ri = ∩
j∈J
µij(Mj),

(2) each Ri contains both Imµi and µij(Rj), and if we consider all µi and µij ∣Rj as maps

into Ri then (Ri, µij ∣Rj , I) is an inverse system whose limit is (M,µ●), and

(3) if i ≤ j and ri ∈ Ri then µ−1
ij (ri) ∩ µjk(Mk) ≠ ∅ for each k ≥ j and if in addition

µ−1
ij (ri) ∩ ∩

l≥j
µjl(Ml) ≠ ∅ then ri ∈ µij(Rj).

In particular, if i ≤ j are indices such that the condition in (3) is satisfied for each ri ∈ Ri

then Ri = µij(Rj).
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Proof. Fix i and let K ⊆ I≥i be cofinal in I≥i. Let R = ∩
k∈K

µik(Mk) so that clearly Ri ⊆ R.

Fix some k ∈K and observe that if j ∈ I is such that i ≤ h ≤ k then µik(Mk) = µij(µjk(Mk)) ⊆

µij(Mj) which implies µik(Mk) ⊆ ∩
i≤j≤k
j∈I

µij(Mj). Since k ∈K was arbitrary it follows that for

any k0 ∈K,

∩
k∈K
k≤k0

µik(Mk) ⊆ ∩
i≤j≤k0
j∈I

µij(Mj)

where since every µik(Mk) from the left hand side also occurs on the right hand side we in

fact have equality. From here, we can now show that (1) follows:

R = ∩
k∈K

µik(Mk) = ∩
k0∈K

∩
k∈K
k≤k0

µik(Mk) = ∩
k∈K
k≤k0

∩
i≤j≤k0
j∈I

µij(Mj) = ∩
j≥i
j∈I

µij(Mj) = Ri

For all j ≥ i, applying (1) with K = I≥j gives

µij(Rj) = µij( ∩
l≥j
µjl(Ml)) ⊆ ∩

l≥j
µij(µjl(Ml)) = ∩

l≥j
µil(Ml) = Ri

Letting SysR = (Ri, µij ∣Rj , I) then clearly lim←Ð SysR ⊆M while if m ∈M then for each index

i we have µi(m) ∈ µij(Mj) for any j ≥ i so that µi(m) ∈ ∩
j≥i
µij(Mj) for all i and thus

m ∈ lim←Ð SysR, which proves (2).

Fix j0 ≥ i. and let si ∈ Ri. Define S =
def
µ−1
i,j0

(si) and for all l ≥ j0, let Sl = S ∩ µj0,l(Ml).

Observe that

si ∈ Ri = ∩
j≥i
µij(Mj) ⊆ µil(Ml) = µi,j0(µj0,l(Ml))

so that µ−1
i,j0

(si) ∩ µj0,l(Ml) ≠ ∅. Note that

∩
l≥j0

S ∩ µj0,l(Ml) = S ∩ ( ∩
l≥j0

µj0,l(Ml)) = S ∩Rj0

so that if µ−1
i,j0

(si) ∩Rj0 ≠ ∅ then S ∩Rj0 ≠ ∅ so we can conclude that si ∈ µi,j0(Rj0). ∎

Proposition 2.2.10. Let (M,µ●) = lim←Ð SysM , where SysM = (M●, µij, I) is directed, and
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for each index i, let Ri = ∩
l≥i
µil(Ml). Let R be a subcategory of Set and suppose that for all

i ≤ j, Mi, Imµij, and each fiber of µij over an element in Mi belongs to R. Partially order

R by reverse set inclusion and assume that the intersection of two spaces in R belongs to R

and that whenever ι ∶ I→R is an order morphism with each ι(j) ≠ ∅ then ∩ Im ι =
def

∩
i∈I
ι(i) is

non-empty. Then µij(Rj) = Ri for any i ≤ j so that in particular, when I = N then all Ml

are non-empty ⇐⇒ M ≠ ∅.

Suppose that in addition whenever ι ∶ I→R is an order morphism then Im ι is well-ordered.

Then for each i there exists some j ≥ i such that Ri = µij(Mj) (so in particular, all Rl are

non-empty ⇐⇒ all Ml are non-empty) and when I = N then we will also have Ri = Imµi.

Proof. Fix j0 ≥ i and let si ∈ Ri. Define S =
def
µ−1
i,j0

(si) and for all l ≥ j0, let Sl = S ∩ µj0,l(Ml)

so that our hypotheses imply that S and each Sl is a subset of Mj0 that belongs to R. From

µj0,l(Ml) ⊆ µj0,j(Mj), where j0 ≤ j ≤ l we obtain Sl ⊆ Sj so that the map

ι ∶ I≥j0 Ð→ R

i z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sl if i ≥ j0

Sj0 otherwise

is an order morphism. By lemma 2.2.9 each Sl is a non-empty and to show that si ∈ µi,j0(Rj0)

it suffices to show that ∩
l≥j0

Sl ≠ ∅, but this holds by hypotheses. If I = N then since M is

the limit of SysR, which is a surjective system, we have that µi∣M ∶M →Ri is surjective so

by lemma 2.2.9 all Ml are non-empty if and only if all Ml are non-empty, which happens if

and only if M ≠ ∅.

Now assume that whenever ι ∶ I→R is an order morphism then Im ι is well-ordered. Fix
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i ∈ I and define

ι ∶ I Ð→ R

l z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

µil(Ml) if l ≥ i

Mi otherwise

where by hypotheses, each ι(l) belongs to R. Whenever j ≤ k with j, k ∈ I≥i we have ι(k) ⊆

ι(j) so that ι is an order morphism into R. By assumption then, Im ι = {µil(Ml) ∣ l ≥ i} is

well-ordered so there exists some j ≥ i such that µij(Mj) is a least element of {µil(Ml) ∣ l ≥ i}.

By minimality, we have µij(Mj) ⊆ ∩
l≥i
µil(Ml) = Ri but since j ≥ i we also have the reverse

inclusion, so that equality holds. It is now immediate that if I = N then Ri = Imµi. ∎

Corollary 2.2.11. If SysM is a directed inverse system of compact Hausdorff sets and for

each index i we define Ri = ∩
l≥i
µil(Ml), then Ri = µij(Rj) for all i ≤ j.

Proof. Apply proposition 2.2.10 with R being the category of all compact Hausdorff spaces.

∎

Lemma 2.2.12. Let (M,µ●) = lim←Ð SysM where SysM = (M●, µij,N). Suppose that all Mi

are finite dimensional vector spaces and that all µij ∶Mj →Mi are (not necessarily surjective)

affine linear maps. For each index i, let Ri = ∩
l≥i
µil(Ml). Then for each index i,

(1) for any increasing sequence of integers (ln)∞n=1 with l1 ≥ i we have Ri = ∩
n≥1

µiln(Mln).

• In particular, Ri = ∩
l≥j
µil(Ml) for each j ≥ i.

(2) µi,i+1(Ri+1) = Ri = Imµi.

(3) M = lim←Ð(Ri, µij ∣Rj ,N).

(4) Ri ≠ ∅ (which implies that M ≠ ∅).

Proof. Let R denote the category of all finite-dimensional affine linear spaces with affine

linear maps and apply proposition 2.2.10. ∎

For another corollary of these lemmata, see corollary 3.2.3.
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Subsets of Inverse Systems

Notation 2.3.1. If µ● ∶M →M● is an I-indexed collection of maps, J ⊆ I, and S● = (Sj)j∈J
is a collection of sets such that Sj ⊆ Mj for all j ∈ J , then by ∪µ−1

● (S●) and ∩µ−1
● (S●) we

mean

∪µ−1
● (S●) =

def
∪
j∈J
µ−1
i (Sj) and ∩ µ−1

● (S●) =
def

∩
j∈J
µ−1
i (Sj)

Inverse Systems of Subsets

The following definition is based on the definition of inverse system of subsets that is found

in [10].

Definition 2.3.2. Suppose that J ⊆ Iand S● = (Sj)j∈J is a collection of sets such that

Sj ⊆Mj for all j ∈ J . If µij(Sj) ⊆ Sj for all i, j ∈ J with i ≤ j then we will call

SysS =
def

SysM ∣
S●

=
def

(S●, µij ∣Sj , J)

the system (canonically) induced by S● (and SysM) and say that S● is an inverse system of

subsets (of SysM) ( or ofM●) (indexed by J), where for all i ≤ j in J , each µij ∣Sj has prototype

µij ∣Sj ∶ Sj → Si. If SysM is a system in Top and if each Sj is a topological subspace of Mj

then we will call S● an inverse system of subspaces of SysM ( or of M●) indexed by J while

if µjk(Sk) = Sj for all j ≤ k in J then we will say that this system of subsets is surjective.

If S● is a J-indexed inverse system of subsets of SysM and (Z,h●) is a cone into SysM

then by the (J-indexed) cone (canonically) induced by S● and h● we mean the cone

(Z,h●)∣S● =
def

( ∩
j∈J
h−1
j (Sj), h●∣∩h−1● (S●)

)

into SysM ∣
S●
, where each hj has prototype hj ∶ ∩h−1

● (S●)→ Sj. If (M,µ●) is a limit of SysM
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then we will call (M,µ●)∣S● the limit of S● (induced by µ●) where this terminology is justified

by remark 2.3.3 and where, as usual, we may also use this terminology to describe this cone’s

vertex, which we will denote by

lim←ÐS● =
def

∩
i∈I
µ−1
i (Si)

or possibly just S.

If L ⊆ M then we will say that L arises as a (µ●-)limit of an inverse system of subsets

(of SysM) if there exists an inverse system of subsets of SysM whose limit is L. ∎

Remark 2.3.3. Suppose S● = (Si)i∈I is an inverse system of subsets of SysM , (M,µ●) is a

limit of SysM , and let SysS =
def

(S●, µij ∣Sj , I). Let S =
def

∩
i∈I
µ−1
i (Si) and for each i ∈ I, consider

µi∣S as the map µi∣S ∶S→Si where if M is a topological space then we will also assume that

S and each Si is a topological subspace of M and Mi, respectively. By a straightforward

check of the universal mapping property of limits, it is immediately verified that (S,µ●∣S) is

a limit of SysS in Set where if SysM is a system in Top then this is also true in Top.

Also observe that the SysS-subbasic open subsets of S are exactly the intersections with

S of a µ●-subbasic open subset ofM : (µi∣S)
−1 (Ui ∩ Si) = S∩µ−1

i (Ui) for every i ∈ I and open

subset Ui of Mi. Furthermore, if (M,µ●) is the canonical limit of SysM then (as observed in

[12]) it is immediately seen that the object of the canonical limit of SysS is

S =
def

{s = (si)i∈I ∈ ∏
i∈ I
Si ∣µij (sj) = si for all i ≤ j} =M ∩∏

i∈ I
Si

while the canonical limit’s morphisms are µ●∣S =
def

(µi∣S)i∈I = (Pr Si ∣S)i∈I where µi∣S ∶ S → Si

for each i ∈ I. In particular, this justifies writing lim←ÐS● ⊆M . ∎

Convention 2.3.4. Whenever S● is an inverse system of subsets of SysM (resp. SysN) then

by lim←ÐS● we will mean the subset ∩µ−1
● (S●) of M (resp. the subset ∩ν−1

● (S●) of N).

Example and Definition 2.3.5. For any S ⊆ M , S● =
def
µ●(S) forms a surjective inverse

system of subsets of SysM (cf. [11, I.4.4]). This allows us to canonically associate to each
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S ⊆M the canonical system induced by µ●(S) and SysM (def. 2.3.2), which we will call the

inverse system of subsets (of M●) (canonically) induced by S, (µ●, and SysM). Although we

always have S ⊆ lim←ÐSi, it is possible that the reverse containment fails; lemma 2.3.9 provides

a characterization of when equality holds.

Example and Notation 2.3.6. Ifm ∈M then {m} = lim←Ð
i∈I

{µi(m)} where we may henceforth

write such an equality as m = lim←Ð
i∈I

µi(m) (or m = lim←Ðµi(m), or m = lim←Ðµ●(m), etc.)

Example 2.3.7. Suppose SysM is indexed by I = N and that S● ⊆M● be arbitrary subsets.

Let B1 =
def
S1 and inductively define Bi+1 =

def
Si+1 ∩ µ−1

i,i+1(Bi). Then B● is an inverse system

of subsets and ∩
i
µ−1
i (Bi) = ∩

i
µ−1
i (Si). Had I been an arbitrary partial order then the same

conclusion would have held by defining Bi =
def
Si ∩ ∩

h≤i
µ−1
hi (Sh) for each index i.

Limit of a System of Subsets

The following well-known result, which is proved later, shows in particular that the closure

of every subset of M arises as the limit of some (not necessarily unique) inverse system of

subsets.

Lemma 2.3.8 (Bourbaki 4.4). If S ⊆M then S = ∩
i∈I
µ−1
i (µi(S)) = lim←Ðµi(S). In particular,

if S is closed in M then S = lim←Ðµi(S) = lim←Ðµi(S).

The following lemma 2.3.9 contains a simple sufficient condition for a subset ofM to arise

as the limit of an inverse system of subsets whose mention seems to have been omitted from

the literature (where observe in particular that hypotheses for ⇐Ô impose no conditions

on the collection S● of sets). In the last part of the proof of lemma 2.3.9 we demonstrate the

use of some of the lemmata and definitions that will soon be introduced.

Lemma 2.3.9. If S ⊆ M then S arises as the limit of some inverse system of subsets of

SysM if and only if S = ∩
i∈I
µ−1
i (Si) for some subsets S● ⊆M●. Furthermore, if S● is an inverse

system of subsets of SysM then lim←ÐS● = ∩
i∈I
µ−1
i (Si) and each Si contains µi(S).
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Proof. If (Si, µij ∣Sj) is an inverse system of subsets then recall that lim←Ð(Si, µij ∣Sj) = ∩
i∈I
µ−1
i (Si)

and it is clear that each Si must contain µi(S). So suppose that S = ∩
i∈I
µ−1
i (Si) for some

subsets Si where it is again clear that each Si must contain µi(S). Note that although these

S● were not assumed to form an inverse system of subsets we may, by applying lemma 2.4.1,

assume without loss of generality that these S● are decreasing (def. 2.4.2) and as shown in

lemma 2.4.5 below, (S●, µij ∣Sj) will then necessarily form an inverse system of subsets so

that consequently, as was just shown, lim←Ð(Si, µij ∣Sj) = ∩
i
µ−1
i (Si), which is just S. ∎

Surprisingly, the following corollary 2.3.10 seems to have been omitted from the literature.

Corollary 2.3.10. Let (Z,h●) be a cone into SysM with limit h ∶ Z →M and let S● ⊆M●.

Then h−1(∩
i
µ−1
i (Si)) = ∩

i
h−1
i (Si) and if in addition S● forms an inverse system of subsets

then SysZ =
def

(h−1
● (S●), Inij, I), where each Inij ∶h−1

j (Sj)→h−1
i (Si) is the natural inclusion,

is an inverse system whose limit is h−1(lim←ÐS●) (with the natural inclusions as projections),

where we can write this conclusion more provocatively as

(lim←Ðhi)
−1
(lim←ÐSi) = lim←Ð(h−1

i (Si))

Consequently,

(1) If a subset S ⊆M arises as the limit of some inverse system of subsets then h−1 (S) =

∩h−1
● (µ●(S)). In particular, if m ∈M then h−1 (m) = ∩h−1

● (µ●(m)).

(2) If m ∈M then m ∈ Imh ⇐⇒ lim←Ðh
−1
● (µ●(m)) ≠ ∅.

Proof. For the first claim observe that for any z ∈ Z,

z ∈ h−1(∩
i
µ−1
i (Si)) ⇐⇒ ∀i ∈ I, hi(z) = µi(h(z)) ∈ Si ⇐⇒ z ∈ ∩

i
h−1
i (Si)

so assume that S● forms an inverse system of subsets. That SysZ forms an inverse system

is easy to see so let S = lim←ÐS● and observe that lim←Ð SysZ = ∩
i
h−1
i (Si). Since S =

def
lim←ÐS● =

∩
i
µ−1
i (Si) it follows that h−1 (S) = ∩

i
h−1
i (Si) = lim←Ð SysZ .
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If S is a subset of M that arises as the limit of an inverse system of subsets then by lem-

mata 2.4.5 and 2.3.9 we have S = lim←Ðµi(S) from which the equality h−1 (S) = ∩
i
h−1
i (µi(S))

follows immediately. ∎

Example 2.3.11. Let (RN,Pr ≤●) be the limit of SysRN = (Ri,Pr ≤ij,N) and let S be the

span of all (1,0,0, . . .), . . . , ({0}i ,1,0,0, . . .), . . .. Clearly, Pr ≤i(S) = Ri for all i ∈ N so that

S is dense in RN but S is not closed in RN since (1,1, . . .) /∈ S. In particular, the cone

Pr ≤●∣S ∶ S → R● that results from restricting the canonical projections to S is Pr ≤●-surjective

but its limit, which is the natural inclusion InRN

S ∶ S → RN, is not surjective.

We will now show that an open subset of a limit need not arise as the limit of any inverse

system of subsets. One particularly important consequence of this is that we will occasionally

have to treat subsets of M arising as inverse limits of subsets separately from open subsets

of M .

Example 2.3.12. Let Mi = Ri for each i ∈ N so that (RN,Pr i) = lim←Ð(Ri,Pr ij,N) where

Pr ij ∶Rj→Ri and Pr i ∶RN→Ri the canonical projections onto the first i coordinates. Let

U = RN − {{0}N }, where {0}N = (0,0, . . .) ∈ RN, so that U is open in RN. For each i ∈ N,

let si =
def

(0, . . . ,0,1,1, . . .) ∈ U where the first i elements are 0 and the rest are 1 and let

{0}i = (0, . . . ,0) denote the 0 vector in Ri. Then {0}i = Pr i(si) ∈ Pr i(U) for all i so that

{0}N ∈ ∩
i

Pr −1
i (Pr i(U)), which implies that ∩

i
Pr −1

i (Pr i(U)) = RN. If U did arise as an

inverse system of sets, say U = ∩
i

Pr −1
i (Si) for some subsets Si ⊆ Mi, then by lemma 2.3.9

we’d necessarily have U = ∩
i

Pr −1
i (Pr i(U)). Thus the open set U is not the limit of any

inverse system of subsets of SysRN . ∎

Example 2.3.13. We can greatly generalize the preceding example 2.3.12: Suppose that

SysM is a surjective inverse system directed by N and let S ⊆M be any µ●-surjective subset

ofM that does not necessarily equal toM . If S was the limit of an inverse system of subsets,

say S = lim←Ð(Si, µij ∣Sj), then by 2.3.9 Mi = µi(S) ⊆ Si and S = ∩
i
µi(Si) so that S =M . Thus,

such a set S is the limit of an inverse system of subsets ⇐⇒ S =M . ∎
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Relationships Between a Subset and its Projections

This section is devoted to analyzing relationships between a subset S ⊆ M and its projec-

tions µ● (S) and although a reader who skips this section will likely still be able to follow

the development of the theory of promanifolds, many of this section’s results, particularly

corollary 2.4.8, will be used without comment throughout the rest of this paper.

Increasing and Decreasing Representations of Subsets

Reducing questions about the limit M down to questions about the M● is one of primary

methods of studying of limits. For these ends, the following lemma will be useful since it

shows, in particular, that we can always express open and closed subsets of M in terms of

subsets of M● that are guaranteed to have certain properties.

Lemma 2.4.1. Suppose U = ∪
i∈I
µ−1
i (Vi) for some sets V● ⊆ M● and let Ui = ∪

h≤i
µ−1
hi (Vi) for

each index i. Then for each index i ∈ I,

U = ∩µ−1
● (U●) and Ui = ∪

h≤i
µ−1
hi (Ui)

Similarly, if C = ∩
i
µ−1
i (Di) for some sets D● ⊆ M● and if we let Ci = ∩

h≤i
µ−1
hi (Di) for each

index i then

C = ∩µ−1
● (C●) and Ci = ∩

h≤i
µ−1
hi (Ci)

Proof. A straightforward check. ∎

Definition 2.4.2. If J ⊆ I, S● = (Sj)i∈J , and (Z,h●) is a cone into SysM then we will call

∩
J
h−1
● (S●) =

def
∩
j∈J
h−1
j (Sj) (resp. ∪

J
h−1
● (S●) =

def
∪
j∈J
h−1
j (Sj))
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the h●-intersection (resp. h●-union) induced by S● and we will say that S● is an h●-representation

of this resulting set. Any such subset of Z will be referred to as an h●-intersection (resp.

h●-union). A subset of Z will be called h●-representable if it is either an h●-intersection or

an h●-union. An h●-representation S● of an h●-representable subset of Z will be called an

open/closed/compact/etc. representation (of the set) if each set in S● has this property.

If S● = (Sj)j∈J satisfies

Sj = ∪
h≤j
h∈J

µ−1
hj(Sh) (resp. Sj = ∩

h≤j
h∈J

µ−1
hj(Sh))

for all j ∈ J then we will say that is S● is ( SysM -)increasing (resp. decreasing). If (M,µ●)

is a limit of SysM and S = ∪
J
µ−1
● (S●) (resp. S = ∩

J
µ−1
● (S●)) where S● is an increasing

(resp. decreasing) µ●-representation of S then we may summarize this situation by saying

that S = ∪
J
µ−1
● (S●) (resp. S = ∩

J
µ−1
● (S●)) is increasing (resp. decreasing) or that it is an

increasing (µ●-)union (resp. decreasing (µ●-)intersection).

We may omit writing µ● if it is understood or write SysM in its place while if the indexing

set J is omitted in the notation ∩
J
µ−1
● (S●) or ∪

J
µ−1
● (S●) then the indexing set will either be

clear from context or otherwise assumed to be all of I. ∎

Remark 2.4.3. It is straightforward to verify that the following are equivalent:

(1) S● = (Sj)j∈J is increasing (resp. decreasing).

(2) (Mj ∖ Sj)j∈J is decreasing (resp. increasing).

(3) For all h, j ∈ J , if h ≤ j then µ−1
hj(Sh) ⊆ Sj (resp. µhj(Sj) ⊆ Sh).

Example 2.4.4. Looking ahead to the definition of locally cylindrical maps (def. 6.1.5), if

F ∶ M → N is locally cylindrical on a promanifold M then ODom●F = (ODomiF )∞i=1 is an

increasing open µ●-representation of M .

If S● is a µ●-representation of a subset S ⊆M is then the next lemma shows that among
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the benefit of know that S● is an increasing or decreasing representation of S is that, just

as with directed inverse systems, we need only to consider cofinal collections of S●, which

would not necessarily be possible otherwise (e.g. consider, for instance, S = ∪
i∈I
µ−1
i (Si) with

Si0 ∩ Imµi0 ≠ ∅ for some index i0 and all other Si equal to ∅).

Lemma 2.4.5. If U = ∪
i∈I
µ−1
i (Ui) is an increasing union of sets then for all indices i and for

any J ⊆ I cofinal in I,

µ−1
i (Ui) = ∪

h≤i
µ−1
h (Uh) and U = ∪

j∈J
µ−1
j (Uj)

Similarly if C = ∩
i∈ I
µ−1
i (Ci) is a decreasing intersection of sets then C = ∩

j∈J
µ−1
j (Cj) and

µ−1
i (Ci) = ∩

h≤i
µ−1
h (Ch) for every i ∈ I. Furthermore, µij(Cj) ⊆ Ci for all i ≤ j in I so that in

particular, the C● form an inverse system of subsets.

Proof. A straightforward check. ∎

Set Relations

To minimize redundant computations, we compile in the remainder of this subsection some

facts and set relations, which were written in such a way that they may aid in applying part

part 6 of proposition 3.2.1. Some of the relations (e.g. ∩
i
µ−1
i (µi(C)) = C) are well-known,

most have at least one direction that is either well-known or immediately seen, while the

remaining relations have longer proofs that the reader may verify.

Lemma 2.4.6. Let i ≤ j ≤ k and Sj ⊆ Mj. Then µk(µ−1
j (Sj)) = µ−1

jk(Sj) ∩ Imµk and

µi(µ−1
j (Sj)) = µij(Sj ∩ Imµj). Furthermore, for any S ⊆M we have µi(S) = ∩

h≤i
µ−1
hi (µh(S)).

Lemma 2.4.7. Suppose U = ∪
i
µ−1
i (Ui) (resp. C = ∩

i
µ−1
i (Ci)) is an increasing union (resp.

decreasing intersection) of sets. Then

Ui ∩ Imµi = ∩
i≤j
µij(Uj ∩ Imµj) = ∩

i≤j
µij(Uj) ∩ Imµi and Ci = ∪

i≤j
µij(Cj)
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µi(U) = ∪
i≤j
µij(Uj ∩ Imµj) but µi(C) ⊆ ∩

i≤j
µij(Cj) with equality if C● = µ●(C)

and also,

U = ∪
i
µ−1
i (Mi ∖ µi(M ∖U)) and C = ∩

i
µ−1
i (µi(C))

where the intersection for C is decreasing and the union for U is increasing.

Furthermore, for any index j, the following are equivalent:

(1) µj(U) ⊆ Uj

(2) µj(U) = Imµj ∩Uj

(3) U = µ−1
j (Uj)

and in this case for all k ≥ j we’ll have U = µ−1
k (Uk) = µ−1

k (µk(U)) where if µk is surjective

then we’ll also have µk(U) = Uk = µ−1
jk (Uj).

Corollary 2.4.8. Suppose all µ● are surjective, allM● are topological spaces, and let S ⊆M .

(1) If all µij are open maps then so too are all µi.

(2) If S can be expressed as S = ∩
i
µ−1
i (Di) for some subsets D● ⊆ M● (not necessarily

closed) and each µi(S) is closed then S is necessarily closed.

(3) S is relatively compact in M ⇐⇒ each µi(S) is relatively compact in Mi.

(4) If all µ● are continuous open maps and R● ⊆ M● consists of meager sets with all but

countably many of these sets empty, then ∪
i
µ−1
i (Ri) is meager in M .

Proof. Statement (1) is immediate from µi(U) = ∪
i≤j
µij(Uj), where U = ∪

i
µ−1
i (Ui) with Ui is

an arbitrary open subset of Mi, while (2) is immediate from µi(C) ⊆ ∩
i≤j
µij(µj(C)). If all

µi(C)’s are compact, they are all closed so C is closed. Since C = lim←Ðµi(C) is an inverse limit

of compact sets C is compact so statement (3) follows immediately. Statement (4) follows

immediately from the fact that the preimage of a nowhere dense subset under a continuous

open map is nowhere dense. ∎
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Remark 2.4.9. An explicit example where the conclusion of part (2) of corollary 2.4.8 due

to there not being any D● ⊆M● such that S = ∩
i∈N
µ−1
i (Di) can be found in example 2.3.11.

Lemma 2.4.10. Let (Uα)α∈A be a collection of subsets of M indexed by A. Suppose that

for each α ∈ A, Uα = ∪
i
µ−1
i (Uα

i ) is an increasing union. Then ∪
α∈A

Uα = ∪
i
µ−1
i ( ∪

α∈A
Uα
i ) is also

an increasing union.

Proof. Since for each α ∈ A the Uα
i are increasing we have for each i, Uα

i = ∪
h≤i
µ−1
hi (Uα

h ). So

∪
h≤i
µ−1
hi (∪α U

α
h ) = ∪

h≤i
∪
α
µ−1
hi (Uα

h ) = ∪
α
∪
h≤i
µ−1
hi (Uα

h ) = ∪
α
Uα
i

shows that the sets ∪
α∈A

Uα
i are increasing. ∎

Canonical Representation of Open and Closed Subsets of a Limit

We will now prove some additional topological properties of limits and find conditions that

will allow all open (resp. closed) subsets of a limit to be expressed as the union (resp.

intersection) of certain uniquely defined open (resp. closed) subsets system. We will describe

some of the properties of these sets and as an application we will provide a characterization

of regular open and regular closed subsets of a certain class of limits. Throughout this section

we will assume that SysM is a surjective inverse system in Top over a directed index set

(I,≤) with limit (M,µ●).

In general, any given open or closed subset of M has infinitely many µ●-representation.

From among all of these possible choices of µ●-representations we will make the following

choices that we will henceforth call canonical:

Definition 2.4.11. If U is an open (resp. C is a closed) subset of M then the canonical

open (resp. closed) µ●-representation of U (resp. C) is the I-indexed collection of sets

M● ∖ µ●(M ∖U) =
def

(Mi ∖ µi(M ∖U))
i∈I

(resp. µ●(C) =
def

(µi(C))
i∈I

)
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The following lemma provides an expression for the closure of a set and also shows that

for each index i ∈ I, µi(C) is the smallest closed set that can be used in any expression of

the form C = ∩µ−1
● (C●) with Ci closed in Mi and that Mi ∖ µi(M ∖U) is the largest open

set that can be used in any expression of the form U = ∪µ−1
● (U●) with Ui open. It is in this

sense that the canonical open (resp. closed) µ●-representations of open (resp. closed) sets

are the “best possible” open (resp. closed) sets that we can use in any expression of U (resp.

C) of the form U = ∪µ−1
● (U●) (resp. U = ∩µ−1

● (C●)) when attempting to deduce information

about U (resp. C) from the properties of the M● these sets.

Lemma 2.4.12. Assume that all µ●’s are surjective, let S ⊆M be arbitrary and let U,C ⊆M

be, respectively, open and closed subsets of M . Let U● (resp. C●) be the canonical open

(resp. closed) µ●-representation of U (resp. C) (def. 2.4.11). Then

C = ∩
i
µ−1
i (µi(C)) = ∩

i
µ−1
i (µi(C))

S = lim←Ðµi(S) = ∩
i
µ−1
i (µi(S)) = ∩

i
µ−1
i (µi(S)) = ∩

i
µ−1
i (µi(S))

U = ∪
i
µ−1
i (Mi ∖ µi(M ∖U)) = ∪

i
µ−1
i (Mi ∖ µi(M ∖U))

with the intersections for C decreasing and the unions for U increasing. If Di ∈ Closed (Mi)

is such that C ⊆ µ−1
i (Di) then Ci ⊆Di and if Vi is an open subset ofMi such that µ−1

i (Vi) ⊆ U

then Vi ⊆ Ui. Furthermore,

µi(C) = ∩
i≤j
µij(Cj) = ∩

i≤j
µij(Cj) and Ui =Mi ∖ Int(µi(M ∖U))

and letting Ei = Int(Mi ∖ µi(U)) = Mi ∖ µi(U) gives us a representation of the exterior

Ext(U) = Int(M ∖U) = ∪
i
µ−1
i (Ei) of U in M as an increasing union.
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Proof. The equality C = ∩
i
µ−1
i (µi(C)) was proved in lemma 2.4.7 so

C = ∩
i
µ−1
i (µi(C)) ⊆ ∩

i
µ−1
i (µi(C)) ⊆ ∩

i
µ−1
i (µi(C))

where the last containment follows from the continuity of the µ●. On the other hand, if

m ∈ ∩
i
µ−1
i (µi(C)) then for any i ∈ I and neighborhood µi(m) ∈ Ui ∈ Open (Mi), we have

Ui ∩ µi(C) ≠ ∅ so µ−1
i (Ui) ∩ C ≠ ∅ and thus m ∈ C = C. As is done in Bourbaki [11, I.4.4],

this equality for C may also be written as C = lim←Ðµi(C). The equalities for S and U now

follow from this equality, lemma 2.4.7, and the fact that µi(S) = µi(S) for each i.

If C = ∩
i
µ−1
i (Ei) with all Ei closed (not necessarily in standard form) then µi(C) ⊆ Ei

so that since Ei is closed, µi(C) ⊆ Ei. An analogous argument is used for the maximality of

the Ui’s. Note that

µi(C) ⊆ ∩
i≤j
µij(Cj) ⊆ ∩

i≤j
µij(Cj) = ∩

i≤j
µij(µj(C)) = ∩

i≤j
µij(µj(C)) = ∩

i≤j
µi(C) = µi(C)

so equality holds. Finally,

Int(µi(M ∖U)) =Mi ∖Mi ∖ µi(M ∖U) =Mi ∖Ui

and

Mi ∖ µi(M ∖ Int(M ∖U)) =Mi ∖ µi(U) =Mi ∖ µi(U) = Ei

which finishes the proof. ∎

Lemma 2.4.13. Let U = ∪
i∈I
µ−1
i (Ui) be increasing and suppose that all µ● are continuous

open surjections. If m ∈ M is such that for some index i, µi(m) ∈ Ui then m ∈ U . In

particular,

U ⊆ ∪
i
µ−1
i (Ui) ⊆ U

Proof. If l ≥ i then since µil(µl(m)) = µi(m) ∈ Ui we have µl(m) ∈ µ−1
il (Ui) and since
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µ−1
il (Ui) ⊆ Ul we have µl(m) ∈ µ−1

il (Ui) = µ−1
il (Ui) ⊆ Ul ⊆ µi(U) so that m ∈ µ−1

l (µl(U)). Since

I≥i is cofinal in I, we have m ∈ ∩
l≥i
µ−1
l (µl(U)) = U . ∎

Perfect Subsets and Isolated Points of Limits

For the following corollary of lemma 2.3.8, recall that in any space X, if x ∈ X and R ⊆ X

then x being an isolated point of R = ClX(R) implies that x is an isolated point of R, while

the converse is always true if in addition X is T1.

Corollary 2.4.14. Suppose SysM is T1 and directed and S ⊆M . If no µ●(S) has an isolated

point (or equivalently no S● =
def

ClM●
(µ●(S)) has an isolated point) then neither does S and

if there are cofinally many indices i such that Si is a perfect subsets of Mi then ClM(S) is a

perfect subset of M .

Proof. If no µ●(S) had an isolated point but m0 was an isolated point of S then we can

pick i ∈ I and an open subset Ui of Mi such that {m0} = S ∩ µ−1
i (Ui), which implies that

µi(S) ∩Ui = {µi(m0)}, giving a contradiction. Now if all Si were perfect then no µ●(S) has

an isolated point, which implies that neither S nor S has an isolated point. Since S is closed

in M by lemma 2.3.8 and let m0 ∈ S, it follows that S is perfect. ∎

The next example shows, in particular, that even if a subset S ⊆M is closed in M , it’s

still possible that no µi(S) is closed in Mi.

Example 2.4.15. A perfect subset S of RN such that each Pr ≤i(S) is a non-closed subset of

Ri with isolated points: Let J = ]−1
2 ,

1
2
[, f ∶ J → R be f(t) = arctan( 4

π t), and let Γ(f) ⊆ R2
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denote the graph of f . For all i > 1, define Di ⊆ Ri by

D2 =Γ(f)

D3 =(3) × Γ(f) =
def

{(3, x, y) ∣ (x, y) ∈ Γ(f)}

D4 =(4,0) × Γ(f)

⋮

Di =(i,{0}i−3) × Γ(f) =
def

{(i,0, . . . ,0, x, y) ∣ (x, y) ∈ Γ(f)}

⋮

and letDi =Di×{0}N, where observe thatDi is closed in RN. For each i ∈ N, let Pr ≤i ∶RN→Ri

denote the canonical projection onto the first i coordinates. Since

Pr 1(Dl) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

J if l = 2

l if l > 2

it follows that (Dl)∞l=2 is locally finite and thus S =
def

∞
∪
l=2
Dl is a closed subset of RN.

Observe that Pr 1(S) = J ∪N≥3 (resp. Pr ≤2(S) =D2∪(3 × J)∪{(j,0) ∣ j ≥ 4}) is not closed

in R1 (resp. R2). For each i ≥ 3 and l ∈ N, observe that

Pr ≤i(Dl) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{l × {0}i−1} if l > i + 1

(i + 1) × {0}i−2 × J if l = i + 1

Di if l = i

Dl × {0}l−i if l < i

where all of these sets can be separated by pairwise disjoint open sets with Pr ≤i(Di+1) not

closed in Ri, which implies that Pr ≤i(S) is not closed in Ri. Furthermore, observe that

although S is perfect (since S is closed and each Di is clearly perfect), no Pr ≤i(S) is perfect
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since each has infinitely many isolated points. ∎

Regular Open and Regular Closed Subsets

Due to the frequency with which regular open and closed sets and their properties are used

when studying smooth manifolds (often without remark) we will now provide an original

characterization of when an open or closed subset of M is regular in terms of their canonical

representations. We will henceforth use without comment the conclusions of lemma A.4.1,

which describes some basic properties of continuous open maps.

Proposition 2.4.16. Assume that all bonding maps and projections are continuous open

surjections. If C ⊆M is closed and U ⊆M is open then

(1) C is regular ⇐⇒ µi(C) = µi(Int(C)) for each index i, in which case these sets are

also regular.

(2) U is regular ⇐⇒ Ui =Mi ∖ µi(M ∖U) is regular for each index i.

Proof. (1): If C is regular then lemma A.4.1 shows that for all indices i, µi(C) = µi(Int(C))

and that these are regular closed sets. Conversely, if µi(C) = µi(Int(C)) for all indices i then

the closure of Int(C) is Int(C) = ∩
i
µ−1
i (µi(Int(C))) = ∩

i
µ−1
i (µi(C)) = C.

(2): Since U is a regular open subset of M if and only if C =
def
M ∖ U is a regular closed

subset of M , we have that U is regular if for all indices i, µi(M ∖U) = µi(Int(M ∖U)),

which happens if and only if Mi ∖ µi(Int(M ∖U)) = Ui for all indices i. If U is regular then

for all indices i,

Mi ∖ µi(Int(M ∖U)) =Mi ∖ Int(µi(M ∖U)) by lemma A.4.1

=Int(Mi ∖ Int(µi(M ∖U))) = Int(Mi ∖ µi(M ∖U)) = Int(Ui)

so Ui =Mi ∖ µi(Int(M ∖U)) = Int(Ui), which shows that Ui is regular. Conversely, if all Ui
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are regular then

Mi ∖ µi(M ∖U) = Ui = Int(Ui) =Mi ∖ Int(µi(M ∖U))

so µi(M ∖U) = Int(µi(M ∖U)), which says exactly that all µi(M ∖U) are regular closed

sets and implies that M ∖U , and hence U , is regular. ∎

Corollary 2.4.17. If all connecting maps of SysM are continuous open surjections then all

M● being semiregular (def. A.0.5((f))) implies that the same is true of M = lim←Ð SysM .

Topologies of Limits of Directed Systems

The material in this section is not necessary for understanding promanifolds. We will prove

in this section some additional results about the topologies of projective limits of directed

systems in Top.

Connectedness and Local Connectedness

This section is devoted to finding an original sufficient condition for a limit to be connected

and locally connected.

Example 2.5.1. A limit of (resp. path) connected spaces that’s not (resp. path) connected:

Let B denote the open unit ball in R2 and pick any sequence p● of points in B ∩ ({0} ×R).

For all for all i ≤ j in N, let

Mi =
def

{(x, y) ∈X ∣−1/i < x < 1/i} ∖ {p1, . . . , pi}

and let µij ∶ Mj → Mi denote the natural inclusion. Then lim←Ð SysM is ({0}×] − 1,1[) ∖

{pi ∣ i ∈ N}, which is not connected. Furthermore, if p● enumerates the set B ∩ ({0} ×Q) then

the resulting limit will not have any non-empty connected neighborhoods.
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Observe that despite the above system’s simplicity and the fact that allM● were connected

manifolds with all bonding maps smooth embeddings, this limit still failed to be connected.

Lemma 2.5.2. Let K ⊆M be a compact connected set and let U● = (Ui)i∈I be an increasing

sequence of open subsets ofM● (def. 2.4.2) such that U =
def
∪µ−1

● (U●) contains K. Then there

exists an index i0 such that µi(K) ⊆ Ui for all i ≥ i0.

Proof. Pick indices i1 ≤ . . . ≤ iN such that K ⊆ µ−1
i1

(Ui1) ∪ ⋯ ∪ µ−1
iN

(UiN ) and let i0 = iN .

For any m ∈ K pick an index ia such that µia(m) ∈ Uia and note that µi0(m) ∈ Ui0 since

µ−1
ia,i0

(Uia) ⊆ Ui0 . Thus µi0(K) ⊆ Ui0 which implies that µi(K) ⊆ Ui for all i ≥ i0. ∎

Corollary 2.5.3. Let S ⊆ M be connected, s0 ∈ S, and let U● = (Ui)i∈I be an increasing

sequence of open subsets M● such that U =
def
∪µ−1

● (U●) contains S. If some Ui contains µi(s0)

then let Ci denote the connected component of Ui containing it. Suppose that for all s ∈ S

there exists a compact connected subset Ks ⊆M containing s and s0. Then S ⊆ ∪
j∈J
µ−1
i (Cj)

for any cofinal subset J ⊆ I and furthermore, if s ∈ S is such that µi(s) ∈ Ci then µj(s) ∈ Cj

for all j ≥ i.

Proof. Let i0 be any index such that µi0(s0) ∈ Ui0 For each s ∈ S there exists some index

i(s) ≥ i0 such that µj(Ks) ⊆ Uj for all j ≥ i(s) so that in particular µj(s) ∈ µj(Ks) ⊆ Cj for

all j ∈ J with j ≥ i(s). Since s ∈ S was arbitrary it follows that S ⊆ ∪
j∈J
µ−1
i (Cj). ∎

Lemma 2.5.4. Let (M,µ●) = lim←Ð(M●, µij,N) in Top withM● consisting of Hausdorff locally

compact spaces. Let K ⊆ M be compact and suppose there exists some index i0 and some

compact connected set Ci0 ⊆ Mi0 containing µi0(K). Assume that for all i ≥ i0, whenever

Ci ⊆Mi is a compact connected set containing µi(K) and Ui is an open subset ofMi contains

Ci then there exists some compact connected set that is contained in µ−1
i,i+1 (Ui) and contains

µi+1(K). Then there exists a compact connected set C in M that contains K.

Proof. If K = ∅ then we’re done so assume otherwise. Since Ci0 is compact we can pick

a relatively compact open set Ui0 containing Ci0 . Suppose we’ve constructed for k ≥ i0
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compact connected sets Ci0 , . . . ,Ck and also relatively compact open sets Ui0 , . . . , Uk such

that µl−1,l(Ul) ⊆ Ul−1 for all i0 < l ≤ k and µl(K) ⊆ Cl ⊆ Ul for all i0 ≤ l ≤ k. Let Ck+1 be

a compact connected set containing µk+1(K) that is contained in µ−1
k,k+1 (Uk). Since Mk+1 is

locally compact we can select a relatively compact open set Uk+1 containing Ck+1 such that

Uk+1 ⊆ µ−1
k,k+1 (Uk).

For each index i let Di denote the closure of ∪
j≥i
µij(Cj) in Mi. Observe that for all i ≤ j,

µij(Cj) is a connected set contained in Ui with µi(K) ⊆ Ci ∩µij(Cj) so that ∪
j≥i
µij(Cj), and

hence its closure, is connected. Since Di is contained in the compact set Ui it is also compact.

By construction, µij(Dj) ⊆ Di for all i ≤ j so that we can take the limit D =
def

lim←ÐDi of this

inverse system of subsets, which by proposition 2.2.1 is a compact connected subset of M

that contains K. ∎

If one desires to find conditions that necessitate connectedness or local connectedness of

a limit then in light of proposition 2.2.1(4d) it is only natural to consider the hypotheses of

the following proposition.

Proposition 2.5.5. A sufficient condition for connectedness and local connectedness: Let

(M,µ●) = lim←Ð(M●, µij,N) in Top withM● consisting of Hausdorff locally compact and locally

connected spaces. Assume that for each index i ∈ N, whenever Ui is a connected open subset

of Mi then the same is true of µ−1
i,i+1 (Ui) in Mi+1.

Then Wi is connected ⇐⇒ µ−1
i (Wi) is connected, where i ∈ N and the open subset Wi

of Mi are arbitrary. In particular, every point of M has a neighborhood basis consisting of

connected µ●-basic open sets and if all Mi are connected then so is M .

Remark 2.5.6. If every point of M has a neighborhood basis consisting of connected µ●-

basic open sets then of course M is locally connected but it is not clear that the converse

is true. Hence, the above conclusion may be stronger than mere local connectedness. Also,

the requirement on the bonding maps is weaker than requiring them to be monotone.

Proof. First recall ([12, p. 254]) that since each Mi is Hausdorff, locally connected, and
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locally compact then whenever mi and m′
i belong to the same connected component of an

open set U then there exists some compact connected subset of U containing them. For the

non-trivial direction of the characterization assume that Wi is connected. Our hypotheses

allows us to conclude that for all m0,m1 ∈ µ−1
i (Wi), there is a compact connected set K

containing m0 and m1 from which it follows that µ−1
i (Wi) is connected. The rest of the

statements in the proposition are immediate. ∎

Corollary 2.5.7. Suppose (M,µ●) = lim←Ð(M●, µij,N) in Top withM● consisting of Hausdorff

locally compact and locally connected spaces and with each bonding map µi,i+1 monotone

and open. Then M is connected, locally connected with a basis of connected basic open

sets, and for any i ∈ N and any open subset Wi of Mi, Wi is connected ⇐⇒ µ−1
i (Wi) is

connected.

Path-connectedness and Local Path-connectedness

This section is devoted to finding an original sufficient condition for a limit to be path-

connected and path-locally connected.

Lemma 2.5.8. Let (M,µ●) = lim←Ð (M●, µij,N) in Top. If all µij have the extension lifting

property from A to Z then so do all µ●. The converse is true if each µi can lift all morphisms

on A.

Proof. Fix an index i0 and let f ∶A→M and H ∶ Z →Mi0 be morphisms such that µi0 ○ f =

H ∣
A
. For all indices j ≥ i0, let fj = µj ○ H ∶ Z → Mj. Let H̃i0 = H ∶ Z → Mi0 . Having

found morphisms H̃i0 , . . . , H̃k, where H̃i ∶ Z →Mi, such that fi = H̃i∣A and µij ○ H̃j = H̃i for

all i0 ≤ i ≤ j ≤ k, let H̃k+1 ∶ Z → Mk+1 be a µk,k+1-lift of H̃k extending fk+1 ∶Z→Mk+1. By

construction, (Z, H̃●) is an inverse cone into SysM so let H̃ = lim←Ð H̃● ∶ Z →M . Since for all

i ≥ i0 we have

µi ○ f = fi = H̃i∣A = µi ○ H̃ ∣
A
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it follows that f = H̃ ∣
A
so that H̃ is an extension of f and since in particular µi0 ○ H̃ = H it

is also a µi0-lift of H. ∎

Definition 2.5.9. Let Z be a space and A ⊆ Z. If each µij ∶ Mj → Mi is a Serre fibration

then we will say that SysM is (Serre) fibrated and if a (M,µ●) is the limit cone of some

fibrated inverse system then we will say that (M,µ●) is fibrated. Similarly, we will say that

an inverse system (M●, µij) has the extension lifting property (from A to Z) (resp. is Z-

fibrated, is r-fibrated, lifts maps from Z) if all µij have this property and we will also say

that a limit cone (M,µ●) has this property if it is the limit of some inverse system with this

property.

Even if we only consider projective systems whose objects consist of smooth connected

manifolds with all bonding maps monotone smooth submersions and fibrations then there

is no guarantee that, when given some map between the limits of such systems, that the

inverse system of subsets induced by the range of this map will have these same properties.

In particular, the image of a map that arises as the limit of a surjective inverse system

morphism (def. 3.0.1) is only guaranteed to be a dense subset of its codomain. Following

this next definition, we will provide sufficient conditions, weaker than those mentioned above,

under which a limit will be locally path-connected.

Definition 2.5.10. Let π ∶X→Y be a map between topological spaces, S ⊆ Y , and y0 ∈ Y .

We will say that π weakly preserves the

• path components of S if for every open V ∈ Open (Y ) that contains S and every path

component PS of S, π−1(PS) is a subset of a path component of π−1 (V ).

• path-connectedness of y0 if π weakly preserves the path components of {y0}.

• path-connectedness of points if π weakly preserves the path-connectedness of each y ∈ Y .

If we say that a system weakly preserves the path-connectedness of points then we mean that

each of its connecting maps weakly preserves the path-connectedness of points. ∎
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Example 2.5.11. If π ∶R2 ∖ (Z ×Z)→R is the canonical projection onto the x-axis then

although π is not monotone, it does weakly preserves the path-connectedness of points.

Proposition 2.5.12. Suppose that SysM = (M●, µij,N) is 1-fibrated, weakly preserves the

path-connectedness of points, and is first countable. If Ui ∈ Open (Mi) for some index i then

µ−1
i (Ui) is path-connected if and only if the same is true of Ui. In particular, if all Mi’s are

locally path-connected (resp. path-connected) then M has a neighborhood basis consisting

of path-connected µ●-basic open sets around each of its points (resp. M is path-connected).

Furthermore, if in addition all Mi are smooth manifolds and all µij are smooth submer-

sions then we can construct a topological embedding γ ∶ [0,1]→M between any two distinct

points of M such that all µi ○ γ∣[0,1[ ∶ [0,1[→Mi are smooth and for any 0 < r < 1 there exists

some index i such that µi ○ γ∣[0,r] ∶ [0, r]→Mi is a smooth embedding.

Remark 2.5.13. As with proposition 2.5.5, the first of the above conclusions may be

stronger than mere local path-connectedness.

Proof. For the non-trivial direction assume that Ui is path-connected and observe that

whether or not µ−1
i (Ui) is path-connected is not affected by replacing SysM ’s indexing set

(i.e. N) with N≥i. Thus, we may assume without loss of generality that i = 1 and let i become

a free symbol. Let m0,m1 ∈ µ−1
1 (U1) and for all indices l ∈ N, let mk

l = µl(mk) (k = 0,1).

Let O● = (Oi)i∈N be a µ●-neighborhood basis at m1 and let 0 < r1 < r2 < ⋯ < 1 be any

increasing sequence such that lim
j→∞

ri = 1. If all Mi are smooth manifolds then we will write

the additional details needed to construct the claimed path with the additional properties

in parentheses.

Let γ1 ∶ [0,1] → U1 be a (smooth) embedding from m0
0 to m0

1. Pick t1 ∈]r2,1[ such that

γi([t1,1]) ⊆ Oi. Now suppose that we’ve defined (smooth) paths γ1, . . . , γi and real numbers

t1 < ⋅ ⋅ ⋅ < ti such that for all h ≤ l ≤ i

(1) γh ∶ [0,1]→Mh is a (smooth) embedding from m0
h to m1

h,

(2) µhl ○ γl∣[0,th] = γh∣[0,th],

91



(3) rh+1 < th < 1, and

(4) µhl(γl([th,1])) ⊆ Oh.

Since µi,i+1(m0
i+1) =m0

i and µi,i+1 is a 1-fibration there exists a (smooth) µi,i+1 lift of γi, call it

η ∶ [0,1]→Mi+1 with η(0) =m0
i+1. Observe that since γi is a (smooth) embedding so is η. Let

Wi+1 denote the path component of µ−1
i,i+1 (Oi) containing η(1) and let 1 > t̂i+1 > max{ri+2, ti}

be such that η([t̂i+1,1]) ⊆Wi+1 Since µi,i+1 weakly preserves the path-connectedness of points,

µ−1
i,i+1(m1

i ) is contained inWi+1 (along with η(t̂i+1)) so there exists some (smooth) embedding

ρ ∶ [t̂i+1,1]→ µ−1
i,i+1 (Oi) from η(t̂i+1) to m1

i+1. Let

γi+1 ∶ [0,1] Ð→ Mi+1

t z→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

η(t) if 0 ≤ t ≤ t̂i+1

ρ(t) if t̂i+1 ≤ t ≤ 1

and observe that µi,i+1(γi+1([ti,1])) ⊆ µi,i+1(µ−1
i,i+1 (Oi)) ⊆ Oi. If h < i then since

µh,i+1 ○ γi+1∣[th,ti] = µh,i+1 ○ η∣[th,ti] = µhi ○ γi∣[th,ti]

it follows that

µh,i+1(γi+1([th,1])) ⊆µh,i+1(γi+1([th, ti])) ∪ µh,i+1(γi+1([ti,1]))

⊆µhi(γi([th, ti])) ∪ µhi(Oi)

⊆Oh ∪ µhi(Oi) by (4) with l = i

Since Oi ⊆ µ−1
hi (Oh) (by definition of O●) it follow that µh,i+1(γi+1([th,1])) ⊆ Oh for all

h = 1, . . . , i. Also, for h ≤ i we have

µh,i+1 ○ γi+1∣[0,th] = µhi ○ γi∣[0,th] = γh∣[0,th]
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Clearly, γi+1 is a topological embedding (and it is a smooth embedding on [0,1]∖ {t̂i+1},

however, it may not be smooth at t = t̂i+1. In this case pick a chart in Wi+1 centered at

γi+1(t̂i+1) and let 0 < ε < 1
4 min{t̂i+1 − ti,1 − t̂i+1} be sufficiently small so that, after defining

J = [t̂i+1 − ε, t̂i+1 + ε], the set γi+1(J) is contained in this chart. We may replace γi+1∣J with

a smooth arc contained in Wi such that the resulting map, denoted by γ̂i+1 ∶ [0,1] → Mi+1,

is a smooth arc that agrees with γi+1 outside of J and is at every point a smooth embed-

ding. Observe that γ̂i+1([t̂i+1,1]) ⊆ Wi so that µi,i+1(γi+1([ti,1])) ⊆ Ui and with the same

computations as before we can conclude that µh,i+1(γ̂i+1([th,1])) ⊆ Oh. Also, γi+1∣[t̂i+1−ε,1]
played no role in the last of the above computations so the same conclusion holds for γ̂i+1.

Thus, we may replace γi+1 with γ̂i+1 and continue with the proof.) Since γi+1 is continuous

and γi+1(1) = m1
i+1 we can pick ti+1 such that t̂i+1 < ti+1 < 1 and γi+1([ti+1,1]) ⊆ Oi+1. This

completes the inductive step.

Fix i and observe that if i ≤ j ≤ k then µij ○ γj ○ ∣[0,tj]

µik ○ γk ○ ∣[0,tj] =µij ○ µjk ○ γk∣[0,tj]

=µij ○ γj ∣[0,tj] using (j, k) for (h, l) in (2)

Thus for any index i, we can define a map ηi ∶ [0,1[= ∪
j≥i

[0, ti]→Mi by ηi∣[0,tj] =def µij ○ γj ∣[0,tj]
as j ranges over all integers greater than i. Given any 0 < t < 1 pick an index j ≥ i such that

t < tj and observe that ηi∣[0,tj] = µij ○ γj ○ ∣[0,tj] is continuous (and smooth) map so that ηi

is continuous (and smooth since all µij are smooth). Clearly, η● is a cone into SysM so let

η ∶ [0,1[→M be its limit. Let h be any index and observe that if t ∈ [th,1[ then by picking

l ≥ h such that tj > t it follows from (4) that

µh(η(t)) = µhl(ηl(t)) = µhl(γl(t)) ∈ Oh

so that η([th,1)) ⊆ µ−1
h (Oh). Since O● is a neighborhood basis for M at m1 it follows that if

we extend η to [0,1] by defining η(1) =m1 then η will be continuous. Also, since all bonding
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maps are continuous it follows that if we extend each ηi to [0,1] by defining ηi(1) =
def
µi(η(1))

then ηi will be continuous.

Fix 0 < r < 1 and pick an index i such that r < ti. By definition, we have ηi∣[0,ti] = γi ○ ∣[0,ti]
which is a (smooth) embedding by (1) and since µi ○η∣[0,ti] = ηi∣[0,ti] it follows that η∣[0,ti], and

hence η∣[0,r], is a topological embedding, which implies that η∣[0,1[ is a topological embedding.

If m1 = η(r) for some r ∈ [0,1[ then let i be such that r < ti and observe that this implies

that m1
i = µi(η(r)) = γi(r) so that γi was not injective, a contradiction. This shows that

η ∶ [0,1]→M is injective and thus a homeomorphism. ∎

Corollary 2.5.14. Let SysM = (M●, µij,N) be a projective system in Top whose spaces

are first countable, Hausdorff, and locally path-connected and whose bonding maps are

continuous, open, 1-fibrations all of whose fibers are path-connected. Then M is locally

path-connected and a basic open subset µ−1
i (Ui) of M is path-connected if and only if Ui is

path-connected.

Example 2.5.15. Let M1 = R, M2 = M1 ×R ∖ ( 1
2!
)(Z2), M3 = M2 ×R ∖ ( 1

3!
)(Z3), and now

inductively define all other Mi by letting Mi+1 = Mi × R ∖ 1
(i+1)!(Zi+1), where 1

(i+1)!(Zi+1) =
def

{( p1
(i+1)! , . . . ,

pi+1
(i+1)!) ∣p1, . . . , pi+1 ∈ Z}. For each index i let µi,i+1 ∶Mi+1 →Mi denote the canoni-

cal projection onto the first coordinate where observe that this is a smooth surjective submer-

sion. By proposition 2.5.12 its limit M is path-connected, locally path-connected, and fur-

thermore a basic open subset µ−1
i (Ui) is path-connected if and only if Ui is path-connected.

Partial µ●-Sections

The definitions and results in this section are original and were largely motivated by con-

sideration of example 2.5.20. The definitions in this section will be used to find an original

sufficient condition, found in proposition 2.5.22, for a limit to be connected.

Definition 2.5.16. By a partial section of a map f ∶X → Y we mean a continuous X-valued

map σ defined on a subset Y that satisfies f ○ σ = IdDomσ and by a local section we mean a
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partial section defined on an open subset of Y . When we say that a partial section is through

a point x ∈X then we mean that x is contained in the image of this map.

Definition 2.5.17. Let SysM = (M●, µij, I) be a directed inverse system with limit (M,µ●).

By a direct system of subsets of SysM we mean an a collectionD● ⊆M● such thatDi ⊆ µij(Dj)

for all i ≤ j in I. By a direct system of partial sections of SysM we mean a direct system

Sysσ = (D●, σ
j
i , I) such that D● is a direct system of subsets of SysM and σji ∶ Di → Dj is a

partial section of µij ∶Mj →Mi for all i ≤ j in I in which case we may say that (σji ) (rather

than Sysσ) is a direct system of partial sections of SysM . We will say that a direct system

of partial sections (σji ) of SysM is dense if for each index i, ∪
i≤j≤k

µij (Domσkj ) is dense in Mi

and that it is connected if every Domσki is connected.

Observe that for each index i, σ●i = (σji )j∈I,j≥i forms a cone into SysM ∣
J≥i

whose limit

map, which we’ll denote by σi =
def

lim←Ðσ
●
i ∶ Di → M , is a partial section of µi ∶ M → Mi.

We’ll denote this induced collection of maps σ● =
def

(σi)i∈I by lim←Ð Sysσ and call them the limit

morphisms of Sysσ into (M,µ●) or the partial µ●-sections induced by Sysσ. If in any of these

definitions we omit writing the word “partial” or write “global” in its place then we mean

that in addition, the domain of each σji is all of Mi. ∎

Definition 2.5.18. Suppose that (M,µ●) is a limit of a directed system SysM = (M●, µij, I),

let σ● = (σi)i∈N be a collection of M -valued maps such that Domσ● ⊆M●, and for each index

i let σ●i = µ● ○σi. Say that σ● is a partial section of µ● or a partial µ●-section if σi is a partial

section of µi ∶M →Mi for every index i. Call σ● a cocone of partial sections of µ● or a cocone

of partial µ●-sections if it is a partial section of µ●, Domσ● forms a direct system of subsets

of SysM , and it satisfies any of the following (clearly) equivalent consistency conditions :

(1) σj ○ σji = σi for all i ≤ j,

(2) σkj ○ σ
j
i = σki for all i ≤ j ≤ k,

(3) the system Sysσ =
def

(Domσ●, σ
j
i , I), called the canonical direct system induced by σ●

and µ●, forms a direct system of partial sections of SysM ,
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where if I = N then we may add to this list:

(4) σji = σ
j
j−1 ○ ⋯ ○ σi+1

i for all i < j,

(5) σi+2
i = σi+2

i+1 ○ σi+1
i for all i.

We will say that a partial section σ of µ● is dense (resp. connected) if the same is true of

Sysσ and we will call σ● partial sectional coordinates of µ● or partial sectional µ●-coordinates

if σ● is a cocone of partial sections of µ● and Domσ● forms an inverse system of subsets of

SysM . If in any of these definitions we omit writing the word “partial” or write “global” in

its place then we mean that in addition, Domσ● =M●.

Remark 2.5.19. The above definition’s assignment σ● ↦ Sysσ clearly establishes a bijective

correspondence between partial sections of µ● and direct systems of partial sections of SysM

whose inverse is given by Sysσ ↦ lim←Ð Sysσ.

Example and Definition 2.5.20. Let SysRN = (R●,Pr ≤i,j,N) be the canonical inverse

system of projections and let (RN,Pr ≤●) be its canonical limit. For all i ≤ j in N, let

σji ∶ Ri → Rj and σi ∶ Ri → RN be the respective canonical insertions σji (x) = (x,0, . . . ,0)

and σi(x) = (x,0,0, . . .). Then Sysσ =
def

(R●, σji ,N) is a direct system of partial sections of

SysRN and σ● are sectional coordinates of Pr ≤●, both of which we’ll henceforth canonically

associate to SysRN and (RN,Pr ≤●). Clearly, σ● are the partial Pr ≤●-sections induced by Sysσ

and conversely, Sysσ is the canonical direct system induced by σ● and Pr ≤●.

Example 2.5.21. Given any m ∈ M , the maps σi ∶ {µi(m)} → {m} form partial sectional

coordinates of µ●.

The following proposition gives basic properties of partial sections of limit cones and

provides a sufficient condition for a limit to be connected.

Proposition 2.5.22. Let SysM = (M●, µij, I) be a directed inverse system in Top with a

limit cone (M,µ●) and let σ● be a partial section of µ●.
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(1) Imσi ⊆ Imσj for all i ≤ j in I.

(2) If σ● is dense in SysM then ∪ Imσ● is dense in M .

(3) Imσi = lim←Ð
j

Imσji for each fixed index i (where the bonding maps are µjk∣Imσki
∶ Imσki →

Imσji ).

(4) If cofinally many Domσi are connected then so is ∪ Imσ● where if in addition σ● is

dense in SysM then M is connected.

Proof. (3) and (2) are immediate and (1) follows from definition 2.5.18(1). To prove (4), let

J be cofinal in I, suppose that Domσj is connected for all j ∈ J , and let D = ∪
i∈I

Imσi where

since I is directed, part (1) implies that D = ∪
j∈J

Imσj. Assume that D ≠ ∅ so there exists

some j0 ∈ J such that Imσj ≠ ∅. Observe that for all j ∈ J the set Imσj is connected since

each σi ∶Di →M is an embedding so that D = ∪
j∈J
j≥j0

Imσj is an increasing union of connected

sets and thus is connected, which implies that ClM(D) is connected. ∎

The following well-known results follow immediately.

Corollary 2.5.23. Solenoids and RN are connected.

The following proposition establishes the notation that will henceforth be used when

dealing partial sections of the limit cone of a system directed by N and lists the results of

some common computations related to them that would otherwise be repeatedly rederived

later.

Proposition and Notation 2.5.24. Suppose that SysM = (M●, µij,N) is a surjective sys-

tem indexed by the integers. Let D● be an N-indexed collection of subsets ofM● and for each

index i let σi+1
i ∶ Di →Mi+1 be a morphism such that Imσi+1

i ⊆ Di+1 and µi,i+1 ○ σi+1
i = IdDi .

For all h ≤ i < j in I, define σhi = µhi∣Di ∶Di →Mh and

σji = σ
j
j−1 ○ ⋯ ○ σi+1

i ∶Di →Mj
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Then (σji ) forms a direct system of sections of SysM so that (σli)
∞
l=1 forms a cone into SysM

whose limit we will denote by

σi =
def

lim←Ð
l

σli ∶Di →M

Furthermore,

(1) µjk ○ σki = σ
j
i and µj ○ σi = σ

j
i for all i, j, k ∈ N with j ≤ k (where observe that i is free).

• so in particular, µij ○ σji = IdDi and µh ○ σi = µhi∣Di for all h ≤ i ≤ j.

(2) for all i, j, k ∈ N with i ≤ j,

σj ○ σji = σi and σkj ○ σ
j
i = σki

• so in particular, σi ○ µij = σj on Imσji for i ≤ j.

Proof. It is immediately verified that (σji ) forms a direct system of sections of SysM .

Throughout the rest this proof h, i, j, and k will represent indices in I.

(1) If i ≤ j = k then σji = IdMj
○σji = µjk ○ σki is immediate and if it’s been proved for k

with k ≥ j ≥ i then

µj,k+1 ○ σk+1
i = µjk ○ µk,k+1 ○ σk+1

k ○ σki = µjk ○ σki = σ
j
i

so that it’s true for k + 1 and hence σi =
def

lim←Ð
l

σli ∶ Di → M is well-defined. By the universal

property of limits we have µj ○ σi = σji for all i < j so that for all h ≤ i

µh ○ σi = µh,i+1 ○ µi+1 ○ σi = µh,i+1 ○ σi+1
i = µhi ○ µi,i+1 ○ σi+1

i = µhi∣Di =def σ
h
i

which shows µj ○ σi = σji regardless of whether i ≤ j or j ≤ i. So for all i, j, k with j ≤ k

µjk ○ σki = µjk ○ µk ○ σi = µj ○ σi = σ
j
i
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regardless of whether, i ≤ j ≤ k, j ≤ i ≤ k, or j ≤ k ≤ i, which proves (1).

(2) We will assume through out this part of the proof that i ≤ j. If j ≤ k then it is clear

that σkj ○ σ
j
i = σki which shows that

µk ○ (σj ○ σji ) = σkj ○ σ
j
i = σki = µk ○ σi

so that since k was arbitrary, by uniqueness of limits of cones we must have σi = σj ○ σji . If

however, k ≤ j then σkj = µkj ∣Dj so that by part (1)

σkj ○ σ
j
i = µjk ○ σ

j
i = σ

j
i

Now, σi ○µij ○σji = σi ○ IdDi = σj ○σ
j
i so that σi ○µij = σj on Imσji , which completes the proof

of (2 ). ∎

Local Compactness

Proposition 2.5.25. For any m ∈M , the following are equivalent:

(1) M is locally compact at m.

(2) SysM is locally eventually compact at m.

(3) SysM is cofinally compact at m.

In particular, if each Mi is locally compact at µi(m) then M is locally compact at m ⇐⇒

SysM is cofinally proper at m.

Proof. (1) Ô⇒ (2): Pick any relatively compactm ∈ U ∈ Open (M) and then pick any index

i and any subset Ui ∈ Open (Mi) such that m ∈ µ−1
i (Ui) ⊆ U . Observe that for any j ≥ i we

have µ−1
j (µ−1

ij (Ui)) = µ−1
i (Ui) ⊆ U so that µ−1

ij (Ui) ⊆ µj(µ−1
i (Ui)) ⊆ µj(U), which implies that

Nj =
def
µj(U) = µj(U) is a compact set containing µ−1

ij (Ui). Thus SysNi =def (Nj, µij ∣Nj , I
≥i) is

the desired system.
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(2) Ô⇒ (3) is immediate so assume that (3) holds. Then by definition there exists some

cofinal subset J ⊆ I, some index j in J , and some neighborhood Nj of µj(m) in Mj such

that SysNj =
def

(Nj, µij ∣Nj , J
≥j), the inverse system induced by Nj and J , is compact where

recall that Nk =
def
µ−1
jk(Nj) for all k ∈ J≥j. Consider N =

def
lim←Ð SysNj as a subset of M and let

Oj denote the interior of Nj in Mj. Observe that N is a compact set containing µ−1
j (Oj),

which is an open subset of M containing m so that (1) holds. ∎
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Chapter 3

Inverse System Morphisms

Definition 3.0.1. If we write (F●, λ) ∶ SysM → SysN then we mean that λ is an order

morphism and F● is an Dom(λ)-indexed collection of morphisms where if SysM and SysN

are inverse (resp. direct) systems then λ has prototype λ ∶ A → I (resp. λ ∶ I → A) and for

each d ∈ Domλ, Fd has prototype Fd ∶Mλ(d) → Nd (resp. Fd ∶Md → Nλ(d)).

If SysM and SysN are inverse (resp. direct) systems then we will say that (F●, λ) ∶

SysM → SysN is a morphism of inverse (resp. direct) systems, an inverse (resp. direct)

system morphism, or simply a morphism (from SysM to SysN) if the following condition,

called the compatibility or consistency condition, is satisfied:

Fa ○ µλ(a)λ(b) = νab ○ Fb for all a ≤ b in A

(resp., ν
λ(j)
λ(i) ○ Fi = Fj ○ µ

j
i for all i ≤ j in I)

i.e. the following respective diagram must commute:

Mλ(a) Mλ(b)

Na Nb

µλ(a)λ(b)

Fa Fb

νab

Mi Mj

Nλ(i) Nλ(j)

µji

Fi Fj

ν
λ(j)

λ(i)

Inverse System Morphism (resp. Direct System Morphism )
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If SysP = (P●, πrs,R) is another inverse (resp. direct) system and (G●, σ) ∶ SysN → SysP

is a morphism then the composition (G●, σ) ○ (F●, λ) ∶ SysM → SysP consists of the order

morphism λ ○ σ ∶R→ I (resp. σ ○ λ ∶ I→R) and the R-indexed (resp. I-indexed) morphisms

Gr ○ Fσ(r) ∶Mλ(σ(r))→Pr (resp. Gλ(i) ○ Fi ∶Mi→Pσ(λ(i))). ∎

Example 3.0.2. Let SysM be a system and let J be any (not necessarily cofinal) subset of

I. If SysM is an inverse system then the identity maps IdMj
indexed by j ∈ J together with the

natural inclusion ι =
def

InIJ ∶J→ I form an inverse system morphism (IdMj
, InIJ) ∶ SysM → SysM ∣

J

from SysM = (M●, µij, I) to SysM ∣
J
= (Mi, µij, J). If SysM is instead a direct system then

these same maps will instead form a direct system morphism (IdMj
, InIJ) ∶ SysM ∣

J
→ SysM .

Example and Definition 3.0.3. Given any object Z and any collection h● of morphisms

hi ∶ Z →Mi indexed by I, we can form the IdI-ordered collection of maps (h●, IdI) ∶ Z● →M●

that we will henceforth refer to as canonical, where Z● = (Zi)i∈I is defined by Zi =
def

Z.

Saying that this canonical collection of maps forms an inverse system morphism (h●, IdI) ∶

ConstSysZ → SysM is equivalent to saying that the h● is compatible with SysM (def. 2.1.14),

where ConstSysZ = (Z●, IdZ , I) is the constant inverse system.

Limits of System Morphisms

Definition 3.1.1. If (F●, λ) ∶ SysM → SysN is a morphism of inverse (resp. direct) systems

then by the canonical cone (resp. cocone) induced by (or associated with) (F●, λ) (and µ●

(resp. ν●)) we mean the cone (M, (Fa ○ µλ(a))a∈A) from M into SysN (resp. the cocone

(N, (νλ(i) ○ Fi)i∈I) from SysM into N).

Definition 3.1.2. Suppose that (F●, λ) ∶ SysM → SysN is a morphism of inverse (resp.

direct) systems and that SysM and SysN have limits (resp. colimits) (M,µ●) and (N,ν●)

(resp. colimits (M,µ●) and (N,ν●)). By the limit (resp. colimit) (morphism) of (F●, λ) we

mean the limit morphism of the canonical cone (resp. canonical cocone) induced by (F●, λ)
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and µ● (resp. ν●). We will denote this morphism with notation that is analogous to the

notation used for limits of cones (resp. cocones):

lim←Ð(F●, λ), lim←Ð
a∈A

(Fa, λ), or lim←Ð
a∈A

Fλ(●)

where in the case that the order morphism and indexing set is clear we will also use the

notation

lim←ÐFa, lim←ÐF●, or simply F

(resp. for direct systems, we will reverse the arrow and possibly replace “lim” with “colim”).

We may also sometimes use “limit” rather than “colimit” to refer to the colimit of a direct

system morphism.

When we say that a map F̂ ∶M →N arises as the limit of an inverse system morphism

(resp. direct system morphism) (from SysM to SysN) we mean that there exists an inverse

system morphism (resp. direct system morphism) (F̂●, λ̂) ∶ SysM → SysN such that F̂ is the

limit of (F̂●, λ̂).

The limit map is the unique map F ∶ M → N satisfying the following compatibility

condition:

νa ○ F = Fa ○ µλ(a) for all a ∈ A = Domλ

(resp. F ○ µi = νλ(i) ○ Fi for all i ∈ I = Domλ)

where in this case the following diagram will commute for all a ≤ b in Domλ:

Mλ(a) Mλ(b)

Na Nb

M

N

µλ(a)λ(b)

Fa Fb

νab

µλ(b)

F

νb

(resp. for direct systems, reverse the horizontal arrows and appropriately raise and/or relabel

the indices of the objects and connecting morphisms).
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If M and N are the canonical limits then the limit of (F●, λ) is the map

lim←Ð(F●, λ) ∶ M Ð→ N ⊆∏
a∈A

Na

m = (mi)i∈ I z→ (Fa(mλ(a)))a∈A

which we may write more succinctly as F● ○ µλ(●) = (Fa ○ µλ(a))a∈A. ∎

Remarks 3.1.3.

• It is straightforward to verify that lim←Ð is a functor from the category of inverse systems

of sets (resp. topological spaces, groups, topological groups) into this same category.

• It was not necessary for Im ι to be cofinal in I in order for lim←Ð(F●, ι) to be defined,

although having Im ι be cofinal in I is sometimes useful and even required by many

authors.

• Let (Z,h●) be a cone in SysM , let ConstSysZ = (Z●, IdZ , I) be the constant sys-

tem, and recall that by considering each hi as the map hi ∶Zi = Z→Mi we may con-

sider this cone as the inverse system morphism (h●, IdI) ∶ConstSysZ→ SysM . Since

(Z, (IdZ)i∈I) = lim←ÐConstSysZ and since the limit h of this inverse system morphism

satisfies µi ○ h = hi ○ IdZi = hi we see that h is just the limit of the cone (Z,h●).

Properties of Inverse System Morphisms and Their Limits

Part (6) the following lemma gives a means of determining whether or not a particular

element of the codomain of a limit morphism belongs to its range. In general, the limit of

open maps is not necessarily open so that part (1) is provides a partial apology for this by

showing that the image of certain opens sets are still guaranteed to be open. Also, although

the limit in Top of epimorphisms is again an epimorphism it is not in general true that the
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limit of surjections is a surjection. However, the image of the limit morphism will be dense

in N and it is in this sense that, for any subset S of M , part (3) below provides a way of

“approximating” F (S) without requiring any knowledge of what F (S) actually is.

Surprisingly, part (6) of lemma 3.2.1 appears to have gone unnoticed in the literature and

so is presumed to be new. Parts (1) and (2) of this lemma are observations whose statements

the author could not find references for, parts (4) and (5) are well-known, while part (3) is

a generalization of its own well-known corollary, which is mentioned immediately after part

(3)’s statement.

Proposition 3.2.1. Suppose (M,µ●) and (N,ν●) are, respectively, limits in Top of SysM

and SysN and (F●, ι) ∶ SysM → SysN is an inverse system morphism in Top. Then the limit

map F ∶M → N of (F●, ι) is continuous and:

(1) If a ∈ A, i =
def
ι(a), and Si ⊆Mi then F (µ−1

i (Si)) ⊆ ν−1
a (Fa(Si)) ∩ ImF with equality if

Si is Fa-saturated.

• So in particular, if Ui is an Fa-saturated open set in Mi and Fa(Ui) is open then

F (µ−1
i (Ui)) is open in ImF .

(2) If Im(Fa ○ µι(a)) is dense in Na for some index a then Imνa is dense in Na and N =

∅ ⇐⇒ M = ∅ ⇐⇒ Na = ∅.

(3) If SysN is directed and S ⊆M then F (S) is dense in ∩
a∈A

ν−1
a (Fa(µι(a)(S))) = ∩

a∈A
ν−1
a (νa(F (S))).

• If in addition Im(Fa ○ µι(a)) is dense in Na for all a ∈ A then ImF is dense in N .

(4) If ι ∶ A→ I is cofinal and each F● is an injection (resp. topological embedding) then so

is F ∶M → N .

If ι ∶ A→ I cofinal and SysM (and consequently SysN) is directed then also:

(5) If each F● is a bijection (resp. homeomorphism) then so is F ∶M → N .
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(6) (The preimage under the limit map is the limit of the preimages):

Suppose that S● = (Sa)a∈A is an inverse system of subsets of SysN with limit S ⊆ N .

For all a ≤ b in A, let MS
a = F −1

a (Sa) ⊆Mι(a) and define

µSab = µι(a)ι(b)∣MS
b
∶MS

b →MS
a and µSa = µι(a)∣F−1(S) ∶F −1 (S)→MS

a

Then SysMS =
def

(MS
● , µ

S
ab,A) is an inverse system with limit (F −1 (S) , µS● ). In partic-

ular,

• if each F● is surjective with compact Hausdorff fibers then the same is true of

F ∶M → N .

• if n ∈ N , n● =
def
ν●(n), and ι ∶ I→ Im ι has an inverse α ∶ Im ι→A then

F −1 (n) = lim←Ð(F −1
i (nα(i)), µij ∣F−1j (nα(i)), Im ι)

In short, this says that “the fiber of the limit (map) is the limit of the fibers.”

Remark 3.2.2. Parts (1) and (6) as well as the portion of part (4) (resp. part (5)) dealing

with injectivity (resp. bijectivity) all continue to hold if we work in the category Set instead

of Top.

Proof. Since νa ○ F = Fa ○ µι(a) is a composition of continuous maps for every a ∈ A, the

preimage under F of every subbasic open subset of N is open in M so F is continuous.

(1) From νa(F (µ−1
i (Si))) = Fa(µi(µ−1

i (Si))) ⊆ Fa(Si) we have F (µ−1
i (Si)) ⊆ ν−1

a (Fa(Si))∩

ImF . Now suppose that Si is Fa-saturated meaning that Si = F −1
a (Fa(Si)). Let n ∈

ν−1
a (Fa(Si)) ∩ ImF and let m ∈ M be such that n = F (m). Since Fa(µi(m)) = νa(F (m)) =

νa(n) ∈ Fa(Si) we have µi(m) ∈ F −1
a (Fa(Si)) = Si. Hence m ∈ µ−1

i (Si) so that n = F (m) ∈

F (µ−1
a (Si)), as desired. If this Fa-saturated set is such that Fa(Si) is open in Na then

F (µ−1
i (Si)) = ν−1

a (Fa(Si)) ∩ ImF shows that F (µ−1
i (Si)) is open in ImF .

(2) and (3) are immediate from proposition 2.1.33.
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(4) Suppose that ι is cofinal and let m,m̂ ∈ M be such that F (m) = F (m̂). Then

F● ○ µι(●)(m) = ν● ○ F (m) = ν● ○ F (m̂) = F● ○ µι(●)(m̂) so that the injectivity of each Fa

implies that µι(a)(m) = µι(a)(m̂) for all a ∈ A. Since Im ι is cofinal in I, this implies that

µi(m) = µi(m̂) for all i ∈ I so that m = m̂. Furthermore, observe that for any n ∈ ImF

and a ∈ A, Fa(µι(a)(F −1 (n))) = νa(F (F −1 (n))) = νa(n) so that νa(n) ∈ ImFa while the

injectivity of Fa gives µι(a)(F −1 (n)) = F −1
a (νa(n)).

Now suppose that all F● are topological embeddings, C is a closed subset of M , and

that n ∈ ClImF (F (C)). Recall that since Im ι is cofinal in the directed set I, we have

C = ∩
a∈A

µ−1
ι(a)(µι(●)(C)) so to show that F −1 (n) ∈ C it suffices to show that for all a ∈ A,

µι(a)(F −1 (n)) ∈ µι(a)(C). So let n● = (nα)α∈Λ be a net in F (C) converging to n and let

a ∈ A. Since νa(n●) converges to νa(n) with all of these points contained in the domain

of the continuous function F −1
a ∶ ImFa→Mι(a), we have µι(a)(F −1(n●)) = F −1

a (νa(n●)) →

F −1
a (νa(n)) = µι(a)(F −1 (n)). Applying µι(a) to both sides of F −1(n●) ⊆ C, we can conclude

that µι(a)(F −1 (n)) ∈ µι(a)(C). Thus, n ∈ F (C) so that F (C) is closed in ImF .

Assume henceforth that SysM and SysN are directed and that ι is cofinal.

(5) Suppose that all F● are bijections, let n ∈ N , and let n● = ν●(n). For all a ≤ c in A,

na = νac(nc) = νac(Fc(F −1
c (nc))) = Fa(µι(a)ι(c)(F −1

c (nc)))

so that F −1
a (na) = µι(a)ι(c)(F −1

c (nc)). Hence, for any i ∈ I and a, b ∈ A with i ≤ ι(a), ι(b),

since A is directed we may pick c ≥ a, b to conclude that

µiι(a) (F −1
a (na)) = µiι(a) (µι(a)ι(c)(F −1

c (nc))) = µiι(c) (F −1
c (nc)) = µiι(b)(F −1

b (nb))

This shows that the for any i ∈ Im ι the element mi =
def
µiι(a) (F −1

a (na)) is independent of the

index a ∈ ι−1(i) chosen so that by using our convention, this defines an element of m ∈ M .

Since for each a ∈ A, νa (F (m)) = Fa (mι(a)) = Fa(F −1
a (na)) = na = νa(n) it follows that

F (m) = n. If all F● are also homeomorphisms then the bijection F is an embedding by (4)
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and is thus a homeomorphism.

(6) For any a ≤ b in A, if mb ∈MS
b = F −1

b (Sb) then Fa(µSab(mb)) = νab(Fb(mb)) ∈ νab(Sb) ⊆

Sa so that µSab(mb) ∈ F −1
a (Sa) = MS

a , which shows that SysMS is an inverse system. Let

(Z,h● = (ha)a∈A) be a cone into SysMS . Observe that if a, b ∈ A are such that ι(a) = ι(b)

then pick c ≥ a, b and note that for all z ∈ Z,

ha(z) = µSac(hc(z)) = µι(a)ι(c)(hc(z)) = µι(b)ι(c)(hc(z)) = µSbc(hc(z)) = hb(z)

so that for any i ∈ Im ι the map h̃i =
def
hι(a) ∶ Z →Mi is independent of the choice of a ∈ ι−1 (i).

Clearly (Z, (h̃i)i∈Im ι
) is a cone into SysM ∣

Im ι
where since I is directed and ι is cofinal, this

cone has a unique extension to a cone (Z, h̃● =
def

(h̃i)i∈I) into SysM . Let h ∶ Z → M be the

unique limit morphism of (Z, h̃●), which is continuous if all h● are continuous. Once we

show that Imh ⊆ F −1 (S) then it will be clear that h ∶ Z → F −1 (S) is the unique morphism

into (F −1 (S) , µS● ) such that µS● ○ h = h●, thereby proving that (F −1 (S) , µS● ) is the limit of

SysMS . Observe that if z ∈ Z then

(νa ○ F )(h(z)) = (Fa ○ µι(a) ○ h)(z) = (Fa ○ h̃ι(a)) (z) = (Fa ○ ha) (z) ∈ Fa (F −1
a (Sa)) ⊆ Sa

so that F (h(z)) ∈ ∩
a∈A

ν−1
a (Sa) = S, as desired.

If all Fa are surjective with compact Hausdorff fibers then since SysMn is an inverse system

of non-empty compact Hausdorff spaces so it’s limit exists, which implies that F −1 (n) ≠

∅. ∎

Corollary 3.2.3. Let SysM and SysN be two inverse systems of finite-dimensional affine

linear spaces with affine linear connecting maps. Let (Λ●, ι) ∶ SysM → SysN be an inverse

system morphism with each Λa ∶Mι(a)→Na affine linear and let Λ = lim←ÐΛ●.

(1) If all Λa ∶Mι(a)→Na are surjective then so is Λ ∶M →N and the converse is true if all

νa ∶ N → Na are surjective.
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(2) The kernel of Λ is

ker Λ = ∩
a

ker(νa ○Λ) = ∩
a

ker(Λa ○ µι(a))

where a ≤ b implies ker(νb ○Λ) ≤ ker(νa ○Λ).

(3) Λ is injective if and only if for each index a there exists some b ≥ a such that ker Λb ≤

kerµι(a)ι(b) (or equivalently, such that ker(νb ○Λ) ≤ kerµι(a)). In this case

dimNb ≥ dim(Im Λb) ≥ dim(Imµι(a),ι(b))

where observe that if µι(b) is surjective then this is equivalent to the set equality

Im Λb = Im(νb ○Λ).

Proof. Let n ∈ N , n● = ν●(n), and recall that Λ−1 (n) = lim←Ð(Λ−1
a (na) , µι(a)ι(b)∣Λ−1

b
(nb),N).

Since each Λ−1
a (na) is an affine linear subspace ofMi and since each µι(a)ι(b)∣Λ−1

b
(nb)

∶ Λ−1
b (nb)→

Λ−1
a (na) is affine linear it follows from lemma 2.2.12 that Λ−1 (n) ≠ ∅. Let m ∈M . Observe

that Λ(m) = 0 if and only if νa(Λ(m)) = νa(0) = 0 for all indices a, which happens if and

only if m ∈ ∩
a

ker(νa ○ Λ) = ∩
a

ker(Λa ○ µι(a)). The inequality dim(Im Λb) ≥ dim(Imµι(a),ι(b))

follows from the rank nullity theorem:

dimMι(b) − dim(Im Λb) = dim ker Λb ≤ dim kerµι(a)ι(b) = dimMι(b) − dim(Imµι(a)ι(b))

∎

Characterization of Closed Vector Subspaces of RN

The following corollary 3.2.4 of proposition 3.2.1 is original.

Corollary 3.2.4. Every closed vector subspace M of RN is complemented in RN and TVS-

isomorphic to Rd, where d = dimM if dimM <∞ and d = N otherwise.

Proof. By lemma B.1.8, it suffices to show that M is TVS-isomorphic to RN. For all i, j ∈ N
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with i ≤ j let Pr ≤i ∶ RN → Ri be the canonical projection, Mi = Pr ≤i(M), di = dimMi, and

let µij = Pr ≤i,j ∣Mj
∶ Mj → Mi be the restriction of the canonical projection Pr ≤i,j ∶ Rj → Ri.

Note that since Mi = Pr ≤i,i+1(Mi+1) and the kernel of Pr ≤i,i+1 ∶ Ri+1 → Ri has dimension 1,

either µi,i+1 is a TVS-isomorphism and di+1 = di or else di+1 = di + 1 and ker Pr ≤i,i+1 ⊆Mi+1.

