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Abstract 

  

Wind turbines and groups of wind turbines, or “wind plants”, interact with the complex 

and heterogeneous boundary layer of the atmosphere. We define the boundary layer as the 

portion of the atmosphere directly influenced by the surface, and this layer exhibits variability on 

a range of temporal and spatial scales. While early developments in wind energy could ignore 

some of this variability, recent work demonstrates that improved understanding of atmosphere-

turbine interactions leads to the discovery of new ways to approach turbine technology 

development as well as processes such as performance validation and turbine operations. This 

interaction with the atmosphere occurs at several spatial and temporal scales from continental-

scale to turbine-scale. Understanding atmospheric variability over continental-scales and across 

plants can facilitate reliance on wind energy as a baseload energy source on the electrical grid.  

On turbine scales, understanding the atmosphere’s contribution to the variability in power 

production can improve the accuracy of power production estimates as we continue to implement 

more wind energy onto the grid. Wind speed and directional variability within a plant will affect 

wind turbine wakes within the plants and among neighboring plants, and a deeper knowledge of 

these variations can help mitigate effects of wakes and possibly even allow the manipulation of 

these wakes for increased production. Herein, I present the extent of my PhD work, in which I 

studied outstanding questions at these scales at the intersections of wind energy and atmospheric 

science. 
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 My work consists of four distinct projects. At the coarsest scales, I analyze the separation 

between wind plant sites needed for statistical independence in order to reduce variability for 

grid-integration of wind. Site data from three datasets spanning continents, durations and time 

resolution include 45 years of hourly wind speed data from over 100 sites in Canada, 4 years of 

five-minute wind speed data from 14 sites in the US Pacific Northwest, and one year of five-

minute wind power generation data from 29 wind farms in southeastern Australia. I find 

similarities between these datasets in which correlations that fall to zero with increasing station 

separation distance, and the higher the high-pass cut-off frequency, the smaller the station 

separation required to achieve de-correlation. Shifting to atmospheric interaction on turbine-

scales, I use 2.5 months of upwind tower and turbine data to understand how power production 

varies with different atmospheric stability and turbulence regimes. At lower wind speeds, periods 

of unstable and more turbulent conditions produce more power than periods of stable and less 

turbulent conditions, while at wind speeds closer to rated wind speed, periods of unstable and 

more turbulent conditions produce less power than periods of stable and less turbulent 

conditions. Using these new, stability- and turbulence-specific power curves to calculate annual 

energy production (AEP) estimates results in smaller AEPs than if calculated using no stability 

and turbulence filters, which could have implications for manufacturers and operators. In my 

third project, I address the problem of expensive power production validation. Rather than 

erecting towers to provide upwind wind measurements, I explore the utility of using nacelle-

mounted anemometers for power curve verification studies. I calculate empirical nacelle transfer 

functions (NTFs) with upwind tower and turbine measurements. The fifth-order and second-

order NTFs show a linear relationship between upwind wind speed and nacelle wind speed at 

wind speeds less than about 9 m s–1, but this relationship becomes non-linear at wind speeds 



 

v 
 

higher than about 9 m s–1. The use of NTFs results in AEPs within 1 % of an AEP using upwind 

wind speeds. Additionally, during periods of unstable conditions as well as during more 

turbulent conditions, the nacelle-mounted anemometer underestimates the upwind wind speed 

more than during periods of stable conditions and less turbulence conditions at some wind speed 

bins below rated speed. Finally, in my fourth project, I consider spatial scales on the order of a 

wind plant. Using power production data from over 300 turbines from four neighboring wind 

farms in the western US along with simulations using the Weather Research and Forecasting 

model’s Wind Farm Parameterization (WRF-WFP), I investigate the advantage of using the 

WFP to simulate wakes. The case simulated in this study focuses on the nighttime stable hours 

during the early morning of 30 October 2011 into the daytime unstable hours of 30 October 

2011. During this case, winds from the west and north-northwest range from about 5 to 11 m s–1. 

A down-ramp occurs in this case study, which WRF predicts too early. The early prediction of 

the down-ramp likely affects the error in WRF-predicted power, the results of which show 

exaggerated wake effects. Variable differences in hub-height winds, surface winds, and surface 

temperature throughout the innermost domain are revealed, and likely caused by some instability 

upwind of the farms in the simulations or due to horizontal resolution as suggested by Rai et al. 

(2017).  

While these projects span a range of spatio-temporal scales, a unifying theme is the 

important aspect of atmospheric variation on wind power production, wind power production 

estimates, and means for facilitating the integration of wind-generated electricity into power 

grids. Future work, such as universal NTFs for sites with similar characteristics, NTFs for waked 

turbines, or the deployment of lidars on turbine nacelles for operation purposes, should continue 

to study the mutually-important interconnections between these two fields. 
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CHAPTER I 

INTRODUCTION 

 

The fight to mitigate the effects of climate change is a major driver of the clean energy 

industry at home and abroad. In December of 2015, representatives from countries around the 

world came together in Paris, France to come to a monumental, global agreement called the Paris 

Agreement. Now international law, this agreement has been made between 97 parties so far, 

including the worlds’ top energy consumers: China, the US, Canada, Mexico, and Brazil, among 

many others. Besides the geopolitical accomplishment of so many countries agreeing on a way 

forward, a major outcome of this meeting was the agreement to work to reduce global 

greenhouse gas (GHG) emissions. The parties agreed to keep the global increase in mean 

temperature from pre-industrial levels below 2 °C, with the aim of keeping the mean temperature 

increase below 1.5 °C (United Nations, 2015).  