Let Λ1 ∶ M1 → Rd1 be any TVS-isomorphism. Suppose that j > 1 and for all 1 ≤ i ≤

j we’ve constructed TVS-isomorphisms Λ1 ∶ Mi → Rdi such that for all 1 ≤ h ≤ i ≤ j,

Pr ≤dh,di ○ Λi = Λh ○ µhi, where Pr ≤dh,di ∶ Rdi → Rdh is the canonical projection. If di+1 = di

then define the TVS-isomorphism Λi+1 ∶ Mi+1 → Rdi+1 by Λi+1 = Λi ○ µi,i+1 so suppose that

di+1 = di + 1. Then ({0}i ,1) ∈ Mi+1 so define the TVS-isomorphism Λi+1 ∶ Mi+1 → Rdi+1

by x = (x1, . . . , xdi , xdi+1) ↦ ((Λi ○Pr ≤di,di+1) (x), xdi+1). It is clear that Λi+1 satisfies the

inductive hypotheses so that Λ● ∶ SysM → (Rd● ,Pr ≤da,da+1 ,N) is an inverse system morphism

consisting of TVS-isomorphisms whose limit map Λ = lim←ÐΛ● ∶ M → Rd is therefore a TVS-

isomorphism. ∎

Equivalence Transformations

Definition 3.3.1. Let (Fa, ι) → (M●, µij, I) → (Na, νab,A) and (Gi, α) ∶ (N●, νab,A) →

(Mi, µij, I) be two inverse system morphisms, where as usual, if we are working in some

given category then we require that all Fa and Gi be morphisms in this category. Then we

will say that (F●, ι) and (G●, α) form an equivalence transformation (of inverse systems) if

for all indices i ∈ I and a ∈ A we have

µi,ια(i) = Gi ○ Fα(i) and νa,αι(a) = Fa ○Gι(a)

i.e. if the following diagrams commute:
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Mια(i)

Nα(i)

Mi

µi,ια(i)

Fα(i)Gi

Nαι(a)

Mι(a)

Na

νa,αι(a)

Gι(a)Fa

where recall from def. 1.1.3 that ια(i) =
def
ι(α(i)) and αι(a) =

def
α(ι(a)). In this case we will

say that SysM and SysN are equivalent and the follow diagrams will necessarily commute:

Mια(i) Mια(j)

Nα(i) Nα(j)

Mi Mj

Fα(i) Fα(j)

µια(i)ια(b)

να(i)α(j)

Gi Gj

µij

µi,ια(i)
µj,ια(j)

Nαι(a) Nαι(b)

Mι(a) Mι(b)

Na Nb

Gι(a) Gι(b)

ναι(a)αι(b)

µι(a)ι(b)

Fa Fb

νab

νa,αι(a)
νb,αι(b)

so that in addition, the following diagram will also commute:

Nαι(a) Nαι(b)

Mι(a) Mι(b)

Na Nb

N

M

N

Gι(a) Gι(b)

ναι(a)αι(b)

µι(a)ι(b)

Fa Fb

νab

νa,αι(a)

µι(b)

lim←Ð(F●, ι)

lim←Ð(G●, α)

ναι(b)

νb

where note that lim←Ð (F●, ι) ○ lim←Ð (G●, α) = IdN .

If (M,µ●) = lim←Ð SysM and (M,ν●) = lim←Ð SysN (note that here we’re assuming that M =

N) then we will say that (F●, ι) and (G●, α) form an equivalence transformation of (inverse)

representations (def. 2.1.22) if in addition to being an equivalence transformation of inverse

systems we have

µi = Gi ○ να(i) and νa = Fa ○ µι(a)
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for all i ∈ I and a ∈ A (i.e. if both lim←Ð (F●, ι) and lim←Ð (G●, α) are IdM). ∎

Remark 3.3.2. If all M● and N● are smooth manifolds and F● and G● are as above then if

all µij (resp. νab) are smooth submersions then so too are all F● (resp. G●).

The proof of the following lemma is a straightforward exercise.

Lemma 3.3.3. Let (Fa, ι) ∶ (M●, µij) → (Na, νab) and (Gi, α) ∶ (N●, νab) → (Mi, µij) be two

collections of arbitrary maps with Fa ∶Mι(a) → Na and Gi ∶ Nα(i) →Mi. Assume that M = N

and that for each i ∈ I and a ∈ A we the maps µi and νa are surjective, µi = Gi ○ να(i), and

νa = Fa ○ µι(a). Then both (F●, ι) and (G●, α) are morphisms (in Set) of inverse systems,

they form an equivalence transformation of inverse representations, and all F● and G● are

surjective. If in addition we have that all µ● and ν● are quotient maps in Top then all F●

and G● are morphisms in this category.

Equivalent Systems Have Isomorphic Limits

It is a well-known fact (with a straightforward proof) that if there exists an equivalence

transformation between two inverse systems then their limits are isomorphic. We provide

a proof of this in the case where the indexing sets are the natural numbers since in this

case we can provide the following original proof that doesn’t require checking the universal

property of limits and that makes more apparent the reason why these two systems’ limits

are necessarily isomorphic.

Proposition 3.3.4. Let (M●, µij,N) and (N●, νab,N) be two inverse systems. If there exists

an equivalence transformation between them then their limits are isomorphic.
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M1 M2 M3 M4 M5 M6

N1 N2 N3 N4 N5 N6

⋯⋯
ι1 ι2

ι3 ι4

α1 α2 α3 α4

µ25 µ59

ν13 ν37

Figure 3.1: This diagram illustrates an example construction of Sysmix (highlighted) whose
simple construction may otherwise be hidden beneath its formal definition and which makes
apparent why the existence of an equivalence transformation between systems directed by
N forces (by lemma 2.1.37) the limits to be isomorphic. To reduce the quantity of symbols,
we denoted each Fa ∶Mι(a)→Na and each Gi ∶Nα(i)→Mi by the index of its domain with
the parentheses omitted. In the proof, SysmixM would consist of M2,M5,M9, . . . and the
morphisms µ25, µ59, . . . while SysmixN would consist of N1,N3,N7, . . . and the morphisms
ν13, ν37, . . ..

Proof. Let (Fa, ι) ∶ SysM → SysN and (Gi, α) ∶ SysN → SysM be an equivalence transforma-

tion of inverse systems. If the order morphisms ι and α are the identity map on some cofinal

subset of N then the result is immediate from lemma 2.1.37 and otherwise we may, by re-

stricting to cofinal subsets of N, assume without loss of generality that ι and α are strictly

increasing. Let us construct an inverse system called Sysmix as indicated by the diagram

below:

N1
F1←ÐMι(1)

Gι(1)←ÐÐ Nαι(1)
Fαι(1)←ÐÐÐMιαι(1)

Gιαι(1)←ÐÐÐ Nαιαι(1)
Fαιαι(1)←ÐÐÐÐ ⋯

where the definition of an equivalence of systems guarantees that this does in fact form an

inverse system.

We can now form two subsystems of Sysmix, call them SysmixM and SysmixN , whose ob-

jects consist, respectively, of all M●’s and N●’s of Sysmix. That is, SysmixN is the subsystem

N1

ν1,αι(1)=F1○Gι(1)←ÐÐÐÐÐÐÐÐ Nαι(1)
ναι(1),αιαι(1)=Fαι(1)○Gιαι(1)←ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ Nαιαι(1)

ναιαι(1),αιαιαι(1)←ÐÐÐÐÐÐÐÐ ⋯

and similarly for SysmixM .

Since SysmixM and SysmixN are both cofinal subsystems of Sysmix, the limits of all three
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systems are isomorphic by lemma 2.1.37. Since SysmixM is cofinal in SysM it follows that

the limit of SysM is isomorphic to that of Sysmix. Similarly lim←Ð SysN ≅ lim←Ð Sysmix so that

the limits of all these systems are isomorphic to lim←Ð Sysmix. ∎

Examples

Canonical Limit Map into a Subsystem

Example and Definition 3.4.1 (Canonical Limit Map into a Subsystem). Let J ⊆ I and

call the inverse system morphism ((IdMj
)
j∈J , In

I
J) ∶ SysM → SysM ∣

J
, which we will call the

canonical inverse system morphism from SysM into (the subsystem) SysM ∣
J
. If (M̃, (µ̃j)j∈J)

is a limit of the subsystem SysM ∣
J
the limit map, L ∶M → M̃ , of this inverse system morphism

the canonical limit map of M into M̃ . Proposition 3.2.1 shows that if J is cofinal in I (resp.

and if J is directed) then L is injective (resp. bijective) and in the category Top will represent

an embedding (resp. homeomorphism) of M into (resp. onto) M̃ so that we will call this

limit morphism the canonical embedding (resp. identification) of M into (resp. with) M̃ .

If J is cofinal in I but is not directed then example 2.1.40 shows that although L is

injective, it need not be surjective. If J is not cofinal in I then example 3.4.9 shows that L

need not be injective nor surjective.

Suppose that (F●, ι) ∶ (M●, µij, I)→ (N●, νab,A) is an inverse system morphism and J =
def

ι(A) is not necessarily cofinal in I. Let ι̂ ∶A→J denote ι ∶ A → I considered as a map onto

its image. Then (F●, ι) can be decomposed into the composition of the two inverse system

morphisms

((IdMj
)
j∈J , In

I
J) ∶ SysM → SysM ∣

J
and (F●, ι̂ ) ∶ SysM ∣

J
→ SysN

so that since lim←Ð is a functor, lim←Ð(F●, ι) ∶M →N factors through M̃ = lim←Ð SysM ∣
J
. ∎
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Remark and Definition 3.4.2. Fix an index i0 for which I≥i0 is cofinal in I and note that

for all i0 ≤ i ≤ j the following diagram commutes:

Mi Mj

Mi0 Mi0

M

Mi0

µij

µi0i µi0j

IdMi0

µj

µi0

IdMi0

so that the maps µi0i ∶ Mi → Mi0 form an inverse system morphism (µi0i, InII≥i0) ∶ SysM →

(Mi0 , IdMi0
, I≥i0) whose limit is µi0 ∶M →Mi0 , where (Mi0 , IdMi0

, I≥i0) is the constant system.

This observation will allow us to apply the results pertaining to inverse system morphisms

that follow to conclude, for instance, that if each µij is, respectively, injective, bijective, an

embedding, a homeomorphism, or (if all M● are Hausdorff) a proper map then the same

is true of all µ●. We will refer to the above morphism of inverse systems as the canonical

morphism (of inverse systems) associated with (or induced by) µi0 . ∎

Surjectivity Counter Examples

The following examples are original. Example 3.4.5 is another example of a surjective inverse

system morphism whose limit map is not surjective.

Example 3.4.3. A surjective inverse system morphism with non-dense image: LetM be any

(possibly empty) topological space disjoint from ]0,1[ and for all i ∈ N, letMi =M∪ ]1 − 1
i ,1[,

Ni = [−1,1], and let both µi,i+1 and νi,i+1 be the natural inclusions. Note that M = lim←Ð SysM

and [−1,1] = lim←Ð SysN . For each a ∈ N, let Fa ∶ Ma → Na be identically 0 on M and

Fa(x) = sin(arctan(π2x)) on ]1 − 1
a ,1[. Observe that each Fa is a continuous surjection

and that (F●, IdN) ∶ SysM → SysN is an inverse system morphism whose limit map F ∶

M → [−1,1] is identically 0 (where if M = ∅ then F = ∅) so that ImF ⊆ {0} is not dense

in [−1,1] = lim←Ð SysN . In particular, this shows that “Im(Fa ○ µι(a)) is dense in Na” in

proposition 3.2.1(3) cannot necessarily be replaced with “ImFa is dense in Na.”
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The next example shows that the containments in propositions 2.1.33(3) and 3.2.1(3)

may be strict.

Example 3.4.4. For all i ∈ N let ϕi ∶R→ [0,1] be a smooth function on R such that ϕ−1
i (1) =

[i,∞[ and ϕ−1
i (0) = ] −∞,0]. For all a, b ∈ N with a ≤ b let Na = [0,1]a, N = [0,1]N, and let

νab ∶ Nb → Na and νa ∶ N → Na be the canonical projections so that (N,ν●) = lim←Ð(N●, νab,N)

in Top. For all a ∈ N let ha ∶R→Na be ha(r) = (ϕ1(r), . . . , ϕa(r)) and observe that (R, h●)

is a cone into SysN with limit

h ∶R Ð→ N

r z→ (ϕ1(r), ϕ2(r), . . .)

Observe that for each a ∈ N, if r ∈ R then (ϕ1(r), . . . , ϕa(r)) = ha(r) = {1}a if and only

if r ≥ a, which implies that νa({1}N) = {1}a ∈ Imha and that h−1
a ({1}a) = [a,∞[. However,

{1}N ∉ Imh (even though N is compact) since if there was some r ∈ R for which h(r) = {1}N

then since (ϕ1(r), . . . , ϕa(r)) = νa(h(r)) = {1}a for all a ∈ N we would necessarily have r ≥ a

for all a ∈ N. An alternative way to reach this same conclusion, which has added the benefit

of allowing us to see geometrically why {1}N /∈ Imh, is to observe that by corollary 2.3.10 we

have

h−1({1}N) = ∩
a∈N

h−1
a ({1}a) = ∩

a∈N
[a,∞[ = ∅

By considering the canonical inverse system morphism (h●, IdN) ∶ConstSysZ→ SysN induced

by this cone, we obtain an analogous counterexample to equality in proposition 3.2.1(3) for

inverse system morphisms (in place of cones). ∎

Convergent Series in R≥0

The following example is original.
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Example 3.4.5 (Convergent series in R≥0). Let M1 = R≥0 and for each i ∈ N let Mi =
i

∏
l=1
M1

and define

µi,i+1 ∶Mi+1 Ð→ Mi

(r1, . . . , ri+1) z→ (r1, . . . , ri−1, ri + ri+1)

where µ12(r1, r2) = r1 + r2. Let (M1, µ●) denote the canonical limit of this system in the

category Set. For each a ∈ N let Fa =
def
ρa,a+1 =

def
Pr ≤a ∶Ma+1→Ma and ρa ∶MN

1 →Ma denote

the canonical projections onto the first a coordinates, let SysP =
def

(Mi, ρa,a+1,N), and let

ι ∶N→N be ι(a) =
def
a + 1 for all a ∈ N. Then (MN

1 , ρ●) = lim←Ð SysP and (F●, ι) ∶ SysM → SysP

is an inverse system morphism since the following diagram commutes:

(r1, . . . , ra, ra+1, ra+2)

(r1, . . . , ra, ra+1 + ra+2)

(r1, . . . , ra, ra+1)

(r1, . . . , ra)

µι(a),ι(a+1)

Fa

Fa+1

ρa,a+1

Let F =
def
FM1 =

def
lim←ÐFι(●) ∶M

1→MN
1 . Observe that once M1 was chosen, the above construc-

tions did not use any topological or order theoretic structures on R.

Intuitively, elements of M1 can be identified with infinite lists of equations of the form:

r =r1 + r̂2

=r1 + r2 + r̂3

=r1 + r2 + r3 + r̂4

⋮

=r1 + r2 + r3 +⋯ + ri−1 + r̂i

⋮

where r, all ri, and all r̂i belong toM1 (explicitly, the corresponding element ofM1 would be

((r), (r1, r̂2), (r1, r2, r̂3), . . .)) and where the image under F (of this corresponding element

of M1) would just be the list (r1, r2, . . .) with r and all r̂i being forgotten. Observe that
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although each Fa is surjective (and in fact a smooth submersion) the limit morphism F is

not surjective since, for instance, {1}N =
def

(1,1,1, . . .) ∈MN
1 but {1}N /∈ ImF since ImF is the

set of all absolutely convergent series of non-negative real numbers. Indeed, as shown later

in example 11.7.7, the image of F has empty interior in F ’s codomain.

Furthermore, F is not injective so although ImF consists of every convergent series of

non-negative real numbers, we cannot use F to uniquely associate to such a series a unique

element of M1 (i.e. its sum). This should be expected since the above constructions did not

make use of any distinguished order or topology on M1.

Remark 3.4.6. Curiously, although the definition of when a series of non-negative real num-

bers converges depends explicitly on the topology of R, the construction used in the above

examples appears to be purely algebraic since only R≥0’s semigroup structure was used. The

Euclidean topology does exist implicitly in the semigroup R≥0 due to the restriction of addi-

tion to this subset. But the above construction may clearly be immediately generalized to

any subset of an arbitrary additive group (by replacing M1 with this set) that contains the

identity and satisfies the condition that whenever two of its elements sum to 0 then both

elements are necessarily 0, which consequently allows us define purely algebraic generaliza-

tions of the notion of “absolutely converging series” to arbitrary groups. An investigation

into such “generalized absolutely convergent series” would lead us too far afield and so will

not be explored further. ∎

Identity Maps and Limits

Example 3.4.7 (Obtaining the identity map as the limit of an inverse system morphism

consisting of non-identity morphisms). Let SysN = (N●, νab,Z≥0) be any (not necessarily

surjective) inverse system with limit (N,ν●) and let SysM be the subsystem of SysN indexed

by N. Clearly, M =
def

N together with all projections νa indexed by a ∈ N is a limit of

SysM . Let ι ∶ Z≥0 → N be ι(a) = a + 1 and let Fa =
def
νa,a+1 ∶ Na+1 → Na. It is clear that
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(Fa, ι) ∶ SysM → SysN is a morphism and note that for all a ∈ Z≥0 we have

Fa ○ νa+1 = νa,a+1 ○ νa+1 = νa = νa ○ IdN

so that IdN = lim←Ð (F●, ι). Thus lim←ÐF● = IdN ∶ M → N is an isomorphism even though

potentially none of the Fa were isomorphisms, injective, nor surjective, which shows that the

conditions in lemma 3.2.1 for the limit morphism to be injective, surjective, or bijective, are

sufficient but not necessary.

The following example shows that for every isomorphism between the limits of two inverse

systems, there always exists some inverse system that allows this isomorphism to be expressed

as the limit of identity maps.

Example 3.4.8 (An inverse system morphism consisting of identity maps whose limit is not

the identity map). Let N be any object, (M,µ●) = lim←Ð(M●, µij, I), and let F ∶ N →M be any

isomorphism. For each index i, let νi = µi ○F ∶ N →Mi, νij = µij, and Ni =Mi. Since F is an

isomorphism and inverse limits are unique up to unique isomorphism, it is immediate that

(N,νi) = lim←Ð(M●, µij). By definition, we have that µi ○F = IdMi
○F so that F = lim←Ð IdMi

. As

a cautionary note and to emphasize the affect that the projections ν● may have on the limit

of an inverse system morphism, observe that if N =M and F is not the identity morphism

then although SysM = SysN and each component of the above inverse system morphism is

the identity morphism IdMi
∶Mi →Mi, its limit is not the identity morphism.

Injectivity and Cofinality of Order Morphisms

Example 3.4.9. Parts (4) and (5) of proposition 3.2.1 may fail if ι is not cofinal: For all i ∈

I =
def

N letMi denote the closed cube in Ri centered at the origin with sides of length 2+ 2
i and

let µij ∶Bj→Bi denote the restriction to Bj of the canonical projection Rj → Ri. The limit

of SysM is (M =
def

[−1,1]N, µ●) where each µi ∶M →Bi is the canonical projection. If J ⊆ N
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is finite then the limit of the inverse system morphism ((IdMj
)
j∈J , ι =def InIJ) ∶ SysM → SysM ∣

J

is the canonical projection M →BmaxJ onto the first maxJ coordinate,s which is neither

injective nor surjective.
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Chapter 4

The Canonical Sheaf

Notation 4.0.1. Given any function F ∶ M → N and any map g ∶ N → Z into any space

Z, we will let F ∗g =
def
g∗F =

def
g ○ F and given a set F of maps into N we will let h∗(F) =

{h∗F ∣F ∈ F}.

Assumption and Notation 4.0.2. We will henceforth work within the subcategory C of

the category of commutative locally R-ringed spaces (M,M) satisfying:

(1) M is a subsheaf of C0
M , the sheaf of algebras of continuous R-valued functions whose

connecting maps are the usual restrictions of maps,

(2) M contains the constant functions, and

(3) whenever h ∈ C∞(R→R) then h∗(M(U)) ⊆M(U) for all U ∈ Open (M).

Remark and Notation 4.0.3. If (M,M) and (N,N ) are two ringed spaces in this category

and (F,F ♯●) ∶ (M,M)→ (N,N ) is a morphism of ringed spaces then recall ([48]) that this

forces (F,F ♯●) = (F,F ∗
● ), where (F,F ∗

● ) is a morphism of locally R-ringed spaces with and

where the morphism of sheaves on N , F ∗
● ∶N →f∗M, is defined by

F ∗
V ∶N (V ) Ð→ F∗M(V ) =

def
M(F −1 (V ))

f z→ f ○ F ∣F−1(V )
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for each V ∈ Open (N). In particular, the morphism of sheaves onN is completely determined

by the continuous map F . Conversely, if given a continuous map F then each of the maps F ∗
V

defined above produces an algebra of continuous R-valued functions and the only addition

requirement for F ∗
● to be a morphism of ringed spaces is that the range of F ∗

V be a subalgebra

of F∗M(V ).

This justifies abusing notation by writing F ∗ instead of F ∗
● and it also justifies referring

to F ∶ (M,M) → (N,N ) or, if the shaves are understood, even F ∶ M → N as a morphism

of ringed spaces. ∎

Definition 4.0.4. Given any map F ∶M → N we will call F smooth if F is continuous and if

(F,F ∗
● ) ∶ (M,M)→ (N,N ) is a morphism of (locally R-)ringed spaces. Explicitly, this latter

conditions means that g ○ F ∣
F−1(V ) ∈M(F −1 (V )) for all V ∈ Open (N) and all g ∈ N (V ). If

F ∶M → N is a smooth bijection whose inverse F −1 ∶N →M is also smooth then we will call

F a diffeomorphism.

Assumption and Notation 4.0.5. We will henceforth only consider directed inverse sys-

tems SysM =
def

((Mi,Mi), (µij, µ∗ij,●), I) in the category C. As before, (M,µ●) will denote a

limit of (M●, µij, I) in Top

Definition 4.0.6 (Canonical Sheaf). For every U ∈ Open (M), letM(U) denote the set of

all R-valued continuous functions f such that for each m ∈M there exists some index i ∈ I,

some Ui ∈ Open (Mi), and some fi ∈Mi(Ui) such that m ∈ µ−1
i (Ui) ∈ Open (U) and

f ∣
µ−1i (Ui)

= fi ○ µi∣µ−1i (Ui)

It is immediately verified thatM forms a sheaf, which we will refer to as the canonical sheaf

(on M) (induced by µ●) and that (M,M) is a locally R-ringed space, which we will call the

canonical limit of SysM (in the category of commutative locally R-ringed spaces) (induced by

µ●).
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If we have commutative locally R-ringed spaces (S●,S●) indexed by N then by the canon-

ical product sheaf on
∞
∏
l=1
Sl we mean the canonical sheaf on

∞
∏
l=1
Sl induced by the canonical

projections Pr ≤●, where each projection map Pr ≤i ∶
∞
∏
l=1
Sl→Mi is the canonical projections

onto the first i coordinates. ∎

Proposition 4.0.7. If SysM = ((Mi,Mi), (µij, µ∗ij,●), I) is a directed inverse system in C,

(M,µ●) = lim←Ð (M●, µij, I) in Top, andM is the canonical sheaf, then ((M,M), (µi, µ∗i,●)i∈I) =

lim←Ð SysM in the category C (which is defined in 4.0.2).

Proof. Exercise. ∎

Corollary 4.0.8. If (M,M, (µi)i∈I) = lim←Ð(Mi,Mi, µij, I) and J ⊆ I is cofinal in I then

(M,M, (µi)i∈J) = lim←Ð(Mi,Mi, µij, J) in C.

Corollary 4.0.9. Let SysM and SysN be two directed inverse systems in C. If there exists

an equivalence transformation between these two systems then their limits are diffeomorphic.

Remark 4.0.10. It follows from the universal property of inverse limits that a map F ∶ N →

M is smooth if and only if µi ○ F ∶N →Mi is smooth for all indices i.

Example 4.0.11. Recall from example 2.1.51 that (RN,Pr ≤●) = lim←Ð(Ri,Pr ≤ij,N) in Top

where Pr ≤ij and Pr ≤i are the canonical projections, so that RN can be assigned its canonical

sheaf C∞
RN . However, since RN is also a Fréchet space we may also consider the sheaf C∞,TV S

RN of

all infinitely Gâteaux-differentiable R-valued functions (def. B.2.1), which raises the question

of how these sheaves relate to each other. After developing some more tools, we will come

back to this question and prove a theorem due to Abbati and Manià [1][thm. 14] that

C∞
RN = C∞,TV S

RN

so that in this important case, these two notions of smoothness coincide. ∎
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The Restriction Sheaf

Definition 4.1.1. Let (M,M) and (N,N ) be two locally R-ringed spaces of continuous

R-valued functions, let C ⊆M be arbitrary, and let F ∶C→N be a map. We will say that F

is smooth (on C) if for all c ∈ C there exists a smooth local extension of F around c, that is,

a map Fc ∶Uc→N such that Uc is an open neighborhood of c in M , Fc is smooth, and Fc = F

on Uc ∩C.

For any subset S ⊆ M and any V ∈ Open (S) let M∣
S
(V ) denote the R-algebra of all

smooth R-valued functions on V . It is clear M∣
S
with the canonical restrictions makes

(S,M∣
S
) into a locally R-ringed space that we will call the restriction ofM to S or the sheaf

on S induced by M. If S is clear from context then we will call it the restriction sheaf, the

canonical sheaf, or the induced sheaf. ∎

Assumption 4.1.2. If (M,M) is in C then given any S ⊆M we will assume, unless stated

otherwise, that S is assigned the restriction sheafM∣
S
.

Definition 4.1.3. A smooth map F ∶ (M,M)→ (N,N ) will be called a smooth embedding

(resp. proper smooth embedding) if F ∶ (M,M)→ (ImF,N ∣
ImF

) is a diffeomorphism (resp.

and F ∶M → N is a proper map). For any m ∈M , say that F is a smooth (local) embedding

(resp. diffeomorphism) at m if there exists an open set m ∈ U ∈ Open (M) such that

F ∣
U
∶ (U,M∣

U
)→(F (U),N ∣

F (U))

is a diffeomorphism onto its image (resp. and F (U) is an open subset of N). We will say

that a smooth map is a smooth local embedding (resp. local diffeomorphism) if it is a smooth

local embedding (resp. local diffeomorphism) at each point of its domain.

Remark 4.1.4. It is clear that for any S ⊆ M , the inclusion map In ∶ (S,M∣
S
)→ (M,M)

is smooth. If F ∶ M → N is any map then it is immediate that F ∶ (M,M)→ (N,N ) is
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smooth if and only if F ∶ (M,M)→ (ImF,N ∣
ImF

) is smooth. Furthermore, if R ⊆ S ⊆ M

then (M∣
S
)∣
R
=M∣

R
.

Since the image of µij ∣Im(µj) is Im(µi) =Mi, we see immediately from lemma 2.2.8 that if

we replace all Mi with Im(µi) then we would have gained surjectivity of all maps while not

even changing the object of the canonical limit and only changing the canonical projections

trivially. We will now show that this replacement would also not change the canonical sheaf.

Proposition 4.1.5. Let Mi = Mi∣Mi
be the usual restriction of a sheaf. If M denotes

the canonical sheaf on M resulting from the system Sys
M

=
def

(Mi,Mi, µij, I) (as defined in

lemma 2.2.8) thenM =M.

Proof. Recall that (M,µi) = lim←Ð Sys
M
, where µi ∶M →Mi are just the projections µi but

considered as maps valued in Mi, and observe that this implies that the maps µi and (µi)

both induce the same (weak) topology on M .

Let U ∈ Open (M), f ∶ U → R be a continuous map. If f ∈M(U) then for anym ∈ U there

exists some index i, some Ui ∈ Open (Mi) and some fi ∈ Mi(Ui) such that m ∈ µ−1
i (Ui) ⊆ U

and f = fi○µi on µ−1
i (Ui). By definition of the sheafMi, the function fi =

def
f ∣
Mi

∶ Ui∩Mi → R

belongs to Mi(Ui), where Ui =
def
Ui ∩Mi, and since µ−1

i (Ui) = µi−1(Ui) it follows that fi ∈

Mi(Ui) where f = fi ○ µi on µi−1(Ui). ThusM(U) ⊆M(U).

Now suppose that f ∈M(U) and let m ∈ U . There some index i, some open subset Ui

of Mi and some fi ∈ Mi(Ui) such that m ∈ µi−1(Ui) ⊆ U and f = fi ○ µi on µi
−1(Ui). Let

mi = µi(m) and let Ui ∈ Open (Mi) be such that Ui = Ui∩Mi. By definition ofMi(Ui), there

exists some open set mi ∈ Vi ∈ Open (Mi) and some function gi ∈M(Vi) such that gi = fi

on Vi ∩ Ui. Let Wi = Ui ∩ Vi and let fi = gi∣Wi
∶ Wi → R so that fi ∈Mi(Wi) and fi = fi on

Wi ∩Mi. Observe m ∈ µ−1
i (Wi) and that since Mi = µi(M) we have

µ−1
i (Wi) = µi−1(Wi ∩Mi) ⊆ µi−1(Ui) ⊆ U
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while on µ−1
i (Wi) we have

fi ○ µi = fi∣Wi
○ µi = f

Since m ∈ U was arbitrary it follows that f ∈M(U) and thusM(U) =M(U). ∎

Bump Functions

Definition 4.2.1 ([27]). Recall that a continuous function f ∶M → R is a bump function for

C with support in U if 0 ≤ f ≤ 1, f ≡ 1 on C, supp(f) ⊆ U , and U ∈ Open (M) with C ⊆ U

where recall that supp(f) =
def

ClM(carr(f)). If M has a sheaf M of continuous functions

then we will call a function f ∶M → R a smooth bump function or aM(M)-bump function

for C with support in U if it is a bump function for C with support in U and f ∈M(M).

We will say that (M,M) admits smooth bump functions or admitsM(M)-bump functions

if for every closed subset C of M and every open subset U of M with C ⊆ U , there exists a

smooth bump function for C with support in U .

The following proposition shows that under very general conditions, the space of global

sections M(M) completely determines the sheaf M. Of course, this proposition can be

applied to smooth manifolds and, as we shall see later, to promanifolds (def. 5.0.2).

Proposition 4.2.2. Assume that all µ● are open surjections, (M,M) admitsM(M)-bump

functions, and that for all U ∈ Open (M), if f ∶U →M is a smooth function with support

contained in U then its trivial 0-extension to M belongs to M(M). Then for all U ∈

Open (M) the space of sectionsM(U) is exactly the set of all continuous functions f ∶ U → R

such that for allm ∈ U there exists a g ∈M(M) and an open neighborhoodm ∈ B ∈ Open (U)

for which g∣B = f ∣B.

Proof. Let U ∈ Open (M). Let S denote the set of all continuous functions described in the

statement of this proposition. Suppose f ∈M(U) so that f is continuous and let m ∈ U .
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Let φ = φm ∶M →R be a M(M)-bump function supported in U and identically 1 on some

neighborhood B of m in M . Let g denote the trivial zero extension of φ∣U ⋅ f to all of M .

Then g∣B = φ∣B ⋅ f ∣B = f ∣B and hence f ∈ S.

Now suppose that f ∈ S so that f is continuous and let m ∈ U . Let g ∈ M(M) and

m ∈ B ∈ Open (U) be such that g∣B = f ∣B. Since g ∈ M(M) there exists some index i,

some open set Ci ∈ Open (Mi), and some gi ∈ Mi(Ci) such that m ∈ µ−1
i (Vi) ⊆ B and

g∣µ−1i (Ci) = gi ○ µi∣µ−1i (Ci). Let V = µ−1
i (Vi) so that f ∣V = g∣V = gi ○ µi∣V and thus f ∈M(U). ∎
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Chapter 5

Profinite Dimensional Manifolds

Henceforth, unless indicated otherwise, any definition or result that doesn’t appear in [20],

[26], or [12], that isn’t well-known, or that isn’t in an appendix, is original, meaning that the

author found the result independently.

We will be primarily interested in projective limits of smooth manifolds where all bond-

ing maps are smooth surjective submersions. Although such systems have been frequently

studied (e.g. p-adic solenoids), they were often only considered as systems in Top (with

all smooth structures) since Man, the category of smooth manifolds, is not complete while

Top is complete. In fact, the limits of such systems in Top are often not even locally path-

connected, let alone locally homeomorphic to a TVS. This fact has, for obvious reasons,

caused many mathematicians to only consider studying the limits of such systems in the cat-

egory Top and has discouraged research into finding a “differential theory of projective limits

of manifolds” since it is no longer clear how one should even define a “smooth structure” on

the limit of a smooth system. The first step towards finding a reasonable definition of a

“smooth structure” on the limit of a smooth system comes from the well-known observation

that is described in remark C.0.3, which leads us to the following convention.

Convention 5.0.1. We will henceforth use the functor from remark C.0.3 to canonically

identify the category of smooth manifolds as a full subcategory of the category of commuta-
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tive locally R-ringed spaces.

Using this identification, we may take the limit of a smooth system in the category of com-

mutative locally R-ringed spaces to obtain a commutative locally R-ringed space (M,M),

where it is now only natural to interpret the sheafM as being the “smooth structure” on M .

Definition 5.0.2. Say that a projective system SysM = (M●, µij,N) is a

• smooth system if it is a system in the category of manifolds (and smooth maps).

• smooth submersive (resp. fibered, surjective, etc.) system if it is a smooth system all of

whose connecting maps are smooth submersions (resp. fiber bundles, surjective, etc.).

• profinite system if it is a surjective smooth submersive system direct by N, that is, if

it’s a smooth system whose connecting maps are all smooth surjective submersions.

• regular profinite system or a fibered profinite system if it is a profinite system and every

connecting map is a smooth fiber bundle.

Two smooth systems will be called smoothly equivalent if there exists an equivalence trans-

formation (def. 3.3.1) between them consisting of smooth maps, where any such equivalence

transformation will be called a smooth equivalence transformation. A smooth equivalence

transformation between profinite systems will necessarily consist of surjective smooth sub-

mersions and so it will simply be called an equivalence transformation of profinite systems.

If (M,µ●) is a limit in Top of a profinite system SysM then we will let C∞
M denote the

canonical sheaf on M induced by µ● (def. 4.0.6), we will call the commutative locally R-

ringed space (M,C∞
M) a promanifold, and we will say that (µ●, SysM) is a smooth projective

representation of this promanifold.

Two smooth projective representations of (M,C∞
M) will be called smoothly equivalent if

there exists a smooth equivalence transformation between them that is also an equivalence

transformation of these representations (def. 3.3.1). Such an equivalence transformation will
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be called an equivalence transformation of smooth projective representations. A pfd structure

for a promanifold (M,C∞
M) is an equivalence class of smooth projective representations of

(M,C∞
M), which, for (µ●, SysM) as above, will be denoted by [(µ●, SysM)].

Remark 5.0.3. Example 6.2.7 shows that there exists at least two distinct pfd structures

for the promanifold RN.

A profinite dimensional manifold or profinite manifold is a pair consisting of a proman-

ifold (i.e. a commutative locally R-ringed space (M,C∞
M)) together with a pfd structure

defined on it. If there exists a regular smooth projective representation of a promanifold

then we will call it regular. ∎

Remark 5.0.4. Although often not an issue, it is stressed that for a system SysM to be

a smooth submersive (resp. fibered, surjective, etc.) system we require this property of all

connecting maps µij ∶ Mj → Mi, where i ≤ j in I, and not just of the bonding maps of the

form µi,i+1 ∶Mi+1 →Mi.

Notation 5.0.5. If the topological space of a promanifold is denoted by Z then unless

indicated otherwise, C∞
Z will denote its sheaf. We will consequently often abuse terminology

by saying that “Z is a promanifold” instead of “(Z,C∞
Z ) is a promanifold.”

Remark 5.0.6. Viewing a profinite dimensional manifold as a promanifold together with a

choice of an equivalence class of a profinite system: It is clear that if SysM and SysN are

profinite systems with limits ((M,C∞
M), µ●) and ((N,C∞

N ), ν●) that are smoothly equivalent,

say by (F●, ι) and (G●, α), then (M,C∞
M) and (N,C∞

N ) are necessarily diffeomorphic via

F = lim←ÐF● ∶ (M,C∞
M)→ (N,C∞

N ). Note that if M ≠ N then (ν●, SysN) does not belong to any

pdf structure on (M,C∞
M) but (F ○ ν●, SysN) will be in this pdf structure. Furthermore, if

((N̂ ,C∞
N̂
), ν̂●) is another limit of SysN and if F̂ = lim←ÐF● ∶ (M,C∞

M)→ (N̂ ,C∞
N̂
) is the resulting

limit map then (F̂ ○ ν̂●, SysN) = (F ○ ν●, SysN) so that this smooth projective representation

is dependent only on SysN and not on the choice of a particular limit cone. The above
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discussion shows that the assignment SysN ↦ (F ○ ν●, SysN) is a map from the equivalence

class of all profinite systems that are smoothly equivalent to SysM into the pdf structure of

(M,C∞
M) containing (µ●, SysM) where in addition, this assignment is clearly bijective. This

shows that given (M,C∞
M), the rule that assigns to a pfd structure [(µ●, SysM] on (M,C∞

M)

the equivalence class [ SysM] of smoothly equivalence profinite systems is a bijection. Thus

we may view a profinite-dimensional manifold as being a promanifold (M,C∞
M) together with

a choice of pdf structure (as defined above, e.g. (M,C∞
M) with a pdf structure [(µ●, SysM]) or

as a promanifold together with a choice of an (appropriate) equivalence class of a profinite

systems (e.g. (M,C∞
M) together with [ SysM]) for which the promanifold is the vertex of

some limit cone of one/all of these systems.

Assumption 5.0.7. If we say that M (resp. N) is a promanifold then it should be assumed

that it has (µ●, SysM) (resp. (ν●, SysN)) as a distinguished smooth projective representation

and that its sheaf is the canonical sheaf (def. 4.0.6) induced by µ● (resp. ν●).

Example 5.0.8. The the constant system canonically makes every smooth manifold into a

promanifold.

The construction in the following example is sometimes useful for creating counterexam-

ples.

Example 5.0.9. Describing a descending intersection of manifolds as a promanifold: Sup-

pose that M● is a countable decreasing sequence of manifolds where all Mi are of the same

dimension d and Mj is smoothly embedded in Mi for i ≤ j. For i ≤ j denote the natural

inclusion of Mj into Mi by Inij ∶ Mj → Mi so that we obtain SysM =
def

(Mi, Inij,N) with

M =
def

∩
i
Mi as its limit in Top and the natural inclusions Ini ∶M →Mi as its projections.

For each i ∈ N, let Ni denote the manifold ⊔
h≤i
Mh and denote the natural injections by

Inih ∶Mh → Ni. Define bonding maps νi,i+1 ∶ Ni+1 → Ni by

νi,i+1∣Ni =def IdNi and νi,i+1∣Mi+1
=
def

Ini,i+1
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where observe that these are all smooth surjective submersions (where as the inclusions Inij

were not necessarily surjective). Let SysN = (Ni, νij,N), let N = M ⊔(⊔
i
Mi), where we

denote the natural injections by InNMi
∶Mi→N and InNM ∶M →N , and for all a ∈ N define

νi ∶N Ð→ Ni

n z→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ini(n) if n ∈M

νij(n) if n ∈Mj with i < j

Inih(n) if n ∈Mh with h ≤ i

Recall from example 2.1.44 that (N,ν●) = lim←Ð SysN in Set.

Since Mj is smoothly embedded in Mi for i ≤ j the restrictions to M of C∞
Mj

and of C∞
Mi

are isomorphic so that we can define a sheaf C∞
M =

def
C∞
Mi

∣
M

where i ∈ N is arbitrary. Since

M ⊆Mi for each index i we can define hi =
def

Inii ∣M ∶M →Ni where recall that Inii ∶Mi→Ni is

the injection of Mi into Ni = ⊔
h≤i
Mh. Clearly, each hi is a smooth (in the sense of definition

4.0.4) topological embedding and hi = νi,i+1○hi+1 for all indices i so that we obtain the smooth

topological embedding h =
def

lim←Ðh● ∶ (M,C∞
M)→ (N,C∞

N ). By definition of h● it is clear that

h = InNM . Observe that since h = InNM is a topological embedding we now also have the option

of assigning to M the sheaf induced by C∞
N ∣

h(M). We’ve shown above that h is smooth and

by identifying eachMh as a submanifold of Ni (for h ≤ i) it is not too difficult to see from the

definition of C∞
N ∣

h(M) that h ∶ (M,C∞
M)→(h(M),C∞

N ∣
h(M)) is in fact a diffeomorphism. ∎

Some Basic Properties of Promanifolds

Lemma 5.1.1. Every promanifold M has the following properties:

(1) M is a Polish space and so is, in particular, also strongly Baire.

(2) If there is any Mi without isolated points then M has no isolated points.
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(3) If there is any Mi whose components all have non-zero dimension then M is perfect.

In particular, if allMi are connected and sup
i

dimMi =∞ then for all i and all properly

embedded submanifolds Si ⊆Mi the set µ−1
i (Si) is perfect.

(4) If C is a connected component of M that is also an open subset of M then C is a

promanifold and the limit of the inverse system of subsets (µi(C))i∈N, where each Ci

is an open submanifold of Mi.

Proof. (1): Since countable products and closed subspaces of Polish spaces are Polish then

the fact that every manifold is a Polish space implies that every promanifold is a Polish

space.

(2): If m ∈ M is an isolated point (i.e. {m} is open in M) then each µi(m) is an open

subset of Mi i.e. it is an isolated point. Hence if any Mi has no isolated points then M has

no isolated points.

(3): Since M is a Polish space by the Cantor-Bendixson theorem M can be written as

the disjoint union of a perfect set P and a countable open set U . So for all indices i, µi(U)

is a countable open subset which is only possible dimMi = 0. Since there is some i for which

dimMi ≠ 0 this implies that U = ∅ so that M = P is perfect. If m ∈M is an isolated point

(i.e. {m} is open in M) then each µi(m) is an open subset of Mi i.e. it is an isolated point.

Hence, if any Mi has no isolated points then M has no isolated points. If sup
i

dimMi = ∞

and Si ⊆ Mi is a properly embedded submanifold it is in particular closed so that µ−1
i (Si)

is closed and since µ−1
i (Si) is also a promanifold with at least one µ−1

ij (Si) having non-zero

dimension, it has no isolated points so that µ−1
i (Si) is perfect.

(4): Since the connected component C of M is open in M and since the µ● are open

maps we have that each µi(C) is open in Mi and hence a submanifold of Mi. Since C is

also closed in M we have that C = ∩
i∈N
µ−1
i (µi(C)) = lim←Ðµi(C) and since it is clear that each

µij ∣µj(C) ∶µj(C)→µi(C) is a smooth surjective submersion, it follows that C is a promanifold.

∎
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Lemma 5.1.2. Fix k = 0,1, . . . ,∞ and let (M,Ck
M , µi) = lim←Ð(M●,C

k
Mi
, µij). Then M ’s

topology (as the limit of (M●, µij) in Top) is equal to the weak-topology that Ck
M induces

on M .

Proof. Let ←Ðτ denote the topology on M that M has from being lim←Ð(M●, µij) and let τw be

the weakest topology on M making all functions in Ck
M continuous. Since all functions in

Ck
M are continuous we have τw ⊆ ←Ðτ . Let U = µ−1

i (Ui) be a basic open set for some index

i and some Ui ∈ Open (Mi). Let fi ∶Mi→R be non-negative function in Ck
Mi

(Mi) such that

fi ≡ 0 on Mi ∖Ui and fi > 0 on Ui. Let f = fi ○ µi ∶M →R so f ∈ Ck
M . Note that

f−1((0,∞)) = µ−1
i (f−1

i ((0,∞))) = µ−1
i (Ui) = U

so that U ∈ τw. Thus ←Ðτ = τw. ∎

Subpromanifolds

The next definition is from [20, p. 10].

Definition 5.2.1. Let M be a promanifold and let S ⊆ M . Call S a subpromanifold (of

M) if there exists a smooth representation of (M,C∞
M) such that the inverse system of

subsets induced by S is a surjective inverse system of manifolds whose limit in Top is S

where, as usual, this includes the requirement that the system’s bonding maps are smooth

surjective submersions. Explicitly, this means that there exists some smooth representation

(µ●, SysM = (M●, µij)) of (M,C∞
M) such that

(1) Si =
def
µi(S) is an embedded submanifold of Mi for all i,

(2) µij ∣Sj ∶Sj→Si is a surjective smooth submersion for all i ≤ j, and

(3) S = lim←Ð SysS in Top, where SysS = (Si, µij ∣Sj ,N) is the inverse system induced by S.
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Definition 5.2.2. Since the above definition is dependent not only on the ringed space

(M,C∞
M) but also on the entire profinite structure (M,C∞

M , µ●, SysM) we may also call a

subpromanifold of M a SysM -submanifold (of M).

Remark 5.2.3. If for some given representation (µi, SysM) there exists a sequence (li)i∈N ⊆ N

such that the system (µli ,Mli , µli,lj) satisfies the above condition then by using this sub-

representation in place of (µi, SysM) we see that S is a subpromanifold of M .

We now generalize various definitions of submanifolds to promanifolds that are dependent

only on the ringed space (M,C∞
M). Recall that for any S ⊆M , the restriction sheaf is denoted

by C∞
M ∣

S
.

Definition 5.2.4. Let M be a promanifold and let S ⊆ M . Call S a (smoothly) embedded

subpromanifold if there exists some smooth embedding F ∶ N →M from some promanifold

(N,C∞
N ).

Definition 5.2.5. Call a subset S ⊆M an immersed subpromanifold (of M) if it is the image

of some injective smooth local embedding.

Neighborhood Basis at a Point

The following definition will be used frequently.

Definition 5.3.1. Suppose SysM = (M●, µij, I) is a directed inverse system in Top with

limit (M,µ●), m ∈M , J ⊆ I, and U● = (Uj)j∈J . Call U● a topological µ●-neighborhood basis at

m if J is cofinal in I and for all j ∈ J ,

(1) Uj is a neighborhood of µj(m) in Mj,

(2) µjk(Uk) ⊆ Int(Uj) whenever k ≥ j with k ∈ J ,

(3) for all µj(m) ∈ Oj ∈ Open (Mj) there exists some k ∈ J with k ≥ j such that µjk(Uk) ⊆

Oj,
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If we say “let U● topological µ●-neighborhood basis at m” without specifying J then it should

be assumed that J = I. ∎

Remarks 5.3.2.

• If a topological µ●-neighborhood basis U● = (Uj)j∈J atm exists then the sets (µ−1
j (Uj))j∈J

will clearly form a neighborhood basis at m in M .

• It is easy to see that a topological µ●-neighborhood basis at m exists whenever I is

countable (and directed) and each Mi has a countable neighborhood basis at µi(m).

• The following illustrates a typical use of a topological µ●-neighborhood basis (Ui)i∈I at

m:

We somehow inductively construct a cofinal subset J of I while simultaneously some-

how pickingmj ∈ µ−1
j (Uj) for each j ∈ J . The definition of “topological µ●-neighborhood

basis atm” then guarantees that for every i ∈ I, the net (µi(mj))j∈J converges to µi(m)

in Mi from which we conclude that (mj)j∈J →m in M . ∎

Since we will most often be working with a system whose bonding maps are smooth surjec-

tive submersion between manifolds, we will want to work with topological µ●-neighborhood

bases have even more properties that those described in definition 5.3.1.

Definition 5.3.3. Let SysM = (M●, µij,N) be profinite system with limit (M,µ●), let U● =

(Ui)i∈N be an indexed collection of sets, and let m ∈ M . Say that U● is a µ●-neighborhood

basis at m if

(1) U● forms a topological µ●-neighborhood basis at m in M ,

(2) whenever i ≤ j < k then

µik(Uk) ⊆ µij(Int(Uj))

where the closure (resp. interior) is taken in Mi (resp. Mj),
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• so in particular, whenever i < j then µij(Uj) ⊆ Int(Ui),

(3) each Ui is relatively compact in Mi, and

(4) for each index i, there exists a chart (Domϕi, ϕi) centered at µi(m) whose domain

contains Ui and such that each µi,i+1’s coordinate representation is the canonical pro-

jection.

Say that a µ●-neighborhood basis at m is fast descending if in addition, for all i ∈ N,

(5) there is some ri > 0 such that ϕi(Ui) = ]−ri, ri[dimµi(m)
Mi , and

(6) ri+1 < ri
(i+2)i+2 with r1 < 1.

If W● ⊆M● then we’ll say that U● is subordinate to W● if U● ⊆W●. ∎

Assumption 5.3.4. If the sets U● in lemma 5.3.6 below are not given then we will de-

fine U● as follows: (1) if we are not given coordinate charts (Domϕi, ϕi) centered at µi(m)

then inductively pick coordinate charts (Domϕi, ϕi) on Mi centered at µi(m) such that

µi,i+1(Domϕi+1) ⊆ Domϕi, ϕi ∶Domϕi→RdimMi is a diffeomorphism from the relatively com-

pact open set Domϕi ∈ Open (Mi) onto an open cube in RdimMi , and µi,i+1’s coordinate

representation with respect to ϕi+1 and ϕi is the canonical projection. (2) For each index i,

define Ui as the set of all ϕ−1(Ũl), where Ũl is the open cube in RdimMi centered at the origin

with sides of length l > 0.

Remark 5.3.5. Lemma 5.3.9 provided the motivation for the definition of a “fast descending

µ●-neighborhood basis” that is given in definition 5.3.3, where such a µ●-neighborhood basis

will be used to conclude that all derivatives of certain inductively constructed maps will

vanish at a particular point.

Lemma 5.3.6 (Existence of µ●-neighborhood bases). Suppose SysM is a profinite dimen-

sional system and fix m ∈ M . Let U● = (Ui)∞i=1 where for each index i, Ui consists of some

collection of (not necessarily open) neighborhoods of µi(m) in Mi that form a neighborhood
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basis at µi(m) for Mi. Let (Wi)i∈N be any collection of sets such that for each index i, Wi is

a neighborhood of µi(m) in Mi.

(1) If U● = (Ui)i∈N is a µ●-neighborhood basis at m then (µ−1
i (Ui))i∈N is neighborhood basis

for M at m.

(2) There exists a topological µ●-neighborhood basis U● = (Ui)i∈N at m subordinate to W●

such that Ui ∈ Ui for each index i.

(3) There exists a fast descending µ●-neighborhood basis U● = (Ui)i∈N at m subordinate to

W●.

(4) If U● is a fast descending µ●-neighborhood basis at m and m● ⊆M is a sequence such

that mi ∈ µ−1
i (Ui) for all i ∈ N then m● converges fast to m in M (def. 15.2.1).

Proof. Let m● = µ●(m) and d● = dimm●
M●.

(1) is obvious and (4) is immediate from the definition of fast convergence.

(2): Observe that we may replace Ui with the set of all Ui ∈ Ui such that Ui is relatively

compact whose closures are contained in some coordinate chart centered at mi such that

statement (1) (although not necessarily statement (2)) in assumption 5.3.4 is satisfied. This

will guarantee that (6) in definition 5.3.3 holds (note that this will not limit us to considering

only Ui ∈ Ui that are open coordinate boxes (which may not even belong to this set) since

(6) in def. 5.3.3 merely requires that each Ui be contained in such a coordinate box).

Let U ●
1 = (U l

1)
∞
l=1 ⊆ Ui be any neighborhood basis for M1 at m1 such that U l

1 ⊆ Int(U l+1
1 )

for all l and U1
1 ⊆ Int(W1). Suppose we’ve defined U ●

1 = (U l
1)
∞
l=1, . . . , U

●
j = (U l

j)
∞
l=1

where for

all 1 ≤ i ≤ j,

(a) U ●
i ⊆ Ui is a neighborhood bases for Mi at mi,

(b) U1
i ⊆ Int(Wi),

(c) U l
i ⊆ Int(U l+1

i ) for each l ∈ N, and
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(d) h ≤ i < j implies µhj(U l
j) ⊆ µhi(Int(U l+1

i )) for each l ∈ N.

Let (V l
j+1)

∞
l=1

be any neighborhood basis for Mj+1 at mj+1 consisting of open sets such

that V l
j+1 ⊆ V l+1

j+1 for all l and V 1
j+1 ⊆ Int(Wj+1). Let U1

j+1 ∈ Uj+1 be a neighborhood of mj+1

whose closure is contained in V 1
j+1 ∩ µ−1

j,j+1(Int(U1+1
j )) and such that for each h = 1, . . . , j,

µh,j+1(U1
j+1) ⊆ ∩

h≤i≤j
µhi(Int(U1+1

i ))

which is possible since each µhj is an open map so that the above intersection is an open

neighborhood of mh. Now inductively pick for each l ≥ 2 a neighborhood U l
j+1 ∈ Ui of mj+1

in Mj+1 whose closure is contained in V l
j+1 ∩ µ−1

j,j+1(Int(U l+1
j )) ∩ Int(U l−1

j+1) and such that for

each h = 1, . . . , j,

µh,j+1(U l
j+1) ⊆ ∩

h≤i≤j
µhi(Int(U l+1

i ))

Note that (a) is satisfied since U l
j ⊆ U l

j ⊆ V l
j for all l ∈ N while (b), (c), and (d) are satisfied by

construction. This completes the construction of U ●
j+1 =

def
(U l

j+1)
∞
l=1

. For all i ∈ N, let Ui = U i
i .

For any i ≤ j < l in N observe that by using (j, j, l) in place of (h, i, j) in hypothesis (d) of

the above construction of U ●
l we get

µjl(U l
l ) ⊆ µjj(Int(U l+1

j )) = Int(U l+1
j )

so that

µil(Ul) = µij(µjl(U l
l )) = U l

l ⊆ µij(Int(U l+1
j )) ⊆ µij(Int(U j

j )) = µij(Int(Uj))

Similarly, by using (i, i, l) in place of (h, i, j) (where we still have i < l) we obtain

µil(Ul) ⊆ µil(U l
l ) ⊆ µii(Int(U l+1

i )) = Int(U l+1
i ) ⊆ Int(U i

i ) = Int(Ui)

so that Ul ⊆ µ−1
il (Int(Ui)). Since l > i was arbitrary and since (U l

i)
∞
l=i is a neighborhood basis
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of Mi at mi it follows that the same is true of (µil(Ul))∞l=i.

(3) Let (U1, ϕ1) be any chart on M1 centered at mi such that ϕ1(U1) =] − r1, r1[d1 for

some 0 < r1 < 1 and U1 ⊆W1. It is clear that in the above construction, upon removing the

requirement that U l
i ∈ Ui for all l ∈ N, we could have added the new requirement that there

be ϕ2, ϕ3, . . . such that for all i ≥ 2, µi−1,i’s coordinate representation with respect to ϕi−1

and ϕi is the canonical projection, U l
i ⊆ Domϕli, ϕi(Ui) = ]−ri, ri[di , and ri+1 < ri

(i+2)i+2 . ∎

Definition 5.3.7 (Peano differentiability). Recall ([15]) that for e, n ∈ Z≥0, a map f ∶

Re → R is n-times Peano differentiable at {0}e ∈ Re if there exists an nth-degree polynomial

p(x1, . . . , xe) in e-variables (i.e. the nth-degree Taylor polynomial) such that f(x) − p(x) =

o(∣x∣n), x → {0}e, where we say this of a Rd valued map if it is true of each of its coordi-

nate. When we say that the all of f ’s Peano derivatives vanish at {0}e then we mean that

for all n ∈ N, f(x) = o(∣x∣n), x → {0}e where since this property is clearly invariant under

diffeomorphisms of the codomain that map {0}e → {0}e, it should clear how to generalize

this definition to maps going from subsets of Re into smooth manifolds.

Example 5.3.8 (Peano smooth but not C1). It is known ([15, ex. 1.2]) that for any m ∈ N,

the map f ∶ R → R given by f(0) = 0 and f(x) = xm+1 sin(x−m) is smooth on R ∖ {0}, m-

times Peano differentiable at 0 (which implies that f differentiable at 0), but that f ′ is not

continuous. That a curve f being smooth off of {0} and having all of its Peano derivatives at

0 (rather than having only m ∈ N of them as in the previous example) does not even imply

that f is C1 (a likely already known fact for which the author could find no reference) is

demonstrated by the following (original) example: let f ∶ R→ R2 be identically 0 on ]−∞,0]

and let f(x) = e−1/xe
√
−1 e1/x for x > 0.

Lemma 5.3.9. Let e be a non-negative integer, m0 ∈ M , {0}e ∈ O ∈ Open (Re), O∗ =
def

O ∖ {{0}e}, η ∶ (O,{0}e) → (M,m0) a map such that η∣
O∗
∶O∗→M is smooth, and (Ui)∞i=1 a

fast descending µ●-neighborhood basis ofm0 with smooth surjective charts ϕi ∶Ui→] − ri, ri[di

centered at µi(m0), where di =
def

dimµi(m0)Mi. For all r > 0, let Br denote the open ball of
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radius r in Re (normed by some norm ∥⋅∥) centered at {0}e. Suppose that for all n ∈ N,

(µn ○ η)(O∗ ∩B1/n) ⊆ Un. Then η is continuous and for all i ∈ N, µi ○ η is everywhere

infinitely Peano differentiable with all Peano derivatives vanishing at {0}e, so that if for all

k, i ∈ N there is some Br such that Tk(µi ○ η∣O∗
)(Br) is relatively compact in TkMi then η

is a smooth map, all of whose derivatives vanishes at {0}e.

Proof. Clearly, our hypotheses imply that η ∶O→M is continuous at {0}e and thus continuous

everywhere. If e = 0 then there is nothing to prove so we may assume that e > 0. For all l ∈

Z≥0, let ml
● = µ●(ml) and for all l ≠ 0 consider Rl as a normed space normed by the maximum

norm ∥⋅∥l. For all h ∈ N, let µh,h+1∣Uh+1 ’s coordinate representation be µ̂h,h+1 ∶ Imϕh+1→ Imϕh,

where this is the canonical projection. Since U● is fast descending we have that for all

h ∈ N, rh+1 < rh
(h+2)h+2 and ϕh(Uh) =] − rh, rh[dh . In particular, observe that for all mh ∈ Uh,

(h + 1)h+1 ⋅ µ̂h−1,h(m̂h) ∈ ϕh−1(Uh−1), where (h + 1)h+1 ⋅ is scalar multiplication in Rdh−1 and

where we denoted ϕh(mh) by m̂h.

To show that all of η’s Peano derivatives exist and vanish at 0, let η● = µ● ○ η, and fix

an index i ∈ N. We must show that all of ηi’s derivatives exist and vanish at 0 and for

this, it suffices to show that the same is true of ϕi ○ ηi∣η−1i (Ui)
. Let p ∈ N and ε > 0. Since

(rl)∞l=1 monotone converges to 0 we may pick j > i such that rj < ε. Let z ∈ O∗ ∩B1/(j+p+1)

be arbitrary and define m =
def
η(z) and m● =

def
µ●(m). Pick g ∈ N such that 1

g+1 ≤ ∥z∥ < 1
g ,

where we will necessarily have g > j + p + 1. Since ∥z∥ < 1
g we have by assumption that

mg = µg(η(z)) ∈ Ug. Thus for all h = 1, . . . , g, . . . , ι(g), mh ∈ µh,ι(g)(Uι(g)) ⊆ Uh so that

m̂h =
def
ϕh(mh) is well-defined and since for any 1 ≤ d ≤ h, µ̂dh is the canonical projection we

have that r ⋅ m̂d = r ⋅ µ̂dh(m̂h) = µ̂dh(r ⋅ m̂h) for any r ∈ R for which the above quantities are

defined (i.e. for any r such that r ⋅ m̂h ∈ ϕh(Uh)).

Since (g + 1)g+1rg < rg−1 we have (g + 1)g+1µ̂g−1,g(m̂g) ∈ ϕg−1(Ug−1), where the convexity

of ϕg−1(Ug−1) implies that (g + 1)pm̂g−1 ∈ ϕg−1(Ug−1) (since (g + 1)p ≤ (g + 1)g+1). From

ϕg−1(Ug−1) = ]−rg−1, rg−1[dg−1 we conclude that ∥(g + 1)pm̂g−1∥g−1 < rg−1, where recall that

141



∥⋅∥g−1 is the max norm, and since µ̂i,g−1 is the canonical projection we have

(g +1)p∥m̂i∥i = ∥(g + 1)pµ̂i,g−1(m̂g−1)∥i = ∥µ̂i,g−1((g + 1)pm̂g−1)∥i ≤ ∥(g + 1)pm̂g−1∥g−1 < rg−1 < ε

which implies that
∥ϕi(ηi(z))∥i

∥z∥p
= 1

∥z∥p
∥m̂i∥i ≤ (g + 1)p∥m̂i∥i < ε

Thus for all p ∈ N, the pth-Peano derivative of ηi at 0 exists and vanishes. ∎

Products of Promanifolds

The next lemma will allow us to prove a Whitney embedding theorem for promanifolds and

to provide an alternative construction of the canonical sheaf on the canonical limit M in

terms of the canonical product sheaf.

Remark 5.4.1. If µ ∶N →M is a smooth map and γ ∶ N →M ×N is γ(n) = (n,µ(n)) then

γ ∶ N → Γ(µ) =
def

Imγ is a diffeomorphism onto the graph of µ so that if we consider µ as a

map on Γ(µ) (i.e. µ ○ γ−1) then µ is just the restriction to Γ(µ) of the canonical projection

M ×N →M . As was done in [38] for complete metric spaces, this idea can be extended to

systems by showing that we may always view the limit of a countable directed system as

arising from an equivalent system that consists of subspaces of products of the original spaces

with all bonding maps being canonical projections and with the equivalence transformation

consisting of homeomorphisms. The following lemma extends the construction of [38] to

profinite systems and describes it in the greater detail that is necessary for theorem 11.6.5

and corollary 5.4.4.

Lemma 5.4.2. Let ((M,C∞
M), µ●) denote the canonical limit of SysM = (M●, µij,N) with

its canonical sheaf. Let
a

∏M● denote
a

∏
i=1
Mi with the standard smooth product manifold
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structure, let ∏M● denote
∞
∏
i=1
Mi, and let each of the following maps

Pr ≤ab ∶
b

∏M●→
a

∏M● Pr ≤a ∶∏M●→
a

∏M●

Pr ab ∶
b

∏M●→Ma Pr a ∶∏M●→Ma

denote the canonical projection onto its codomain. Let Sys∏M●
= (

a

∏M●,Pr ≤ab,N) and let

C∞
∏M●

denote the canonical product sheaf on ∏M●.

For each b ∈ N, let ((Pb,Pb), π●b) be the canonical limit of SysPb =
def

(Mi, µij,{1, . . . , b})

with the canonical sheaf. Define for all a, b, i ∈ N with a ≤ b the maps

ρab = Pr ≤ab∣Pb ∶ Pb→Pa ρa = Pr ≤a∣M ∶M →Pa

Fa = (µ1a, . . . , µaa) ∶Ma→Pa Gi =
def
πii = Pr ii∣Pi ∶Pi→Mi

so that for a > 1, Fa(ma) = (µ1a(ma), . . . , µa−1,a(ma),ma). Then

(1) The canonical sheaf Pa is exactly the restriction to Pa of
a

∏M●’s sheaf of smooth

R-valued functions.

(2) Fa ∶Ma→
a

∏M● is a proper smooth embedding with image Pa and smooth inverse

Ga ∶Pa→Ma.

(3) SysP =
def

(P●, ρab,N) forms a smooth surjective inverse systems of manifolds with each

ρab a surjective smooth submersion between manifolds and (M,ρ●) = lim←Ð SysP . Fur-

thermore, the canonical sheaves on M induced by ρ● and µ● are equal.

(4) (F●, IdN) ∶ SysM → SysP and (G●, IdN) ∶ SysP → SysM are inverse system morphisms,

both of whose limits are the identity map IdM ∶M →M . Furthermore, they form an

equivalence transformation of profinite systems.

(5) The inclusion maps InPa ∶ Pa →
a

∏M● form an inverse system morphism (InP● , IdN) ∶
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SysP → Sys∏M●
consisting of proper smooth embeddings whose limit map is the nat-

ural inclusion In ∶M →∏M●.

(6) C∞
M = C∞

∏M●
∣
M
.

Remark 5.4.3. Recall that the canonical product sheaf on ∏M● (def. 4.0.6) is defined to

be the canonical sheaf induced by Pr ≤a and the profinite system Sys∏M●
. Also recall that

by definition of the canonical limit, µ● =
def

Pr ●∣M and πab =
def

Pr ab∣Pb ∶Pb→Ma for all a ≤ b.

Proof. That (Pa,Pa) is a smooth manifold follows from example 2.1.28 and the fact that

(Pa,Pa) is, by construction, the canonical limit of (Mi, µij,{1, . . . , a}) in the category of

commutative locally R-ringed spaces. Since the statements (3) and (6) assert set equali-

ties (and not merely the existence of diffeomorphisms) we will begin our proof by showing

how the canonical limit Pa may be identified with the graph of a smooth function. If

η =
def

(µ1a, . . . , µa−1,a) ∶Ma→
a−1

∏ M● then it is well-known that its graph

Γ(η) = {(ma, η(ma)) ∣ma ∈Ma}

is a properly embedded smooth submanifold of Ma ×
a−1

∏
i=1
Mi and the map

Ma Ð→ Ma ×
a−1

∏M●

ma z→ (ma, η(ma))

is a proper smooth embedding onto Γ(η). Now observe that for any (m1, . . . ,ma) ∈
a

∏M●,

(ma,m1, . . . ,ma−1) ∈ Γ(η) ⇐⇒ (m1, . . . ,ma−1) = η(ma)

⇐⇒mi = µij(mj) for all 1 ≤ i ≤ j ≤ a

⇐⇒ (m1, . . . ,ma−1,ma) ∈ Pa by definition of Pa

144



that is, the set Pa is just the graph of η with the positions of the domain and codomain

elements switched: Pa = {(η(ma),ma) ∣ma ∈Ma}. So if we let Sa denote the restriction to Pa

of sheaf of smooth R-valued functions on
a

∏M● then (Pa,Sa) becomes a properly embedded

smooth submanifold of the product manifold
a

∏M● and Fa = (µ1a, . . . , µ1a) ∶Ma→
a

∏M● is a

proper smooth embedding onto Pa. It should now be clear that πa ∶ (Pa,Sa)→Ma is the

smooth inverse of Fa ∶Ma→ (Pa,Sa).

Even through (Pa,Sa) and (Pa,Pa) are diffeomorphic, since the sheaves Sa and Pa are

defined differently it is not entirely clear that these smooth structure are identical (i.e. that

the identity map IdPa ∶ (Pa,Sa)→ (Pa,Pa) is a diffeomorphism) so we will now show that

Sa = Pa, which will consequently also make statement (2) unambiguous. This is straight-

forward: The map IdPa ∶ (Pa,Sa)→ (Pa,Pa) is smooth by the universal property of limits

since for any index i ≤ a, the composition πia ○ IdPa = Pr ia∣Pa is smooth as a map from

(Pa,Sa) into (Mi,C∞
Mi

). Hence for all W ∈ Open (Pa), Pa(W ) ⊆ Sa(W ). To see that

the inclusion map InPa ∶ (Pa,Pa)→
⎛
⎝
a

∏M●,C∞
a
∏M●

⎞
⎠

is smooth, note that this map is simply

InPa = (π1a, . . . , πaa), where the fact that each coordinate πia ∶ (Pa,Pa)→ (Mi,C∞
Mi

) is smooth

implies that (π1a, . . . , πaa) is a smooth map into the product manifold. The smoothness of

this inclusion implies that for all W ∈ Open (Pa), Sa(W ) ⊆ Pa(W ). Observe that (2) follows

immediately from this equality of sheaves.

(3): Observe that ρab ○Fb = ϕa ○µab where since Fb and Fa are diffeomorphisms and µab is

a smooth submersion we it follows that ρab = Fa ○µab ○F −1
b is a smooth submersion. Recalling

that

Pa =
def

{(m1, . . . ,ma) ∈
a

∏M● ∣µij(mj) =mi}

we see that since each µij is surjective then the same is true of each ρab. Let Z be any

space and let ha = (h1
a, . . . , h

a
a) ∶Z→Pa ⊆

a

∏M● be any collection of morphisms compatible

with SysP where hia ∶Z→Mi for all i = 1, . . . , a. Since

(h1
b , . . . , h

a
b) = Pr ab(h1

b , . . . , h
b
b) = ρab ○ hb = ha = (h1

a, . . . , h
a
a)
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we have that hia = hib for all indices i ≤ a, b so that ha = (h1
a, . . . , h

a
a) = (h1

1, . . . , h
a
a) for all a.

Let h = (h1
1, h

2
2, . . .) ∶ Z → M where for each z ∈ Z, h(z) belongs to M since if i ≤ j then

hj(z) ∈ Pj implies that µij(hjj(z)) = hij(z) = hii(z). Note that ρa ○ h = (h1
1, . . . , h

a
a) = ha for all

indices a and if k = (k1, k2, . . .) ∶Z→M is any map such that ρak = ha for all a then

(h1
1, . . . , h

a
a) = ha = ρak = (k1, . . . , ka)

so that ka = haa for all a, which implies that k = h. Thus (M,ρ●) is a limit of SysP . That

the canonical sheaves on M induced by ρ● and µ● are equal follows immediately from the

equalities µi = Gi○ρi and Fa○πa = IdPa and the fact that both πa and Fa are diffeomorphisms.

(4): It is immediate that Fa ○ µab = ρab ○ Fb so that (F●, IdN) is an inverse system mor-

phism and likewise the πa’s form an inverse system morphism where the fact that Fi and

Gi are inverses immediately implies that they form an equivalence transformation of profi-

nite systems and that their limits are diffeomorphisms that are inverses of each other. If

m = (m1,m2, . . .) ∈M then since

(µi ○ IdM)(m) =mi = Gi(m1, . . . ,mi) = (Gi ○ ρi)(m)

it follows that IdM = lim←Ðπ●.

(5) is immediate.

(6): The proof that C∞
M = C∞

∏M●
∣
M

is analogous to the above proof that Sa = Pa. Al-

ternatively, in light of (3), (4), and (5) one may apply theorem 11.6.1 to conclude that the

identity map IdM ∶ (M,C∞
M)→ (M,C∞

∏M●
∣
M
) is a diffeomorphism. ∎

Corollary 5.4.4. If (M,µ●) denotes the canonical limit of SysM = (M●, µij,N) then the

canonical sheaf on M induced by µ● is just the restriction to M of the canonical product

sheaf C∞
∏M●

on
∞
∏
i=1
Mi. Equivalently, the inclusion map In ∶ (M,C∞

M)→(
∞
∏
i=1
Mi,C∞

∏M●
) is a

smooth embedding, which is also proper since M is closed in
∞
∏
i=1
Mi.
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Chapter 6

Smooth and Locally Cylindrical Maps

Example 6.0.1 (A non-smooth inclusion map of a promanifold into R). For each i ∈ N,

let Mi =
def

{1
n
∣1 ≤ n ≤ i} and let µi,i+1 ∶ Mi+1 → Mi be defined by µi,i+1( 1

n
) = 1

n if n ≤ i and

µi,i+1( 1
1+i) =

1
i . Recall from example 2.1.45 that this system’s limit in Top is (M,µ●) where

M =
def

{0}∪{1
n
∣n ∈ Z} has the subspace topology induced by R and for each i ∈ N, µi(1/n) = 1/n

of n ≤ i and µi(1/n) = 1/i otherwise. Observe that M ’s sheaf consists of all real-valued maps

that take on only finitely many values: Let f ∶M → R be smooth. Since it is smooth at 0 so

there exists some i ∈ N and some µi(0) = 1
i ∈ Ui ∈ Open (Mi) such that f = fi ○µi on µ−1

i (Ui),

where µ−1
i (Ui) contains µ−1

i (1
i
) = {1

n
∣n ≥ i}. Hence, for every n ≥ i, f( 1

n
) = fi(µi( 1

n
)) = fi(1

i
).

This implies, in particular, that the natural inclusion F =
def

InR
M ∶M →R is continuous but not

smooth since, for instance, f(x) =
def
e−x

2 is a smooth function on R such that f ○ F ∶M →R

fails to be smooth. However, the identity map from the restriction sheaf (M,C∞
R ∣

M
) into

(M,C∞
M) is smooth. ∎

Locally Cylindrical Maps

Definition and Notation 6.1.1. Let (M,µ●) = lim←Ð(M●, µij), R ⊆M , F ∶ R → N be a into

a set N , and let i be any index. We will denote by DomiF the set of all mi ∈ µi(R) such that

F is constant on R ∩µ−1
i (mi) and we will denote the interior of DomiF in Mi by ODomiF .
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We will denote the map that F induces on DomiF by affixing the index i as a subscript to

the symbol F , that is, we will use Fi to the denote the induced map

Fi ∶ DomiF Ð→ N

mi z→ F (µ−1
i (mi))

Given any Si ⊆Mi, if we say

“F = Gi ○ µi on µ−1
i (Si)”

then we mean that Gi is an N -valued map, Si ⊆ DomiF ∩DomGi, and that Gi∣Si = Fi∣Si . ∎

Convention 6.1.2. Since open subsets of manifolds are again manifolds, it will often be

convenient to redefine Fi to be the above map’s restriction to ODomiF . If it may not be

clear from context whether Fi is meant to denote a map defined on DomiF or on ODomiF

then we will indicate what its domain is by writing its prototype, i.e. by writing either

Fi ∶ DomiF → N or Fi ∶ ODomiF → N .

Remark 6.1.3. The set DomiF and the map Fi ∶ DomiF → N are unique and maximal

in the sense that if Gi ∶ Di → N is any map defined on a subset Di of µi(R) such that

F ∣
µ−1i (Di)∩R

= Gi ○ µi∣µ−1i (Di)∩R
then Di ⊆ DomiF and Fi = Gi.

The key point of the following lemma 6.1.4 is that when F ∶M → N is a continuous map

between promanifolds then DomiF is necessarily a closed subset of Mi for each indices i.

This implies, in particular, that if we wish to define a continuous map on M by inductively

defining continuous maps F1, F2, . . . on sets S1, S2, . . . (where such a construction can be

viewed as a the promanifold analogue of a “piecewise construction” of a continuous map)

then we must necessarily be able to continuously extend each Fi to Si. And if this map is

to be locally cylindrical then the each IntMi
(Si) must be a regular open subset of Mi.

Lemma 6.1.4. Let (M,µ●) = lim←Ð(M●, µij) be a profinite manifold, N be any space, R ⊆M ,

and F ∶ R → N be any map. Then for all j ≥ i,
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(1) if Si ⊆ DomiF is such that µi∣R∩µ−1i (Si)
∶ R ∩ µ−1

i (Si) → Si is a quotient map, then

F ∣
µ−1i (Si)

∶ µ−1
i (Si)→ N is continuous ⇐⇒ Fi∣Si ∶ Si → N is continuous.

(2) if µi∣R ∶R→µi(R) is an open map and F ∶ R → N is continuous then Di is closed in

µi(R).

(3) µ−1
ij (DomiF ) ⊆ Domj F , µ−1

ij (ODomiF ) ⊆ ODomj F , and Fj = Fi○µij on µ−1
ij (DomiF ).

Proof. Parts (1) and (2) follow from lemma A.4.3. To prove (3), observe that the equality

F ∣
µ−1j (µ−1ij (Di))

= F ∣
µ−1i (Di)

= Fi ○ µi∣µ−1i (Di)
= Fi ○ µij ○ µj ∣µ−1j (µ−1ij (Di))

implies that µ−1
ij (Di) ⊆Dj and that Fj ∣µ−1ij (Di) = Fi ○ µij ∣µ−1ij (Di). ∎

Definition 6.1.5. Let R ⊆M and F ∶ R → N be a map where M is a promanifold and N is

a set. If m ∈M and there exists an index i, an open set µi(m) ∈ Ui ∈ Open (Mi), and a map

Fi ∶ Ui → N such that

F ∣µ−1i (Ui)∩R = Fi ○ µi∣µ−1i (Ui)∩R

then we will say that F is roughly locally cylindrical at m, where if in addition F is smooth

(resp. continuous) then we’ll also require that Fi be smooth (resp. continuous) and then

instead say that F is locally cylindrical at m. If there exists an index i such that DomiF =

µi(R) then we will call F local, cylindrical, or trivially cylindrical. We will say that F is

roughly cylindrical at m ∈M if there exists an index i such that µi(m) ∈ DomiF , i.e.

F ∣µ−1i (µi(m))∩R = Fi ○ µi∣µ−1i (µi(m))∩R

If F is locally (resp. roughly) cylindrical at every point of some set then we will say that

F is locally (resp. roughly) cylindrical on that set. If F is locally (resp. roughly) cylindrical

at every point of its domain then we will say that F is locally (resp. roughly) cylindrical. ∎
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Remark 6.1.6. Suppose F ∶R ⊆M →N is a locally cylindrical map on a subset R of M . If

U = ∪
i
µ−1
i (Ui), where µ−1

i,i+1 (Ui) ⊆ Ui+1, then F (U) = ∪
i
Fi(µi(R)∩Ui) so that in particular, if

R =M then F ∶M → N is an open map if and only if all Fi ∶ODomiF →N are open maps.

Canonical Maps Induced by a Map Between Promanifolds

Definition 6.1.7. If F ∶ R ⊆M → N is a map between promanifolds and F ● =
def
ν● ○ F then

for all i, a ∈ N, unless specified otherwise, by F a
i we will mean the unique map

F a
i ∶Domi(F a)→Na

from definition 6.1.1 induced by F a = νa ○F ∶ R → Na. We will call F a
i the ith canonical map

associated with (or induced by) F and νa.

Thus, every map F ∶ R → N from a subset R ⊆M of a promanifold into another proman-

ifold induces an N×N-indexed collection of morphisms (F a
i )(a,i)∈N×N that we will henceforth

refer to as the canonical (N ×N-indexed) collection of maps associated with (or induced by)

F (from SysM) (to SysN). ∎

Remark 6.1.8. Suppose M and N are promanifolds, R ⊆M , and F ∶ R → N is a map such

that R ⊆ ∪
i
µ−1
i (DomiF a) for each index a where F ● =

def
ν● ○ F . If V = ∪

a
ν−1
a (Va) is a subset

of N , where ν−1
a,a+1 (Va) ⊆ Va+1, then

F −1 (V ) = R ∩ ∪
i,a∈N

µ−1
i ((F a

i )
−1 (Va)) = R ∩ ∪

i,a∈N
(F a

i ○ µi∣µ−1i (Domi Fa)
)
−1

(Va)

Lemma 6.1.9. If a ≤ b, and i ≤ j, and F ∶ R ⊆M → N is a roughly cylindrical map between

promanifolds then

νab ○ F b
j = F a

i ○ µij and F a
j = νab ○ F b

i ○ µij

on Domj F b ∩ µ−1
ij (DomiF a).
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Proof. Let Dj = Domj F b ∩ µ−1
ij (DomiF a). For all m ∈ µ−1

j (Dj) ∩R we have

(νab ○ F b
j )(µj(m)) = (νab ○ νb ○ F )(m) = (νa○F )(m) = F a(m) = F a

i (µi(m)) = (F a
i ○ µij)(µj(m))

and similarly, F a
j (µj(m)) = νa(F (m)) = νab(νb(F (m))) = νab(F b

i (µi(m))). ∎

Smoothness and Local Cylindricity

The following proposition 6.1.10 shows that any smooth map from a promanifold into a

manifold can, around any point of its domain, be written in the form F = Fi ○ µi on some

open set of the form µ−1
i (Ui) with Fi ∶µ−1

i (Ui)→N smooth.

Proposition 6.1.10. If F ∶ R → N be a smooth map from a subset R ⊆M of the promanifold

M into a manifold N then F is locally cylindrical.

Proof. Fix m ∈ R, let (V,φ) be a chart of N at n =
def
F (m), and let φ = (φ1, . . . , φd) where

d =
def

dimN . For each k = 1, . . . , d the map φk ○ F ∣F−1(V ) ∶R ∩ F −1 (V )→R is smooth at m

so there exists some index ik, some open µik(m) ∈ Uik ∈ Open (Mik), and some smooth

F k
ik
∈ C∞

Mik
(Uik) such that

φk ○ F ∣µ−1ik (Uik) = F
k
ik
○ µik ∣R∩µ−1ik (Uik)

Let i = max{i1, . . . , id} and let Ui =
d∩
k=1

µ−1
iki

(Uik) so that µi(m) ∈ Ui ∈ Open (Mi). Let

F k
i =

def
F k
ik
○ µiki∣Ui and U =

def
µ−1
i (Ui) so that φk ○ F ∣U = F k

i ○ µi∣U and F k
i ∈ C∞

Mi
(Ui). Let
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Fi =
def
φ−1 ○ (F 1

i , . . . , F
d
i ) so that Fi ∶Ui→V ⊆ N is smooth. Note that

φ ○ Fi ○ µi∣R∩U =(F 1
i , . . . , F

d
i ) ○ µi∣R∩U

=(F 1
i ○ µi∣R∩U , . . . , F d

i ○ µi∣R∩U)

=(F k
i1 ○ µi1i∣Ui ○ µi∣R∩U , . . . , F

k
id
○ µidi∣Ui ○ µi∣R∩U)

=(F k
i1 ○ µi1 ∣R∩U , . . . , F

k
id
○ µid ∣R∩U)

=(φk ○ F ∣R∩U , . . . , φk ○ F ∣R∩U)

=φ ○ F ∣R∩U

so that Fi ○ µi∣R∩U = F ∣R∩U , as desired. ∎

Proposition 6.1.11. Let F ∶M → N be a locally cylindrical smooth map between proman-

ifolds. Then for all indices i, the map Fi ∶DomiF →N is smooth on the closed set DomiF

in the sense that at every point of its domain there is a smooth local extension of Fi to a

neighborhood of that point.

Proof. Fix i and assume that Di =
def

DomiF is not empty. Let m0
i ∈ Di, let m0 ∈ µ−1

i (m0
i )

be arbitrary, and m0
j =

def
µj(m0). Since F is smooth there exists some j ≥ i such that

µj(m0) ∈ ODomj F . Since µij ∶ Mj → Mi is a surjective smooth submersion there exists a

smooth local section σji ∶Wi→Mj of µij such that σji (m0
i ) = m0

j where by shrinking Wi we

can assume that the range of σji is contained in ODomj F . Note that if mi ∈ Wi ∩Di then

since mj =
def
σji (mi) ∈ ODomj F we have

Fj(mj) = Fi(µij(mj)) = Fi(µij(σji (mi))) = Fi(mi)

so that Fj○σji ∶Wi → N is a smooth map that agrees with Fi where their domains overlap. ∎

The following lemma implies, in particular, that each projection µ● has the universal
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property of quotient maps in the category of promanifolds.

Lemma 6.1.12 (Each µ● has the universal property of quotient maps). Let F ∶M → N be

any map between promanifolds, i any index, and Ui ∈ Open (Mi) any non-empty open set.

Suppose that Fi ∶ Ui → N is a map such that F ∣µ−1i (Ui) = Fi ○ µi∣µ−1i (Ui). Then F is smooth on

µ−1
i (Ui) ⇐⇒ Fi is smooth.

Proof. Assume that F ∣µ−1i (Ui) is smooth. Since µi∣µ−1i (Ui)
∶ µ−1

i (Ui) → Ui is an open and

continuous map, it is a quotient map so that the continuity of F ∣µ−1i (Ui) implies the continuity

of Fi. So assume that F ∣µ−1i (Ui) is smooth. Suppose first that N is a manifold. Let ui ∈ Ui

and pick u ∈ µ−1
i (U). Since F ∣µ−1i (Ui) is smooth there exists an index j ≥ i, an open set Vj ∈

Open (Mj), and a continuous (resp. smooth) Fj ∶ Vj → N such that F ∣µ−1i (Vi) = Fj ○ µj ∣µ−1j (Vj)

and u ∈ µ−1
j (Vj). Since µi(u) ∈ Ui, u ∈ µ−1

ij (Ui) so that by replacing Vj with Vj ∩µ−1
ij (Ui) we

may assume that Vj ⊆ µ−1
ij (Ui). Hence, µ−1

j (Vj) ⊆ µ−1
j (µ−1

ij (Ui)) = µ−1
i (Ui). Note that

(Fi∣µij(Vj) ○ µij ∣Vj) ○ µj ∣µ−1j (Vj) = Fi ○ µi∣µ−1j (Vj) = F ∣µ−1j (Vj) = Fj ○ µj ∣µ−1j (Vj)

so that by the surjectivity of µj ∣µ−1j (Vj) we have Fi∣µij(Vj) ○ µij ∣Vj = Fj. Note that µi∣µ−1i (Vi)
∶

µ−1
i (Vi) → Vi is a surjective submersion so that since Fj is smooth we have that Fi∣µij(Vj) is

also smooth. Since ui = µi(u) = µij(µj(u)) ∈ µij(Vj) with µij(Vj) ∈ Open (Ui), fi is smooth.

Suppose now that (N,νa) is a profinite manifold. Since F ∣µ−1i (Ui) is smooth so are all

νa ○F ∣µ−1i (Ui) = (νa ○ Fi)○µi∣µ−1i (Ui) so that since the codomain of νa ○Fi is a manifold, we have

that each νa ○ Fi is smooth. By the universal property of limits, Fi ∶ Ui → N is smooth. ∎

Observation 6.1.13. Continuing from observation 2.1.21, lemma 6.1.12 implies that any

profinite system SysM is completely determined by the limit cone’s projections µ●.

Smoothness at a Point

Only definition 6.1.14 and remark 6.1.15 will be used elsewhere in this paper.
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Definition 6.1.14. Let F ∶M → N be a map between promanifolds and let m0 ∈M . If N

is a manifold then say that F is smooth at m0 if there exists some index i ∈ N such that

µi(m0) ∈ ODomiF and some open neighborhood µi(m0) ∈ Ui ∈ Open (ODomiF ) such that

Fi∣Ui ∶ Ui → N is smooth. If N is an arbitrary promanifold then say that F is smooth at m0

if F a ∶M → Na is smooth at m0 for all a ∈ N.

Remark 6.1.15. It is easy to see from this definition that a map from an open subset of

a promanifold into another promanifolds is smooth ⇐⇒ it is smooth at every point of its

domain.

Remark 6.1.16. Suppose that F ∶M → N is a map between smooth manifolds embedded

in Euclidean spaces and m0 ∈ M . Just as there is a concept of what it means for F to be

continuous at the single point m0 without being continuous on M ∖{m0}, Peano differentia-

bility (def. 5.3.7) is a concept of differentiability that allows for F to be (Peano) smooth at

the single point m0 without F needing to be smooth onM ∖{m0}. However, it is possible for

a map F to be everywhere infinitely Peano differentiable without the map even being once

continuously differentiable. Now while the definition of “smoothness of a map at a point”

given in definition 6.1.14 does not suffer from this issue, it does permit paradoxical maps,

such as the map constructed in example 6.1.17, to exist.