According to the International Energy Agency (IEA), countries in the Organization for 

Economic Co-operation and Development (OCED) are already making progress to reach this 

goal: consumption of renewable and low-carbon fuels such as nuclear for electricity generation is 

increasing while consumption of combustible fuels for electricity generation is decreasing (Fig 

1). Comparisons between 2015 and 2016 electricity production in by energy sector for the 

months of January through July reveal that the percentage of combustible fuels used for 

electricity decreased by about 1.6 %, while the percentage of nuclear, hydro, and other renewable 

fuel used for electricity increased 0.2 %, 0.7 %, and 0.9 %, respectively (Fig. 1, IEA Statistics, 

2016).  
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Figure 1. Electricity production by fuel type for countries in the OECD. Source: IEA 

(http://www.iea.org/media/statistics/surveys/electricity/mes.pdf). 

 

“Clean” energy sources 

 

As countries around the world strategize how to design their energy portfolios while also 

reducing GHG emissions, it is important to define what constitutes a “clean” fuel. We know that 

nuclear, geothermal, hydro, solar, and wind all result in zero direct emissions of GHGs, while the 

burning of coal and natural gas do emit GHGs. Natural gas emissions are, however, lower than 

emissions from coal: according to the Intergovernmental Panel on Climate Change (IPCC) 

Working Group III, the maximum direct emissions of coal for electricity production is 870 g 

CO2-eq/kWh while the maximum direct emissions of combined cycle gas for electricity 

production is 490 g CO2-eq/kWh (IPCC, 2014).  

However, direct emissions are only a portion of the emissions from the entire lifecycle of 

an energy technology. The lifecycle of an energy technology includes any direct emissions, 

infrastructure and supply chain emissions, biogenic CO2 emissions and albedo effect, and 

methane emissions (IPCC, 2014). Even a “clean” fuel such as wind still results in some 
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emissions over its lifecycle. Median emissions from coal and natural gas for electricity 

production over their lifecycles are 820 g CO2-eq/kWh and 490 g CO2-eq/kWh, respectively 

(IPCC, 2014). Nuclear power emits a median of only 12 g CO2-eq/kWh (IPCC, 2014), but the 

US does not currently have an effective way of dealing with the increasing amount of nuclear 

waste. As a number of modern-technology nuclear plants come online in the next few years (U.S. 

NRC, 2016), developing safe and practical nuclear waste repositories as well as implementing 

policies for nuclear reprocessing will be crucial. Median emissions from hydro, solar PV and 

onshore wind are 24 g CO2-eq/kWh, 48 g CO2-eq/kWh, and 11 g CO2-eq/kWh, respectively 

(IPCC, 2014). Wind and nuclear are the “cleanest” technologies with regard to median lifecycle 

emissions of CO2, quickly followed by hydro and solar, with coal and natural gas emitting 

significantly more GHG than all other sources. According to a press release from the American 

Wind Energy Association (AWEA), the US wind industry reduced power sector emissions by 

4.4 % in 2013. Wind generation avoids approximately 0.6 metric tons of CO2 per MWh 

(AWEA, 2014).   

Current and projected energy market in the US 

 

Wind energy is a clean energy, but reducing GHG through increased integration of wind 

does not necessarily mean increasing the market share of wind technology is easy and can 

happen overnight. US energy infrastructure includes multiple energy sources and technologies. 

However, we are making progress towards phasing out fossil fuels and implementing more clean 

energy technology. According to the US Energy Information Administration (EIA), while overall 

total energy production has increased by about 23.65 % in the US over the last 15 years, energy 

production from coal has decreased about 21.04 % while energy production from oil, natural gas, 

and renewables has increased about 59.31 %, 42.72 %, and 57.23 %, respectively (Fig. 2, EIA, 
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2016). Oil and natural gas markets have been notoriously volatile in recent years, reacting to 

global overproduction as well as various geopolitical issues. However, oil and natural gas 

reserves as of 2014 in the US almost certainly ensure the use of these sources for consumption, 

as proven oil reserves in the US have reached 39 billion barrels and proven natural gas reserves 

have reached 388 trillion cubic feet (EIA, 2015). Abundant reserves of natural gas in the US 

combined with the lower emissions from natural gas compared to coal has led to replacing coal 

plants with combined-cycle natural gas plants. Increased development of combined-cycle plants 

has contributed to the decrease in energy production from coal over the past 15 years. As seen in 

Fig. 2 below, total energy production from renewables has increased over the last 15 years. Since 

the US has reached the limit for hydro plant development and is more focused on refurbishing 

current hydro plants (NHA, 2016), much of this increase in renewables has come from wind and 

solar. Wind energy’s share of the US electricity market has increased from less than 0.5 % in 

2001 to 2.3 % in 2010 to 4.7 % in 2015, and projected to be near 5.6 % in 2016 (EIA, 2016). 

 

Figure 2. Total energy production in the US from 2000 to 2015. Source: EIA 

(https://www.eia.gov/todayinenergy/detail.php?id=25852). 
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In the US, policy drives energy technology in the electricity market, usually in the form 

of subsidies. However, more aggressive policy approaches are under consideration, including a 

possible carbon tax as well as the US Environmental Protection Agency’s (EPA) Clean Power 

Plan (CPP). The CPP is a list of standards for states to reduce carbon pollution from power plants 

and is pending review by the US Supreme Court. According to the EIA in their Annual Energy 

Outlook report from 2016 (EIA, 2016), the CPP has the potential to increase the growth of 

renewable energy and natural gas generation while lowering that of coal (Fig. 3). 

 

Figure 3. Net electricity generation by fuel in the US with and without the CPP. Source: EIA 

(http://www.eia.gov/forecasts/aeo/er/pdf/0383er(2016).pdf).  

 

Wind energy sector 

Global awareness of the impact of climate change has driven policy which has allowed 

for the development of a viable clean energy sector, in which global investments reached 329 

billion USD in 2015 (GWEC, 2016). As part of this clean energy portfolio, wind energy is a 
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small but significant player in the world electricity market, supplying 3.7 % of the world’s 

electricity with 433 GW of globally installed generation (GWEC, 2016).  

Wind energy is widely considered a mature technology. Investors often determine 

opportunities by the maturity of a technology as defined by the Gartner Hype Cycle. Wind 

energy technology is entering the plateau on the Hype Cycle for emerging energy technologies, 

meaning wind energy is a mainstream and viable technology (Gartner, 2014). However, the wind 

industry is young compared to its fossil-fuel competitors, which means this industry has the 

opportunity to develop in a way to ensure longevity. The wind energy community is working to 

improve upon many aspects of the industry, making wind energy more efficient, with the goal of 

making wind the most cost-effective and therefore cost-competitive energy source. As of 

November 2015, the unsubsidized levelized cost of energy of onshore wind was as low as 

$32/MWh, which is lower than that for coal and gas combined cycle, which were as low as 

$65/MWh and $52/MWh, respectively (Lazard, 2015).  

The fuel source for wind energy, wind, is an atmospheric resource that can be harvested 

without cost. Wind is also the primary source of the forces that affect the day-to-day operation of 

wind turbine machines, and the efficiency and competitiveness of the electricity that is 

generated. Thus, one of the areas of “low-hanging fruit” in the wind industry is the potential to 

improve our understanding of the relationship and interaction between the atmosphere and the 

wind turbine itself. This important relationship not only forms the foundation of this energy 

source as these machines capture energy from the atmosphere, but further understanding of the 

complications of the interaction between wind energy and the atmosphere also can improve a 

number of aspects of the industry itself. These aspects include research and development (R&D) 

of refurbished and prototype turbines, resource assessment and turbine siting, better use of 
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energy storage, turbine operation and performance, wind turbine and plant wakes, and wind farm 

grid integration. 

Motivation 

 

According to the EIA, the average US residence consumes almost 11 MWh/year of 

electricity (EIA, 2016). More than 48,000 utility-scale wind turbines installed in the US are 

currently powering an equivalent of about 20 million American homes (AWEA, 2016). With 

thousands of commercial-scale turbines installed in the US, manufacturers seek ways to make 

wind turbines more cost-effective. Wind speed increases with height in the troposphere and wind 

energy capture increases with blade length. As a consequence, wind turbines are growing, with 

taller towers and longer blades. Currently, utility-scale wind turbines have hub-heights of 80 to 

100 m or higher, with the upper tip of the blades reaching upwards of 120 to 180 m in the 

atmosphere, and capacities of 2 to 3 MW or greater. Offshore turbines are typically larger than 

onshore turbines due to a stronger and more consistent resource combined with economies of 

scale offsetting the larger cost of energy offshore. The largest operating offshore wind turbine in 

the world is a Vestas 8 MW turbine with a rotor diameter of 164 m and a hub height of 

approximately 105 m. Figure 4 illustrates the increase in turbine hub heights and rotor diameter 

since the 1980s through today and projects them further into the 21st century.  
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Figure 4. Evolution of wind turbine size over time. Source: IEA 

(https://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf).  

 

With larger turbine capacity and size comes more cost, turbine operational exposure to 

different meteorological phenomena higher in the atmosphere, and risk, per machine. To lower 

the risk involved in deploying and operating these expensive machines, research is required to 

understand the interaction between these large machines and the atmospheric winds that fuel 

them.  