Example 6.1.17. A map that is smooth at one point and discontinuous everywhere else:

Let Bi(r) denote the open box with sides of length r in Mi =
def

Ri. We will define an inverse

system morphism F● ∶ SysM → SysM where Fi ∶ Ri → Ri for all i ∈ N and we begin by letting

Fi∣Bi(1/i) =
def

IdBi(1/i) for all i. Let Ei =
def

Ri ∖Bi(1/i) for each index i. For i = 1 define F1 on

E1 to be any bijection of E1 onto itself that is discontinuous at every point of its domain.

Let b ∶ R→ R be any bijection that is discontinuous at every point.

Suppose we’ve finished defining bijections Fi ∶ Ri → Ri such Fi∣Ei ∶ Ei → Ei is a bijection

and discontinuous at every point of Ci and where if i ≥ 2 then Pr i−1,i ○Fi = Fi−1 ○Pri−1,i. Let
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Si = Ri ∖Bi(1/(i + 1)). For every mi = (r1, . . . , ri) ∈ Si define Fi+1 on Pr −1
i,i+1 (mi) by

Fi+1(r1, . . . , ri, ri+1) = (Fi(r1, . . . , ri), b(ri+1))

Observe that we have defined a bijection from Pr −1
i,i+1(Si) ∪Bi+1(1/(i + 1)) onto itself so let

Ci+1 denote the complement in Ri+1 of this set.

We will define Fi+1 on Ci+1 in a similar manner as was just done above, except that now

we must deal with some additional details so as to avoid (mistakenly re-)defining Fi+1 on

Bi+1(1/(i + 1)). For any mi = (r1, . . . , ri) ∈ Pri,i+1(Ci+1), observe that Pr−1
i,i+1 (mi) ∩ Ci+1 =

{mi+1 ∣mi+1 = (mi, ri+1), ∣ri+1∣ ≥ 1/(i + 1)} so let

bi+1 ∶ R ∖ ]− 1

i + 1
,

1

i + 1
[ → R ∖ ]− 1

i + 1
,

1

i + 1
[

denote any bijection that is continuous at no point of its domain. Define Fi+1 on Pr−1
i,i+1 (mi)∩

Ci+1 by mapping mi+1 = (mi, ri+1) to (mi, bi+1(ri+1). Observe that Pr i,i+1 ○ Fi+1 = Fi ○Pri,i+1,

which completes the construction.

Let F ∶ RN → RN denote the limit of F● and let {0}k = (0,0, . . .) ∈ RN denote the zero of

Rk for each k = 1,2, . . . ,N. Note that since F = lim←ÐF● we have ODomiF a = Ri for all i ≥ a

and for any index a. Using i = a, defining Ui = Bi(1/i), and observing that F a = Pr a on the

neighborhood Pr −1
i (Ui)) (where F a =

def
Pr a ○ F ∶ RN → Ra) shows that F a is continuous and

smooth at {0}N. Since a ∈ N was arbitrary it follows (by definition) that F is smooth at

{0}N.

Let m = (r1, r2, . . .) ∈ RN be any element distinct from {0}N. Let l ∈ N be such that

rl ≠ 0 and let a ∈ N be such that 1/a < ∣rl∣. Observe that ma =
def

Pr a(m) = (r1, . . . , ra) does

not belong to Ba(1/a). If there was any index j ≥ a such that Fa ○ Praj was continuous at

Pr j(m) then since Praj is an open continuous map this would force Fa to be continuous at

ma, contradicting the construction of Fa. Thus there exists no neighborhood of m on which

the restriction of F a would be continuous, which implies that F is neither continuous nor

155



smooth at m. ∎

Nowhere Roughly Cylindrical Maps

Remark 6.1.18. Let F ∶ M → N be a map between promanifolds. If i and j are indices

such that dimMi < dimMj then since µij ∶Mj →Mi is a smooth submersion it follows that

for any dj ∈ µ−1
ij (di) there exist neighborhoods of di in Mi and dj and Mj such that µij can

be represented in coordinates as the canonical projection so that in particular µ−1
ij (di) is

infinite. Hence µ−1
i (di) = µ−1

j (µ−1
ij (di)) is infinite and since µ−1

i (di) ⊆ F −1(Fi(di)) it follows

that the fiber of F over Fi(d) is also infinite (where Fi = µi ○ µi on DomiF ). In particular,

if sup
i

dim TmiMi =∞ and F is injective then DomiF = ∅ for all indices i so that if we are

dealing we embeddings or diffeomorphisms from an infinite-dimensional promanifold into

some other promanifold then DomiF is necessarily empty for all indices i. ∎

The following example shows that there are continuous real-valued functions f ∶M → R

for which all Domi f are empty.

Example 6.1.19. Let ψ ∶ R→ R be a smooth non-constant function such that −1 ≤ ψ ≤ 1 on

R. Let ψn → Rn → R be ψn(x1, . . . , xn) = ψ(x1) ⋅ ⋯ ⋅ψ(xn) and let F n =
def

1
2nψn○Pr n ∶ RN → R.

Let Sn ∶RN→R be the partial sum Sn =
n

∑
l=1

F l. If n >m then

∣Sn − Sm∣ ≤
n

∑
l=m+1

∣ 1

2l
ψl ○Pr l∣ ≤

n

∑
l=m+1

1

2l

so that the partial sums converge uniformly to some continuous function S ∶ RN → R. Note

that for any positive integer N , if x = (x1, . . . , xN ,0,0, . . .) then for all l ≥ N , (ψl ○Pr l)(x) =

(ψN ○PrN)(x) so that

∞
∑
l=N

1

2l
ψl(Pr (x)) =

∞
∑
l=N

1

2l
ψN(PrN(x)) = ψN(PrN(x))CN
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where CN =
∞
∑
l=N

1
2l

so

S(x) =
∞
∑
l=1

1

2l
ψl(Pr l(x)) =

N−1

∑
l=1

1

2l
ψl(Pr l(x)) + ψN(PrN(x))CN

Observe that if ϕ(x0) = 0 for some x0 ∈ R then for any x1, x2, . . . ∈ R and k ∈ N we have

S(x1, . . . , xk−1, x0, xk+1, . . .) =
k−1

∑
n=1

1
2nψn(x1, . . . , xn) (where if k = 1 then the RHS is 0), which

would imply that (x1, . . . , xk−1, x0) ∈ Domk S and so to obtain the desired counter-example

we must assume in addition that ψ is never 0. Now suppose that there was some index

i such that Di =
def

Domi S ≠ ∅. Let di = (x1, . . . , xi+1) ∈ Di and let xi+1 and vi+1 be any

distinct real numbers such that ψ(xi+1) ≠ ψ(vi+1). Let x = (x1, . . . , xi, xi+1,0,0, . . .) and v =

(x1, . . . , xi, vi+1,0,0, . . .) so that in particular x, v ∈D =
def
µ−1
i (Di). Note that Pr l(x) = Pr l(v)

for all l = 1, . . . , i and ψi+1(Pr i+1(x)) ≠ ψi+1(Pr i+1(v)) so that by taking N = i + 1 in the

above formula we see that S(x) ≠ S(v). But this gives a contradiction since

S(x) = Si(Pr i(x)) = Si(x1, . . . , xi) = Si(Pr i(v)) = S(v)

Thus S ∶ RN → R is a continuous real-valued function for which all Domi S are empty. ∎

A Sufficient Condition for Rough Cylindricity

The following theorem suggests that studying promanifolds in terms of their smooth almost

arcs may be fruitful since it establishes a direct link between smooth almost arcs and cylin-

dricity of real valued functions, where this latter concept is fundamental to promanifolds.

Theorem 6.1.20 will not be used anywhere else in this paper and it is recommended that the

reader be familiar with theorem 16.1.7 before reading this theorem’s proof.

Theorem 6.1.20. Let M be a monotone promanifold, U ∈ Open (M), and m0 ∈ U with

dimm0 M = ∞. Let f ∶ U → R be a continuous function such that f ○ γ ∶ [0,1] → R is

differentiable at 0 with (f ○ γ)′(0) = 0 whenever γ ∶ ([0,1],0) → (U,m0) is a smooth almost
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arc vanishing at 0. Then f is roughly cylindrical at m0.

Proof. It suffices to prove this under the assumption that f(m0) = 0, SysM is monotone, and

U is connected. Let m0
● = µ● (m0) and let Ri = µ−1

i (m0
i ) for all i ∈ N. Suppose that f was

not roughly cylindrical at m0. Observe that every f (R●) must be a non-degenerate interval

in R since each R● is connected and no Ri is contained in f−1(0). Since f is continuous,

every f−1 (] − 1/n,1/n[) contains some Ri, which implies that ∩f(R●) = {0} so we may

pick a strictly monotone sequences (il)∞l=1 ⊆ N and (sl)∞l=1 ⊆ [−1,1] such that s● → 0 and

sl ∈ f (Ril) ∖ f (Ril+1). By replacing f with −f , we may assume without loss of generality

that all s● are positive. For all l ∈ N, pick ml ∈ f−1 (sl)∩Ril so that f (ml) = sl and ml /∈ Ril+1 .

By lemma 15.4.3, there exists a smooth topological embedding γ ∶ ([0,1],0) → (U,m0) such

that γ′(t) vanishes if and only if t = 0 and γ (sl) = ml for all l ∈ N. We thus obtain the

contradiction

(f ○ γ)′(0) = lim
l→∞

f (γ (sl))
sl

= lim
l→∞

f (ml)
sl

= lim
l→∞

sl

sl
≠ 0

∎

Sufficient Conditions for Local Cylindricity

The only result in this subsection that will be used elsewhere in this paper is theorem 6.1.23,

which is due to [1]. While all results in this subsection other than theorem 6.1.23 are new, the

proofs of proposition 6.1.27 and lemma 6.1.24 use some ideas that the author first found in

[1]. It is recommended that the reader be familiar with the tangent bundle of a promanifold

before reading this section.

Note that if F ∶M → N is any map, then even if all DomiF are non-empty and dense in

Mi there is in general no reason to expect for there to exist any index i such that ODomiF

is not empty. So we now produce the following proposition 6.1.21, which provides a sufficient

condition for the existence of a non-empty ODomiF .
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Proposition 6.1.21. Let F ∶ M → N be a continuous map and suppose that S ⊆ M is a

non-meager (in M) subset such that for each m ∈ S there exists some index i(m) ∈ N such

that µi(m)(m) ∈ DomiF . Then there exists some index i such that ODomiF ≠ ∅. If in

addition S is comeager in M (i.e. its complement is meager in M) then ∪
i∈N
µ−1
i (ODomiF )

is a dense open subset of M .

Proof. Let D = ∪
i∈N
µ−1
i (DomiF ) and suppose that each DomiF has empty interior in Mi.

Since all µi are open and each DomiF is closed, this implies that µ−1
i (DomiF ) is a closed

nowhere dense subset of M . But S ⊆ D by assumption, which contradicts the fact that

S is non-meager. Now assume that S is comeager in M and let O = ∪
i∈N
µ−1
i (ODomiF ).

Suppose O ≠ M and pick and index i and a non-empty open set Ui ∈ Open (Mi) such that

U =
def
µ−1
i (Ui) ⊆ M ∖O. Since the intersection of a meager set with an open set is meager,

it follows that U ∩ S is comeager in U and since M is a Baire space S is dense in M it also

follows that U ∩ S is dense in U . Also, observe that if µh(m) ∈ DomhF for some h ∈ N then

µj(m) ∈ Domj F for all j ≥ h. Now apply the first part of this proposition with F ∣
U
in place

of F , S ∩ U in place of S, and the inverse system of subsets (µ−1
ij (µ−1

ij (Ui)))j≥i in place of

SysM to obtain a contradiction. ∎

Theorem 6.1.22. Let M be a monotone promanifold, U ∈ Open (M), and suppose that

dimmM = ∞ for all m ∈ U . Let f ∶ U → R be continuous and suppose that whenever

γ ∶ [0,1] → U is a smooth topological embedding such that γ′(t) vanishes ⇐⇒ t = 0, then

f ○ γ ∶ [0,1] → R is differentiable at 0 and (f ○ γ)′(0) = 0. Then f is roughly cylindrical at

every point of U and there exists a dense (in U) open subset O ⊆ U such that f is locally

cylindrical at every point of O. If in addition f ○ γ is smooth for every smooth γ ∶ R → O

then f ∣
O
∶ O → R is smooth.

Proof. Combine theorem 6.1.20 and proposition 6.1.21 for the first part. Assume that f ○γ is

smooth for every smooth γ ∶ R→ O and let i ∈ N. Every smooth curve γi ∶ R→ ODomi f has a

smooth µi-lift γ ∶ R→ O so that fi ○γi = f ○γ is smooth, which implies that fi ∶ ODomi f → R
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is smooth by the Boman theorem. ∎

Recall that (RN,Pr ≤i) = lim←Ð(Ri,Pr ≤ij,N) in Top where Pr≤i,j and Pr≤i are the canonical

projections. Note that since the promanifold RN is also a Fréchet topological vector space,

there already exist well-established notations of Gâteaux and Fréchet differentiability (def.

B.2.1). The following theorem is due to Abbati and Manià [1][thm. 14] and can be viewed

as providing some additional justification for studying the canonical sheaf since it implies

that in the case of the TVS RN, the notions of promanifold continuous differentiability (as

defined by the canonical sheaf) and Gâteaux continuous differentiability coincide.

Theorem 6.1.23 (Abbati and Manià). Let U ∈ Open (RN) and let f ∶ U → R be a function.

If f is Gâteaux continuously differentiable then it is locally cylindrical.

We will now generalize the above theorem 6.1.23 of Abbati and Manià to a larger class

of promanifolds by generalizing and combining the proofs of some of their theorems. It is

recommended that the reader be familiar with the tangent bundle of a promanifold before

continuing with the remainder of this subsection.

Lemma 6.1.24. Let f ∶ M → R be any map such that for all smooth η ∶ I → M , where

I ∈ Open (R), the map f ○ η ∶J→R is smooth. Let m0 ∈ M , i ∈ N, and µi(m0) ∈ Ui ∈

Open (Mi). Suppose that for all mi ∈ Ui, all m,m̂ ∈ µ−1
i (mi), and all ε > 0 there exists a map

γ ∶ [0,1]→M (not necessarily continuous) from m to m̂ such that

(1) f ○ γ ∶ [0,1]→R is absolutely continuous (so that f ○ γ is differentiable a.e.) and

(2) ∥(f ○ γ)′∥∞ < ε, where ∥⋅∥∞ is the L∞([0,1]) norm.

Then f ∶ M → R is locally cylindrical at m0 and in fact Ui ⊆ Domi f . If in addition

there is some j ≥ i and some µj(m0) ∈ Oj ∈ Open (Mj) such that every smooth curve

ηj ∶J→Oj defined on an open subset of R has some smooth µj-lift into M then f is smooth

on µ−1
i (Ui) ∩ µ−1

j (Oj).
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Remark 6.1.25. Observe that for any mi ∈ Ui, if mi is to belong to Domi f then the

satisfaction, for all m,m̂ ∈ µ−1
i (mi) and ε > 0, of conditions (1) and (2) by some γ is also

necessary.

Proof. Fix mi ∈ Ui and let m,m̂ ∈ µ−1
i (mi). Let ε > 0 so that by assumption there is a

map γ ∶ [0,1] → M from m to m̂ that satisfies (1) and (2) above. Since f ○ γ ∶ [0,1]→R is

absolutely continuous we have

∣f(m̂) − f(m)∣ =∣(f ○ γ)(1) − (f ○ γ)(0)∣

=∣∫
1

0
(f ○ γ)′(t)dt∣

<∫
1

0
ε dt since ∥(f ○ γ)′∥∞ < ε

= ε

so that since ε > 0 was arbitrary we must have f(m̂) = f(m). Since the m,m̂ ∈ µ−1
i (mi) were

arbitrary the set f(µ−1
i (mi)) is singleton so that we may define the map

fi ∶Ui Ð→ R

mi z→ f(µ−1
i (mi))

which satisfies f = fi ○ µi on µ−1
i (Ui). Assume that there is some µj(m0) ∈ Oj ∈ Open (Mj)

such that every smooth curve ηi ∶J→Oj defined on an open subset of R has some smooth

µj-lift into M . Let Uj = Oj ∩ µ−1
ij (Ui) and let fj = fi ○ µij ∣Uj ∶Uj→R so that f = fj ○ µj on

µ−1
j (Uj). Let γj ∶ R → Uj be any smooth map and let γ ∶ R → M be any smooth µj-lift of

γj. By assumption, f ○ γ ∶ R → R is smooth and since Im(µj ○ γ) = Imγj ⊆ Uj we have that

fj ○ γj = fj ○ µj ○ γ = f ○ γ is also smooth. Since γj ∶ R → Uj was an arbitrary smooth curve

into the manifold Uj it follows from Boman’s theorem that fj is smooth on Uj, which implies

that f is smooth on µ−1
j (Uj) = µ−1

i (Ui) ∩ µ−1
j (Oj). ∎
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Lemma 6.1.26. Assume that all tangent vectors in TM are kinematic. Let f ∶M → R be

any map such that

(1) for all smooth γ ∶ I →M , where I ∈ Open (R), the map f ○ γ ∶ I→R is smooth,

(2) whenever γ ∶ I →M and η ∶ J →M , where I and J are open neighborhoods of 0 in R,

are smooth maps such that γ′(0) = η′(0) then (f ○ γ)′(0) = (f ○ η)′(0).

Then the map T f ∶TM →R defined by sending v ∈ TM to

T f(v) =
def

(f ○ γ)′(0)

where γ is any smooth curve in M with γ′(0) = v, is well-defined and T f(rv) = rT f(v) for

all r ∈ R and all v ∈ TM .

Proof. That T f is defined on all of TM follows from the assumption that all tangent vectors

are kinematic and T f is well-defined by assumption (2). Let r ∈ R, v ∈ TM . Let γ ∶ R→M

be a smooth curve such that v = γ′(0). Define the smooth curve η ∶ R →M by η(t) = γ(rt)

where observe that η′(0) = rγ′(0) = rv so that

T f(rv) = (f ○ η)′(0) = d

dt
∣
t=0

((f ○ γ)(rt)) = r(f ○ γ)′(r ⋅ 0) = rT f(v)

as desired. ∎

The the following proposition provides a sufficient condition for determining that a given

arbitrary function from a promanifold M into R is locally cylindrical. Also observe that

Abbati and Manià’s theorem 6.1.23 follows immediately from the following proposition.

Proposition 6.1.27. Assume that all tangent vectors in TM are kinematic. Let f ∶M → R

be any map that satisfies the conditions of lemma 6.1.26 and let T f ∶TM →R be the induced

map defined in that same lemma. Assume that for all m0 ∈ M and all i0 ∈ N there exists

some index i ≥ i0 and some µi(m0) ∈ Ui ∈ Open (Mi) such that for all mi ∈ Ui and all
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m,m̂ ∈ µ−1
i (mi) there exists a continuous map γ ∶ [0,1] → µ−1

i (mi) from m to m̂ that is

smooth as a map into M (e.g. this condition is satisfied if, for instance, SysM is monotone,

or more generally, that is smooth on some open subset of [0,1] whose complement (in [0,1])

has Lebesgue measure 0. If T f ∶TM →R is continuous then f ∶M → R is locally cylindrical

and if in addition every µ● has the smooth path lifting property then f is smooth.

Proof. Fix m0 ∈ M . Since T f ∶TM →R is continuous and T f(0m0) = 0, where 0m0 is the

zero of Tm0 M , there exists some i0 ∈ N and some open set W 0
i0
∈ Open (TMi0) such that

0m0 ∈ (Tµi0)
−1(W 0

i0
) ⊆ (T f)−1(] − 1,1[). Pick i ≥ i0 and Ui ∈ Open (Mi) as in the statement

of this theorem and observe that by replacing i0 with i and W 0
i0
by (Tµi0,i)

−1(Wi0) we may

assume without loss of generality that i0 = i. Since (TMi
○Tµi)(0m0) = µi(m0) we may pick

µi(m0) ∈ Oi ∈ Open (Mi) such that Oi ⊆ Ui ∩ TMi
(W 0

i ) and by shrinking W 0
i and Oi as

necessary, we may also assume that TMi
(W 0

i ) = Oi and that W 0
i contains the zero vector of

TmiMi for each mi ∈ Oi.

Fix mi ∈ Oi and let m,m̂ ∈ µ−1
i (mi). By assumption there exists a map γ ∶ [0,1] →

µ−1
i (mi) from m to m̂ and some open subset I of ]0,1[ such that [0,1] ∖ I has Lebesgue

measure 0 and γ̃ =
def
γ∣
I
∶ I → M is smooth. Since Im(µi ○ γ̃) ⊆ µi(Imγ) ⊆ µ−1

i (µ−1
i (mi)) =

{mi} we have that (µi ○ γ)′ ≡ 0 on I. For any t0 ∈ I and any r ∈ R we have

Tµi(rγ̃′(t0)) = r(µi ○ γ̃)′(t0) = r ⋅ 0 = 0

where since mi ∈ Ui we have Tµi(rγ̃′(t0)) = 0 ∈Wi. Hence

rγ̃′(t0) ∈ (Tµi)−1 (Wi) ⊆ (T f)−1(] − 1,1[)

so that rT f(γ̃′(t0)) = T f(rγ̃′(t0)) ∈ ] − 1,1[, which implies that T f(γ̃′(t0)) = 0 since r ∈ R

was arbitrary. Letting η(t) = γ̃(t + t0) we have by definition of T f

0 = T f(γ̃′(t0)) = T f(η′(0)) = (f ○ η)′(0) = (f ○ γ̃)′(t0)
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Thus (f ○ γ)′ ≡ 0 on I. Since [0,1] ∖ I has measure 0 it follows that (f ○ γ)′ is measurable,

integrable, and ∥(f ○ γ)′∥∞ = 0 while from the differentiability of f ○ γ on I we obtain the

absolute continuity of f ○ γ. The conclusion now follows from lemma 6.1.24. ∎

Trivially Cylindrical Maps and Inverse System Morphisms

Cylindricity and Compactness

The following lemma implies, in particular, that every locally cylindrical map from a compact

promanifold is trivially cylindrical.

Lemma 6.2.1. Let K ⊆M be compact and let F ∶ K → N be a roughly locally cylindrical

map (def. 6.1.5) from a promanifold into a set N . Then there exists some index i and some

Ui ∈ Open (Mi) such that F = Fi ○ µi on µ−1
i (Ui) and K ⊆ µ−1

i (Ui).

Proof. Since F ∶ K → N is a continuous locally cylindrical map, for all m ∈ K there exists

some index ι(m) ∈ N and some Um
ι(m) ∈ Open (Mι(m)) containing µι(m)(m) such that F =

Fι(m) ○ µι(m) on the open subset Um =
def

µ−1
ι(m) (Um

ι(m)) ∩ K of K. Pick a finite subcover

Um1 , . . . , UmL of K, let i = max{ι(m1), . . . , ι(mL)}, and for each h = 1, . . . , L, let Uh
i =

µ−1
ι(mh),i (U

mh
ι(mh)). Since F = Fι(m) ○ µι(m) = Fι(m) ○ µι(m),i ○ µi on Umh = µ−1

i (Uh
i ), it follows

that DomiF is equal to µi(K) = DomiF and DomiF ⊆ U1
i ∪⋯ ∪UL

i . ∎

Corollary 6.2.2. Let F ∶ M → N be a roughly locally cylindrical map (def. 6.1.5) from

a promanifold into a set N . For any compact K ⊆ M , there exists some index i and some

Ui ∈ Open (Mi) such that F = Fi ○ µi on µ−1
i (Ui) and K ⊆ µ−1

i (Ui). In particular, if M

is compact and F ∶ M → N is a locally cylindrical map into a set N then F is trivially

cylindrical.

As shown in the following lemma, if M is compact then F can be obtained as the limit

of some subcollection of F ●
● that forms an inverse system morphism.
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Lemma 6.2.3. Let F ∶ M → N be a locally cylindrical map between promanifolds, let

F ● = ν● ○ F , and denote by F ●
● the canonical collection of maps induced by F . If M is

compact then there exists a strictly increasing ι ∶N→N such that (F ●
ι(●), ι) ∶ SysM → SysN is

an inverse system morphism whose limit is F where if in addition F is continuous (resp.

smooth) then so are all F ●
ι(●) = (F a

ι(a))
∞

a=1
. In particular, if M is compact then F arises as the

limit of some inverse system morphism.

Proof. For all indices a and i, let Oa
i = ODomiF a. For any a ∈ N the open sets (µ−1

i (Oa
i ))i∈N

form an increasing open cover of M so that there exists some i0 ∈ N such that i ≥ i0 implies

M = µ−1
i (Oa

i ), which in turn implies that Oa
i =Mi. Pick such an index for a = 1 and call it ι(1)

and then inductively pick such indices satisfying the additional property that ι(a+1) > ι(a).

For each index a let Fa =
def
F a
ι(a) ∶Mι(a)→Na. It is clear that (F●, ι) is the desired inverse

system morphism. ∎

Smooth Maps that are Not Limits of Inverse System Morphisms

The following examples show that if M is not compact then there may exist smooth maps

that do not arise as the limit of any inverse system morphism from SysM into SysN where

in particular, example 6.2.6 shows that this may even be true of a diffeomorphism from

RN ≅ ]0,∞[N onto itself, which indicates that, as tools, inverse system morphisms are not

very well suited for proving an inverse function theorem for promanifolds.

Example 6.2.4. A locally cylindrical smooth map that is not trivially cylindrical: Let

Mi = ]0,1[i, M = ]0,1[N, and let Pr i,i+1 and Pr i denote the canonical projections onto Mi so

that (M,Pr ●) is the limit of this inverse system. For each index i ∈ N define

fi ∶Mi Ð→ (0,1)

(m1, . . . ,mi) z→ ( 1

1 + 2
−m1)

2

+⋯ + ( 1

i + 2
−mi)

2

let Bi = ]0,1/i[ and let ϕi ∶ ]0,1[→ [0,1] be a smooth bump function with carrier Bi and such
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that ϕi ≡ 1 on ]0,1/(i + 1)]. Let

F ∶M Ð→ R

m = (m1,m2, . . .) z→
∞
∑
i=1

fi(m1, . . . ,mi)ϕi(m1)

Observe that if m1 ∈ [1/i,1[ then for all j ≥ i we have ϕj(m1) = 0 so that for each m ∈M the

above sum is finite.

F is smooth and locally cylindrical: fix m0 = (m0
1,m

0
2, . . .) ∈ M , pick i ∈ N such that

m0
1 ∈ [1/i,1[, and let U = Pr −1

i (]1/i,1[). Observe that for any m ∈ U ,

F (m) =
∞
∑
l=1

fl(m1, . . . ,ml)ϕl(m1) = (
i−1

∑
l=1

(fl ○Pr li) ⋅ (ϕl ○Pr 1i))(Pr i(m))

so that F is locally cylindrical and smooth at m0.

F is not the limit of any inverse system morphism: suppose that there existed some

inverse system morphism (F●, ι) ∶ SysM → SysR, where SysR is the trivial system, such that

F = lim←ÐFι(●). Let i = ι(1) and pick any m0
1 ∈ ] 1

i+2 ,
1
i+1

[ so that for all l ≥ i + 2, ϕl(m0
1) = 0

while ϕl(m0
1) = 1 for all l ≤ i + 1. For any 0 < r < 1 let

m0
r =

def
(m0

1,
1

2 + 2
, . . . ,

1

i + 2
, r,

1

(i + 2) + 2
,

1

(i + 3) + 2
, . . .)

where the r is in the i + 1th position. By definition of F ,

F (m0
r) =

∞
∑
l=1

fl(µl(m0
r))ϕl(m0

1)

=
i+1

∑
l=1

fl(µl(m0
r))(1) +

∞
∑
l=i+2

0

=[
i

∑
l=1

fl(m0
1,

1

2 + 2
, . . . ,

1

l + 2
)] + fi+1(m0

1,
1

2 + 2
, . . . ,

1

i + 2
, r)
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Observe that if r ≠ r′ then fi+1(m0
1,

1
2+2 , . . . ,

1
i+2 , r) ≠ fi+1(m0

1,
1

2+2 , . . . ,
1
i+2 , r

′) so that F (m0
r) ≠

F (m0
r′). But, since F = F1 ○ µi on M for any m = (m1,m2, . . .) ∈M the value of F (m) can

only depend on µi(m) = (m1, . . . ,mi), which gives us a contradiction. ∎

Example 6.2.5. Another smooth function that is not trivially cylindrical: Let κ ∶ ]0,∞[→R

be a smooth cutoff function such that κ−1(1) = ]0,1], κ−1(0) = [2,∞[, and κ′ < 0 on ]1,2[. Let

β ∶ ]0,∞[→R be a smooth function such that β−1(1) = [1,∞[, β′(t) > 0 ⇐⇒ t ∈ ]0,1[, and

lim
t↘0

β(t) = 0. For each i ∈ N let Mi =
def

]0,∞[i, M =
def

]0,∞[N and for all i ≤ j let Pr ij ∶Mj→Mi

denote the canonical projection onto the first i coordinates. Define

F 1 ∶M Ð→ R

r = (r1, r2, . . .) z→ r1 + β(r1)[κ(r2) + κ(2r2 + r3) + κ(3r2 + r3 + r4) +⋯]

where the pth term in the above series is κ(pr2 + r3 +⋯rp+1).

F 1 is well-defined: Fix r0 = (r0
1, r

0
2, . . .) ∈M . Since r0

2 > 0 there exists some smallest n ∈ N

such that nr0
2 > 2. Observe that

F 1(r0) = r0
1 + β(r0

1)[κ(r0
2) + κ(2r0

2 + r0
3) + κ((n − 1)r0

2 +⋯ + r0
n−1) + 0 + 0 +⋯]

since nr0
2 +⋯r0

n−1 > 2 so that F 1 is well-defined.

Let ε2 = r0
2 − 2

n and observe that ε2 > 0 and 2 = nr0
2 − nε2. Let ε = 1

2 min{ε, r0
1, . . . , r

0
n−1},

Un−1 = (r0
1, . . . , r

0
n−1)+ ] − ε, ε[n−1 (i.e. Un−1 is the open cube centered at (r0

1, . . . , r
0
n−1) with

sides of length 2ε), and let U = Pr −1
≤n−1 (Un−1).

Observe that for any r = (r1, r2, . . .) ∈ M , ∣r2 − r0
2 ∣ < 1

2ε2 < ε2 so that r0
2 − ε2 < r2, which

implies that 2 = nr0
2−nε2 < nr2. Thus for any l ≤ n, κ(lr2 + r3 +⋯ + rl) = 0 since lr2+r3+⋯+rl >

2 so that

F 1(r) = r1 + β(r1)cn−1(r1, . . . , rn−1)

where cn−1(r1, . . . , rn−1) =
def
κ(r2)+κ(2r2+r3)+⋯+κ((n−1)r2+⋯rn−1). Since F 1∣

U
is dependent
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only on r1, . . . , rn−1 it is locally cylindrical at r0 and since the map

F 1
n−1 ∶Un−1 Ð→ R

(r1, . . . , rn−1) z→ r1 + β(r1)cn−1(r1, . . . , rn−1)

is smooth on Un−1 it follows that F 1 is smooth at r0. Thus F 1 is a smooth map on M but

since for any l ∈ N it is possible to choose r2, . . . , rl > 0 such that 1 < lr2 + r3 +⋯ + rl < 2 (in

which case κ(lr2 + r3 +⋯ + rl) ≠ 0), F 1 can not be trivially cylindrical. Observe that for any

v1 ∈ R,

T(r1,...,rn−1)F
1
n−1(v1,0, . . . ,0) = v1[1 + β′(r1)cn−1(r1, . . . , rn−1)v1]

so that T(r1,...,rn−1)F
1
n−1(v1,0, . . . ,0) = 0 ⇐⇒ v1 = 0. Hence the tangent map of

F n−1
n−1 ∶Un−1 Ð→ ]0,∞[n−1

(r1, . . . , rn−1) z→ (F 1
n−1(r1, . . . , rn−1), r2, . . . , rn−1)

is at every Pointwise isomersive so that H is clearly a local diffeomorphism. ∎

Example 6.2.6. A smooth diffeomorphism M → M that is not the limit of any inverse

system morphism: Let us continue using the notation and definitions from example 6.2.5.

Let M = RN and for all a ∈ N≥2, define

F a ∶M Ð→ R

r = (r1, r2, . . .) z→ ra

and let F =
def

(F 1, F 2, F 3, . . .) ∶M →M so that F is smooth since each coordinate is smooth.

If F arose as the limit of some inverse system morphism (F●, ι) then in particular, F1 =

Pr 1○F = F 1
ι(1)○µι(1) so that F 1 is trivially cylindrical (since F 1(r = F 1(r1, . . . , rι(1), rι(1)+1, . . .)

is dependent only on r1, . . . , rι(1)), which gives us a contradiction. Thus F is not the limit
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of any inverse system morphism in the category of Set. For any c ≥ 0 define

gc ∶R>0 Ð→ R

z z→ z + cβ(z)

and observe that gc is a strictly increasing function with image R>0 since it is the sum of

the strictly increasing function IdR>0 and the non-decreasing function z ↦ cβ(z). Since

g′c > 0 it follows that gcR>0R>0 is a diffeomorphism. For every s = (s1, s2, . . .) ∈M we define

c(s) =
def
κ(r2) + κ(2r2 + r3) + κ(3r2 + r3 + r4) +⋯ and observe that the map

M Ð→ R

s z→ c(s)

is smooth.

F is injective: Suppose F (r) = F (s) where r = (r1, r2, . . .) and s = (s1, s2, . . .). Then

r1 = F a(r) = F a(s) = sa for all a ∈ N≥2 so that c =
def
c(r) equals c(s). This implies that

gc(r1) = r1 + β(r1)c = F 1(r) = F 1(s) = s1 + β(s1)c = gc(s1)

so the injectivity of gc implies that r1 = s1 and thus that r = s.

F is surjective: Let s = (s1, s2, . . .) ∈M , for all i ∈ N≥2 let ri =
def
si, and let c =

def
c(r). Since

c ≥ 0 we can let r1 =
def
g−1
c (s1) and then define r =

def
(r1, r2, . . .) so that F 1(r) = r1 + β(r1)c =

gc(r1) = s1, which implies that F (r) = s. We have thus shown that the inverse of F is

F −1 ∶M Ð→ M

s = (s1, s2, . . .) z→ (g−1
c(s)(s1), s2, s3, . . .)

To see that F −1 ∶M →M is smooth, fix s0 = (s0
1, s

0
2, . . .) ∈M , let r0 = F −1(s0) and define

n ∈ N, ε > 0, (r0
1, . . . , r

0
n−1) ∈ Un−1 ∈ Open (Mn−1), U , F 1

n−1, cn−1(r1, . . . , rn−1), and F n−1
n−1
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exactly as in example 6.2.5 above. Let (r0
1, . . . , r

0
n−1) ∈ On−1 ∈ Open (Un−1) be such that

F n−1
n−1 ∣On−1 ∶On−1→F n−1

n−1 (On−1) is a diffeomorphism onto the open (in ]0,∞[n−1) subset Vn−1 =
def

F n−1
n−1 (On−1). For any i ≤ n − 1 observe that the map

F i
i ∶On−1× ]0,∞[i−n+1 Ð→ Vn−1× ]0,∞[i−n+1

(r1, . . . , ri) z→ (F 1
n−1(r1, . . . , rn−1), r2, . . . , ri)

is a diffeomorphism. If the inverse of F n−1
n−1 ∣On−1 is the map

Hn−1
n−1 ∶ Vn−1 Ð→ On−1

(s1, . . . , sn−1) z→ (h(s1, . . . , sn−1), s2, . . . , sn−1)

where h ∶Vn−1→R is some smooth map then the inverse of F i
i is the map

H i
i ∶ Vn−1× ]0,∞[i−n+1 Ð→ On−1× ]0,∞[i−n+1

(s1, . . . , si) z→ (h(s1, . . . , sn−1), s2, . . . , si)

If s ∈ Pr −1
≤n−1(Vn−1) then it is straightforward to verify that

(h(s1, . . . , sn−1), s2, . . . , sn−1) ∈ On−1 and F (h(s1, . . . , sn−1), s2, . . .) = s

so that h(s1, . . . , sn−1) = g−1
c(s)(s1) and F −1(s) ∈ Pr −1

≤n−1(On−1) from which it is immediate that

µi ○ F −1(s) = H i
i ○ Pr ≤i(s). Since h is smooth it follows that H =

def
F −1 is locally cylindrical

and smooth at s0. Thus F ∶M →M is a diffeomorphism that does not arise that the limit of

any inverse system morphism in Set. ∎

Example 6.2.7 (RN admits distinct pfd structures). Let SysRN = (R●,Pr ≤i,j,N) and (RN,Pr ≤●) =

lim←Ð SysRN be as in example 2.1.51, let F ∶ RN → RN be the diffeomorphism from example 6.2.6,

and let ν● = Pr ≤● ○ F . Observe that (RN, ν●) is a limit of SysRN so that both (Pr ≤●, SysRN)

and (ν●, SysRN) are smooth projective representations for RN. However, there does not exist
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any smooth equivalence transformation between these two representations since F ∶ RN → RN

does not arise as the limit of any inverse system morphism. In particular, this shows that

there exists at least two distinct pfd structures for RN (def. 5.0.2).

A Characterization of Smooth Maps that Arise as Limits of Inverse

System Morphisms

The results in this subsection will not be used anywhere else in this paper.

Lemma 6.2.8. Suppose F ∶M → N is a smooth map from a promanifoldM into a manifold

N . Consider the following statements:

(1) F is trivially cylindrical.

(2) F ∗f = f ○ F ∶M →R is trivially cylindrical for all f ∈ C∞
N (N).

(3) For all V ∈ Open (N) and f ∈ C∞
N (V ), F ∗f ∶F −1 (V )→R is trivially cylindrical and

defined on a basic open subset of M .

Then (1) Ô⇒ (2) Ô⇒ (3) and if in addition sup
n∈N

dimnN < ∞ and some Na has at most

finitely many isolated points then (3) Ô⇒ (1).

Proof. (1) Ô⇒ (2) is immediate.

(2) Ô⇒ (3): Let V ∈ Open (N), f ∈ C∞
N (V ), U =

def
F −1 (V ). Let β ∶N → [0,1] be a smooth

function such that β−1(0) = N∖V and let g =
def
f ⋅β. Pick an index i for which there exists some

gi and βi in C∞
Mi

(Mi) such that g○f = gi○µi and β○F = βi○µi. Since U ⊆ µ−1
i (µi(U)) is always

true, we need only to show the reverse containment: If m ∈ µ−1
i (µi(U)) then µi(m) ∈ µi(U)

so that

β(F (m)) = βi(µi(m)) ∈ βi(µi(U)) = β(U) = β(F (U)) ⊆ β(V )

In particular, this implies that β(F (m)) ≠ 0 so that F (m) ∈ N ∖ β−1(0) = V and thus

m ∈ F −1 (V ) = U , as desired. We’ve thus shown that U = µ−1
i (Ui) is a basic open subset of
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M , where Ui =
def
µi(U). Observe that if mi ∈ Ui then βi(mi) ∈ βi(µi(U)) = β(F (U)) ⊆ β(V ) ⊆

]0,1[ so that βi(mi) ≠ 0 and

fi ∶Ui Ð→ R

mi z→
gi(mi)
βi(mi)

is well-defined and smooth. If m ∈ U then

(fi ○ µi)(m) = gi(µi(m))
βi(µi(m))

= (f ⋅ β)(F (m))
β(F (m))

= f(F (m))

Thus f ○ F = fi ○ µi on the basic open set µ−1
i (Ui) = F −1 (V ).

(3) Ô⇒ (1): Suppose d =
def

sup
n∈N

dimnN < ∞ and for each l = 0, . . . , d let C l denote

the unions of the connected components of N of dimension l. Since each C l has Lebesgue

covering dimension l, for each l = 0, . . . , d there exist l + 1 charts that cover C l. Suppose

that (V 1, ψ1), . . . , (V K , ψK) are these charts so that they, in particular, form a finite open

cover of N . For each l, let Gl = ψl ○ F and let U l = F −1(V l). Since each coordinate of each

ψl is trivially cylindrical and each U l is a basic open set, it follows that each ψl is trivially

cylindrical and each U l is a basic open set. That there are only finitely many of these charts

allows us to pick an index i such that for each l there exists some Gl
i ∈ C∞

Mi
(Ui) such that

ψl ○ F = Gl
i ○ µi on µ−1

i (U l
i) where U l

i =
def
µi(U l). If m ∈ Up ∩ U q then F (m) ∈ V p ∩ V q so

since (V pψp) and (V qψq) are charts we have (ψp)−1(ψp ○ F )(m) = (ψq)−1(ψq ○ F )(m) so

that (ψp)−1(Gp
i ○ µi)(m) = (ψq)−1(Gq

i ○ µi)(m). This shows in particular that if mi ∈ Up
i ∩U

q
i

then ((ψp)−1 ○Gp
i )(µ−1

i (mi)) is a singleton set that is independent of choice of p; call this

unique element Fi(mi). Observe that if m ∈ µ−1
i (mi) then m ∈ µ−1

i (Up
i ) so that

Fi(mi) = Fi(µi(m)) = ((ψp)−1 ○Gp
i )(µi(m)) = (ψp)−1(Gp(m)) = (ψp)−1((ψp ○ F )(m)) = F (m)

We have thus defined a map Fi ∶Mi→N such that F = Fi ○ µi on M where note that the

smoothness of F implies the smoothness Fi. ∎
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A particular consequence of the following characterization is that although inverse sys-

tem morphisms would be well-suited to our needs if we only needed to deal with trivially

cylindrical functions, they are not the appropriate tool to be used with promanifolds since

smooth (R-valued) functions on promanifolds need not be trivially cylindrical. Indeed, this

observation was the original motivation for definition 10.2.10 and the other definitions in

that subsection.

Theorem 6.2.9. Assume that sup
na∈Na

dimnaNa <∞ is finite for each a ∈ N and that some Na

has at most finitely many isolated points (e.g. if all N● are connected). If F ∶ M → N is a

smooth map between promanifolds then the following are equivalent:

(1) F arises as the limit of an inverse system morphism from SysM to SysN .

(2) For all trivially cylindrical f ∈ C∞
N (N), f ○ F ∶M →R is also trivially cylindrical.

(3) For all trivially cylindrical f ∈ C∞
N (V ) defined on a basic open subset V of N , the

pullback F ∗f ∶F −1 (V )→R is trivially cylindrical and defined on a basic open subset

of M .

Proof. (1) Ô⇒ (2) Ô⇒ (3) is immediate.

(3) Ô⇒ (1): By repeatedly applying lemmata 6.2.8 and 6.1.4, we may inductively pick

an increasing sequence of indices ι(1) < ι(2) < ⋯ such that for each index a, νa○F = F a
ι(a)○µι(a)

for some smooth F a
ι(a) ∶Mι(a)→Na. If a < b then i =

def
ι(a) < j =

def
ι(b) and for any m ∈M ,

(νab ○ F b
j )(µj(m)) = (νab ○ νb ○ F )(m) = (νa ○ F )(m) = (F a

i ○ µi)(m) = (F a
i ○ µij)(µj(m))

so that the surjectivity of µj implies that νab ○ F b
j = F a

i ○ µij. It is immediately seen that F

is the limit of this inverse system morphism. ∎

Smooth Partitions of Unity

The following definitions are taken from [27, def. 16.1].
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Definition 6.3.1. Suppose X is topological space and S ⊆ C(X→R) is a subalgebra of

C(X→R). If U ● = (Uλ)λ∈Λ is an open cover of X and φ● = (φλ)λ∈Λ be a collection of

continuous R-valued functions on X then we will say that φ● is a smooth or S-partition of

unity subordinate to U if each φλ belongs to S and they form a partition of unity subordinate

to U ●. We will say that X (or (X,S))

(1) is smoothly normal or S-normal if for any two disjoint closed sets A,B ⊆X there exists

a smooth f ∶X→R such that f ∣
A
= 0 and f ∣

B
= 1.

(2) admits smooth partitions of unity and that it is S-paracompact if every open cover of

X admits a S-partition of unity subordinate to it.

We may replace the word “smooth” with “S” in these definitions.

Lemma 6.3.2. Suppose that e ∶ (S,S)→ (M,M) is a smooth map and a topological embed-

ding onto a closed subspace of M where S (resp, M) are sheaves of continuous R-valued

functions on S (resp. M). If (M,M) is smoothly normal (resp. smoothly paracompact)

then so is (S,S).

Proof. If (M,M) is smoothly normal then for any disjoint closed subsets A0 and A0 ofM we

may find a smooth f ∈M(M) such that fi∣e(Ai) = i for i = 0,1 so that the map f ○ e ∶S→R

belongs to S(S) and satisfies fi ○ e∣Ai = i for i = 0,1. Now suppose that (M,M) is smoothly

paracompact and let U ● = (Uλ)λ∈Λ be an open cover of S. Let V 0 = M ∖ Im(e) and for all

λ ∈ Λ let V λ denote an open subset ofM such that e(Uλ) = V λ∩Im e. Pick aM(M)-partition

of unity {φ0, φ●} subordinate to {V 0} ∪ {V ●} and observe that the Λ-indexed collection of

maps φ● ○ e forms a S(S)-partition of unity subordinate to U ●. ∎

Of course a necessary condition for (M,M) to admit smooth partitions of unity is for M

to be paracompact.

Example 6.3.3. Let C∞,TV S(RN) denote the set of all smooth (def. B.2.1) real-valued func-

tions on the Fréchet space RN and let C∞
RN denote the canonical sheaf when RN is considered
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as a promanifold. Since RN is a nuclear Fréchet space, we can conclude from [27, thm. 16.10]

that RN is C∞,TV S(RN)-paracompact. But theorem 6.1.23 established that all Gâteaux con-

tinuously differentiable R-valued functions are locally cylindrical, which makes it easy to see

that C∞,TV S(RN) = C∞
RN(RN). We may thus conclude that RN is C∞

RN(RN)-paracompact and

furthermore, it is easy to see how one may use smooth bump functions to conclude that

C∞
RN = C∞,TV S

RN , which proves the claim that was made in example 4.0.11.

Theorem 6.3.6 will allow us to apply proposition 6.3.4 and theorem 6.3.5 to a promanifold

(M,C∞
M) with M and C∞

M(M) in place of X and S, respectively.

Proposition 6.3.4 ([27, prop. 16.2, pp. 153, 165 - 166]). Let X be a Hausdorff space and

let S ⊆ C(X→R) be a subalgebra of C(X→R). Assume that for all h ∈ C∞(R→R) one

has h∗(S) ⊆ S and that whenever a function f ∶X→R belongs locally to the presheaf on X

defined by S(U) =
def

{f ∣
U
∣ f ∈ S} (i.e. for all x ∈ X there is some x ∈ U ∈ Open (X) such that

f ∣
U
∈ S(U)) then f ∈ S.

Consider the following statements:

(1) X is S-normal.

(2) For any two closed disjoint subsets A0,A1 ⊆ X there is a function f ∈ S with f ∣A0 = 0

and 0 ∉ f(A1).

(3) Every locally-finite open covering admits S-partitions of unity subordinated to it.

(4) For any two disjoint zero-sets A0 and A1 of continuous functions there exists a function

g ∈ S with g∣Aj = j for j = 0,1 and g(X) ⊆ [0,1].

(5) For any continuous function f ∶X→R there exists a function g ∈ S with f−1(0) ⊆

g−1(0) ⊆ f−1(R ∖ {1}).

(6) The set S is dense in the algebra of continuous functions on X with respect to the

topology of uniform convergence.
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(7) The set of all bounded functions in S is dense in the algebra of continuous bounded

functions on X with respect to the supremum norm.

(8) The bounded functions in S separate points in the Stone-Čech-compactification βX of

X.

Then (1) - (3) are equivalent, (4) - (8) are equivalent, and if X is metrizable then they

are all equivalent. Furthermore, X is S-paracompact if and only if it is paracompact and

S-normal.

Theorem 6.3.5 ([27, thm. 16.15]). LetX and S be as in proposition 6.3.4. IfX is metrizable

then the following are equivalent:

(1) X is S-paracompact i.e. admits S-partitions of unity.

(2) X is S-normal.

(3) The topology of X has a basis which is a countable union of locally finite families of

carriers of smooth functions.

(4) There is a homeomorphic embedding i ∶X→ c0(A) for some A (with image in the unit

ball) such that eva ○ i is smooth for all a ∈ A.

Theorem 6.3.6. Promanifolds admit smooth partitions of unity and are smoothly normal.

Proof. We will prove that (3) of theorem 6.3.5 holds with X =
def
M and S =

def
C∞
M(M). For each

i ∈ N,Mi has a basis Bi that is a countable union of locally finite families of carriers of smooth

(i.e. C∞
Mi

(Mi)) functions, say Bi =
∞
∪
n=1
Bni . For any Bi ∈ Bni there exists some smooth function

fBi ∶Mi→R such that carr(fBi) = Bi so that fBi ○ µi ∶M →R is a smooth function such that

carr(fBi ○ µi) = µ−1
i (Bi). Thus, every open set µ−1

i (Bi) ∈ µ−1
i (Bi) =

∞
∪
n=1

µ−1
i (Bni ) is the carrier

of some smooth function in C∞
M(M) and furthermore, note that since each Bni each is a locally

finite family of open sets the same is true of µ−1
i (Bni ). Thus

∞
∪
i=1
µ−1
i (Bi) =

∞
∪
i=1

∞
∪
n=1

µ−1
i (Bni )

is a basis for M that is a countable union of locally finite families of carriers of smooth

functions. ∎
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We now present an alternative proof of theorem 6.3.6 that uses the generalized Whitney

embedding theorem for promanifolds.

Proof. Let (M,C∞
M) be a promanifold so that it is paracompact and metrizable. By the-

orem 11.6.5 there exists a smooth map j ∶M →RN that is a topological embedding onto a

closed subspace of RN. Recall that RN is C∞
RN(RN)-paracompact so that RN is C∞

RN(RN)-

paracompact. Now lemma 6.3.2 implies that M is smoothly-paracompact. ∎

The following example shows that not every closed subset of a promanifold is the support

of a smooth bump functions and explains the absence of their mention in theorem 6.3.6.

Example 6.3.7. There are no smooth R-valued functions on RN with non-empty compact

support: suppose that f ∶RN→R is a smooth function and r =
def
f(m) is non-zero for some

m ∈ RN. Since f is smooth, it is locally cylindrical so there is some index i ∈ N and some

smooth fi ∶ODomi f →R such that Pr ≤i(m) ∈ ODomi f and so f−1(r) = Pr −1
≤i (f−1

i (r)) =

f−1
i (r) ×

∞
∏
l=i+1

R.

Partial Generalization of the Boman Theorem for Proman-

ifolds

The following is a partial generalization of the Boman Theorem to promanifolds.

Theorem 6.4.1 (Partial Generalization of the Boman Theorem). Let M and N be a pro-

manifolds.

(1) A curve γ ∶ R→M is smooth ⇐⇒ f ○ γ ∶ R→ R is smooth for all smooth f ∶M → R.

(2) A map F ∶ Z → N from a manifold Z is smooth ⇐⇒ F ○γ ∶ R→ N is smooth whenever

γ ∶ R→M is a smooth curve.
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Suppose that F ∶M → N is a map such that for each m ∈M , there are cofinally many a ∈ N

such that µi(m) ∈ ODomiF a for some i. If there for each index i, µi ∶M →Mi can lift any

germ of any smooth curve on R in Mi to some germ of a smooth curve in M then

(3) F ∶M → N is smooth ⇐⇒ F ○ γ ∶ R → N is smooth whenever γ ∶ R →M is a smooth

curve.

Proof. (1): For the non-trivial direction, let γ ∶ R→M is be a curve and suppose that for all

f ∈ C∞
M(M) the composition f ○γ ∶ R→ R is smooth and fix an index i. For any fi ∈ C∞

Mi
(Mi),

the function f =
def
fi ○ µi ∶ M → R belongs to C∞

M(M) so that our assumption implies that

fi ○ (µi ○γ) is smooth. Since µi ○γ ∶ R→Mi is a map between manifolds and fi was arbitrary

we have by Boman’s theorem that µi ○γ is smooth. Since the index i was arbitrary it follows

that γ ∶ R→M is smooth.

(2): Now assume that for all smooth curves γ ∶ R → Z the composition F ○ γ ∶ R → N is

smooth, where Z is a manifold. Fix an index i and observe that νi ○ F ○ γ is smooth for all

smooth curves γ ∶ R → Z since νi and F ○ γ are smooth. Since Z and Ni are manifolds it

follows from Boman’s theorem that νi○F ∶ Z → Ni is smooth. Since the index i was arbitrary

it follows that F ∶ R→ N is smooth.

(3): Fix m ∈ M and let a be any index for which there exists an i such that µi(m) ∈

Oi =
def

ODomiF a, where by increasing i we may assume that i is an index such that every

germ of a smooth open curve in Mi has a µi-lift to a germ of some smooth open curve. Let

γi ∶R→Oi be any smooth curve and fix t0 ∈ R. Let γ ∶ ]a, b[→M be a smooth curve whose

domain contains t0 such that µi ○γ = γi on ]a, b[. By assumption, F ○γ ∶ ]a, b[→ N is smooth

so that

νa ○ F ○ γ = F a
i ○ µi ○ γ = F a

i ○ γi∣]a,b[

is smooth. Since t0 ∈ R was arbitrary it follows that F a
i ○ γi is smooth. Since γi ∶ R→ Oi was

an arbitrary smooth curve it follows from Boman’s theorem that F a
i ∶ Oi → Na is smooth.

Thus νa ○ F is smooth at m where since a was one of cofinally many indices it follows that
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F is smooth at m. ∎
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Chapter 7

The Tangent Space at a Point

Note that whenM is a manifold then the definition 7.0.1 is consistent with its usual definition.

Definition 7.0.1 ([20]). Define the tangent space at m ∈M to be

TmM =
def

Derm(C∞
M,m → R)

which is the space of all R-derivations from C∞
M,m into R, (def. 1.1.29) where C∞

M,m = [C∞
M]

m

denotes the stalk of smooth functions atm. We will call elements of TmM (analytic) tangent

vectors (of M at m).

Given any index i, mi ∈ Mi, and mi ∈ Ui ∈ Open (Mi), recall that since the smooth

manifold Mi admits smooth bump function, we are able define the following canonical iso-

morphism

TmiMi =
def

Dermi(C∞
Mi,mi

→ R) Ð→ Dermi(C∞
Mi

(Ui)→ R)

v z→ [fi ↦ v([fi]mi)]

By an argument that is completely analogous to the proof that the above map is an

isomorphism, one may use the following lemma 7.0.2 to prove for any m ∈ M and m ∈ U ∈
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Open (M), the canonical map

TmM =
def

Derm(C∞
M,m → R) Ð→ Derm(C∞

M(U)→ R)

v z→ [f ↦ v([f]m)]

is also an isomorphism, which we will henceforth use to identify TmM with Derm(C∞
M(U)→ R).

Lemma 7.0.2. Let f, g ∈ C∞
M(U) for some U ∈ Open (M) and fixm ∈ U . If x ∈ Derm(C∞

M,m(U)→ R)

and if f ≡ g on some neighborhood of m then x(f) = x(g).

Proof. Since both f and g are smooth at m, we may pick an index i, Vi ∈ Open (Mi), and

fi, gi ∶Vi→R such that m ∈ µ−1
i (Vi) ⊆ U , f ≡ g on µ−1

i (Vi), and f = fi ○ µi and g = gi ○ µi

on µ−1
i (Vi). Let φi ∶Mi→R be a smooth bump function such that µi(m) ∈ IntMi

(φ−1
i (0)),

φ−1
i (0) ⊆ Vi, and φi ≡ 1 on Mi ∖ Vi. Let φ =

def
φi ○ µi∣U ∶U →R. Note that f − g = φ ⋅ (f − g) on

all of U so by using the fact that x is a derivation it becomes easy to see that x(f − g) = 0,

as desired. ∎

The Tangent Map at a Point

The following definition extends to promanifolds the notion of the tangent map at a point.

Definition 7.1.1 ([20]). Let F ∶ M → N be a smooth map between promanifolds and let

m ∈M . Define the tangent map (of F ) at m to be

TmF ∶ TmM Ð→ TF (m)N

x z→ x ○ F ∗

where recall that F ∗g = g ○ F . Explicitly,

TmFx =
def
x ○ F ∗ ∶ DerF (m)(C∞

N,F (m) → R) Ð→ R

[g]F (m) z→ x(g ○ F )
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Furthermore, for any given x ∈ TmM and y ∈ TF (m)N if TmFx = y then we will say

that x and y are F -related (at m) and that x an F -lift of y where if x is an F -lift of

0 ∈ TF (m)N then we’ll call x is F -vertical (or simply vertical if F is clear from context). If

TmF ∶ TmM → TF (m)N is a (continuous) surjection then we will call m a regular point (of

F ) and a critical point (of F ) otherwise. A critical value (of F ) is the image of a critical

point and a regular value (of F ) is any point of the codomain that is not a critical value of

F . Given a vector y ∈ TF (m)N , we will say that y is tangent to F at m if y is contained in

the image of TmF . ∎

Remark 7.1.2. This assignment of (M,m)↦ TmM and F ↦ TmF behaves just as it does

with manifolds: For F ∶ M → N and G ∶ N → P smooth we clearly have that Tm(G ○ F ) =

TF (m)G ○ TmF and Tm IdM = IdTmM . If F ∶M →R is real-valued then we will as usual

identify (TmFx) =
def
x ○ F ∗ with the real number (x ○ F ∗)(IdR) = x(F ).

In addition, if F ∶M →N1 ×N2 is F = (F 1, F 2) then TmF = (TmF 1,TmF 2) where we will

use the usual identification of (x1, x2) ∈ TF 1(m)N1×TF 2(m)N2 as an element of Tm(N1×N2)

by giving it the canonical action on f ∈ C∞
N1×N2(N1 ×N2) defined by (x1, x2)f = x1(f ○ In1)+

x2(f ○ In2) where Inj ∶N j→N1 ×N2 are the usual inclusions at F (m) = (F 1(m), F 2(m))

defined by n1 ↦ (n1, F 2(m)) and n2 ↦ (F 1(m), n2). ∎

Definition 7.1.3. Say that a smooth map F ∶M → N between promanifolds is a point(wise)

submersion (resp. immersion, isomersion) at m ∈M if TmF ∶ TmM → TF (m)N is surjective

(resp. injective, an isomorphism of TVSs). If we don’t mention the point m then we mean

that this is true at every point of M .

Dimension of a Promanifold at a Point

Since TmM =
def

Derm(C∞
M,m → R) is a vector space over R dependent only on (M,C∞

M), the

following definition is independent of the any smooth projective representation that (M,C∞
M)

belongs to.
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Definition 7.2.1. For any m ∈M , the dimension of (M,C∞
M) at m ∈M will be defined as

dimmM =
def

dim TmM

If dimmM is independent of m ∈M then we will denote this common value by dimM and

call M a dimM-dimensional promanifold. If M is a d-dimensional promanifold for some

d ∈ Z≥0 then we will call M a finite-dimensional promanifold.

Let m0 ∈M . For any d ∈ {0,1, . . . ,∞}, if there exists a neighborhood m0 ∈ U ∈ Open (M)

such that dimmM = d (resp. dimmM < ∞) for all m ∈ U then we will say that M is d-

dimensional (resp. finite-dimensional) around m0 and that M has (locally) constant (resp.

finite) dimension aroundm0. We will say thatM has locally constant (resp. finite) dimension

if M has constant (resp. finite) dimension around every m ∈M . ∎

Lemma 7.2.2. For each d ∈ Z letM≤d =
def

{m ∈M ∣dimmM ≤ d},M=d =
def

{m ∈M ∣dimmM = d}

and define M≥d, M<d and M>d analogously. Then

(1) M≤d is closed in M , M≥d is open in M , and M=d is locally closed in M .

(2) M∞ =
def

{m ∈M ∣dimmM =∞} is a Gδ and Fσ-set in M .

(3) If C is a connected component of M then for all c, ĉ ∈ C, dimcM = dimĉM and

dimµi(c)Mi ≤ d.

(4) If m ∈M and {m} ∈ Open (M) then dimmM = 0.

Proof. Let m ∈ M and let mi = µi(m) for all i. It is clear that dimmM =
def

dimm TmM =

sup i ∈ Ndimmi TmiMi = sup i ∈ NdimmiMi.

(1): Suppose that m was in the closure of M≤d in M . Let i be arbitrary, mi = µi(m), and

let mi ∈ Ui ∈ Open (Mi) be an open ball in Mi of dimension di =
def

dimmiMi. Since µ−1
i (Ui) is

an open set containing m, there exists some c ∈ M≤d ∩ µ−1
i (Ui) so ci = µi(c) and mi belong

the same di-dimensional ball so that d ≥ dimciM = dimmiM . Since i was arbitrary, we have
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dimmM ≤ d so m ∈M≤d. Since M≥d =M ∖M≤d−1 it follows that M≥d is open in M and that

M=d =M≤d ∩M≥d is locally closed in M .

(3): Since C is connected so are all µi(C) so that ci = µi(c) and ĉi = µi(ĉ) belong the

same connected component of the manifold Mi and hence dimciMi = dimĉiMi for all i.

(2) follows immediately from (1) and (3).

(4): If {m} ∈ Open (M) then pick an index i and an open set Ui ∈ Open (Mi) such

that m ∈ µ−1
i (Ui) ⊆ {m}. This implies that for any j ≥ i, {µj(m)} is an open and closed

subset of the manifold Mj, which is only possible if dimµj(m)Mj = 0. Since dimmM =

sup j ∈ Ndimµj(m)Mj it follows that dimmM = 0. ∎

Corollary 7.2.3. For all d ∈ Z, M≥d is a subpromanifold of M .

Canonical Identifications of the Tangent Space at a Point

The following lemma 7.3.1 details a result from [20].

Lemma and Definition 7.3.1. Fix m ∈M and let m● = µ●(m).

(1) For any x ∈ TmM and any index i,

xi =
def

Tm µi(x) =
def
x ○ µ∗i ∶C∞

Mi
(Mi)→R

is a derivation at mi = µi(m) on C∞
Mi

(Mi) where its defining property is that xi(fi) =

x(fi ○ µi) for all fi ∈ C∞
Mi

(Mi). Furthermore, Tµj(m) µij(xj) = xi for all i ≤ j so that

x ○ µ∗● =
def

(x ○ µ∗i )i∈N defines an element lim←Ðx ○ µ
∗
● of lim←ÐTµ●(m)M●.

(2) For any x ∈ lim←ÐTµi(m)Mi, we will identify x with a derivation at m on C∞
M by giving

it the following (henceforth canonical) well-defined action on f ∈ C∞
M(M): if for some

index i, some Ui ∈ Open (Mi), and some fi ∈ C∞
Mi

(Ui) we havem ∈ µ−1
i (Ui) and f = fi○µi

on µ−1
i (Ui) then

xf =
def
xi(fi)
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where x● =
def

Tm µ●(x).

This forms an isomorphism of vector spaces

TmM Ð→ lim←ÐTµ●(m)M●

x z→ lim←Ð(x ○ µ∗●)

that we will henceforth use to identify the two space.

Proof. (2): Suppose that x ∈ lim←ÐTm●
M● and let x● =

def
Tm µ●(x). Let f , i, Ui, and fi be

as above and suppose in addition that j ≥ i, Uj, and fj also satisfy analogous conditions.

Since j ≤ i we may replace Uj with Uj ∩ µ−1
ij (Ui) so that mj ∈ Uj ⊆ µ−1

ij (Ui) and U =
def

µ−1
i (Ui) ∩ µ−1

j (Uj) = µ−1
j (Uj) with m ∈ U . Note that fj ○ µj = f ∣U = fi ○ µi∣U = (fi ○ µij) ○ µj

on U so that fj ∣Uj = fi ○ µij ∣Uj . Since xi = Tmj µij(xj) we have

xifi = (Tmj µij(xj))fi = (xj ○ µ∗ij)(fi) = xj(fi ○ µij) = xj(fj)

so that x(f) = xi(fi) is well-defined. If g ∈ C∞
M(M) is any other function then by increasing

i and shrinking Ui we can write g∣U = gi ○ µi∣U for some gi ∈ C∞
Mi

(Ui) so that x(f ⋅ g) =

f(m)x(f) + g(m)x(g) is immediate.

(1): If v ∈ TmM then it is easy to that each vi =
def

v ○ µ∗i is a derivation at mi on

C∞
Mi

(Mi). Since the usual tangent map between manifolds Tmj µij ∶TmjMj→TmiMi is de-

fined by Tmj µij(vi) = vi ○µ∗ij we see that Tmj µij(vj) = vi so that lim←Ð v
● is in fact an element

of lim←ÐTµi(m)Mi. If f , i, Ui, and fi are as above then

(lim←Ð v
●)(f) = vi(fi) = (v ○ µ∗i )(fi) = v(fi ○ µi) = v(f)

Furthermore, since the operations on the vector space lim←ÐTµi(m)Mi are defined component-

wise, the assignment v ↦ lim←Ð(v ○ µ∗●) is clearly a vector space homomorphism.

Now suppose that x ∈ lim←ÐTm●
M● and x● =

def
Tm µ●(x) are before and let v denote the
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derivation at m on C∞
M(M) induced by x as described above. Then for each index i and all

fi ∈ C∞
Mi

(Mi) we have

(v ○ µ∗i )(fi) = v(fi ○ µi) = xi(fi)

so that xi = v ○ µ∗i . We’ve thus shown that the map v ↦ lim←Ð(v ○ µ∗●) is a vector space-

isomorphism. ∎

Assumption 7.3.2. The vector space isomorphism from 7.3.1 allows us to place on TmM

the TVS topology of lim←ÐTµ●(m)Mi, which will make TmM into a nuclear Fréchet space that

is TVS-isomorphic to Rd where d = sup dim Tµi(m)Mi.

Remark 7.3.3. The vector space TmM =
def

Derm(C∞
M,m → R) is dependent only on the ringed

space (M,C∞
M) and as the following proposition shows, even the limit topology of TmM is

completely determined by the ringed space (M,C∞
M) (indeed, it shows that it is determined

entirely by the sheaf’s space of global sections). In particular, if d = dim TmM then TmM is

necessarily TVS-isomorphic to Rd where if d =∞ then it will necessarily be TVS-isomorphic

to RN while if d <∞ then it has the unique finite-dimensional Hausdorff TVS-topology

Proposition 7.3.4. Fix m ∈ M and let τw be the weakest topology on TmM making all

Tm f ∶TmM →Tf(m)R ≅ R continuous, where f ∈ C∞
M(M). Then τw is the limit topology

on TmM induced by (TmM,Tm µ●) = lim←Ð SysTmM , where m● =
def

µ●(m) and SysTmM =
def

(Tm●
M●,Tmj µij,N).

Proof. Let τ be the limit topology on TmM induced by (TmM,Tm µ●) = lim←Ð SysTmM . If

f ∈ C∞
M then pick i, µi(m) ∈ Ui ∈ Open (Mi), and fi ∈ C∞

Mi
(Ui) such that f = fi○µi on µ−1

i (Ui).

The tangent map Tm f = Tmi fi ○ Tm µi is also continuous since Tm µi ∶TmM →TmiMi is

τ -continuous and Tmi fi ∶TmiMi→R is always continuous. Since f ∈ C∞
M was arbitrary

we’ve shown that τw ⊆ τ . Now let i ∈ N, d = dimmiMi identify TmiMi with Rd. Let

Wi ∈ Open (TmiMi) so that W =
def

(Tm µi)−1 (Wi) is a τ -basic open set in TmM and sup-

pose w ∈ W . Clearly, we may find f 1
i , . . . , f

d
i ∈ C∞

Mi
(Mi) such that wi =

def
Tm µi(w) ∈
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d∩
l=1

(Tmi f
l
i)
−1(R>0) ⊆Wi. For all l, f l =

def
f li ○ µi ∶M →R is smooth so that d∩

l=1
(Tm f l)−1(R>0) =

d∩
l=1

(Tm µi)−1((Tmi f
l
i)
−1(R>0)) is a τw-open subset of TmM contained in W , which shows

that τ ⊆ τw. ∎

Properties of the Tangent Map at a Point

Proposition 7.4.1. Let F ∶ (M,m) → (N,n) be a smooth map between promanifolds, let

F ● = ν● ○ F , and let m● = µ●(m). Then

(1) TmF ∶TmM →TnN is a TVS-homomorphism (def. B.1.1) with a closed image in TnN

that splits in TnN (def. B.1.5).

(2) If ι ∶ N → N is an order morphism such that µι(a)(m) ∈ ODomι(a)F a for all a ∈

N then the ι-indexed collection of maps Tmι(a) F
a
ι(a) ∶Tmι(a)Mι(a)→Tνa(n)Na form an

inverse system morphism from SysTmM to SysTnN whose limit is the tangent map

TmF ∶TmM →TnN .

Proof. Let n● =
def
ν●(n). To show that the linear map TmF ∶ TmM → TnN is continuous we

must show, by the universal property of limits, that TF (m) νi TmF = Tm(νi ○ F ) ∶ TmM →

Tνi(F (m))Ni is continuous for all indices i. It thus suffices to prove continuity for the case

where N is a manifold. Since F ∶ M → N is smooth and N is finite-dimensional, we have

F = Fi ○µi on µ−1
i (Ui) where m ∈ µ−1

i (Ui). Note that Tmi Fi is continuous since it is a linear

map between finite-dimensional vector spaces and that Tm µi is continuous by definition of

the topology on TmM so that TmF = Tmi Fi ○Tm µi is continuous.

If a ≤ b are such that µι(a)(m) ∈ ODomι(a)F a and µι(b)(m) ∈ ODomι(b)F b then

νab ○ F b
ι(b) = F a

ι(a) ○ µι(a),ι(b) on ODomι(b)F
b ∩ µ−1

ι(a),ι(b)(ODomι(a)F
a)

so that by the functoriality of the tangent map it is immediate that the tangent maps

Λa =
def

Tmι(a) F
a
ι(a) form an inverse system morphism. By assumption m ∈ M is such that
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µι(a)(m) belongs to ODomι(a)F a for infinitely many a ∈ N and for any such index a we have by

definition of F a
ι(a) that νa○F = F a

ι(a)○µι(a) on µ−1
ι(a)(ODomι(a)F a) so that by the functoriality of

the tangent map we see that TmF satisfies the characteristic property of the limit map. Pick

w in the closed setW =
def

∩
a∈N

(Tn νa)−1 (Im Tmι(a) F
a
ι(a)), which contains Im TmF . For all a ∈ N

let V a = (Tmι(a) F
a
ι(a))

−1
(w) and recall that (TmF )−1 (w) = lim←Ð (V ●,Tmι(b) µι(b),ι(b),N), which

is not empty. Thus w ∈ Im TmF , which shows that Im TmF = W is closed in the Fréchet

space TnN so that by corollary 3.2.4, it splits in TnN . That TmF is a TVS-homomorphism

now follows from the open-mapping theorem. ∎

Remark 7.4.2. Example 2.3.11 shows RN contains a non-closed dense vector subspace S

such that Pr ≤i(S) = Ri for each i ∈ N so the fact that Im TmF is closed in TnN could have

failed to be true had TmF not arisen as the limit of an inverse system morphism.

Corollary 7.4.3. If x ∈ TmM and w ∈ TF (m)N then TmFx = w if and only if for all

a ∈ N there exists an index i such that µi(m) ∈ ODomiF a and Tµi(m)F
a
i x

i = wa, where

x● =
def

Tm µ●(x) and w● =
def

TF (m) ν●(w). Furthermore, this remains true if we replace “there

exists an index i” with “whenever i is an index”.

Proposition 7.4.4. Let F ∶ (M,m)→ (N,n) be smooth, w ∈ TnN , and w● =
def

Tn ν●w. Then

w ∈ Im(TmF ) if and only if wa ∈ Im Tm(νa ○ F ) for all indices a

Proof. If w ∈ Im(TmF ) then wi = Tn νiw ∈ Tn νi(Im(TnF )) = Im Tm(νi ○ F ). Note that the

image of TmF ∶TmM →TnN splits in TnN by proposition 7.4.1 and that wa ∈ Im Ta(νa ○ F )

for all indices a. Let Ra = (Tn νa)−1(wa) so that a ≤ b implies Rb ⊆ Ra and ∩
a∈N

Ra = {w}. Let

Ci = (Im TmF ) ∩ Ri. The assumption that wi ∈ Im Tm(νi ○ F ) means exactly that Ci ≠ ∅

for each index i. Since TmF ∶TmM →TnN is a continuous linear map whose image splits,

Im(TmF ) is a closed subspace of TnN and since both TmM and TnN are both F-spaces we

have by the open mapping theorem that TmF ∶TmM → Im(TmF ) is a TVS-isomorphism.

Thus each Ci is a closed subset of TnN . Since Ci ⊆ Ri we have that ∩
i
Ci ⊆ ∩

i
Ri = {w} so

that ∩
i
Ci is either the empty set or {w}. Since Ci is a decreasing sequence of closed subsets
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whose diameters (in any complete metric on TnN) goes to 0 we have that ∩
i
Ci ≠ ∅ so that

∩
i
Ci = {w}. In particular, w ∈ Im TmF and since TmF ∶TmM →TnN is a TVS-isomorphism

we can identify TmM as a TVS subspace of TnN . ∎

Identifying Tangent Spaces via Smooth Maps

Kinematic Tangent Vectors

Definition 7.5.1. Given any smooth curve γ ∶ J → M , where J ⊆ R is a non-degenerate

interval, and any t00 ∈ J ,define the derivative of γ at t0 to be the derivation

γ′(t0) =
def

Tt0 γ(
d

dt
∣
t=t0

)

Definition 7.5.2. Let m ∈M and v ∈ TmM . Call v a kinematic tangent vectors (at m) and

say that v arises as the derivative of a curve if there exists a smooth curve γ ∶ (I,0)→ (M,m)

such that γ′(0) = v.

Lemma 7.5.3. If F ∶ (P, p) → (M,m) is a smooth map where P is a manifold, then every

element of Im(TpF ) is a kinematic tangent vector.

Proof. Let v ∈ Im(TpF ) and pick w ∈ TpP be such that TpFw = v. Let η ∶ (I,0)→ (P, p) be a

smooth curve from an open interval I such that η′(0) = w. Since (F ○ η)′ (0) = TpF (η′(0)) =

TpFw = v, v is a kinematic tangent vector. ∎

Lemma 7.5.4. Let m ∈M and consider M● as being the pointed spaces (Mi, µi(m)) with

all of SysM ’s connecting maps being pointed. If each connecting map is a pointed 1-fibration

then every tangent vector at m is a kinematic tangent vector.

Proof. Let v ∈ TmM be arbitrary and let v● = Tm µ●v. If v = 0 then we’re done so let i0 be any

index such that vi0 ≠ 0 and let γi0 ∶ ([−1,1],0) → (Mi0 ,mi0) be any smooth embedding such

that γ′i0(0) = vi0 . Suppose we’ve constructed smooth embeddings γi ∶ ([−1,1],0) → (Mi,mi)
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for i = i0, . . . , k such that γ′i(0) = vi and µij ○ γj = γi for all i0 ≤ i ≤ j ≤ k. Since µk,k+1 is

a pointed 1-fibration there exists a smooth map ηk+1 ∶ ([−1,1],0) → (Mk+1,mk+1) that is

µk,k+1-lift of γk so that ηk+1 is necessarily a smooth embedding. By applying theorem C.4.2

we obtain a smooth map γk+1 ∶ ([−1,1],0) → (Mk+1,mk+1) that is also a µk,k+1-lift of γk but

with γ′k+1(0) = vk+1. Letting γ = lim←Ðγi gives us a smooth map that satisfies γ′(0) = v. ∎

Identifying Linear Independence

Lemma 7.6.1. Let m ∈ M be such that dim TmM ≠ 0, let x1, . . . , xn ∈ TmM , and let

x●l = Tm µ● (xl) for all l = 1, . . . , n. Then x1, . . . xn are linearly independent ⇐⇒ there exists

some index i such that xi1, . . . , xin ∈ TmiMi are linearly independent, in which case

(1) xj1, . . . , x
j
n are linearly independent for all j ≥ i, and

(2) for any h ≤ i the vectors xh1 , . . . , xhn are linearly independent ⇐⇒ ker Tmi µhj ∩

span{xi1, . . . , xin} = 0.

Proof. If x1, . . . xn are linearly dependent then there are constants c1, . . . , cn such that c1x1 +

⋯+cnxn = 0 then since each Tm µi ∶TmM →TmiMi is linear it follows that c1xi1+⋯+cnxin = 0

for all indices i. Now assume that x1, . . . xn are linearly independent.

Remark 7.6.2. If for each index i the vectors xi1, . . . , xin ∈ TmiMi failed to be linearly

independent then we could obtain constants c1
i , . . . , c

n
i (dependent on i) such that c1

ix
i
1 +⋯+

cni x
i
n = 0. However, to conclude that x1, . . . xn are linearly dependent we need remove the

dependency of these constants on i and this is the reason why the proof of this converse is

more complicated than one may have initially suspected.

Observe that if i is such that xi1, . . . , xin are linearly independent and j ≥ i then since

Tmj µij ∶TmjMj→TmiMi is linear it follows that xj1, . . . , x
j
n are also linearly independent.

For all l ∈ N, let Kl = {(c1, . . . , cn) ∈ Rn ∣ c1xl1 + ⋯ + cnxln = 0} and note that Kl is a vector

space and that if j ≤ l then Kl ⊆Kj. Let K = ∩
l∈N
Kl so that K is a finite-dimensional vector

190



subspace of Rn. Observe that dimK = inf
l∈N

dimKl so that K = {0} if and only if there exists

some l ∈ N for which Kl = {0}. If K ≠ {0} then pick any non-zero c = (c1, . . . , cn) ∈K. Then

since c ∈Kl for all l ∈ N we have that c1xl1+⋯+cnxln = 0 for all l ∈ N so that c1x1+⋯+cnxn = 0,

a contradiction. Thus K = {0} so that there is some i ∈ N such that Ki = {0}, which means

exactly that xi1, . . . , xin are linearly independent. Let Sl = span{xi1, . . . , xin} for all l ∈ N and fix

h ≤ i. Let Ni = ker Tmi µhj. To prove (2), first suppose that xh1 , . . . , xhn are linearly dependent

so that there exists a non-zero c ∈ Kh. Let vi = c1xi1 +⋯ + cnxin and note that vi is non-zero

and Tmi µhivi = c1xh1 +⋯+cnxhn = 0 so that vi ∈ Si∩Ni. Conversely, if vi ∈ Si∩Ni is a non-zero

vector then we can write vi = c1xi1 + ⋯ + cnxin where not all c1, . . . , cn are 0. Then by the

linearity of Tmi µhi, we have 0 = Tmi µhivi = c1xh1 + ⋯ + cnxhn so that xh1 , . . . , xhn are linearly

dependent. ∎

As shown by the following corollary, lemma 7.6.1 implies that if V = span{x1, . . . , xn}

with x1, . . . , xn linearly independent then the index i from the above lemma is actually

independent of the vectors x1, . . . , xn and depends only on the vector space V and µ●.

Corollary and Definition 7.6.3. Let V be a finite-dimensional vector subspace of TmM

and let m● = µ● (m). There exists a (unique) smallest index i such that dim(Tm µi(V )) =

dimV or equivalently, such that Tµi is injective on V . Furthermore, for any v1, . . . , vn ∈ V ,

the vectors v1, . . . , vn are linearly independent (resp. form a basis for V ) if and only if

vi1, . . . , v
i
n are linearly independent (resp. form a basis for Tmi µi(V )).

Definition 7.6.4. Call this unique smallest index i the µ●-index of V or the index of V

(in SysM) and denote it by Ind SysM
(V ), Indµ●(V ), or simply Ind(V ) if SysM or µ● is

understood. If W ≤ TmM is an infinite-dimensional vector space then let IndW =∞.

Corollary 7.6.5. For any vector subspace V of TmM , Ind(V ) = i ∈ N ⇐⇒ dimV <∞, in

which case Tm µi∣V ∶ V → Tµi(m)Mi is injective and for all 1 ≤ h < i, Tm µh∣V ∶ V → Tµh(m)Mh

is not injective.
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Corollary 7.6.6. Let F ∶ (M,m)→ (N,n) be a smooth map that is a pointwise immersion

at m and let i ∈ N. Then there exists some vector subspace V of TmM and some index a ∈ N

such that both Tm µi∣V ∶ V → Tµi(m)Mi and Tm(νa ○ F )∣
V
∶ V → Tνa(F (m))Na are injective.
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Chapter 8

The Tangent Bundle

The following definitions of tangent bundle and tangent map are from [20].

Definition 8.0.1. By the (total space of the) tangent bundle of M we mean the set

TM =
def

⊔
m∈M

TmM

and we will call the map

TM ∶ TM Ð→ M

x ∈ TmM z→ m

the canonical projection (of TM onto M).

Remark 8.0.2. We use the terminology “tangent bundle” since TM is defined analogously

to the tangent bundle of a manifold but it is emphasized that there are promanifolds M

where (TM,TM ,M) is not even a fiber bundle (def. 9.0.1).

Definition 8.0.3. Define the tangent map of (or induced by) F , denoted by TF or possibly

by F∗, to be the map

TF ∶ TM Ð→ TN

x z→ TmFx where m = TM x
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where recall that TmFx was defined in definition 7.1.1. If n ∈ N is the image of some critical

point of F then n will be called a critical value (of F ) and we will call it a regular value (of

F ) otherwise.

The following proposition details a result from [20].

Proposition 8.0.4. The limit in Top of the profinite system (TM●,Tµij) is

(TM,Tµ●) = lim←Ð(TM●,Tµij)

where TM has the weak topology induced by the Tµ●. Furthermore, the canonical pro-

jections TM●
∶ TM● → M● form an inverse system morphism whose limit morphism is the

canonical projection defined above

TMi TMj

Mi Mj

TM

M

Tµij

TMi
TMj

µij

Tµj

TM

µj

and the assignment (M,µi) ↦ (TM,Tµ●) and F ↦ TF is a covariant functor from the

category of promanifolds into itself. If (Ni, νij) is another system then the canonical iso-

morphisms T(Mi ×Ni) ≅ TMi × TNi form an inverse system morphism whose limit is the

diffeomorphism

TM ×TN Ð→ T(M ×N)

(v,w) z→ lim←Ð(vi +wi)
i∈N where v● =

def
Tµ●v and w● =

def
Tν●w

and where we used the canonical identification from lemma 7.3.1. We will use this dif-

feomorphism to canonically identify these promanifolds and also abuse notation by writing

TM ×TN = TM×N .
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Proof. In the category of manifolds, the assignment of the tangent map to a map is a

covariant functor so that (TM●,Tµij) forms an inverse system, which is surjective since all

µij are smooth submersions. It suffices to show that (TM,Tµ●) = lim←Ð(TM●,Tµij) in the

category of sets so let Z be a set and let h● ∶ Z → TM● be a family of compatible maps. By

lemma 2.1.27, we may assume without loss of generality that Z = {z} is a singleton set. Now

the points mz
i =

def
TMi

hi(z) form an element mz =
def

lim←Ðm
z
● in M so that the hi(z) ∈ Tmzi

Mi

form h(z) =
def

lim←Ðh●(z) ∈ TmzM , where mz
● =

def
(mz

i )i∈N and h●(z) =
def

(hi(z))i∈N. That the map

h ∶Z→TM is the unique map satisfying the compatibility condition now follows from lemma

7.3.1.

Observe that the projective limit topology on TmM = lim←Ð(TM●,Tµij) is the same as the

subspace topology that TmM inherits from TM since the same is true of each TmiMi with

respect to TMi. That the diagram commutes and that the limit morphism of lim←ÐTM●
is just

the map TM from definition 8.0.1 is now apparent. If F ∶ M → N is smooth then for any

index a ∈ N we may pick some index i ∈ N such that µi(m) ∈ Oi =
def

ODomi(νa ○ F ) so that

νa ○F = F a
i ○νa on µ−1

i (Oi). Applying the tangent map gives T(νa ○ F ) = (TF a
i )○Tνa on the

open (in M) set (Tµi)−1(T−1
Mi

(Oi)) so that the continuity and smoothness of TF a
i implies

the continuity and smoothness of T(νa ○F ). Since the index a was arbitrary, it follows that

TF is continuous and smooth. It is easily verified that T forms a covariant functor.

Recall that lim←Ð (Mi ×Ni, µij × νij,N) ≅ (lim←Ð SysM)×(lim←Ð SysN) and that for each index i

the map θi ∶ TMi×TNi → T(Mi ×Ni) defined on each TmiMi×TniNi by (v,w)↦ Tmi In1 v+

Tni In2w, where In1 and In2 are the usual inclusions, is a diffeomorphism. It is straightfor-

ward to check that these θ● from an inverse system morphism from (TMi ×TNi,Tµij × νij,N)

to (T(Mi ×Ni),T(µij × νij),N) so that under the θ●’s identifications, we see that lim←Ð θ● ∶

TM ×TN ≅ T (M ×N) is the diffeomorphism described above. ∎

Corollary 8.0.5. Suppose that for all i ∈ N, Xi ∶Mi → TXi is a (possibly non-continuous)

right inverse of the canonical projection TMi
∶ TMi →Mi and that these X● form an inverse

system morphism. Then the limit morphism (in Set) X =
def

lim←ÐXi ∶ M → TM is a right
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inverse of TM ∶ TM →M . If cofinally many X●’s are continuous or smooth then so is X.

Proof. For all i, we have TMi
○Xi = IdMi

so that taking the limit of both sides gives us

TM ○X = IdM . ∎

Lemma 8.0.6. Let i be any index, Wi ⊆ TMi, W =
def

(Tµi)−1 (Wi) ⊆ TM , and TMi
∶ TMi →

Mi denote the canonical projection. Then TM (W ) = µ−1
i (TMi

(Wi)) so that in particular,

TM ∶ TM →M is an open map.

Proof. If x ∈ W = (Tµi)−1 (Wi) then let m = TM x, m● =
def
µ●(m), and x● = Tm µ●x. Then

xi ∈ Wi ∩ TmiMi and TMi
(xi) = mi so that µi(TM x) = mi = TMi

(xi) ∈ TMi
(Wi) and hence

TM(W ) ⊆ µ−1
i (TMi

(Wi)). Now let m ∈ µ−1
i (TMi

(Wi)) so that there exists some xi ∈Wi such

thatmi = TMi
(xi) and letm● =

def
µ●(m). Proceeding by induction on j ≥ i, since each connect-

ing map is a submersion we may pick some xj+1 ∈ Tmj+1 Mj+1 such that Tmj+1 µj,j+1xj+1 = xj.

By lemma 7.3.1, (xj)∞j=i forms an element x ∈ TmM such that Tm µjx = xj for all j ≥ i, which

in particular implies that Tµi(x) = xi ∈Wi. Since x ∈ (Tµi)−1 (Wi) =W and m = TM x, we

have m ∈ TM(W ) and thus TM(W ) = µ−1
i (TMi

(Wi)). Since a basic open subset of TM is

of the form W = (Tµi)−1 (Wi) where Wi ∈ Open (TMi) so that TMi
(W ) being open in Mi

implies that TM(W ) = µ−1
i (TMi

(Wi)) is open in TM . ∎

Lemma 8.0.7. Let F ∶M → N be a smooth map such that TmF = 0 for all m ∈M . Then

F is constant on each connected component of M and if N is a manifold then F is locally

constant.