Background 

 

Earth’s surface directly influences the lowest layer of the atmosphere which has been 

defined as the atmospheric boundary layer (ABL) (Stull, 1988). The height of the ABL varies 

depending on location and time of day (Fig. 5). The surface layer, typically defined as the lower 

10% of the ABL, is often referred to as the constant flux layer because variation of vertical 

turbulent fluxes are small and the mechanical generation of turbulence through shear exceeds the 
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buoyant generation of turbulence. It is in this layer that Monin-Obukhov similarity theory holds, 

and the log law can describe the wind profile.  

 

Figure 5. The boundary layer over time. Figure from Stull (1988).  

 

As the surface layer typically reaches heights in the ABL on the order of 10s of meters, 

wind turbines have only previously stayed within this layer. However, turbine rotors now span 

up to about 190 m, interacting with more layers in the ABL. Turbine upper tips now breach the 

surface layer and reach into the convective mixed layer during the day and the stable boundary 

layer during the night. In layers of the ABL above the surface layer, manufacturers and operators 

encounter phenomena they did not anticipate, such as nocturnal low-level jets in the plains of the 

US or wind profiles not fitting the typical log-law profile of the surface layer. These phenomena 

can lower production as well as the lifetime of the turbine, both of which present a problem to 

the industry (Kelley et al., 2006). Further understanding of the physical characteristics of these 

higher layers in the ABL and how they interact with wind turbines will be imperative as these 

turbines continue to evolve and the industry continues to grow.  
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Scope 

 

The scope of this dissertation spans from continental-scale variability down to the 

complexity of the flow around an individual turbine. I investigate atmospheric variability at each 

of these different scales, providing insight into a range of turbine-atmosphere interactions. 

Chapter II focuses on wind variability and how it might affect the electrical grid; we demonstrate 

how aggregating wind farms can mitigate this variability to enable wind to provide reliable 

baseload power. Chapter III focuses on individual turbines and their power production. We 

explore how power production varies with atmospheric conditions such as atmospheric stability 

and turbulence. Seeking to understand how wind power production can be optimized using 

instrumentation already available on wind turbines, Chapter IV focuses on how atmospheric 

stability and turbulence contributes to the variability in wind turbine nacelle transfer functions. 

These transfer functions allow the use of nacelle-mounted instruments in place of expensive 

towers or remote sensing instruments for power performance testing. Finally, Chapter V moves 

out in scale to consider aggregations of turbines into large wind farms. We test a mesoscale 

model parameterization of wind turbine and wind farm wakes during both stable and unstable 

conditions, with the goal of assessing how atmospheric variability affects these wakes. These 

wakes affect wind farm siting and wind power forecasting. Chapter VI summarizes my 

conclusions regarding the importance of rigorous assessment of atmospheric-turbine interactions 

for reducing the cost of energy and ultimately increasing the development of wind energy around 

the world. 

Layout 

This dissertation outlines the research I completed for my PhD work. Each of the 

following chapters before the conclusion contains published, submitted, or work in progress.  
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The first is a paper published in Environmental Research Letters 

(http://iopscience.iop.org/article/10.1088/1748-9326/10/4/044004). The second is published in 

Wind Energy Science (http://www.wind-energ-sci.net/1/221/2016/). The third is in review in 

Wind Energy Science (http://www.wind-energ-sci-discuss.net/wes-2016-45/). The fourth is in 

preparation for submission to Monthly Weather Review. Though each of these papers address 

some aspect of wind energy meteorology, each of these chapters is autonomous and therefore 

each follows the structure of a peer-reviewed paper including an abstract, conclusion, and 

acknowledgments. However, I list all references at the end of this document. Two of these 

publications have supplementary information presented in an Appendix at the end of this 

document.  
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CHAPTER II 

WIND VARIABILITY AND INTERCONNECTING PLANTS 

 

Wind is a variable energy source. The integration of wind-powered electricity into the 

electrical grid is complicated by variability in the wind resource. These challenges increase as 

wind penetration increases. However, variability can be reduced by interconnecting 

geographically diverse wind farms, provided the generators are far enough apart that their 

variations are not fully correlated, as noted in Fertig et al. (2012). So how far is far enough? 

We look at data for both wind speed and wind generation, on two continents, and 

examine correlation vs. distance for wind variations on different timescales. We find, 

universally, in each region and for both wind speed and wind generation, that: (1) the correlation 

length saturates for variations on timescales longer than about 38 h, and (2) for shorter timescales 

τ the correlation length shrinks faster than 1/τ. 

To our knowledge, this work is the first to articulate a systematic connection between the 

spatial scales and the temporal scales of wind correlation. Further, in order to unambiguously 

quantify correlation length, we also introduce a new “non-parametric” measure that does not 

depend on fitting correlation-vs.-distance data to some presumed functional form. Since it is well 

known that non-stationarities contaminate correlation-length estimates, we also remove periodic 

diurnal and seasonal variations in a statistically rigorous way, using techniques more 

sophisticated and more robust than evidenced in most previous work in this field.  

Since grid management requires balancing power production on various timescales, our 

finding that the shorter the time period under consideration, the systematically smaller the site 

separation needed for the site pair to become un-correlated should be valuable to grid operators.  
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The work presented in this chapter reveals remarkable similarities in behavior between 

three unique datasets that, if universal, could be particularly useful for planning large-scale 

renewable energy deployment.  

The following is adapted and reformatted from: 

St. Martin, C. M., Lundquist, J. K., and Handschy, M. A.: Variability of interconnected wind 

plants: correlation length and its dependence on variability time scale. Environ. Res. Lett., 10, 

044004, doi:10.1088/1748-9326/10/4/044004, 2015. 

 

 Abstract 

 

The variability in wind-generated electricity complicates the integration of this electricity 

into the electrical grid. This challenge steepens as the percentage of renewably-generated 

electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: 

correlations between wind farms decrease as the separation between wind farms increases. But 

how far is far enough to reduce variability? Grid management requires balancing production on 

various timescales, and so consideration of correlations reflective of those timescales can guide 

the appropriate spatial scales of geographic diversity grid integration. To answer “how far is far 

enough,” we investigate the universal behavior of geographic diversity by exploring wind-speed 

correlations using three extensive datasets spanning continents, durations and time resolution. 

First, one year of five-minute wind power generation data from 29 wind farms span 1200 km 

across southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 

10-m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data 

Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 

meteorological towers span 350 km of the northwestern US (Bonneville Power Administration). 

After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence 
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of correlation length on time scale by digitally high-pass filtering the data on 0.25‒2000 hour 

timescales and calculating correlations between sites for each high-pass filter cut-off. 

Correlations fall to zero with increasing station separation distance, but the characteristic 

correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the 

smaller the station separation required to achieve de-correlation. Remarkable similarities 

between these three datasets reveal behavior that, if universal, could be particularly useful for 

grid management. For high-pass filter time constants shorter than about 𝜏 = 38 hours, all datasets 

exhibit a correlation length 𝜉 that falls at least as fast as 𝜏−1. Since the inter-site separation 

needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be 

effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.  

1 Introduction 

 

Low CO2 emission footprints make wind and solar power attractive choices for future 

electricity needs. However, their natural variability is challenging for the electric grid, which 

requires instantaneous matching of generation and load on all time scales from one AC cycle, 

through operational scheduling horizons (a day or two), out to planning horizons of more than a 

decade (von Meier, 2006). Variability can be reduced, and the grid-integration challenge 

lessened by interconnecting renewable electricity generators distanced enough that their variation 

is not fully correlated (Thomas, 1945; Kahn, 1979). At a great enough distance which depends 

on variability time scale as we see here, the wind-speed variations approach statistical 

independence: an ensemble of wind plants separated at least this distance from each other is 

“geographically diverse,” and at the associated time scale variability of the ensemble’s summed 

power output, will be reduced compared to that of an individual plant.  
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Better plans for future grids could be made if this effect were better understood. Many 

previous studies have relied on an empirical approach where the degree of smoothing that might 

have occurred over a specific region was estimated from historical meteorological or reanalysis 

data or even calculated from actual renewable generation (Molly, 1977; Palutikof et al., 1990; 

Landberg, 1997; Milligan and Factor, 2000; Wiemken et al., 2001; Archer and Jacobson, 2003, 

2007; Holttinen, 2005; Sinden, 2007; Kiss and Jánosi, 2008; Kempton et al., 2010; Fertig et al., 

2012; Fisher et al., 2013; Cosseron et al., 2013; Louie, 2014; Huang et al., 2014). However, it is 

often difficult to generalize the findings from the study scenario to realistic planning scenarios. 

As a first step, some have sought to model how correlation falls off with distance, using a variety 

of different forms: exponential, both with (Haslett and Raftery, 1989; Landberg, 1999; Kiss and 

Jánosi, 2008; and Katzenstein et al., 2010) and without (Giebel, 2000; Simonsen and Stevens, 

2004; Holttinen, 2005;  Achberger, 2006; and Kempton et al., 2010) a nugget (non-unity 

correlation at zero separation), stretched exponentials (Hasche, 2010; Louie, 2014), Gaussian 

forms (Buell, 1972) and Lorentzian forms (Buell, 1972; Julian and Thebaux, 1975); see Table 1. 

A few have gone further to propose forms predicting probability distributions of aggregated 

power as a function of the region size (Justus and Mikhail, 1978; Carlin and Haslett, 1982; 

Haslett and Raftery, 1989; Hasche, 2010). 

How correlations depend on the variability time scale is equally important to how they 

depend on distance, since, for a given magnitude operational power excursion, the faster the 

excursion generally the more costly its regulation (Kirby, 2004). Without suggesting a particular 

functional form for the dependence, studies by Ernst et al. (1999) and by Mills and Wiser (2011) 

have found for wind and solar, respectively, that faster variations become uncorrelated at smaller 

spatial separations than slower variations. Variability time scale τ or frequency f can be inserted 
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into functional forms for correlation ρ vs. distance r by introducing a characteristic velocity v, 

and replacing correlation length ℓ by vτ or v/f, as proposed by Davenport (1961). Beyer et al. 

(1990;1993), McNerney and Richardson (1992), Nanahara et al. (2004), and Sørensen et al. 