Proof. Assume first that N is a manifold. For each index i let Oi = ODomiF so that

F = Fi ○ µi on Oi =
def
µ−1
i (Oi). Then for all mi ∈ Oi pick any m ∈ Oi with mi = µi(m) so

that we have 0 = TmF = Tmi Fi ○Tm µi where the surjectivity of Tm µi ∶TmM →TmiMi now

implies that Tmi Fi = 0. It follows that Fi ∶Oi→N is constant on the connected components

of Oi so that if Vi is a connected component of Ui, which is itself an open subset of Mi, it

follows that F = Fi ○ µi is constant on the open set µ−1
i (Vi), from which it follows that each
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fiber of F is open in M . Since Oi has at most countably many connected components it

follows that ImFi consists of countably many points. Every m ∈ M is contained in some

Oi and since there are only countably many Oi it follows that ImF = ∪
i∈N

ImFi consists of

countably many points. Now if C is a connected component of M then F (C) is a countable

connected metric space, which is only possible if F (C) is singleton.

Now assume that N is an arbitrary promanifold and let C be a connected component of

M . For all indices a we have that Tm(νa ○F ) = TF (m) νa ○TmF = 0 for all m ∈M where since

µa ○ F ∶M →Na is a smooth map into a manifold it follows from the above case that νa ○ F

is constant on C. Since F (C) ⊆ ∩
a∈N

ν−1
a (νa(F (C))) where the right hand side is a singleton

set it follows that F (C) is a single point. ∎

Corollary 8.0.8. If F ∶M → N is a smooth map into a promanifold N where M is either

a connected promanifold or a connected manifold with boundary, then F is constant on

M ⇐⇒ its tangent map vanishes at every point of M .

The next example shows that if N is not a manifold then the map F from lemma 8.0.7

may fail to be locally constant.

Example 8.0.9. Smooth map with vanishing tangent map that is not everywhere locally

constant: Using R for every Mi and IdR in place of µij in example 2.1.44, let SysN and N

denote the be the new system that was constructed in that example (where Na = ⊔
h≤a

( 1
h ×Mh)

for all a ∈ N). Let SysP = (Pi =
def

{1, . . . , 1
a
} , πij,N) be the system constructed in example

2.1.45. For all i ∈ N, let Fi ∶ Ni → Pi be defined to be the map that sends each 1
h ×Mh (where

h ≤ i) to 1
h . Then the limit morphism of F● ∶ N → {0,1, . . . , 1

a
} is smooth with a tangent map

that vanishes everywhere but F −1(0) is not open in N .

Remark 8.0.10. One may generalize this construction by replacing Pi and Na with Pa =
def

{0,1}i and Na =
def

⊔
p∈Pa

(p ×Mh), respectively, with the obvious bonding maps to get a smooth

map between finite-dimensional promanifolds that is nowhere locally constant despite its

tangent map vanishing everywhere.
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Vector Fields

Definition 8.1.1. Let M and N be promanifolds, U ∈ Open (M), F ∶ N →M , and σ ∶ U →

N . Then we will call σ a rough section (of F ) (on U) if it is a right inverse for F in the

category of sets (i.e. F ○ σ = IdU). If n ∈ N and σ ∶ U → N is a rough local section such that

n ∈ Im(σ) then we will say that σ is a rough local section through n and that F has a rough

local section through n.

In the above definitions, if we write “global ” in place of “local” then we mean that U =M

and if we write “continuous” (resp. “smooth”) in place of “rough” then we mean that σ is

continuous (resp. smooth). If we omit mention of whether a local (resp. global) section of

F is rough/continuous/smooth then it should be assumed to be a continuous local (resp.

global) section of F . In the case that F = TM ∶ TM → M is the canonical projection then

we will may replace the word “section” with vector field. ∎

Notation 8.1.2. Let k ∈ Z≥0, and F ∶M → N be a Ck-map. The set of all Ck-section of F

over an open set V ∈ Open (N) will be denoted by Γk(F ;V ) and this sheaf will be denoted

by Γk(F ; ●) while the space of global sections will be denoted by Γk(F ) =
def

Γk(F ;M). The

set of all Ck-sections of F will be denoted by

Γkloc(F ) =
def

∪
V ∈Open(N)

Γk(F ;V )

If n ∈ N then the set of all Ck-local sections σ of F such that Domσ is a neighborhood of

n in N will be denoted by Γk(F ;n) while its stalk at n will be denoted either by Γkn(F ) or

[Γk(F ;n)]n. In the case where F = TM ∶TM →M is the canonical projection then we will

also use the notation X (U) =
def

ΓU(TM), Xloc(M) =
def

Γloc(TM), and Xm(M) =
def

Γm(TM).

Definition 8.1.3. If M is a promanifold, J is an open interval, and γ ∶ J →M is a smooth

curve then a rough vector field along γ is a map X ∶J→TM such that X(t) ∈ Tγ(t)M for all

t ∈ J . A vector field along γ is a vector field along γ that is smooth. The space of all smooth
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vector fields along γ will be denoted by X (γ).

Let U ∈ Open (M), X ∶ U → TM be a rough vector field, and X● = Tµ● ○X. Recall that

for allm ∈ U , the vectorXm acts on all smooth f ∶ V → R for whichm ∈ V byXm(f) =X i
m(fi)

where i, Ui ∈ Open (Mi), and fi ∈ C∞
Mi

(Ui) are any triple for which f ∣µ−1i (Ui) = fi ○ µi∣µ−1i (Ui)

and m ∈ µ−1
i (Ui). So even through X is not necessarily even continuous, for a given smooth

f ∶ V → R we can define the following function (whose definition is taken from [20, pp. 21-23]):

Definition 8.1.4. Let U,V ∈ Open (M), X ∶ U → TM be a rough vector field, and f ∶ V → R

be smooth. Then define Xf by

Xf ∶U ∩ V Ð→ R

m z→ Xmf

or equivalently, if [f]m represents the equivalence class of f in the stalk C∞
M,m then

(Xf)m =
def
Xm ([f]m)

The following lemma is a generalization of [20, pp. 19-23], where note that it does not

initially require that any X● be locally cylindrical.

Lemma 8.1.5. Let U ∈ Open (M), X ∶ U → TM be a rough vector field, and X● = Tµ● ○X.

If i ≤ j, Vi ∈ Open (Mi), and fi ∈ C∞
Mi

(Vi) then

Xm (fi ○ µi∣µ−1i (Vi)
) =X i

m (fi) =Xj
m (fi ○ µij ∣µ−1ij (Vi))

for all m ∈ µ−1
i (Vi) ∩U (where note that we do not require X to be in any way related to i,

j, Vi, or fi).

Furthermore, the following are equivalent:
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(1) X is smooth.

(2) Tµi ○X ∶U →TMi is smooth for all i.

(3) For every f ∈ C∞
M(U) the map Xf ∶U →R is smooth.

(4) For every V ∈ Open (M) and f ∈ C∞
M(V ) the map Xf ∶U ∩ V →R is smooth.

Proof. That (1) ⇐⇒ (2) is the universal property of limits while (4) Ô⇒ (3) is immediate.

The claim that Xm (fi ○ µi∣µ−1i (Vi)
) = X i

m (fi) = Xj
m (fi ○ µij ∣µ−1ij (Vi)) for all m ∈ µ−1

i (Vi) ∩ U

follows from lemma 7.3.1(2) and by going into coordinates.

(3) Ô⇒ (4): Let V ∈ Open (M), f ∈ C∞
M(V ), andm ∈ V ∩U . Pick i ∈ N,Wi ∈ Open (Mi),

and fi ∈ C∞
Mi

(Wi) such that f = fi ○µi on µ−1
i (Wi) with m ∈ µ−1

i (Wi) ⊆ V ∩U . Let φ ∶Mi→R

be a smooth bump function that equals 1 on some open neighborhood Bi of mi =
def
µi(m)

with support contained in Wi. The product φi ⋅fi is then defined and smooth on all of Mi so

that (φi ⋅fi) ○µi∣U ∈ C∞
M(U) so that (3) implies that the function X((φi ⋅fi) ○µi∣U) is smooth

on U . By lemma 7.0.2, for every m ∈ µ−1
i (Bi) we have

Xm((φi ⋅ fi) ○ µi∣U) =Xm((φi ⋅ fi) ○ µi∣µ−1i (Bi)
) =Xm(fi ○ µi∣µ−1i (Bi)

) =Xmf

so that the restriction to µ−1
i (Bi) of the smooth map X((φi ⋅ fi) ○ µi∣U) ∶ U → R is just

(Xf)∣µ−1i (Bi). We’ve thus shown that Xf is smooth in a neighborhood around each point in

its domain.

(1) Ô⇒ (4): Fix V ∈ Open (M), f ∈ C∞
M(V ), and m0 ∈ U ∩V . Pick i and Ui ∈ Open (Mi)

so thatm0 ∈ µ−1
i (Ui) ∈ Open (U ∩ V ) and f = fi○µi on µ−1

i (Ui). SinceX i =
def

Tµi ○X ∶U →TMi,

there exist j > i, Uj ∈ Open (Mj), and X i
j ∈ C∞

Mj
(Uj→TMj) such that X i =X i

j○µj on µ−1
j (Uj)

with m0 ∈ µ−1
j (Uj) ⊆ µ−1

i (Ui), where note that this implies that Uj ⊆ µ−1
ij (Ui). By replacing

Ui with µij(Uj) and then restricting both X i
j and fi we may assume that Uj = µ−1

ij (Ui). Now,

since X i
j is a smooth vector field along the manifold Uj and fi ∶Ui→R is a smooth map on
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Ui = µij(Uj) we know that the function

X i
jfi ∶Uj Ð→ R

mj z→ (X i
j)mj(fi)

is smooth (which can be seen by going into coordinates). By lemma 7.3.1(2) we have that

for all m ∈ µ−1
j (Uj), X ∣

m
f =X i

mfi so that (X i
jfi)(µi(m)) = (Xf)(m), which shows that Xf

equals the smooth function (X i
jfi) ○ µj on the neighborhood µ−1

j (Uj) of m0, as desired.

(4) Ô⇒ (2): Fix an index i and an element m ∈ U . Note that for any j ≥ i we have

X i = Tµi ○ X = Tµij ○ Tµj ○ X = Tµij ○ Xj so that since Tµij is smooth if suffices to

prove that Xj is smooth. Thus by increasing i as necessary we may assume there is some

Ui ∈ Open (Mi) such that m ∈ µ−1
i (Ui) ⊆ U . Let d = dimMi, let (Wi, ψ) be a chart in Mi

centered at mi =
def
µi(m) and let ψ = (ψ1

i , . . . , ψ
d
i ) = (y1, . . . , yd) where ψl ∶Wi→R for all l.

By replacing both Ui and Wi with Ui ∩Wi we may assume without loss of generality that

Wi = Ui. And since smoothness is a local property, it suffices to prove smoothness under the

assumption that U = µ−1
i (Ui). For each l = 1, . . . , d, let µli =

def
yl ○ µi∣U be the lth-coordinates

of µi∣U so that µi∣U = (µ1
i , . . . , µ

d
i ). Recall that Tµli ○X = X(µli) so that under the canonical

identification,

X i =Tµi ○X

=T(µ1
i , . . . , µ

d
i ) ○X

=(Tµ1
i , . . . ,Tµ

d
i ) ○X

=(Tµ1
i ○X, . . . ,Tµdi ○X)

=(X(µ1
i ), . . . ,X(µdi ))

expresses, at each point m ∈ U , the vector X i
m in terms of its components. However, since

each µli ∶U →R is a smooth real-valued function our assumption gives us that each X(µli) is
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smooth so that X i is smooth. ∎

The following result is due to [20, pp. 21-23].

Corollary 8.1.6. For any open subset U ∈ Open (M), there is a bijective correspondence

between X (U) and Der(C∞
M(U)→ C∞

M(U)) given by

(Xm)f = (Xf)(m)

Explicitly, a smooth vector field X on U defines the derivation f ↦ Xf and a deriva-

tion D ∶C∞
M(U)→C∞

M(U) defines on U the smooth vector field that sends m ∈ U to Xm =

[f ↦ (D(f))(m)].

Proof. Given a smooth vector field X on U , let DX =D ∶C∞
M(U)→C∞

M(U) be D(f) = Xf .

Observe that D(fg) = fDg + gDf for any m ∈ U since

(D(fg))(m) =Xm(fg) = f(m)Xmg + g(m)Xmf = (fDg + gDf)(m)

so that D is a derivation. If given a derivation D ∶C∞
M(U)→C∞

M(U) then define a rough

vector field XD =X ∶C∞
M(U)→R pointwise on U by Xmf = (D(f))(m), where it is easy see

that Xm is a derivation atm. For all f ∈ C∞
M(U) we have by definition of Xf that Xf =D(f)

so that in particular Xf is smooth which implies that X is a smooth vector field on U . It is

clear that these constructions are inverses of each other. ∎

Definition 8.1.7 ([20]). For any U ∈ Open (M) and any vector fields X and Y on U define

the Lie bracket of X and Y to be the vector field on U corresponding to the derivation

[X,Y ] ∶C∞
M(U) Ð→ C∞

M(U)

f z→ V (Wf) −W (V f)
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Remark 8.1.8. The Lie bracket [ ⋅, ⋅ ] ∶X (U) ×X (U)→X (U) turns X (U) into a Lie

algebra.

Definition 8.1.9. Suppose F ∶M → N is a smooth map, Y is a rough vector field defined

on some V ⊆ N , and U ⊆ M is such that F (U) ⊆ V . Then we will say that Y is pointwise

tangent to F on U if for all m ∈ U , VF (m) is tangent to F at m (i.e. VF (m) ∈ Im TmF ) where

if U is omitted then it should be assumed that U = F −1 (V ). If Y is pointwise tangent to

F on U and if in addition for each m ∈ U , TmF ∶ TmM → TF (m)N is injective then we can

define a rough vector field on U called the pullback of Y onto U (by F ) or the F -pullback of

Y onto U by

Xm =
def

(TmF )−1(YF (m)), m ∈ U

∎

Definition 8.1.10. Let F ∶ M → N be a smooth map between promanifolds and suppose

that X and Y are rough vector fields on M and N , respectively. If for all m ∈ M we have

TmF (Xm) = YF (m) then we will say that X and Y are F -related and call Y the pushforward

of X by F .

Lemma 8.1.11. With F , X, and Y as above, it is immediately seen that the following are

equivalent:

(1) X and Y are F -related.

(2) for all V ∈ Open (N) and all g ∈ C∞
N (V ), X(g ○ F ) = (Y g) ○ F .

(3) X(g ○ F ) = (Y g) ○ F for all g ∈ C∞
N (N).

Example 8.1.12. If F ∶M → N is a diffeomorphism, U ∈ Open (M), and X ∈ X (U) then

the pushforward of X by F is defined to be the vector field (F∗X)n =
def

TF−1(n)FXF−1(n) on

V = F (U). Equivalently, it is the unique vector field on V satisfying X(g○F ) = ((F∗X)g)○F

for all g ∈ C∞
B (V ).
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Lemma 8.1.13. Let m0 ∈ M and let m● = (ml)∞l=1 and m̂● = (m̂l)∞l=1 be sequences in M

such that {ml ∣m ∈ N} ∩ {m̂l ∣ l ∈ N} = ∅ and both m● → m0 and m̂● → m0 are injective. If

dimm0 M =∞ then there exists a smooth vector field X ∈ X (M) and an increasing sequence

(lk)∞k=1 ⊆ N such that X (m0) = 0 and for each k ∈ N, X (mlk) = 0 while X (m̂lk) ≠ 0.

Proof. For all l, i ∈ N let ml
i =

def
µi(ml), m0

i =
def
µi(m0), m̂i

l =
def
µi(m̂l), and di =

def
dimm0

i
Mi. Our

assumptions allow us to inductively pick a strictly increasing sequence (il)∞l=1 ⊆ N such that

for each l ∈ N, all of m0
il
,m1

il
, . . . ,ml

il
, m̂il

1, . . . , m̂il
l are distinct and dil < dil+1 . By replacing

SysM with its restriction to {il ∣ l ∈ N} we may assume without of generality that (di)∞i=1 is

strictly increasing that for each i ∈ N, all of m0
i ,m

1
i , . . . ,m

i
i, m̂i

1, . . . , m̂i
i are distinct.

Let (Ui)∞i=1 be a SysM -nhood basis at m0 such that for each i ∈ N, ClMi
(Ui) does not

contain any of m1
i , . . . ,m

i
i, m̂i

1, . . . , m̂i
i. Let l1 =

def
1, ι(1) =

def
1, and pick m̂1

1 ∈ O1 ∈ Open (M1)

such that O1 is disjoint from U1 ∪ {m1
1}. Having picked lk pick an integer lk+1 > lk such that

l ≥ lk+1 Ô⇒ ml, m̂l ∈ µ−1
lk

(Ulk). For all k ∈ N≥2, pick m̂lk
lk
∈ Olk ∈ Open (Mlk) such that Olk

is disjoint from Ulk ∪ {mlk
lk
} and also contained in µ−1

lk−1,lk
(Ulk−1). Observe that sets µ−1

lk
(Olk)

are pairwise disjoint since for j < k, Olk ⊆ µ−1
lj ,lk

(Ulj) and Olj ∩ Ulj = ∅. Also, observe that

mlk /∈ ∪
p∈N

µ−1
ip
(Oip) for each k ∈ N.

Let X1 be any smooth vector field on M1 such that suppX1 = O1. For all k ∈ Ngeq2

let X lk be any smooth vector field on Mlk such that suppX lk = Olk and X lk is µlk−1,lk-

vertical. For all k ∈ N let Xk be a smooth vector field on M such that Tµlk ○Xk =X lk ○ µlk .

Since the closed sets µ−1
lk
(Olk) are pairwise disjoint it follows that for each m ∈ M the sum

Xm =
def

∞
∑
k=1

Xk has at most one non-zero term and thus is well-defined. The carrier of X is

contained in ∪
l∈N
µ−1
lk
(Olk), which does not contain m0 nor any mlk , it follows that X(m0) = 0

and X(mlk) = 0 for all k ∈ N. For any k ∈ N, we have that X(m̂lk) ≠ 0 since m̂lk belongs to

µ−1
lk
(Olk) but not to the interior (in M) of µ−1

lk
(Olk).

Fix k ∈ N and let p > k. Since X lp is µlk,lp-vertical it follows that Xp is µlk-vertical,

which implies that Tµlk ○X can only be non-zero on a subset of µ−1
l1
(Ol1) ∪ . . . ∪ µ−1

lk
(Olk).

In particular, Tµlk ○X is identically 0 on µ−1
ik

(Uik) so we’ve thus shown that each Tµlk ○X
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is smooth at m0, which implies that X is smooth at m0. Observe that for all m ∈M ∖ {m0}

there exists a neighborhood U of m that intersects at most one of the µ−1
lk
(Olk)’s and from

here it is easy to see that X ∣
U

is smooth, which implies that X is smooth on M ∖ {m0}.

Thus X is smooth on all of M . ∎

Integral Curves

The results of this subsection will not be used anywhere else in this paper.

Definition 8.2.1. Let M be a promanifold, U ∈ Open (M), X ∈ XU , and J be an interval

containing 0. Say that a smooth curve γ ∶ (J,0)→ (M,m) is an integral curve of X (starting

at m) if γ′(t) =Xγ(t) for all t ∈ J .

Lemma 8.2.2. Let γ ∶ (J,0)→ (M,m) be a smooth curve, X ∈ X (M), γ● =
def
µ● ○γ ∶ (J,0)→

(M●, µ●(m)), and X● =
def

Tµ● ○X ∶M → TM●. Then γ is an integral curve of X if and only

if γ′● =X● ○ γ (i.e. γ′i(t) =X i∣
γ(t) for all indices i and all t ∈ J).

Proof. Note that γ′i(t) = (µi ○ γ)′(t) = (Tγ(t) µi)(γ′(t)) and (Tγ(t) µi)(Xγ(t)) =X i
γ(t). So it is

clear that γ′(t) =Xγ(t) if and only if γ′i(t) = (X i ○ γ)(t) for all t ∈ J and all indices i. ∎

Proposition 8.2.3. A sufficient condition for uniqueness of an integral curve: Let X be a

smooth vector field on M , m0 ∈M , and suppose that γ ∶ I →M and η ∶ J →M are integral

curves of X starting at m0. If Xm0 ≠ 0 then there exists a non-degenerate closed interval

D ⊆ I ∩ J containing 0 such that γ∣
D
= η∣

D
.

Proof. Let γ● = µ●○γ, X● = Tµ●○X, and m0
● = µ● (m0), and for all i ∈ N let Zi ∶Mi → TMi be

the zero section of TMi
∶ TMi →Mi. Since Xm0 ≠ 0 there is some index h such that Xh

m0 ≠ 0,

which implies that η′h(0) =Xm0 = γ′h(0) ≠ 0 so that there exists some non-degenerate compact

interval K ⊆ I ∩ J containing 0 such that neither γ′h nor η′h vanish anywhere on K. Replace

γ and η with their restrictions to K so that we may assume without loss of generality that

I = J = K is compact. Since γ ∶ I → M and η ∶ I → M are smooth immersions from a
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compact manifold there exists some index h0 ≥ h such that γh0 ∶ I →Mh0 and ηh0 ∶ I →Mh0

are smooth embeddings. Replace h with h0 so that we may henceforth assume that both γh

and ηh are smooth embeddings from the compact interval I into Mh.

Fix an index i ≥ h. We must show that γi = ηi but we do not yet even know whether or

not one of Imγi and Im ηi is a subset of the other, so we will now construct a smooth vector

field Y i such that γi and ηi are both integral curves of Y i starting at the same point. Let

D● = Imγ● and observe that since Imγ∪Im η is a compact subset ofM , there exists some j ≥ i,

Uj ∈ Open (Mj), and smooth X i
j ∶Uj→TMi such that Imγ ∪ Im η ⊆ µ−1

j (Uj) and X i
j ○µj =X i

on µ−1
j (Uj). Since µij ∣Dj ∶Dj→Di is a diffeomorphism and σ̂ji =

def
(µij ∣Dj)

−1
∶Di→Dj satisfies

µij ○ σ̂ji = IdDi , by lemma C.1.3, there exists an open set Vj ∈ Open (Uj) containing Dj and

a smooth local section σji ∶Vi→Mj of µij extending σ̂ji , where Vi =
def
µij(Vj) and Imσji ⊆ Vj.

Let Y i =
def
X i
j ○ σ

j
i ∶ Vi → TMi, which is a smooth map. Observe that for all mj ∈ Imσji , if

m ∈ µ−1
j (mj) then mi =

def
µij(mi) ∈ Vi, mj = σji (mi), and σji (µi(m)) = σji (mi) =mj = µj(m) so

that

(Y i ○ µi)(m) = (X i
j ○ σ

j
i ○ µi)(m) = (X i

j ○ µj)(m) =X i(m) = (Tm µi ○X)(m)

where since mj ∈ Imσji and m ∈ µ−1
j (mj) where arbitrary, it follows that Y i ○ µi = Tm µi ○X

on µ−1
j (Imσji ). Recalling that TMi

○Tµi = µi ○TM , it follows that on µ−1
j (Imσji ),

TMi
○Y i ○ µi = TMi

○Tm µi ○X = µi ○TM ○X = µi ○ IdM = µi

For any mi ∈ Vi, if m ∈ µ−1
j (σji (mi)) then µi(m) =mi and

(TMi
○Y i) (mi) = (TMi

○X i
j ○ σ

j
i ) (mi) = (TMi

○X i
j) (µj(m)) = µij (µj(m)) =mi

so that TMi
○Y i = IdVi , which shows that Yi is a vector field on Vi. Fix t ∈ D, let m =

def
γ(t)
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and note that

γ′i(t) = Tm µi(γ′(t)) = Tm µi(Xm) = (Tm µi ○X)(m)

Since Imγj = Im(σ̂ji ) ⊆Dj it follows that m ∈ µ−1
j (Dj) so

γ′i(t) = (Tm µi ○X)(m) = (Y i ○ µi)(m) = Y i
γi(t)

and thus γi is an integral curve of Y i. Now let m̂ = η(t), m̂● = µ● (m̂), sj = σji (m̂i), and

let s ∈ µ−1
j (sj) so that µi(s) = µij(sj) = m̂i. Since s ∈ µ−1

j (Imσji ) we have (Y i ○ µi)(s) =

(Tm µi ○X)(s) and so

η′i(t) =X i
η(t) = (Tm̂ µi ○X)(s) = (Y i ○ µi)(s) = Y i(m̂i) = (Y i ○ µi)(m̂) = (Y i ○ µi)(η(t)) = Y i

ηi(t)

Thus both γi and ηi are integral curves of Y i defined on D starting at m0
i so that γi = ηi.

Since i ≥ h was arbitrary and K = Domγ is independent of i it follows that γ = η. ∎

Corollary 8.2.4. Let X be a smooth vector field on M . If for every m ∈ M there exist

integral curves starting at m then for all m ∈ M such that Xm ≠ 0 there exists a unique

maximal integral curve γ ∶ I →M of X starting at m and furthermore, X never vanishes on

Imγ.

Lemma 8.2.5. For each index i, let X i
i ∶ Mi → TMi be a smooth vector field on Mi

and assume that these vector fields form an inverse system morphism SysM → SysTM (i.e.

Tµij ○Xj
j =X i

i ○ µij for all i ≤ j) whose limit is X ∶M → TM . Let m ∈M , for each i ∈ N let

γi ∶ Ji → Mi be the maximal integral curve of X i
i starting at mi = µi(m), and let J = ∩

i
Ji.

Then

(1) X is a smooth vector field on M and for all i ≤ j, Jj ⊆ Ji and µij ○ γj = γi∣Jj .

(2) (J, γ●) is an inverse cone into SysM whose limit we will denote by γ ∶ J →M .

(3) X has an integral curve η ∶ I → M through m if and only if J is a non-degenerate
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interval, in which case I ⊆ J and η = γ∣
I
so that γ∣

IntR(J)
∶ IntR(J) → M is the unique

maximal integral curve starting at m.

• Remark: even if J is non-degenerate, it is not being claimed that J is an open

interval.

(4) If Xm = 0 then J = R and γ ≡m is the unique integral curve of X through m.

In particular, X has a complete integral curve through m (i.e. defined on all of R) if and

only if each X i
i has a complete integral curve through µi(m).

Proof. Since γj is an integral curve of Xj
j we have

(µij ○ γj)′ = Tγj µij ○ γ′ = Tγj µij ○X
j
j ○ γj =X i

i ○ µij ○ γj

so that µij ○ γj ∶ Jj → Mi is an integral curve of X i
i starting at µij(γj(0)) = µij(µj(γ(0)) =

µi(m). By uniqueness of integral curves, we must have Jj ⊆ Ji and γi∣Jj = µij ○γj from which

(2) follows.

If η ∶ I →M is an integral curve of X starting at m then

(µi ○ η)′ = Ti µi ○ η′ = Ti µi ○X ○ η =X i
i ○ µi ○ η

so that µi ○ η ∶ I → Mi is an integral curve of X i
i starting at µi(m) which shows that

µi ○ η = γi∣I . Since i ∈ N was arbitrary it follows that I ⊆ ∩
i
Ji = J and γ∣

I
= η. In particular,

J is a non-degenerate interval. Conversely, if J is a non-degenerate interval then it is clear

that the restriction of γ to IntR(J) is an integral curve of X through m. Note that Xm = 0

if and only if 0 = Tm µiXm = X i
i(m) for all i ∈ N, in which case Ji = R and γi ≡ µi(m) is the

constant curve. Hence J = R and γ ≡m is the constant curve at m. ∎

Example 8.2.6. A non-vanishing vector field with a point without an integral curve: Let

I = ]−1,1[ and for all i ∈ N let Pr i,i+1 ∶ I i+1→ I i denote the canonical projection onto the first
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i coordinates. Let C1 = {−1,1} and having defined Ci−1 let

Ci = Pr −1
i−1,i(Ci−1) ∪ {(−1

i
,0, . . . ,0),(1

i
,0, . . . ,0)}

For all i ∈ N, let Mi = I i ∖ Ci so that Mi is an open subset of I i (where M1 = I, M2 =

M1 × I with 2 points removed, etc.) and define the smooth surjective submersion µi,i+1 =
def

Pr i,i+1∣Mi+1
∶ Mi+1 → Mi. Clearly, M = IN ∖ ∪

i∈N
Pr −1

i (Ci) together with the restrictions of

the canonical projections is the limit of SysM (and in fact, M is even an open subset of IN

since {Pr −1
i (Ci) ∣ i ∈ N} is locally finite). Let X i

i ∶Mi → TMi denote the constant vector field

∂
∂x1 on Mi and since these maps clearly form an inverse system morphism we can define the

smooth vector field X =
def

lim←Ð
i∈N

X i
i .

For every i ∈ N, the map γi ∶ ] − 1
i ,

1
i [ →Mi defined by γi(t) = (t,0, . . . ,0) is the integral

curve of X i
i starting at (0, . . . ,0) ∈ Mi. However, J =

def
∩
i∈N

] − 1
i ,

1
i [ = {0} so by lemma

8.2.5 there is no integral curve of X starting at m =
def

(0,0, . . .) ∈M . Moreover, the smooth

constant map γ ≡ m ∶ J →M , which is the limit of the cone (J, γi∣J), does not even satisfy

γ′(0) =X(γ(0)) since γ′(0) = 0 ≠X(m). ∎

Example 8.2.7. For all i ∈ N, let X i
i ∶ Ri → TRi be the vector field defined by

X i
i(x1, . . . , xi) =

i

∑
l=1

x2
l

∂

∂xl

so that the integral curve γi of X i
i starting at (1,2, . . . , i) is γi(t) = ( 1

1/1−t ,
1

1/2−t , . . . ,
1

1/i−t)

with domain i∩
l=1

]−∞,1/l[ = ]−∞,1/i[. These vector fields form an inverse system morphism

so let X ∶ RN → TRN = RN × RN be their limit. By lemma 8.2.5, the integral curve of X

starting at (1,2,3, . . .) is γ(t) = ( 1
1/1−t ,

1
1/2−t , . . . ,

1
1/i−t , . . .) with domain

∞
∩
l=1

]−∞,1/l[ = ]−∞,0].

There does not exist any integral curve of X starting at m =
def

(1,−1,2,−2,3,−3, . . .) for

lemma 8.2.5 implies that if it did exist then its domain would be the degenerate interval
∞
∩
l=1

] −∞,1/l[∩ ] − 1/l,∞[ = {0}.
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Example: Infinite and Higher Order Tangent Bundles

The example described in this section will not be used anywhere else in this paper.

Definition and Notation 8.3.1. For any promanifold M , let T0M =M and then induc-

tively define for each k ∈ N the kth-order tangent bundle by Tk+1M =
def

T(TkM) where, as

usual, the canonical projection from the tangent space T(TkM) onto TkM is denoted by

TTkM ∶ Tk+1M →TkM

which we may also denote by TTkM←Tk+1M or by Tk←k+1
M . Fix k ∈ N and for any l > k define

the map Tk←l
M = TTkM←TlM ∶ TlM →TkM to be the composition

TkM
T

Tk M←ÐÐÐ Tk+1M
T

Tk+1M←ÐÐÐÐ ⋯⋯
T

Tl−2M←ÐÐÐÐ Tl−1M
T

Tl−1M←ÐÐÐÐ TlM

i.e. Tk←l
M =

def
TTkM←TlM =

def
TTkM ○⋯ ○ TTl−1M and let Tk←k

M =
def

TTkM←TkM denote the

identity map on TkM . Call

SysT●M =
def

(TkM,Tk←l
M ,Z≥0)

the canonical inverse system of the kth-order tangent bundles on M and we will denote its

canonical limit by (T∞M,T●←∞
M ) where we may also denote its canonical projections by

TTkM←T∞M =
def

Tk←∞
M ∶ T∞M →TkM

If M is clear from context then we may write Tk←l in place Tk←l
M for any k, l ∈ {0,1, . . . ,∞}

with k ≤ l.

If F ∶M → N is a smooth map between promanifolds then let T0F =
def
F and inductively
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define for each k ∈ N the kth-order tangent map (induced by F ) by

Tk F =
def

T(Tk−1F ) ∶ TkM →TkN

it is clear that T●F =
def

(Tk F )
k≥0

∶ SysT∞M → SysT∞N forms a morphism of inverse systems

(indexed by the identity map on Z≥0) so we will denote it’s limit morphism by

T∞F =
def

lim←ÐT●F ∶ T∞M →T∞M

which will make the following diagram commute:

T∞N T∞M

TlN TlM

TkN TkM

Tk←∞N Tk←∞M

Tk←lN Tk←lM

T∞ F

Tl F

Tk F

If γ ∶ J → M is a smooth curve then recall that we identify Tγ ∶ TJ → TM with the map

γ(1) ∶ J → TM defined by γ(1) (t) = Tγ ( ∂
∂t

∣
t
) for all t ∈ J and that we inductively define

γ(k+1) = (γ(k))(1). These maps form a cone (J, (γ(k))k∈N) into SysT∞M whose limit map we’ll

denote by γ(∞) ∶ J → T∞M . ∎

Observation 8.3.2. If γ ∶ J → M is a smooth curve and t ∈ J , then γ(∞) vanishes at t if

and only if all of γ’s derivatives vanish at t. So if M = Rd then for some d ∈ N, then γ(∞)

vanishes at t if and only if all of γ’s Taylor coefficients vanish at t. This suggests that T∞M

may be a setting that is well suited for the study the Taylor series of smooth maps.

Observe that every profinite system SysM = (M●, µij,N) naturally induces the spaces and

morphisms shown below
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T∞M1 T∞Mi T∞Mj T∞M

TlM1 TlMi TlMj TlM

TkM1 TkMi TkMj TkM

M1 Mi Mj M

Tk←∞M1
Tk←∞Mi

Tk←∞Mj
Tk←∞M

Tk←lM1
Tk←lMi

Tk←lMj
Tk←lM

T0←k
M1

T0←k
Mi

T0←k
Mj

T0←k
M

T∞ µ1i T∞ µij T∞ µj

Tl µ1i Tl µij Tl µj

Tk µ1i Tk µij Tk µj

µ1i µij µj

where it can be readily checked that this diagram commutes.

Notation 8.3.3. So as to more systematically refer to the maps above we will let M∞ =
def
M

and also introduce the following notation (whose pattern should be clear), where each of the

maps below denotes the appropriate map from the diagram above:

T∞Mi T∞Mj T∞M∞

TlMi TlMj TlM∞

TkMi TkMj TkM∞

Mi Mj M∞

Tl←∞ii
Tl←∞jj Tl←∞∞∞

Tk←lii
Tk←ljj Tk←l∞∞

T0←k
ii

T0←k
jj T0←k

∞∞

T∞←∞
ij T∞←∞

j∞

Tl←lij Tl←lj∞

Tk←kij Tk←kj∞

T0←0
ij T0←0

j∞

where, as usual, we let Tk←k
ii =

def
IdTkMi

denote the identity map. Since the above diagram is

commutative we will let

Tk←l
ij ∶TlMj→TkMi
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denote any composition of maps from the above diagram that defines a map from TlMj to

TkMi, where i ≤ j ≤∞ and 0 ≤ k ≤ l ≤∞ vary in all possible ways. Furthermore, in the case

where the domain is T∞M and (i, k) ≠ (∞,∞) then we may also use the notation

T∞
TkMi

=
def

Tk←∞
i∞ ∶T∞M →TkMi

so that, just as with canonical projection of the tangent bundle, the subscript indicates the

codomain of the canonical projection ∎

Definition and Notation 8.3.4. Let I denote SysM ’s index set (which is a subset of Z,

usually either N or Z≥0, whichever is most convenient for the problem at hand) and give

(I ×Z≥0)∗ =
def

{(i, k) ∣ i ∈ I ∪ {∞}, k ∈ {0,1, . . . ,∞}, and (i, k) ≠ (∞,∞)}

the partial order defined by (i, k) ≤ (j, l) if and only if i ≤ j and k ≤ l. Observe that

SysT∞M,max =
def

(TkMi,T
k←l
ij , (I ×Z≥0)∗)

is an inverse system, which we will call the largest canonical inverse system of T∞M (induced

by SysM), and that its limit cone is the promanifold T∞M together with the maps

T●←∞
●∞ =

def
(Tk←∞

i∞ )(i,k)∈(I×Z≥0)∗ , which is equal to T∞
T●M●

=
def

(T∞
TkMi

)
(i,k)∈(I×Z≥0)∗

Finally, define the canonical diagonal projective system of T∞M (induced by SysM) by

SysT∞M =
def

(TiMi,T
i←j
ij , I≥0)

where the canonical limit cone is (T∞M, (T∞
TiMi

)
i∈I≥0).

∎
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Chapter 9

Fiber Bundles

The results of this chapter will not be used anywhere else in this paper.

Definition 9.0.1. Let E,N , and F be promanifolds, n ∈ N , and p ∈ Z≥0∪{∞}. Let π ∶E→N

be a continuous surjection where if p ≠ 0 then we also require that it be a Cp-submersion.

Say that the triple (E,π,N) (or more informally, the map π ∶E→N) is

• a trivial Cp-fiber bundle modeled on F if there exists a Cp-isomorphism τ ∶E→N × F ,

called a (global) Cp-trivialization of π, such that PrN ○ τ = π.

• a trivial Cp vector bundle (abbreviated VB or V.B.) modeled on F if F is a TVS and

there exists a Cp-trivialization τ ∶E→N × F of (E,π,N), called a (global) linear Cp-

trivialization of π, such that Pr F ○ τ ∣π−1(n) ∶π
−1 (n)→F is a TVS-isomorphism for all

n ∈ N .

• locally a trivial Cp fiber (resp. vector) bundle at ( or around) n if there exists some

n ∈ V ∈ Open (N) and some promanifold (resp. TVS) F ′ such that π∣
π−1(V ) ∶π

−1 (V )→V

is a trivial Cp fiber (resp. vector) bundle modeled on F ′, in which case we’ll say that

π is a trivial Cp fiber (resp. vector) bundle on V and call any global (resp. linear)

Cp-trivialization of π∣
π−1(V ) ∶π

−1 (V )→V a local (resp. local linear) Cp-trivialization of

(E,π,N) (at/around n).
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• a (locally trivial) Cp fiber (resp. vector) bundle if (E,π,N) is locally a trivial fiber

(resp. vector) bundle at each point of N .

Proposition 9.0.2 (Finite-dimensional promanifolds have locally trivial tangent bundles).

Let i ∈ N, (Ui, ϕi) be a coordinate chart onMi with ϕi = (ϕ1
i , . . . , ϕ

d
i ) ∶Ui→Rd (where d ∈ Z≥0),

U ∈ Open (µ−1
i (Ui)) be non-empty, TU =

def
T−1
M (U), and TUi =

def
T−1
Mi

(Ui). For any v ∈ TU

let vi =
def

T(µi∣U)v and consider v (resp. vi) as being the derivation v ∶C∞
M(U)→R (resp.

vi ∶C∞
Mi

(Ui)→R). For any v ∈ TU define the map v ∶C∞
M(U→Rd)→Rd, also denoted by v,

by sending a smooth map F = (F 1, . . . , F d) ∶U →Rd to v(F ) =
def

(v(F 1), . . . ,v(F d)) and for

any vi ∈ TUi define vi ∶C∞
Mi

(Ui→Rd)→Rd analogously. Recall that if T(Imϕ) = (Imϕi)×Rd

then the map

τi ∶ TUi Ð→ Ui ×Rd

vi z→ (TMi
vi,vi(ϕi))

is a global linear trivialization of TUi =
def

TMi
∣
TUi

∶TUi→Ui.

Analogously, if for all m ∈ U we have dimmM = d then the map

τ ∶ TU Ð→ U ×Rd

v z→ (TM(v),v(ϕi ○ µi∣U))

is a linear trivialization of TU =
def

TM ∣
TU

∶ TU → U and furthermore,

τi ○T(µi∣U) = (µi∣U × IdRd) ○ τ

Proof. That the first coordinates of τi○T(µi∣U) and of (µi∣U × IdRd)○τ are equal is immediate

so to show their equality it remains to show that the second coordinates are equal. Let v ∈ TU

and recall that for any smooth fi ∶Ui→R we have vi(fi) =
def

(T(µi∣U)v)(fi) = v(fi ○ µi∣U),

which immediately implies that vi(ϕi) = v(ϕi ○ µi∣U), as desired. For all m ∈ U , the map

Tm(µi∣U) ∶ TmM → Tµi(m)Mi is a vector space isomorphism since dimmM = d = dimµi(m)Mi
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so the equality that was just proved implies that τ ∣
TmM

∶ TmM → Rd is also a vector space

isomorphism, which in turn allows one to readily deduce the bijectivity of τ . The above

equality also shows that the second coordinate of τ is smooth and since its first coordinate

is also smooth, it follows that τ is smooth.

It remains to show that τ−1 ∶U ×Rd→TU is smooth so fix (m, r) ∈ U×Rd, letm● =
def
µ●(m),

and let j ≥ i. We must show that Tµj ○ τ−1 ∶U ×Rd→TMj is smooth at (m, r). Since µij has

rank d at mj there exists some mj ∈ Oj ∈ Open (µ−1
ij (Ui)) such that θ =

def
µij ∣Uj ∶ Uj → µij(Uj)

is a diffeomorphism. Let O = µ−1
j (Oj) and observe that since θ is a diffeomorphism, to

show that τ−1 is smooth at (m, r) it suffices to show that θ ○Tµj ○ τ−1∣
O×Rd ∶O ×Rd→TMi

is smooth. But on O ×Rd we have

θ ○Tµj ○ τ−1 = T(µi∣U) ○ τ
−1 = τ−1

i ○ (µi∣U × IdRd)

where the RHS is a composition of smooth maps, which completes the proof. ∎

Corollary 9.0.3. A promanifold M has finite and locally constant dimension at a point

m ∈M ⇐⇒ the tangent bundle is locally a trivial finite-dimensional vector bundle around

m.

Corollary 9.0.4. A promanifold has everywhere finite and locally constant dimension ⇐⇒

the tangent bundle a finite-dimensional vector bundle (where different fibers may have dif-

ferent dimensions).

Proposition 9.0.5. Let F ∶ U → V be a smooth pointwise isomersion, where U ∈ Open (M)

and V ∈ Open (N), and let TU = T−1
M (U) and TV = T−1

N (V ). If TV =
def

TN ∣
TV

∶ TV → V has

a smooth linear trivialization τ = (TV , τ2) ∶ TV → V × Rd then ξ =
def

(TU , τ2 ○TF ) ∶ TU →

U ×Rd is a smooth linear trivialization of TU =
def

TM ∣
TU

∶ TU → U .

Remark 9.0.6. Observe that F was not required to be a local smooth embedding or even

locally injective.
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Proof. It is clear that ξ∣
TmM

∶ T−1
M (m) → {F (m)} × TF (m)N is a TVS-isomorphism for all

m ∈ U and that ξ is a bijective smooth pointwise isomersion. Let v ∈ TU and v● ⊆ TU be a

sequence such that ξ (v●)→ ξ(v) in U ×Rd. We will show that v● → v in TU thereby proving

that ξ is a homeomorphism so that theorem 11.6.1 will then imply that τ is a diffeomorphism.

Let m● = TM (v●), m = TM(v), n● = F (m●), and n = F (m) and observe that m● → m in U .

Pick i ∈ N and a smooth chart (Ui, ϕi) on Mi centered at µi(m) such that µ−1
i (Ui) ⊆ U . Use

proposition 11.5.1 to find indices a ∈ N and j ≥ i and smooth charts (Uj, ϕj) and (Va, ψa) on

Mj and Na centered at µj(m) and νa(n), respectively, such that µij(Uj) ⊆ Ui, F a
j (Uj) ⊆ Va,

Uj ⊆ ODomj F a and the coordinate representations of µij and F a
j , denoted by µ̂ij and F̂ a

j ,

satisfy

(p1, . . . , pd, . . . , pr . . . , pdj) (p1, . . . , pd, . . . , pr)

(p1, . . . , pd)

F̂aj

µ̂ij

where d = dimµi(m)Mi, dj = dimµj(m)Mj, and r = dimνa(n)Na. Consequently, the tangent

maps of these coordinate representations satisfy

(p1, . . . , pd, . . . , pr . . . , pdj) × (x1, . . . , xd, . . . , xr, . . . , xdj) (p1, . . . , pd, . . . , pr) × (x1, . . . , xd, . . . , xr)

(p1, . . . , pd) × (x1, . . . , xd)

T F̂aj

T µ̂ij

for all (p1, . . . , pd, . . . , pr . . . , pdj) × (x1, . . . , xd, . . . , xr, . . . , xdj) ∈ Imϕj ×Rdj = T (Imϕj).

Let L ∈ N be such that l ≥ L implies ml ∈ µ−1
j (Uj) and observe that this implies that

vl ∈ (Tµj)−1 (TUj) for all l ≥ L. Since TF a (v●)→ TF av and v and eventually all v● belong

to (Tµj)−1 (TUj), the commutativity of the above diagram implies that Tµi (v●)→ Tµi (v).

Since i was arbitrary, it follows that v● → v in TU , as desired. ∎

Corollary 9.0.7. Let F ∶M → N be a smooth pointwise isomersion. If TN ∶ TN → N is a

smooth vector bundle then so is TM ∶ TM →M .
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Corollary 9.0.8. Let m ∈ M and suppose that TM ∶ TM → M is not locally a smooth

vector bundle around m. Then every smooth map F ∶ U → N from an open neighborhood

U of m into a promanifold N for which TN ∶ TN → N is a smooth vector bundle necessary

fails to be a smooth pointwise isomersion.

Corollary 9.0.9. Let M and N be promanifolds of equal, constant, and finite dimension

(i.e. dimmM = dimnN < ∞ for all (m,n) ∈ M × N) and suppose that TN ∶ TN → N is

a smooth vector bundle but that TM ∶ TM → M fails to locally a smooth vector bundle

around a point m ∈M . Then every smooth map F ∶ U → N from an open neighborhood U

of m has a critical point.
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Chapter 10

Generalized Cones and Generalized

Inverse System Morphisms

All of the material in this chapter is original and none of it will be needed anywhere else in this

paper. In this chapter, we will take the view of inverse system morphisms as mathematical

tools that allow one to define or study maps defined on all of M = lim←Ð SysM via maps

defined on the system’s objects (i.e. M●). These tools will allow us to concisely state and

prove theorems 10.2.12 and 10.3.1. We will begin in one of the most general settings possible

since this generality is needed for theorem 10.2.12 and also since, in the author’s opinion,

removing all unnecessary assumptions actually ends up resulting in the simplest notation

and definitions necessary to write this theorem’s statement.

Assumption 10.0.1. Throughout this section we will assume that (I,≤) and (A,≤) are

partial orders, all M● and N● are pairwise disjoint, Q is an arbitrary non-empty set, and

both F● = (Fq)q∈Q and h● = (hq)q∈Q are arbitrary collections of maps.

Remarks 10.0.2.

• The picture that one should have throughout these sections is of having the canonical

collection F ●
● =

def
(F a

i )(i,a)∈N×N of smooth maps induced by a smooth map F ∶ R → N ,

where R ⊆ M and M and N are promanifolds, and then, while using only the maps
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F ●
● , attempting to reconstruct in a pointwise manner not only F ∶ R → N , but also any

unique smooth extension that F may have.

• One should keep in mind that it’s possible, for instance, that F̂ ∶ RN → RN smoothly

extends a smooth map F ∶ ]0,1[N→ RN but that Domi F̂ a neither contains, nor is

contained in, DomiF a. This and other technicalities are part of the reason for the

seemingly complicated constructions below.

• The main idea behind these constructions is that for any given point, we determine

whether or not the given collection of maps can be used to associate this point with a

unique element of N .

Generalized Cones

Before generalizing inverse system morphisms and their limits we will generalize the notion

of cones and their limits, which will, for instance, be used with generalized cones. We will

start our investigation by asking, for an arbitrary collection of maps h● = (hq)q∈Q, how can we

determine those z ∈ ∪Domh● =
def

∪
q

Domhq for which h● can be used to define an element of

N in a manner that does not require choice and that is similar in nature to the construction

of a limit map of a cone into SysN . The most immediate observation is that for any given

z ∈ ∪Domh●, we must select those maps whose domains and ranges could even potentially

be used to define an element of N in terms SysN and z. These maps the index set will be

denoted by Q(z, h●) and we also introduce the following notation.

Notation 10.1.1. For any z ∈ ∪Domh● let (Q×A)(z, h●) denote the set of all (q, a) ∈ Q×A

such that z ∈ Domhq and hq(z) ∈ Na. If PrQ ∶Q ×A→Q denotes the canonical projection

then let

Q(z, h●) =
def

PrQ((Q ×A)(z, h●))

which is just the set of all q ∈ Q with z ∈ Domhq and for which there exists some a ∈ A such
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that hq(z) ∈ Na where note that since all N● are pairwise disjoint this a ∈ A is unique and so

will be denoted by α(z,h●)(q). Equivalently, if q ∈ Q(z, h●) then α(z,h●)(q) denotes the unique

index in A such that (q, α(z,h●)(q)) ∈ (Q × A)(z, h●). We thus have the following induced

map:

α(z,h●) ∶Q(z, h●)→A

Finally, for any a ∈ A let

Q(z, h●, ≥ a) =
def

{q ∈ Q(z, h●) ∣α(z,h●)(q) ≥ a}

As usual, we may omit writing h● or z if they are clear from context. ∎

Definition 10.1.2. Fix z ∈ ∪Domh● and write α for α(z,h●). For any q, q̂ ∈ Q we will say

that hq and hq̂ are consistent at z and if they satisfy the following consistency condition at

z: for every a ∈ A, if q, q̂ ∈ Q(z, h●,≥ a) then

νa,α(q)(hq(z)) = νa,α(q̂)(hq̂(z))

We will say that h● is strongly consistent at z if hq and hq̂ are consistent at z for all q, q̂ ∈ Q.

Observe that for any a ∈ A, if h● is strongly consistent at z and if there exists any q in

Q(z, h●,≥ a) then the element νa,α(q)(hq(z)), which we will henceforth denote suggestively

by (h●(z))a, is independent of the choice of q ∈ Q(z, h●,≥ a).

Say that h● satisfies the strong definability condition at z or that the limit of h● is strongly

definable at z if

(1) Imα(z,h●) is cofinal in A, and

(2) h● is strongly consistent at z.

It is easy to see that when the above two conditions are satisfied then as a ranges over

Imα(z,h●) the elements (h●(z))a define an element of N , which we will henceforth denote by
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(Str lim←Ðh●)(z) or by (lim←Ðh●)(z). ∎

Definition and Notation 10.1.3. Let StrDom(h●) denote the set of all z ∈ ∪Domh● such

that h● satisfies the strong definability condition at z. By the strong limit of h● we will mean

the induced map

Str lim←Ðh● ∶StrDom(h●)→N

and we will say that this map arises as a strong limit (from SysM to SysN).

Remark 10.1.4. Definition 10.1.3 clearly generalizes the construction of the limit map that

is found in the definition of the limit of a cone. In particular, if (Z,h●) ∶Z→ SysN is a cone

then the two limits maps obtained from definition 10.1.3 and definition 2.1.22 agree.

Definition 10.1.5. Let Z be a set and say that a Q-indexed collection of maps h● = (hq)q∈Q
is a collection of maps from subsets of Z into N● = (Na)a∈A if for each q ∈ Q there exists

α(q) ∈ A such that

(1) Domhq ⊆ Z, and

(2) CodomFq ⊆ Nα(q)

We will indicate this by writing h● ∶⊆ Z→N● where if we wish to specify the map α ∶Q→A

then we may write (h●, α) ∶⊆ Z→N● or h● ∶⊆ Z→Nα(●). ∎

Constructing Maps Between Subsets of Limits

Strongly Defined Limit

We will now generalize the definitions and construction from the above subsection to inverse

system morphisms. We again start our investigation by asking, for this arbitrary collection

of maps F●, how can we determine those m ∈ M for which F● can be used to define an

element of N in a manner that does not require choice and that is similar in nature to
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the construction of a limit map from an inverse system morphism. The most immediate

observation is that for any given m ∈ M , we must select those maps whose domains and

ranges could even potentially be used to define an element of N in terms of SysM , SysN ,

and m so we introduce the following notation.

Notation 10.2.1. For anym ∈M let (Q×I×A)(m,F●) denote the set of all (q, i, a) ∈ Q×I×A

such that µi(m) ∈ DomFq and Fq(µi(m)) ∈ Na and let

Q(m,F●) =
def

PrQ((Q × I ×A)(m,F●))

where PrQ ∶Q × I ×A→Q is the canonical projection. Since all M● and N● are pairwise

disjoint, for each q ∈ Q(m,F●) there are unique ι(m,F●)(q) ∈ I and α(m,F●)(q) ∈ A such that

(q, ι(m,F●)(q), α(m,F●)(q)) ∈ (Q × I ×A)(m,F●), so we have the following induced maps

ι(m,F●) ∶Q(m,F●)→ I and α(m,F●) ∶Q(m,F●)→A

Finally, for any a ∈ A let

Q(m,F●, ≥ a) =
def

{q ∈ Q(m,F●) ∣α(m,F●)(q) ≥ a}

As usual, we may omit writing F● or m if they are clear from context. ∎

The following definition is motivated by lemma 6.1.9.

Definition 10.2.2. Fixm ∈M , write α for α(m,F●), and write ι for ι(m,F●). For any q, q̂ ∈ Q we

will say that Fq and Fq̂ are consistent at m if they satisfy the following consistency condition

at m: for every a ∈ A, if q, q̂ ∈ Q(m,F●,≥ a) then

νa,α(q)(Fq(µι(q)(m))) = νa,α(q̂)(Fq̂(µι(q̂)(m)))
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We will say that F● is strongly consistent at m if Fq and Fq̂ are consistent at m for all

q, q̂ ∈ Q. Observe that for any a ∈ A, if F● is strongly consistent at m and if there exists any

q in Q(m,F●,≥ a) then the element νa,α(q)(Fq(µι(q)(m))), which we will henceforth denote

suggestively by (F●(m))a, is independent of the choice of q ∈ Q(m,F●,≥ a).

Say that F● satisfies the strong definability condition at m or that the limit of F● is

strongly definable at m if

(1) Imα(m,F●) is cofinal in A, and

(2) F● is strongly consistent at m.

It is easy to see that when the above two conditions are satisfied then as a ranges over

Imα(m,F●) the elements (F●(m))a define an element of N , which we will henceforth denote

by (lim←ÐF●)(m). ∎

Definition and Notation 10.2.3. Let StrDomM(F●) denote the set of all m ∈ M such

that F● satisfies the strong definability condition at m. Of course, the map that sends

m ∈ StrDomM(F●) to (lim←ÐF●)(m) will be denoted by lim←ÐF●, called the strong limit of F●,

and we will say that this map arises as a strong limit (from SysM to SysN).

Remark 10.2.4. Definition 10.2.3 clearly generalizes the construction of the limit map

that is found in the definition of the limit of an inverse system morphism. In particular, if

(F●, ι) ∶ SysM → SysN is an inverse system morphism then the two limits maps obtained

from definition 10.2.3 and definition 3.1.2 agree.

The following proposition shows that these definitions suffice to construct any map from

any subset of M into N .

Proposition 10.2.5. Let D ⊆M and let F ∶D→N be any map. Then there exists a set Q

and a Q-indexed collection of maps F● such that StrDomM(F●) =D and F = lim←ÐF●.
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Proof. Let Q =
def
D × I ×A and for all (d, i, a) ∈ Q define

F(d,i,a) ∶ µi(d) Ð→ Na

µi(d) z→ νa(F (d))

Observe that for all d ∈D, (Q×I×A)(d,F●) =
def

{((d, i, a), i, a) ∣ (d, i, a) ∈ Q} so that Q(d,F●) =

{d} × I ×A and that these sets are empty for d /∈ D so that StrDomD F● ⊆ D. For all d ∈ D,

write αd for α(d,F●) and ιd for ι(d,F●) and observe that for all q = (d, i, a) ∈ Q, ιd(q) = i and

αd(q) = a so that all elements (q = (d, i, a), i, a) of (Q × I × A)(d,F●) can be rewritten as

(q, ιd(q), αd(q)).

Let d ∈ D, a ∈ A, and q, q̂ ∈ Q(d,F●,≥ a) so α(q) ≥ a, α(q̂) ≥ a, and q, q̂ ∈ Q(m,F●).

Observe that

(νa,αd(q) ○ Fq)(µιd(q)(d)) = νa,αd(q)(ναd(q)(F (m))) = νa(F (m))

and similarly (νa,αd(q̂) ○ Fq̂)(µαd(q̂)(d)) = νa(F (m)). We’ve thus shown that Fq and Fq̂ are

consistent at d and since Imαd = A it follows that d ∈ StrDomM F●. It remains to show that

(lim←ÐF●)(d) = F (d) so let a ∈ A be arbitrary. Pick and i ∈ I and define q =
def

(d, i, a) so that

by definition, νa((lim←ÐF●)(d)) = ((lim←ÐF●)(d))a = νa(F (m)), as desired. ∎

Remark 10.2.6. The construction in the proof of proposition 10.2.5 would be impractical

in almost any situation and its only purpose was to show that the definitions we have thus

far would suffice to construct, in a manner similar to limits of inverse system morphisms,

any map that we may encounter. However, we will later be primarily interested in locally

cylindrical maps on promanifolds and under these circumstances we will be able to find much

more practical collections of maps.

Lemma 10.2.7. Let m ∈ M , suppose that (I,≤) and (A,≤) are directed, and write α for

α(m,F●) and ι for ι(m,F●). Then F● satisfies the strong definability condition at m ⇐⇒
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(1) Imα is cofinal in A, and

(2) for all a ∈ A, q, q̂ ∈ Q(m,F●,≥ a), α(q) ≤ α(q̂) implies

Condition ⋆ (q) ∶ Fq(µι(q)(m)) = να(q),α(q̂)(Fq̂(µι(q̂)(m)))

Proof. The (Ô⇒ ) implication is obvious so to prove the less obvious implication fix a ∈ A

and let q, q̂ ∈ Q(m,F●,≥ a) so that α(q) ≥ a, α(q̂) ≥ a, and q, q̂ ∈ Q(m,F●). Since Imα is

cofinal in A we can pick r ∈ Q(m,F●) such that α(r) ≥ α(q) and α(r) ≥ α(q̂). Since ⋆(q)

holds we have

(νa,α(q) ○ Fq)(µι(q)(m)) = (νa,α(q) ○ να(q),α(r) ○ Fr)(µι(r)(m)) = (νa,α(r) ○ Fr)(µι(r)(m))

Similarly ⋆(q̂) implies (νa,α(q̂) ○ Fq̂)(µι(q̂)(m)) = (νa,α(r) ○ Fr)(µι(r)(m)) so that the desired

conclusion now follows. ∎

Example 10.2.8. Let M and N be promanifolds, R ⊆ M , and let F ∶ R → N be a map

between promanifolds such that each νa○F is locally cylindrical. Let ι and α be the canonical

projections of Q =
def

N ×N onto its first and second coordinates Pr 2, and let F ●
● =

def
(F a

i )(i,a)∈Q
where F a

i ∶DomiF a→Na for each (i, a) ∈ Q. Then R ⊆ StrDomM(F ●
● ) ⊆M and lim←ÐF

●
● ∣R = F .

The following example shows that these constructions may be used to extend maps

beyond their original domains in a way that is well-suited for promanifolds.

Example 10.2.9. Let M , N , R, F ∶ R → N , Q, ι, α, and F ●
● be as in the above example

10.2.8 and suppose that for all a ∈ N, the increasing union ∪
i∈N
µ−1
i (DomF a

i ) equals M . It is

easy to see that StrDomM(F ●
● ) =M and that if F ∶ R → N has a smooth extension to all of

M then this limit map lim←ÐF
●
● ∶M → N would be it.
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Weakly Defined Limit

The strong definability condition requires that the strong consistency condition be satisfied

for each pair of elements in Q, which is unfortunate since the situation may arise that, for

some given m ∈M , if we simply ignored a select few Fq’s for which the consistency condition

failed then we would still be able to define an element of n. We remedy this with the following

definition.

Definition and Notation 10.2.10. For any m ∈M , say that F● satisfies the (weak) defin-

ability condition at m or that lim←ÐF● is (weakly) definable at m if

(1) there is some P0 ⊆ Q such that F●∣P0
=
def

(Fq)q∈P0
satisfies the strong definability condition

at m, and

(2) for all P, P̂ ⊆ Q, whenever both F●∣P and F●∣P̂ satisfy the strong definability condition

at m then (lim←ÐF●∣P)(m) = (lim←ÐF●∣P̂)(m).

and in this case we will denote the value (lim←ÐF●∣P0
)(m) by (lim←ÐF●)(m) or by any of the usual

notation used for limits of inverse system morphisms, where by (2), this value is independent

of the choice of P0 ⊆ Q satisfying the strong definability condition at m.

For any D ⊆ M , let DomD F● denote the set of all m ∈ D such that F● satisfies the

definability condition at m, where we may write DomF● in place of DomM F●. We thus have

an induced map lim←ÐF● ∶DomF●→N that we will call the limit (map) of F● over (a subset

of) M into N (relative to (µ●, SysM) and (ν●, SysN)) or simply the limit of F● and we will

say that this map arises as a (weak) limit (from (µ●, SysM) to (ν●, SysN)) of Q-indexed

maps. ∎

Remark 10.2.11. Observe that even if F● was to fail to satisfy the strong definability

condition at every m ∈M then the above definition may still allow us to define a map on a

non-empty subset of M . Also, the first condition in definition 10.2.10 guarantees that there

exists some element of N that can be defined from F● in a way reminiscent of inverse system
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morphisms while the second condition guarantees that there at most one choice for such an

element.

The following theorem shows, in particular, how we may use definitions 10.2.10 and

proposition 11.5.1 to reconstruct a diffeomorphism F ’s inverse by using only the canonical

maps F ●
● =

def
(F a

i )(i,a)∈Q, where note that the collection of maps needed for this construction

is potentially uncountable. Of course, if we knew that F −1 ∶ ImF →M was smooth then we

could use F −1 N ×N-indexed canonical collection of maps, but this is not assumed.

Theorem 10.2.12. Let F ∶M → N be an injective ν●-regular smooth immersion and let Q

denote a set of tuples q = (m, i, j, a,Ui, ϕi, Uj, ϕj, Va, ψa) wherem ∈M and i, j, a,Ui, ϕi, Uj, ϕj, Va, ψa

are as in proposition 11.5.1 (with m in place of m0) and a ≥ i and observe that the prop-

erties in proposition allows us to us the commutative diagram 11.1 to define a smooth

surjective submersion Gq ∶ F a
j (Uj) → µij(Uj) that is the canonical projection with re-

spect to the coordinates ϕi and ψa. Denote each q = (m, i, j, a,Ui, ϕi, Uj, ϕj, Va, ψa) ∈ Q by

(mq, iq, jq, aq, Uiq , ϕiq , Ujq , ϕjq , Vaq , ψaq) and for each m ∈ M , let Q(m) = {q ∈ Q ∣mq =m}. If

for eachm ∈M , both {iq ∣ q ∈ Q(m)} and {aq ∣ q ∈ Q(m)} are cofinal in N then ImF ⊆ DomN G●

and lim←ÐG● = F −1 on DomG●.

Remark 10.2.13. Despite each Gq is a smooth submersion, even if F ∶ M → N was a

surjective pointwise isomersion, it is not clear whether or not one can deduce that F −1 ∶

N → M is smooth since it’s not clear that each µ● ○ F −1 ∶ N → M● is necessarily locally

cylindrical. However, one might still be able to use propositions 6.1.21 and 6.1.27 to prove

that the µ● ○ F −1 ∶ N →M● are locally cylindrical on some open subset of M .

Proof. Let n ∈ ImF and suppose that P ⊆ Q is such that G●∣P satisfies the strong definability

condition at n ∈ ImF , where at least one such subset exists since {iq ∣ q ∈ Q(F −1(n))} is cofinal

in N. Let m̂ = lim←ÐG●∣P (n). Let P (n) = P (n,G●∣P ) be as in notation 10.2.1. Let a ∈ N. Note

that by definition of m̂, for all q ∈ P (n), µiq(m̂) ∈ µiq ,jq(Ujq) = CodomGq, νaq(n) ∈ F
aq
jq

(Ujq),
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and µiq(m̂) = Gq(νaq(n)). This and the fact that {iq ∣ q ∈ Q(m)} is cofinal in N means that

there is some q ∈ Q such that i =
def
iq > a and µiq(m̂) ∈ ODomiq F

a. By definition of Gq(νaq(n)),

there is some mjq ∈ Ujq such that F aq
jq

(mjq) = νaq(n) and µi,jq(mjq) = µi(m̂). Note that aq ≥ a

so

νa(F (m̂)) = F a
i (µi(m)) = F a

i (µi,jq(mjq)) = F a
jq(mjq) = νa,aq(F

aq
jq

(mjq)) = νa,aq(νaq(n)) = νa(n)

Since a ∈ N was arbitrary, it follows that F (m̂) = n and since F is injective, this implies that

m̂ = F −1(n). Thus by definition, n ∈ DomN F● and lim←ÐF●(n) = F
−1(n). ∎

Generalized Inverse System Morphisms

Definition 10.2.14. Say that a Q-indexed collection of maps F● = (Fq)q∈Q is a collection of

maps from subsets of M● = (Mi)i∈I into N● = (Na)a∈A if for each q ∈ Q there exists ι(q) ∈ I

and α(q) ∈ A such that

(1) DomFq ⊆Mι(q), and

(2) CodomFq ⊆ Nα(q)

where these indices are necessarily unique since all M● and N● are pairwise disjoint. We will

indicate this by writing F● ∶⊆M●→N● where if we wish to specify the maps α ∶Q→A and

ι ∶Q→ I then we may write (F●, ι, α) ∶⊆M●→N● or F● ∶⊆Mι(●)→Nα(●). ∎

Definition 10.2.15. If D ⊆M then by a (resp. strong) generalized inverse system morphism

(or generalized inverse system morphism from SysM to SysN over D we mean a Q-indexed

collection of maps F● ∶⊆Mι(●)→Nα(●) (for some Q) such that D ⊆ DomM F● (resp. D ⊆

StrDomM F●). We will abbreviate this situation by saying that “(F●, ι, α) ∶ SysM → SysN is a

(resp. strong) generalized inverse system morphism over D.” If we omit mention of D then

it should be assumed that D = DomM F● (resp. D = StrDomM F●).
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If we ever write “F● ∶ SysM → SysN is a (resp. strong) generalized inverse system mor-

phism” then we mean that this is true of (F●, ι, α) where Q = I ×A, ι(i, a) = i, α(i, a) = a,

while if we write “Fι(●) ∶ SysM → SysN is a (resp. strong) generalized inverse system mor-

phism” then we mean that this is true of (Fι(●), ι, α) where Q ⊆ A is cofinal in A, ι ∶Q→ I is

some order morphism, and α = IdQ. ∎

Example 10.2.16. Clearly, every inverse system morphism (F●, ι) ∶ SysM → SysN is a

strong generalized inverse system morphism over M and StrDomM(F●, ι) =M . Conversely,

if F● is an A-indexed collection of maps for which there exists some ι ∶ A → I such that

each component of F● has the prototype Fa ∶Mι(a)→Na then (F●, ι) is a generalized inverse

system morphism ⇐⇒ it is an inverse system morphism.

Although the definition of an inverse system morphism (did not require knowledge of the

limit of SysM , the definition of the definability condition does. So we to remedy this we

now describe conditions on the maps F● that may be checked in a manner analogous to the

definition of an inverse system morphism and that are better suited to use with definition

10.2.10. The following definition 10.2.17 is motivated by lemma 6.1.9 and essentially makes

rigorous what is meant when one says that “the equality νab ○ Fr(mj) = Fq ○ µij(mj) holds

whenever both sides are defined.”

Definition 10.2.17. Let F● ∶⊆Mι(●)→Nα(●) be a Q-indexed collection of maps. If q, r ∈ Q

and mι(r) ∈ Mι(r) then we will say that Fq and Fr are consistent at mι(r) if, after letting

i = ι(q) and j = ι(r), they satisfy the following condition, which we will call the consistency

condition (at mj):

(1) i ≤ j, α(q) ≤ α(r), and mj ∈ DomFr ∩ µ−1
ij (DomFq) implies

να(q),α(r) ○ Fr(mj) = Fq ○ µij(mj)
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(2) i ≤ j, α(q) ≥ α(r), and mj ∈ DomFr ∩ µ−1
ij (DomFq) implies

Fr(mj) = (να(r),α(q) ○ Fq)(µij(mj))

where observe that these two conditions are the same if α(q) = α(r).

We will say that Fq is consistent with Fr (on Mι(r)) if they are consistent at every

mι(r) ∈Mι(r) and that Fq and Fr are consistent if Fq is consistent with Fr and Fr is consistent

with Fq. If Fq and Fr are consistent for all q, r ∈ Q then we will call F● strongly consistent. ∎

A Smooth Map is “Almost” the Limit of an Inverse System

Morphism

Corollary 10.3.3 of following proposition essentially states that every smooth map F between

promanifolds is “almost” the limit of an inverse system morphism in the sense that except for

on a comeager measure 0 subset of M , F is the limit of a ι-index generalized inverse system

morphism for some order-morphism ι ∶ A→ I.

Proposition 10.3.1. Let F ∶ M → N be a map between promanifolds such that each

F a =
def
νa ○ F is locally cylindrical, let F ●

● be the canonical N ×N-indexed collection of maps

induced by F , and let (K l)∞l=1 be any collection of compact subsets of M . There exists an

increasing order morphism ι ∶N→N such that

(1) ∪
l∈N
K l ⊆ StrDomF ●

ι(●) and Str lim←ÐF
●
ι(●) = F on StrDomF ●

ι(●).

(2) For all a ∈ N, µ−1
ι(a)(ODomι(a)F a) contains K1 ∪⋯ ∪Ka.

(3) StrDomF ●
ι(●) is a µ●-surjective subset of M (i.e. its image under each µi is all of Mi).

Remark 10.3.2. Observe that none of the above maps are required to be continuous.
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Proof. By replacing each Ka with K1∪⋯∪Ka we may assume without loss of generality that

Ka ⊆ Ka+1. Pick an index ι(1) such that µi(K1) ⊆ ODomiF 1. Let E●
ι(1) = (El

ι(1))
∞

l=1
be an

increasing exhaustion of Mι(1) by relatively compact open sets such that µι(1)(K●) ⊆ E●
ι(1).

Suppose that for a0 ≥ 1 we’ve defined ι(1) < ⋯ < ι(a0) and E●
ι(1) = (El

ι(1))
∞

l=1
, . . . ,E●

ι(a0) =

(El
ι(a0))

∞

l=1
where each E●

ι(b) (1 ≤ b ≤ a0) is an increasing exhaustion of Mι(b) by relatively

compact open sets such that

(a) µι(b)(K●) ⊆ E●
ι(b) and µι(b)(Kb) ⊆ ODomι(b)F b for 1 ≤ b ≤ a0,

(b) E●
ι(b) ⊆ µι(b),ι(c)(E●

ι(c)) for 1 ≤ b < c ≤ a0,

(c) Ec
ι(b) ⊆ µι(b),ι(c)(ODomι(c)F c) for 1 ≤ b ≤ c ≤ a0.

Let i > ι(a0) be such that µi(Ka0+1) ⊆ ODomiF a0+1 where by increasing i we may also

assume that Ea0+1
ι(b) ⊆ µι(b),i(ODomiF a0+1) for each b = 1, . . . , a0. Let E●

i = (El
i)
∞
l=1 be an

increasing exhaustion ofMi by relatively compact open subsets ofMi such that µi(K●) ⊆ E●
i ,

E●
ι(a0) ⊆ µι(a0),i(E

●
i ), and E

a0+1
i ⊆ ODomiF a0+1. Let ι(a0 + 1) =

def
i and observe that (a) - (c)

hold for a0 + 1 in place of a0.

Note that (b) implies that for each b ∈ N, (µι(b),ι(c)(Ec
ι(c)))c≥b is an exhaustion of Mι(b)

while (a) implies that Ka ⊆ µ−1
ι(a)(Ea

ι(a)) for each a ∈ N. For any a ≤ b we have

µι(a)(Ka) ⊆ Ea
ι(a) ⊆ µι(a),ι(b)(Eb

ι(b)) ⊆ µι(a),ι(b)(ODomι(b)F
b)

Since the consistency condition is obviously satisfied at every m ∈ Ka we have that Ka ⊆

StrDomF ●
ι(●) for each index a, so that ∪K● ⊆ StrDomF ●

ι(●). By construction, µ
−1
ι(a)(ODomι(a)F a)

contains Ka for each a ∈ N.

Given an index i and mi ∈ Mi let a be such that i ≤ ι(a) and let mι(a) ∈ µ−1
i,ι(a) (mi)

be arbitrary. To prove that StrDomF ●
ι(●) is a µ●-surjective subset of M it suffices to

show that mι(a) ∈ µι(a)(StrDomF ●
ι(●)). Hence, we may assume without loss of general-

ity that i = ι(a). Since (µι(a),ι(b) (Eb
ι(b)))b≥a is an exhaustion of Mι(a) we may pick b ≥ a
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such that mi ∈ µi,ι(b)(Eb
ι(b)). By (b), we may inductively pick mι(c) ∈ Ec

ι(c) such that

µι(c−1),ι(c)(mι(c)) =mι(c−1), where now (mι(c))c≥b defines an element m ∈M . By (c), whenever

c ≥ b then µι(c)(m) =mι(c) ∈ Ec
ι(c) ⊆ ODomι(c)F c and since the consistency condition at m is

clearly satisfied we have that m ∈ StrDomF ●
ι(●). Since mι(a) = µι(a)(m) we have our desired

conclusion. ∎

Corollary 10.3.3. Let F ∶ M → N be a smooth map between promanifolds that are both

limits of profinite systems satisfying 12.1.3. Then there exists an increasing ι ∶N→N such

that if we let Fa =
def
F a
ι(a) ∶ODomι(a)F a→Na for all a ∈ N then M ∖ StrDomFι(●) is a meager

measure 0 subset of M and Str lim←ÐFι(a) = F on the µ●-surjective set StrDomFι(●).
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Chapter 11

Submersions, Immersions, and

Isomersions

Definition 11.0.1. Let F ∶M → N be a smooth map between promanifolds and let m ∈M .

Say that

• F is a point(wise) submersion (resp. immersion, isomersion) at m if TmF ∶ TmM →

TF (m)N is surjective (resp. injective, an isomorphism of TVSs).

• F has full rank at m if F is a pointwise submersion or a pointwise immersion at m. If

S ⊆ M and r ∈ Z≥0 then we will say that F has finite constant rank r on S if F has

finite rank r at every s ∈ S.

• F is a (smooth) sectional submersion at m if there exists a smooth local section of F

through m,

As usual, if we omit mention of any point then we mean that F has the property at every

point of M . ∎

Remark 11.0.2. Clearly, every smooth sectional submersion at a point has full rank at that

point.
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Pointwise Immersions from Smooth Manifolds

Example 11.1.1. If F ∶ M → N is a smooth map that is a smooth embedding at m ∈ M

then it is immediate from lemma 7.0.2 that F is a smooth pointwise immersion at m.

We will now find conditions under which the converse of the above statement is true.

Lemma 11.1.2. Let F ∶ (M,m) → (N,n) be a smooth map where M is a manifold, let

F ● = ν● ○ F , S● = ImF ●, and let a be an index. If νa ○ F ∶M → Na is a smooth immersion at

m then so is F b = νb ○F ∶M → Nb for all b ≥ a and if Sb = ImF b is an immersed submanifold

of Na then νab∣Sb ∶ Sb → Na is a smooth immersion. If F a ∶M → Na is a smooth embedding

(resp. proper smooth embedding) then so are both F b ∶ M → Nb and νab∣Sb ∶ Sb → Na for

all b ≥ a and F ∶ M → N is a smooth topological embedding (resp. proper topological

embedding).

Proof. Since TmF a = Tm(νab ○ F b) = TF b(m) νab ○ TmF b is injective it follows that TmF b

is also injective so that F b ∶ M → Nb is a smooth immersion. If in addition Sb is an

immersed submanifold of Nb then νab∣Sb ∶Sb→Na is a smooth map between manifolds so that

the injectivity of TmF a = TF b(m)(νab∣Sb) ○ TmF b and the fact that Im(TmF b) = TF b(m) Sb

implies the injectivity of TF b(m) νab∣Sb . By lemma 2.1.33(7), we have that F b and νab∣Sb

are topological embeddings for all b ≥ a and since F = lim←Ð
a

νa ○ F is a limit of topological

embeddings, F is also a topological embedding. If in addition F a is proper then since

F a = νab ○ F b and F b is a topological embedding it follows that F b and νab∣Sb ∶Sb→Na are

also proper and since the inverse limit of proper maps is proper, F is also proper. ∎

Corollary 11.1.3. Let F ∶M → N be a smooth map where M is a manifold. Let U be the

set of all m ∈M such that TmF ∶ TmM → TF (m)N is injective. Then U is open in M and

for each m ∈ U ,

(1) If a is an index such that TmF a ∶ TmM → TFa(m) is injective then there exists m ∈
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V ∈ Open (U) such that F a∣
V
∶ V → Na is a smooth topological embedding and for any

such V the map F ∣V ∶ V → N will be a smooth topological embedding and for each

b ≥ a the map F b∣
V
∶ V → Nb is a smooth embedding.

(2) There exists an index a such that TmF a ∶ TmM → TFa(m) is injective.

Proof. Let d = dimM and note that the conclusion is clear if d = 0 so assume that d ≥ 1.

Assume that U ≠ ∅, let m ∈ U , n = F (m), and F a = νa ○ F ∶ M → Na for all indices a. Let

{v1, . . . , vd} be a basis for TmM and let xl = TmFvl for all l = 1, . . . , d. Since all xl are

distinct and non-zero, there exists some index a such that all xal = Tn νaxl are non-zero and

non-zero. For all l = 1, . . . , d

TmF
avl = Tn νa(TmF (vl)) = Tn νaxl = xal

so that TmF a ∶ TmM → TFa(m)Na has full rank i.e. is injective. Since F a ∶ M → Na is

a smooth map between manifolds there exists some open neighborhood V of m such that

F a ∶V →Na has full rank. By shrinking V we may assume that F a∣V ∶V →Na is a topological

embedding so that F ∣V ∶V →N is also a topological embedding. ∎

Remark 11.1.4. Let (F●, ι) ∶ SysM → SysN be an inverse system morphism with limit

F ∶M → N and let m ∈M . Although corollary 3.2.3 makes it is clear that each Fa being an

immersion at µι(a)(m) guarantees that F will be a pointwise immersion at m, this is not a

necessary condition.

Proposition 11.1.5. Let F ∶M → N be a smooth map from a manifold M into a promani-

fold N Let S = ImF and suppose that F is a topological embedding and a smooth pointwise

immersion. Let C∞
N ∣

S
denote the restriction of N ’s sheaf to S and let C∞

S denote the sheaf

defined by:

for each W ∈ Open (S), let C∞
S (W ) be the R-algebra of all maps of the form

f ○ (F ∣
F−1(W )) ∶W →R where f ∈ C∞

M(F −1 (W )).
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Then C∞
N ∣

S
= C∞

S .

Definition 11.1.6. Consequently, we can call a smooth map F ∶ M → N from a manifold

M into a promanifold N a smooth embedding (cf. def. 4.1.3) if it is a topological embedding

and a smooth pointwise immersion.

Proof. Fix W ∈ Open (S), let U = F −1 (W ), F ● = ν● ○ F , and let g ∶ W → R be con-

tinuous. Suppose that g ∈ C∞
N ∣

S
(W ). Recall that since F ∶M → (N,C∞

N ) is smooth so is

F ∣
U
∶U → (W,C∞

N ∣
W
) so that f =

def
g ○ F ∣

U
∶U →R is smooth. Since g = (g ○ F ∣

U
) ○ (F ∣

U
)−1 =

f ○ F ∣
U

we have that g ∈ C∞
S (W ). Now suppose that g ∈ C∞

S (W ) and let f ∈ C∞
M(U) be

such that g = f ○ (F ∣
U
)−1 ∶ U → R. Let s ∈ W , m = F −1(s). Let Y = Im TmF and let

a = IndY so that Ts νa∣Y ∶ Y → TsaNa is injective and hence Tm(νa ○ F ) ∶ TmM → TsaNa is

injective. Since F a = νa ○F ∶M → Na is a smooth immersion between manifolds there exists

some open set m ∈ U0 ∈ Open (U) such that F a∣
U0 ∶U0→Na is a smooth embedding onto the

submanifold Ra =
def
F a(U0). Let ga ∶ Va → R be any smooth extension of the smooth map

f ○ (F a∣
U0)

−1 ∶ Ra → R to some open set Va ∈ Open (Na). Observe that for any n ∈ F (U0),

(νa ○ F )(F −1 (n))) = F a(F −1 (n)) ∈ Ra so that

ga(νa(n)) = ga(F a(F −1 (n))) = (f ○ (F a∣
U0)

−1)(F a(F −1 (n)n)) = f(F −1 (n)) = g(n)

Thus, ga ○ νa∣ν−1a (Va)
∈ C∞

N (ν−1
a (Va)) is a smooth map whose restriction to F (U0), an open set

in S containing s, is g∣
F (U0)

. So by definition of the restriction sheaf, g ∈ C∞
N ∣

S
(W ). ∎

Corollary 11.1.7. A smooth pointwise immersion F ∶M → N from a manifoldM into a pro-

manifold N is locally a smooth embedding. Furthermore, for each m ∈M , a =
def

Ind(Im TmF )

(see def. 7.6.3) is the unique smallest index for which there exists an open set m ∈ U ∈

Open (M) such that νa ○ F ∣
U
∶U →Na is a smooth embedding. And if K ⊆ M is compact

then exists a unique smallest index for which there exists an open set K ⊆ U ∈ Open (M)

such that νa ○ F ∣
U
∶U →Na is a smooth embedding.
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Proof. Let n = F (m) and let Y = Im TmF . By definition of a =
def

IndY , this is the unique

smallest index such that Tn νa∣Y ∶Y →Tn νa(Y ) is injective, which is necessary for νa ○ F ∣
U

to be an immersion at m and conversely, for any b ≥ a the map νb ○ F ∶ M → Nb is

a smooth immersion at m and hence a local embedding. The rest of this follows from

lemma 11.1.2. For every m ∈ K we can pick an open neighborhood U(m) of m such that

νa(m) ○ F ∣
U(m) ∶U(m)→Na(m) is a smooth embedding, where a(m) =

def
Ind(Im TmF ). Pick-

ing a finite subcover U(m1), . . . , U(mp) of K we can define a = max{a(m1), . . . , a(mp)} and

U = U(m1) ∪ ⋯ ∪ U(mp) so that νa ○ F ∣
U
∶U →Na is a smooth embedding. It is clear that

this index a is in fact also the smallest index for which such an open neighborhood of K

exists. ∎

Example 11.1.8. For all a ∈ N, let Sa = S1 denote a copy of S1, let Ta = S1 ×⋯ × Sa be the

a-torus, and let T∞ = T = ∏
a∈N

Sa Let τab ∶ Tb → Ta and τa ∶ T → Ta be the canonical projections

onto the first a coordinates: τab(z1, . . . , zj) = (z1, . . . , za) and τa(z1, z2, . . .) = ((z1, . . . , za)).

Then (T, τa) = lim←Ð SysT where SysT = (Ta, τab,N). Let α1, α2, . . . be irrational real numbers,

all of which are rationally independent and for each index a let

ha ∶R Ð→ Ta

t z→ (e2πiα1,t, . . . , e2πiαa,t)

Then (R, ha) forms a cone into SysT whose limit is

h ∶R Ð→ T

t z→ (e2πiα1,t, e2πiα2,t, . . .)

Since all h● are smooth injective immersions with each Imha dense in Ta, it follows that h

is a smooth, injective, pointwise immersion whose image is dense in N . ∎
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Sectional Submersions

The lemma and example in this section will not be needed anywhere else in this paper.

Lemma 11.2.1. Let n ∈ N , a be an index, and let na = νa(n). The following are equivalent:

(1) There exists a smooth manifold M and a smooth map F ∶ (M,m) → (N,n) such that

νa ○ F ∶M → Na has full rank at m.

(2) There exists a smooth map F ∶ (Va, na) → (N,n), where Va ∈ Open (Na), such that

νa ○ F ∶ Va → Na has full rank at na.

(3) There exists a smooth local section σa ∶ Va → N of νa through n.

Proof. (3) Ô⇒ (2) Ô⇒ (1) are immediate.

(1) Ô⇒ (2): Since F a = νa ○ F ∶ (M,m)→ (Na, na) is a submersion at m there exists a

smooth local section σa ∶ (Va, na)→ (M,m) of F a so that G =
def
F ○ σa ∶ (Va, na)→ (N,n) is the

map necessary for (2).

(2) Ô⇒ (3): Since νa ○ F ∶ (Va, na)→ (Na, na) is a smooth map of full rank at na there

exists a smooth local section η ∶ (Wa, na)→ (Va, na) of νa ○ F through na where we can take

Wa ⊆ Va. If σa =
def
F ○ η ∶ (Wa, na)→ (N,n) then IdWa = νa ○ F ○ η = νa ○ σa so that σa is a

smooth local section of νa through n. ∎

The following example shows that it is possible for a smooth map to be a pointwise

submersion at a point without admitting any smooth local section through that point.

Example 11.2.2. Let N1 = (0,1) and let N2 = N1
2 ∪N2

2 be two disjoint copied of the interval

(0, 3
4), say N1

2 = (0, 3
4) and N2

2 = (1,1 + 3
4), and let N3 = N1

3 ∪N2
3 ∪N3

3 ∪N4
3 be four disjoint

copies of the interval (0, (3/4)2), and so forth. Define ν12 ∶N2→N1 by ν12∣N1
2
= IdN1

2
and

ν12∣N2
2
= IdN2

2
−3

4 (i.e. this is a “downward shift by 3/4” of N2
2 = (1,1+ 3

4) onto (1
4 ,1)). To define

ν23 ∶N3→N2, let ν23 be defined on N1
3 ∪N2

3 = (0, (3/4)2)∪(1,1+(3/4)2) in the same way as ν12

as defined on N2 = N1
2 ∪N2

2 with that ν23(N1
3 ) = (0, (3/4)2), ν23(N2

3 ) = (3
4 − (3/4)2, 3

4
) (so that
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ν23(N1
3 ∪N2

3 ) = N1
2 ) and then repeat this on N3

3 ∪N4
3 so that ν32(N3

3 ∪N4
3 ) = (1,1 + 3

4) = N2
2 .