(2008) have taken this approach for wind-speed correlation. Calling r/(vτ) a ‘dispersion factor’, 

Hoff and Perez (2010) introduced this concept to the study of solar variability and identified 

velocity v with cloud motion; it has since been used in solar correlation studies by Marcos et al. 

(2012), Lave and Kleissl (2013), and Hinkelman (2013). None of the studies based on 

characteristic-velocity functional forms have considered regions much larger than 100 km in 

extent, and more typically have been limited to the size of a single PV plant.  

Here we revisit the methods used by Ernst et al. (1999) and by Mills and Wiser (2011), 

apply them to both wind-speed data and wind generation data from three different geographical 

regions, and find a single quantitative relationship between correlation length and time scale that 

parsimoniously characterizes behavior on time scales ranging from an hour to a quarter-year and 

over distances of a kilometer to a continent.  

In Section 2, we highlight the unique features of the datasets used in this analysis as well 

as novel methods for investigating correlations between sites and quantifying correlation length 

scales. Section 3 describes the results found in our investigation and Section 4 sums up our 

conclusions and suggestions for future work. In the provided Supplementary Data, we describe, 

in detail, the filtering methodology used to eliminate non-stationarities in the time series and 

present the correlation results from all datasets. 
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Table 1. Correlation functions found in previous work. 

source functional form (r is distance) adj. params., length (km) data description 

Buell, 1972 

longitudinal: exp[−½(𝛼𝑟)2] α   
500 mb wind data from Europe 

and the North Atlantic during the 

summer 

transverse:  [1 + (𝛼𝑟)2]−𝑞−1, α, q   

[1 − (𝛼𝑟)2]exp[−½(𝛼𝑟)2], α   

[1 − (2𝑞 + 1)(𝛼𝑟)2](1 + (𝛼𝑟)2)−𝑞−2 α, q   

Julian and 

Thiebaux, 

1975 

[𝛼 cos(𝜔𝑟) + 𝑧 − 𝛼][1 + (𝜆𝑟)2]−𝛾 
α, ω,  

λ, γ, z 
  

2 y of 500 mb wind data from 

North America during the winter 

(3 months)  

Justus and 

Mikhail, 

1978 
𝛼 exp(−𝑟/𝐿)* α, L αL = 395‒560* 

(fit to data in J&M Fig. B-4) 

1 y of 3-hrly data at 10 m from 22 

US sites 

Haslett and 

Raftery, 1989 
𝛼exp⁡(−𝛽𝑟) α, β αβ−1 = 722 

18 y of hrly mean wind speeds 

from 12 Ireland stations 

Beyer,  

et al., 1993 
exp[−(𝑘𝑟)𝑚] k, m k−1 = 870 

3 y of hrly mean wind speeds 

(converted to power) from 4 sites 

in NW Germany 

Landberg, 

1999 
exp(−𝑟/𝑎) − 𝛽 a, β (1−β)a = 425 

1 y of 10-min power output from 

17 wind farms in Denmark  

Giebel, 2000 exp(−𝑟/𝐷) D D = 723 
1 y of hrly 50-m wind speeds 

from 60 European stations  

Simonsen 

and Stevens, 

2004 
exp(−𝛼𝑟) α α−1 = 323‒588 

1 y of hrly averaged 50-m wind 

speeds (converted to power) from 

28 Midwest US sites  

Holttinen, 

2005 
exp(−𝑟/𝑎) a a = 500 

1 y of hrly wind power output 

from 100’s of Nordic sites  

Gibescu et 

al., 2006 
𝛼exp⁡(−𝛽𝑟) a, β   

1 y of 10-min averaged wind 

speeds for 18 sites in the 

Netherlands  

Achberger et 

al., 2006 
exp(−𝑟/𝑥0) x0 x0 = 310* 

(curve in Achberger Fig. 6a)  

2 y of 3-hrly 10-m winds from 

142 sites in Sweden 

Kiss and 

Jánosi, 2008 
exp(−𝑟/𝐿) L L = 400‒600 

44 y of 6-hrly wind (converted to 

power) from ECMWF ERA-40 

model output 

Adams, 2009 exp(−𝛼𝑟) α α−1 = 333 
2 yr of hrly production from wind 

farms in Ontario 

Hasche, 

2010 
exp(−𝑎𝑟𝛼) a, α 

a −(1/α) = 322; 

1 y of hrly 10-m wind speeds 

(converted to power) from 24 

German sites 

a −(1/α) = 22 as above, 2-hour ramps 

Katzenstein  

et al., 2010 
𝛼 exp(−𝑟/𝐷) α, D αD = 271 

15-min power output from 20 

wind farms in Texas 

Kempton  

et al., 2010 
exp(−𝑟/𝐷) D D = 430 

5 y of (5-49-m) wind data 

(converted to power) from 11 

stations on the US East Coast 

Baïle and 

Muzy, 2010 
𝜆2ln(𝐿/𝑟) λ, L L = 600 

17 y of hrly 10-m wind at 27 

locations in the Netherlands  

Šaltytė 

Benth and 

Šaltytė, 2011 
exp (√𝜃2𝑥

2 + 𝑦2/𝜃1) θ 1, θ 2 θ 1 = 370 

(r2 = x2 + y 2) 

31 y of daily wind data from 18 

stations in Lithuania 
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Hill et al., 

2012 
𝛼 exp(−𝑟/𝐿) α, L αL = 340 

multiple y of wind speed from 14 

sites in the U.K. 

Louie, 2014 exp(−𝛼𝑟𝛽) α, β α−(1/β)  = 1100 
3 yr of hrly power output from 

US system operators  

* our fit to cited data. 

 

2 Data & Methods 

 

2.1 Datasets 

Although previous studies have characterized correlations within an individual region, 

the present study seeks universal behavior across multiple regions and datasets: an Australian 

wind generation dataset (AUS), a Canadian wind speed dataset (CAN) and a Bonneville Power 

Administration wind speed dataset (BPA). The three datasets presented here bring different 

features to the study, such as wind power production data (AUS), great extent (CAN) or fine 

time resolution (AUS, BPA). More details on these datasets, including maps of the stations used, 

appear in the Supplementary Data. 

2.1.1 Australian Generation Dataset (AUS) 

The Australian Energy Market Operator (AEMO) provides a 1-year (October 2013‒

October 2014) dataset of five-minute electricity generation data from 32 wind farms across 

southeastern Australia including the provinces of New South Wales, South Australia, Tasmania 

and Victoria (Table 2). AEMO reported in 2013 that they might curtail wind power systems in 

the future (AEMO, 2013); therefore we suspect few curtailment effects in this dataset. We utilize 

a subset of 29 wind farms, combining production for different wind farm stages and selecting 

only the larger-producing member of wind farm pairs within 5 km of one another. We make no 

correction for wake effects of neighboring wind farms (Fitch et al., 2013) in this analysis.  
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Table 2. Description of datasets used in this work. 

Dataset AUS CAN BPA 

Location SE Australia Canada NW US 

Type of data wind farm generation wind speed wind speed  

Height hub height 10 m 6-53 m 

Time Resolution 5 min 1 hr 5 min 

Duration 1 y 45 y 4 y 

Horizontal Extent 1274 km 5344 km 354 km 

Closest Site Pair 8 km  19 km 13 km 

Number of 

stations 29 117 14 

 

The terrain elevations of these wind farms range from 3 m to 900 m above sea level (asl). 

Plant output data are normalized by each wind plant’s generation capacity, which range from 20 

MW to 420 MW. The closest pair of farms is separated by 8 km and the farthest by 1274 km. 

2.1.2 Canadian Wind Speed Dataset (CAN) 

The National Climate Data Archive of Environment Canada provides a 54-year dataset of 

hourly surface wind-speeds from 117 stations ranging across more than 5000 km of Canada 

(Table 2). While the entire dataset spans 1953 through 2006, missing data are less frequent in 

later years, so we use a 45-year subset of data, from 1962‒2006. During the data collection, the 

measurement heights of the stations ranged from 5 m to 32 m above ground level (agl), but Wan 

et al., (2010) homogenized these data to the standard 10-m height assuming a logarithmic wind 

profile. The terrain elevations within this dataset vary from sea level to 1084 m asl. Separation 

distances between sites vary from a minimum of 19 km to a maximum of 5344 km.  

2.1.3 Bonneville Power Administration Wind Speed Dataset (BPA) 

The Bonneville Power Administration provides a dataset of five-minute wind-speeds 

from meteorological towers in Washington and Oregon in the northwestern US (Table 2). For 



 

20 
 

this analysis, we use data from 14 sites from 2010‒2014 due to the higher temporal resolution of 

these data, although several stations provide data for longer durations with lower time resolution 

(Bonneville Power Administration).  

These 14 towers in the BPA network are generally located along the Columbia River 

Gorge on the border of Washington and Oregon or along the Pacific Coast. The elevations of 

these stations range from 19 m to 1261 m asl. The anemometer heights range from 9 m to 53 m 

agl. No “standard height” homogenization methodology is used on this dataset; correlation 

coefficient calculations between sites would be unchanged if either a logarithmic wind profile 

was assumed or the wind power law was used to homogenize the measurements to a 10 m height. 

Separation distances between sites vary from a minimum of 13 km to a maximum of 354 km. 

2.2 Data processing 

2.2.1 Pre-processing 

Although both deterministic variability, such as diurnal or seasonal cycles, and random or 

stochastic variability will figure in any complete accounting of wind power variability, it is the 

stochastic phenomena that are less understood and not as predictable; so we focus on them here. 

The analysis of underlying stochastic components is complicated by the presence of temporal 

periodicities, as noted by Haslett and Raftery (1989), Gunst (1995), Robeson and Shein (1997), 

Achberger et al. (2006), and Hill et al. (2012). To remove the diurnal cycle in order to more 

clearly characterize stochastic spatial correlations, we make a “local” estimate of the amplitudes 

of the first four daily harmonics by least-squares fitting using a 90-day moving window to allow 

for seasonal variation in the daily cycle (Baïle et al., 2011). This cycle, estimated once for each 

of the days in the dataset, is subtracted from that day’s wind-speed or power data, as further 
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described in the Supplementary Data. By also subtracting the 90-day moving average, we 

remove low-frequency variability, including the seasonal or annual cycle.  