Continue defining νi,i+1 inductively in this manner and then let νij = νi,i+1 ○ ⋅ ⋅ ⋅ ○ νj−1,j for all

i ≤ j. Note that since all νi,i+1 are smooth surjective submersions, so too are all νij. Let

(N,νi) = lim←Ð(Ni, νij). A non-empty basic open subset of N is of the form ν−1
i (Vi) for some

non-degenerate open interval Vi ⊆ Ni, which since νi is surjective implies that the cardinality

of ν−1
i (Vi) is at least that of Vi so that in particular N does not have the discrete topology.

Let Mi = R ×Ni, Mk
i = R ×Nk

i , and µij = IdR ×νij so that

(M,µ●) =
def

lim←Ð(M●, µij) = lim←Ð(R ×Ni, IdR ×νij) = (R ×N, IdR ×νi)

Note that by construction, for an arbitrary open ball B1 in M1 there is some index iB1 such

that for all i ≥ iB1 , B1 is not contained in the range of µ1i∣Mk
i
for any k = 1, . . . ,2iB1 .

Now pick m ∈M and suppose that there existed some µ1(m) ∈ U1 ∈ Open (M1) and some

local section σ ∶U1→M of µ1 so that µ1 ○ σ = IdU1 . By shrinking U1 we may assume that U1

is an open ball. For all indices i, let σi ∶U1→Mi be σi = µi ○ σ. Then IdU1 = µ1 ○ σ = µ1iσi so

that σi is a section of µ1i. Since Im(σi) ⊆ R2 is diffeomorphic to the open ball U1 we have

by invariance of domain that Im(σi) is an open connected set in Mi and hence contained in

Mk
i for some k = ki ∈ {1, . . . ,2i}. In particular, U1 is contained in the range of µ1i∣Mk

i
but

since i was arbitrary, this gives us a contradiction.

Let m = (t0, n) ∈ M = R ×N and let ∂
∂t denote the canonical tangent vector of Tt0 R at

t0. Let ni = νi(n) and mi = µi(m) = (t0, ni) for each index i. Let γi ∶R→Mi be γi(s) =

(t0 + s, νi(n)) so that (γi)′(0) = ( ∂
∂t ,0) ∈ Tt0 R×TniNi. Since these γi’s are compatible with

the µij’s this defines a smooth map γ ∶ R → M = R ×N with γ′(0) = ( ∂
∂t ,0), which shows

that some tangent vectors of TM arise as derivatives of curves.

In contrast, consider xi =
def

(0, ∂∂t ∣mi) which are clearly consistent with all Tµj(m) µij’s and

hence define a tangent vector x ∈ TmM . If there was some smooth curve γ ∶ R → M with

γ′(0) = x then letting γi = µi ○γ we’ll have (γi)′(0) = (0, ∂∂t ∣mi). By continuity of (γ1)′, there
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is some open interval in R around 0 on which γ′ does not vanish and by picking a sufficiently

small interval we may also assume that γ1 is an embedding on this interval. By definition of

the maps µij this implies that all γi (when restricted to this same interval) are embeddings

into Mi. Since all µij’s are local isometries and since Imγ1 is not contained in R × {m1} we

obtain a contradiction in a manner analogous to the last contradiction that was obtained

above. This shows that the tangent vectors that arise as derivatives of curves may be a

non-trivial subset of TM .

Note that we can also define a smooth vector field where each component is defined by

Xi(n) =
def

(0, ∂∂t ∣ni) for all n ∈M . As before, at each point n ∈M there is not smooth curve

at n with X(n) as its tangent vector so in particular this smooth vector field on M that has

no integral curves at any point. ∎

Rank

Observe that the following definitions reduce to the usual definitions in the case where both

promanifolds are manifolds.

Definition 11.3.1. If Λ ∶ X → Y is a linear map between two vector spaces then define

the rank (resp. nullity) of Λ as rank Λ =
def

dim(Im Λ) (resp. nullity Λ =
def

dim(ker Λ)). If

F ∶ M → N is a smooth map between promanifolds and m ∈ M then define the rank (resp.

nullity) of F at m as rankmF =
def

rank(TmF ) (resp. nullitymF =
def

nullity(TmF )), the rank

(resp. nullity) of the tangent map TmF ∶ TmM → TF (m)N . Denote the induced maps on

M by

rankF ∶M Ð→ Z≥0 ∪ {∞}

m z→ rankmF

and nullityF ∶M Ð→ Z≥0 ∪ {∞}

m z→ nullitymF

If S ⊆M then say that F has constant rank (resp. nullity) on S if rankF (resp. nullityF )

is constant on S where if d ∈ Z≥0 ∪ {∞} and rankF (resp. nullityF ) is identically d on S

then we’ll say that F has constant rank (resp. nullity) d on S. Call a point m ∈M a rank
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(resp. nullity) regular point of F and say that F has locally constant rank (resp. nullity) at

( or around) m if there exists some neighborhood of m in M on which F has constant rank

(resp. nullity).

Remark 11.3.2. It is clear that whether or not m is a constant rank point of F is indepen-

dent of SysM and SysN and is in fact a diffeomorphism invariant (i.e. it only depends on

the locally ringed spaces (M,C∞
M) and (N,C∞

N )).

Proposition 11.3.3. If F ∶ M → N is a smooth map between promanifolds then the rank

map rankF ∶M → Z≥0 ∪ {∞} is lower-semicontinuous.

Proof. Fix m0 ∈ M , n0 = F (m0), m0
●µ● (m0), and n0

● = ν● (n0). Let r ∈ Z≥0 be any integer

such that r ≤ rankm0 F and pick r-dimensional vector spaces Y ≤ Im Tm0 F and X ≤ Tm0 M

such that Tm0 F ∣
X
∶ X → Y is a vector space isomorphism. Let X● = (Tm0 µ●)X and

Y● = (Tn0 ν●)Y . Pick an index a such that Tn0 νa∣Y ∶ Y → Ya is a vector space isomorphism

and then pick i ∈ N such thatm0
i ∈ ODomiF a and Tm0 µi∣X ∶X →Xi is a vector space isomor-

phism. Since rankF a
i ∶ODomiF a→Z≥0 ∪ {∞} is lower-semicontinuous and rankm0

i
F a
i ≥ r,

there exists some m0
i ∈ Ui ∈ Open (Doma

i F ) such that rankmi F
a
i ≥ rankm0

i
F a
i ≥ r for all

mi ∈ Ui. But then for any m ∈ µ−1
i (Ui), since Tm µi ∶TmM →Tµi(m)Mi is surjective it follows

that dim Tm(νa ○ F ) ≥ rankm0
i
F a
i , which implies that rankmF = dim TmF ≥ r. ∎

Example 11.3.4 (nullity(F ) may fail to be upper-semicontinuous). For each i ∈ N, let

Ji = ]−1
i ,−

1
2i+1

[ ⋃ ] 1
2i+1 ,

1
i
[, Ki = ]− 1

i+1 ,
1
i+1

[, and define

Oi = {i} × Ji ×R and Mi = O1 ∪⋯ ∪Oi ∪Ki

where observe that Ji+1∪Ki+1 =Ki since 1
2(i+1)+1 <

1
i+2 . For each i ∈ N, define µi,i+1 ∶Mi+1 →Mi

by letting µi,i+1 = IdO1∪⋅⋅⋅∪Oi∪Ki+1 on O1 ∪ ⋅ ⋅ ⋅ ∪Oi ∪Ki+1 and sending (i + 1, r, s) ∈ Oi+1 to r.

Clearly, µi,i+1 is a smooth submersion and since µi,i+1(Oi+1 ∪Ki+1) = Ji+1 ∪Ki+1 = Ki, it is

also surjective. Let (M,µ●) be a limit of SysM . Observe that µi,i+1(0) = 0 for all i ∈ N so
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that there exists some m0 ∈M such that µi(m0) = 0 for all i ∈ N and note that Tm0 M ≅ R

since T0Mi ≅ R for all i ∈ N. Suppose that m ∈M is such that m ≠m0 and let m● =
def
µ●(m).

Since m ≠ m0 there exists some h ∈ N such that mh ≠ 0. If mh ∉ Ki then let i =
def
h and

otherwise pick i ≥ h such that ∣mh∣ ≥ 1
i+1 , which implies that mi ∉Ki. Since dimmjMj = 2 for

all j ≥ i we have dimmM = 2.

Now if F ∶M →R is the (necessarily smooth) constant 0 map then for any m ∈M ,

nullitymF = dimmM =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if m =m0

2 otherwise

In particular, for anym0 ∈ U ∈ Open (M), nullitymF = 2 > 1 = nullitym0 F for allm ∈ U∖{m0}

and since m0 is clearly not an isolated point in M , it follows that nullityF ∶M →Z≥0 is not

upper-semicontinuous at m0. ∎

ν●-Constant Rank

We will now give a useful alternative generalization of the notion of “constant rank point” to

smooth maps F ∶ M → N between arbitrary promanifolds. While m ∈ M being a constant

rank point of F is a “local property” in the sense that it requires the existence of a neighbor-

hood of m in M with a certain property (i.e. that rankF be constant on it), the following

property can, in contrast, be though of as an “infinitesimal property.”

Definition and Notation 11.4.1. Let F ∶M → N be a smooth map between promanifolds

and suppose that (M,µ●) and (N,ν●) are the limits of the profinite systems SysM and SysN ,

respectively, and fix m ∈ M . Let RankIndReg(m,F,µ●, ν●) denote all those a ∈ N for which

there exists some index i ∈ N such that

Const1: µi(m) ∈ ODomi(νa ○ F ), and

Const2: µi(m) is a constant rank point of F a
i ∶ODomi(νa ○ F )→Na.
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Say that m is a (cofinally) constant rank or (cofinally) rank regular (resp. singular) point

(of F ) (with respect to µ● and ν●) if RankIndReg(m,F,µ●, ν●) is (resp. is not) cofinal in N

and denote the set of such points by RankReg(F,µ●, ν●) (resp. RankSing(F,µ●, ν●)).

If RankIndReg(m,F,µ●, ν●) contains all but finitely many positive integers then we will

say that m is an eventually constant rank (or rank regular) point (of F ) (with respect to µ●

and ν●) or that F eventually has constant rank at m, and we will denote the set of such

points by EvRankReg(F,µ●, ν●). Any of F , µ●, or ν● may be omitted from this notation if

they are clear from context. ∎

Remark 11.4.2. If M and N are finite-dimensional promanifolds then it is clear that m

is a constant rank point of F (as defined in 11.3.1) if and only if m ∈ RankReg(F,µ●, ν●) so

that definitions 11.3.1 and 11.4.1 are consistent. In fact, in this case it is easy to see that

RankIndReg(m,F,µ●, ν●) will contain all but finitely many integers.

Lemma 11.4.3. Let F ∶M → N be any smooth map between promanifolds and let (P,πα) =

lim←Ð(Pα, παβ,N) be a promanifold.

(1) If a ∈ RankIndReg(m,F ) and i ∈ N is an index for which Const1 and Const2 are satisfied

for a then each j ≥ i also satisfies Const1 and Const2 for a.

(2) If E ∶ (P,C∞
P )→ (M,C∞

M) is a diffeomorphism then

RankIndReg(m,F,µ●, ν●) = RankIndReg(E−1 (m) , F ○E,π●, ν●)

In particular, m is a cofinally (resp eventually) constant rank point of F with respect

to µ● and ν● ⇐⇒ E−1 (m) is a cofinally (resp eventually) constant rank point of

F ○E ∶P →N with respect to π● and ν●.

Proof. (1): Since F a
j = F a

i ○ µij on µ−1
ij (ODomiF a) and µij is a submersion it is immediate

that if F a
i has constant rank on Ui then F a

j has constant rank on Uj =
def

µ−1
ij (Ui) where

µj(m) ∈ Uj ⊆ ODomj F a.
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(2): Let p = E−1 (m) and G = F ○ E and observe that it suffices to prove only ⊆ since

then we may apply this result with E−1 and G in place of E and F to obtain the reverse

containment. So assume that A =
def

RankIndReg(m,F,µ●, ν●) is infinite, let a ∈ A, pick an

index i such that Const1 and Const2 are satisfied for a and let µi(m) ∈ Ui ∈ Open (Mi) be an

open set such that F a
i has constant rank on Ui. Pick an index j such that πj(p) ∈ ODomj Ei,

where Ei =
def
µi ○E ∶P →Mi and let Oj = ODomj Ei ∩ (Ei

j)
−1 (Ui) where observe that µi(m) =

(µi ○E)(p) = Ei(p) = Ei
j(πj(p)) ∈ ImEi

j so that πj(p) ∈ Oj. Since E is a diffeomorphism the

map Ei
j ∶ODomj Ei→Mi has full rank everywhere on its domain so that F a

i ○Ei
j ∶Oj→Na

has constant rank on Oj. Thus a ∈ RankIndReg(p,G,π●, ν●), as desired. ∎

Notation 11.4.4. Lemma 11.4.3 shows that whether or not m is a cofinally (resp even-

tually) constant rank point of F with respect to µ● and ν● is actually independent of µ●

so the notation RankReg(F, ν●), EvRankReg(F, ν●), and RankIndReg(m,F, ν●), which we will

henceforth use, is unambiguous. Furthermore, if N is a manifold or if SysN is understood

then we may even write RankReg F (resp. EvRankReg F ) in place of RankReg(F, ν●) (resp.

EvRankReg(F, ν●). ).

Remark 11.4.5. If the manifold N is the limit of some smooth system ν● that for whatever

reason is not the constant system ConstSysN , whose limit is (N, (IdN)i∈N), then it is easy to

see that RankIndReg(F, ν●) = RankIndReg(F, (IdN)i∈N).

Definition 11.4.6. For any smooth map F ∶M → N and any m ∈M , say that

• F cofinally (resp. eventually) has ν●-constant rank at m and that m is a cofinally

(resp. eventually) ν●-constant rank point of F if m ∈ RankReg(F, ν●) (resp. m ∈

EvRankReg(F, ν●)).

• F is ν●-regular at m and that m is a ν●-regular point of F if F cofinally has ν●-constant

rank at m.

• F is a ν●-regular immersion at m if F is a smooth pointwise immersion at m and m is

a ν●-regular point of F .
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If we don’t mention a point m then we mean that it this is true of F at every m ∈M .

Example 11.4.7. If F ∶ M → N is a smooth pointwise submersion at m ∈ M then F

eventually has ν●-constant rank at m.

Lemma 11.4.8. Let F ∶M → N be any smooth map between promanifolds.

(1) If N is a manifold then RankReg F is a dense open subset of M .

(2) For each a ∈ N, ∪
i∈N
µ−1
i (RankReg F a

i ) is a dense open subset of M and

RankReg(F, ν●) = ∩
a∈N

∪
b≥a,
i∈N

µ−1
i (RankReg F

a
i )

In particular, RankReg(F, ν●) is a dense comeager Gδ subset of M .

Proof. (1): AssumeN is a manifold and let Si denote the rank singular points of Fi ∶ODomiF →N .

By part (1) of lemma 11.4.3 we have i ≤ j implies µ−1
ij (Si) ⊆ Sj∩µij−1(ODomiF ) where recall

([31, p. 3]) that Sai is a closed nowhere dense subset of ODomiF a. Let i be any index and

let Oi =
def
µ−1
i (ODomiF ). Then Oi∩ ∩

j≥i
µ−1
j (Sj) is a decreasing sequence of closed (in Oi) and

nowhere dense sets and hence closed in Oi. Furthermore, it is clear that an element in M

belongs to Oi ∩RankSing(F, SysN) if and only if it belongs to Oi ∩ ∩
j≥i
µ−1
j (Sj). Hence, each

Oi∩RankSing(F, ν●) is closed and nowhere dense in Oi and since (Oi)i∈N forms an open cover

of M it follows that RankSing(F, ν●) is closed and nowhere dense in M .

(2): Let R = RankReg(F, ν●) and for all (i, a) ∈ N×N let Ra
i denote the set of all constant

rank points of F a
i . Note that Ra

i is a dense open subset of ODomiF a and hence open in Mi.

For all a ∈ N let Ra = ∪
b≥a

∪
i∈N
µ−1
i (Rb

i) and observe that ∪
i∈N
µ−1
i (Rb

i), and hence Ra, is dense

in M since for every m ∈ M there exists some index i such that µj(m) ∈ ODomj F a for all

j ≥ i so that any basic open subset of M containing m must intersect some µ−1
i (Ra

i ). Note

that an element m ∈M fails to belong to R if and only if there exists some index a(m) such

that for all b ≥ a(m) and all i ∈ N, µi(m) ∉ Rb
i or equivalently m ∉ ∪

b≥a(m)
∪
i∈N
µ−1
i (Rb

i) = Ra(m).
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Thus M ∖R = ∪
a∈N

M ∖Ra so R = ∩
a∈N

Ra. Since M is a Baire space and each Ra is a dense

open subset of M it follows that R is dense and comeager in M . ∎

ν●-Regular Immersions

The Canonical Form at a Point of a ν●-Regular Immersion

Proposition 11.5.1. Let F ∶ (M,m0) → (N,n0) be a smooth map, m0
● = µ● (m0), i be an

index, d● = dimm0
●
M● and letX ≤ Tm0 M be any vector space such that Tm0 µi∣X ∶X→Tm0

i
Mi

is an isomorphism. Suppose a and j ≥ i are such that µj(m0) ∈ ODomj F a is a regular point

of F a
j ∶ODomj F a→Na of rank r, and Tm0 F a∣

X
∶X→Tνa(n0)Na is injective. Given any chart

(Ui, ϕi) centered at µi(m0) there exist charts (Uj, ϕj) and (Va, ψa) centered respectively at

µj(m0) and νa(n0), such that

(1) µij(Uj) ⊆ Ui, F a
j (Uj) ⊆ Va, Uj ⊆ ODomj F a, and both U j and Va are compact.

(2) F a
j has constant rank r ≥ di on a neighborhood of Uj.

(3) The coordinate representations of µij and F a
j , denoted by µ̂ij and F̂ a

j , have the following

form, which we will call the canonical or standard representation:

(p1, . . . , pdi , . . . , pr . . . , pdj) (p1, . . . , pdi , . . . , pr,0, . . . ,0)

(p1, . . . , pdi)

F̂aj

µ̂ij

Figure 11.1: The canonical coordinate representation.

That is, ϕ≤rj = ψ≤r
a ○ F a

j ∣Uj and ϕ≤dij = ϕi ○ µij ∣Uj , where for any l ∈ N, ϕ≤lj (resp. ψ≤l
a )

represent the first l coordinates of ϕj (resp. ψa).
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(4) Both (Uj, ϕj) and (Va, ψa) are coordinate boxes where ϕj and ψa may be extended to

charts around Uj and Va, respectively, which again have all of the properties mentioned

in this proposition.

(5) Whenever a point ψ−1
a (p1, . . . , pr, . . . , pdimνa(n0)

Na) belongs to Va then the point ψ−1
a (p1, . . . , pr,0, . . . ,0)

belongs to F a
j (Uj).

Furthermore, if F is a ν●-regular immersion at m0 then there are cofinally many indices a

and j ≥ i that satisfy the above hypotheses and if Ũj and Ṽa are any given neighborhoods of

µj(m0) and νa(n0), respectively, then Uj and Va can be chosen so that in addition Uj ⊆ Ũj

and Va ⊆ Ṽa.

Proof. That such an index a can be found follows from corollary 7.6.3. If F is a ν●-regular

immersion at m0 then the existence of cofinally many indices a and j ≥ i that satisfy

the above hypotheses is the very definition of what it means for F to be ν●-regular at

m0. Let n0
● = ν● (n0) and X● = Tm0

●
(X). Since F a = F a

i ○ µj our hypotheses imply that

Tm0
j
F a∣

Xj
∶Xj→Tn0

a
Na is injective, Tm0

j
µij ∣Xj ∶Xj→Tm0

i
Mi is bijective, and d ≤ r, so that

the result is now just the statement of lemma C.2.1. ∎

Smoothness of Maps Composed on the Right

Theorem 11.5.2. Let F ∶ (M,m0) → (N,n0) be a smooth map, let p0 ∈ P where (P, ρ●) =

lim←Ð(Pα, ραβ,N) is a promanifold, and let G ∶ (P, p0)→ (M,m0) be any map that is continuous

at p0. If F is a smooth ν●-regular immersion at G(p0) then G ∶ P →M is smooth at p0 (def.

6.1.14) ⇐⇒ F ○G ∶ P → N is smooth at p0.

Proof. For the non-trivial direction, assume that H =
def
F ○G is smooth at p0 and let m0

● =

µ●(m), n0
● = ν●(n0), and d● = dimm0

●
M●. Let U = µ−1

i (Ui) be an arbitrary basic open

neighborhood of m0. Pick indices a and j ≥ i and coordinate charts Ui, Uj, and Va centered,

respectively, at m0
i , m0

j , and n0
j such that Uj ⊆ µ−1

ij (Ui) and the coordinate representations

of µij and F a
j are
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(p1, . . . , pdi , . . . , pdj) (p1, . . . , pdi , . . . , pr,0, . . . ,0)

(p1, . . . , pdi)

F̂aj

µ̂ij

where r is the rank of F a
j . Since G is continuous at p0 and Ha =

def
νa ○ H is smooth

at p0 there exist α ∈ N and Wα ∈ Open (ODomαHa) such that p0 ∈ ρ−1
α (Wα) ⊆ (µj ○

G)−1 (Uj) and Ha
α∣Wα

∶Wα→Va is smooth. Let W = ρ−1
α (Wα) so p0 ∈ W ∈ Open (P ). Given

any pα ∈ Wα, Ha maps the fiber Q = ρ−1
α (pα) to the point in Va whose coordinates are

(Ha
1 (pα), . . . ,Ha

r (pα),0, . . . ,0) so that Gi maps every point of Q to the (single) point in Ui

whose coordinates are (Ha
1 (pα), . . . ,Ha

i (pα)). Thus pα ∈ DomαGi where since pα ∈ Wα was

arbitrary we have Wα ⊆ ODomαGi. In particular, we’ve shown that Gi is locally cylindrical

at p0 and for all pα ∈Wα, Gi
α(pα) has coordinate representation (Ha

1 (pα), . . . ,Ha
i (pα)). But

each Ha
1 , . . . ,H

a
i is smooth on Wα so that Gi

α∣Wα
is smooth. Thus Gi is smooth at p0 where

since i was arbitrary we have shown that G is smooth at p0. ∎

Corollary 11.5.3. Continuous lifts of smooth maps by ν●-regular immersions are smooth:

Suppose that F ∶M → N is a smooth ν●-regular immersion and G ∶P →M is any continuous

map on the promanifold P . Then G ∶P →M is smooth if and only if F ○G ∶P →N is smooth.

Using Composition to Determine Equality of Continuous Maps

Theorem 11.5.4. Let F ∶M → N be a smooth ν●-regular immersion and let γ, η ∶ Z →M

be continuous maps from a non-empty connected space Z. Then

γ = η ⇐⇒ F ○ γ = F ○ η and γ(z) = η(z) for some z ∈ Z.

Proof. For the non-trivial direction, assume that F ○ γ = F ○ η and that {z ∈ Z ∣γ(z) = η(z)}

is not empty. Fix an index i, let d = dimMi, and let γi = µi ○ γ, ηi =
def
µi ○ η ∶ Z → Mi.

Observe that since i was arbitrary it is necessary and sufficient to show that γi = ηi where

since Ei =
def

{z ∈ Z ∣γi(z) = ηi(z)} is non-empty and closed (since M is Hausdorff), it suffices
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to show that Ei is open in Z. Let z0 ∈ Ei, m0 = γ(z0), n0 = F (m0), and let m0
j = µj(m0) and

n0
a = νa(m0) for all a and j. Let j ≥ i and a be indices for which there exist charts Ui, Uj,

and Va centered at m0
i , m0

j , and n0
a, respectively, for which the coordinate representations of

µij and F a
j are

(p1, . . . , pd, . . . , pdimMj
) (p1, . . . , pd, . . . , pr,0, . . . ,0)

(p1, . . . , pd)

F̂aj

µ̂ij

where r is the rank of F a
j and Uj ⊆ µ−1

ij (Ui) ∩ODomj F a.Let W = γ−1
j (Uj) ∩ η−1

j (Uj) so that

z0 ∈W ∈ Open (Z). Observe that for any z ∈W , from the equality (F a ○ γ)(z) = (F a ○ η)(z)

and the above diagram we can conclude that γi(z) = ηi(z) so that z ∈ Ei. Thus W ⊆ Ei

which shows that Ei is open in Z, as desired. ∎

Corollary 11.5.5. Let F ∶M → N be a smooth ν●-regular immersion and let η ∶ Z → N be

continuous maps. For l = 1,2, let γl ∶ Z l → M be a map from a subset Z l of Z such that

F ○ γ = η∣
Zl
. If C is a connected subset of Z1 ∪ Z2 on which such that γ1∣

C
and γ2∣

C
are

continuous and there is some w ∈ C such that γ1(w) = γ2(w) and then γ1 = γ2 on C.

Components of Fibers of ν●-Regular Immersions

Proposition 11.5.6. If F ∶ (M,m0) → (N,n0) is a ν●-regular immersion at m0 then the

connected component of the fiber F −1 (F (m0)) containing m0 is a singleton set. Further-

more, for each index i there exist cofinally many indices j ∈ N≥i and a ∈ N for which there

exist open sets µj(m0) ∈ Uj ∈ Open (ODomj F a) and νa(n0) ∈ Va ∈ Open (Na) such that if C

is any connected component of F −1(ν−1
a (Va)) that intersects µ−1

j (Uj) then µi(C) is a point

i.e. C ⊆ µ−1
i (µi(c)), where c ∈ C is arbitrary.

Proof. Let C0 denote the connected component of F −1 (n0) containing m0. Let i be an

arbitrary index, d =
def

dimMi, and let (Ui, ϕi) be any chart centered at µi(m0). By proposition
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11.5.1, we can find indices a and j ≥ i and charts (Uj, ϕj) and (Va, ψa) centered respectively

at µj(m0) and νa(n0), such that µj(m0) ∈ Uj ⊆ ODomj F a, F a
j has constant rank r on a

neighborhood of Uj, µij(Uj) ⊆ Ui, F a
j (Uj) ⊆ Va, and where the coordinate representations of

µij and F a
j has the form:

(p1, . . . , pd, . . . , pdimMj
) (p1, . . . , pd, . . . , pr,0, . . . ,0)

(p1, . . . , pd)

F̂aj

µ̂ij

Observe that νa(n0) belongs to Va so it has a coordinate representation, say (n0
1, . . . , n

0
dimNa

),

but since νa(n0) = F a
j (m0) it follows that the last dimNa − r of these coordinates 0. Let

e = dimMj. If m ∈ µ−1
j (Uj) is any point that belong to F −1 (n0) and if (m1, . . . ,me) is

the coordinate representation of µj(m) then since F a
j (µj(m)) = νa(F (m)) = νa(n0) it follows

from the coordinate representation that we necessarily havem1 = n0
1, . . . ,mr = n0

r so that since

r ≥ d, it follows that µi(m) will necessarily have the coordinate representation (n0
1, . . . , n

0
r).

In particular, µj(m0) has the coordinate representation (n0
1, . . . , n

0
r,m

0
r+1, . . . ,m

0
e) for some

m0
r+1, . . . ,m

0
e ∈ R and µi(m0) = (n0

1, . . . , n
0
r). Thus µ−1

j (Uj) ∩ F −1 (n0) ⊆ µ−1
i (µi(m0)).

Now let C denote any connected component of F −1 (n0) that intersects µ−1
j (Uj) and

suppose that C was not contained in µ−1
i (µi(m0)). Then µj(C) is a connected set not

contained in µ−1
ij (m0

i ) so there exists some m ∈ C such that µj(m) ∈ Uj ∖µ−1
ij (m0

i ). But since

m ∈ F −1 (n0) this implies that m ∈ µ−1
j (Uj) ∩ F −1 (n0) ⊆ µ−1

i (µi(m0)) so µi(m) = µi(m0), a

contradiction. Thus C ⊆ µ−1
i (µi(m0)) so in particular C0 ⊆ µ−1

i (µi(m0)). Observe that if

n ∈ ν−1
a (Va) and C is any connected component of F −1 (n) that intersects µ−1

j (Uj) then this

same argument, with n0 andm0 replaced respectively with n and any element of C∩µ−1
j (Uj),

would work to show that µi(C) is a singleton set. Finally, since i was arbitrary it follows

that C0 ⊆ ∩
i∈N
µ−1
i (µi(m0)) = {m0}. ∎

Corollary 11.5.7. Every fiber of a smooth ν●-regular immersion is totally disconnected

(def. A.0.5), i.e. such maps are light (def. A.0.6(b)). In particular, each fiber of a smooth
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pointwise isomersion is totally disconnected.

Note that corollary 11.5.7 may also be proven more directly by using proposition 11.5.1

to show that for all m0 ∈M , if C is the connected component of F −1(F (m0)) containing m0

then for all i ∈ N, µ−1
i (µi(m0)) ∩C is a closed and open subset of C.

Corollary 11.5.8. A smooth ν●-regular immersion is injective if and only if it is monotone.

In particular, a smooth pointwise isomersion is injective if and only if it is monotone.

Continuity of Maps Composed on the Right

The results of this subsection will not be used anywhere else in this paper.

Theorem 11.5.9. Let F ∶ M → N be a smooth ν●-regular immersion, Z be any space,

γ ∶ Z → M be any map, and for all i ∈ N, let Ci (resp. Di, C) be the set of all z ∈ Z such

that µi ○γ ∶ Z →Mi (resp. νi ○F ○γ ∶ Z → Ni, γ ∶ Z →M) is continuous at z. If every D● is a

neighborhood of C in Z then the same is true of every C● and C = ∩C● is a Gδ-subset of Z.

Proof. That C = ∩C● is always true and obvious. Let η = F ○ γ, γ● = µ● ○ γ, η● = ν● ○ η. Let

i ∈ N, z0 ∈ C, m0 = γ(z), n0 = F (m), m0
● = µ●(m), n0

● = ν●(n0), and d● = dimm0
●
M●. Pick

integers a and j ≥ i and coordinate charts (Ui, ϕi), (Uj, ϕj), and (Va, ψa) as in proposition

11.5.1 so that in particular, the coordinate representations of µij and F a
j are

(p1, . . . , pdi , . . . , pdj) (p1, . . . , pdi , . . . , pr,0, . . . ,0)

(p1, . . . , pdi)

F̂aj

µ̂ij

where r is the rank of F a
j . Since Da is a neighborhood of z in Z and γj is continuous at z,

there exists some z ∈W ∈ Open (Z) such that W ⊆ Da ∩ γ−1
j (Uj). The canonical coordinate

representation now implies that γi is continuous at every point ofW : for let z● = (zα)α∈A → z

be any convergent net in W (with z ∈ W ) and note that F a
j (γj(z●)) = ηa(z●) → ψa(ηa(z))
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since ηa is continuous on W . Since ψa(F a
j (γj(z●))) → ψa(ηa(z)), regardless of whether or

not the last (dj − r)-coordinates of (ϕj(γj(zb))b∈A converge, the commutativity of the above

diagram implies that ϕi (γi (z●))→ ϕi(γi(z)). ∎

Corollary 11.5.10 (Rough lifts of continuous maps are continuous on Gδ-subsets). Let

F ∶M → N be a smooth ν●-regular immersion and let γ ∶ Z →M be any map from any space

Z such that F ○ γ ∶ Z → N is continuous. Then the set of all points at which γ ∶ Z →M is

continuous is a Gδ-subset of Z.

Corollary 11.5.11 (Inverses of injective ν●-regular immersions are continuous onGδ-subsets).

If F ∶ M → N is an injective smooth ν●-regular immersion then the set of points at which

F −1 ∶ ImF →M is continuous is a Gδ-subset of ImF .

Smooth Embeddings of Promanifolds

Theorem 11.6.1. A smooth ν●-regular (def. 11.4.6) map F ∶M → N is a smooth embedding

if and only if it is a topological embedding and a pointwise immersion.

Proof. One direction follows from example 11.1.1 so assume that F is a topological embed-

ding and a pointwise immersion. Let U ∈ Open (M), F ● = ν● ○F , f ∈ C∞
M(U), and n0 ∈ F (U)

be arbitrary. Define S =
def

ImF , make S into a locally R-ringed space by giving it the re-

striction (S,C∞
N ∣

S
), let F −1 denote the homeomorphism F −1 ∶S→M , let m0 =

def
F −1 (n0), and

for all indices i and a let m0
i =

def
µi(m0) and n0

a =
def
νa(n0). Pick an index i0, open coordinate

box Ui0 ∈ Open (Mi0), and a map fi0 ∈ C∞
Mi0

(Ui0) such that m0 ∈ µ−1
i0

(Ui0) ∈ Open (U) and

f = fi0 ○ µi0 on µ−1
i0

(Ui0). Define d = dimMi0 and apply proposition 11.5.1 to obtain indices

i ≥ i0 and a and open coordinates cubes (Ui, ϕi) and (Va, ψa) such that µi0,j(Uj) ⊆ Ui0 ,

F a
i (Ui) ⊆ Va, where the coordinate representations of µi0,j and F a

j , denoted by µ̂ij and F̂ a
j ,

have the following form:
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(p1, . . . , pd, . . . , pdimMi
) (p1, . . . , pd, . . . , pr,0, . . . ,0)

(p1, . . . , pd)

F̂ai

µ̂i0,i

where Ui ⊆ ODomiF a and where whenever a point (p1, . . . , pr, . . . , pdimNa) belongs to Va then

the point (p1, . . . , pd, . . . , pr,0, . . . ,0) is the preimage under F a
j of some point in Uj. Since

µi0,i is an open map we may replace Ui0 with the coordinate box µi0,i(Ui). It is necessary

and sufficient to show that there exists some index a, some open set νa(n0) ∈ Va ∈ Open (Na),

and some ga ∈ C∞
Na

(Va) such that ν−1
a (Va)∩S ⊆ F (U) and f ○F −1∣

V ∩S = ga○νa on ν
−1
a (Va)∩S.

Observe that it suffices to prove the above claim with some open set U ′ ∈ Open (M) such

that m0 ∈ U ′ ⊆ U in place of U . Hence we may assume without loss of generality that

U = µ−1
i0

(Ui0). Let ga ∶Va→R be defined in coordinates by

ga(p1, . . . , pd, . . . , pe) =
def
fi(p1, . . . , pd)

where this is well-defined since every point in Va is the preimage of a some point inMj. Since

F (µ−1
i (Ui)) is open in S with n0 ∈ F (µ−1

i (Ui)) = F (U) we can pick an index b ≥ a and an

open set Vb ⊆ ν−1
ab (Va) such that n0 ∈ S ∩ ν−1

b (Vb) ⊆ F (U). Since Wa ⊆ νab(Vb) we can define

gb =
def
ga ○ νab∣Vb ∶Vb→R.

Let n ∈ S ∩ ν−1
b (Vb) and note that if we can show that f ○ F −1(n) = (gb ○ νb)(n) then

(as described above) the proof will be complete. Let m =
def
F −1 (n) so that in particular

m ∈ U = µ−1
i (Ui). Since µi(m) ∈ Ui we can express µi(m) in terms of coordinates, say µi(m)

is (p1, . . . , pdimMi
), which implies that µi(m) has (p1, . . . , pd) as its coordinate representation.

Pick j ≥ i such that µj(m) ∈ ODomj F b and observe that

νa(n) = νab(νb(n)) = νab(F (m)) = νab(F b
j (µj(m))) = F a

j (µj(m)) = F a
i (µi(m))

This together with the coordinate representation of F a
i implies that νa(n) = F a

i (µi(m)) has
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(p1, . . . , pr,0, . . . ,0) as its coordinate representation. Now,

(gb ○ νb)(n) = (ga ○ νab ○ νb)(n) by definition of gb

= ga(νa(n))

= fi(p1, . . . , pd) since νa(n)’s coordinates are (p1, . . . , pd, . . . , pr,0, . . . ,0)

= fi(µi(m)) since µi(m)’s coordinates are (p1, . . . , pd)

= f(m) = (f ○ F −1)(n)

which was to be shown. ∎

Corollary 11.6.2. If F ∶ M → N is a smooth ν●-regular immersion then F is a smooth

embedding if and only if it is a topological embedding.

Theorem 11.6.3. If F ∶ M → N is a smooth pointwise isomersion then F is a smooth

embedding if and only if it is a topological embedding.

Proof. Every smooth embedding is by definition a topological embedding. Conversely, since

F is a pointwise isomersion then each F a
i is a smooth submersion for all indices i and a

so that in particular it has ν●-constant rank at every point of M which allows us to apply

theorem 11.6.1. ∎

Remark 11.6.4. Theorem 11.6.3 implies that if F ∶M → N is an injective smooth pointwise

isomersion then only topological reasons can cause F to fail to be a smooth embedding.

Consequently, in the search for an inverse function theorem for promanifolds we must find

conditions that will make a smooth Pointwise isomersive map both locally injective at a

point as well as an open map onto its image.

The Whitney Embedding Theorem for Promanifolds

Theorem 11.6.5 (Whitney Embedding Theorem for Promanifolds). Every promanifold can

be properly smoothly embedded into RN.
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Proof. For each index i let ci = 2 dimMi + 1, εi ∶Mi→Rci be a proper smooth embedding,

ei =
def

i

∑
l=1

ci, Fi =
def

i

∏
l=1
εi ∶

i

∏
l=1
Ml→

i

∏
l=1

Rcl . Observe that (F●, IdN) forms a smooth inverse system

morphism between the canonical profinite systems (where all connecting maps are the canon-

ical projections) and that F =
def

lim←ÐF● ∶
∞
∏
l=1

Ml→RN is a smooth Pr ≤●-regular immersion that

is also a proper topological embedding. It follows from theorem 11.6.1 that F ∶
∞
∏
l=1
Ml→RN

is a smooth embedding. The conclusion follows by recalling that lemma 5.4.2 showed that

(M,C∞
M) can be smoothly embedded into

∞
∏
l=1
Ml as a closed subset. ∎

Pointwise Submersions

Example 11.7.1. Each projection µi ∶M →Mi is a pointwise submersion.

Theorem 11.7.2. Let F ∶ (M,m) → (N,n) be a smooth map between promanifolds. Then

F ∶ M → N is a pointwise submersion at m if and only if νa ○ F ∶ M → Na is a pointwise

submersion at m for each index a.

Proof. ( Ô⇒ ) is immediate. The converse follows by observing that Im TmF is dense in

TnN by proposition 2.2.1(3) and closed in TnN by proposition 7.4.1. ∎

Remark 11.7.3. If F● ∶ SysM → SysN is an inverse system morphism with every Fa a smooth

surjective submersion then we although know that the image of F = lim←ÐF● is dense in N ,

example 3.4.5 show that it need not be surjective. However, theorem 11.7.2 guarantees that

at least the map TF ∶TM →T(ImF ) will be surjective.

Lemma 11.7.4. If F ∶M → N be a smooth pointwise submersion and N is a manifold then

F ∶M → N is open.

Proof. Let W ∈ Open (M) be an open set and let m ∈W . Pick an index i and an open set

Ui ∈ Open (Mi) such that m ∈ U =
def
µ−1
i (Ui) ⊆W and F = Fi ○ µi on U . Since Fi ∶ Ui → N is

a smooth map between manifolds and since Fi has full rank it follows that Fi is a smooth
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submersion and thus an open map. Since µi ∶ M → Mi is an open map and F = Fi ○ µi on

U = µ−1
i (Ui) it follows that F (U) is open in N . Thus F ∶M → N is an open map. ∎

Corollary 11.7.5. Assume that F ∶ M → N is a smooth pointwise submersion. If N is a

manifold then for any compact K ⊆ F (M) there exists some index i such that F = Fi ○µi on

U = µ−1
i (ODomiF ) with K ⊆ F (U) and Fi ∶Ui→Na a smooth submersion.

Proof. For each index i let Ui =
def

ODomiF so that F = Fi ○µi on U i =
def
µ−1
i (Ui) and U i ⊆ U i+1.

Observe that Fi(Ui) = Fi (µi(µ−1
i (Ui))) = F (Ui) so that Fi(Ui) ⊆ Fi+1(Ui+1). Since each

Fi ∶ Ui → N is a smooth submersion, the sets (Fi(Ui))∞i=1 form an increasing open cover of K

so that by compactness there exists some index i such that K ⊆ Fi(Ui). ∎

Remark 11.7.6. Observe that for this proof it was only necessary to know that F was open,

locally cylindrical, and that K was compact.

Example 11.7.7 (A non-open ν●-surjective smooth pointwise submersion with a dense

image that contains no ν●-fiber and whose interior in its codomain is empty). Let SysM ,

SysP , (F●, ι) ∶ SysM → SysP , and F ∶ M → MN
1 be as in example 3.4.5 so that Mi =

i

∏
l=1

R≥0

and SysP =
def

(Mi, ρa,a+1,N) with limit (MN
1 , ν●) where Fa =

def
ρa,a+1 ∶ Ma+1 → Ma and νa =

def

ρa ∶ MN
1 → Ma are the canonical projections for each a ∈ N. Observe that F is a smooth

pointwise submersion since the same is true of each Fa and that F is ν●-surjective since

each Fa is surjective, which implies that ImF is dense in MN
1 . Recall from example 3.4.5

that for any r● = (r1, r2, . . . ) ∈ MN
1 , r● ∈ ImF ⇐⇒

∞
∑
a=1

ra converges. Suppose that there

existed some index a and some (r1, . . . , ra) ∈ Ma
1 such that ν−1

a (r1, . . . , ra) ⊆ ImF Define

s● = (r1, . . . , ra,1,1, . . .) and note that
∞
∑
a=1

sa =∞ implies that s● /∈ ImF , but this contradicts

the fact that s● ∈ ν−1
a (Va) ⊆ ImF consists solely of convergent series. Thus ImF contains no

ν● fiber which makes it impossible for ImF to contain a non-empty basic open subset of MN
1

so that ImF has empty interior in MN
1 , which in turn implies that MN

1 F ∶M →MN
1 is has

no points of openness and so cannot be an open map. ∎
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Proposition 11.7.8. Let F ∶M → N be a smooth pointwise isomersion such that F ∶M →

ImF is open. Then for any map G ∶ ImF →P into any promanifold P , G ○ F ∶ M → P is

smooth ⇐⇒ G ∶ ImF → P is smooth.

Proof. Assume that G ○ F ∶ M → P is smooth and note that G ∶ ImF → P is continuous.

Let α ∈ N, Wα ∈ Open (Pα), hα ∈ C∞
Pα

(Wα), W =
def
π−1
α (Wα), V =

def
G−1 (W ), U =

def
F −1 (V ), and

h =
def
hα ○ πα∣W . To show that G is smooth, it suffices to show that h ○G ∶W ∩ ImF →R is

smooth so let n ∈W ∩ ImF and n● = ν●(n). Pick any m ∈ F −1(n) and let m● = µ●(m). Since

G ○ F is smooth so is f =
def
h ○G ○ F ∶ U → R so there exists some i ∈ N, Ui ∈ Open (Mi), and

fi ∈ C∞
Mi

(Ui) such that m ∈ µ−1
i (Ui) ⊆ U and fi ○µi = h ○G ○F on µ−1

i (Ui). Using proposition

11.5.1 and shrinking Ui if necessary, pick indices a and j ≥ i and smooth coordinate boxes

(Ui, ϕi), (Uj, ϕj), and (Va, ψa) centered respectively atmi,mj, and na such that n ∈ ν−1
a (Va) ⊆

V , F a
j (Uj) = Va, and µ−1

j (Uj) ⊆ (F ○ νa)−1(Va) ∩ µ−1
i (Ui), and the coordinate representations

of µij and F a
i are

(p1, . . . , pd, . . . , pdj) (p1, . . . , pd, . . . , pra)

(p1, . . . , pd)

F̂aj

µ̂ij

where ra = dimnaNa, d = dimmiMi, and dj = dimmjMj. Define g ∶ F (µ−1
j (Uj)) → R by

g(n̂) = (fi ○ ϕi) (p1, . . . , pd) where (ψa ○ νa) (n̂) = (p1, . . . , pd, . . . , pra). The above diagram

makes it is easy to see that g is well-defined, smooth, and that g = h ○G on the open subset

F (µ−1
j (Uj)) of ImF . ∎
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Chapter 12

Sard’s Theorem

Subsets of Measure 0

Recall that a subset of Euclidean space, with a compatible metric d, is said to be a set of

measure 0 if for all ε > 0 there exists a countable collection of open balls of radius rn whose

union contains this set such that ∑
n∈N
rn < ε, It is clear if d′ is a metric equivalent to d then it

would determine the same sets of measure 0 so that measure 0 subsets are independent of

the choice of metric. Furthermore, measure 0 subsets of Euclidean space are diffeomorphism-

invariants, which allows us to define the subsets of measure 0 of a manifold as being those

subsets E such that for every chart (U,ϕ) onM the set ϕ(E) has measure 0 in its codomain.

Similarly, we will now define what it means for a subset of a promanifold to be a set of

measure 0 without defining any measure on it. The following definitions 12.1.1(2) - (4) may

be viewed as analogs of “measure 0” subsets of a manifold that are contained within a single

chart in the sense that both may be seen as being the “basic” measure 0 subsets’ that are

subsequently used to define all remaining measure 0 subsets. It also shows that there are

several different competing immediate generalizations of this notion to promanifolds.

Definition 12.1.1. Let E be any subset of M .

(1) For any index i, say that µi measures E as 0 if µi(E) has measure 0 in Mi.
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(2) Say that E cofinally has measure 0 (in SysM) if µl(E) has measure 0 inMl for cofinally

many l.

(3) By a µ●-basic measure 0 set we mean a set of the form µ−1
i (Ei) that cofinally has

measure 0 in SysM .

(4) If i is an index such that µl(E) has measure 0 in Ml for all l ≥ i then we will say that

E eventually has measure 0 (after i) (in SysM).

Lemma 12.1.2. Let E ⊆M .

(1) If E = µ−1
i (Ei) is a µ●-basic measure 0 subset of M and with Ei a measure 0 subset of

Mi then µj(E) = µ−1
ij (Ei) has measure 0 for all j ≥ i.

(2) If i ∈ N and (El
i)
∞
l=1 are subsets of Mi such that µ−1

i (El
i) is a µ●-basic measure 0 for all

l ∈ N, then the same is true of ∪
l∈N
El
i and ∩

l∈N
El
i.

(3) If SysM and Sys
M̂

are two smoothly equivalent profinite systems then E is a µ●-basic

measure 0 set if and only if it is a Sys
M̂
-basic measure 0 set.

(4) Consider the statements:

(a) E is contained in a µ●-basic measure 0 subset of M .

(b) E eventually has measure 0 in SysM .

(c) E cofinally has measure 0 in SysM .

(d) There exists an index i such that µi(E) has measure 0 in Mi.

then (a) Ô⇒ (b) Ô⇒ (c) Ô⇒ (d) and if each component of each Mi has positive

dimension then also (d) Ô⇒ (a).

(5) If there exists a point in the interior of E at which M has non-zero dimension then E

is not a µ●-basic measure 0 set.
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Proof. (1), (2), (3): For each index i, let Zi denote the connected components of Mi that

have dimension 0. Suppose that E = µ−1
i (Ei) is a µ●-basic measure 0 set in M and let j ≥ i.

Pick k ≥ j such that µk(E) = µ−1
ik (Ei) has measure 0 in Mk. Since Ei ∩ Zi is open in Mi,

µ−1
ik (Ei ∩Zi) is an open measure 0 inMk, which is only possible if µ−1

ik (Ei ∩Zi) ⊆ Zk and since

µjk is a smooth submersion this implies that µjk(µ−1
ik (Ei ∩Zi)) = µ−1

ij (Ei ∩Zi) ⊆ Zj. That

µ−1
ij (Ei ∩ (Mi ∖Zi)) has measure 0 follows immediately from lemma C.5.3. Thus µj(E) =

µ−1
ij (Ei) has measure 0 in Mj, which proves (1) and (2) follows immediately. Furthermore,

it is clear that if µij = F ○G is the composition of two smooth submersions, where F ∶N →Mi

and G ∶Mj→N for some manifold N , then this same argument proves that G−1 (Ei) has

measure 0 in N . Thus if SysM is smoothly equivalent to Sys
M̂

then a subset of M is a

µ●-basic measure 0 set in M if and only if it is a Sys
M̂
-basic measure 0 set in M . This

proves (3).

(4): The (a) Ô⇒ (b) Ô⇒ (c) Ô⇒ (d) follows from (1) so assume that each component

of each Mi has positive dimension and that µi(E) has measure 0 in Mi for some index i.

Since Mi has dimension ≥ 0 for each j ≥ i the set µ−1
ij (µi(E)) has measure 0 in Mj by lemma

C.5.3 so that µ−1
i (µi(E)) is a µ●-basic set of measure 0 containing E.

(5): Suppose that m ∈ Int(E) and pick an i and a connected non-empty Ui ∈ Open (Mi)

such that dimµi(m)Mi ≥ 1 and m ∈ µ−1
i (Ui) ⊆ IntE. For all j ≥ i we have µ−1

ij (Ui) ⊆ IntE ⊆

µj(E) where since µ−1
ij (Ui) is open, µj(E) is not of measure 0 in Mj. ∎

Lemma 12.1.2(4) shows, in particular, that under the following (mild) assumption, the

various definitions of a “basic measure 0 subset of M ” all coincide.

Assumption 12.1.3. We will henceforth only consider profinite systems where each com-

ponent of each manifold has positive dimension.

Definition 12.1.4. If E ⊆M then we will say that E is a

(1) cylindrical set of measure 0 if it is a µ●-basic set of measure 0.
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(2) locally cylindrical set of measure 0 if for every m ∈ E there exists a neighborhood

m ∈ O ∈ Open (M) such that E ∩O is a cylindrical set of measure 0.

(3) trivial set of measure 0 if any of the equivalent condition in lemma 12.1.2(4) are satis-

fied.

(4) set of measure 0 (in M) or locally a set of measure 0 (in M) if E is contained in a

countable union of trivial sets of measure 0.

Furthermore, we will say that two subsets ofM differ by a set of measure 0 if their symmetric

difference is a set of measure 0.

Remark 12.1.5. Our assumption 12.1.3 and lemma 12.1.2(3) justify our omission of SysM

in our terminology when referring to a set of measure 0 in M . Since M is separable, it is

clear that any locally cylindrical set of measure 0 can always be written as a countable union

of cylindrical sets of measure 0 and it is also clear that every finite union of cylindrical (resp.

trivial) sets of measure 0 is again a cylindrical (resp. trivial) set of measure 0. Hence, our

assumption implies that a set has measure 0 in M if and only if it is contained in a locally

cylindrical set of measure 0.

Sard’s Theorem for Promanifolds

Lemma 12.2.1. Let F ∶M → N be a smooth map between promanifolds. Let C (resp. D)

denote the set of all critical points (resp. values) of F . For all indices a, let Ca (resp. Da)

denote the set of all critical points (resp. values) of F a =
def
νa ○ F ∶M → Na. Then

(1) C = ∪
a∈N

Ca is an Fσ set and D = ImF ∩ ( ∪
a∈N

ν−1
a (Da)).

(2) If N is a manifold then C is closed in M , D is a meager Fσ set of measure 0 in N , and

D consists of the union of all critical values of all Fi’s, where F = Fi ○ µi on ODomiF .
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Proof. Let m ∈M , n =
def
F (m) and for all indices a let na = νa(n). By theorem 11.7.2 we have

that TmF is surjective if and only if TmF a ∶TmM →TmNa is surjective for all a. Thus m is

a regular point of TmF if and only if it is a regular value of all TmF a and so C = ∪
a∈N

Ca. Let

n ∈ N . Suppose that n ∈ ImF ∩ν−1
a (Da). Since νa(n) ∈Da, there exists some m ∈ (F a)−1 (n)

such that m is a critical point of F a = νa ○ F so that TmF can not be surjective. Hence

n = F (m) is a critical value of F and so ImF ∩ ( ∪
a∈N

ν−1
a (Da)) ⊆ D. The reverse inclusion

follows from theorem 11.7.2 as before so that (1) is proved.

Suppose now that N is a manifold so that F is locally cylindrical. For all indices i, let

Ui = ODomiF so that F = Fi ○ µi on U i =
def
µ−1
i (Ui) with M = ∪

i∈N
U i and U i ⊆ U i+1. Since

(U i)∞i=1 is an open cover of M , to show that C is closed in M it suffices to show that C ∩U i

is closed in U i for all i ∈ N so fix an index i. Since F = Fi ○µi on U i (and SysN is the trivial

system), it is clear that m ∈ C∩U i if and only if µi(m) is a critical point of Fi so if Ci denotes

the set of all critical points of Fi (in Ui) then Ci is closed in Ui and C ∩ U i = µ−1
i (Ci) from

which it follows that C ∩U i is closed in U i, as desired. It also follows n is a critical value of

F if and only if n is a critical value of Fi for some index i so that D = ∪
i∈N
Fi(Ci). By Sard’s

theorem, for each index i the set of critical values of Fi, that is Fi(Ci), has measure 0 in N .

Since this measure 0 set is the continuous image of a σ-compact set it follows that Fi(Ci) is

a meager Fσ set in N . Thus D = ∪
i∈N
Fi(Ci) is a meager Fσ measure 0 in N , so (2) holds. ∎

Theorem 12.2.2 (Sard’s Theorem for Promanifolds). Let F ∶ M → N is a smooth map

between promanifolds (of non-0 dimension), let F ● = µ● ○ F , and let Da denote the set of

critical values of F a ∶ M → Na for all a ∈ N. Then ∪
a∈N

ν−1
a (Da) is a meager Fσ locally

cylindrical set of measure 0 in N that contains F ’s critical values. In particular, the set of

critical values of F is a meager set of measure 0 in N .

Proof. Let D denote the set of critical values of F . By lemma 12.2.1, we have D = ImF ∩

( ∪
a∈N

ν−1
a (Da)) so that it suffices to prove that each of the sets ImF ∩ ν−1

a (Da) has measure

0 in N . By this same lemma, the set of critical values of F a is a meager Fσ set of measure

0 in Na and since, by assumption, dimNa ≥ 1 it follows that ν−1
a (Da) is also a meager Fσ
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set of measure 0 in N and hence that ∪
a∈N

ν−1
a (Da) is a meager Fσ locally cylindrical set of

measure 0 in N . ∎

Theorem 12.2.3. Let F ∶M → N is a smooth map between promanifolds, let E ⊆M be a

set of measure 0 in M , and assume that 1 ≤ dimmM ≤ dimF (m)N for all m ∈ E. If for each

m ∈ E either dimmM < ∞ or otherwise F is a pointwise immersion at m then F (E) has

measure 0 in N . In particular, diffeomorphisms preserve sets of measure 0.

Proof. Observe that if suffices to assume that E is a subset of a trivially cylindrical basic

measure 0 subset ofM and to prove that F (E) has measure 0 inN . By Sard’s theorem 12.2.2,

we need only to consider the case E is a subset of the set of regular values of F . Suppose

that E = µ−1
i (Ei) where Ei has measure 0 in Mi and for all j ≥ i let Ej = µ−1

ij (Ei). Observe

that it suffices to show that for every m ∈ E there exists an index j and a neighborhood

µj(m) ∈ Uj ∈ Open (Mj) such that F (E ∩ µ−1
j (Uj)) has measure 0 in N so fix m0 ∈ E, let

n0 = F (m0) and for all a, j ∈ N let m0
j = µij(m0) and n0

a = νa(n0).

If d =
def

dimm0 M < ∞ then since 1 ≤ dimmM ≤ dimF (m)N we may pick indices a and

j ≥ i such that dimn0
a
Na ≥ d, dimm0

j
Mj = d, and m0

j belongs to the connected component of

ODomj F a, call it Oj. But then Sa =
def
F a(µ−1

j (Oj) ∩E) = F a
j (Oj ∩Ej) is a set of measure 0

in Na, where dimn0
a
Na ≥ 1 implies that ν−1

a (Sa) is a set of measure 0 in N . Thus, assume

that dimmM = ∞ and that F is a pointwise immersion for all m ∈ E, which, since each

TmF ∶ TmM → TF (m)N is surjective, implies that F is in fact a (ν●-regular) pointwise

isomersion for all m ∈ E.

Fix an index a such that dimn0
a
Na > dimm0

i
Mi. Let j ≥ i be such that dimm0

j
Mj >

dimn0
a
Na and m0

j belongs to the connected component of ODomj F a, call it Oj. Pick any

chart (Uj, ϕj) around m0
j such that Uj is a subset of Oj. By proposition 11.5.1 we can find

indices k > j and b > a and coordinates (Uk, ϕk) and (Vb, ψb) around m0
k and n

0
b , respectively,

such that the following diagram commutes:
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(p1, . . . , pdj , . . . , pdk) (p1, . . . , pdj , . . . , pr)

(p1, . . . , pdj)

F̂ b
k

µ̂jk

where dk = dimm0
k
Mk, r = dimn0

b
Nb is the rank of F b

k . Note that F b(E ∩ µ−1
k (Uk)) =

F b
k(Ek ∩Uk) is, in Vb’s coordinates, a subset of the set

Vb ∩ ((Ej ∩ µjk(Uk)) ×Rdr−dj)

where this is a set of measure 0 in Nb since Ej ∩ µjk(Uk) is a set of measure 0 in Mj, which

is a manifold of dimension ≥ 1. ∎
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Chapter 13

The Inverse Function Theorem

We recall one of the statements of the inverse function theorem for Banach spaces.

Theorem 13.0.1 (The Inverse Function Theorem for Banach Spaces). Let X and Y be

Banach spaces, U0 ∈ Open (X), and let F ∶U0→Y be a C2-map. Suppose that x0 ∈ U0 is such

that Dx0F ∶X→Y is a TVS-isomorphism. Then there exists x0 ∈ U ∈ Open (U0) such that

F ∣U ∶U →F (U) is a diffeomorphism onto an open subset of Y .

One may consequently hope to prove a generalization of the inverse function theorem to

promanifolds that is similar to the following (false) conjecture 13.0.2.

Conjecture 13.0.2 (An Ideal Inverse Function Theorem for Promanifolds). A smooth iso-

mersion between monotone promanifolds is a local diffeomorphism (def. 4.1.3).

Counterexamples

In addition to being a counterexample to both the inverse function theorem for promanifolds

(i.e. conjecture 13.0.2) and invariance of domain for promanifolds, the following example

13.1.1 also suggests a potential substitute to the inverse function theorem for promanifolds

that would ultimately lead one to theorem 13.2.3. Indeed, this example shows that conjecture
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13.0.2 fails even for very well-behaved smooth maps between very well-behaved promanifolds.

Example 13.1.1. The natural inclusion of ] − 1,1[N into RN disproves both the inverse

function theorem for promanifolds (i.e. conjecture 13.0.2) and the direct generalization to

promanifolds of the statement of invariance of domain.

Example 13.1.2. A smooth embedding and pointwise isomersion whose image has empty

interior: Let Mi = ]0,1[i, Na = Ra, M = ]0,1[N, N = RN, µi ∶M →Mi, νa ∶ N → Na, µij, and

νab be the canonical projections so that (M,µ●) = lim←Ð(M●, µij) and (N,νa) = lim←Ð(Na, νab).

Let Fi = InNiMi
∶Mi→Ni and F ∶ M → N be the natural inclusion maps so that F = lim←ÐF●.

Each Fi is a smooth embedding of Mi onto an open subset of Ni so that F ∶ M → N is

smooth and a topological embedding into N . Since each Tmi Fi ∶ Tmi Fi → TFi(mi)Ni is a

vector space isomorphism for all mi ∈Mi, the same is true of TmF ∶ TmM → TF (m)N for all

m ∈M . However, the (topological) interior of ImF is empty: Suppose that m0 ∈ IntN(ImF )

and let m0 ∈ ν−1
a (Va) ∈ Open (IntN(ImF )) for some a ∈ N and some Va ∈ Open (Na). Let

n = (m0
1, . . . ,m

0
a,1,1, . . .) and observe that νa(n) = (m0

1, . . . ,m
0
a) = νa(m0) ∈ Va so that

n ∈ ν−1
a (Va) ⊂ IntN(ImF ) ⊆ ImF = (0,1)N and since F ∶ M → N is the natural inclusion,

this clearly gives a contradiction and hence IntN(ImF ) = ∅. In fact, ImF is even nowhere

dense in N . The closure of ImF in N is [0,1]N and we can similarly show that its interior

in N is also empty. Furthermore, observe that if we had defined Na = ]0,1]a then the same

conclusion would have held but in addition we’d have that the ImF is a dense subset of

N = ]0,1]N with empty interior.

Example 13.1.3. A smooth surjective pointwise isomersion that is nowhere locally injective:

Suppose that g ∶ M1 → N1 is a surjective local diffeomorphism between manifolds. For all

indices i and a let Mi =M i
1, M =MN

1 , Na = Na
1 , N = NN

1 and let µi,i+1, νa,a+1, µi, and νa all

be the canonical projections so that (M,µ●) = lim←Ð SysM and (N,ν●) = lim←Ð SysN . For each
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i ∈ N let

Fi ∶Ma Ð→ Na

(p1, . . . , pa) z→ (g(p1), . . . , g(pa))

so that the limit is

F =
def

lim←ÐFi ∶M Ð→ N

(p1, p2, . . .) z→ (g(p1), g(p2), . . .)

Observe that F is smooth a surjective pointwise isomersion, let n = (q1, q2, . . .) ∈ N , and note

that F −1 (n) = g−1(q1)× g−1(q2)×⋯ where each fiber has cardinality at most NN (since g is a

local diffeomorphism between second countable manifolds). Since every basic open subset of

M is of the form ∏
h≤i
Uh×∏

j≥i
M1, it is easy to see that for any U ∈ Open (M), if g−1(qa) fails to

be singleton for infinitely many indices a then either U ∩ F −1 (n) = ∅ or otherwise F ∣−1

U
(n)

will have the cardinality of continuum so that there can be no open subset of M on which

F is injective and U ∩ F −1 (n) ≠ ∅. In particular, if g is a map such that each of its fibers

contains at least two points, for instance,

g ∶C ∖ {0} Ð→ C ∖ {0}

z z→ z2

or g ∶C Ð→ C ∖ {0}

z z→ ez

then it follows that there is no non-empty open subset U of M on which F ∣
U
∶ U → N is

injective i.e. F is nowhere locally injective.

Example 13.1.4. A nowhere locally injective pointwise isomersion with nowhere dense

image: Let M1 = R≠0 =
def

R ∖ {0}, N1 = ]0,∞[, Mi =M i
1 =

i

∏
l=1
M1, and Na = Na

1 for all i, a ∈ N.

Let the canonical projections be the bonding maps for SysM and SysN and observe that

MN
1 (resp. NN

1 ) together with the canonical projections are the limits of these systems. Let

Fa ∶Ma→Na be defined by Fa(m1, . . . ,ma) = (m2
1, . . . ,m

2
a) and let F =

def
lim←Ð (F●, IdN) ∶M → N

268



is given by F (m) = (m2
1,m

2
2,m

2
3, . . .) for m = (m1,m2, . . .) ∈M so that F is nowhere locally

injective by example 13.1.3. Observe also that had we instead used N1 = R then F would

still be everywhere a smooth pointwise isomersion that is nowhere locally injective but in

addition its image would now also have empty interior in N = RN (since otherwise ImF

would necessarily contain some n = (n1, n2, . . .) with some na < 0). In fact, the image of F

would even be nowhere dense in N .

Example 13.1.5. Fix an interval J ⊆ R and considering the unit circle S1 as a subspace of

C, let (S1)N denote the infinite torus. Clearly,

F ∶ JN Ð→ (S1)N

(r1, r2, . . .) z→ (eir1 , eir2 , . . .)

defines a smooth pointwise isomersion. If J = R or J = [0,2π] then F ∶ RN → (S1)N is a

surjective quotient map that is at no point locally injective. If J = [0,2π[ then F ∶ JN → (S1)N

is bijective but not a quotient map. If J = ]0,2π[ then F ∶JN→ (S1)N is a non-surjective

topological embedding (and thus a smooth embedding) whose image (S1 ∖ {(0,1)})N is dense

in (S1)N but has empty interior in (S1)N.

The next examples gives a smooth surjective pointwise isomersion that fails to be injective

on any non-empty open subset of its domain.

Example 13.1.6. A surjective pointwise isomersion with fibers of cardinality c (the cardi-

nality of continuum) on each open subset: Let R = R ∖ {0}, S = R>0, M = RN, and N = SN.

For all i, a ∈ N let Mi = Ri =
i

∏
l=1
R, Na = Sa, and let µi,i+1, µi, νa,a+1, and νa be the canonical

projections. Define

F ∶M Ð→ N

(r1, r2, . . .) z→ (r2
1, r

2
2, . . .)

Clearly, F is a smooth surjective pointwise isomersion and for each n = (s1, s2, . . .) ∈ N = SN
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the fiber over F over n is F −1 (n) =
∞
∏
l=1

{±√sl}. Now suppose that U = O1 ×⋯×Oi ×
∞
∏
l=i+1

R is

a non-empty basic open subset of M , let m = (r1, r2, . . .) ∈ U , and let n = F (m0). Observe

that F (U) is open and the fiber of F ∣
U

over n has cardinality c since it contains at least

the set {r1} × ⋯ × {ri} ×
∞
∏
l=i+1

{±rl} (for we can define a surjective map θ ∶
∞
∏
l=i+1

{±rl}→ [0,1]

by θ(si+1, si+2, . . .) = 0.b1b2 . . . where bl = 1 if si+l > 0, bl = 0 if si+l < 0, and where we view

0.b1b2 . . . as a real number’s binary representation) and so it should now be easy to see that

this is in fact true for all non-empty open subsets of M . Observe that F is open and it is

easy to see that it is even a compact covering. If we define for each a ∈ N the map

Fa ∶Ma Ð→ Na

(r1, . . . , ra) z→ (r2
1, . . . , r

2
a)

then F = lim←ÐF● so that F fails to be locally injective despite how (relatively) well-behaved

each Fa, each bonding map, and each Mi and Na is. ∎

Sub-Promanifold Inverse Function Theorem for Fibrated

Promanifolds

Before beginning the proof of the “sub-promanifold inverse function theorem,” we remind

the reader of the following proposition C.1.5 that is proved in the appendix.

Proposition 13.2.1. Suppose M and N are smooth manifolds of dimensions c ≥ b, re-

spectively, and that the following diagram of smooth maps commutes where µ and F are

smooth surjective submersions and σ ∶ Ra →M a smooth section of π ○µ ∶M → Ra such that

η =
def
F ○ σ ∶ Ra → N is a smooth embedding.

M

Ra
N

F
µσ
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There exist smooth surjective charts ϕ ∶ U → Rc and ψ ∶ V → Rb on M and N , respectively,

such that

(1) Imσ ⊆ U and (ϕ ○ σ) (t1, . . . , ta) = (t1, . . . , ta,0, . . . ,0) for all (t1, . . . , ta) ∈ Ra.

(2) µ∣
U
∶ U → Ra and F ∣

U
∶ U → V are both surjective.

(3) The coordinate representations of µ and F are the canonical projection.

If in the above proposition we had used θ ○µ in place of µ and σ ○ θ in place of σ where θ

is some smooth chart θ ∶W → Ra on some smooth manifold Q, then writing the conclusion of

the above proposition in terms of a commutative diagram would give the following corollary,

which is better suited for proving the sub-promanifold inverse function theorem.

Corollary 13.2.2. Let Q, N , and M be, respectively, a, d, and e dimensional manifolds,

let µ ∶ M → Q and F ∶ M → N be smooth submersions. Suppose that σ ∶ W → M is a

smooth local section of µ ∶M → Q such that F ○σ ∶W → N is a smooth embedding and that

θ ∶W → Ra is a smooth surjective chart. Then there exist smooth charts (U,ϕ) and (V,ψ)

on M and N , respectively, and a smooth local section ρ ∶ V → U of F ∶ M → N such that

Imρ ⊆ U , µ(U) = W , F (U) = V , both ϕ ∶ U ↦ Re and ψ ∶ V ↦ Rd are surjective, and the

following diagram commutes:

U

W

V

Re

Rd

Ra

Pr

Pr In

In

σ

θ

ρ
ψ

ϕ

F ∣
U

µ∣
U

where In ∶ Ra → Rd is the canonical inclusion (t1, . . . , ta) ↦ (t1, . . . , ta,0, . . . ,0). The prop-

erties expressed by the above commutative diagram can equivalently be described by the

following list of properties:
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(1) the coordinate representations of both F and µ are the canonical projections, that is,

for each (t1, . . . , te) ∈ Re, the following diagram commutes:

(t1, . . . , ta, . . . , td, . . . te) (t1, . . . , ta, . . . , td)

(t1, . . . , ta)

ψ ○ F ○ ϕ−1

θ ○ µ ○ ϕ−1

(2) ρ’s (resp. σ’s) coordinate representation ϕ○ρ○ψ−1 ∶ Rd → Re (resp. ϕ○σ○θ−1 ∶ Ra → Re)

is the canonical inclusion. e.g. (t1, . . . , td)↦ (t1, . . . , td,0, . . . ,0)

In particular, for all m,p ∈ U and all (x, y) ∈ Ra ×Rd−a

(a) if we write µ̂ = θ ○µ∣
U
○ϕ−1 and F̂ = ψ ○F ∣

U
○ϕ−1 we have F̂ (µ̂−1 (x)) = {x}×Re−a and

F̂−1 (x, y) = {(x, y)} ×Re−d,

(b) F (m) = F (u) ⇐⇒ ρ (F (m)) = ρ (F (p)), in which case µ(m) = µ (ρ (F (m))) =

µ (ρ (F (p))) = µ(p),

(c) µ(m) = µ(p) ⇐⇒ σ(µ(m)) = σ(µ(p)).

In addition to being smooth submersions, we will require all of SysM ’s the bonding maps

in the following theorem to be Serre fibrations for then whenever we are given any d > c,

smooth Λc ∶ [−1,1]c → M , and smooth λi ∶ [−1,1]d → Mi that extends µi ○ Λc, we will be

able to lift λi to a smooth map Λd ∶ [−1,1]d → M satisfying µi ○ Λd = λi that also extends

Λc ∶ [−1,1]c →M .

Theorem 13.2.3 (Sub-promanifold Inverse Function Theorem). Suppose that F ∶ (M,m0)→

(N,n0) is a smooth isomersion between two promanifolds (i.e. the tangent map is a TVS-

isomorphism at each point), dimm0 M = ∞, and that all µij ∶Mj →Mi are Serre fibrations.

Let i0 be any index and let m0
● = µ● (m0), n0

● = ν● (n0), F ● = ν● ○ F . There exist

• α ∶ N→ N and ι ∶ Z≥0 → N both increasing with ι(0) = i0,
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• a µ●-open sub-promanifold U ⊆ M containing m0 such that V = F (U) is a ν●-open

sub-promanifold of N , and

• smooth charts (µι(●) (U) , ϕ●) = (µι(l) (U) , ϕl)
∞
l=0

and (να(●) (V ) , ψ●) = (να(l) (V ) , ψl)
∞
l=1

,

such that, upon letting U● ∶= µ● (U), V● ∶= ν● (V ), e● ∶= dimn0
α(●)

Nα(●), and d● ∶= dimm0
ι(●)
Mι(●),

the following will hold:

(1) Uι(l) ⊆ ODomι(l)Fα(l), meaning that Fα(l)
ι(l) ○ µι(l) = Fα(l) on µ−1 (Uι(l)), and F

α(l)
ι(l) ∶

Uι(l) → Vα(l) is a smooth surjective submersion for all l > 0,

(2) d0 < e1 < d1 < e2 < d2 < ⋯,

(3) ϕl ∶ (Uι(l),m0
ι(l))→ (Rdl ,0) and ψl ∶ (Vα(l), n0

α(l))→ (Rel ,0) is surjective for all l,

(4) the coordinate representations of all Fα(l)
ι(l) , µι(l),ι(l+1), and να(l),α(l+1) with respect to

these charts are the canonical projections,

(5) ϕ● ∶ Uι(●) → Rd● and ψ● ∶ Vα(●) → Re● form inverse system morphisms from the inverse

system of subsets U● and Vα(●) whose limits ϕ ∶= lim←Ðϕ● ∶ U → RN and ψ ∶= lim←Ðψ● ∶ V →

RN are diffeomorphisms,

(6) F ∣
U
∶ U → V is a diffeomorphism and the following diagram commutes for all l ∈ N:
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U V

RN RN

Uj Vb

Rdj Reb

Ui Va

Rdi Rea

Ui0

Rd0

ϕ

F ∣U

µj ∣U

νb∣V

ψ

Id

Pr

ϕ l
+
1

F bj ∣Uj

µij ∣Uj

νab∣Vb

ψ l
+
1

Pr

Pr

Pr

Inb

Fai ∣Ui

ϕ l

µij ∣Uj
ψ l

Pr

Pr

Pr

Ina

ϕ0

where we let i = ι(l), j = ι(l + 1), a = α(l), b = α(l + 1), and where Pr denote the

canonical projection while In denotes the canonical inclusion into the first coordinates

(i.e Ina(t1, . . . , tea) = (t1, . . . , tea ,0, . . . ,0)).

(7) Furthermore, if for each l ∈ N we define ρl ∶ Vα(l) → Uι(l) by

Vα(l)
ψlÐ→ Rel

Inα(l)ÐÐ→ Rdl
ϕ−1lÐ→ Uι(l)

then ρl is a smooth section of Fα(l)
ι(l) ∣

Uι(l)
∶ Uι(l) → Vα(l) and the maps Gι(l)

α(l) ∶= µι(l−1),ι(l) ○

ρl ∶ Vα(l) → Uι(l−1) define a smooth inverse system morphism from SysV ∶= SysN ∣
V

into SysU ∶= SysM ∣
U

making the N-indexed families Fα(●)
ι(●) and G

ι(●)
α(●) into a smooth
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equivalence transformation of profinite systems.

Proof. Since ] − 1,1[ is diffeomorphism to R, it suffices to prove the theorem by obtaining

smooth charts which, except for having their images be products of ] − 1,1[ instead of

products of R, otherwise satisfy all of the claims made above. Also observe that if we can

construct charts such that the above diagram commutes, then all of the other claims of this

theorem will follow from known results. To simplify the proof, refine the notation d● and e●

to mean d● = dimm0
●
M● and e● = dimn0

●
N● and by replacing SysM and SysN with subsystems

if necessary, we assume without loss of generality that i0 = 1 and that d● and e● are strictly

increasing.

Step l = 0: Let ι(0) = 1 and let φ0 ∶ U ′
1 → Rd0 be any smooth chart on M1 centered at m0

1.

Since all bonding maps in SysM are Serre fibrations, we may inductively construct a smooth

µ1-lift Λ0 ∶ (Rd0 ,{0}d0)→ (µ−1
1 (U1),m0

1) of φ−1
0 ∶ Rd0 → U ′

1.

Remark 13.2.4. Even if we could somehow always conclude that for every embedding

λ ∶ Rd →M , there is some index a such that νa ○ F ○ λ was a smooth embedding, which we

in general can’t, it may still not be possible to able obtain the conclusions described above

since even under this assumption, there is there no guarantee that this is an index i such

that the image of µi ○λ is contained in DomiF a. This proof’s construction uses compactness

to overcomes these issues, where it is often these same issues that in general prevent us

from finding open subsets U ∈ Open (M) and V ∈ Open (N) for which F ∣
U
∶ U → V is a

diffeomorphism.

Since F ∶M → N is a pointwise immersion at m0, so too is F ○λ0 at {0}d0 so there exists

some a1 = α(1) > 1 = ι(0) such that ea1 > d0 and for which neighborhood D0 =
def

[c0, c0]d0

of {0}d0 in Rd0 such that F a1 ○ λ0∣
D0

∶ D0 → Na1 is a smooth embedding. Since Λ0 (D0)

is compact, there exists some i1 = ι(1) > α(1) such that di1 > ea1 and µi1 (Λ0 (D0)) ⊆

ODomi1 F
a1 . Letting % ∶ ]− 2,2[d0→ ]− c0, c0[d1 be any diffeomorphism mapping the origin to

itself, we may replace φ0 with %−1○φ0∣φ−10 (]−δ0,δ0[d1)
and replace Λ0 with Λ0○% and thus assume

without loss of generality that c0 had been 2 and that the domain (resp. range) of Λ0 (resp.
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φ0) had been ] − 2,2[d0 . Let (cl)∞l=1 ⊆ ]1,2[ be any strictly decreasing sequence converging to

1 and then pick (bl)∞l=1 such that c0 > b1 > c1 > ⋯cl > bl+1 > cl+1. Let I0 = ] − c0, c0[ and for all

l > 0 let Il = ] − cl, cl[ and Jl = [−bl, bl].

Step l = 1:

Since µi1 ○λ1 is valued in ODomi1 F
a1 , the composition F a1

i1
○ (µi1 ○ λ1) = F a1 ○λ0 ∶ Idi01 →

Na1 is defined, where recall that this map is a smooth embedding so that we can consequently

apply corollary C.1.6 by substituting each item in the top row for the respective item in the

bottom row:

Mi0 ODomi1 F
a1 U1

i0
Na1 F a1

i1
µi1 ○ λ0 ○ ϕ0

0 µi0,i1 ∣ODomi1
Fa1

ϕ0
0

Q M W N F σ µ θ

so as to obtain smooth charts Φ1 ∶ (U ′
i1
,m0

i1
) → (Idi10 ,0) and Ψ1 ∶ (V ′

a1 , n
0
a1
) → (Iea10 ,0), and

a smooth section Γ1 ∶ V ′
a1 → U ′

i1
of the surjective submersion F a1

i1
∣
U ′
i1

∶ U ′
i1
→ V ′

a0 , such that

U ′
i1
⊆ ODomi1 F

a1 , V ′
a1 = F a1

i1
(U ′

i1
), µi0,i1 (U ′

i1
) = U0

i0
, and such that the following diagram

commutes:

U ′
i1

U1
i0

V ′
a1

I
di1
0

I
ea1
0

I
di0
0

Pr

Pr In

In

µi1 ○ λ1 ○ ϕ0
0

ϕ0
0

Γ1Ψ1

Φ1

Fa1i1
∣
U ′

i1

µi0,i1 ∣U ′
i1

where this diagram’s meaning in terms of coordinates is that the following diagram commutes

for each (t1, . . . , tdi0) ∈ I
di1
0 :

(t1, . . . , tdi0 , . . . , tea0 , . . . tdi1) (t1, . . . , tdi0 , . . . , tea0)

(t1, . . . , tdi0)

Ψ1 ○ Fa1i1 ○ (Φ1)−1

ϕ0
0 ○ µi0,i1 ○ (Φ1)−1
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where Φl+1Γ1’s and Φl+1 ○µi1 ○λ1 ○ϕ0
0’s coordinate representations are both just the canonical

inclusions.

In particular, the following diagram commutes:

U ′
i1

V ′
a1

I
di1
0 I

ea1
0

U ′
i0

I
di0
0

F
a1
i1

Φ 1

µi0,i1

Ψ1

Γ1

Pr

Pr

In

ϕ
0
0

Recall that J1 = [−b1, b1] ⊆ I0 and observe that since SysM ’s bonding maps consist of

Serre fibrations and (Φ1)−1 ∶ Idi10 → U ′
i1
’s restriction to Jdi01 × {0}di1−di0 agree with µi1 ○ λ1 ∶

I
di0
0 → U ′

i1
’s restriction to Jdi01 , we may use induction to find a smooth µi1-lift Λ1 ∶ Jdi11 →M

of (Φ1)−1 ∣di1
J1

∶ Jdi11 → U ′
i1
extending λ1∣

J
di1
1

∶ Jdi11 →M .

The compactness of Jdi11 allows us to find a2 > a1 such that ea2 > di1 and F a2 ○ Λ1 is a

smooth local embedding around every point of Jdi11 . And since Λ1 (Jdi11 ) is a compact subset

of M , we may find some i2 > a2 such that µi2 (Λ1 (Jdi11 )) ⊆ ODomi2 F
a2 and di2 > ei2 . Now,

although F a2 ○Λ1 need not be an embedding, the fact that Γ1 is a section of F a1
i1

∣
U ′
i1

∶ U ′
i1
→

V ′
a1 whose coordinate representation is the canonical inclusion allows us to conclude that

F a1 ○ (Λ1 ○ Γ1) is the identity map on Ψ−1
1 (Jea11 ) so that the equality

F a1 ○Λ1 ○ Γ1 = νa1,a2 ○ F a2
i1
○ µi1 ○Λ1 ○ Γ1

implies that F a2
i1
○ µi1 ○ Λ1 ○ Γ1 is also an embedding. Thus F a2 ○ Λ1’s restriction to Jea11 ×

{0}di1−ea1 is an embedding where since it’s also local embedding, we can therefore find some

neighborhood O of Jea11 × {0}di1−ea1 in Jdi12 on which F a2 ○Λ1 restricts to an embedding. By
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the tube lemma, we may find some ε > 0 such that Jea11 × [−ε, ε]di1−ea1 is contained O. Let

T =
def
I
di1
1 × ] − ε, ε[di1−ea1 and U1

i1
= Φ−1

1 (T ) where recall that I1 = ] − c1, c1[⊆ J1 so that T is

in Φ1’s range. Let ϕ1
1 ∶ U1

i1
→ I

di1
1 (resp. λ1 ∶ Idi11 → M) denote the map that results from

restricting Φ1 to U1
i1

(resp. restricting Λ1 to T ) and then uniformly scaling each of its last

di1 − ea1 coordinates by c2/ε (resp. uniformly scaling each of the last di1 − ea1 coordinates in

Λ1 domain by ε/c2) and observe that λ1 is a µi1-lift of (ϕ1
1)
−1. Let V 1

a1 = F
a1
i1

(U1
i1
) and let ψ1

1

denote Ψ1’s restriction to this set.

Note that since all we did to obtain ϕ1
1 was to restrict Φ1’s domain and scale only the

large di1 − ei1 , all of the above diagrams continue to commute with if we use I1, ϕ1
1, ψ1

1, and

φ0
0’s restriction to φ1

0 (I
di0
1 ) in place of I0, Φ1, Ψ1, and φ0

0, respectively.

Let ψ2
1 = ψ1

1 ∣Iea12

, ρ2
1 = ρ1

1∣Iea12

, let λ2 = Λ1∣
I
di1
2

, and for h = 0,1, let ϕ2
h = ϕ1

h∣Idih2

.

Inductive case l > 1:

Remark 13.2.5. The construction of all ϕ1
l , ψ

1
l , λl, il and ai for all l > 1 is essentially the

same as the construction that was done above. The only real differences being that now

we must state the long and complicated inductive hypotheses and occasionally observe that

nothing goes wrong by having ψ’s on the lower portions of our diagrams. Also, observe

that λ1 (and all subsequent λl’s) implicitly hold all of the information needed to reconstruct

the charts; however, although constructing only these λl’s would simplify this construction,

attempting to verify that the charts induced by theses λl’s satisfy all of this theorem’s

conclusions becomes significantly more difficult.

Suppose that l ≥ 1, ϕ0
0 and ϕ1

1 are the maps defined above, and that we’ve found il+1 >

al+1 > ⋯ > i0 and constructed smooth charts ϕ0
0, . . . , ϕ

l
l whose images are Idi00 , . . . , I

dil
l and

whose domains are contained in ODomih F
ah (for h = 1, . . . , l) and charts ψ1

1, . . . , ψ
l
l whose

images are Ieiaa , . . . , I
eil
l and a smooth µil-lift λl of (ϕll)

−1 ∶ Idill → U1
il
such that if we define

U l
ih
= ϕ−1

h (Idih1 ) and V l
ah

= ϕ−1
h (Ieahl ) and if we denote these charts respective restrictions to

these sets by ϕl0, . . . , ϕll and ψ
l
1, . . . , ψ

l
l then defining Oil+1 = ODomil+1F al+1 ∩ µ−1

il,il+1
(U l

il
) and

O = µ−1
il1

(Oil+1) will make the following diagrams commute:
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U l
il

V l
al

I
dil
l Iebl

U l
ih

V l
ah

I
dih
l I

eah
l

U l
i0

Id0l

ϕ
l
l

F
al
il

µih,il

νah,al

ψ
l
l

Pr

Pr

Inal

F
ah
ih

ϕ
l
h

µih,il
ψ
l
h

Pr

Pr

Pr

Inah

ϕ
l
0

O

RN

Oil+1 F al+1 (O)

U l
il

V l
al

I
dil
l I

eal
l

F a
i
l+1

µil+1

F
al+1
il+1

µil,il+1

νal,al+1

F
al
il

ϕ
l
l

ψ
l
l

Pr

λl

Inal

(where all bonding maps and F a●
u● are restricted to the domains shown above) and such that
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F al+1 ○ λ1 is a smooth embedding with λ1 valued in O.

Observe that we are now in almost the exact same situation as we were in step l = 1

and by the same reasoning as described above, we may find so as to obtain smooth charts

Φl+1 ∶ (U ′
il+1
,m0

il+1
) → (Idil+10 ,0) and Ψl+1 ∶ (V ′

al+1
, n0

al+1
) → (Ieal+10 ,0), and a smooth section

Γ1 ∶ V ′
al+1
→ U ′

il+1
of the surjective submersion F al+1

il+1
∣
U ′
il+1

∶ U ′
il+1
→ V ′

al+1
, such that U ′

il+1
⊆ Oil+1 ,

V ′
al+1

= F al+1
il+1

(U ′
il+1

), µil,il+1 (U ′
il+1

) = U l
il
, and such that the following diagram commutes:

U ′
il+1

U1
il

V ′
al+1

I
dil+1
0

I
eal+1
0

I
dil
0

Pr

Pr In

In

µil+1 ○ λl ○ ϕll

ϕll

Γl+1Ψl+1

Φl+1

F
al+1
il+1

∣
U ′

il+1

µil,il+1 ∣U ′
il+1

where this diagram’s meaning in terms of coordinates is that the following diagram commutes

for each (t1, . . . , tdil+1) ∈ I
dil+1
0 :

(t1, . . . , tdil , . . . , teal+1 , . . . tdil+1) (t1, . . . , tdil , . . . , teal+1)

(t1, . . . , tdil)

Ψl+1 ○ Fal+1il+1
○ (Φl+1)−1

ϕll ○ µil,il+1 ○ (Φl+1)
−1

where Φl+1 ○ Γl+1’s and Φl+1 ○ µil+1 ○ λl ○ ϕll’s coordinate representations are both just the

canonical inclusions.

In particular, observe that these properties imply, the following diagram commutes :
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µ−1
il+1

(U ′
il+1

)

U ′
il+1

V ′
al+1

I
dil+1
l I

eal+1
l

U l
il

V l
al

I
dil
l I

eal
l

F a
i
l+1

µil+1

Φ l+
1

F
al+1
il+1

µil,il+1

νal,al+1

Ψ l
+
1Γl+1

Pr

Pr Inal

F
al
il

ϕ
l
l

ψ
l
l

Pr

λl

Pr

Inal

Recall that Jl+1 = [−bl+1, bl+1] ⊆ Il and observe (Φl+1)−1 ∶ Idi10 → U ′
i1
’s restriction to Jdill+1 ×

{0}dil+1−dil agree with µil+1 ○λl ∶ I
dil
l → U ′

il+1
’s restriction to Jdill+1, we may use induction to find

a smooth µil+1-lift Λl+1 ∶ Jdil+1l+1 →M of (Φl+1)−1 ∣di1
J1

∶ Jdi11 → U ′
i1
extending λ1∣

J
dil+1
l+1

∶ Jdil+1l+1 →M .

The compactness of Jdil+1l+1 allows us to find al+2 > al+1 such that eal+2 > dil+1 and F al+2 ○Λl+1

is a smooth local embedding around every point of Jdil+1l+1 . And since Λl+1 (Jdil+1l+1 ) is a compact

subset of M , we may find some il+2 > al+2 such that µil+2 (Λl+1 (Jdil+1l+1 )) ⊆ ODomil+2 F
al+2 and

dil+2 > eil+2 .

By exactly the same reasoning as in step l = 1, we may find an ε > 0 and such that

F al+2○Λl+1 restricts to a smooth embedding on T = Idil+1l+1 × ]−ε, ε[dil+1−eal+1 and then by defining

U l+1
il+1

= Phil+1 (T ) and scaling only the last dil+1 −eal+1 coordinates we may obtain the desired

ϕl+1
l+1 ∶ U1

il+1
→ I

dil+1
l+1 and λl+1 ∶ Idil+1l+1 →M from Φl+1 and Λl+1. Let V l+1

al+1
= F al+1

il+1
(U l+1

il+1
) and let

ψl+1
l+1 denote Ψl+1’s restriction to this set. As in step l = 1, all of the above diagrams continue

to commute with if we respectively use Il+1, ϕl+1
l+1, and ψ

l+1
l+1, in place of Il, Φl+1, Ψl+1, and also
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use, for all indices h ≤ l, φlh’s restriction to φlh (I
dih
l+1 ) and ψlh’s restriction to ψlh (I

eah
l+1 ). These

maps just described together with λl+1 now allow to continue the inductive construction.

It should now be clear that the desired domains are Uil ∶= (ϕll)
−1 (] − 1,1[dil), Vil ∶=

(ψll)
−1 (] − 1,1[eal), that the desired ϕ●’s and $psi● are the restrictions of ϕ●● and ψ●● to these

domains, that U ∶= lim←ÐUi●, V ∶= lim←ÐVa● are the desired sub-promanifolds making F ∣
U
∶ U → V

into a diffeomorphism. ∎

Local Injectivity and Vector Field Germ Submersions and

Immersions

The following definition will provide a sufficient condition for a smooth map to be locally

injective at a point.

Definition 13.3.1. Let F ∶ (M,m) → (N,n) be smooth and let G (resp. H) denote collec-

tions of rough vector fields defined on neighborhoods of m inM (resp. n in N). For Φ ∈ [G]m

and Ψ ∈ [H]n, we will write F (Φ) = Ψ and say that F pushes (forward) Φ to Ψ if there exist

X ∈ Φ and Y ∈ Ψ such that

(1) F (DomX) ⊆ DomY, and

(2) (TF )(Xm̂) = YF (m̂) for every m̂ ∈ DomX.

Remark 13.3.2. Although it may appear that we now have ambiguous notation for the

pushforward of a germ of maps due to the fact that this definition’s notation is identical to

notation 1.1.26, this is not the case since with notation 1.1.26 we are pushing forward germs

of maps valued in M = DomF while in the above notation we are pushing forward germs of

maps valued in TM .

If we write F (Φ) ∈ [H]n for some Φ ∈ [G]m then we mean that there exists some Ψ ∈ [H]n

such that F (Φ) = Ψ, in which case we will say that F pushes forward (or that F can push

forward) Φ to (a germ of) H. If Φ ∈ Hm then we will say that F (Φ) is (roughly) definable
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(resp. Ck-definable) if F (Φ) ∈ [X rough
loc (N,n)]

n
(resp. F (Φ) ∈ [X k

loc(N,n)]n), where recall

that X rough
loc (N,n) (resp. X k

loc(N,n)) denotes the set of all rough (resp. Ck) vector fields

defined on neighborhoods of n in N . If we write

F ∶ [G]m → [H]n

or F ([G]m) ⊆ [H]n then we mean that F (Φ) ∈ [H]n for all Φ ∈ [G]m and in this case we will

say that F ∶M → N maps germs of G (at m) to germs of H (at n).

We will say that F ∶ [G]m → [H]n is a vector field germ

(1) submersion at m if for all Ψ ∈ [H]n there exists some Φ ∈ [G]m such that F (Φ) = Ψ.

(2) immersion at m if for all Φ, Φ̂ ∈ [G]m, F (Φ) = F (Φ̂) implies Φ = Φ̂.

(3) bijection at m if it is both a vector field germ submersion at m and a vector field germ

immersion at m.

If we say that F ∶ M → N is a Ck-vector field germ submersion (resp. immersion,

bijection) at m then we mean that this is true of

F ∶ [X k
loc(M,m)]

m
↖ [X k

loc(N,n)]n (resp. F ∶ [X k
loc(M,m)]

m
→ [X k

loc(N,n)]n)

∎

Although theorem A.3.2 provides a simple sufficient condition for a smooth map F ∶

(M,m)→ (N,n) to be locally injective on some dense open subset of M , it may be desirable

to know that F is locally injective at m in particular and so it is for these ends that we

provide the following result.

Proposition 13.3.3. Let F ∶ (M,m) → (N,n) be a smooth pointwise immersion and sup-

pose that F can pushforward germs of smooth global vector fields at m to germs of rough

local vector fields at n (i.e. F ∶ [X ∞(M)]m→ [X rough
loc (N,n)]

n
). If dimmM =∞ then there

exists some m ∈ U ∈ Open (M) on which F is injective.
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Proof. If m is an accumulation point of F −1 (n) ∖ {m} then we may apply lemma 8.1.13 to

the appropriately selected sequences to obtain a contradiction. Thus there exists a neigh-

borhood W of m in M such that {m} = F −1 (n) ∩W . Now suppose that there is no such

U . Then we may again obtain a contradiction by applying lemma 8.1.13 to appropriately

selected sequences, where it is obvious how this sequence should be selected so as to obtain

a contradiction. ∎

Substitute Inverse Function Theorems

Most of the rest of this paper is dedicated to characterizing the topologies of monotone

promanifolds and it is recommended that the reader return to this section after becoming

familiar with the contents of this paper’s subsequent chapters.

We will see that theorem 16.5.3 provides sufficient condition for a smooth isomersion

into a monotone promanifold to be open in terms of smooth almost arcs, which are smooth

topological embeddings whose derivatives vanish at exactly one point. But as we have seen in

proposition 13.3.3, a map being a vector field germ immersion that can push forward germs

of vector fields provides a sufficient condition for local injectivity at a point so if we combine

these two results then it follows from theorem 11.6.1 that the map is a local diffeomorphism

at a point. We summarize this in theorem 13.4.2.

Theorem 13.4.1 (Local Diffeomorphism Characterization). Let F ∶ (M,m0) → (N,n0) be

a smooth isomersion from any promanifold M into a monotone promanifold N and suppose

that dimm0 M =∞. Then F ∶M → N a local diffeomorphism at m0 if and only if

(1) there is some open neighborhood U of m0 such that for all smooth almost arcs η in N ,

each non-empty connected component of U ∩ F −1 (Im η) contains at least two distinct

point, and

(2) F ∶ [X ∞(M)]m0→ [X rough
loc (N,n0)]

n0 is a vector field germ-immersion at m0.
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Proof. By theorem 16.5.2, the first condition guarantees that F ∣
U
∶ U → N is an open map

while the second condition and proposition 13.3.3 guarantees local injectivity at m0. Thus

there must exist some open neighborhood of m0 on which F is an open embedding so that

theorem 11.6.1 then allows us to conclude that F ∶ M → N is a diffeomorphism on this

neighborhood. ∎

Theorem 13.4.2 (Local Diffeomorphism Characterization). Let F ∶ (M,m0) → (N,n0) be

a smooth isomersion from any promanifold M into a monotone promanifold N and suppose

that dimm0 M =∞. Then F ∶M → N a local diffeomorphism at m0 if and only if

(1) F is a germ submersion on some neighborhood of m0 in M from smooth almost arcs

in N to C0-paths in M , and

(2) F ∶ [X ∞
loc(M,m0)]

m0→ [X ∞(N)]n0 is a vector field germ-bijection at m0.

Proof. This is an immediate consequence of theorem 13.4.1. ∎

Corollary 13.4.3. Let F ∶ (M,m0) → (N,n0) be a smooth isomersion into a monotone

promanifold N suppose that dimm0 M = ∞. Then F ∶ M → N is a local diffeomorphism at

m0 if and only if F ∶ [X ∞
loc(M,m0)]

m0→ [X ∞
loc(N,n0)]

n0 is a vector field germ bijection at m0

and a germ submersion on some neighborhood of m0 in M from smooth almost arcs in N to

C0-paths in M .

Remark 13.4.4. Observe that the two ingredients in the above characterize are vector fields

and smooth curves, which are of course related to each other through the concept of integral

curves. Now integral curves may fail to exist for smooth vector fields on promanifolds and if

they do exist then they need not be unique, but if an integral curve does exist at a point and

if it has non-zero derivative at that point then lemma 8.2.3 shows that it will necessarily be

locally unique. In particular, smooth almost arcs have non-vanishing derivatives everywhere

exist for at one point. The author suspects that an inverse function theorem similar to

the traditional inverse functional theorem (i.e. theorem 13.0.1) could exist for monotone

promanifolds.
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Conjecture 13.4.5. Let F ∶ (M,m0)→ (N,n0) be a smooth isomersion monotone proman-

ifolds and suppose that dimm0 M =∞. Then F ∶M → N is a local diffeomorphism at m0 if

and only if F ∶ [X ∞
loc(M,m0)]

m0→ [X ∞
loc(N,n0)]

n0 is a vector field germ-bijection at m0.
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Chapter 14

Coherence with Cp-Paths and

Cp-Embeddings of Intervals

Before continuing, the reader be familiar with the Topology appendix, especially the sections

dealing with sequential spaces and coherence of topologies with sets of continuous maps.

Lemma 14.0.1. Let P be a set of continuous paths intoM such that for all γ ∈ P , whenever

h ∶ [0,1]→J is an affine linear bijection onto a non-degenerate closed subinterval J of Domγ

then γ ○ h ∈ P . Then M is coherent with P ⇐⇒ for all m0 ∈ M and all sequences (ml)∞l=1

converging to m0 ∈M that contains infinitely many distinct elements there exists

(1) a strictly increasing sequence of integers (lk)∞k=1 such that for all j, k ∈ N, j ≠ k Ô⇒

mlj ≠mlk and mlk ≠m0,

(2) a strictly decreasing sequence (tlk)∞k=1 ⊆ ]0,1[ converging to 0, and

(3) a map γ ∶ ([0,1],0)→ (M,m0) belonging to P

such that γ(tlk) =mlk for all k ∈ N. Furthermore,

(a) if M is instead a Hausdorff TVS then (Ô⇒ ) remains true while the converse is true

if M is also sequential.
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(b) this equivalence remains true if M is any Hausdorff sequential topological space and

P is the set of all continuous paths in M .

Proof. Apply lemma A.5.9. ∎

Corollary 14.0.2. Let M be a manifold or a Hausdorff TVSs and let p ∈ {0,1, . . . ,∞}. For

any interval I, let AI denote the set of all Cp-embeddings I →M that are smooth everywhere

except for possibly at a single point. Let A∗[0,1] denote those maps in A[0,1] that are smooth

on ]0,1]. If M is coherent with A∗[0,1] or if there is any interval I such that M is coherent

with AI then M is coherent with A∗[0,1] and with AJ and for all intervals J .

Proof. This follows easily from lemmata A.5.9 and A.5.15 and the fact that every Cp-

embedding of [0,1] into M has an extension to an open interval containing [0,1]. ∎

Example 14.0.3. If p ∈ Z≥0 ∪ {∞} and F ∶ [a, b] → M is a Cp-path (resp. Cp pointwise

immersion) into a promanifold M then ImF is coherent with Cp-paths (resp. Cp-arcs).

Coherence with Cp-arcs (p ≥ 1)

The material in this section is not needed for the study of promanifolds.

Proposition 14.1.1. Let X be a Hausdorff TVS, let Y be a closed vector subspace of X

whose continuous dual space Y ′ separates points on Y , and let p ∈ {1,2, . . . ,∞}. If X is

coherent with a set C of Cp-arcs in X and if there exists a continuous projection ρ ∶ X → Y

onto Y , then Y is coherent with its Cp-arcs

Proof. If dimY = 0 or 1 then Y is trivially coherent with its Cp-arcs so assume that dimM >

1. Let S ⊆ Y be a subset such that for all Cp-arcs γ in Y , γ−1(S) is closed in γ’s domain.

Let γ ∈ C and suppose for the sake of contradiction that γ−1(S) is not closed in γ’s domain.

Pick t0 ∈ γ−1(S) ∖ γ−1(S) and let (tl)∞l=1 be a sequence in γ−1(S) converging to t0. By

continuity of γ, γ (t0) ∈ Y ∩ Imγ ⊆ Y = Y , which implies that γ′ (t0) = lim
l→∞

γ (tl) − γ (t0)
tl − t0

also
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belongs to the closed space Y . In particular, this show that (ρ ○ γ)′ (t0) = ρ (γ′ (t0)) = γ′ (t0)

does not vanish. Since Y ’s continuous dual space separates points on Y , we may pick an

interval I ⊆ J containing t0 and some N ∈ N such that η = ρ ○ γ∣
I
∶ I → Y is a Cp-arc and

(tl+N)∞l=1 ⊆ I. By assumption, η−1(S) is closed in η’s domain so that t0 ∈ η−1(S), which

implies that t0 ∈ I ∩ γ−1(S) ⊆ γ−1(S), a contradiction. Hence, γ−1(S) is closed and since

γ was an arbitrary Cp-arc in X, it follows that S is closed in X and thus closed in Y , as

desired. ∎

By applying proposition 14.1.1 we obtain the following corollary.

Corollary 14.1.2. If X is a TVS with a continuous dual space that separates points on X

and if p ≥ 1 then X is coherent its Cp-arcs if and only if the same is true of every closed

complement (def. B.1.5) vector subspace of X.

Lemma 14.1.3. Let (bl)∞l=1 be a bounded sequence in a Hausdorff TVS X, (cl)∞l=1 non-

zero reals such that lim
l→∞

∣cl∣ = ∞, γ ∶ (J, t0) → (X,0) a C1-curve with non-zero derivative

at t0, and (tl)∞l=1 ⊆ J a sequence converging to t0 such that γ (tl) = bl
cl

for all l ∈ N. Then

((tl − t0) cl)∞l=1is bounded. Furthermore, if (lk)∞k=1 is increasing and (clk (tlk − t0))
∞
k=1 is con-

vergent then lim
k→∞

blk = γ′ (t0) lim
k→∞

clk (tlk − t0) exists.

Proof. Suppose not and pick an increasing sequence (li)∞i=1 of positive integers such that

(cli)
∞
i=1 and (tli)∞i=1 are monotone and ((tli − t0) cli)

∞
i=1 is monotone and divergent to either

∞ or −∞. Let U and V be balanced neighborhoods of 0 in X such that V + V ⊆ U and let

v = γ′ (t0). Let N0 ∈ N be such that i ≥ N0 implies γ(tli)−γ(t0)
tli−t0

−v = bli
cli(tli−t0)

−v ∈ V and observe

that since V is balanced, we have v ∈ bli
cli(tli−t0)

+V . Since (bl)∞l=1 is bounded and ((tli − t0) cli)
∞
i=1

is divergent to ±∞, the sequence ( bli
(tli−t0)cli

)
∞

i=1

converges to 0 so pick an integer N ≥ N0 such

that i ≥ N implies 1
(tli−t0)cli

bli ∈ V . In particular, v ∈ blN
clN (tlN −t0)

+ V ⊆ V + V ⊆ U and since U

was an arbitrary neighborhood of 0, this gives us the contradiction v = 0.

Now suppose that (lk)∞k=1 is increasing and (clk (tlk − t0))
∞
k=1 is convergent. Since γ′ (t0) ∶=
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lim
k→∞

blk
clk (tlk − t0)

exists, the continuity of scalar multiplication implies that

lim
k→∞

blk = lim
k→∞

[clk (tlk − t0) ⋅
blk

clk (tlk − t0)
] = [ lim

k→∞
clk (tlk − t0)] ⋅ [ lim

k→∞

blk
clk (tlk − t0)

]

also exists, as desired. ∎

Theorem 14.1.4. Let p ∈ {1,2, . . . ,∞}, X be a Hausdorff TVS, and C be a collection of

Cp-curves in X whose derivatives never vanish. If X is coherent with C then every closed

and bounded subset of X is sequentially compact.

Proof. Let B be a closed and bounded subset of X and suppose that (bl)∞l=1 ⊆ B is a sequence.

Since B is bounded we have lim
l→∞

bl
l
= 0 so by lemma A.5.9 there exists a C1-arc γ, an

increasing sequence (lk)∞k=1 ⊆ N, and a sequence (tk)∞k=0 ⊆ Domγ with (tk)∞k=1 monotone

converging to t0 such that γ (t0) = 0 and γ (tk) =
blk
lk

for all k ∈ N. Lemma 14.1.3 now implies

that b● has a convergent subsequence. ∎

Theorem 14.1.5. A normable TVS is finite-dimensional if and only if it’s coherent with its

C1-arcs, in which case it is coherent with the set of all its weak C1-almost arcs.

Proof. This follows immediately from theorems 14.1.4 and 14.5.4 and the fact that a Haus-

dorff TVS is finite-dimensional if and only if it contains a non-empty compact neighbor-

hood. ∎

Corollary 14.1.6. AHausdorff TVS that contains a closed complemented infinite-dimensional

normable subspace is not coherent with any set C1-curves with non-vanishing first deriva-

tives.

Proof. Apply theorem 14.1.5 and proposition 14.1.1. ∎

Corollary 14.1.7. Let p ∈ {1,2, . . . ,∞}. In the category of Cp-manifolds with boundary

modeled on normable TVSs, Cp-manifolds are exactly those objects that are coherent with

their C1-embeddings of R.
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Proof. This follows immediately from corollary A.5.13 and theorems 14.1.5 and 14.5.4. ∎

Since there always exists a (potentially non-linear) homeomorphism between any two

infinite-dimensional separable Fréchet spaces [3], one is naturally led to conjecture 14.1.8.

Conjecture 14.1.8. A Fréchet space is finite-dimensional if and only if it’s coherent with

its C1-arcs.

Remark 14.1.9. It’s straightforward to verify that this conjecture holds if and only if it

holds for all separable Fréchet spaces.

Non-Coherence with Cp-Embeddings (p > 1) of Intervals

In this section, we prove theorem 14.2.3, which show that the only Hausdorff LCTVSs that

are coherent with a set of Cp-embeddings for p ≥ 2 are {0} and the field R. Consequently,

we will subsequently be primarily interested in studying spaces that are coherent with their

C1-arcs.

The next lemma follows immediately from the inverse function theorem.

Lemma 14.2.1. Let γ = (x, y) ∶ J → R2 be a Cp-curve (p ∈ {1,2, . . . ,∞}) where J contains 0.

If x′(0) ≠ 0 then there exists some ε > 0 such that x∣[−ε,ε] ∶ J ∩[−ε, ε]→ R is a Cp-isomorphism

onto its image and the map y ○ (x∣−1

[−ε,ε]) ∶ Im (x∣[−ε,ε])→ R is Cp.

Example 14.2.2. For all l ∈ N, let xl = 1
l and let yl = x

3/2
l . Then there does not exist

any C2-curve γ ∶ (J,0) → (R2,{0}2) with γ′(0) ≠ {0}2 such that γ(tk) = (xlk , ylk) for some

monotone sequence (tk)∞k=1 in J converging to 0 and some increasing sequence (lk)∞k=1 ⊆ N.

Proof. Suppose for the sake of contradiction that a such a curve γ = (x, y) ∶ (J,0) →

(R2,{0}2) and sequences (tk)∞k=1 and (lk)∞k=1 did exist. If necessary, we may replace γ, J , and

(tk)∞k=1 with, respectively, t ↦ γ(−t), −J , and (−tk)∞k=1 so as to assume without loss of gen-

erality that (tk)∞k=1 is decreasing. Since γ′(0) does not vanish, we may by lemma 14.2.1 pick
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ε > 0 such that ε ∈ J and at least one coordinate of γ∣[0,ε] ∶ [0, ε] → R2 is a C1-isomorphism

onto its image in R. Pick k0 ∈ N be such that k ≥ k0 implies tk ∈ [0, ε[. Replacing γ, (tk)∞k=1,

and (lk)∞k=1 with γ∣[0,ε], (tk0+k)
∞
k=1, and (lk0+k)

∞
k=1, respectively, we may assume without loss

of generality that Domγ = [0, ε] and that at least one of γ’s coordinates is a C1-isomorphism

onto its image.

If y was a C1-isomorphism onto its image so that the map G ∶ Im y → R defined by

G(r) = x(y−1(r)) is C1 and G (ylk) = xlk for all k ∈ N. But then

G′(0) = lim
k→∞

G (ylk)
ylk

= lim
k→∞

xlk
ylk

= lim
k→∞

l
1/2
k =∞

gives a contradiction. Thus y is a not a C1-isomorphism onto its image, which implies that

x is a C1-isomorphism onto its image.

So define F ∶ Imx → R by F (r) = y(x−1(r)) and observe that since F (xlk) = ylk for all

k ∈ N we have

F ′(0) = lim
k→∞

ylk
xlk

= lim
k→∞

x
1/2
lk

= 0 and lim
k→∞

ylk
x2
lk

= lim
k→∞

l
1/2
k =∞

Since x−1 and y are C2, F is twice differentiable at 0 so Taylor’s theorem implies that

F (2)(0) = 2 lim
k→∞

ylk
x2
lk

exists, which gives a contradiction. ∎

In contrast to coherence with C1-arcs, we now show that the only Hausdorff LCTVSs

that are coherent with a set of Cp-embeddings of intervals for some p > 1, are R1 and R0.

Theorem 14.2.3. Let X be a Hausdorff TVS and p ∈ {2,3, . . . ,∞}. If X’s continuous

dual space has dimension 2 or more, then X is not coherent with any set Cp-embeddings of

intervals.

Proof. Clearly, that dimX ′ ≥ 2 implies that there exists a closed 2-dimensional vector sub-

space Y of X and a continuous projection map ρ ∶ X → Y onto Y . Now if X were coherent
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with a set of Cp-embeddings then by proposition 14.1.1, Y would be coherent with its Cp-

arcs but since Y is linearly isomorphic to R2 this would imply that R2 is coherent with its

Cp-arcs, which would contradict example 14.2.2. ∎

The following corollaries follow from theorem 14.2.3, lemma A.5.9, and corollary A.5.14.

Corollary 14.2.4. If p ∈ {2,3, . . . ,∞} and k is a set of cardinality strictly greater than 1,

then Rk is not coherent with any set of Cp-embeddings of intervals into Rk.

Corollary 14.2.5. If p ∈ {2,3, . . . ,∞} then no manifold modeled on a Hausdorff LCTVS of

dimension 2 or more can be coherent with any set of Cp-embeddings of intervals into it.

Corollary 14.2.6. If X is a Hausdorff TVS whose continuous dual space separates points on

X and if S ⊆X is convex then S is contained in a 1-dimensional affine subspace of X if and

only if S is coherent with a set of S-valued Cp-curves in X for some/all p ∈ {2,3, . . . ,∞}.

Non-Coherence of Rd (d infinite) with Cp-Arcs (p ≥ 1)

Theorem 14.3.1. If p ∈ {1,2, . . . ,∞} and d is an infinite set then the topology of Rd is not

coherent with any set of Cp-embeddings of intervals.

Proof. Since every Cp-embedding is a C1-embedding, by observation A.5.4 it suffices to prove

that Rd is not coherent with the set of all C1-embeddings of intervals. So suppose for the

sake of contradiction that Rd was coherent with a set of C1-embeddings of intervals. Let N

denote an arbitrary countable subset of d and let c = d∖N so that we may write Rd = RN×Rc.

For all l ∈ N, let ml = (ml
i)i∈d be the indicator function:

ml
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i = l

0 otherwise

By lemma A.5.9 there exists an increasing sequence of integers (lk)∞k=1, a C1-embedding

γ = (γi)i∈d ∶ J → Rd of an interval J , and a sequence (tk)∞k=0 ⊆ J such that (tk)∞k=1 monotone
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converging to t0, γ (t0) = {0}d, and γ (tk) =mlk for all k ∈ N. For any i ∈ d and k ∈ N, if i ∈ c

then γi (tk) =mlk
i = 0 while if i ∈ N then γi (tk) =mlk

i = 0 for any k ∈ N such that k > i; either

way we have

γ′i (t0) = lim
k→∞

0

tlk − t0
= 0

But then γ′ (t0) = (γ′i (t0))i∈d = {0}d, contradicting the fact that γ is a C1-embedding. ∎

Coherence of Rd (d <∞) with Smooth Almost Arcs

Definition 14.4.1. By a smooth almost arc (on I) (in M) we mean a smooth topological

embedding γ ∶ I → M of a non-degenerate interval I whose derivative vanishes at no more

than one point and where if there exists such a point c ∈ I, then all of γ’s derivatives at c

also vanish (i.e. γ(p)(c) = 0 for all p ∈ N). If c ∈ I and we say that γ is a smooth almost arc

(on I) (in M) at c then we mean that γ is smooth almost arc and if γ has a point at which

its derivative vanishes then this point is c. If we say that γ is a smooth almost arc (on I)

(in M) vanishing at c then we mean that γ is smooth almost arc and γ′ vanishes at c. We

may also replace the words “on I in M ” with “I →M ”.

Lemma 14.4.2. Let α ∶ R→ [0,1] be a smooth non-decreasing function such that α−1(0) = ]−

∞,0], α−1(1) = [1,∞[, and α′ > 0 on ]0,1[. Let β = α′ and for all n ∈ N, letMn = sup ∣Imα(n)∣,

Sn = max{1,M1, . . . ,Mn}, and βn ∶ [ 1
n+1 ,

1
n
] → R be βn(t) = n(n + 1)β (n (n + 1) (t − 1

n+1
)).

Let x● be a sequence in R and define γ ∶ ]0,1] → R on [ 1
n+1 ,

1
n
] by γ(t) = (xn − xn+1)βn(t).

Then the map f ∶ ]0,1] → R defined by f(t) = x1 − ∫
1

t γ(t)dt is a smooth map such that

f ( 1
n
) = xn for all n ∈ N. If in addition for all n ∈ N, ∣xn − xn+1∣ ≤ εn ∶= 1

n(n(n+1))n+1Sn
then the

map ] −∞,1]→ R that extends f and is identically 0 on ] −∞,0], is smooth.

Proof. Note that for all n ∈ N, ∫
1/n

1/(n+1) γ(t)dt = xn − xn+1 so that f(1) = x1 implies that
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f ( 1
n
) = xn for all n ∈ N. For positive integers n ≥ k and t ∈ [ 1

n+1 ,
1
n
], observe that

∣γ(k)(t)∣ = ∣xn − xn+1∣ (n(n + 1))k+1
β(k) (n (n + 1) (t − 1

n + 1
)) ≤ ∣xn − xn+1∣ (n(n + 1))n+1

Sn

so that ∣xn − xn+1∣ ≤ εn implies that ∣γ(k)(t)∣ ≤ 1
n , which proves the γ’s, and thus f ’s, constantly

0 extension to ] −∞,1] is smooth. ∎

Lemma 14.4.3. Let α ∶ R → [0,1], β = α′, β●, and ε● be as in lemma 14.4.2. If x● ⊆ R is a

strictly decreasing sequence such that xn ≤ εn and ∣xn+2 − xn+1∣ < ∣xn+1 − xn∣ for all n ∈ N, then

there exists a smooth almost arc f ∶ ([0,1],0) → (R,0) vanishing at 0 such that f ( 1
n
) = xn

for all n ∈ N.

Proof. Using lemma 14.4.2 twice (with the same α) gives us smooth non-decreasing functions

F,G ∶ ]−∞,1]→ R that are both 0 on ]−∞,0] and that satisfy F ( 1
n
) = xn and G ( 1

n
) = xn+1

for all n ∈ N where since we’re using the same α, it becomes easy to see that G < F and

(F −G)′ ≥ 0 on ]0,1]. Let ϕ ∶ ] − ∞,1] → R be any smooth function such that ϕ−1 (0) =

]−∞,0], ϕ′ > 0 on ]0,1], and 0 < ϕ < 1 on ]0,1]. Note that since F −G and ϕ are positive on

]0,1], the same is true of their product δ ∶= ϕ ⋅(F −G) ∶ ]−∞,1]→ R while 0 < ϕ < 1 on ]0,1]

implies that 0 < δ < G on ]0,1]. Since (F −G)′ ≥ 0 while G,ϕ,ϕ′ > 0 on ]0,1], the product

rule gives us δ′ > 0 on ]0,1. For all n ∈ N, let yn = xn − (G + δ) ( 1
n
) = (1 − ϕ ( 1

n
)) (xn − xn+1)

where observe that xn+1 < yn < xn gives us ∣yn+1 − yn∣ ≤ 2εn, which allows us to apply lemma

14.4.2 to obtain a smooth non-decreasing function H ∶ ] − ∞,1] → R such that H = 0 on

] −∞,0] and H ( 1
n
) = yn for all n ∈ N. The desired smooth map f is H +G + δ where f ′ > 0

on ]0,1] since (H +G)′ ≥ 0 and δ′ > 0 on ]0,1]. ∎

Proposition 14.4.4. Let d ∈ N and let x● = (x●1, . . . , x●d) ⊆ Rd be an infinite sequence

converging to x in Rd. There exists some subsequence xl● of x● and some smooth almost arc

γ ∶ ([0,1],0)→ (Rd, x) vanishing at 0 such that xl● → x is injective in Rd and γ ( 1
n
) = xln for

all n ∈ N.
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Proof. Assume without loss of generality x = {0}d, x●1 strictly decreasing, and for all h =

2, . . . , d either x●h is constantly 0 or otherwise it is strictly decreasing. For all h ∈ {1, . . . , d}

such that x●h is constantly 0, let γh ∶ [0,1]→ R be the constant 0 function. Let α ∶ R→ [0,1],

β = α′, β●, and ε● be as in lemma 14.4.2. For each h ∈ {1, . . . , d} such that x●h is not constant,

find an increasing sequence (nl)∞l=1 ⊆ N such that xnl ≤ εl and xnl+1h ≤ xnlh /2 for all l ∈ N and

then replace x● with xl● . This allows us to assume that for all h ∈ {1, . . . , d} such that x●h is

not constant, x●h satisfies the hypotheses of lemma 14.4.3 which gives us a smooth almost arc

γh ∶ [0,1] → R vanishing at 0 such that γh ( 1
n
) = xnh for all n ∈ N. We have thus constructed

the desired smooth almost arc γ = (γ1, . . . , γd) ∶ ([0,1],0)→ (Rd,{0}d). ∎

Theorem 14.4.5. Smooth manifolds with corners are coherent with their smooth almost

arcs.

Proof. Lemma A.5.9 shows that coherence is a local property so we may assume without

loss of generality that the manifold is Rd for some d ∈ Z≥0. If d = 0 then the result follows

vacuously so we may assume that d > 0. The conclusion now follows by applying lemma

A.5.9 with proposition 14.4.4. ∎

Coherence of Rd (d <∞) with C1-Embeddings of Intervals

Lemma 14.5.1. Suppose that (xl)∞l=1, (yl)∞l=1, and (εl)∞l=1 are sequences of reals converging

to 0 with (εl)∞l=1 positive, (xl)∞l=1 positive and decreasing, and ∣yl+1 − yl∣ < εl∣xl+1 − xl∣ for

all l ∈ N. Then there exists a C1-function f ∶ ([0, x1],0) → (R,0) such that f ′(0) = 0,

f is smooth on ]0, x1], and f(xl) = yl for all l ∈ N. Furthermore, if (yl)∞l=1 is decreasing

(resp. increasing, non-increasing, non-decreasing) then f is increasing (resp. decreasing,

non-decreasing, non-increasing).

Proof. For each l ∈ N, since ∣yl+1 − yl∣ < εl∣xl+1 − xl∣ we may find a smooth function βl ∶

[0, x1]→ R such that β−1
l (R ∖ {0}) = ]xl+1, xl[ and yl−yl+1 = ∫

xl
xl+1

βl(t)dt, where if yl−yl+1 ≥ 0
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(resp. yl − yl+1 ≤ 0) then βl ≥ 0 (resp. βl ≤ 0). Define β ∶ [0, x1] → R by β(0) = 0 and

β∣[xl+1,xl] = βl∣[xl+1,xl] for all l ∈ N, where β is clearly well-defined and also smooth on ]0, x1].

Observe that if (yl)∞l=1 is monotone then β is always either non-negative or non-positive where

if (yl)∞l=1 is strictly monotone then all of β’s zeros in ]0, x1] are also isolated. Note that for all

l ∈ N, sup
x∈[0,xl]

∣β(x)∣ ≤ sup
k≥l

εk so that the assumption that lim
l→∞

εl = 0 implies that β is continuous

at 0 and hence continuous everywhere.

Let f ∶ [0, x1] → R be the C1 function defined by f(x) = y1 + ∫
x

x1
β(t)dt. Observe that

f(x1) = y1 and for any k ≥ 2,

f(xk) = y1 − ∫
x1

x2
β1(t)dt −⋯ − ∫

xk

xk−1
βl(t)dt = y1 − (y1 − y2) −⋯ − (yk−1 − yk) = yk

Since f is continuous, f(0) = lim
l→∞

f(xl) = lim
l→∞

yl = 0. If (yl)∞l=1 is decreasing (resp. increasing)

then since β ≥ 0 (resp. β ≤ 0) and β has isolated zeros in ]0,1], ∫
x

x1
β(t)dt is an increasing

(resp. decreasing) function of x so that the same is true of f . Similarly, if (yl)∞l=1 is non-

increasing (resp. non-decreasing) then β ≥ 0 (resp. β ≤ 0) so that f is non-decreasing (resp.

non-increasing). ∎

Lemma 14.5.2. Suppose that x● = (xl)∞l=1, y● = (yl)∞l=1, and ε● = (εl)∞l=1 are sequences of reals

converging to 0 with (εl)∞l=1 positive, (xl)∞l=1 never zero, and ( yl
xl
)∞
l=1

converging to 0. Then

there exists some increasing ι ∶ N → N such that ∣yι(k) − yι(l)∣ < εk ∣xι(k) − xι(l)∣ for all k < l

in N, (xι(l))
∞
l=1

is strictly monotone, and (yι(l))
∞
l=1

is either constantly 0 or otherwise strictly

monotone.

Proof. Observe that if (ε̂l)∞l=1 is a sequence of positive reals such that ε̂l ≤ εl for all l ∈ N then

the desired conclusion follows if we prove this lemma with (ε̂l)∞l=1 in place of ε●, so we may

assume without loss of generality that ε1 < 1 and
∞
∑

k=l+1
εk < εl/2 for all l ∈ N. If there is an

infinite subsequence of y● consisting entirely of zeros then we’re done, so assume otherwise

and find increasing (il)∞l=1 such that (yil)
∞
l=1 is strictly monotone. By replacing x●, y●, and

ε● with (xil)
∞
l=1, (yil)

∞
l=1, and (εil)

∞
l=1 we may henceforth assume without loss of generality
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that y● is strictly monotone. Similarly, we may assume that x● is strictly monotone. Since

the inequality ∣yi − yj ∣ < εl ∣xi − xj ∣ holds if and only if ∣yi − yj ∣ < εl ∣(−xi) − (−xj)∣ holds, by

replacing x● with (−xl)∞l=1 if necessary, we may assume without loss of generality that all xl

are positive.

Pick ι(1) ∈ N such that l ≥ ι(1) implies ∣ yl
xl
∣ < ε3/2. Suppose we’ve picked increasing

integers 0 < ι(1), . . . , ι(n), where n ≥ 1, such that

(1) for all k = 1, . . . , n, if l ≥ ι(k) then ∣ yl
xl
∣ < εk+2/2,

(2) for all k ∈ Z and l, if 1 ≤ k < l ≤ n then ∣ yι(k)−yι(l)xι(k)−xι(l) ∣ < (εl +⋯ + εk+1) /2.

Pick ι(n + 1) > ι(n) such that for all l ≥ ι(n + 1), both of ∣ ylxl ∣ and ∣ yι(n)−ylxι(n)−xl −
yι(n)
xι(n)

∣ are strictly

less than εn+3/2. Note that

∣
yι(n+1) − yι(n)
xι(n+1) − xι(n)

∣ ≤ ∣
yι(n+1) − yι(n)
xι(n+1) − xι(n)

−
yι(n)

xι(n)
∣ + ∣

yι(n)

xι(n)
∣ < εn+3/2 + εn+2/2 < εn+1/2

which is (2) with (n,n+1, n+1) in place of (k, l, n). If n = 1 then this completes the inductive

step so that we may henceforth assume that n > 1.

If 1 ≤ k ≤ l < n+1 with k < n−1 then ∣yι(l+1) − yι(l)∣ < (εl+1/2) ∣xι(l+1) − xι(l)∣ < (εn+1/2) ∣xι(n+1) − xι(k)∣

so that ∣yι(n+1) − yι(k)∣ ≤ ∣yι(n+1) − yι(n)∣+⋯+∣yι(k+1) − yι(k)∣ < (εn+1/2+⋯+εk+1/2) ∣xι(n+1) − xι(k)∣,

which proves (2) and completes the inductive construction. Observe that (2) together with

the fact that
∞
∑

l=k+2
εl < εk+1/2 for all k ∈ N, implies that for all 1 ≤ k < l, ∣ yι(k)−yι(l)xι(k)−xι(l) ∣ is bounded

above by (εl +⋯ + εk+1) /2 < εk+1 < εk. ∎

Lemma 2 of the preprint [37] appears to be false, since it would allow one to conclude

that through any sequence (xl)∞l=1 of non-zero points in Rn that converges to zero and for

which there exists a v ∈ Rn such that

lim
l→∞

d (xl,R≥0v)
∥xl∥2

= 0
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there exists a smooth curve with nowhere vanishing derivative, whose range contains infinitely

many points of (xl)∞l=1. But as we have seen in example 14.2.2, such a curve, even if it’s merely

required to be C2 rather than smooth, does may fail to exist if n > 1. However, we will now

show in theorem 14.5.4 that if we reduce the requirement of smoothness to C1 then such a

curve will necessarily exist.

Despite lemma 2 of [37] being false for dimensions greater than 1, elements of this lemma’s

attempted proof were headed in the right direction and although the author proved the

below statements independently, there are nevertheless several commonalities between the

attempted proofs in [37] and the author’s proof of theorem 14.5.4 below. Since the author

cannot guarantee that these commonalities are not the result of having read [37] prior to

attempting the independent proof of theorem 14.5.4, for full disclosure and honesty, the

author has encapsulated all ideas that are common to both [37] and the proof of theorem

14.5.4 below in the following lemma 14.5.3, which is in fact actually a generalization of lemma

2 of [37] with a proof that includes details omitted form [37].

Lemma 14.5.3. For all d ∈ Z≥0 and all p ∈ {0,1, . . . ,∞} let ⋆(p, d) denote the following

statement:

⋆(p, d): Whenever m● = (ml)∞l=1 is an infinite-ranged sequence in Rd converging to m0 then

there exists a Cp-embedding γ ∶ ([0, ε],0) → (Rd,m0), where ε > 0, that can lift some

subsequence of m● to a monotone injective sequence in [0, ε].

Then for all p, both ⋆(p,0) and ⋆(p,1) are true, if ⋆(p,2) is true then ⋆(p, d) is true for all

d ≥ 2, and to prove ⋆(p,2) it suffices to prove it for those sequences (ml)∞l=0 = (xl, yl)∞l=0 in R2

for which x0 = 0 = y0, both (xl)∞l=1 and ( y
l

xl
)
∞

l=1
are increasing to 0, and (yl)∞l=1 is decreasing

to 0. Furthermore, this remains true if we add to statement ⋆(p, d) the condition:

(S): γ is a smooth embedding on ]0, ε].

Proof. If d = 0 then this is vacuously true while d = 1 is obvious. So assume that ⋆(p,2) is

true, let d > 2, and for each l ∈ N writeml = (ml
1, . . . ,m

l
d) and letml

≥2 = (ml
2, . . . ,m

l
d). Observe
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that if h ∶ Rd → Rd is a diffeomorphism and (mlk)∞k=1 is any infinite-ranged subsequence of

(ml)∞l=0 then it suffices to prove the theorem with (h (mlk))∞k=1 in place of (ml)∞l=0 so that in

particular, we may assume without loss of generality that (1) m0 = {0}d, (2) all (ml
i)∞l=1 are

non-negative and non-increasing, (3) (ml
1)∞l=1 is decreasing, and (4) for all i ∈ N such that

2 ≤ i ≤ d, either (ml
1)∞l=1 is constant or else it’s decreasing. If (ml

≥2)
∞
l=1

contains an infinite

constant subsequence (mlk
≥2)

∞
l=1

then each mlk
≥2 = {0}d−1 so let tk = mlk

1 for all k ∈ N and let

γ ∶= (IdR,{0}d−1) ∶ R→ Rd. Thus we may assume that (ml
≥2)

∞
l=1

is injective.

Proceeding by induction, suppose that the theorem has been proved for all dimensions less

than d. Pick δ > 0, a Cp-embedding β ∶ ([0, δ],0)→ (Rd−1,{0}d−1), a sequence (sp)∞p=1 ⊆ ]0, δ[

decreasing to 0, and an increasing sequence (qp)∞p=1 ⊆ N such that β (sp) = mqp
≥2 for all p ∈ N,

where if (S) had been assumed then we also assume that β satisfies this additional condition.

Now pick ε0 > 0, a Cp-embedding α = (α1, α2) ∶ ([0, ε0] ,0) → (R × Dδ, {0}2), a decreasing

sequence (tk)∞k=1 in ]0, ε0[ converging to 0, and an increasing sequence of integers (pk)∞k=1 such

that α (tk) = (mqpk
1 , spk) for all k ∈ N, where if (S) had been assumed then we also assume

that α satisfies this additional condition. Define η = (α1, β ○ α2) ∶ [0, ε0] → Rd and observe

that η is a Cp-map and an injection whose derivative (if p ≥ 1) vanishes nowhere and that

will satisfies (S) if (S) had been assumed.

Now suppose d = 2 and that we want to prove ⋆(p,2). For all l ∈ Z≥0 we may now write

ml = (xl, yl). Observe that both (xl)∞l=1 and (yl)∞l=1 are decreasing. If ( ylxl )
∞
l=1

does not contain

a convergent subsequence then it contains a subsequence that diverges to infinity so switch

all xl’s and yl’s and assume without loss of generality that ( yl
xl
)∞
l=1

monotone converges to a

non-negative s. If there exists a subsequence (xlk , ylk)
∞
k=1 and a polynomial p(x) such that

ylk = p (xlk) for all k ∈ N then let γ(x) = (x, p(x)) and we’re done, so assume without loss

of generality that no such subsequence and polynomial exist. In particular, this assumption

implies that ( yl
xl
)∞
l=1

does not contain any infinite constant subsequence so we may further

assume without loss of generality that ( yl
xl
)∞
l=1

is strictly monotone which, in particular,

implies that no (xl, yl) lies on the line x → (x, sx). If after rotating the points (xl, yl) by
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−arctan (s), selecting strictly monotone subsequences, reflecting them across the x-axis if

necessary (to have infinitely many positive yl’s), and then replacing (xl, yl)∞l=1 with this new

sequence, we may assume without loss of generality ( yl
xl
)∞
l=1

is strictly monotone decreasing

to s = 0. Since (x, y)↦ (−x, y) is a diffeomorphism we may assume without loss of generality

that both (xl)∞l=1 and ( y
l

xl
)
∞

l=1
are increasing to 0. ∎

Theorem 14.5.4. Let d ∈ Z≥0, let AI and A∗[0,1] be defined as in corollary 14.0.2 for p = 1

and M = Rd. Then Rd is coherent with A∗[0,1] and with AI for all intervals I. If d > 0 and if

we instead had M = Rd−1 ×R≥0 then M would be coherent with A∗[0,1], A[0,1], A[0,1[, but not

with A]0,1[.

Proof. Corollary 14.0.2 shows that it suffices to show that Rd is coherent with A∗[0,1] while

lemma 14.5.3 shows that it suffices to prove this statement for d = 2. So let {ml = (xl, yl) ∶ l ∈ N}

be an infinite-ranged sequence in R2. By lemma A.5.9, it suffices to find

(1) a C1-embedding γ ∶ ([0,1],0)→ (M,{0}d) that is smooth on ]0,1],

(2) a decreasing sequence (tk)∞k=1 in ]0,1] converging to 0,

(3) an increasing sequence of integers (lk)∞k=1

such that γ (tk) = mk for all k ∈ N and γ∣
D∖{0} is a smooth embedding. By lemma 14.5.3,

it suffices to prove this statement under the assumption that m0 = (0,0), both (xl)∞l=1 and

( y
l

xl
)
∞

l=1
are decreasing to 0, and (yl)∞l=1 is decreasing to 0 while lemma 14.5.2, we may also

assume without loss of generality that ∣yk − yl∣ < 1
l ∣xk − xl∣ for all k, l ∈ N with k > l. We

obtain the desired curve by reparameterizing the curve constructed in lemma A.5.9 by a

linear transformation.

If d > 0 and we instead hadM = Rd−1×R≥0 then the above proof goes through unchanged,

except that the non-empty manifold boundary ofM would, as shown in corollary A.5.13, now

prevent us from concluding thatM is coherent with A]0,1[. The proof fails to generalize since

we may now no longer extend any γ ∶ ([0,1],0) → (M,{0}d) satisfying the above properties

(or any of its reparameterizations) to an open interval containing its domain. ∎
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Theorem 14.5.5 follows immediately.

Theorem 14.5.5. Smooth manifolds with corners are coherent with their C1-arcs.

Corollary 14.5.6. For any set d,

(1) d is finite if and only if Rd is coherent with its C1-arcs, and

(2) d is empty or a singleton set if and only if Rd is coherent with its Cp-arcs for some/all

p ∈ {2,3, . . . ,∞}.

Proof. This follows immediately from theorems 14.5.4 and 14.3.1. ∎

Theorem 14.5.7. A Ck-manifold with corners (k = 1,2, . . . ,∞) is a Ck-manifold if and only

if it’s coherent with its C1-embedding of open intervals.

Proof. This follows immediately from corollary A.5.13 and theorem 14.5.4. ∎

If M is a metrizable TVS and m● is a sequence in M converging to m0 then it is well

known (see [27, p. 17-18]) that one may find an increasing sequence (lk)∞k=1 and a smooth

path γ ∶ (R,0)→ (M,m0) such that γ( 1
k
) = mlk , where γ’s derivative at 0 will necessarily

vanish. Consequently, M ’s topology is coherent with the set of all Cp-paths in Rd for all

p ∈ Z≥0 ∪ {N}, which in particular gives us the following corollary.

Corollary 14.5.8. RN and all manifolds are coherent with their set of smooth paths.

Characterization of Local Path-Connectedness

The following definition will allow us to simultaneously apply the subsequent lemma 14.6.2

to various notions of path-connectedness such as Cp-path connectedness (p ∈ {0,1, . . . ,∞}),

piecewise Cp-path connectedness, Cp-arc connectedness, etc.

Definition 14.6.1. Let X be a space and let C be a collection of maps in X. If U is a

subset of X, x, y ∈ U and n ∈ N then by a simple C-chain of length n in U from x to y we
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mean a sequence γ1, . . . , γn of U -valued maps in C where x ∈ Imγ1, y ∈ Imγn, and whenever

i, j ∈ {1, . . . , n} are such that ∣i− j∣ = 1 then Imγi ∩ Imγj ≠ ∅. By a simple C-chain in U from

x to y we mean a simple C-chain of any length in U from x to y.

We will say that U is piecewise C-connected (resp. U is C-connected) if for all distinct

x, y ∈ U there exists some simple C-chain in U from x to y (resp. that has length 1). If either

(1) x is isolated, or else (2) x is non-isolated and every neighborhood of x in X contains some

neighborhood of x that is piecewise C-connected (resp. is C-connected) then we’ll say that

X is neighborhood locally piecewise C-connected (resp. is neighborhood locally C-connected)

at x where if this neighborhood can always be chosen to be open in X then we’ll remove

the word “neighborhood.” If we don’t mention a point in the above definition then we mean

that it’s true at every point of X. ∎

Surprisingly, despite the generality of definition 14.6.1, lemma 14.6.2’s mild requirements

on X will nevertheless always allow us to conclude that the space in question is locally

piecewise C-connected and neighborhood locally C-connected.

Lemma 14.6.2. Let X be a Hausdorff Fréchet-Urysohn space and let C be a collection of

continuous maps in X such that every non-isolated x ∈X is contained in the image of some

γ ∈ C, C satisfies condition (⋆) in lemma A.5.9, and the following presheaf-like condition is

satisfied:

(⋆⋆): for all γ ∈ C, t ∈ Domγ, and neighborhoods N of t in Domγ, there exists some neigh-

borhood W of t contained in N such that γ∣
W
∈ C.

For all n ∈ N, x ∈ X, and neighborhoods U of x in X, let Cn(x,U) denote the set of

all y ∈ U for which there exists a simple C-chain of length n in U from x to y and let

C(x,U) =
∞
⋃
n=1

Cn(x,U). Then for all non-isolated x ∈X and neighborhoods U of x in X,

(1) Cn(x,U) is a neighborhood of x in X for all n ∈ N,
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(2) if U is open in X then C(x,U) is an open and closed subset of U containing x, which

shows, in particular, that X is locally piecewise C-connected at x,

(3) if C1(x,U) = C2(x,U) then C(x,U) = Cn(x,U) for all n ∈ N,

(4) if all U -valued γ ∈ C have a connected domain then all Cn(x,U)’s are connected and

C(x,U) is the connected component of U containing x,

(5) C(x,U) = C(y,U) for any y ∈ C(x,U),

(6) Cn(x,U) ⊆ Cn+1(x,U) for all n ∈ N,

(7) if y ∈ Cn(x,U) and z ∈ Ck(y,U) then x ∈ Cn(y,U) and z ∈ Cn+k(x,U), and

(8) if U is open in X and for all m ∈ U and y, z ∈ C1 (m,U) there exists some U -valued

γ ∈ C such that m,y, z ∈ Imγ then C1(x,U) = C(x,U) is open and closed in U .

Proof. Let x ∈X and let U be a neighborhood of x in X.

(6) - (7): Note that if (γ1, . . . , γn) is a simple C-chain in U from x to some point y ∈ U ,

then (γ1, . . . , γn, γn) is trivially a simple C-chain of length n+1, which shows that Cn(x,U) ⊆

Cn+1(x,U) for all n ∈ N . And if there is a simple C-chain (η1, . . . , ηk) of length k in U from

y to some z ∈ U then (γ1, . . . , γn, γn, η1, . . . , ηk) simple C-chain (η1, . . . , ηk) of length k + n in

U from y so that z ∈ Cn+k(x,U).

(1): Note that our assumptions imply that C1(x,U) contains x. Suppose that C1(x,U)

was not a neighborhood of x in X. Then x ∈ ClU(U ∖ C1(x,U)) where since U is Fréchet-

Urysohn, there exists some sequence (xl)∞l=1 of distinct points in U ∖C1(x,U) that converge

to x. By condition (⋆), there exists some X-valued γ ∈ C and some γ-liftable subsequence of

x● so that by replacing x● with this subsequence, we may assume without loss of generality

that x● is γ-liftable. If (ti)∞i=1 → t is a γ-lift of (xi)∞i=1 → x then by (⋆⋆) we may pick some

neighborhood W of t contained in γ−1(U) such that γ∣
W

∈ C. Pick N ∈ N such that tN ∈W

and observe that γ∣
W
(tN) = xN , which contradicts the fact that xN ∈ U ∖ C1(x,U). Thus

C1(x,U) is a neighborhood of x in X that is contained in U and now (1) follows from (6).
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(2) and (5): Clearly, for any n ∈ N, if y ∈ Cn(x,U) and z ∈ C1(y,U) then z ∈ Cn+1(x,U) so

that y ∈ C1(y,U) ⊆ Cn+1(x,U) ⊆ C(x,U), where Cn(y,U) is a neighborhood of y in X. This

shows that C(x,U) is a neighborhood in X of each of its points and that C(y,U) ⊆ C(x,U)

for any y ∈ C(x,U). With n and y as above, note that if z ∈ Ck(x,U) for some k ∈ N then

since x ∈ Cn(y,U) we have that z ∈ Ck+n(y,U) ⊆ C(y,U), which gives the reverse inclusion

C(x,U) ⊆ C(y,U) and proves (5).

Now suppose that y ∈ U belongs to the closure of C(x,U). Since X is Fréchet-Urysohn,

we may pick a sequence (xl)∞l=1 in C(x,U) in converging to y. By condition (⋆), there exists

some X-valued γ ∈ C and some γ-liftable subsequence of (xl)∞l=1 where as before, we may

assume without loss of generality that (xl)∞l=1 is γ-liftable. Let (ti)i∈N → t is an γ-lift of

(xi)i∈N → y and using (⋆⋆), pick some neighborhood W of t contained in γ−1(U). Pick k ∈ P

such that tk ∈ W and let n ∈ N such that γ∣
W
((tk) = xk ∈ Cn(x,U) where note that this,

together with the fact that both x and xk are in the image of γ∣
W
, implies that x ∈ Cn+1(x,U).

Thus x ∈ Cn+1(x,U) ⊆ C(x,U), as desired.

(3) is proved by a straightforward induction argument.

(4): Note that C1(x,U) is just the union of all images of all U -valued maps in C whose

images contain x so that if all U valued maps in C had a connected domain then C1(x,U)

would be connected and from this observation, it is easy to see that one may inductively

prove that all Cn(x,U), and thus C(x,U), are be connected. That C(x,U) is the connected

component of U containing x now follows from (2).

(8): If m ∈ ClU(C1 (x,U)) then since C1 (m,U) is a neighborhood of m in X there is some

z ∈ C1 (x,U)∩C1 (m,U) so our assumption gives us a U -valued γ ∈ C such that x,m, z ∈ Imγ,

which implies that m ∈ C1 (x,U). Our assumption clearly implies that C1 (x,U) = C2 (x,U)

so we may apply (2) and (3) to obtain the rest of (8). ∎

Corollary 14.6.3. Let M be a Cp-manifold modeled on Hausdorff TVSs where 0 ≤ p ≤∞,

let S ⊆M be a Fréchet-Urysohn subspace, let 0 ≤ k ≤ p, and denote the set of all Ck-paths

into S by Pk. If S is coherent with Pk then S is locally path-connected, neighborhood locally
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Pk-connected, and locally piecewise Pk-connected

Warning 14.6.4. Observe that corollary 14.6.3 does not claim that S is locally Pk-connected.

Theorem 14.6.5. A first-countable Hausdorff space is locally path-connected if and only if

it’s coherent with it continuous paths.

Proof. Let X be a first-countable Hausdorff space. If X is coherent with its paths then it’s

locally path-connected by lemma 14.6.2 so suppose that X is locally-path-connected and let

S ⊆ X be such that for all paths γ in X, γ−1(S) is closed in γ’s domain. Let x ∈ S and

let (Ul)∞l=1 be a countable decreasing neighborhood basis of x consisting of path-connected

open sets and (xl)∞l=1 be a sequence of points in S such that for all k, l ∈ N, if l ≥ k then

xl ∈ Uk. For all l ∈ N, define γ on [ 1
l+1 ,

1
−l] to be a path in Ul from γ(1/(l + 1)) = xl+1 to

γ(1/l) = xl and then let γ(0) = x. Clearly, γ ∶ [0,1] → X is continuous on ]0,1] and since

[0,1/l] ⊆ γ−1(Ul) for all l ∈ N, γ is also continuous at 0. Since γ−1(S) is closed in [0,1] and

{1,1/2, . . .} ⊆ γ−1(S), it follows that 0 ∈ γ−1(S) so that x = γ(0) ∈ S, as desired. ∎

Lemma 14.6.6. Let S ⊆M , p ∈ Z≥0 ∪ {∞}, and suppose that both

γ−1 ∶ ([−1,0],−1,0)→ (S,m−1,m) and γ1 ∶ ([0,1],0,1)→ (S,m,m1)

are Cp-paths. Then the map (γ−1 ∪ γ1) ○ β ∶ ([−1,1],−1,1)→ (S,m−1,m1) is Cp where β ∶

[−1,1] → [−1,1] is some increasing homeomorphism and smooth almost arc vanishing at 0

(which exists by example B.0.1).

Definition 14.6.7. Let P is a set of continuous paths in a promanifold M , S ⊆ M , and

p ∈ Z≥0 ∪ {∞}. For m0,m1 ∈ S, we’ll write m0 ∼P m1 and say that m0 and m1 are P

path-connected in S if m0 ≠ m1 implies that there is a simple P-chain of length 1 in S

from m0 and m1, where if P consists of all Cp-paths in M then we’ll write m0 ∼p m1. If P

consists of all Cp-paths (resp. Cp-arcs) inM then we’ll say that Cp path-connected (resp. Cp
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arc(wise)-connected) if S is P-connected, where since lemma 14.6.6 shows that ∼p forms an

equivalence relation on S, we will call each equivalence class a Cp path-component of S. For

any m ∈M , M is locally Cp path-connected (resp. arc(wise)-connected) at m if there exists a

neighborhood basis at m consisting of open Cp path-connected (resp. Cp arcwise-connected)

sets. A promanifold M is called locally Cp path (resp. arc(wise)) connected if it is locally

Cp path-connected (resp. Cp arcwise-connected) at each m ∈M . ∎

Remark 14.6.8. Observe that each singleton set is vacuously Cp arcwise connected.

Coherence and 0-Dimensionality

The following lemma explores some consequences of a promanifold being coherent with its

smooth paths for points at which the promanifold is 0-dimensional.

Lemma 14.7.1. Let p ∈ Z≥0 ∪ {∞}. If M is coherent with its Cp paths then

(1) For any m ∈M , dimmM = 0 ⇐⇒ {m} ∈ Open (M).

(2) Z =
def

{m ∈M ∣dimmM = 0} is a discrete open and closed submanifold of M that equals

{m ∈M ∣ {m} ∈ Open (M)} and each µi(Z) is a discrete closed and open zero-dimensional

submanifold of Mi.

(3) (M ∖Z,µ●∣M∖Z) is the limit of the profinite system

SysM∖Z =
def

(µ●(M ∖Z), µij ∣µj(M∖Z),N)

where µij ∣µj(M∖Z) ∶µj(M ∖Z)→µi(M ∖Z) is a smooth surjective submersion between

open submanifolds for each i ≤ j. Furthermore, M ∖Z is a promanifold that is coherent

with its Cp paths and if M is coherent with its Cp arcs then so is M ∖Z.

• In particular, this will often allow us to assume without loss of generality that M

has non-zero dimension at each of its points.
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(4) Z is exactly the set of points through which no non-constant Cp path passes (i.e. none

of these points is not in the image of any non-constant Cp path).

• In particular, if M is coherent with its Cp-arcs then Z is exactly the set of points

through which no Cp-arc passes.

Proof. (1): (⇐Ô ) is always true and is proved in lemma 7.2.2 so to prove (Ô⇒ ) suppose

that dimmM = 0 but that {m} is not open in M . Pick a sequence (ml)∞l=1 converging to

m in M such that k ≠ l Ô⇒ ml ≠ mk and ml ≠ m for all l ∈ N. Pick (lk)∞k=1, (tlk)∞k=1 ⊆

]0,1[, and a Cp path γ ∶ ([0,1],0) → (M,m) as in lemma 14.0.1. For each index i, 0 =

dimµi(m)Mi so {µi(m)} is a connected component of Mi so that it contains the image of

γi =
def
µi ○ γ ∶ ([0,1],m)→ (Mi, µi(m)). In particular, γi is constant for each index i so that γ

is constantly m, which gives a contradiction.

(2): That Z is a discrete open subset of M is immediate from (1). If m ∈M ∖Z belongs

to the closure of Z in M then every open neighborhood of m must contain infinitely many

distinct elements of Z so we may pick a Cp path γ ∶ ([0,1],0)→ (M,m) whose image contains

infinitely many of these elements of Z, which is a contradiction. Thus Z is closed in M . If

m ∈ Z then let Uj =
def

{µj(m)} for each index j and pick an index i such that {m} = µ−1
i (Ui),

which exists since U =
def

{m} is open in M . Observe that µ−1
ij (Ui) = Uj for all j ≥ i so that

µij ∣Uj ∶Uj→Ui is a diffeomorphism between open subsets, which implies that the same is true

of µi∣U ∶U →Ui. This implies that Z is a zero-dimensional open submanifold of M .

(3): This is immediately verified.

(4): If m ∈ Z then since {m} ∈ Open (M) and [0,1] is connected, there can be no non-

constant Cp path that passes through m. Now suppose that m ∈M is such that there exists

no non-constant Cp path that passes through m (i.e. that contains m). Let C = M ∖ {m}

and γ ∶ [0,1] →M be any Cp path. If Imγ does not intersect C then Imγ ⊆ C = ∅ is closed

in Imγ while if it does intersect C then our assumption implies that Imγ ⊆ C so that we

again have that C ∩ Imγ = Imγ is closed in Imγ. Since γ was an arbitrary Cp path it follows
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that C is closed in M so that {m} =M ∖C is open in M . Hence, (2) implies that m ∈ Z.

Now assume that M is coherent with its Cp arcs and m ∈M is such that there exists no

Cp-arc that passes through m. Let C = M ∖ {m} and γ ∶ [0,1] → M be any Cp arc. Since

γ ∶ [0,1] → M is injective, Imγ necessarily intersects C and conclusion that m ∈ Z follows

by repeating the remainder of the last paragraph but with ’‘‘Cp path” replaced with ‘Cp

arc.” ∎

Coherence with Cp-Arcs (p > 0)

Proposition 14.8.1. For each index i, let Di denote the set of all m ∈ M such that

µ−1
i (µi(m)) = {m} and let Oi denote the interior (in M) of Di. If p ∈ N ∪ {∞} and M

is coherent with its Cp-arcs then

(1) M is coherent with its Cp paths. In particular, M is locally Cp path-connected.

(2) For all m ∈ M there exists some i ∈ N such that µ−1
i (µi(m)) = {m} in which case

dimmM = dimµj(m)Mj for all j ≥ i. In particular, dimmM <∞ for all m ∈M .

(3) At each m0 ∈M , M is locally finite-dimensional of dimension dimm0 M . That is, there

exists some m0 ∈ U ∈ Open (M) such that dimm0 M = dimmM for all m ∈ U .

(4) For each index i, Di =
def
µi(Di) is closed inMi, Di = µ−1

i (Di) is closed inM , i ≤ j implies

Di ⊆Dj, µi∣Di ∶D
i→Di is a diffeomorphism, and there exists some non-empty Oj.

• So in particular, µi∣Oi ∶O
i→µi(Oi) is a diffeomorphism from an open subset of M

onto an open submanifold of Mi.

(5) ∪
i∈I
Oi is the unique maximal open O such that M such that for all m ∈ O there exists

some index i and some µi(m) ∈ Ui ∈ Open (Mi) and such that µi∣µ−1i (Ui)
∶µ−1

i (Ui)→Ui

is a diffeomorphism onto Ui. Furthermore, ∪
i∈I
Oi is dense in M and it is exactly

the set of all m ∈ M for which there exists a diffeomorphism G ∶U →N from some

m ∈ U ∈ Open (M) onto a (dimmM)-dimensional smooth manifold N .
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• In particular, ∪
i∈I
Oi is a manifold (possibly of inhomogeneous dimension) that is

dense and open in M and contains the zero-dimensional manifold Z from lemma

14.7.1.

(6) Either p = 1 or else M is 0 or 1 dimensional at every point in its domain.

Proof. (1): Since every Cp arc is also a Cp path it is immediate that M is coherent with its

smooth paths so that lemma 14.6.2 applies.

(2): Suppose there did not exist such an index i and letmi =
def
µi(m) for each i ∈ N. Let i1 =

1 and pick m1 ∈ µ−1
1 (m1) distinct from m. Suppose we’ve picked il > ⋯ > i1 and ml ∈ µ−1

il
(mi1)

such that all m,m1, . . . ,ml are distinct. Pick il+1 > il such that mil+1 , µil+1(m1), . . . , µil+1(ml)

are all distinct and pick any ml+1 ∈ µ−1
il+1

(mil+1) distinct from m, where note that ml+1 is also

necessarily distinct from m1, . . . ,ml. Observe that for each i ∈ N, µ−1
i (mi) contains all but

finitely many elements of {ml ∣ l ∈ N}.

Pick (lk)∞k=1, (tlk)∞k=1, and a Cp arc γ ∶ ([0,1],0) → (M,m) as in lemma 14.0.1 where

by replacing (ml)∞l=1 by (mlk)∞k=1 we may assume that lk = k for all k ∈ N. Pick l ∈ N such

that (µil ○ γ)
′(0) ≠ 0, let i = il, and let γi = µi ○ γ. Pick 0 < δ < 1 sufficiently small so that

γi∣[0,δ] ∶ [0, δ]→Mi is a Cp embedding and then pick L ∈ N greater than l such that µ−1
i (mi)

contains {mk ∣k ≥ L} and k ≥ L Ô⇒ tk ∈ [0, δ]. Observe that this implies {mk ∣k ≥ L} ⊆

µ−1
i (mi) that γ∣[0,δ] ∶ [0, δ]→M passes through each point of {mk ∣k ≥ L} so that {mk ∣k ≥ L} ⊆

µ−1
i (mi)∩γ([0, δ]). Since j ≠ k Ô⇒ mj ≠mk and µi(mk) =mi for all k ≥ L, this contradicts

the injectivity of γi∣[0,δ] ∶ [0, δ]→Mi. If dimmM ≠ dimmiMi then since all µij are surjective

submersions there would be some j > i such for which µ−1
jk(µj(m)) is infinite, contradicting

what was just shown.

(3): Recall promanifolds have constant dimension on connected subsets so this follows

from (1).

(4): That each Di is closed inMi = Imµi and Di is closed inM is an application of lemma

A.3.1. That i ≤ j implies Di ⊆ Dj follows from the fact that µ−1
i (µi(m)) = µ−1

j (µ−1
ij (µi(m)))

for all m ∈ M . Observe that (2) implies that M = ∪
i∈N
Di so by the Baire category theorem
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there must exist some Di with non-empty interior. Fix an index i, let h =
def

(µi∣Di)
−1 ∶Di→Di,

and for all j ≥ i let hj =
def
µj ○ F so that hj = (µij ∣µ−1ij (Di))

−1

∶Di→µ−1
ij (Di). For any j ≥ i and

any mi ∈ Di, since µij ∶ Mj → Mi is a smooth submersion at hj(mi) = µ−1
ij (mi) it follows

that there exists an open neighborhood of hj(mi) in Mj on which µij is a diffeomorphism

between open sets so that it follows immediately that hj is smooth at mi. Since hj is smooth

with smooth inverse µij ∣µ−1ij (Di) ∶µ
−1
ij (Di)→Di, it is a diffeomorphism. Since h = lim←Ðh● is the

limit of diffeomorphisms it follows h ∶Di→Di = µ−1
i (Di) is also a diffeomorphism. Since µi

is an open map, this implies that the open subset Oi of M is diffeomorphic to the finite-

dimensional smooth open submanifold µi(Oi) of Mi.

(5): That O =
def

∪
i∈N
Oi is the unique maximal open subset of M with the claimed property

is easily seen. Suppose that there existed some index i and some non-empty Ui ∈ Open (Mi)

such that µ−1
i (Ui) ⊆ M ∖ O. For each j ≥ i let Uj =

def
µ−1
ij (Ui), let U = µ−1

i (Ui), and let

SysU =
def

(Uj, µjk∣Uk ,N
≥i) where U = lim←Ð SysU . Clearly, U is coherent with the collection of

all image of all smooth arcs in U so applying part (4) of this theorem to U and SysU in

place of M and SysM gives us an index j ≥ i and a non-empty Wj ∈ Open (Uj) such that

µj ∣µ−1j (Wj)
∶µ−1

j (Wj)→Uj is injective. Hence µ−1
j (Wj) ⊆ Dj and since µ−1

j (Wj) is open in M

it follows that µ−1
j (Wj) ⊆ Oj ⊆ O. But this is a contradiction since µ−1

j (Wj) ⊆ U ⊆ M ∖O.

Thus O is dense in M .

Now suppose that m ∈ M is a point for which there exists m ∈ U ∈ Open (M) and a

diffeomorphism G ∶U →N onto a d = dimmM -dimensional smooth manifold N . Let h be an

index such that dimµh(m)M = d. Since µh ○G−1 ∶N →µh(U) is a smooth surjective submer-

sion between d-dimensional manifolds there exists some G−1 (m) ∈ W̃ ∈ Open (N) such that

µh ○G−1∣
W̃
∶ W̃ →µh(G(W̃ )) is a diffeomorphism, which implies that µh∣W ∶W →µh(W ) is a

diffeomorphism from W =
def
G(W̃ ), an open subset of U , onto µh(W ). Pick i ≥ h and µi(m) ∈

Ui ∈ Open (Mi) such that µ−1
i (Ui) ⊆ W and observe that µi∣µ−1i (Ui)

∶µ−1
i (Ui)→Ui is a diffeo-

morphism between open sets since the same is true of µh∣µ−1i (Ui)
= µhi ○ µi∣µ−1i (Ui)

∶µ−1
i (Ui)→µhi(Ui).

In particular, this implies that µ−1
i (Ui) ⊆ Oi.
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(6): Follows from (5) and corollary 14.5.6. ∎

Lemma 14.8.2. Let p ∈ N ∪ {∞} and suppose that M is coherent with its Cp arcs. If a

smooth map F ∶ (M,m)→ (N,n) is a pointwise immersion atm then {m} is open in F −1 (n).

In particular, if F ∶M → N is a smooth pointwise immersion then each fiber of F is discrete.

Proof. Suppose that {m} was not open in F −1 (n). Since F −1 (n) is sequential, this implies

that there exists a sequence (ml)∞l=1 ⊆ F −1 (n) such that m● → m is injective in M . Pick

(lk)∞k=1, (tlk)∞k=1 ⊆ ]0,1[, and a Cp arc γ ∶ ([0,1],0) → (M,m) as in lemma 14.0.1. Since F

is a pointwise immersion at m and γ′(0) ≠ 0, we have (F ○ γ)′(0) ≠ 0 so that there exists

some 0 < ε ≤ 1 such that F ○ γ∣[0,ε] ∶ [0, ε] → N is injective. But this is impossible since

(F ○ γ)(tlk) = n for all k ∈ N and tlk converges to 0. ∎

QUESTIONS:

(1) If C is a connected component of M ∖O and m ∈ C, then is there a cofinal subset J of

N such that µj(C) is a finite-dimensional submanifold of Mj?

(2) The ultimate goal of the above question would be to answer the following question:

under the above circumstances, is M necessarily (homeomorphic or diffeomorphic to)

a stratification of manifolds?

• The reason for this idea stems from the fact that prop. 14.8.1 shows that a con-

nectedM is “almost” a manifold of top-dimension, except for on a closed nowhere

dense subset of M where this closed set could (maybe after the introduction of

additional hypotheses) possibly be identified as the lower-dimensional manifolds

of a stratified manifold (ex: it could possibly be the boundary of the unique

top-dimension submanifold of M).
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Chapter 15

Constructions of Curves into Monotone

Promanifolds

Most of results in this section will be used as lemmas in the proof of theorem 15.4.11, from

which the more important theorem 16.1.7 follows almost immediately. Although the some

of the lemmas statements’ appear somewhat lengthy and technical, they are all written in a

way so that in practice, it is usually easy to find a subsystem and sequence(s) that satisfy

their hypotheses.

Smooth Almost Arcs

Smooth almost arcs are defined in definition 14.4.1. Note that the equality “η−1
a (ηa([t,1])) =

[t,1]” in the following lemma would not necessarily have held had η ∶ [0,1] → N be an

arbitrary smooth topological embedding instead of a smooth almost arc at 0.

Lemma 15.1.1. Suppose that η ∶ [0,1]→ N is a smooth almost arc at 0 and let η● = ν● ○ η.

Then for all t ∈ ]0,1], there exists an a ∈ N such that ηa∣[t,1] ∶ [t,1] → Na is a smooth

embedding and η−1
a (ηa([t,1])) = [t,1], in which case Va =

def
Na ∖ ηa([0, t]) is an open subset

of Na such that ηa∣η−1a (Va)
∶ η−1

a (Va)→ Va is a smooth embedding whose image is ηa (]t,1]).
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Proof. Let a0 ∈ N be such that ηa0 ∣[t/2,1] ∶ [t/2,1]→ Na0 is a smooth embedding, which implies

that for all a ≥ a0, η−1
a (ηa ([t,1]))∩[t/2, t[= ∅. For all a ≥ a0, let Ia = [0, t/2]∩η−1

a (ηa ([t,1]))

and observe that Ia is compact and that if a ≤ b then Ib ⊆ Ia. Suppose that there was no

a ∈ N such that η−1
a (ηa([t,1])) ⊆ [t,1]. Then all I● are non-empty so that there would exist

some t ∈ ∩I●. Since ηa0 ∣[t/2,1] ∶ [t/2,1] → Na0 is injective and ηa0(t) ∈ ηa0 ([t,1]), we can

define s = η−1
a0 (ηa0(t)) For all a ≥ a0, our assumption implies that Ja =

def
[t,1]∩ η−1

a (ηa(t)) is a

non empty compact set where since a ≤ b implies J b ⊆ Ja, we have that ∩J● contains some

element s. Since ηa(s) = ηa(t) for all a ≥ a0, it follows that η(s) = η(t) so that η’s injectivity

gives us the contradiction s = t. ∎

Fast Converging Sequences

We now extend the notion fast converging sequences found in [27] to promanifolds.

Definition 15.2.1. If (M,µ●) = lim←Ð SysM , m0 ∈M , and m● = (ml)∞l=1 ⊆M then say that m●

converges fast to m0 if µi(m●) = (µi(ml))∞l=1 converges fast to µi(m0) for every index i.

Remark 15.2.2. Recall that smooth maps between manifolds preserve the fast convergent

sequences so that in particular, whether or not a sequence of points in a smooth manifold

converges fast to some given point is invariant under diffeomorphisms. This observation and

the fact that smooth maps between promanifolds are locally cylindrical makes it easy to see

that smooth maps between promanifolds send fast convergent sequences to fast convergent

sequences. Consequently, fast convergence in a promanifold is a diffeomorphism invariant

of the promanifold which implies, in particular, that the above definition 15.2.1 of fast

convergence is actually independent of the choice of the smooth projective representation of

M that the definition uses (i.e. definition 15.2.1 is independent of the choice of system SysM

and projections µ●).

Finally, observe that every convergent sequence has a fast converging subsequence: let

m● = (ml)∞l=1 be a sequence in M converging to m0 and pick a subsequence m●,1 such that
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µ1(m●,1) converges fast to µ1(m0). Now inductively pick subsequences m●,i+1 of m●,i such

that µi+1(m●,i+1) converges fast to µi+1(m0) and note that the diagonal m●,● = (ml,l)∞l=1 is a

fast converging subsequence of m●. ∎

Curves Through Sequences

Through Possibly Non-Convergent Sequences

Lemma 15.3.1. Suppose SysM is monotone and (Ui)∞i=1 are open subsets of M● such that

for all i, µi,i+1(Ui+1) ⊆ Ui and µi,i+1∣Ui+1 ∶Ui+1→µi,i+1(Ui+1) is monotone. Let m● = (ml)∞l=1 be a

sequence inM such that if l ≥ i then ml ∈ µ−1
i (Ui). Let γ1 be a smooth curve intoM1 and let

(ti)∞i=1 ⊆ Domγ be a sequence decreasing to a ∈ R such that for all i ∈ N, γ1(ti) = µ1(mi) and

if l ≥ i then γ1 maps the interval containing ti and tl into µ1i(Ui). Let D = {t ∈ Domγ1 ∣ t > a}.

Then there exists a smooth µ1-lift γ ∶ D →M of γ1∣D such that for all l ∈ N, γ(tl) = ml and

(µl ○ γ)(]a, tl]) ⊆ Ul. Furthermore, if U● is a µ●-neighborhood base of some point m0 and

a > −∞ then γ can be extended to a continuous map on {a} ∪D by sending a to m0.

Proof. For all l ∈ N let ml
● = µ●(ml), D≥tl = [tl,∞[∩Dom(γ1), and D≤tl = ]a, tl] ∩ Dom(γ1).

Suppose we’ve constructed smooth maps γ1 ∶ D → M1, . . . , γk ∶ D → Mk such that for all

i = 2, . . . , k, µi−1,i ○γk = γk∣D and for all l ∈ N and all i = 1, . . . , k, γi(tl) =ml
i and γi(D≤ti) ⊆ Ui.

Let γRk+1 ∶ (D≥tk+1 , tk+1, . . . t1) → (Mk+1,mk+1
k+1, . . . ,m

1
k+1) be a smooth µ12-lift of γ1∣D≥tk+1

. By

corollary C.3.4 there exists a smooth µk,k+1-lift γLk+1 ∶ (D≤tk+1 , tk+1)→ (Uk+1,mk+1
k+1) of γk∣D≤tk+1

such that γLk+1(tl) = ml
k+1 for all l ≥ k + 1, where it is clear that we may arrange to have

γLk+1 be such that the map γk+1 =
def
γLk+1 ∪ γRk+1 ∶ D →M2 is a smooth extension of γRk+1. This

completes the inductive step and it should be clear that the limit map γ =
def

lim←Ðγ● ∶ D →M

is the desired map. The final remark of this lemma is immediate. ∎
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Arcs Through Convergent Sequences

Lemma 15.4.1 (Replacing γ∣]0,b] with a smooth arc through a sequence in M ∖ Imγ that is

eventually in each µ−1
i (Imγi)). For all i ∈ N, let di = dimµi(m0)Mi and assume that di+1 > di+1.

Let γ ∶ ([a, b],0)→ (M,m0) be a smooth curve, γ● =
def
µ● ○ γ, m̂● ⊆M ∖ Imγ be an N-indexed

injective sequence converging to m0, and let t● ⊆ Domγ be a sequence decreasing to 0 such

that for all i ≤ l in N, µi (m̂l) = γi(tl) and µi+1 (m̂i) /∈ Imγi+1. There exists a smooth

γ̂ ∶ ([a, b],0) → (M,m0) such that for all i ∈ N, γ̂(ti) = m̂i, µi ○ γ̂ = γi on [a, ti], and if i > 1

then µi ○ γ̂i∣]ti,b] ∶ ]ti, b]→Mi is a smooth embedding whose image is disjoint from Imγi.

Remarks 15.4.2. Observe that these properties imply that:

• while both γ and γ̂ are µ1-lifts of γ1 and smooth extensions of γ∣[a,0] ∶ [a,0] → M ,

only γ̂’s restriction to [0, b] is guaranteed to be a topological embedding that is also a

smooth embedding on ]0, b].

• if γ is a topological embedding, a = 0, all of γ’s derivatives vanish at 0, and γ′ does

not vanish on ]0, b] then we obtain a smooth topological embedding ξ ∶ ([−b, b],0) →

(M,m0) extending γ that is defined on [−b,0] by ξ(t) = γ̂(−t). Since µi(ξ(t)) =

µi(ξ(−t)) on [−ti, ti], the germ at 0 of each µi ○ ξ can be thought of as an “even

function about 0” so that in this sense, despite ξ being injective, it can still be though

of as “a topological embedding extending γ whose µ●-germ at 0 is even.”

Proof. Let m0
● =

def
µ● (m0) and for all l ∈ N, let m̂l

● = µ● (m̂l), ml = γ(tl), ml
● = µ● (ml), and

γ̂1 = γ1. Observe that our assumptions imply that for all l, i ∈ N, l < i ⇐⇒ m̂l
i /∈ Imγi.

Suppose we’ve constructed γ̂1, . . . , γ̂i such that for all h = 1, . . . , i, (1) γ̂h = µhi ○ γ̂i, (2) γ̂h = γh

on [a, th], (3) γ̂i(th) = m̂h
0 . (4) if h > 1 then γ̂h∣]th,b] is a smooth embedding whose image is

disjoint from Imγh, Since di+1 > di and µi,i+1 is a monotone smooth submersion, it is clear

that we may construct a smooth µi,i+1-lift γ̂i+1 of γ̂i satisfying the above inductive hypotheses.

It is now easy to see that γ̂ =
def

lim←Ð γ̂● is the desired smooth map. ∎
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If the Sequence is Eventually in Every µ●-Fiber of m0

Lemma 15.4.3 (Almost arc through a sequence that is eventually in each fiber and projects

onto arcs). Suppose SysM is monotone,m0 ∈M and letm0
● = µ● (m0) and d● = dimm0

●
M●. Let

m● ⊆M be a sequence converging to m0 that is contained in the component of M containing

m0. Suppose there exists some i● ⊆ N increasing such that for all l ∈ N, dil+1 > dil , mil ∈

µ−1
il
(m0

il
), and µil(mi1), . . . , µil(mil) = m0

il
are all distinct. Then for any strictly monotone

sequence t● ⊆ R converging to t0 ∈ R there exists a smooth almost arc γ ∶ (J, t0) → (M,m0)

vanishing at t0, where J =
def

co(t0, t1) is the closed interval containing t0 and t1, such that for

all l ∈ N,

(1) γ(tl) =mil ,

(2) µi1 ○ γ ≡m0
i1
,

(3) µil ○ γ ≡m0
il
on co(t0, tl), the interval between t0 and tl,

(4) if l > 1 then µl ○ γ’s restriction to co(t1, tl) is a smooth almost vanishing at tl, and

(5) if l > 1 then there exists a smooth embedding ξil ∶ co(t1, tl) → Mil and a smooth

increasing homeomorphism ρl ∶ co(t1, tl) → co(t1, tl) with non-vanishin derivative on

co(t1, tl) ∖ {tl} such that µil ○ γ = ξil ○ ρl on co(t1, tl) and ρl is the identity map on

[t1, (tl−1 + tl)/2].

Furthermore, if C ⊆M ∖{m0} is such that for all sufficiently large l ∈ N, C∗
il
=
def
µil(C)∖{m0

il
}

does not contain any of µil(mi1), . . . , µil(mil−1) and µil,il+1 ∣Mil+1
∖C∗

li

∶ Mil+1 ∖ C∗
li
→ Mil is a

monotone surjection, then we may pick γ so that Imγ ∩C = ∅.

Remarks 15.4.4.

• If t0 < t1 and l > 1 then part (5) implies that even though µil ○ γ is identically m0
il

on [t0, tl], the image of µil ○ γ is still a smooth embedded submanifold of Mil that

is diffeomorphic to the closed unit interval while part (4) then further gives us that
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µil ○ γ∣]tl,t1] ∶ ]tl, t1] → Im(µil ○ γ) ∖ {m0
il
} is a diffeomorphism. Thus (µil ○ γ)

−1 (m0
il
) =

[t0, tl] and (µil ○ γ)
−1 (Im(µil ○ γ) ∖ {m0

il
}) = ]tl, t1].

• If dil+1 ≥ dil + 2 for all l ∈ N, Ĵ is an interval such that J ∩ Ĵ = {t0}, and if γ̂ ∶

(Ĵ , t0) → (M,m0) is a smooth topological embedding such that all Im(µil ○ γ̂) ∖ {m0
il
}

are smoothly embedded intervals whose images do not contain any of µil(mi1), . . . , µil(mil) =

m0
il
then applying this lemma with C =

def
γ̂ (Ĵ ∖ {t0}) will allow us to pick γ so that

γ̂ ∪ γ ∶ (Ĵ ∪ J, t0)→ (M,m0) is injective. This is improved upon in corollary 15.4.6.

• It can be easily seen that ρh being the identity map on [t1, (th−1+th)/2] implies that the

smooth embeddings ξl∣co(t1,(tl−1+tl)/2)
(for l ≥ 2) form a downward complete generalized

cone whose limit map is γ∣
J∖{t0}

.

• If m̂● ⊆M was a sequence converging to m0 such that for all i ∈ N, µ−1
i (m0

i ) contains

infinitely many distinct m̂● then it is easy to see that one can always inductively

construct some subsequence m̂l● of m̂● and some increasing sequence i● ⊆ N satisfying

the hypotheses of this lemma.

• Our assumptions imply that whenever l ≤ L then µil(mL) =m0
il
.

Proof. Replacing SysM with its restriction to {il ∣ l ∈ N} and then relabeling we may assume

without loss of generality that il = l for all l ∈ N. For all l ∈ Z≥0, let ml
● = µ●(ml). Assume

without loss of generality that t● is increasing and that t0 = 1. Let γ1 ∶ [t1, t0] → M1 be

identically m0
1 and let ξ2 ∶ [t1, t2] → µ−1

12(m0
1) any smooth arc from h2(t1) = m1

2 to h2(t2) =

m2
2 =m0

2. Let ρ2 ∶ [t1, t2]→ [t1, t2] be a smooth increasing homeomorphism whose derivative

does not vanish on [t1, t2[, all of whose derivatives vanish at t2, and that is the identity map

on [t1, (t1 + t2))/2]. Let α2 =
def
ξ2 ○ ρ2 ∶ [t1, t2] →M2 and let γ2 ∶ [t1, t0] →M2 be the smooth

map defined to be α2 on [t1, t2] and identically m0
2 on [t2, t0].

Suppose that for j ≥ 2 we’ve constructed smooth paths γ1, γ2, . . . , γj on [t1, t0] such that

for all h = 1, . . . , j, γh is Mh-valued and
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(1) µhi ○ γi = γh for all i = h, . . . , j,

(2) γh is a smooth embedding on [t1, th[,

(3) γh is identically m0
ih

on [th, t0],

(4) γh(tl) =ml
h for any l = 1, . . . , h, and

(5) if h > 1 then there exists a smooth embedding ξh ∶ [t1, th]→Mil and a smooth increasing

homeomorphism ρh ∶ [t1, th] → [t1, th] such that γh = ξh ○ ρh on [t1, th], ρh = Id on

[t1, (th−1 + th)/2].

Let λj+1 ∶ [t1, tj] → Mj+1 be a smooth µj,j+1-lift of ξj ∶ [t1, tj] → Mj such that λj+1(t1) =

m1
j+1, . . . , λj+1(tj) = mj

j+1. Since ξj is a smooth embedding so is λj+1 and since λj+1(tj) =

mj
j+1 ≠ m0

j+1, λj+1 does not pass through m0
j+1. Find smooth coordinate boxes (Uj, ϕj) and

(Uj+1, ϕj+1) centered at m0
j and mj

j+1 in Mj and Mj+1, respectively, such that m0
j+1 /∈ Uj+1,

µj,j+1(Uj+1) = Uj, ϕj ○ µij ○ ϕ−1
j+1 is the canonical projection, ξ−1

j (Uj) = ]s, tj] for some s ∈

]tj−1 − tj[, and ϕj+1(λj+1(t)) = (t,0, . . . ,0) for all t ∈]s, tj]. Note that µj,j+1 ○ (λj+1 ○ ρj) =

ξj ○ ρj = γj, from which it follows that all derivatives of (λj+1 ○ ρj)′ vanish at tj so that

we may, by appropriately altering λj+1 ○ ρj only on ]s, tj], construct a smooth embedding

αj+1 ∶ ([t1, tj], tj) → (Mj+1,m
j
j+1) such that αj+1 = λj+1 on [t1, s], α′j+1(tj) is µj,j+1-vertical,

and αj+1 is a µj,j+1-lift of γj ∣[t1,tj].

Since µ−1
j,j+1(m0

j) is a smooth connected manifold, Imαj+1 does not contain m0
j+1, and

α′j+1(tj) is µj,j+1-vertical, we can extend αj+1 to a smooth embedding ξj+1 ∶ ([t1, tj+1], tj+1)→

(Mj+1,m0
j+1 such that ξj+1([tj, tj+1]) ⊆ µ−1

j,j+1(m0
j). Pick any smooth increasing homeomor-

phism ρj+1 ∶ [t1, tj+1]→ [t1, tj+1] such that ρj+1 = Id on [t1, (tj + tj+1)/2], ρj+1’s first derivative

does not vanish on [t1, tj+1[, and all of its derivatives vanish at tj+1. Let γj+1 ∶ [t1, t0]→Mj+1

be the map defined to be ξj+1 ○ ρj+1 on [t1, tj+1] and constantly m0
j+1 on [tj+1, t0]. Clearly,

γj+1 is a smooth map whose restriction to [t1, tj+1[ is a smooth embedding. Since ρj+1 is the

identity on [t1, (tj +tj+1)/2], γj+1(th) =mh
j+1 for all h = 1, . . . , j and µj,j+1○γj+1 = γj on [t1, tj].
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Since γj is identically m0
j on [tj, t0] and γj+1([tj, t0]) is contained in µ−1

j,j+1(m0
j), it follows

that γj+1 is a µj,j+1-lift of γj. Clearly, γ =
def

lim←Ðγ● is the desired map. If C is as described

above then it is clear how to alter this construction so that the image of each γi does not

intersect µi(C) ∖ {m0
i }, which implies that Imγ ∩C = ∅. ∎

Corollary 15.4.5. Suppose SysM is monotone, m0 ∈M is such that dimm0 M =∞, and let

m0
● = µ● (m0). Let m● ⊆M be a sequence converging to m0 such that for all i ∈ N, µ−1

i (m0
i )

contains infinitely many distinct m●. Then there exists some i● ⊆ N satisfying the hypotheses

of lemma 15.4.3.

Corollary 15.4.6 (Arc through sequences that are eventually in each fiber and projects

onto arcs). Suppose SysM is monotone, m0 ∈ M and let m0
● = µ● (m0) and d● = dimm0

●
M●.

Let m●, m̂● ⊆M be a two sequences converging to m0 that are contained in the component

of M containing m0. Suppose there exists some i● ⊆ N increasing such that for all l ∈ N,

mil , m̂il ∈ µ−1
il
(m0

il
), dil+1 ≥ dil + 2, and for l ≥ 2, µil(m̂i1), . . . , µil(m̂il−1), µil(m̂il) = m0

il
=

µil(mil), µil(mil−1), . . . , µil(mi1) are all distinct. Then for any strictly monotone sequences

t̂●, t● ⊆ R converging to t0 ∈ R with t̂● increasing and t● decreasing, there exists a smooth

almost arc γ ∶ ([t̂1, t1], t0)→ (M,m0) vanishing at t0 such that for all l ∈ N,

(1) γ(t̂l) = m̂il and γ(tl) =mil ,

(2) µil ○ γ ≡m0
il
on [t̂l, tl], and

(3) µi1 ○ γ ≡ m0
i1

and if l > 1 then Im(µil ○ γ) is a smooth embedded submanifold of Mil

diffeomorphic to [0,1].

Furthermore, if C ⊆M ∖{m0} is such that for all sufficiently large l ∈ N, C∗
il
=
def
µil(C)∖{m0

il
}

does not contain any of µil(m̂i1), . . . , µil(m̂il−1), µil(mil−1), . . . , µil(mi1) and µil,il+1 ∣Mil+1
∖C∗

li

∶

Mil+1 ∖C∗
li
→Mil is a monotone surjection, then we may pick γ so that Imγ ∩C = ∅.

Proof. Assume without loss of generality that il = l for all l ∈ N. We can repeat the con-

struction in the proof of lemma 15.4.3 once for m̂● and t̂● to construct γ̂1, γ̂2, . . . on [t̂1, t0]
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satisfying the inductive hypotheses (1) - (5) while simultaneously repeating the construction

with m● and t● to construct γ1, γ2, . . . on [t0, t1] also satisfying the inductive hypotheses (1)

- (5) but this time, add to the list of inductive hypotheses:

(6) Imγj ∩ Im γ̂j = {m0
j}

(7) if j ≥ 2 then Im(µil ○ γ) is a smooth embedded submanifold diffeomorphic to the closed

unit interval.

Note that γ̂1 = γ1 are both the constantly m0
1 maps. Observe that at each step in the

respective constructions of γj and γ̂j from γj−1 and γ̂j−1 (for j > 1), this corollary’s additional

hypotheses allow us to construct γj and γ̂j so that these additional inductive hypotheses (6)

and (7) are satisfied: the assumption dj+1 ≥ dj + 2 guarantees that the fiber µ−1
j,j+1(m0

j) will

have dimension ≥ 2, which allows us construct γ̂j and γj so that the smooth arcs Imγj and

Im γ̂j intersect only at {m0
j} with their union, which equals the image of γ̂j∪γj ∶ [t̂1, t1]→Mj,

also forming a smooth submanifold of Mj diffeomorphic to a the unit interval. The desired

curve will then by lim←Ð (γ̂i ∪ γi)∞i=1 ∶ [t̂1, t1]→M . ∎

Corollary 15.4.7. Suppose SysM is monotone and that m● = (ml)∞l=1 is a sequence in M

containing infinitely many distinct points that converges tom0 ∈M . Suppose that dimm0 M =

∞ and that for each indices i, {µi(ml) ∣ l ∈ N} is finite. Then there exists an increasing

sequence (lk)∞k=1 of integers and a smooth topological embedding η ∶ ([−1,1],0)→ (M,m0)

such that η∣[−1,0[∪ ]0,1] ∶ [−1,0[∪ ]0,1]→M is a smooth embedding, η(p)(0) vanishes for all

p ∈ N, η( 1
k
) = mlk , µ1 ○ η is identically µ1(m0). Furthermore, upon replacing SysM with a

certain subsystem we can also arrange so that µk ○ η∣[ 1
k+1

,1] ∶ [
1
k+1 ,1]→Mk is a smooth arc and

µk ○ η∣[0,ck] is identically µk(m
0) for all k ∈ N, where ck =

def

1
2
( 1
k+2 +

1
k+1

).

If No Subsequence is Eventually in Every µ●-Fiber of m0

Lemma 15.4.8. Suppose SysM is monotone and m● = (ml)∞l=1 ⊆ M ∖ {m0} is an injective

sequence fast converging to m0 ∈ M in M such that all µ1(m0), µ1(m1), µ1(m2), . . . are

321



distinct. Suppose that dimm0 M = ∞. Then there exists an increasing sequence (lk)∞k=1 ⊆ N

and a smooth almost arc η ∶ ([−1,1],0) → (M,m0) vanishing at 0 such that η( 1
k
) = mlk for

all k ∈ N, and there is some index i such that µi ○ γ ∶ [−1,1]→Mi is a smooth almost arc at

0.

Furthermore, if C ⊆M ∖ {m0} is such that for all sufficiently large l ∈ N, C∗
il
=
def
µil(C) ∖

{m0
il
} does not contain any of µil(m̂i1), . . . , µil(m̂il−1), µil(mil−1), . . . , µil(mi1) and µil,il+1 ∣Mil+1

∖C∗
li

∶

Mil+1 ∖C∗
li
→Mil is a monotone surjection, then we may pick γ so that Imγ ∩C = ∅.

Proof. Since there exists some i0 ∈ N such that infinitely many µi0(m1), µi0(m2), . . . are

distinct then replacing SysM by SysM ∣N≥i0 we may assume without loss of generality that

i0 = 1. Let (Ui)∞i=1 a fast descending µ●-neighborhood basis of m0 with smooth surjective

charts ϕi ∶Ui→] − ri, ri[di centered at µi(m0), where di =
def

dimµi(m0)Mi. Replacing m● with

a subsequence, we may assume without loss of generality that all m● are distinct, no ml is

equal to m0, m●
1 is fast convergent to m0

1, and that for all i, l ∈ N, whenever l ≥ i − 1 then

mi ∈ µ−1
i (Ui). Replacing m● with a subsequence, we may assume without loss of generality

that there is some coordinate j such that ϕj1(µ1(m1)), ϕj1(µ1(m2)), . . . is strictly monotone.

For all l ∈ Z≥0, let ml
● =

def
µ●(ml) and for all l ≠ 0 let dl =

def
dimm0

l
Ml.

For all l ∈ N let nl1 = ϕ−1
1 (−ϕ1(ml)) and pick nl ∈ µ−1

1 (nl1) such that µl(nl) ∈ Ul,

which exists since nl1 ∈ µ1l(Ul). Since ϕj1(µ1(m1)), ϕj1(µ1(m2)), . . . is strictly monotone,

µ1(m1), µ1(m2), . . . belongs to WR
1 where if ϕj1(µ1(m1)) > 0 then WR

1 =
def

(ϕji)
−1(R>0) and

where WR
1 =

def
(ϕji)

−1(R<0) otherwise. If WR
1 = (ϕji)

−1(R>0) (resp. if WR
1 = (ϕji)

−1(R<0)) then

let WL
1 =

def
(ϕji)

−1(R<0) (resp. WL
1 =

def
(ϕji)

−1(R>0)). Let WR = µ−1
1 (WR

1 ), WL = µ−1
1 (WL

1 ),

and for all l ∈ N let ml,j
1 = ϕj1(µ1(ml

1)). Since m●
1 is converges fast to m0

1, there is a smooth

maps γR1 ∶ ([0,1],0,1)→ (U1,0,m1
1) such that if γL1 ∶ ([−1,0],0,−1)→ (UR

1 ,0, n
1
1) is defined by

ϕ1 ○ γL1 (t) =
def
−ϕ1 ○ γR1 (−t) then these maps are topological embeddings that satisfy, respec-

tively,

(1) (ϕ1 ○ γR1 )(]0, 1
l
]) ⊆ µ1l(Ul) ∩WR

1 (resp. (ϕ1 ○ γR1 )([−1
l ,0[) ⊆ µ1l(Ul) ∩WL

1 ).
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(2) γR1 (1
l
) =ml

1 (resp. γL1 (−1
l
) = nl1) for all l ∈ N.

(3) (γR1 )′(t) ≠ 0 for t ∈]0,1] (resp. (γL1 )′(t) ≠ 0 for t ∈ [−1,0[).

Observe that (1) - (3) imply that for all l ∈ N, γR1 ([0, 1
l
]) ⊆ µ1l(Ul) so that using lemma 15.3.1

with tl = 1
l and Ul ∩ µ−1

1l (WR
1 ) for all l ∈ N, there exists a continuous µ1-lift γR ∶ [0,1]→M

of γL1 that is smooth on ]0,1] and such that for all l ∈ N, γR(1
l
) = ml and µl ○ γR(]0, 1

l
]) ⊆

Ul ∩ µ−1
1l (WR

1 ). Since µl ○ γR([0,1/l]) ⊆ Ul for all l ≥ 2, we have by lemma 5.3.9 that γL

is smooth and that all of γR’s derivatives exist and vanish at 0. From µ1 ○ γR = γR1 ’s

properties it follows that γR is a topological embedding whose derivative does not vanish on

]0,1]. Similarly, there exists a smooth µ1-lift γL ∶ [−1,0]→M of γL1 such that for all l ∈ N,

γL(−1
l
) = nl and γL([−1,−1

l
]) ⊆ Ul ∩ µ−1

1l (WL
1 ). Let γ =

def
γL ∪ γR ∶ [−1,1]→M and observe

that γ is smooth at 0 since all derivatives of γL and γR vanish at 0. Since γ([−1,0[) and

γ(]0,1]) belong, respectively, to the disjoint sets WL and WR it follows that γ is injective

and hence a topological embedding. ∎

Smooth Topological Embeddings of R Through Sequences

Proposition 15.4.9. Let η ∶ ([0,1],0)→ (M,m0) be a smooth curve, letm● be an N-indexed

injective sequence in M ∖ Im η converging to m0, and assume that SysM is monotone with

dimm0 M =∞. There exists λ ∶ N → N increasing and a smooth almost arc γ ∶ ([−1,0],0) →

(M,m0) vanishing at 0 such that γ([−1,0[) ∩ Im η = ∅ and γ (− 1
k
) = mλ(k) for all k ∈ N.

In particular, if η is a topological embedding all of whose derivatives vanish at 0 then

γ ∪ η ∶ ([−1,1],0)→ (M,m0) is smooth topological embedding.

Proof. Let C = Im η, t● = −1
● , η● = µ● ○η, for all l ∈ Z● let ml

● = µ●(ml), and let d● = dimm0
●
M●.

By replacing SysM with a subsystem and replacing m● with a subsequence, we may assume

without loss of generality that for all i ∈ N, di+1 > di + 1 > 3, m● converges fast to m0, all m●

belong to the same connected component of M , and that all m0
i , . . . ,m

i−1
i are distinct. If we

may find subsequences ofm● that satisfies corollary 15.4.6 then this corollary essentially gives
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us our desired curve so assume that there is no subsequence of m● that satisfies this corollary.

Then there is some i ∈ N such that {µi(ml) ∣ l ∈ N} is infinite so by replacing SysM with a

subsystem and replacing m● with subsequences, we may assume without loss of generality

that µ1(m●) is injective and that if i > 1 then m1
i , . . . ,m

i−1
i distinct and not contained in

Im ηi. If we may find some infinite subset J ⊆ N and subsequence ml● of m● to which we the

hypotheses of lemma 15.4.1 apply, then we may using the arc resulting from this lemma to

construct our desired γ. So assume that not such subset J ⊆ N and subsequence exist, which

is only possible if there is some infinite J ⊆ N and subsequence ml● of m● to which we may

apply lemma 15.4.3 to once again obtain our desired curve. This is only possible if we ∎

Corollary 15.4.10. Suppose SysM is monotone and that m● = (ml)∞l=1 is a sequence in

M containing infinitely many distinct points that converges to m0 ∈ M . If dimm0 M = ∞

then there exists a strictly increasing sequence of integers (lk)∞k=1 and a smooth almost arc

η ∶ ([−1,1],0) → (M,m0) vanishing at 0 such that η( 1
k
) = mlk for all k ∈ N and where if in

addition there exists some subsequence (mpj)∞j=1 of m● containing infinitely many distinct

points such that for all indices i, {µi(mpj) ∣ j ∈ N} is finite then upon replacing SysM with a

certain subsystem, we can pick (lk)∞k=1 and η so that we also have:

(5) µk ○ η∣[ 1
k+1

,1] ∶ [
1
k+1 ,1]→Mk is a smooth arc, and

(6) µk ○ η∣[0,1/k] is identically µk(m
0) for all k ∈ N.

We extend proposition 15.4.9 so as to be able to find l● ⊆ N increasing and a smooth

topological embedding going through two subsequences ml● and m̂l● of two given disjoint

infinite sequences m● and m̂● in M , where observe in particular that the same sequence of

integers l● is used for both of these subsequences.

Theorem 15.4.11. Let m0 ∈M be such that dimm0 M =∞ and let m● and m̂● be N-indexed

injective sequences in M converging to m0 such that m● ∩ m̂● = ∅. If SysM is monotone
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then there exists λ ∶ N → N increasing and a smooth almost arc γ ∶ ([−1,1],0) → (M,m0)

vanishing at 0 such that γ ( 1
k
) =mλ(k) and γ (− 1

k
) = m̂λ(k) for all k ∈ N.

Proof. Let m0
● = µ● (m0) and for all i ∈ N, let ti = 1

i , t̂i = −ti, di = dimµi(m0)Mi and assume

without loss of generality that di+1 > di + 2 > 3. Suppose first that for all i ∈ N, both µi(m●)

and µi(m̂●) are finite. Let i1 = 1 and pick L1 ∈ N such that for all l ≥ Li, µ1(ml) = m0
1 =

µ1(m̂l). Let l1 = L1. Clearly, there is some ik+1 > ik for which there exists some lk+1 > Lk

such that µik+1(mlk+1) /∈ µik+1 ({ml1 , . . . ,mlk}) and µik+1(m̂lk+1) /∈ µik+1 ({m̂l1 , . . . , m̂lk}). Pick

Lk+1 ≥ lk+1 such that for all l ≥ Li, µik+1(ml) = m0
ik+1

= µik+1(m̂l). Observe that i● and l●

are increasing sequences such that for all k > 1, µik(m̂l1), . . . , µik(m̂lk−1), µik(m̂lk) = m0
ik
=

µik(mlk), µik(mik−1), . . . , µik(mi1) are all distinct and if p ≥ k then mlp , m̂lp ∈ µ−1
ik
(m0

k). So by

replacing SysM with SysM ∣{ik ∣k∈N} and replacing both m● and m̂● with ml● and m̂l● , we may

assume without loss of generality that for all i ∈ N, if i > 1 then µi(m̂i), . . . , µi(m̂i−1), µi(m̂i) =

m0
i = µi(mi), µi(mi−1), . . . , µi(m1) are all distinct and that for all l ≥ i, ml, m̂l ∈ µ−1

i (m0
i ).

We may now apply corollary 15.4.6 to obtain the desired curve.

Thus we may henceforth assume that there is some i ∈ N such that at least one of µi(m●)

and µi(m̂●) is infinite. Clearly, it suffices to find λ and γ such that γ ( 1
k
) = m̂λ(k) and

γ (− 1
k
) =mλ(k) so that we may assume without loss of generality that µi(m●) is infinite. Pick

(li)∞i=1 ⊆ N increasing such that µi(ml●) → µi(m0) is injective and then replace SysM with

SysM ∣N≥i and replace both m● and m̂● with ml● and m̂l● , respectively so that in this case we

may assume without loss of generality that µ1(m●)→ µ1(m0) is injective.

Suppose that µi(m̂●) is finite for all i ∈ N. Then we may find J ⊆ N infinite and l● ⊆ N

increasing such that upon replacing SysM with a SysM ∣
J
and replacing both m● and m̂●

with ml● and m̂l● , we will be able to assume without loss of generality that if i > 1 then

µi(m̂i), . . . , µi(m̂i−1), µi(m̂i) =m0
i are all distinct and that for all l ≥ i, m̂l ∈ µ−1

i (m0
i ). We may

thus apply lemma 15.4.8 to obtain a smooth topological embedding η ∶ ([−1,1],0)→ (M,m0)

such that η∣[−1,0[∪ ]0,1] ∶ [−1,0[∪ ]0,1]→M is a smooth embedding, η(p)(0) vanishes for all

p ∈ N, η( 1
k
) = mlk for all k ∈ N where it is easy to see from this lemma’s proof that can
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pick η so that C =
def

η([0,1]) does not contain any point m̂●. Now define γR =
def

η∣[0,1] ∶

([0,1],0) → (M,m0) and use lemma 15.4.3 to construct a smooth topological embedding

γL ∶ ([−1,0],0) → (M,m0) such that all of γL’s derivatives vanish at 0, γL’s first derivative

does not vanish on [−1,0[, γL (t̂l) = m̂l for all l ∈ N, and γL([−1,0[) ∩ ImγR = ∅. The map

γ =
def
γL ∪ γR ∶ ([−1,1],0)→ (M,m0) is clearly our desired smooth topological embedding.

Thus we may henceforth assume that there is some i ∈ N such that µi(m̂●) is infinite

where as before, we may assume without loss of generality that µ1(m●) → m0
1 is injective.

Define γR ∶ ([0,1],0) → (M ∖ {m̂l ∣ l ∈ N},m0) as before and then using either lemma 15.4.8

or lemma 15.4.1 to obtain l● ⊆ N a smooth topological embedding γL ∶ ([−1,0],0)→ (M,m0)

such that all of γL’s derivatives vanish at 0, γL’s first derivative does not vanish on [−1,0[,

γL (t̂k) = m̂lk for all k ∈ N, and γL([−1,0[) ∩ ImγR = ∅. Let ρ ∶ [0,1] → [0,1] be a smooth

increasing homomorphism such that ρ(1/k) = 1
lk

for all k ∈ N and ρ′ does not vanish on

]0,1]. Then γ =
def
γL ∪ (γR ○ ρ) ∶ ([−1,1],0) → (M,m0) is our desired smooth topological

embedding. ∎
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Chapter 16

Monotone Promanifolds

Definition 16.0.1. Call a promanifold monotone if it is the limit of some monotone profinite

system (def. 2.1.56).

Remark 16.0.2. Almost all of the results of this subsection can be extended to promanifolds

that are limits of a profinite system that is locally cofinally (def. 2.1.60) a monotone system.

Lemma 16.0.3. Suppose that U is a non-empty path-connected open subset of M and that

for each index i, Ui is an open subset of Mi such that ∪µ−1
● (U●) = U with µ−1

i,i+1 (Ui) ⊆ Ui+1.

Let m0 ∈ U and for each index i, if µi(m0) ∈ Ui then let Oi denote the connected component

of Ui containing µi(m0) and let Oi = ∅ otherwise. Then for any index i0, U = ∪
i≥i0

µ−1
i (Oi)

and if SysM is monotone then µ−1
i,i+1 (Oi) ⊆ Oi+1 for all indices i. Furthermore, if dimm0 M ≥ 2

and SysM is monotone then U ∖ {m0} is path-connected.

Proof. Let O = ∪
i≥i0

µ−1
i (Oi), m ∈ U , and pick a continuous path γ ∶ ([0,1],0,1)→ (U,m0,m).

Observe that since µ−1
i (Ui) ⊆ µ−1

i+1 (Ui+1) for all indices i ≥ i0 and since these sets form an

open cover of Imγ we can pick an index i ≥ i0 such that Imγ ⊆ µ−1
i (Ui). This implies that

the connected set Im(µi ○ γ) is contained in Ui and thus contained in Oi so that m ∈ Imγ ⊆

µ−1
i (Oi) ⊆ O, as desired. If SysM is monotone then since for all i, we have µ−1

i,i+1 (Oi) ⊆ Oi

since µ−1
i,i+1 (Oi) is either ∅ or otherwise it is a connected subset of Ui+1 containing µi+1(m0).

∎
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Coherence with Smooth Almost Arcs

Theorem 16.1.1. Let E denote the set of all smooth almost arcs γ ∶ [0,1]→M vanishing at

0 for which there exists some index i and some Ui ∈ Open (Mi) such that µi ○ γ ∶ [0,1]→Mi

is a Ui-valued smooth almost arc vanishing at 0 and Ui is the domain of a smooth chart on

Mi. Let V denote the set of all smooth almost arcs γ ∶ [0,1] →M vanishing at 0 for which

there exists some increasing ι ∶ N→ N such that for all l ∈ N, γι(l) is constant on [0,1/l] and

if l > 1 then

(1) Imγι(l) is a smooth submanifold of Mι(l) diffeomorphic to [0,1], and

(2) γι(l)∣[1/l,1] ∶ [1/l,1]→Mι(l) is a smooth almost arc vanishing 1/l.

where γ● =
def
µ● ○ γ. If SysM is monotone then M is coherent with V ∪ E .

Remark 16.1.2. If M is a manifold then V is clearly empty. If γ ∈ V then for all l ∈ N,

γι(l)∣]1/l,1] ∶ ]1/l,1] → Imγι(l) ∖ {γι(l)(0)} is a diffeomorphism and γ−1
ι(l) ({γι(l)(0)}) = [0,1/l]

while if γ ∈ E then γi∣]0,1] ∶ ]0,1]→Mi is a smooth embedding for all sufficiently large i.

Proof. Let m0 ∈ M and let m● = (ml)∞l=1 ⊆ M be an infinite-ranged sequence converging to

m0 in M . By lemma A.5.9, it suffices to show that there exists some γ ∈ V ∪ E and some

γ-liftable injective subsequence ml● of m●. If dimm0 M < ∞ then by lemma 16.2.1, M is a

smooth manifold on an open neighborhood ofm0 inM so that the desired γ ∈ E can clearly be

found. So assume henceforth that dimm0 M =∞ and let ml
● = µ●(ml) and d● = dimm0

●
M● for

all l ∈ Z≥0. Assume without loss of generality thatm● →m0 is injective inM and that di+1 > di

for all i ∈ N. Suppose first that m● contains an infinite subsequence ml● such that for all

i ∈ N, {µi(mlk) ∣k ∈ N} is finite and replace m● with this subsequence. Inductively construct

a sequence (il)∞l=1 such that for all l ∈ N, mil ∈ µ−1
il
(m0

il
) and µil(mi1), . . . , µil(mil) =m0

il
are all

distinct and then apply lemma 15.4.3 to obtain the desired γ ∈ V . Now suppose that m● does

not contain any infinite subsequence ml● such that for all i ∈ N, {mlk
i ∣k ∈ N} is finite so that
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there exists some index i such that {mlk
i ∣k ∈ N} is infinite. Replace m● with a subsequence

ml● such that ml●
i → m0

i is injective in Mi and ml● converges fast to m0 in M . Restrict to

[0,1] the map given by lemma 15.4.8 to obtain the desired γ ∈ E . ∎

Corollary 16.1.3. Let A denote the set of all smooth almost arcs [0,1] → M that vanish

at 0. If M is a monotone promanifold then M is coherent with A.

Corollary 16.1.4. Monotone promanifolds are coherent with their smooth paths and (con-

sequently) are smoothly locally path-connected.

Corollary 16.1.5. Assume that SysM is monotone, let S ⊆M , and let m0 ∈M . Let E and

V denote the sets of smooth almost arcs defined in theorem 16.1.1. Then the following are

equivalent:

(1) S is an open (resp. closed) subset of M .

(2) γ−1(S) is an open (resp. closed) subset of [0,1] for all γ ∈ E ∪ V .

If m0 ∈ S then the following are equivalent:

(1) S is a neighborhood of m0 in M .

(2) for all γ ∈ E ∪ V such that γ(0) =m0, γ−1(S) is a neighborhood of 0 in [0,1].

Proof. The characterization of when S is an open or closed subset ofM is from the definition

of M being coherent with E ∪ V . One direction of the second characterization is immediate

and for the other direct suppose that S is not a neighborhood of m0 in M . Since M is

Fréchet-Urysohn, there exists an injective sequence m● = (ml)∞l=1 ⊆M ∖ S converging to m0

in M . Just as was done in the proof of theorem 16.1.1, we can obtain some γ ∈ E ∪ V and

some γ-liftable subsequence ml● of m● such that γ(0) = m0. Observe that γ−1(S) is not a

neighborhood of 0 in [0,1] since γ−1 (ml●) is a sequence in [0,1] ∖ γ−1(S) that converges to

0 in [0,1]. ∎
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Remark 16.1.6. The statement of theorem 16.1.1 is analogous to the fact that a smooth

manifold with or without corners are coherent with their set of C1-arcs while the statement of

theorem 16.1.7 below is analogous to how smooth manifolds are coherent with C1 embeddings

of R. However, recall that a smooth manifold with corners is a smooth manifold if and only

if it is coherent set of C1 embeddings of R. Similarly, theorem 16.1.1 does not by itself imply

theorem 16.1.7.

The following theorem is proved in a manner similar to the proof of theorem 16.1.1, where

the desired curve can be obtained from corollary 15.4.10.

Theorem 16.1.7. Let P denote the set of all restrictions to ] − 1,1[ of smooth almost arcs

[−1,1]→M that vanish at 0. If M is a monotone promanifold then M is coherent with P .

Finite Dimensional Monotone Promanifolds

The following proposition shows that finite-dimensional promanifolds that arise as limits of

monotone systems are necessarily manifolds.

Proposition 16.2.1. Suppose SysM is monotone, m0 ∈M , and d0 =
def

dimm0 M is finite. For

all i ∈ N, let Oi denote the connected component of Mi containing µi(m0). Then for any

index i such that dimµi(m0)Mi = d0 and any j ≥ i, both

µi∣µ−1i (Oi)
∶µ−1

i (Oi)→Oi and µij ∣Oj ∶Oj→Oi

are diffeomorphisms, Oj = µ−1
ij (Oi), and µ−1

i (Oi) is an open connected component of M .

Proof. Let m0
● =

def
µ● (m0). Since Oj is connected and µij is continuous we have µij(Oj) ⊆ Oi

so Oj ⊆ µ−1
ij (Oi). But µij is a monotone continuous open map so the connectedness of

Oi implies that µ−1
ij (Oi) is connected. That fact that m0

j ∈ µ−1
ij (Oi) implies that µ−1

ij (Oi)

is contained in the connected component of Mj containing m0
j and thus Oj = µ−1

ij (Oi).
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The map µij ∣µ−1ij (Oi) ∶µ
−1
ij (Oi)→Oi is a local diffeomorphism since it is a smooth surjective

submersion between manifolds of equal dimensions, which forces its fibers to be discrete and

so the monotonicity of µij implies that this map is injective and hence a diffeomorphism.

Applying what we’ve just proved to all j, k ∈ N≥i with j ≤ k allows us to conclude that all

µjk∣Ok ∶Ok→Oj are diffeomorphisms and since µi∣µ−1i (Oi)
∶µ−1

i (Oi)→Oi is the limit of the cone

(µ−1
i (Oi) , µi●∣O●) into (Ok, µkl,N≥i), where µi●∣O● =

def
(µik∣Ok)

∞

k=i
, it follows that µi∣µ−1i (Oi)

is an

isomorphism in the category of commutative locally R-ringed spaces (i.e. a diffeomorphism).

Finally, observe that if m ∈ ClM(µ−1
i (Oi)) ∖ µ−1

i (Oi) then since µi(m) ∉ Oi, µi(m) belongs

to the open set Mi ∖Oi so that m belongs to the open set µ−1
i (Mi ∖Oi), which gives us a

contradiction since this set is disjoint from µ−1
i (Oi). Thus ClM(µ−1

i (Oi)) = µ−1
i (Oi), where

the connectedness of µ−1
i (Oi) implies that this set is a connected component of M . ∎

Connectedness of Monotone Promanifolds

Proposition 16.3.1. Suppose SysM is monotone and p ∈ Z≥0 ∪ {∞}.

(1) If i is an index and Ci ⊆ Mi then Ci is Cp-path-connected if and only if the same is

true of µ−1
i (Ci). If Ci is Cp-arcwise-connected then so is µ−1

i (Ci).

(2) Each connected component of each open subset of M is open in M and smoothly

arcwise-connected.

(3) If U is a connected open subset of M , m0 ∈ U , and dimm0 M ≥ 2, then U ∖ {m0} is

connected.

(4) Every tangent vector is a kinematic tangent vector.

In particular, M is locally smoothly arcwise connected.

Proof. (1): If µ−1
i (Ci) is Cp-path-connected then it is clear that the same is true of Ci =

µi(µ−1
i (Ci)) so suppose that Ci is Cp-path-connected (resp. Cp-arcwise-connected) and let
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m0,m1 ∈ µ−1
i (Ci). Let γi ∶ ([0,1],0,1)→ (Mi, µi(m0), µi(m1)) be a Cp-path (resp. Cp-arc)

contained in Ci. Inductively construct smooth maps γj ∶ ([0,1],0,1)→ (µ−1
ij (Ui) ,m0

j ,m
1
j)

such that γj−1 = µj−1,j ○ γj for all j > i. Then γ =
def

lim←Ðγ● is a smooth path in µ−1
i (Ci) from

m0 = γ(0) to m1 = γ(1) that is a Cp-arc whenever γi is.

(2): M is locally path-connected by proposition 2.5.12 so it consequently suffices to show

that each connected open set is smoothly arc-wise connected. Let U be non-empty connected

open subset of M . If U is singleton then U is vacuously smoothly arcwise connected so

suppose that m0,m1 ∈ U are two distinct points and let ml
● =

def
µ●(ml) (l = 0,1). Since U

contains a continuous path from m0 to m1, we may pick an index i and a connected open

subset Ui ∈ Open (Mi) such that m0,m1 ∈ µ−1
i (Ui) ⊆ U with m0

i ≠m1
i . By (1), µ−1

i (Ui) ⊆ U is

smoothly arc-wise connected so that the conclusion follows.

(3): Let m0
● = µ● (m0) and for each index i let Ui denote the largest open subset of Mi

such that µ−1
i (Ui) ⊆ U and if µi(m0) ∈ Ui then let Oi denote the connected component of Ui

containing µi(m0) and let Oi = ∅ otherwise. If m0
i ∈ Uj then let Oj denote the connected

component of Ui containing this point and let Oi = ∅ otherwise. Since U = ∪µ−1
● (O●) by

lemma 16.0.3 we may pick an index i such that dimm0
i
Mi ≥ 2 and m0 ∈ µ−1

i (Oi). For all

j ≥ i let Wj =
def
Oj ∖ {m0

j} and observe that Wj is connected. Since U = ∪
j≥i
µ−1
j (Oj) it is clear

that U ∖ {m0} = ∪
j≥i
µ−1
j (Wj), which is an increasing union of connected sets, which is thus

connected.

(4): That every tangent vector is kinematic follows immediately from lemma 7.5.4. ∎

A Characterization of DomiF a

The following lemma, which will not be used in this paper, shows that if F ∶M → N is any

smooth map from a monotone promanifold then each set DomiF a is completely determined

by TF and the sets of µi-vertical and νa-vertical tangent vectors. Furthermore, this lemma

immediately produces a necessary and sufficient condition for the equality DomiF a =Mi to
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hold.

Lemma 16.4.1. Suppose that SysM is monotone and that F ∶ M → N is a smooth map.

Pick indices i and a and let m0
i ∈ Mi. Then m0

i ∈ DomiF a if and only if TF ∶ TM → TN

maps every µi-vertical tangent vector over m0
i to a νa-vertical tangent vector (i.e. for every

v ∈ (Tµi)−1(0m0
i
), TFv belongs to (Tνa)−1(0na) where na = νa(F (TM v))).

Proof. If mi ∈ DomiF a then since every µi-vertical vector arises as the derivative of smooth

curve contained in µ−1
i (m0

i ), it follows that any such curve’s image under νa ○ F will be

the singleton set (µa ○ F )(µ−1
i (m0

i )) = {F a
i (m0

i )} so that the right hand side now follows

immediately. For the converse, fix two points m0,m1 ∈ µ−1
i (m0

i ) and let γ ∶ [0,1] → M

be a smooth path from m0 to m1 whose image is contained in µ−1
i (m0

i ). Observe that for

all t ∈ [0,1], γ′(t) is a µi-vertical tangent vector of m0
i so that by assumption TF (γ′(t))

is a νa-vertical tangent vector, which implies that (νa ○ F ○ γ)′ (t) = 0. This implies that

νa ○ F ○ γ ∶ [0,1]→ Na is constant so that

νa (F (m0)) = νa (F (γ(0))) = νa (F (γ(1))) = νa (F (m1))

Since m1 ∈ µ−1
i (m0

i ) was arbitrary it follows that (νa ○ F )(µ−1
i (m0

i )) = {νa (F (m0))} so that

m0
i belongs to DomiF a by definition of DomiF a. ∎

Sufficient Conditions for Openness at a Point

Theorem 16.5.1. Assume that SysN is monotone and let E and V denote the sets of

smooth almost arcs defined in theorem 16.1.1. Let F ∶ (M,m0) → (N,n0) be a smooth

pointwise isomersion. If for all η ∈ E ∪ V whose image contains n0, the path component of

F −1 (Im η) containing m0 contains at least two distinct points then m0 is a point of openness

of F ∶M → N . Thus, if for all η ∈ E ∪V , each path component of F −1 (Im η) contains at least

two distinct points then F ∶M → N is an open map.
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Proof. Letm0
● = µ● (m0), n0

● = µ● (n0), F ● = ν●○F , let η ∈ E∪V be a smooth almost arc through

n0 vanishing at 0, and let (nl) l = 1∞ be any sequence in Im η converging to n0. Let C be a

path-component of F −1 (Im η) containingm0 and note that since η is a smooth almost arc and

C contains at least two distinct elements, F (C) contains at least two distinct elements. So

let α ∶ ([0, b],0)→ (C,m0) be a C0-arc such that Im(F ○ α) consists of more than one point

and F (α(b)) = η(b). Let α● = µ● ○α. Assume without loss of generality that m0
i ∈ ODomiF i

for all i ∈ N and that ν1(F (C)) consists of at least two distinct elements. Let U● be a

µ●-neighborhood basis of M at m0 such that m0
i ∈ Ui ⊆ ODomiF i for all i ∈ N and observe

that (F i
i (Ui))

∞
i=1 forms a ν●-neighborhood basis of N at n0. Inductively pick b1 > b2 > ⋯

converging to 0 such that αi ([0, bi]) ⊆ Ui contains more than one element, which implies

that F (α ([0, bi])) consists of at least two elements. We may thus pick (lk)∞k=1 increasing

such that nlk ∈ F (α ([0, blk]) ), which allows us to pick mk ∈ α ([0, blk]) ∩ F −1 (nlk) for all

k ∈ N. Since b● → 0, the sequence (mk)∞k=1 necessarily converges in M to m0. Thus, every

injective sequence in N that converges to n0 has an F -liftable subsequence that converges

to m0 so that lemmata A.5.9 and A.2.2 allows us to conclude that m0 is a point of openness

of F . ∎

Theorem 16.5.2. Assume that SysN is monotone and let E and V denote the sets of smooth

almost arcs defined in theorem 16.1.1. Let F ∶ (M,m0) → (N,n0) be a smooth pointwise

isomersion. If for all η ∈ E ∪ V whose image contains n0, the connected component of

F −1 (Im η) containing m0 contains at least two distinct points then m0 is a point of openness

of F ∶ M → N . In particular, if for all η ∈ E ∪ V , each non-empty connected component of

F −1 (Im η) contains at least two distinct point then F ∶M → N is an open map.

Proof. Let m0
● = µ● (m0), n0

● = µ● (n0), F ● = ν● ○ F , and let (nl) l = 1∞ ⊆ N be a sequence

converging to n0 in N such that n● → n0 is injective. By lemma A.2.2, to conclude that

m0 is a point of openness of F ∶M → N it suffices to find some increasing (lk)∞k=1 and some

sequence (mk)∞k=1 ⊆M such that m● →m0 is an F -lift of (nlk)∞k=1. By lemma A.5.9, we may

assume without loss of generality that there is some η ∈ E∪V be a smooth almost arc through
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n0 vanishing at 0 such that n● ⊆ Im η. Let η● = ν● ○ η and let C be a connected component

of F −1 (Im η) containing m0.

Note that since η is a smooth almost arc and C contains at least two distinct elements,

F (C) contains at least two distinct elements. Assume without loss of generality that m0
i ∈

ODomiF i for all i ∈ N and that ν1(F (C)) consists of at least two distinct elements. Let U● be

a µ●-neighborhood basis of M at m0 such that m0
i ∈ Ui ⊆ ODomiF i and Ui is connected and

the domain of a smooth chart centered at m0
i for all i ∈ N. Observe that (F i

i (Ui))
∞
i=1 forms a

ν●-neighborhood basis of N at n0. Let U ● = µ−1
● (U●) and note that since C is connected and

contains at least two distinct elements, every C ∩U i must also contain at least two distinct

elements and since the fiber F −1 (n0) is totally disconnected by corollary 11.5.7, this implies

that every F (C ∩U i) contains at least two distinct elements.

Let Di be the connected component of U i∩C containing m0. By assumption, Di contains

at least two distinct elements so that proposition 11.5.1 implies that the same is true of F (Di)

so that the connectedness of Di implies that F (Di) is a neighborhood of n0 in Im η. Let

l1 ∈ N and m1 ∈ D1 be such that F (m1) = nl1 . Having picked increasing integers l1, . . . , lk

and m1, . . . ,mk such that mh ∈ Dh and F (mh) = nlh for all h = 1, . . . , k, pick lk+1 > lk and

mk+1 ∈ Dh such that F (mk+1) = nlk+1 . Observe that m● → m0 is an F -lift of (nlk)∞k=1, as

desired. ∎

In addition to characterizing when some given point is a point of openness of a smooth

isomersion, the following theorem provides a sufficient condition for the inverse function

theorem to hold “topologically almost everywhere.”

Theorem 16.5.3. Let F ∶ (M,m) → (N,n) be a smooth pointwise isomersion on M and

suppose that N is a monotone promanifold. Then m is a point of openness of F ∶ M → N

(def. A.0.6(d)) if any one of the following conditions holds, where each condition begins with

“F is a germ submersion at m (def. 1.1.26(1)) from ”

(1) smooth almost arcs in N to C0-paths in M .
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(2) smooth almost arcs in N to smooth almost arcs in M .

(3) smooth paths in N to C0-paths in M .

(4) from smooth paths in N to smooth paths in M .

Furthermore, if F has discrete fibers and at least one of the above conditions holds at every

m ∈M , then there exists a dense (in M) open subset U ∈ Open (M) such that F ∣
U
∶ U → N

is an open map that is a local diffeomorphism around each of its points.

Proof. It follows from theorem 16.5.2 that any one of these conditions is sufficient for m to

be a point of openness of F . If F has discrete fibers and the above conditions are satisfied

at every m ∈M , then the existence of the dense open subset U of M on which F is a local

diffeomorphism follows from theorems A.3.2 and 11.6.1. ∎

If N is not a monotone promanifold then it may still be possible to use the following

proposition to deduce that some given point is a point of openness (def. A.0.6(d)) of a

smooth pointwise isomersion.

Proposition 16.5.4. Let F ∶ (M,m)→ (N,n) be a smooth pointwise isomersion on M and

suppose that N is coherent with its smooth paths at n (def. A.5.1). Then m is a point of

openness of F ∶M → N if either of the following two equivalent conditions hold:

(1) F is a germ submersion atm from smooth paths inN to C0-paths inM (def. 1.1.26(1)).

(2) F is a germ submersion at m from smooth paths in N to smooth paths in M .

Proof. The equivalence of (1) and (2) follows from corollary 11.5.3. That these conditions

are sufficient for m to be a point of openness of F follows from theorem 16.5.2 and the

definition A.5.1. ∎

336



Bibliography

[1] M. C. Abbati and A. Manià, On differential structure for projective limits of manifolds,

Journal of Geometry and Physics 2 (1999), no. 1, 35–63.

[2] G. Allud and E. S. Thomas Jr., Almost periodic minimal sets, Journal of Differential

Equations 15 (1974), no. 1, 158 – 171.

[3] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines,

Bulletin of the American Mathematical Society 72 (1966), no. 3, 515 – 519.

[4] R. Arens, Dense inverse limit rings, Michigan Mathematical Journal 5 (1958), no. 2,

169–182.

[5] A. Arhangelskii and M. Tkachenki, Topological groups and related structures, Atlantis

Press, 2008.

[6] V. I. Averbukh and O. G. Smolyanov, The various definitions of the derivative in linear

topological spaces, Russian Mathematical Surveys 23 (1968), no. 4, 67 – 113.

[7] J. Boman, Differentiability of a function and of its compositions with functions of one

variable, Mathematica Scandinavica 20 (1967), 249 – 268.

[8] J. R. Boone, On k-quotient mappings, Pacific Journal of Mathematics 51 (1974), no. 2,

369 – 377.

[9] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czechoslovak Mathematical

Journal 26 (1976), no. 2, 174 – 182.

337



[10] N. Bourbaki, Theory of sets, Elements of Mathematics, Addison-Wesly, 1968.

[11] , General topology chapters 1-4, Elements of Mathematics, Springer-Verlag, 1989.

[12] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

[13] S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University

Press, 1952.

[14] R. Engelking, General topology, revised and completed edition ed., Sigma Series in Pure

Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.

[15] A. Fischer, Differentiability of peano derivatives, Proceedings of the American Mathe-

matical Society 136 (2008), no. 5, 1779 –1785.

[16] A. Fröhlicher and A. Kriegl, Linear spaces and differentiation theory, J. Wiley & Sons,

1988.

[17] Y. Ge, On pseudo-sequence converings, π-images of metric spaces, Matematicki Vesnik

57 (2005), no. 3 – 4, 113 – 120.

[18] , Weak forms of open mappings and strong forms of sequence-covering mappings,

Math. Vesnik 59 (2007), no. 1 – 2, 1 – 8.

[19] I. Gotchev and H. Minchev, On sequential properties of Noetherian topological spaces,

Topology Proceedings 28 (2004), no. 2, 487 – 501.

[20] B. Güneysu and M. J. Pflaum, The profinite dimensional manifold structure of formal

solution spaces of formally integrable PDE’s, Preprint can be found at http://arxiv.

org/abs/1308.1005, August 2013.

[21] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of the Amer-

ican Mathematical Society 7 (1982), no. 1, 65 – 222.

338

http://arxiv.org/abs/1308.1005
http://arxiv.org/abs/1308.1005


[22] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, no. 52, Springer-

Verlag, 1977.

[23] J. Ka̧kol and L. Pellicer, A note on Fréchet-Urysohn locally convex spaces, RACSAM

101 (2007), no. 2, 127 – 131.

[24] I. Kolár, P. W. Michor, and J. Slovák, Natural operations in differential geometry,

Springer-Verlag, Berlin, New York, 1999.

[25] A. Kosinski, Differential manifolds, Dover, 2007.

[26] A. A. Kosinski, Differential manifolds, Pure and Applied Mathematics, vol. 138, Aca-

demic Press, Inc., 1993.

[27] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical

Surveys and Monographs, vol. 53, American Mathematical Society, 1997.

[28] S. Lang, Real and functional analysis, 3rd ed., Graduate Texts in Mathematics, no. 142,

Springer-Verlag, 1993.

[29] , Differential and Riemannian manifolds, 3rd ed., Graduate Texts in Mathemat-

ics, no. 160, Springer-Verlag, 1995.

[30] J. M. Lee, Introduction to smooth manifolds, 2nd ed., Graduate Texts in Mathematics,

no. 218, Springer-Verlag, 2013.

[31] A. D. Lewis, Semicontinuity of rank and nullity and some consequences, Author’s notes

on semicontinuity of rank and nullity., 2009.

[32] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology and its applica-

tions 109 (2001), no. 3, 301 – 314.

[33] S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in

Mathematics, no. 5, Springer, 1998.

339



[34] G. Meigniez, Submersions, fibrations and bundles, Transactions of the American Math-

ematical Society 354 (2002), no. 9, 3771 – 3787.

[35] J. Mujica, Mittag-Leffler methods in analysis, Revisita Mathematica de la Universidad

Complutense de Madrid 8 (1995), no. 2, 309 – 325.

[36] J. Nestruev, Smooth manifolds and observables, Graduate Texts in Mathematics, no.

220, Springer, 2003.

[37] P. J. Nyikos, Discontinuities and smooth curves in n-space, Preprint found at University

of South Carolina web page http://people.math.sc.edu/nyikos/smooth.pdf.

[38] W. D. Paravicini, Inverse limits and the Michael conjecture, Master’s thesis, Cambridge,

United Kingdom, 2000.

[39] A. Pietsch, Nuclear locally convex spaces, 2nd ed., Ergebnisse der Mathematik und ihrer

Grenzgebiete 2, no. 66, Springer-Verlag, 1972.

[40] W. Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Math-

ematics, McGraw-Hill, 1991.

[41] A. Sard, Hausdorff measure of critical images on Banach manifolds, American Journal

of Mathematics 87 (1965), no. 1, 158 – 174.

[42] H. H. Schaefer, Topological vector spaces, 2nd ed., Graduate Texts in Mathematics,

no. 3, Springer-Verlag, 1999.

[43] R. W. Sharpe, Differential geometry: Cartan’s generalization of Klein’s Erlangen pro-

gram, corrected edition ed., Graduate Texts in Mathematics, no. 166, Springer, 2000.

[44] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and

its Applications 1 (1971), no. 2, 143 – 154.

340

http://people.math.sc.edu/nyikos/smooth.pdf


[45] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu,

November 2016.

[46] N. Steenrod, The topology of fibre bundles, Princeton Landmarks in Mathematics &

Physics, no. 14, Princeton Univ. Press, 1960.

[47] F. Trèves, Topological vector spaces, distributions and kernels, Dover Books on Mathe-

matics, Dover Publications, 2006.

[48] T. Wedhorn, Manifolds, sheaves, and cohomology, Lecture notes, 2014.

[49] S. Willard, General topology, Dover Books on Mathematics, Dover Publications, 2004.

[50] S. Xia, On pseudo-sequence-covering π images of locally separable metric spaces, Matem-

aticki Vesnik 59 (2007), no. 1 – 2, 57 – 64.

341

http://stacks.math.columbia.edu


Appendix A

Topology

In this appendix we (1) explicitly define some basic topological terminology whose defini-

tion may vary between authors or that are not frequently used by specialists in differential

geometry, (2) include some rarer topological definitions, (3) prove some results in point-set

topology that (to the author’s knowledge) have not appeared anywhere else, (4) provide

proofs of some results for which no citation could be found despite their relatively frequent

implicit use in mathematical literature.

Definition A.0.1 (Filters and filter bases). Let X be a non-empty set, let F be a non-empty

collection F of subsets of X, and consider the following statements:

(1) Directed downwards: if F1, F2 ∈ F there exists some F3 ∈ F such that F3 ⊆ F1 ∩ F2.

(2) Proper: ∅ /∈ F .

(3) Closed upwards: if F ∈ F and F ⊆ S ⊆X then S ∈ F .

We call F a filter base (resp. filter) on X if it satisfies (1) and (2) (resp. and (3)). Every

filter base F is contained in a unique smallest filter on X called the filter (on X) generated

by F .

If (xi)i∈I is a net in X then for every i0 ∈ I the tail of (xi)i∈I (after i0) is the set

{xi ∣ i ∈ I, i ≥ i0}. The set of all tails of x● = (xi)i∈I , denoted by Tails(x●), is called the filter
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base (of tails) generated by (xi)i∈I and the filter on X that it generates is called the filter (on

X) generated by (xi)i∈I . ∎

Definition A.0.2 (Neighborhood filters and convergent filter bases). If S is a subset of a

topological space (X,τX) then let

τX(S) =
def

{U ∈ τX ∣S ⊆ U}

and call its elements open neighborhoods of S (in X). Observe that τX(S) is a filter base

on X for any S ≠ ∅ and denote the filter that it generates in X by NhdτX(S), NhdX(S), or

simply Nhd(S) and call its elements neighborhoods of S (in X). If S = {x} is a singleton

set then we may omit writing braces with the above notation and refer to (resp. open)

neighborhoods of {x} as (resp. open) neighborhoods of x.

If F is a filter base in X and S ⊆ X then F converges to S (in X) if F is finer than

NhdX(S). A net (xi)i∈I converges to x ∈ X (in X) if its filter base of tails converges to x.

More generally, if I is directed, Si is a subset of X for each i ∈ I, and S ⊆ X then we may

say that the net of sets (Si)i∈I converges to S (in X) if its filter base of tails
⎧⎪⎪⎨⎪⎪⎩
∪
i∈I
i≥i0

Si

RRRRRRRRRRRR
i0 ∈ I

⎫⎪⎪⎬⎪⎪⎭
converges to S in X. ∎

Observation A.0.3 below show that the notion of filters together with the well-known

Stone topology on some given set allow us to topologize the set of topologies with a simple,

but non-trivial, topology defined entirely in terms of the underlying set. That this is even

possible appears to have gone unnoticed even though it allows one to, for instance, sensibly

and rigorously speak of “a continuous path of topologies” and “the homotopy class of a

topology.” Since we will not be needing this notion for the theory of promanifolds, we

relegate it to the following observation and state without proof assertions that the reader

may readily verify.

Observation A.0.3 (Topologizing the set of topologies). Let X be any non-empty set, let
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FltrX denotes the set of all filters on X, and for any S ⊆X let FltrX(S) =
def

{f ∈ FltrX ∣S ∈ f}.

The sets in {FltrX(S) ∣S ⊆X} constitute the basic open sets of a topology on FltrX called

the Stone topology, where although this topology is usually only defined on the set of all

ultrafilters on X, one may readily verify that FltrX(S) ∩ FltrX(S′) = FltrX(S ∩ S′) for all

S,S′ ⊆ X so that these sets still forms a basis for a topology on FltrX . Note that every

topology τ on X induces a canonical map of neighborhoods Nhdτ ∶X→FltrX that sends

x ∈X to its neighborhood filter Nhdτ(x) where one may show that Nhdτ ∶ (X,τ)→ Im(Nhdτ)

is necessarily a continuous, open, and closed map. Indeed, if f ∶X → FltrX is any map such

that for all x ∈ X, x ∈ ∩f(x) then for any x ∈ X and N ∈ f(x), f(N) is a neighborhood of

f(x) in Im f (to prove these assertions, it helps to first observe that for any S ⊆ FltrX and

f ∈ FltrX , f ∈ ClFltrX(S) ⇐⇒ f ⊆ ∪S and that S is a neighborhood of f in FltrX ⇐⇒ there

exists some R ∈ f such that for all g ∈ FltrX , R ∈ g Ô⇒ g ∈ S). Now place the topology

of pointwise convergence (or any other topology of uniform convergence) on the set of maps

{Nhdτ ∣ τ is a topology on X} and observe that since this set is in 1-to-1 correspondence with

the set of all topologies on X via the canonical map τ ↦ Nhdτ , we have thus also topologized

the set of all topologies on X which, in particular, now allows us to talk sensibly about

things such as “a continuous path of topologies on X.”

Definition A.0.4. Let X be a topological space and let x ∈X. Say that

(a) x is isolated (in X) if {x} is open in X.

(b) X is locally compact at x if there exists a compact neighborhood of x.

Say that a subset S of X is

(c) comeager (in X) if X ∖ S is meager in X.

(d) Gδ (resp. Fσ) if S is the intersection (resp. union) of countably many open (resp.

closed) subsets of X.
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(e) meager (in X) or of the first category (in X) if S is a countable union of nowhere

dense (in X) subsets of X.

Remark: A meager set is a topological generalization of “a subset of measure 0”

so Baire spaces are spaces with no non-empty open subsets “of topological measure

0.” This interpretation lends itself particularly well to the conclusion of Sard’s

theorem.

(f) nonmeager (in X) or of the second category (in X) if S is not meager in X.

(g) nowhere dense (in X) if any of the following equivalent conditions hold:

(i) S is contained in the boundary of an open set.

(ii) Int(ClX(S)) = ∅.

(iii) The exterior of S is dense in X ([11]).

(iv) There is no non-empty open set U such that S ∩U is dense in U .

(h) perfect or a perfect subset (of X) if it is closed in X and has no isolated points.

(i) a regular closed subset of X if Int(S) = S or equivalently, if Bd(Int(S)) = Bd(S).

(j) a regular open subset of X if Int(S) = S or equivalently, if Bd(S) = Bd(S).

(k) relatively compact (in X) if ClX(S) is compact. ∎

Definition A.0.5. A topological space (X,τX) is said to be

(a) Baire if no open subset of X is meager in X or equivalently, if whenever a countable

union of closed subsets of X has non-empty interior in X then the same is true of at

least of these closed sets.

(b) discrete if each point of X is isolated in X.

(c) first countable if for every x ∈X there exists a countable neighborhood basis of x in X.
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(d) Polish if it is a separable completely metrizable topological space.

(e) second countable if X has a countable basis.

(f) semiregular if it has a basis consisting of regular open sets.

(g) strongly Baire each of its closed subsets is a Baire space.

(h) totally disconnected if its only connected subsets are singleton sets and the empty

set. ∎

Definition A.0.6. Let f ∶ (X,τX)→ (Y, τY ) be a map between topological spaces. Then we

will say that f has/is/is a(n)

(a) monotone if each fiber of f is connected.

(b) light if every fiber of f is totally disconnected.

(c) pseudo-open if for each y ∈ Y whenever U ∈ Open (X) contains f−1(y) then y ∈

IntY (f(U)).

(d) a point of openness at x ∈ X and call x is a point of openness for f if for every

x ∈ U ∈ Open (X), f(U) is a neighborhood of f(x) in Y .

(e) almost open if f is surjective and for each y ∈ Y , there exists some x ∈ f−1(y) such that

x is a point of openness for f .

(f) open or strongly open (resp. closed or strongly closed) if for all R ⊆ X, whenever R is

open (resp. closed) in X then f(R) is open (resp. closed) in Y .

(g) open map (resp. closed map, homeomorphism, etc.) onto its image if the natural

induced map f ∶X→ Im f is an open map (resp. closed map, homeomorphism, etc.)

when Im f is given the subspace topology induced by Y .

(h) locally injective if for every x ∈ X there exists some x ∈ U ∈ Open (X) such that

f ∣
U
∶U →Y is injective.
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(i) proper if the preimage of every compact subset of Y is compact in X.

(j) universally closed if it is continuous and for every space Z, f × IdZ ∶X ×Z→Y ×Z is

closed.

(k) compact-covering or k-covering (resp. countable-compact-covering or s-covering) if for

every compact (resp. countable and compact) subset K ⊆ Y there exists a compact set

C ⊆X such that f(C) =K.

(l) hereditarily quotient if for every S ⊆ Y the map f ∣
f−1(S) ∶f

−1 (S)→S is a quotient map.

(m) sequentially quotient if every convergent sequence in Y has a subsequence that f can

lift.

(n) sequence-covering if f can lift every convergent sequence in Y .

(o) 1-sequence-covering if for all y ∈ Y there exists some x ∈ f−1(y) such that every sequence

in Y that converges to y has an f -lift that converges to x.

(p) 2-sequence-covering if f is surjective and for all y ∈ Y and x ∈ f−1(y), every sequence

in Y that converges to y has an f -lift that converges to x.

Furthermore,

• a continuous map H ∶X × [0,1]→Y is a homotopy for f ([34]) if H(⋅,0) = f .

• if H and G are homotopies for f then we will say that they have the same germ ([34])

if there is some open set X × {0} ⊆W ∈ Open (X × [0,1]) for which H ∣W = G∣W .

• a polytope is a finite simplicial complex ([34]).

If X and Y are metric spaces with metrics dX and dY , respectively, then say that f is

• contractive (resp. non-expansive) if there exists a positive real number L such that

L < 1 (resp. L ≤ 1) and whenever x1, x2 ∈X then dY (f(x1), f(x2)) ≤ LdX(x1, x2). ∎
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Definition A.0.7. Let f ∶X→R ∪ {−∞,+∞} be a map and let x0 ∈ X. Then f is lower

(resp. upper) semicontinuous at x if for all r ∈ R such that r < f(x) (resp. r > f(x)) there

exists x ∈ U ∈ Open (X) such that r < f(u) (resp. r > f(u)) for all u ∈ U .

Remark A.0.8. It is straightforward to show that if a continuous surjection f ∶ (X,τX) →

(Y, τY ) is sequentially quotient then f ∶ (X,SeqOpen(X,τX)) → (Y,SeqOpen(Y, τY )) is a

quotient map (where SeqOpen(X,τX) is defined in def. A.1.1) and that the converse is true

if (Y, τY ) is Hausdorff.

The following example and its definitions are from [31].

Example and Definition A.0.9. The rank (resp. nullity) of a linear map is defined to

be the dimension of its range (resp. kernel). If x0 ∈ X and d ∈ Z≥0 then we will say that

x0 is a constant rank (resp. nullity) point of Λ (of rank (resp. nullity) d) or that Λ has

constant rank (resp. nullity) d around x0 if there exists a neighborhood U of x0 in X such

that rank(Λ(x)) = d for all x ∈ U and otherwise, we will call x0 a non-constant rank point or

a rank singular point of Λ.

If Λ ∶X→L(Rm → Rn) is a continuous map from a topological space X into L(Rm → Rn),

the TVS of all linear maps from Rm into Rn, then the rank and nullity maps

rank Λ ∶X Ð→ Z≥0

x z→ rank(Λ(x))

and nullity Λ ∶X Ð→ Z≥0

x z→ nullity(Λ(x))

are lower-semicontinuous and upper-semicontinuous, respectively, and the set of all rank

regular points is a dense open subset of X. ∎

The following proposition is applicable to all promanifolds.

Proposition A.0.10. Let f ∶ X → Y be a continuous surjection between first-countable

Hausdorff spaces. Then

348



(a) f is almost open ⇐⇒ f is 1-sequence-covering.

(b) f is open ⇐⇒ f is 2-sequence covering.

(c) f a compact covering Ô⇒ f is a quotient map.

Furthermore, the following are equivalent: f is

(1) a quotient map.

(2) sequentially quotient.

(3) pseudo-open.

If in addition X and Y are separable metric spaces then we may add to this list:

(5) hereditarily quotient.

Proof. This is a combination of the results found in [44], [18], and [32]. ∎

Example A.0.11 (Both g and g ○ f are monotone while f isn’t). Let P = {⋆} denote a

topological space with one point, let X and Y denote connected space, let g ∶Y →P be the

constant map, and let f ∶ X → Y be arbitrary. Observe that g and g ○ f ∶X→P are both

monotone but that f may fail to be monotone.

Example A.0.12 (Both f and g ○ f are monotone while g isn’t). Let X be any topological

space and let X ′ be a disjoint copy of X where for each x ∈ X we denote the element

in X ′ corresponding to x by x′. Let f ∶X→X ⊔X ′ denote the natural inclusion and let

g ∶X ⊔X ′→X denote the map that restricts to the identity on X and sends x′ ∈ X ′ to x.

Then both g ○ f = IdX and f are monotone but g fails to be monotone.
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Sequential Spaces

Definition A.1.1 (([5, p. 446], [14], [44])). For any subset S of a space (X,τX), the sequential

closure of S in X is

SeqClX(S) = {x ∈X ∶ there exists some sequence (sl)∞l=1 ⊆ S such that s● → x in X}

which is a subset of ClX(S). The set S is said to be sequentially closed in X if S = SeqClX(S)

and sequentially open in X if whenever s ∈ S and (xl)∞l=1 is a sequence in X converging to

s then there exists some integer L such that l ≥ L Ô⇒ xl ∈ S. A subset S of X is

sequentially open (resp. sequentially closed) in X if and only if X ∖ S is sequentially closed

(resp. sequentially open) in X and the set SeqOpen(X,τX) of all sequentially open subsets of

X forms a topology on X that is finer than τX . Although every open (resp. closed) subset of

X is necessarily sequentially open (resp. sequentially closed), the converse is not necessarily

true so we call those spaces for which the converse does hold sequential spaces. ∎

Sequential spaces are characterized by the following universal property.

Universal Property A.1.2. A space (X,τX) is sequential if and only if for all spaces Y

and maps f ∶ X → Y , f is continuous if and only if whenever x● = (xl)∞l=1 → x in X then

f(x●)→ f(x) in Y .

Even if a space X is a sequential space it is possible that there are subsets S ⊆ X such

that ClX(S) ≠ SeqClX(S) where if X is a sequential space then this inequality holds for a

subset S ⊆X if and only if SeqClX(SeqClX(S)) ≠ SeqClX(S).

Definition A.1.3. A space X is a Fréchet-Urysohn space if ClX(S) = SeqClX(S) for all

subsets S ⊆ X, which can easily be shown to be equivalent to all subspaces of X being

sequential spaces.

350



The following lemma is essentially an observation.

Lemma A.1.4. If X is sequential Hausdorff and S ⊆X then (1) - (3) are equivalent:

(1) S is sequentially open X,

(2) whenever (xl)∞l=1 ⊆X converges in X to some point in S then S ∩ {xl ∣ l ∈ N} ≠ ∅,

(3) whenever x ∈ S and (xl)∞l=1 ⊆X is such that x● → x is injective in X then S∩{xl ∣ l ∈ N} ≠

∅.

If s ∈ S and X is in addition a Fréchet-Urysohn space then the following are equivalent:

(4) S is a neighborhood of s in X,

(5) whenever (xl)∞l=1 ⊆X converges to s in X then S ∩ {xl ∣ l ∈ N} ≠ ∅,

(6) whenever (xl)∞l=1 ⊆X is such that x● → s is injective in X then S ∩ {xl ∣ l ∈ N} ≠ ∅.

Proof. (1) Ô⇒ (2) Ô⇒ (3) is obvious and we now prove (3) Ô⇒ (1). Suppose that S

is not sequentially open in X. Then there exists (xl)∞l=1 ⊆ X converging in X to s ∈ S such

that for all k ∈ N, there exists some l ≥ k such that xl ∉ S. Thus, we may pick a subsequence

(xlk)∞k=1 converging to s in X such that xlk ∉ S. In particular, xlk ≠ s for all k and by replacing

x● with (xlk)∞k=1, we may assume without loss of generality that S ∩ {xl ∣ l ∈ N} = ∅. If any

subsequence (xlk)∞k=1 of x● was constant then since it converges to s, we’d necessarily have

xlk = s for all k ∈ N (since X is Hausdorff) so that xlk ∈ S, giving us a contradiction. This

implies that each xl appears in the sequence at most finitely many times which allows us to

pick a subsequence (xlk)∞k=1 of (xl)
∞
l=1 such that n > l implies xl ≠ xn. Thus S∩{xlk ∣k ∈ N} = ∅,

which contradicts our assumption.

Assume now that X is a Hausdorff Fréchet-Urysohn space and let s ∈ S. (4) Ô⇒

(5) Ô⇒ (6) is always true so assume (6) holds but that (4) fails. Then s ∈ ClX(X ∖ S) =

SeqClX(X ∖ S) so there exists a sequence x● ⊆ X ∖ S that converges to s in X. Since X is
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Hausdorff, no subsequence of x● is constant so we may pick an injective subsequence (xlk)∞k=1

of x● so that xl● → s is injective in X where xl● ⊆X ∖ S, which is a contradiction. ∎

Open Mapping Sufficient Conditions

The following corollary of lemma A.1.4 is essentially an observation.

Corollary A.2.1. If Y is a sequential Hausdorff space, f ∶ X → Y is a surjective map, and

B is a basis for X, then the following are equivalent:

(1) f ∶X → Y is open.

(2) For all x ∈X and B ∈ B, whenever (yl)∞l=1 → f(x) in Y then f(B) ∩ y● ≠ ∅.

(3) For all x ∈ X and B ∈ B, whenever (yl)∞l=1 ⊆ Y is a sequence such that y● → f(x) is

injective, then f(B) ∩ y● ≠ ∅.

Proof. (1) Ô⇒ (2) Ô⇒ (3) is obvious and we prove (3) Ô⇒ (1). Suppose B ∈ B is

such that f(B) is not open in Y . Then as shown by the characterization in lemma A.1.4,

there exists a sequence (yl)∞l=1 ⊆ Y and some y ∈ f(B) such that y● → y is injective in Y and

f(B) ∩ {yl ∶ l ∈ N} = ∅. Now pick x ∈ B such that y = f(x) and observe that this contradicts

our assumption. ∎

Lemma A.2.2. Suppose that Y is a Fréchet-Urysohn Hausdorff space and f ∶ (X,x0) →

(Y, y0) is a map whenever (yl)∞l=1 ⊆ Y is a sequence such that y● → y0 is injective in Y then

there exists some increasing (lk)∞k=1 and some sequence (xk)∞k=1 ⊆ X such that x● → x is an

f -lift of (ylk)∞k=1. Then x0 is a point of openness of f ∶X → Y .

Proof. Suppose that U ∈ Open (X) is such that f(U) is not a neighborhood of y0 Then there

exists some sequence (yl)∞l=1 ⊆ Y ∖f(U) such that y● → f(x) is injective in Y . By assumption,

exists some increasing (lk)∞k=1 and some sequence (xk)∞k=1 ⊆ X such that x● → x is an f -lift

of (ylk)∞k=1. Since x ∈ U ∈ Open (X), there exists some k ∈ N such that xk ∈ U , which gives us

the contradiction ylk = f (xk) ∈ f(U). ∎
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Proposition A.2.3. Suppose that F ∶M → N is a continuous surjection onto a Hausdorff

space. If M is regular and F ∣
U
∶ U → F (U) is a sequentially quotient for all U ∈ Open (M)

then F ∶M → N maps open sets to sequentially open subsets of N .

Proof. Suppose first that F ∣
U
∶ U → F (U) is a sequentially quotient for all U ∈ Open (M)

but that O ∈ Open (M) is such that F (O) is not sequentially open in N . Then there exists

n ∈ F (O) and an injective sequence (nl)∞l=1 ⊆ N ∖ F (O) that converges to n in N . Since

F ∶M → N is sequentially quotient there exists some subsequence (nlk)
∞
k=1 and some F -lift

(mlk)
∞
k=1 → m of nl● → n, where observe that this necessitates that mlk /∈ O for all l and

m /∈ O. By replacing n● with nl● we may assume without loss of generality that lk = k for all

k ∈ N.

By M ’s regularity, we may pick U0 ∈ Open (M) such that ClM(U0) ⊆ O and n ∈ F (U0).

For all l ∈ N pick nl ∈ Vl ∈ Open (N) such that n /∈ Vl and then pick ml ∈ Ul ∈ Open (F −1(Vl))

such that Ul∩ClM(U0) = ∅. Let U =
∞
∪
l=0
Ul and observe that n and all nl = F (ml) all belong to

F (U). Since F ∣
U
∶ U → F (U) is sequentially quotient there exists some subsequence (nlk)

∞
k=1

and some F ∣
U
-lift (m̂lk)

∞
k=1 → m̂ of nl● → n. Since F (Ulk) ⊆ Vlk and n = F (m̂) /∈ Vlk for all

k ∈ N we have that m̂ /∈ Ulk for all l ∈ N, where this together with the fact that m̂ ∈ U =
∞
∪
l=0
Ul

implies that m̂ ∈ U0. But since m̂l● → m̂ there exist some k ∈ N such that m̂lk ∈ U0, which

implies that nlk = F (m̂lk) ∈ F (U0) ⊆ F (O), a contradiction. ∎

The next proposition follows almost immediately from proposition A.2.3 and remark

A.0.8.

Proposition A.2.4. A continuous surjection F ∶ M → N from a regular sequential space

onto a Hausdorff sequential space is an open map if and only if F ∣
U
∶ U → F (U) is sequentially

quotient for all U ∈ Open (M).

Theorem A.2.5. Let M be a sequential Hausdorff space, N a first countable Hausdorff

space, F ∶ M → N a sequence covering, and n̂ ∈ N . If F −1(n̂) is countable then there
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exists some m ∈ F −1(n̂) such that m is a point of openness for F (i.e. for all U ∈ Open (X)

containing m, f(U) is a neighborhood of n̂ in N).

Proof. Enumerate F −1(n̂) = (m̂l)∞l=1 and let (V l)∞l=1 be a neighborhood basis of n̂ consisting

of open subsets of N such that V l+1 ⊆ V l. Suppose that the conclusions is false. Then for all

l ∈ N there exists an open neighborhood Ul of m̂l such that F (Ul) is not a neighborhood of

n̂ in N . For each l ∈ N, since F (Ul) is not a neighborhood of n̂ and since N is sequential we

can pick a sequence (npl )
∞
p=1

⊆ Vl converging to n̂ such that npl ∉ F (Ul) for all p ∈ N where by

replacing this sequence with a subsequence we may assume that npl ∈ Vp for all p ∈ N.

Observe that for all l, p, q ∈ N, if max{p, l} ≥ q then npl ∈ Vq: If l ≥ q then Vl ⊆ Vq so this

follows from npl ∈ Vl while if p ≥ q then Vp ⊆ Vq so this follows from npl ∈ Vp. In particular,

this shows that for all q ∈ N there are at most finitely many (l, p) ∈ N×N such that npl is not

contained in Vq. Thus by picking any bijection between N and N×N we can view (npl )(l,p)∈N×N
as a convergent sequence in N , whose limit is n̂.

Since F is sequence covering there exists a convergent sequence (mp
l )(l,p)∈N×N in M such

that F (mp
l ) = n

p
l for each (l, p) ∈ N ×N. Since F( lim

(l,p)∈N×N
mp
l ) = n̂ there is some L ∈ N such

that (npl )(l,p)∈N×N converges to m̂L. Since UL is a neighborhood of m̂L we can pick P ∈ N such

that p ≥ P implies mp
L ∈ UL. But then nPL = F (mP

L) ∈ F (UL), which contradicts the choice of

(npL)
∞
p=1

. ∎

Corollary A.2.6. Let F ∶ M → N be a quotient map between first-countable Hausdorff

spaces. If each fiber of F is countable then F is an almost open map and (consequently) a

1-sequence covering.

Proposition A.2.7. If F ∶ M → N is an almost open map then F ∶ M → N is open ⇐⇒

whenever m,m̂ ∈ M belong to the same fiber of F then for any m ∈ U ∈ Open (M) there

exists some m̂ ∈ Û ∈ Open (M) such that F (Û) ⊆ F (U).

Remark A.2.8. Observe that while the LHS of the equivalence explicitly depends on knowl-

edge of bothM and N ’s topologies, the RHS does not require any knowledge of N ’s topology
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(only of M ’s topology). The condition on the RHS of the equivalence makes rigorous the

idea that around any two points of the same fiber of F , the result of F ’s “infinitesimal de-

formation of regions around one of these points” (i.e. images of neighborhoods of this point)

does not differ much from its “infinitesimal deformation of regions around the other point.”

Proof. Let U ∈ Open (M),m0 ∈ U , and n0 = F (m0). Letm1 ∈ F −1 (n0) be a point of openness

of F so our assumption gives us some m1 ∈ U1 ∈ Open (M) such that F (U1) ⊆ F (U). But

then F (U1) is a neighborhood in N of n0 that is contained in F (U), as desired. ∎

Corollary A.2.9. A map F ∶ M → N is open if and only if (1) it is almost open and (2)

whenever m,m̂ ∈ M belong to the same fiber of F then for any m ∈ U ∈ Open (M) there

exists some m̂ ∈ Û ∈ Open (M) such that F (Û) ⊆ F (U).

In light of corollary A.2.6, we obtain the following corollary to proposition A.2.7.

Corollary A.2.10. Let F ∶ M → N be a quotient map between first-countable Hausdorff

spaces such that each fiber of F is countable. Then F ∶ M → N is open ⇐⇒ whenever

m,m̂ ∈ M belong to the same fiber of F then for any m ∈ U ∈ Open (M) there exists some

m̂ ∈ Û ∈ Open (M) such that F (Û) ⊆ F (U).

Local Homeomorphism Conditions

Lemma A.3.1. Let F ∶M → N be a continuous map between Hausdorff sequential spaces

such that F ∶ M → ImF is open. Let R = {m ∈M ∣ F −1(F (m)) = {m}} and let S = F (R).

Then S is closed in ImF , R is closed in M , R = F −1 (S), and F ∣
R
∶R→N is injective.

Proof. It is clear that if m ∈ F −1 (S) then there exists some m0 ∈ R such that F (m0) = F (m)

but since F −1(F (m0)) = {m0} it follows that m0 = m. Thus m ∈ R so we’ve shown that

R = F −1 (S) and from here it is clear that F ∣
R
∶R→N is injective. Now let n0 ∈ ClImF (S)

and let (nl)∞l=1 ⊆ S be a sequence converging to n0. Since F ∣
F−1(S) ∶F

−1 (S)→N is injective
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we can define ml =
def
F −1(nl) for each l ∈ N. Suppose that m,m̂ ∈ F −1 (n0) are distinct points.

Pick m ∈ U ∈ Open (M) and m̂ ∈ Û ∈ Open (M) such that U and Û are disjoint. Since

n0 = F (m) ∈ F (U) ∈ Open (ImF ) and n0 = F (m̂) ∈ F (Û) ∈ Open (ImF ) there exists some

l0 ∈ N such that nl ∈ F (U) ∩ F (V ) for all l ≥ l0. In particular, there exists p ∈ U and p̂ ∈ Û

such that F (p) = nl0 = F (p̂) so that {p, p̂} ⊆ F −1(nl0) = {ml0}, which implies p =ml0 = p̂. But

this contracts the fact that U ∩ Û = ∅. ∎

Theorem A.3.2. Let F ∶M → N be a continuous map between Hausdorff second countable

spaces where M is a Baire space and ImF is normal. Let O be the (unique) largest open

subset of M on which F restricts to a locally injective map (i.e. for every m ∈ O there exists

some m ∈ U ∈ Open (M) such that F ∣
U
∶ U → N is injective). Suppose that F ∶M → ImF is

an open map and that each fiber of F is a discrete subspace of M . Then O is dense in M

and furthermore, this O is also the largest open subset of M on which F ∣
O
∶O→ ImF is a

local homeomorphism.

Proof. Since F ∶M → ImF is a continuous open surjection from a Baire space, ImF is also

a Baire space. Let B● = (Bl)∞l=1 be a countable basis for M . Since each fiber of F is discrete,

for every m ∈M we may pick λ(m) ∈ N such that {m} = F −1(F (m))∩Bλ(m). For all l ∈ N, let

Rl =
def

{m ∈ Bl ∣F −1(F (m)) = {m}} and let Sl =
def
F (Rl) and observe that lemma A.3.1 implies

that Rl is closed in Bl and Sl is closed in F (Bl). By definition of λ(m) we have m ∈ Rλ(m)

so in particular, M = ∪
l∈N
Rl and ImF = ∪

l∈N
Sl.

Since ImF is normal and since for each m ∈ M , F (Bλ(m)) is an open (in ImF ) neigh-

borhood of F (m) such that F (Rλ(m)) is closed in F (Bλ(m)) we can pick some λ̂(m) ∈ N

such that m ∈ Bλ̂(m) and ClImF (F (Bλ̂(m))) ⊆ F (Bλ(m)). For each m ∈ M let Em =

Sλ(m) ∩ ClImF (F (Bλ̂(m))) and note that since Sλ(m) is closed in the open (in ImF ) set

F (Bλ(m)) while ClImF (F (Bλ̂(m))) is closed in ImF , the set Em is closed in ImF . Observe

that there are only countably map Em’s since each Em is of the form Si ∩ClImF (F (Bj)) for

some i, j ∈ N and that Em ⊆ Sλ(m) ∩ F (Bλ(m)) since ClImF (F (Bλ̂(m))) ⊆ F (Bλ(m)).

Since {Em,m ∈M} is a countable closed cover of ImF , which is a Baire space, there exists
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some m ∈M such that V =
def

IntImF (Em) is non-empty. Since V ⊆ Em ⊆ Sλ(m) ∩ F (Bλ(m)) ⊆

F (Bλ(m)) and V ≠ ∅ it follows that U =
def
Um ∩ F −1 (V ) is non-empty (note that whether or

not m ∈ U will be unimportant). Since U ⊆ Uλ(m) and

F (U) ⊆ V ⊆ Sλ(m) = F (Rλ(m)) = {n ∈ ImF ∣F −1 (n) ∩Bλ(m) is singleton }

it follows that for all u ∈ U , F −1(F (u)) ∩Bλ(m) = {u}. Thus F ∣
U
∶ U → N is injective and

since F ∣
U
∶ U → F (U) is a continuous open bijection it is a homeomorphism onto F (U),

where F (U) ∈ Open (ImF ).

Let O denote all those U ∈ Open (M) such that F ∣
U
∶ U → N is injective and let O =

def

∪
O∈O

O. Suppose that U =
def
M ∖ClM(O) is not empty and let G =

def
F ∣

U
∶U →N . Observe that

G ∶U →G(U) is an open map since U ∈ Open (M) and F ∶M → ImF is open. Since the fibers

of G are discrete we may apply the first part of this theorem to conclude that there exists

some non-empty V ∈ Open (U) such that G∣
V
∶V → ImF is injective. But since V ∈ Open (U)

it follows that V ∈ O, which gives us a contradiction. Thus ClM(O) =M . ∎

Properties of Continuous Open Maps

The conclusions of the following lemma A.4.1 are straightforward to prove and while the re-

sults that relate preimages with closures, boundaries, and interiors are well-know, the results

relating closures of images with regular closed/open sets appear to be new observations.

Lemma A.4.1. Suppose f ∶ X → Y is a continuous open map, S ⊆ Y , and A ⊆ X. Then

f−1(Bd(S)) = Bd(f−1 (S)), f−1(S) = f−1 (S), and whenever A = Int(A) then Int(f(A)) =

f(A) = f(Int(A)) = f(Int(A)) is a regular closed set. In particular, if A is a regular closed

(resp. open) set then so is f(A) (resp. f(X ∖A)). If in addition f is surjective then

Int(f−1 (S)) = f−1(Int(S)) and S is a regular open (resp. regular closed) subset of Y if and

only if f−1 (S) is a regular open (resp. regular closed) subset of X.
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Proof. That f−1(S) = f−1 (S) is well-known and f−1(Bd(S)) = Bd(f−1 (S)) follows immedi-

ately from this. Recall that from the continuity of f we have f(A) = f(A) so that A = Int(A)

implies f(A) = f(A) = f(Int(A)) = f(Int(A)) ⊆ Int(f(A)) ⊆ f(A) (since Int(f(A)) ⊆ f(A))

from where equality follows. Since the closure of any open set is a regular closed set so that

in particular f(A) = Int(f(A)) is a regular closed set.Suppose that f is surjective. Then

f(Int(f−1 (S))) ⊆ Int(f(f−1 (S))) = Int(S) so that Int(f−1 (S)) ⊆ f−1(Int(S)). By conti-

nuity, f−1(Int(S)) ⊆ Int(f−1 (S)) and so equality holds. It is not hard to show that S is a

regular open (resp. closed) set if and only if Bd(S) = Bd(S) (resp. Bd(Int(S)) = Bd(S)).

That S is regular open (resp. closed) if and only if the same is true of f−1 (S) is now

immediate. ∎

Lemma A.4.2. Suppose that µ ∶M →S is a surjective open continuous map whereM is first

countable and S is Hausdorff. Let D ⊆ S, s ∈ D, m ∈ µ−1(s), and (mk)∞k=1 be a sequence of

points in µ−1 (D) converging to m (which necessarily exists). Then for any n ∈ µ−1(s) there

exists a sequence (nl)∞l=1 in µ−1 (D) converging to n and there exists a subsequence (mkl)∞l=1

such that µ(nl) = µ(mkl) for all l ∈ N.

Proof. Since m ∈ µ−1(s) ⊆ µ−1(D) = µ−1 (D) and M is first countable the sequence (mk)n∈N

in µ−1 (D) with mk converging to m is guaranteed to exist. If s ∈ D the result is obvious so

assume that s ∉D and so for all k ∈ N, µ(mk) ≠ s. So replacing (mk)∞k=1 with a subsequence

we may assume (since S is Hausdorff) that all mk are distinct. Let C = {µ(mk) ∣k ∈ N} ⊆

µ(µ−1 (D)) = D and note that µ(n) = m ∈ C so that n ∈ µ−1(C) = µ−1 (C) so there exists a

sequence (ni)∞i=1 in µ−1 (C) with ni converging to n so that µ(ni) ∈ C converges to µ(n) =m.

Since lim
i→∞

µ(ni) = µ(lim
i→∞

ni) = µ(n) = s converges and since (µ(ni))∞i=1 is a subsequence of

(mk)∞k=1 we may replace (mk)∞k=1 with this subsequence which will guarantee that for all

k ∈ N, there exists some i such that µ(ni) = µ(mk) where in addition this i is necessarily

i ≥ k. Let k1 = 1 and pick i1 be such that µ(ni1) = µ(mk1), where we have that i1 ≥ k1. Having

picked kl−1 and il−1 let kl = 1 + max{kl−1, il−1} and pick il to be such that µ(nil) = µ(mkl),

where we necessarily have that il ≥ kl so that il > il−1. Thus (nil)∞l=1 and (mkl)∞l=1 are the
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desired sequences. ∎

Lemma A.4.3. Suppose that F ∶M → N and µ ∶M →S is are maps where µ is surjective.

Then there exists a unique largest subset D ⊆ S on which it is possible to define a map

f ∶D→N such that F = f ○ µ on µ−1 (D), where this map f ∶D→N will then necessarily

be unique. If µ ∶M →S is also a quotient map then for any R ⊆ D, F ∣µ−1(R) ∶µ−1 (R)→N is

continuous if and only if f ∣R is continuous. If in addition µ ∶M →S is continuous and open,

F ∶M → N is continuous, M is first countable, and S and N are Hausdorff then

(1) D is closed in S,

(2) f ∶D→N continuous,

(3) U =
def

Int(D) is the unique maximal open subset of S and f ∣U ∶U →N is the unique

continuous map such that F ∣µ−1(U) = f ○ µ∣µ−1(U) in the sense that if Ũ ∈ Open (M) is

any set for which such a representation exists then Ũ ⊆ U ,

(4) U is necessarily a regular open set.

Proof. The uniqueness, existence, and maximality of the (possibly empty) set D is clear.

Assume that µ is a quotient map. Since µ ∶M →S is a quotient map so is µ∣µ−1(R) ∶µ−1 (R)→R

whereR ⊆D. Since F ∣µ−1(R) = f ∣R○µ∣µ−1(R) is continuous it follows from the universal property

of quotient maps that F ∣µ−1(R) is continuous if and only if f ∣R is continuous.

Now assume that µ ∶M →S is continuous and open, F ∶ M → N is continuous, M is

first countable, and S and N are Hausdorff. Let C = µ−1 (D). Since µ ∶M →S is a quotient

map the continuity of F = f ○ µ on C implies that f is continuous. Let s ∈ D and let

m,n ∈ µ−1 (S). Note that if we can show that F (m) = F (n) then sincem and n were arbitrary

we’ll have shown that F (µ−1(s)) is a singleton set so that we can define f̂ ∶D ∪ {s}→N by

f̂(s) = F (µ−1
i (s)) and f̂(d) = f(d) for d ∈ D so that from the maximality of D it will follow

that s ∈D. By the previous lemma, there exist sequences (ml)∞l=1 and (nl)∞l=1 in µ−1 (D) = C

converging in M to m and n, respectively, such that µ(ml) = µ(nl) for all l ∈ N. Since F is
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continuous the following limit

F (m) = F (lim
l
ml) = lim

l
F (mk) = lim

l
f(µ(ml))

exists and likewise

F (n) = lim
l
f(µi(nl)) = lim

l
f(µi(ml))

exists so that F (m) = F (n), as desired.

Let U consist of all those s ∈ S for which there exist s ∈ Us ∈ Open (S) and continuous

fs ∶Us→N such that F ∣µ−1(Us) = fs ○ µ∣µ−1(Us). Note that if s ∈ U then Us ⊆ U so that

U = ∪
s∈U

Us is open in S. By definition of D we have U ⊆ D so that U ⊆ Int(D). By lemma

6.1.4 F ∣µ−1(Int(D)) = f ○µ∣µ−1(Int(D)) and since Int(D) is open it follows from lemma 6.1.12 and

the definition of U that Int(D) ⊆ U so that Int(D) = U . The maximality and uniqueness of

U is clear from its definition. Since Di is closed in Mi and Ui is the interior of this closed

set we have that Ui is a regular open set. ∎

Coherence of Topologies with Collections of Subsets

Definition A.5.1. Suppose X is a set and F is a collection of X-valued maps where for

each f ∈ F , f ’s domain, denoted by Dom f , has a topology τf . Then the final topology τF on

X induced by F is the finest topology on X making all f ∶ (Dom f, τf)→ (X,τF) continuous.

This topology’s open (resp. closed) sets are characterized by the following property: a subset

S of X is open (resp. closed) in (X,τF) if and only if for all f ∈ F , f−1(S) is open (resp.

closed) in (Dom f, τf). If τX is a topology on X then let us say that τX (or (X,τX) or simply

X if τX is understood) is coherent with F if τX = τF , where in place of τX we may write

(X,τX) or even simply X if τX is understood. If x ∈X then say that τX is coherent with F

at x if the following condition holds: for all S ⊆X containing x, S is a neighborhood of x in

(X,τX) ⇐⇒ for all f ∈ F whose image contains x, f−1(S) is a neighborhood of f−1(x).

360



Example and Definition A.5.2. Let (X,τX) be a space and let Cmpt(X,τX) denote the

set of all compact subspaces of (X,τX) with their subspace topologies. We call (X,τX) a

k-space and say that it is compactly generated if τX is coherent with the set of all inclusion

maps InXK ∶K →X as K varies over Cmpt(X,τX).

Remark A.5.3. Every space that is first-countable or locally compact is a k-space but it is

well-known that there are k-spaces whose product is not a k-space.

Observations A.5.4. Let (X,τX) and (Y, τY ) be spaces, let F and G be two collections of

continuous maps into (X,τX), and suppose that τX is coherent with F .

• If F ⊆ G then τX is coherent with G.

• A surjection π ∶ X → Y is a quotient map if and only if τY is coherent with π ○ F ∶=

{π ○ f ∶ f ∈ F}.

• For every f ∈ F let Ef be a collection of continuous maps into (Dom f, τDom f). If τDom f

is coherent with Ef for each f ∈ F then τX is coherent with

⋃
f∈F

{f ○ e ∶ e ∈ Ef}

The following lemma is readily verified.

Lemma A.5.5. If (X,τX) is a space and each f ∈ F is a quotient map onto its image (i.e.

f ∶ (Dom f, τf)→ (Im f, τX ∣
Im f

) is a quotient map) then the following are equivalent:

(1) τX is coherent with F .

(2) A subset S ⊆X is open in (X,τX) ⇐⇒ for all f ∈ F , S∩Im f is open in (Im f, τX ∣
Im f

).

(3) A subset S ⊆ X is closed in (X,τX) ⇐⇒ for all f ∈ F , S ∩ Im f is closed in

(Im f, τX ∣
Im f

).
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Observe in particular that if τX is Hausdorff and every f ∈ F is a continuous map with

a compact domain then the hypotheses of lemma A.5.5 are satisfied since any such map is

necessarily a closed map onto its image.

Definition A.5.6 ([49, pp. 68-69]). If A is a collection of subsets of X then say that a

topology τX on X is coherent with A and call this topology the weak topology induced by A

if when each A ∈ A is given the subspace topology from (X,τX), then τX is coherent with

set of inclusion maps {InXA ∶ A ∈ A}.

Remark A.5.7. In this case, we may apply lemma A.5.5 to conclude that a subset S of X

is open (resp. closed) in (X,τX) if and only if for all A ∈ A, S ∩A is open (resp. closed) in

(A, τX ∣
A
), which shows that these definitions of coherence, weak topology, and k-space are

equivalent to their usual definitions (e.g. as found in [12] or [49]). Observe that if τX and

F are as in lemma A.5.5 then this terminology allows us to restate that lemma’s conclusion

as: τX is coherent with (the set of all maps in) F if and only if τX is coherent with the set

of all images of maps in F .

Proposition A.5.8. Let F be a collection of continuous maps into (X,τX) whose domains

are Fréchet-Urysohn spaces. If τX is coherent with F then X is a sequential space.

Proof. Let S ⊆ X be sequentially closed, let f ∶ D → X be in F , and let d ∈ ClD(f−1(S)).

Let (dl)∞l=1 ⊆ f−1(S) converge to d. Since f is continuous, f(d●) → f(d) in X so that

f(d) ∈ SeqClX(S) = S, which shows that ClD(f−1(S)) = f−1(S) is closed in D. ∎

The following original lemma will be an important tool for this paper.

Lemma A.5.9. Let (X,τX) be Hausdorff, let C be a collection of continuous maps in X,

and let (⋆) denote the following statement:

(⋆): whenever x● = (xl)∞l=1 ⊆X is an infinite-ranged sequence converging to x inX then there

exists some γ ∈ C and some γ-liftable subsequence (xlk)∞k=1 of x● such that (xlk)∞k=1 → x

is injective in X.
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If X is Fréchet-Urysohn and (⋆) holds then τX is coherent with C. If τX is coherent with C

and if every map in C is that is not sequentially quotient onto its image has a Fréchet-Urysohn

domain, then (⋆) holds.

Remark A.5.10. It will be clear from the proof that we may replace (⋆) with: “whenever

x● = (xl)∞l=1 → x is injective in X then there exists some γ ∈ C and some γ-liftable subsequence

of x●.”

Convention A.5.11. If γ ∈ C is a curve, then we will pick the γ-liftable subsequence (xlk)∞k=1

in (⋆) so that it has a monotone convergent γ-lift.

Proof. Assume first that τX is coherent with C and that whenever a map in C is not

sequentially quotient onto its image then it has a Fréchet-Urysohn domain. Let x and

x● = (xl)∞l=1 ⊆X be as in (⋆) and observe that it suffices to prove (⋆)’s conclusion under the

additional assumption that x● → x is injective in X. Let S = {xl ∶ l ∈ N} and note that x /∈ S.

We will assume that such a γ and subsequence does not exist and obtain a contradiction by

concluding that S is closed in X. Let γ ∈ C and note that since τX is coherent with C it’s

enough to show that γ−1(S) is closed. If S ∩ Imγ is finite then S ∩ Imγ is compact so γ−1(S)

is closed. So assume that S ∩ Imγ is infinite and consists of the subsequence (xnk)∞k=1.

Suppose first that γ ∶ Domγ → Imγ is sequentially quotient. If x ∈ Imγ then since

(xnk)∞k=1 → x in Imγ and γ ∶ Domγ → Imγ is sequentially quotient, we can pick a subse-

quences of (xnk)∞k=1 that we had been assumed not to exist. Thus x /∈ Imγ so that since

S ∪ {x} is closed in X, γ−1(S) = γ−1 (S ∪ {x}) is closed, as desired. So we may henceforth

assume that γ’s domain is Fréchet-Urysohn.

Suppose that γ−1(S) is not closed and let t0 ∈ γ−1(S) ∖ γ−1(S). Since Domγ is Fréchet-

Urysohn and t0 ∈ γ−1(S), there exists some sequence (tj)∞j=1 in γ−1(S) converging to t0. Let

j1 = 1 and let l1 be the unique integer such that γ(tj1) = xl1 . Having picked j1 < ⋯ < jk

and l1 < ⋯ < lk such that γ(tj1) = xl1 , . . . , γ(tjk) = xlk , let jk+1 > jk be such that for all

j ≥ jk+1, tj belongs to the open neighborhood γ−1 (X ∖ {xl ∶ 1 ≤ l ≤ lk}) of t0 and then let
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lk+1 be the unique index such that γ(tjk+1) = xlk+1 . Since (tjk)∞k=1 → t0 and X is Hausdorff,

γ(t0) = lim
k→∞

γ(tjk) = lim
k→∞

xlk = x, a contradiction that finishes the proof.

Now assume that X is Fréchet-Urysohn and that (⋆) holds. Let S ⊆ X be such that

γ−1(S) is closed for all γ ∈ C. Let x ∈ ClX(S) and suppose for the sake of contradiction that

x /∈ S. Since X is Fréchet-Urysohn we may pick a sequence (xl)∞l=1 ⊆ S converging to x where

since x /∈ S, this sequence has infinite range. By assumption, there is some γ ∈ C and some

γ-liftable subsequence (xlk)∞k=1 of (xl)∞l=1. Let (tk)∞k=1 → t0 be a γ-lift of (xlk)∞k=1 → x. Since

γ(tk) = xlk ∈ S for all k ∈ N, this implies that t0 ∈ γ−1(S), where this set is just γ−1(S) so

that γ(t0) ∈ S. Since X is Hausdorff it follows that x = γ(t0) ∈ S. ∎

Corollary A.5.12. Suppose (X,τX) is a Hausdorff Fréchet-Urysohn space and C is a col-

lection of continuous maps in X where each map either has a Fréchet-Urysohn domain or is

otherwise sequentially quotient onto its image. Then τX is coherent with C if and only if (⋆)

from lemma A.5.9 holds.

Corollary A.5.13. If X = {(x1, . . . , xn) ∈ Rn ∶ xi ≥ 0, . . . , xn ≥ 0} (where 1 ≤ i ≤ n) then X is

not coherent with any set of C1-embeddings into X whose domains are all open intervals.

Corollary A.5.14. Let J be an interval and A be a cover of J by intervals such that for

all x ∈ J , if x does not belong to the interior of an interval in A then there exist intervals L

(resp. R) in A containing x as a left (resp. right) endpoint. Then J is coherent with A. In

particular, J is coherent with {[a, b] ∶ a, b ∈ J, a < b}.

The following lemma follows easily from corollary A.5.14. Its last conclusion essentially

states that if a space is coherent with a set of curves C then it will also be coherent with the

set of curves that results if one replaces each non-path curve in C with a set of restrictions

of this curve to compact intervals that cover its domain.

Lemma A.5.15. Let (X,τX) be a space, C be a set continuous maps in X, and for every
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γ ∈ C let Aγ denote a collection of subsets of Domγ. Let

P = ⋃
γ∈C

{γ∣
A
∶ A ∈ Aγ} .

If τX is coherent with P then τX is coherent with C. If τX is coherent with C and the domain

of every γ ∈ C is coherent with Aγ then τX is coherent with P .

In particular, if C is a set of curves and if for all γ ∈ C we let Aγ = {Domγ} whenever γ

is a path and let Aγ = {[a, b] ∶ a, b ∈ Domγ, a < b} otherwise, then τX being coherent with C

implies that it is coherent with P .

Remark A.5.16. Theorem 14.5.5 and corollary A.5.13 show that the last conclusion could

fail if we were to restrict paths to open intervals instead of restricting non-path curves to

compact intervals.

Corollary A.5.17. Let k ∈ {0,1, . . . ,∞} and 0 ≤ p ≤ k. If S is a subset of a Ck-manifold

with corners that is coherent with the set of all S-valued Cp-curves (resp. Cp-embeddings)

whose domains are open intervals then S is coherent with the set of all S-valued Cp-paths

(resp. Cp-embeddings) with domain [0,1].

Corollary A.5.18. If a space (X,τX) is coherent with a set P of continuous maps into X

then τX is coherent with any set of continuous extensions into X. In particular, if (X,τX) is

coherent with a set of paths and if each path has a continuous extension to an open interval,

then τX is coherent with these extensions.

Characterization of Points in a Map’s Image

Definition A.6.1. Let X is a topological space, x ∈ X, S ⊆ X, and let S● = (Si)i∈I be an

I-indexed collection of subsets of X. Say that

(a) S● is locally finite (resp. index-locally finite) at x (in X) if there exists some x ∈ U ∈

Open (X) such that {Si ∣Si ∩U ≠ ∅, i ∈ I} (resp. {i ∈ I ∣Si ∩U ≠ ∅}) is finite.
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(b) S● is locally finite (resp. index-locally finite) on S (in X) if it is locally finite (resp.

index-locally finite) in X at every point of S where if S = X then we may instead say

that S● is locally finite (resp. index-locally finite) (in X).

(c) a collection of points x● = (xi)i∈I in X is locally finite (resp. index-locally finite) (on

S) (in X) if this is true of {xi}i∈I .

Example A.6.2. If x ∈X and we let xl =
def
x for all l ∈ N then although {{xl} ∣ l ∈ N} = {{x}}

is locally finite at x in X, x● = (xl)∞l=1 is not index-locally finite at x in X.

The most important part of the following lemma is the implication (4) Ô⇒ (1), which

reduces the question of whether or not y ∈ Im f down to a question about the fibers of f .

This result may be used with continuous maps between promanifolds to show, for instance,

that a particular point in the map’s codomain lies in the map’s image.

Lemma A.6.3. Let f ∶ X → Y be a continuous map between first-countable Hausdorff

spaces and let y ∈ Y . Consider the following statements:

(1) y ∈ Im f .

(2) There exists a sequence y● = (yl)∞l=1 ⊆ Y converging to y in Y such that f−1(y●) =
def

(f−1(yl))∞l=1 is not index-locally finite in X (def. A.6.1(c)).

(3) There exists a countable filter base B● = (Bl)∞l=1 on Y converging to y such that f−1(B●)

is not index-locally finite in X.

(4) Statement (2) with “index-locally finite” replaced with “locally finite.”

(5) Statement (3) with “index-locally finite” replaced with “locally finite.”

Then (5) ⇐⇒ (4) Ô⇒ (3) ⇐⇒ (2) ⇐⇒ (1) and if there is no open subset of X on

which f is constant then also (3) Ô⇒ (4).
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Proof. (1) Ô⇒ (2): If y ∈ Im f then let yl =
def
y for all l ∈ N and observe that f−1(y●) is not

locally finite.

(2) Ô⇒ (3) and (4) Ô⇒ (5): If y● is as in (2) (resp. (4)) then for each l ∈ N, let

Bl =
def

{yk ∣k ≥ l} be the tail of y● after l. Then B● satisfies (3) (resp. (5)).

(3) Ô⇒ (1): Let B● is as in (3). Since f−1(B●) is not index-locally finite in X there

exists some x ∈ X such that f−1(B●) is not index-locally finite at x. Let V ● = (V k)∞k=1 be a

decreasing neighborhood basis of y in Y . Let Bl● = (Blk)∞k=1 be such that Blk ⊆ V k for all

k ∈ N and observe that for each k0 ∈ N, (f−1(Blk))∞k=k0+1 is not index-locally finite at x (since

otherwise (f−1(Bl))∞l=1 would be index-locally finite at x).

Let U ● = (U l)∞l=1 be a decreasing neighborhood basis of x in X. Since f−1(B●) is not

locally finite at x, there exists some l1 ∈ N for which there is some x1 ∈ U1 ∩ f−1(Bl1) ≠ ∅.

Suppose we’ve picked l1, . . . , lk and x1 ∈ U1 ∩f−1(Bl1), . . . , xk ∈ Uk ∩f−1(Blk) such that li < lj

for all 1 ≤ i < j ≤ k. Since (f−1(yl))∞l=lk+1 is not index-locally finite in at x there exists some

lk+1 ≤ lk + 1 such that Uk+1 ∩ f−1(Blk+1) ≠ ∅ and now pick any xk+1 ∈ Uk+1 ∩ f−1(Blk+1). For

each k ∈ N, f(xk) ∈ Blk ⊆ V lk and xk ∈ Uk where since U ● and V l● are decreasing we have

lim
k→∞

f(xk) = y and lim
k→∞

xk = x. The continuity of f implies that f(x) = lim
k→∞

f(xk) = y.

(4) Ô⇒ (2) is immediate.

(5) Ô⇒ (4): Let B● be as in (5) and let x ∈X be such that f−1(B●) is not locally-finite

at x. Let U ● = (U l)∞l=1 be a decreasing neighborhood basis of x in X. Observe that for all

k ∈ N, (f−1(Bl))∞l=k is not locally finite at x so we may construct (lk)∞k=1 increasing and a

sequence xk ∈ f−1(Blk) ∩Uk such that f(xk) ≠ y for all k ∈ N.

Since x● converges to x, f(x●) converges to y so that the fact that N is Hausdorff implies

that f(x●) has a subsequence (f(xki))∞i=1 such that i ≠ j implies f(xki) ≠ f(xkj). For all

i ∈ N let yi =
def
f(xki) and observe that f−1(y●) is not locally finite at x since xk● is a sequence

of points converging to x with each xki contained in a distinct fiber of f .

(3) Ô⇒ (4): Suppose that is no open subset of X on which f is constant and let

x ∈ f−1(y). Let U ● = (U l)∞l=1 be a decreasing neighborhood basis of x in X. For each l ∈ N
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pick xl ∈ U l such that f(xl) ≠ y. The rest of this proof is the same as the second paragraph

of (5) Ô⇒ (4). ∎

Miscellaneous Lemmata

Lemma A.7.1. Let F ∶M → N and G ∶N →P be continuous maps. Then

(1) G ○ F ∶M →P is injective (resp. a homeomorphism, an embedding) if and only if the

same is true of both F ∶M → N and G∣ImF ∶ ImF →P .

(2) If N is Hausdorff Fréchet-Urysohn, P is Hausdorff, and G ○ F ∶M →P is injective and

sequentially quotient then ImF is closed in G−1 (Im(G ○ F )).

(3) If σ ∶W →M is a continuous local section of G ○ F ∶M →P then F ○ σ ∶W →N is a

continuous local section of G ∶N →P and F ∣Imσ ∶ Imσ→P is an embedding.

Proof. (1): The statement for injectivity is immediate and note that the statement re-

garding embeddings follows from the statement regarding homomorphisms. So assume that

G ○ F ∶M →P is a homeomorphism. Let V ∈ Open (N), U =
def
F −1 (V ), andW =

def
G(V ). Since

F is continuous U is open and hence so is (G ○ F )(U) = (G ○ F )(F −1 (V )) = G(ImF ∩ V )

so that G∣ImF ∶ ImF →P is a continuous open bijection. Since F = (G∣ImF )−1 ○ (G ○ F ) is a

composition of homeomorphisms it follows that F is a homeomorphism.

(2): Let n● ⊆ ImF be a sequence converging to n ∈ G−1 (Im(G ○ F )). Let p● = G(n●),

which converges to p =
def

G(n) in Im(G ○ F ). Since G ○ F is sequentially quotient there

exists an increasing sequence (lk)∞k=1 ⊆ N and a sequence (mlk)∞k=1 converging in M to some

m ∈ (G ○ F )−1(p) such that ml● is an (G ○ F )-lift of pl● . Since G ○ F is injective and since it

was known that nl● ⊆ ImF , we have that F (ml●) = nl● so that ml● → m in M implies that

nl● = F (ml●) → F (m), which implies that F (m) = n and thus that n ∈ ImF . If p● → p in

Im(G ○ F ) then picking m, (lk)∞k=1,m
l● as before shows that limF (ml●)→ F (m) is a G-lift of

pl● → p, which proves that the bijection F ∣
Imγ

∶ Imγ → Im η is sequentially quotient.
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(3) is immediate from G ○ (F ○ σ) = IdV . ∎

Lemma A.7.2. Let E ∶L→M and F ∶ M → N be maps with L compact, L and M Haus-

dorff, F continuous, and F ○E ∶L→N a topological embedding. Then F ∣
ImE

∶ ImE→N is a

continuous bijection and the following are equivalent:

(1) ImE is compact.

(2) F ∣
ImE

∶ ImE→N is a topological embedding.

(3) E ∶L→M is a topological embedding.

(4) E ∶L→M is continuous.

Proof. (2) Ô⇒ (3) follows from the equality E = (F ∣−1

ImE
) ○ (F ○E) and the rest are

immediate. ∎

Lemma A.7.3. Suppose that µ ∶X→Y is a surjective continuous open map between σ-

compact spaces and let V = (V n)∞n=1 be a sequence of open subsets of Y whose closures

form an exhaustion of Y by compact sets. Then there exists a sequence of open subsets of

X, U = (Un)∞n=1, whose closures form an exhaustion of X by compact sets and such that

V n ⊆ µ(Un) for each n ∈ N.

Proof. Let (W n)∞n=1 be any exhaustion of X by relatively compact open sets. Since µ ∶X→Y

is a surjective open continuous map, the sets (µ(W n))∞n=1 form an open cover of Y where

each µ(W n) is a relatively compact open subset of Y . From the compactness of V 1 there

exists some integer N(1) such that V 1 ⊆
N(1)
∪
n=1

µ(W n). Having picked N(l) > N(l − 1) such

that V l ⊆
N(l)
∪
n=1

µ(W n), pick N such that N > N(l) and V l+1 ⊆ µ( N∪
n=1

W n) and then let

N(l + 1) =
def
N . For all n ∈ N, let Un =

N(l)
∪
l=1

W l and note that U =
def

(Un)∞n=1 satisfies Un ⊆ Un+1

and V n ⊆ µ(Un). ∎

Lemma A.7.4. Let (Ki)∞i=1 be a locally finite collection of compact subsets of a locally

compact Hausdorff normal space M . Let (Wi)∞i=1 be a collection of open subsets of M such
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that Ki ⊆ Wi for all i ∈ N. Then there exists a sequence (Vi)∞i=1 of relatively compact open

subsets ofM such that for each i ∈ N, Ki ⊆ Vi ⊆ Vi ⊆Wi and Vi intersects at most only finitely

many other Vl’s.

Proof. Note that we may assume without loss of generality that (Wi)∞i=1 covers M . Observe

that it suffices to show that there exists a sequence (Vi)∞i=1 of relatively compact open subsets

of M such that for each i ∈ N, Ki ⊆ Vi and Vi intersects at most only finitely many other

Vl’s. To see this pick, for each i ∈ N, an open set V̂i such that Ki ⊆ V̂i ⊆ V̂i ⊆Wi ∩ Vi so that

(V̂i)
∞
i=1

are relatively compact open set that satisfy the conclusion of the lemma. Note that

for each i there exists a relatively compact open set Oi ∈ Open (M) containing Ki such that

Oi intersects at most finitely many Kh’s. To see this, fix an index i. For all p ∈Ki there exists

some relatively compact open set p ∈ Op ∈ Open (M) such that Op intersections only finitely

many Kh’s. Since Ki is compact there exist finitely many of these p’s, say pi1, pi2, . . . , piN(i)

such that Opi1
, . . . ,Opi

N(i)
cover Ki. Now Oi =

def
Opi1

∪⋯ ∪Opi
N(i)

is the desired set.

Let O1 be any relatively compact open subset of M containing K1 that intersects only

finitely many Kh’s and let V1 be an open subset of O1 containing K1 such that V1 ⊆ O1.

Continuing inductively, suppose we’ve picked a relatively compact open subsetOi−1 ofM such

that Oi intersects at most finitely many Kh’s and have also some open set Vi containing Ki

such that Vi ⊆ Oi and if for some h = 1, . . . , i−2 we have Vi−1∩Vh ≠ ∅ then Oh∩Ki−1 ≠ ∅. Pick

a relatively compact open set Ui ⊆M containing Ki such that Ui intersects only finitely many

Kh’s. Let i1, . . . , iq denote all the indices from among {1, . . . , i − 1} such that Oil ∩Ki = ∅

and let j1, . . . , jr denote all the indices from among {1, . . . , i − 1} such that Vjl ∩Ki = ∅. Let

Oi =
def
Ui ∖ (Oi1 ∪⋯ ∪Oiq ∪ Vj1 ∪⋯ ∪ Vjr)

and observe that Oi is a relatively compact open set containing Ki. Pick an open set Vi

containing Ki such that Vi ⊆ Oi. Suppose that h ∈ {1, . . . , i − 1} is such that Vi ∩ Vh ≠ ∅.

If Oh ∩Ki = ∅ then Vh ∩Ki = ∅ so that h is among j1, . . . , jr. By definition of Oi we have
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Oi ∩ Vh = ∅ and hence Vi ∩ Vh = ∅ (since Vi ⊆ Oi), giving a contradiction. Thus Oh ∩Ki ≠ ∅,

and so the inductive step is complete.

Assume for the sake of contradiction that i0 ∈ N is such that Vi0 intersects infinitely many

of the sets Vi0+1, Vi0+2, . . .. Since Oi0 intersects only finitely many Kh’s there exists some

j0 > i0 such that for all j ≥ j0, Oi0 ∩Kj = ∅. By assumption, there exists some j > j0 such

that Vi0 ∩ Vj ≠ ∅. By the inductive hypothesis in the case of i ∶= j and h ∶= i0 we have

Oi0 ∩Kj ≠ ∅ (since Vi0 ∩ Vj ≠ ∅), which contradicts Oi0 ∩Kj = ∅. ∎
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Appendix B

Analysis

Example B.0.1. Using the well-known properties of e−1/t it is easy to verify that the map

β ∶ [−1,1] Ð→ [−1,1]

t z→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2e(ln 2)/t if t < 0

0 if t = 0

2e−(ln 2)/t if t > 0

is a smooth strictly increasing homeomorphism such that β(n)(0) = 0 for all n ∈ Z≥0 and

β′(t) = 0 ⇐⇒ t = 0.

Functional Analysis

For readers who are primarily familiar with Banach space theory, we will now give brief

overview of some of the more general functional analytic terminology that will be relevant.

For a more detailed exposition the author recommends [47], [40], and especially [42].

Definition and Notation B.1.1. Let X be a vector space over F, where F = R or C,

endowed with a topology τX and give the field its usual topology. Then we call (X,τX) a
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topological vector space (abbreviated TVS ) and say that τX is compatible with the vector

space structure of X or that τX is a TVS-topology (on X) if the operations of addition

and scalar multiplication are each continuous with respect to τX . By X ′ we mean the

TVS’s (continuous) dual space, which is the set of all continuous linear functions and we

will let ⟨⋅, ⋅⟩ ∶X ′ ×X→F denote composition: ⟨x′, x⟩ =
def
x′(x). For any x, y ∈ X let [x, y] =

def

{tx + (1 − t)y ∣0 ≤ t ≤ 1} and if A,R ⊆X then say that A absorbs R if there exists some r > 0

such that R ⊆ rA. A subset S ⊆X is

• absorbing or radial in X if it absorbs every point of X.

• (von-Neumann) bounded if every 0 ∈ U ∈ Open (X) absorbs S.

• balanced or circled if αS ⊆ S for every scalar ∣α∣ ≤ 1.

• convex for all s1, s2 ∈ S, the line segment between s1 and s2 is contained in S.

• a barrel if it is closed, convex, balanced, and absorbing.

Call a continuous linear map Λ ∶X → Y between two Hausdorff LCTVSs nuclear if there ex-

ists a convex, balanced, and bounded subset B ⊆ Y and sequences α● = (α1, α2, . . .) ∈ `1(N→

R), x′● ⊆ X ′, and y● ⊆ B such that Λ(⋅) =
∞
∑
i=1

αi⟨x′i, ⋅⟩yi and the normed space (span(B), µB)

is complete, where µB(x) =
def

inf{t > 0 ∣x ∈ tB} is called the gauge ( or Minkowski) functional

of B. A TVS-isomorphism is a continuous linear bijection with a continuous inverse. A

continuous linear map Λ ∶X → Y between two TVSs is a TVS-homomorphism if the induced

map Λ̃ ∶X/ker Λ→ Im Λ is a TVS-isomorphism onto its image.

A TVS X is

• said to have the Heine-Borel property if every closed and bounded subset is compact.

• barreled if every barrel in X is a neighborhood of the origin.

• a locally convex TVS (abbreviated LCTVS ) if 0 has a neighborhood basis consisting

of convex open sets.
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• Fréchet if it is a complete metrizable LCTVS.

• Montel if it is a barreled Hausdorff LCTVS with the Heine-Borel property.

• nuclear if it is a Hausdorff LCTVS such that whenever Λ ∶ X → Y is a continuous

linear operator into a Banach space Y then Λ is necessarily nuclear.

The topology (on X ′) of uniform convergence on singleton (resp. compact, bounded)

subsets ofX will be denoted by σ(X ′,X) (resp. c(X ′,X), b(X ′,X)) and whenX ′ is endowed

with this topology then it will be denoted by X ′
σ (resp. X ′

c, X ′
b). Unless indicated otherwise

we will henceforth assume that X ′ is endowed with b(X ′,X) so that in particular, when

we write X ′′ then we will mean (X ′
b)
′
b
. For each x ∈ X let evx denote the evaluation map

at x defined on X ′. If X is a Locally convex TVS then the evaluation map is called the

canonical injection of X into X ′′, where if the map ev ∶X→X ′′ that sends x to evx is a

vector space-isomorphism (resp. a TVS-isomorphism) then X is called semi-reflexive (resp.

reflexive).

If Y is another TVS then L(X → Y ) will denote the vector space of all continuous linear

maps from X to Y . When the vector space L(X → Y ) is endowed with the topology of

uniform convergence on singleton (resp. compact, bounded) subsets of X then it will be

denoted by Lσ(X → Y ) (resp. Lc(X → Y ), Lb(X → Y )). ∎

Remark B.1.2. If a TVS X has the Heine-Borel property then for any TVS Y , the topology

(on L(X → Y )) of compact convergence is identical to the topology of bounded convergence.

If X is Montel then recall ([47]) that it is reflexive, its strong dual X ′
b is also Montel, and

on any bounded subset of X ′
b the weak and strong topologies coincide, which in particular

implies that any weakly convergent sequence of continuous linear functionals is strongly

convergent.

Example and Definition B.1.3 (RN =
def

∞
∏
i=1

R, the space of real sequences). It is well-

known ([47]) that RN is an infinite-dimensional nuclear Fréchet Montel space. Furthermore,
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every continuous linear functional x′ ∶RN→R is of the form x′(x1, x2, . . . ) = ci1xi1 +⋯+ cinxin

for some finite collection of indices i1, . . . , in and constants ci1 , . . . , cin . Equivalently, every

continuous linear functional x′ on RN is of the form x′ = x′i ○Pr i for some index i and some

continuous linear functional x′i ∶Ri→R. It should now be clear that the continuous dual

space of RN is TVS-isomorphic to R∞ =
def
⊕
i∈N

R with it’s usual inductive limit topology, which

is itself a non-metrizable locally convex nuclear Souslin Montel space. Recall ([47, p. 201])

also that every linear functional on R∞ is necessarily continuous and that the weak and

strong dual topologies on RN induced by R∞ (i.e. σ(RN,R∞) and b(RN,R∞)) are identical.

Furthermore, if Y is a Fréchet space then every separately continuous bilinear form on

(RN)′b × Y ′
b is continuous and if Y is Banach then every continuous linear map Λ ∶RN→Y is

nuclear. ∎

Remark B.1.4. Recall ([39, prop. 4.2.2]) that for any locally convex nuclear space and for

any given collection of elements (xα)α∈A the notions of weakly summable (i.e. ∑
α

∣⟨λ,xα⟩∣ <∞

for all continuous linear functionals λ), summable (i.e. the net of finite partial sums indexed

by inclusion converges), and absolutely summable (i.e. ∑
α

p(xα) < ∞ for all continuous

seminorms p) are all equivalent. In particular, since RN is a Fréchet space, any such summable

family will necessarily have only countably many non-zero terms.

Definition B.1.5 ([42], [29]). If X is a TVS and Y is a vector subspace of X then recall ([42,

p. 22]) that Y is said to be complemented in X and that Y splits in X if there exists a vector

subspace Z of X such that the continuous linear map Λ ∶ Y ×Z →X defined by Λ(y, z) = y+z

is an isomorphism of TVSs, in which case we’ll say that Y and Z are complements in X and

that Y is complemented in X by Z. In this case, X will be a direct sum of Y and Z (in the

category of TVSs) and Λ−1 = (πY , πZ) ∶X → Y ×Z will be continuous, where πY and πZ are

projections onto Y and Z, respectively. In particular, both projections will be continuous

and if X is Hausdorff then both Y = kerπZ and Z = kerπY will be closed in X. A continuous

linear injection between TVSs is said to split if its image is complemented in its codomain.
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Remark B.1.6. If the map Λ ∶ Y ×Z →X from above is a TVS-isomorphism then X will be

a direct sum of Y and Z (in the category of TVSs) and Λ−1 = (πY , πZ) ∶ X → Y × Z will be

continuous, where πY and πZ are projections onto Y and Z, respectively. In particular, both

projections will be continuous and if X is Hausdorff then both Y = kerπZ and Z = kerπY

will be closed in X.

Remarks B.1.7.

• If the map A ∶Y ×Z→X from def. B.1.5 is bijective with inverse (Pr Y ,Pr Z) ∶ X →

Y ×Z then it is straightforward to verify that both Pr Y and Pr Z are projections (i.e.

Pr Y ○ Pr Y = Pr Y ), Z = ker Pr Y , Y = ker Pr Z , Y ∩ Z = {0}, and IdX = Pr Y + Pr Z . It

follows ([42]) that X = Y ⊕Z in the category of TVSs if and only if at least one of Pr Y

and Pr Z is continuous, in which case both are continuous so that their kernels Y and

Z will be closed in X if X is Hausdorff.

• It’s easily seen that Y is complemented in X if and only if Y is the image of some

continuous projection Pr Y ∶ X → Y for if given such a map then set Z ∶= ker Pr Y and

Pr Z ∶= IdX −Pr Y .

• Many authors (e.g. [40]) define X = Y ⊕Z to mean that X is the algebraic direct sum

of Y and Z with both Y and Z closed in X. If X is Hausdorff then our definition B.1.5

implies this definition while if X is complete and metrizable then they are equivalent

([40]).

Lemma B.1.8. Let X be a Hausdorff LCTVS with a vector subspace Y that is TVS-

isomorphic to RI for some set I. Then Y is closed in X and Y splits in X.

Proof. Let λ = (λi)i∈I ∶ Y → RI be a TVS-isomorphism. Y is closed in X since it is a complete

subspace of a Hausdorff space. For all i ∈ I let Λi ∶ X → R be a continuous linear functional

extending λi ∶ Y → R. Then Λ ∶= (Λi)i∈I ∶ X → RI is a continuous linear map extending

λ = (λi)i∈I . Since Λ∣
Y
= λ it follows that π ∶= λ−1 ○Λ ∶X → Y is a continuous projection onto

Y . Thus X = Y ⊕ kerπ in the category of TVSs. ∎
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Differentiation in Topological Vector Spaces

We will now describe two of the most common definitions of continuous differentiability,

which we will observe (see B.2.3) to be equivalent in the spaces that are most relevant to

promanifolds.

Definition B.2.1. Let X and Y be Hausdorff LCTVSs, U ∈ Open (X), and F ∶U →Y be

any map. If m ∈ U then F ∶U →Y is Gâteaux differentiable at m if dmFv =
def

lim
τ→0

F (m+τv)−F (m)
τ ,

which is called the directional derivative of F (at m) in the direction v and also denoted by

dF (m)v, exists in all directions v ∈X. If F is Gâteaux differentiable at all points of U then

we will let dF denote the map

dF ∶U ×X Ð→ Y

(m,v) z→ dmFv

and we will denote its associate U → Y X by

DF ∶U Ð→ Y X

m z→ dmF

where if each dmF ∶X→Y is linear and continuous then we will instead consider DF as a

map into Lb(X → Y ). We say that F is Gâteaux C1 (resp. Fréchet C1) on U if it is Gâteaux

differentiable at all points of U and if the map dF ∶U ×X→Y (resp. DF ∶U →Lb(X → Y )) is

continuous. Proceeding by induction on k > 1, we define F to be Gâteaux Ck (resp. Fréchet

Ck) if F is Gâteaux C1 (resp. Fréchet C1) and dF ∶U ×X→Y (resp. DF ∶U →Lb(X → Y ))

is Gâteaux Ck−1 (resp. Fréchet Ck−1). ∎

Remark B.2.2. It can be shown ([21]) that if F ∶ U → Y is Gâteaux C1 then each dF (m) ∶

X → Y is necessarily linear and continuous so DF ’s prototype will indeed be DF ∶ U →

Lb(X → Y ).
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The following observation, which appears to have gone unnoticed elsewhere, shows that

Montel spaces are well-suited for analysis.

Observation B.2.3 (Conditions for equivalence of Gâteaux C1 with Fréchet C1). Suppose

that X is a Hausdorff LCTVS with the Heine-Borel property, U ∈ Open (X), Y is a TVS

such that U × Y is a k-space, and F ∶U →Y is a map that is Gâteaux differentiable at each

point of U . Since U × Y is a k-space,

dF ∶U ×X→Y

is continuous if and only if its associate dF ∶U →Y X is continuous when Y X is given the

compact open topology. So if each map dmF ∶X→Y is linear and continuous it follows that

the map

DF ∶U Ð→ Lc(X → Y ) = Lb(X → Y )

m z→ dmF

is continuous if and only if dF ∶U ×X→Y is continuous, where the equality Lc(X → Y ) =

Lb(X → Y ) was described in remark B.1.2. Since continuity of dF ∶U ×X→Y implies the

continuity and linearity of all dmF ∶X→Y it follows that the map F ∶U →Y is Gâteaux C1

if and only if it is Fréchet C1. In particular, if X = Rk for some k ∈ Z≥0 ∪ {N} then a map

F ∶U →Y from an open subset U of Rk into a TVS Y is Gâteaux C1 if and only if it is

Fréchet C1. ∎

Fréchet-Urysohn Hausdorff LCTVSs are Coherent with

Arcs

Lemma B.3.1. Let X be a Hausdorff LCTVS and suppose (xl)∞l=1 → x0 in X has infinite

range. Then there exists an increasing sequence (lk)∞k=1 ⊆ N and an arc γ ∶ ([−1,1],0) →
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(X,x0) such that γ ( 1
k
) = xlk for all k ∈ N.

Remark B.3.2. The idea of the construction of γ is similar to how it would be constructed

in a Rd (d ∈ N) except that the necessity of guaranteeing that γ be both injective and pass

through infinitely many x●’s complicates the construction. It’s due to these requirements

that to construct γ, it may not be enough to simply construct a continuous curve passing

through these points and then evoke the fact the image of a path is arc-wise connected.

Indeed, it is not even clear that such a curve even necessarily exists without local convexity.

Proof. Assume without loss of generality that x0 = 0 and that x● → 0 is injective in X. If

there exists a subsequence of (xl)∞l=0 that is contained in a finite-dimensional affine subspace

then the conclusion is obvious so assume that no such subsequence exists. For any S ⊆X let

Aff(S) (resp. co(S)) denote the affine span (resp. convex hull) of S in X.

Let l1 = 1 and pick l2 > l1 be such that 0 /∈ Aff (xl1 , xl2). Suppose we have increasing

integers l1, . . . , lk such that 0 /∈ Aff (xl1 , . . . xlh) and for all h = 2, . . . , k, xh /∈ Aff (xl1 , . . . , xlh−1).

Observe that if x ∈X is such that 0 ∈ Aff (x,xl1 , . . . , xlk) then the fact that 0 /∈ Aff (xl1 , . . . , xlk)

implies that x belongs to Span (xl1 , . . . , xlk). Since no infinite subsequence of (xl)∞l=0 is con-

tained in any finite-dimensional affine subspace, this implies that there exists some L > lk

such that l ≤ L Ô⇒ 0 /∈ Aff (xl1 , . . . , xlk , xl). Pick a non-empty balanced open set Uk+1 such

that Uk+1∩Aff (xl1 , . . . , xlk) = ∅ and let lk+1 ≥ L be such that l ≥ lk+1 Ô⇒ xl /∈ Uk+1. Observe

that l ≥ lk+1 Ô⇒ xl /∈ Aff (xl1 , . . . , xlk , xl), which completes the construction.

Define γk ∶ [ 1
k+1 ,

1
k
] → X by γk(t) = xlk+1 + [ t− 1

k+1
1
k
− 1
k+1

] (xlk+1 − xlk). Note that for all k ∈ N,

co (xlk+1 , xlk) ∩Aff (xl1 , . . . , xlk) = {xlk} and 0 /∈ co (xlk+1 , xlk) so that Imγk ∩ Imγk−1 = {xlk},

and Imγk ∩ Imγk+1 = {xlk+1}, and for any h ∈ N, if ∣h − k∣ > 2 then γh and γk have disjoint

images that do not contain 0. Define γ ∶ [0,1] → X by γ(0) = 0 and γ = γk on [ 1
k+1 ,

1
k
] and

observe that γ is injective and that γ∣]0,1] is continuous. To see that γ is continuous at 0,

let U be any convex neighborhood of 0 in X and pick L ∈ N such that k ≥ L implies xlk ∈ U .

Observe that for any k ≥ l, γ ([ 1
k+1 ,

1
k
]) = Imγk = co (xlk+1 , xlk) ⊆ U so that γ (]0, 1

k
]) ⊆ U .

Now since co (Imγ) is not all of X (since dimX > 3) we may pick x ≠ 0 in X such that

379



{rx ∶ r ≥ 0}∩Imγ = ∅ and now extend γ to [−1,1] by defining γ(t) = −tx for t ∈ [−1,0], where

this extension is necessarily injective and continuous and thus a topological embedding. ∎

Proposition A.5.8 implies that Hausdorff TVSs coherent with C0-arcs are necessarily

sequential. We now prove theorem B.3.3, which together with proposition A.5.8 shows that

in the category of Hausdorff LCTVSs, the class of spaces coherent with their arcs lies in-

between the class of Fréchet-Urysohn spaces and the class of sequential spaces.

Theorem B.3.3. If a Hausdorff LCTVS is Fréchet-Urysohn then it is coherent with its arcs.

Proof. Let S ⊆X be a non-empty subset of the Fréchet-Urysohn Hausdorff LCTVS X such

that for all arcs γ in X, S ∩ Imγ is closed in Imγ. Let x ∈ ClX(S) be a non-isolated point

and pick a sequence (xl)∞l=1 in S converging to x. Let (lk)∞k=1 and γ ∶ ([0,1],0) → (X,x) be

as in lemma B.3.1 and note that since each γ ( 1
k
) belongs to S ∩ Imγ, x = γ(0) belongs to

ClImγ(S ∩ Imγ). But since S ∩ Imγ is by assumption a closed subset of Imγ, it follows that

x ∈ S ∩ Imγ ⊆ S. ∎

Corollary B.3.4. Every metrizable LCTVS is coherent with its C0-arcs.
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Appendix C

Differential Geometry

Definition C.0.1. Following [2], a manifold M is said to be regular if for any compact

K ⊆M and any open neighborhood U ⊆M of K there exists a neighborhood S of K with S

a compact submanifold-with-boundary of U .

Definition C.0.2. Call a chart (U,ϕ) on a d-dimensional manifold a coordinate box if Imϕ is

a product of d open intervals. i.e. Imϕ = ]a1, b1[×⋯× ]ad, bd[ for some a1, . . . , ad, b1, . . . , bd ∈ R

with ai < bi for all i = 1, . . . , d.

Remark C.0.3. Canonical identification of manifolds as commutative locally R-ringed

spaces: Let M be a set and recall that for any d-dimensional smooth atlas A on M in-

duces a unique topology on M (locally dependent only on d) and a sheaf, C∞
(M,A), of smooth

R-valued functions on the open subsets of (M,A). It is easiest to see that distinct (maximal)

smooth atlases on M induced distinct sheaves of smooth (R-valued) functions if, for each

smooth atlas A on M , we denote the set of all coordinates of all charts in A by Pr R ○A.

Suppose that A and Â are any maximal smooth atlases on M and note that for the

induced sheaves to be equal, these atlases must induce the same topology, which we will

henceforth assume. By considering the coordinates of smooth charts, it is easy to see that

A = Â ⇐⇒ Pr R ○A = Pr R ○ Â ⇐⇒ C∞
(M,A) = C∞

(M,Â)
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which allows us to identify each smooth manifold (M,A) with a unique commutative locally

R-ringed space (M,C∞
(M,A)). It is now straightforward to see that for any map F ∶M → N

between two manifolds (M,A) and (N,B), F ∶ (M,A)→ (N,B) is smooth if and only if

(F,F ∗) ∶(M,C∞
(M,A))→(N,C∞

(N,B)) is a morphism of commutative locally R-ringed spaces,

where as usual F ∗(g) =
def
g ○ F ∣

F−1(Dom g). We have thus defined a functor from the category

Man of smooth manifolds into the category of commutative locally R-ringed spaces that is

injective on objects and arrows. ∎

Tubular Neighborhood Constructions

Definition C.1.1 ([25]). Let M be a manifold, S be a smoothly embedded submanifold

with boundary in M , let T be an open neighborhood of S in M . We will say that T is a

tubular neighborhood of S in M with projection π ∶ T → S or that π ∶ T → S is a tubular

neighborhood (of S) in M if there exists a smooth locally trivial vector bundle structure

making π ∶ T → S into a smooth locally trivial vector bundle such that the natural inclusion

In ∶ S → T is the 0-section of π.

Remarks C.1.2.

• If S is a closed smoothly embedded submanifold with boundary in M then S has a

tubular neighborhood in M ([25, Thm. 2.2]).

• Recall that any smooth fiber bundle over a contractible manifold is a globally trivial

bundle so that, in particular, if π ∶ T → S is a tubular neighborhood of a contractible

submanifold S in M , then π ∶ T → S has a global trivialization τ ∶ T → S ×RdimM−dimS.

• S is a smoothly embedded submanifold without boundary in M then since S is locally

closed inM , we may find an open neighborhoodW of S inM such thatW ∩S is closed

in W . Since any tubular neighborhood of S in W is also a tubular neighborhood of
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S in M , it follows from [25, Thm. 2.2] that tubular neighborhoods exist around all

smoothly embedded submanifolds of a manifold.

Lemma C.1.3. Let µ ∶ M → Rd be a smooth submersion from an e-dimensional manifold

M such that Imµ contains S =
def

Ra × {0}d−a for some a ∈ ZN and let σ ∶ S →M be a smooth

map such that µ ○σ = IdS. There exists a smooth chart (T,φ) on M with T containing Imσ

and φ ∶ T → µ(T ) ×Re−d surjective such that

(1) µ ○ φ−1 ∶ µ(T ) ×Re−d → µ(T ) is the canonical projection,

(2) µ(T ) is an open tubular neighborhood of S that is diffeomorphic to Rd, and

(3) φ ○ σ ∶ S → µ(T ) ×Re−d is the canonical inclusion p↦ (p,{0}e−d),

In particular, this implies that the map µ(T ) ≅ µ(T ) × {0}e−d φ−1Ð→ T is a smooth section of

µ∣
T
∶ T → µ(T ) extending σ.

Proof. Let b = e−d, c = d−a, and µ = (µa, µc) ∶M → Ra×Rc so that µa∣Imσ
is a smooth chart on

Imσ. Observe that Imσ is a closed submanifold of µ−1(S), which is itself a closed submanifold

ofM . Let ρ ∶ R → Imσ be an open tubular neighborhood of Imσ in µ−1(S) say with a smooth

global trivialization ν = (ρ, ν2) ∶ R → Imσ ×Rb. Since R is an embedded submanifold of M ,

there exists an open tubular neighborhood ξ ∶W → R of R inM where since R is contractible

there also exists a smooth global trivialization Θ = (ξ,Θ2) ∶W → R×Rc. Clearly, ρ○ ξ ∶W →

Imσ is a smooth vector bundle with (ν ○ ξ,Θ2) = (ρ ○ ξ, ν2 ○ ξ,Θ2) ∶W → Imσ ×Rb ×Rc as a

global trivialization. Let ϕ =
def

(µa ○ ρ ○ ξ, ν2 ○ ξ,Θ2) ∶W → Rd ×Rb ×Rc and observe that for

all (s, x, y) ∈ Ra ×Rb ×Rc,

(1) ϕ ○ σ (x,{0}c) = (x,{0}b ,{0}c),

(2) ϕ is a slice chart for R both and Imσ where ϕ∣
R
= (µa ○ ρ, ν2,{0}c) and ϕ∣

Imσ
=

(µa,{0}b ,{0}c) have images ϕ(R) = Ra ×Rb × {0}c and ϕ (Imσ) = Ra × {0}b × {0}c,
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(3) both ϕ○ρ○ϕ∣−1

R
∶ Ra×Rb×{0}c → Re and ϕ∣

R
○ξ○ϕ−1 ∶ Re → Ra×Rb×{0}c are the canonical

projections (s, x,{0}c)↦ (s,{0}b ,{0}c) and (s, x, y)↦ (s, x,{0}c), respectively,

(4) ϕ∣
Imσ

○Θ ○ ϕ−1(s, x, y) = (s, x, y) and ϕ∣
Imσ

○ ν ○ ϕ∣−1

R
(s, x,{0}c) = (s, x,{0}c).

By replacing M with Imϕ, µ with µ ○ ϕ−1, and ρ, ξ, ν, Θ, and σ with their coordinate

representations, it is clear that suffices to prove his lemma under the additional assumption

that M = Re, Imσ = Ra × {0}b+c with σ = IdS ×{0}b, R = Ra × Rb × {0}c, all three of

ξ ∶ Re → Ra+b × {0}c, ρ ∶ Ra+b × {0}c → Ra × {0}b+c, and µa∣R ∶ R = Ra are the canonical

projections, and Θ and ν are the identity maps on their domains.

Let I = Ra×{0}b×Rc, which is a smooth manifold containing Imσ and observe that for all

m = (s,{0}b+c) ∈ Imσ = Ra×{0}b+c, the map µ∣
I
∶ I → Ra×Rc has full rank atm so there exists

some m ∈ Um ∈ Open (I) such that µWm ∶Wm → Rd is an open embedding, which also implies

that the map Ψ ∶ Re toRe that is defined by Ψ(s, x, y) = (πa(s, x, y), πb(s, x, y), x) (note that

the position of x has moved) has full rank atm so we may pick somem ∈ Um ∈ Open (Re) with

Um∩I ⊆Wm such that ΨWm ∶Wm → Re is an open embedding. Note that U =
def

∪
m∈Imσ

Um is an

open subset Re and that Ψ∣
U
∶ U → Re is a smooth local diffeomorphism whose restriction to

the closed subset Imσ is a the natural inclusion (and thus a topological embedding). Since

Ψ ∶ U → Q is a local homeomorphism between paracompact spaces whose restriction to the

closed set Imσ is an embedding, by [25, Lemma 7.2] there exists some open neighborhood

O of Imσ in U on which Ψ’s restriction becomes an open topological embedding. Observe

that ψ =
def
µ ○ Ψ∣−1

O
∶ Ψ(O) → Rd is the canonical projection, that µI∩O ∶ I ∩O → µ(I ∩O) is

a diffeomorphism onto an open neighborhood of S, and that every point of Ra × {0}b+c is a

fixed point of Ψ so that the map µ(O) → Ψ(W ) defined by (s, y) ↦ (s, y,{0}b) is a smooth

extension of Ψ−1 ○ σ.

Pick a tubular neighborhood T0 of S contained in µ(I∩O) and replace O with O∩µ−1(T0),

which allows us to assume that µ(O) is diffeomorphic to Re where since µI∩O is an open

embedding, the same is true of I∩O. Pick an open tubular neighborhood β ∶ V → µ(O)×{0}b

of the contractible manifold µ(O) × {0}b+c in Ψ−1(O) and observe that µ(O) = µ(Ψ(V )) so
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that by replacing O with Ψ(V ) we may now assume that O is also diffeomorphic to Re. Let

ω ∶ V → µ(O)×Rb be a global trivialization of β, where we identified µ(O)×{0}b with µ(O),

and observe that we are now done since by letting τ =
def

Ψ○ω−1 ∶ µ(O)××Rb → ψ(V ), we have

that µ ○ τ ∶ µ(O) ×Rb → µ(O) is the canonical projection, the canonical injection of S into

µ(O)×Rb is a (µ ○ τ)-lift of σ, and the canonical injection of µ(O)→ µ(O)×Rb of a smooth

extension of the above lift of σ. ∎

Corollary C.1.4. Let M (resp. N) have dimension e (resp. d), let F ∶M → N be a smooth

submersion, and let σ ∶ Ra → M be a smooth map such that F ○ σ ∶ Ra → N is a smooth

embedding. There exist a smooth charts (T,ϕ) onM and (F (T ), ψ) on N with T containing

Imσ and both ϕ ∶ T → Re and ψ ∶ F (T )→ Rd surjective such that

(1) ψ ○ F ○ ϕ−1 ∶ Re → Rd is the canonical projection, and

(2) ϕ ○ σ ∶ Ra → Re is the canonical inclusion p↦ (p,{0}e−a),

Proof. Since Im(F ○ σ) is contractible smooth submanifold of N , any open tubular neigh-

borhood V of it has a global trivialization, say χ ∶ V → Im(F ○ σ)×Rd−a so that by replacing

N , M , and F with Imχ, F −1 (Imχ), and χ ○ F , respectively, we may assume without loss

of generality that N = Im(F ○ σ)×Rd−a. Since the map h ∶ Im(F ○ σ)×Rd−a → Ra ×Rd−a de-

fined by (s, x)↦ ((F ○ σ)−1(s), x) is a diffeomorphism, we may further assume that N = Rd

and that F (σ(s)) = (s,{0}d−a) for all s ∈ Ra. Let (T,φ) be as in lemma C.1.3 where by

assumption, Imσ ⊆ T , V =
def
F (T ) is an open tubular neighborhoodof S =

def
Im(F ○ σ), F ○φ−1

is the canonical projection, and φ ○ σ is the canonical inclusion p↦ (p,{0}e−d). Since V is a

tubular neighborhood of the contractible submanifold S, it has a smooth global trivialization

τ ∶ V → S ×Rd−a. Identifying S = Ra × {0}d−a with Ra, τ becomes a diffeomorphism ψ ∶ V →

Ra ×Rd−a as does the map ϕ ∶ T → Re defined by ϕ ○ φ−1 (s, x, y) ↦ (ψ(F (φ−1(s, x, y))), y).

Since F ○ φ−1 is the canonical projection, the same is clearly true of ψ ○ F ○ ϕ−1. That ϕ ○ σ

is the canonical inclusion is immediately seen. ∎
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Proposition C.1.5. Suppose M and N are smooth manifolds of dimensions c ≥ b, respec-

tively, and that the following diagram of smooth maps commutes where µ and F are smooth

surjective submersions and σ ∶ Ra → M a smooth section of π ○ µ ∶ M → Ra such that

η =
def
F ○ σ ∶ Ra → N is a smooth embedding.

M

Ra
N

F
µσ

There exist smooth surjective charts ϕ ∶ U → Rc and ψ ∶ V → Rb on M and N , respectively,

such that

(1) Imσ ⊆ U and (ϕ ○ σ) (t1, . . . , ta) = (t1, . . . , ta,0, . . . ,0) for all (t1, . . . , ta) ∈ Ra.

(2) µ∣
U
∶ U → Ra and F ∣

U
∶ U → V are both surjective.

(3) The coordinate representations of µ and F are the canonical projection.

Proof. Let η = F ○ σ ∶ Ra → N and σ = µ ○ σ ∶ Ra →M . Observe that to prove this theorem,

it suffices to find non-surjective chart (U,ϕ) and (V,ψ) such that upon replace “surjective

maps” with “well-defined maps” in (2), all of (1) - (1) are satisfied, for after appropriately

restricting these chart’s domains so that they become open disk bundles and so that all

of µ and F restrictions become surjective, we may then compose these charts with bundle

morphisms to obtain surjective charts.

Thus, by lemma C.1.4, we may assume without loss of generality thatN = Rb, η (t1, . . . , t) =

(t1, . . . , t,{0}b−a), and that there is a smooth section ξ ∶ N → M of F ∶ M → N such that

σ (t1, . . . , ta) = ξ (t1, . . . , ta,0, . . . ,0) for all (t1, . . . , ta) ∈ Ra. Observe that π ○ ξ ∶ N → Ra has

full rank at every point of Imσ so there exists some open neighborhood O of Im η = Ra×{0}b−a

in N such that π ○ ξ∣
O
∶ O → Ra has full rank everywhere on O. Since π ○ ξ∣

O
∶ O → Ra is a

smooth submersion, we may apply lemma C.1.3 and obtain a smooth chart ψ ∶ V → Rb on O

such that π ○ ξ ○ψ−1 ∶ Ra ×Rb−a → Ra is the canonical projection and ψ−1 ○ η ∶ Ra → Rb is the

canonical section. By replacing N with Imψ and making the necessary changes discussed
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above, we may assume without loss of generality that O = N = Rb and that π ○ ξ ∶ Rb → Ra

is the canonical projection with η ∶ Ra → Rb as its canonical zero section. Let D be the inte-

grable subbundle of the TM defined by Dm = ker TmF for all m ∈M and observe that for

all x ∈ Ra, ξ ({x} ×Rb−a) is a smooth codimension c− b submanifold of the fiber π−1 (x). The

construction of (U,ϕ) can now be accomplished by using the D∣
U
’s foliation to construct an

open tubular neighborhood π ∶ U → Im ξ in M of the closed smooth submanifold Im ξ such

that π’s fibers are the integral manifolds of D, so that contractability of Im ξ ≅ Rb guarantees

a smooth global trivialization τ ∶ U → Im ξ ×Rc−b of π from which the ϕ’s definition follows.

We now give the details.

For so that for all (x, y) ∈ Ra × Rb−a, F ∣
π−1(x) ∶ π

−1 (x) → {x} × Rb−a being a smooth

submersion at ξ (x, y) makes it clear that the integral manifold of D at ξ (x, y) is locally

contained in the fiber µ−1 (x). So let U be an open neighborhood of Im ξ in M such that

F −1 (x, y) ∩ U is contained in µ−1 (x) for each (x, y) ∈ Ra × Rb−a. Give Ra and N = Rb the

standard Riemannian embedding and by shrinking M if necessary, we give M a Riemannian

metric making ξ ∶ N → M into a Riemannian submanifold and making F ∶ U → Rb into a

Riemannian submersion with geodesically complete fibers (i.e. a geodesic tangent to a fiber

π∣−1

U
(n) stays within this fiber). Let exp denote the exponential map for M , identify Im ξ

with the zero-section of M ’s tangent bundle, and recall [25, thm. 2.2] that there exists an

open neighborhood O ⊆ Dom(exp) of Im ξ such that O ∩T−1
M (m) is a connected open subset

of T−1
M (m) for all m ∈ Im ξ, thereby making O into an open disc bundle, and exp ∣

O
∶ O → U

is an open smooth embedding. Since the subspace Im ξ is contractible and the open disc

bundle exp ∣
O
∶ O → U has a smooth global trivialization τ = (τ1, τ2) ∶ U → Im ξ ×Rc−b so that

our desired smooth chart on M is then clearly the map ϕ ∶= (τ1 ○ F ∣
U
, τ2) ∶ U → Rb×Rc−b. ∎

Corollary C.1.6. Let Q, N , and M be, respectively, a, d, and e dimensional manifolds,

let µ ∶ M → Q and F ∶ M → N be smooth submersions. Suppose that σ ∶ W → M is a

smooth local section of µ ∶M → Q such that F ○σ ∶W → N is a smooth embedding and that

θ ∶W → Ra is a smooth surjective chart. Then there exist smooth charts (U,ϕ) and (V,ψ)
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on M and N , respectively, and a smooth local section ρ ∶ V → U of F ∶ M → N such that

Imρ ⊆ U , µ(U) = W , F (U) = V , both ϕ ∶ U ↦ Re and ψ ∶ V ↦ Rd are surjective, and the

following diagram commutes:

U

W

V

Re

Rd

Ra

Pr

Pr In

In

σ

θ

ρ
ψ

ϕ

F ∣
U

µ∣
U

where In ∶ Ra → Rd is the canonical inclusion (t1, . . . , ta) ↦ (t1, . . . , ta,0, . . . ,0). The prop-

erties expressed by the above commutative diagram can equivalently be described by the

following list of properties:

(1) the coordinate representations of both F and µ are the canonical projections, that is,

for each (t1, . . . , te) ∈ Re, the following diagram commutes:

(t1, . . . , ta, . . . , td, . . . te) (t1, . . . , ta, . . . , td)

(t1, . . . , ta)

ψ ○ F ○ ϕ−1

θ ○ µ ○ ϕ−1

(2) ρ’s (resp. σ’s) coordinate representation ϕ○ρ○ψ−1 ∶ Rd → Re (resp. ϕ○σ○θ−1 ∶ Ra → Re)

is the canonical inclusion. e.g. (t1, . . . , td)↦ (t1, . . . , td,0, . . . ,0)

In particular, for all m,p ∈ U and all (x, y) ∈ Ra ×Rd−a

(a) if we write µ̂ = θ ○µ∣
U
○ϕ−1 and F̂ = ψ ○F ∣

U
○ϕ−1 we have F̂ (µ̂−1 (x)) = {x}×Re−a and

F̂−1 (x, y) = {(x, y)} ×Re−d,

(b) F (m) = F (u) ⇐⇒ ρ (F (m)) = ρ (F (p)), in which case µ(m) = µ (ρ (F (m))) =

µ (ρ (F (p))) = µ(p),
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(c) µ(m) = µ(p) ⇐⇒ σ(µ(m)) = σ(µ(p)).

Proof. This corollary’s statement is just detailing the properties of the charts that result

from applying proposition C.1.5 with O =
def
µ−1(W ) ∩ F −1 (N), F (O), θ ○ µ∣

O
, σ ○ θ−1, and

F ∣
O
, substituting for M , N , µ, σ, and F , respectively in a format that will be more helpful

for proving the inverse function theorem for promanifolds (theorem 13.2.3) and proposition

C.2.1. ∎

Lemma C.1.7. Let γ ∶ Ra →M and F ∶M → N be smooth and suppose that F ○γ ∶ Ra → N

is a smooth embedding. Suppose that O0 is an open neighborhood of Imγ in M on which F

has constant rank r. Then there exists some connected neighborhood O ∈ Open (O0) of Imγ

such that F (O) is a smooth embedded submanifold of N and F ∣
O
∶ O → F (O) is a smooth

submersion.

Proof. Let S = Imσ. Pick countable locally finite connected open covers V1, V2, . . . of F (S)

in N and U1, U2, . . . of S in O0 such that for all l ∈ N, there exists a smooth slice charts

ψl ∶ Vl → Rd of F (S) in N and ϕi ∶ Ui → Re of S in M such that F (Ul) ⊆ Vl and ψl ○

F ○ ϕ−1
l ∣

Imϕ
∶ Imϕl → Imψl is the canonical map (t1, . . . , tr, . . . , te) ↦ (t1, . . . , tr,0, . . . ,0) and

ψl (F (Ul)) = ]−s1
l , s

1
l [ × ⋯ × ]−srl , srl [ × {0}d−r. Furthermore, since F ○ σ ∶ Ra → N is a

smooth embedding, if necessary we may, for each l ∈ N, decrease sa+1
l , . . . , srl so that if k ∈ N

is such that F (Ul) ∩ F (Uk) ≠ ∅ then σ−1(Ul) ∩ σ−1(Uk) ≠ ∅. For all s ∈ S, let Us denote the

intersection of all Ul’s such that s ∈ Ul and let Rs = F (Us), which is clearly an r-dimensional

smooth submanifold of N . Using the facts that for all s ∈ S and l, k ∈ N, if Us ⊆ Ul then

Rs is an open subset of the r-dimensional manifold F (Ul) and that if F (Ul) ∩ F (Uk) ≠ ∅

then σ−1(Ul) ∩ σ−1(Uk) ≠ ∅, it is readily seen that Rs ∩Rt is an r-dimensional manifold for

all s, t ∈ S. It follows that R ∶= ∪
s∈S
Rs is the desired smooth r-dimensional submanifold of N

and that U ∶= ∪
s∈S
Us is the desired open neighborhood of S in M such that F ∣

U
∶ U → R is a

smooth submersion. ∎

From lemma C.1.7 and proposition C.1.5, it is easy to see how one may prove the following
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generalization of proposition C.1.5, where we weaken the requirement that F ∶M → N be a

submersion to instead require that F have constant rank r on some neighborhood of Imσ.

Proposition C.1.8. Suppose M and N are smooth manifolds of dimensions c ≥ b, respec-

tively, and that the following diagram of smooth maps commutes, where µ are smooth surjec-

tive submersions, σ ∶ Ra →M a smooth section of π○µ ∶M → Ra such that η =
def
F ○σ ∶ Ra → N

is a smooth embedding, and F ∶ M → N is a smooth map with constant rank r on some

neighborhood O0 of Imσ.

M

Ra
N

F
µσ

There exist smooth surjective charts ϕ ∶ U → Rc and ψ ∶ V → Rb on M and N , respectively,

such that F (U) ⊆ V and

(1) Imσ ⊆ U and (ϕ ○ σ) (t1, . . . , ta) = (t1, . . . , ta,0, . . . ,0) for all (t1, . . . , ta) ∈ Ra.

(2) µ∣
U
∶ U → Ra is a smooth surjective submersion, µ ○ ϕ−1 is the canonical projection,

and Imϕ = Rc.

(3) F has rank r on U , and ψ ○F ○ϕ−1 ∶ Rc → Rb is the canonical map (t1, . . . , tr, . . . , tc)↦

(t1, . . . , tr,0, . . . ,0).

Corollary C.1.9. Let Q, N , and M be, respectively, a, d, and e dimensional manifolds,

let µ ∶ M → Q and F ∶ M → N be smooth maps, and let O0 be a neighborhood of Imσ on

which F has constant rank r ≥ b. Suppose that µ ∶ M → Q is a smooth submersion with a

smooth local section σ ∶W → O0 such that F ○ σ ∶W → Q is a smooth embedding and that

θ ∶W → Ra is a smooth surjective chart. Then there exist smooth charts (U,ϕ) and (V,ψ)

on M and N , respectively, making R =
def
F (U) into a smooth r-dimensional submanifold of

V for which there is a smooth local section ρ ∶ R → U of F ∣
U
∶ U → R such that

(1) Imρ ⊆ U ⊆ O0, µ(U) =W , and F (U) ⊆ V ,
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(2) both ϕ ∶ U ↦ Re and ψ ∶ V ↦ Rd are surjective, and ψ ○ F ○ ϕ−1 is the canonical map

(t1, . . . , tr, . . . te)↦ (t1, . . . , tr,0, . . . ,0)

(3) ρ’s coordinate representation is the canonical inclusion (t1, . . . , tr)↦ (t1, . . . , tr,0, . . . ,0),

(4) if we use the canonical inclusion to identify Ra with the submanifold Ra×{0}r−a of Rr,

then ϕ’s first r coordinates are (µ ○ ρ)−1 ○ µ∣
U

(5) if we use (µ ○Σ)−1 ∶ Im (µ ○ ρ) → Rb as a smooth chart on Q, then µ’s coordinate

representation (µ ○ ρ)−1 ○ µ ○ ϕ−1 ∶ Re ↦ Rr is the canonical projection.

(6) ψ ○ F ○ ϕ−1 is the canonical projection, or equivalently, ϕ≤d = ψ ○ F ∣
U
,

This implies that for each (t1, . . . , te) ∈ Re, the following diagram commutes:

(t1, . . . , tb, . . . , tr, . . . pe) (t1, . . . , tb, . . . , tr,0, . . . ,0)

(t1, . . . , tb)

ψ ○ F ○ ϕ−1

(µ ○ ρ)−1 ○ µ ○ ϕ−1

In the particular case that F ∶ M → N is a smooth submersion and R = V the following

diagram commute:

U

W

V

Re

Rd

Ra

Pr

Pr In

In

σ

θ

ρ
ψ

ϕ

F ∣
U

µ∣
U

where In ∶ Ra → Rr is the canonical inclusion (t1, . . . , ta)↦ (t1, . . . , ta,0, . . . ,0).

Canonical Form

In a typical application of the following proposition C.2.1, we will have the maps shown in

the left diagram together with some chart ρ on Q and desire charts on M and N such that,
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without changing ρ, when we pass into coordinates then the left diagram becomes the right

diagram.

M N

Q

F

µ

(p1, . . . , pm) (p1, . . . , pq, . . . , pr,0, . . . ,0)

(p1, . . . , pq)

Proposition C.2.1. Let µ ∶ (M,m0) → (Q, q0) be a smooth submersion and let F ∶

(M,m0) → (N,n0) be a smooth map with constant rank r on some neighborhood of m0,

where M , N , and Q are manifolds of dimensions dM , dN , and d, respectively. Let (W0, ρ)

be a smooth chart on Q centered at q0 and let X ≤ Tm0 M be a vector subspace such that

Tm0 µ∣
X
∶X→Tq0 Q is bijective and Tm0 F ∣

X
∶X→Tn0 N is injective. There exist smooth

charts (U,ϕ) and (V,ψ) centered at m0 and n0, respectively, with µ(U) ⊆ W0, F (U) ⊆ V ,

and such that

ψ ○ F ∣
U
= (ρ ○ µ∣

U
, ψd+1 ○ F ∣

U
, . . . , ψr ○ F ∣

U
,0, . . . ,0)

and

ϕ = (Pr ≤r ○ ψ ○ F ∣
U
, ϕr, . . . , ϕdM )

= (ρ ○ µ∣
U
, ψd+1 ○ F ∣

U
, . . . , ψr ○ F ∣

U
, ϕr, . . . , ϕdM )

i.e µ and F have, respectively, the coordinate representations

(p1, . . . , pdM )↦ (p1, . . . , pd) and (p1, . . . , pdM )↦ (p1, . . . , pd, . . . , pr,0, . . . ,0)

and where in addition both (U,ϕ) and (V,ψ) can be chosen to be coordinate boxes with the

property whenever a point (p1, . . . , pr, . . . , pdimN) belongs to V then the point (p1, . . . , pd, . . . , pr,

0, . . . ,0) is the preimage under F of some point in U . Furthermore, if withWσ ∈ Open (Q) and

σ ∶Wσ→M is some smooth local section of µ through m0 such that Im Tq0 σ =X then we can

also arrange it so µ(U) ⊆Wσ, σ(µ(U)) ⊆ U , and so that in coordinates, F ○σ∣
π(U) ∶ π(U)→ V
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is the canonical zero section of (V,ψ).

Proof. Our assumptions allow us to construct a smooth local section σ with the above

stated properties if one was not given. The result now follows from corollary C.1.9 where,

if necessary, we may assume without loss of generality that F is a submersion at m0 by

applying lemma C.1.7. ∎

Lifts of Curves and Monotonicity

The following lemma’s primary purpose is to prove proposition C.3.3.

Lemma C.3.1. Let c ∈ [0,1], k ∈ Z≥0 ∪ {∞}, µ ∶M → N be a smooth surjective submersion

between smooth manifolds, and let η ∶ [0,1] → N , γL ∶ [0, c]→M , and γR ∶ [c,1]→M all be

Ck-maps with γL (resp. γR) a π-lift of η∣[0,c] (resp. η∣[c,1]). Let n
c = η(c), mL = γL(c), mR =

γR(c), and suppose mL ≠ mR and that ξ ∶ ([0,1],0,1)→ (µ−1(nc),mL,mR) is a smooth arc.

Then for any ε0 > 0 there exists 0 < ε < ε0 and a Ck-path γ ∶ ([0,1],0,1)→ (M,γL(0), γR(1))

that is a µ-lift of η such that γ = γL on [0, c− ε] and γ = γR on [c+ ε,1] (where [s, r] =
def
∅ for

r < s).

Proof. Assume without loss of generality that ε0 < 1
4 and let (V,ψ) be a smooth chart on N

centered at nc. For each t ∈ [0,1], pick a smooth chart (Ut, ϕt) on M centered at ξ(t) such

that µ(Ut) ⊆ V and µ∣
Ut
’s representation in the charts (Ut, ϕt) and (V,ψ) is the canonical

projection where by shrinking Ut we may also assume that Imϕt is a cube and (since ξ is an

arc) that ξ−1(Ut) is a connected subset of [0,1].

Pick R ∈ Z≥0 and 0 ≤ p0 < ⋯ < pR ≤ 1 such that Up0 , . . . , UpR is a cover Im ξ. If any Upj

contains Im ξ then the result is immediate so assume otherwise, which forces R ≥ 1. Since

R ∈ N, {ξ−1(Up0), . . . , ξ−1(UpR)} covers [0,1], and each ξ−1(Upj) is a connected sub-interval of

[0,1] we can pick L ∈ N and pk1 , . . . , pkL ∈ {p0, . . . , pR} so that Upk1 , . . . , UpkL forms a simple

chain from 0 to 1. For all i = 0, . . . , L, let us now denote Upki (resp. ϕpki ) by Ui (resp. ϕi) so
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that U0, . . . , UL forms a simple chain from 0 to 1 (recall this means that 0 ∈ U0, 1 ∈ UL, and

Ui ∩Uj ≠ ∅ ⇐⇒ ∣i − j∣ ≤ 1) and let Oi ∈ Open (RdimN) and Wi ∈ Open (RdimM−dimN) denote

the sets such that Imϕi = Oi×Wi. Pick any 0 < ε < 1
4 min{ε0,1−ε0, ∣c − ε0∣} such that after we

let a =
def

max{0, c − ε0} and b =
def

min{1, c + ε0}, we’ll have η([a, b]) ⊆
L∩
i=0
µ(Ui), γL([a, c]) ⊆ U0,

and γR([c, b]) ⊆ UL.

Write ϕ0 ○ γL = (γL0 , γL1 ) with γL1 valued in W0 and observe that we may assume without

losing generality that all k derivatives of γL1 at a are 0: let a ∈ J ⊆ DomγL1 be a closed interval

and let β ∶ (J, a)→ (R,1) be a smooth function all of whose derivatives (of order ≥ 1) vanish

at a such that Im(β ⋅ γL1 ) ⊆Wi and it is 1 outside of a neighborhood of a, chosen sufficiently

small so that upon replacing γL∣
J
by ϕ−1

0 ○(γL0 , β ⋅ γL1 ), the result is a Ck map. Similarly, if we

write ϕL ○ γR = (γR0 , γR1 ) with γR1 valued in WL then we may assume that all k derivatives of

γR1 at b are 0. Let s0 = 0, sL+1 = 1, and pick 0 < s1 < ⋅ ⋅ ⋅ < sL < 1 such that for all i = 1, . . . , L,

ξ(si) ∈ Ui−1 ∩ Ui. Let σ ∶ [a, b]→ [0,1] be a smooth increasing homeomorphism such that

σ(p)(ri) = 0 for all p ∈ N and all i = 0, . . . , L + 1, where ri =
def
σ−1(si) (where note that r0 = a

and rL+1 = b). Observe that the connectivity of ξ−1 (Ui) implies that ξ([si, si+1]) ⊆ Ui for all

i = 0, . . . , L so that we may write ϕi ○ ξ∣[si,si+1] = (0, ξ̂i) for some smooth ξ̂i ∶ [si, si+1]→Wi.

For each i = 0, . . . , L, let γi ∶ [ri, ri+1]→Ui be defined by ϕi○γi = (ψ ○ η∣[ri,ri+1], ξ̂i ○ σ∣[ri,ri+1]).

Observe that γ0(a) = γL(a), γL+1(b) = γR(b), and for all i = 0, . . . , L, γi(ri+1) = γi+1(ri) so

that we may define the continuous path γ ∶ [0,1]→M by γ =
def
γL∣[0,a]∪γ0∪⋯∪γL∪γR∣[b,1]. For

each i = 0, . . . , L, write ϕi○γ = (γ<i , γ>i ) with γ>i valued inWi and observe that γ<i = ψ○η∣[ri,ri+1]
and that all k of γ>i ’s derivatives exist and are equal to 0 at both ri and ri+1. Thus γ is the

desired a Ck µ-lift of η. ∎

Corollary C.3.2. Let µ ∶ M → N be a smooth submersion between smooth manifolds,

k ∈ Z≥0 ∪ {∞}, η ∶ [0,1] → N be a Ck path, and mi ∈ µ−1(η(i)) (i = 0,1). Then there

exists a Ck µ-lift γ ∶ ([0,1],0,1)→ (M,m0,m1) of η ⇐⇒ there exists some c ∈ [0,1] and

Ck maps γL ∶ ([0, c],0)→ (M,m0) and γR ∶ ([c,1],1)→ (M,m1) with γL (resp. γR) a π-lift of

η∣[0,c] (resp. η∣[c,1]) such that γL(c) and γR(c) belong to the same connected component of
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µ−1(η(c)).

The following result, for which the author could not find a reference (but that is likely

already known due to the simplicity of its statement), is a strengthening of the well-known

fact that monotone (def. A.0.6) smooth surjective submersions are 1-fibrations and it can

be easily proved by inductively applying lemma C.3.1.

Proposition C.3.3. Let µ ∶M → N be a smooth surjective submersion between manifolds

and let k ∈ Z≥0 ∪ {∞}. Then µ is monotone ⇐⇒ µ has the extension lifting property

from {0,1} to [0,1] (def. 1.1.13) for Ck-paths (i.e. for any Ck-path η ∶ [0,1] → N and any

mi ∈ µ−1(η(i)) (i = 0,1) there exists a Ck µ-lift γ ∶ ([0,1],0,1)→ (M,m0,m1) of η).

Corollary C.3.4. Let µ ∶ M → N be a monotone smooth surjective submersion between

manifolds, k ∈ Z≥0 ∪ {∞}, η ∶]a, b[→N a Ck-curve, (tl)∞l=1 a strictly decreasing sequence in

]a, b[ converging to a, and for all l ∈ N let ml ∈ µ−1(η(tl)). Then there exists a Ck µ-lift

γ ∶]a, b[→M of η such that γ(tl) =ml for all l ∈ N.

Proof. Inductively apply proposition C.3.3. ∎

Partial Replacement of Lifts

Definition C.4.1. Let M and N be manifolds, C ⊆M be any subset, and let F ∶C→N be

a map. Recall that F is said to be smooth at c ∈ C if there exists a smooth local extension

of F around c, that is, a smooth map Fc ∶Uc→N such that Uc is a neighborhood of c in M

and Fc = F on Uc ∩C.

The following theorem is almost certainly already known and is stated here for later

reference. It can be proven by first considering the case where M is compact and then using

the fact that µ is a smooth submersion to construct the smooth µ-lift in the obvious way.

The general case follows by using an exhaustion of M by relatively compact neighborhoods

and induction.
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Theorem C.4.2. Let M , N , and Q be smooth manifolds, let µ ∶N →Q be a smooth sub-

mersion, and let f ∶M →Q be a smooth map. Let D ⊆ M and suppose that F ∶ M → N

is a continuous µ-lift of f such that F ∣
D
∶ D → N is smooth. Then f has a smooth µ-lift

G ∶M → N of f extending F ∣
D
.

Corollary C.4.3. Let M , N , and Q be smooth manifolds and let µ ∶N →Q be a smooth

submersion. If a smooth map f ∶M →Q has a continuous µ-lift then it has a smooth µ-lift.

Miscellaneous Lemmata

Lemma C.5.1. LetM , N , and Q be smooth manifolds and let F , f , and µ be smooth maps

making the following diagram commute:

M

N

Q

F

f

µ

where in addition µ is a smooth submersion. If f is a smooth embedding then

(1) F ∶M → N is a smooth embedding,

(2) µ∣
ImF

∶ ImF →Q is a smooth embedding onto ImF ,

(3) if f is also proper then so are F ∶M → N , µ∣
ImF

∶ ImF →Q, and µ∣
ImF

∶ ImF → Im f .

Proof. Let S = ImF , R = Im f , and e = µ∣
S
∶S→Q. If F (m) = F (m̂) then f(m) = µ(F (m)) =

µ(F (m̂)) = f(m̂) so that m = m̂. Similarly e is injective. If U ∈ Open (M) then F (U) =

S ∩ µ−1(f(U)) so the continuity of µ∣
S
implies that F ∶M →S is an open map and thus a

homeomorphism. If V ∈ Open (N) then e(V ) = µ(S ∩ V ), which equals f(F −1(S ∩ V )) so

that e(V ) is open in Im e = R and thus e ∶S→R is a homeomorphism. Since µ ○ F = f we

have for all m ∈ M that Ts µ ○ TmF = Tm f , where s = F (m), so that the injectivity of

Tm f implies that TmF is injective and thus S = ImF is an embedded submanifold of N .
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Since Im(TmF ) ⊆ TF (m) S and TF (m) µ ○TmF = Tm f it is clear that Ts ∶Ts S→Tf(m)R has

full rank and thus e ∶S→R is a diffeomorphism. Suppose that f is a proper map so that

in particular, R = Im f is closed in Q. Let K ⊆ N be compact so that µ(K), and hence

µ(K)∩R, is compact. So F −1(K) = f−1(µ(K) ∩R) is compact and thus F is a proper map,

which implies that ImF = S is closed in N . That e = µ∣
S
∶S→Q and µ∣

S
∶S→Q are proper

maps is now apparent. ∎

The following lemma is included for completeness.

Lemma C.5.2. Let d ≤ e be non-negative integers and let M and N be the closed unit

balls centered at the origin in Rd and Re, respectively and let Pr ∶N →M be the canonical

projection of the first d coordinates of N . Suppose that P is a manifold of dimension

d = dimM and that both F ∶N →P and G ∶P →M are smooth surjective submersion. Then

G ∶P →M is a diffeomorphism and F ∶N →P maps the interior of N onto the interior of P .

Proof. Since N is compact and F ∶N →P is surjective, P is compact. By Ehresmann’s

fibration theorem it follows that both Pr ∶N →M and G ∶P →M are locally trivial fibre

bundles and sinceM is contractible they are globally trivial. Let E = G−1(0) andD = Pr−1(0)

be the typical fibers of G and Pr over the origin, where D is diffeomorphic to the closed unit

ball centered at the origin in Rd−e. By using global trivializations we may, respectively,

replace N and P with N ≅M ×D and P ≅M ×E to get the commutative diagram

N ≅M ×D M ×E ≅ P

M

F

Pr
G

where if F = (F1, F2) then H, Pr, and F1 ∶M ×D→M are the canonical projections onto the

first coordinate.

Since G ∶M ×E→M is a smooth submersion between manifolds of the same dimension it

is a local diffeomorphism and since it is also proper it is a smooth covering map. This implies

that, for all m ∈ M , the fiber G−1 (m) = {m} × E ≅ E is compact and discrete and hence
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finite. Since D ≅ Pr−1 (m) = F −1(G−1 (m)) = F −1({m} ×E) and since points in E are open

and closed we have that D has as many connected components as E has points, which must

be 1 since D is connected. Thus for all m ∈M , G−1 (m) = {m} ×E is a singleton set which

says exactly that G is injective, from which it follows that G is a diffeomorphism. Since

Pr ∶N →M maps the interior of N onto the interior of M and since interiors of manifolds are

diffeomorphism invariant it follows that F maps the interior of N onto the interior of P . ∎

Lemma C.5.3. Let µ ∶ M → N be a smooth submersion and assume that either dimM =

dimN or otherwise that dimN ≥ 1. If S ⊆ N is a set of measure 0 in N then so is µ−1(S).

Proof. Let R = µ−1 (S) and note that may assume without loss of generality that µ is sur-

jective. Let dM = dimM and let dN = dimN . Let (U l)∞l=1 be a locally finite open cover of R

by relatively compact open sets where for each l ∈ N there exist coordinates containing U l

such that the coordinate representation of µ∣
U l

is the canonical projection from a compact

cube onto a compact cube. Since R = ∪
l∈N

(R ∩U l) to show that R has measure 0 it suffices

to show that each U l ∩R has measure 0 in M . Since being a set of measure 0 in a manifold

is diffeomorphism invariant we may assume without loss of generality that R is contained

in a compact ball in RdM , S is contained in a compact coordinate ball in RdN and that µ

is the canonical projection. If dM = dN then we’re done so assume that dN ≥ 1 and define

c = dM −dN . WritingM = N ×C where C ⊆ Rc we have by definition R = S×C but then since

dimN ≥ 1 we have that R has measure 0 by definition of the product metric on N ×C. ∎

Definition C.5.4 ([27, p. 17]). Let X be a LCTVS, x ∈X, and x● be a sequence in X. Say

that x● converge fast to x if for all k ∈ N, (nk(xn − x))∞n=1 is (von-Neumann) bounded in X.

Remark C.5.5. Observe that if X is metrizable, ∣ ⋅ ∣ ∶X→R is a pseudonorm on X such

that d(x, y) =
def

∣x − y∣ forms a metric that is compatible with X’s topology then the above

condition is equivalent to requiring that for each k ∈ N there exist some L ∈ N such that

n ≥ L Ô⇒ d(xn, x) < 1
nk
. It is straightforward to see that smooth maps send fast converging

sequences to fast convergent sequences so that in particular, whether or not a given sequence
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of points converges fast to some given point is diffeomorphism invariant. Observe that if X●

is a sequence of points inX = Rd converging to x then x● converges fast to x ⇐⇒ x●i converge

fast to xi for each i = 1, . . . , d, where x = (x1, . . . , xd) and each xl = (xl1, . . . , xld). Finally, by a

standard argument involving taking the diagonal of an appropriately constructed sequence

of sequences, it can shown that every convergent sequence in a metrizable TVS has a fast

converging subsequence.

The following example is taken from [27, p. 18] and is repeated here for the sake of making

the additional observations found in remark C.5.7.

Example C.5.6. Let X be a Hausdorff LCTVS, x ∈ X, (xn)∞n=1 be a sequence in X fast

converging to x, and let ϕ ∶R→ [0,1] be a smooth map such that ϕ = 0 on ]−∞,0] and ϕ = 1

on [1,∞[. Then

γ ∶R Ð→ X

t z→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if t ≤ 0

xn+1 + ϕ( t− 1
n+1

1
n
− 1
n+1

)(xn − xn+1) if 1
n+1 ≤ t ≤

1
n

x1 if t ≥ 1

is a smooth map such that γ(0) = x and for all k,n ∈ N, γ(k)( 1
n
) = 0 = γ(k)(0) and γ( 1

n
) = xn.

Remark C.5.7. Suppose that the above construction of [27] we had picked ϕ to be such

that ϕ−1(0) =]−∞,0], ϕ−1(1) = [1,∞[, ϕ′ ≠ 0 on ]0,1[. Then whenever xn ≠ xn+1, γ would be

a topological embedding on [ 1
n+1 ,

1
n
] with non-vanishing derivative on ] 1

n+1 ,
1
n
[. In particular,

if X = Rn (n ≠ 0) and if any coordinate of (xn)∞n=1 were to be strictly monotone then γ∣[0,1]
is a homeomorphism such that γ(0) = x, γ( 1

n
) = xn for all n ∈ N, and for all t ∈ [0,1] the

following are equivalent:

(1) γ′(t) = 0,
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(2) γ(k)(t) = 0 for all k ∈ N,

(3) t = 0,1 or t = 1
n for some n ∈ N.

So if X = R, x● is monotone convergent to x, λ ∶ N→ N is a strictly increasing map such that

xλ(●) = (xλ(n))∞n=1 converges rapidly to x, and if we let J denote the closed interval formed

by x and xλ(1), then we have thus constructed a smooth homeomorphism γ ∶ [0,1]→ J such

that γ( 1
n
) = xλ(n) and the above equivalence holds when x● is replaced by xλ(●).

400