As shown by previous investigators (Ernst et al., 1999), rapid wind-speed or power 

variations become uncorrelated at smaller spatial separations than do slow variations. In order to 

further investigate this effect, we prepare versions of each time series with trends slower than a 

chosen time-constant removed by calculating the average of the wind speed or power data over a 

segment centered at each time point and subtracting the segment average from the value at the 

center point. By varying the width of the segment (“window width”), we control the corner 

frequency of this high-pass filtering operation. Our process, described further in the 

Supplementary Data, differs from that used by Ernst et al. (1999), Mills and Wiser (2011), and 

Hinkelman (2013) in that it subtracts from the original data an averaged version of that data, 

rather than calculating “ramps” by differencing one block average value from the next. Thus, the 

number of data points in the filtered versions of our time series is reduced from the original only 

by the width of filter window, rather than being decreased by a factor of the window width. We 

analyze the effects of high-filtering for window widths τ ≤ 1049 h, and denote by τ = 2160 h data 

from which the 90-day seasonal bias term has been subtracted but no further filtering applied. 

2.2.2 Correlation length  

After pre-processing the data as described above and discussed in more detail in the 

Supplementary Data, we calculate correlations between each pair of stations for each high-pass 

filtered version of the data.  The scatter plot in Fig. 1, for example, shows the correlation data for 

CAN at filter window   = 65 hours. Given the high degree of scatter shown here, estimating a 
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single correlation length for each dataset at each filtering window  is problematic since a 

functional form of correlation vs. distance appropriate for fitting is not known a priori.  

 

Figure 1. Correlation vs. distance for CAN data high-pass filtered with τ = 65 h (scatter plot and 

dark-blue local-regression curve, left axis). Numerically integrated correlations as a function of 

integration range (integration of scatter points, light-blue curve, right axis). 

 

Wishing to avoid the functional-form conundrum, we sought a “non-parametric” distance 

measure. For a given averaging window width  we order the correlation coefficient values ρij by 

increasing station separation distance, with increasing values of separation distance signified 

with single index as rk , r1 denoting the smallest separation (the closest pair of stations) and rN 

denoting the largest separation (the farthest pair). We then numerically “integrate” the 

correlation data over distance using the trapezoid rule: 

 
𝜉(𝑟𝑛) = ⁡∑

1

2
(𝑟𝑘 − 𝑟𝑘−1)

𝑛

𝑘=1
(𝜌𝑟𝑘 + 𝜌𝑟𝑘−1) 

(1) 
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In the familiar case ρ(ri) = exp(‒ri/ℓ) + εi, where εi is mean-zero noise, this procedure 

gives ξ  = ℓ  in the limit of large r. For our observations, we take r0 ≡ 0, and estimate 𝜌𝑟0 as the 

intercept of a local regression curve (see Section 2.2.3 below). As shown by the light blue line in 

Fig. 1, ξ(rn) varies smoothly with rn and approaches a near-constant value at the largest 

separations (here 139 km at rN = 5300 km) as the 𝜌𝑟𝑘  scatter there around zero. We refer to the 

value at the greatest separation ξ(rN) (at a given high-pass filter window width τ hereinafter ξ τ) 

as the correlation length; it has a meaning similar to Bretherton’s “correlation radius” (1999) or 

the term “integral scale” in turbulence (Batchelor, 1959). Our methodology bears some 

resemblance to that of Şen’s cumulative semivariogram (Şen, 1989; Şen and Şahin, 1997). 

2.2.3 Local regression curves 

To facilitate graphical comparisons of correlation vs. distance behaviors that might 

otherwise be obscured by the high degree of scatter in the individual ρ(rk) values, we also 

calculate ρ(r) curves using local regression techniques (Cleveland 1979), where, to find the curve 

value at a given site-separation distance rʹ, we fit a 2nd-order polynomial to the fraction α of the 

correlation data points that are closest to the given distance (for example in the CAN dataset and 

choosing α = 0.05, the 339 correlation data points out of 6786 total having the smallest values of  

|𝑟 − 𝑟′|). This gives results as exemplified by the thick blue line in Fig. 1.    

2.2.4 Importance of pre-processing 

The high-pass filtering and diurnal-cycle removal (outlined in detail in the Supplemen-

tary Data) have significant effects on the correlation behavior, as shown in Fig. 2, which, to 

facilitate comparison, portrays correlation vs. distance as local regression curves. With no pre-

processing (raw data, dashed brown curve), correlation does not fall below about 0.04 at the 
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largest site separations, while with the diurnal cycle and seasonal bias removed (solid brown 

curve), correlation falls to zero. For raw data high-pass-filtered with τ = 33 h (aqua), the 

correlation doesn’t fall below about 0.10 (dashed curve) for separations smaller than 4000 km, 

while if the high-pass filter is applied to data from which the diurnal cycle has first been 

removed, correlation falls to near zero for separations of 600 km (solid curve). High-pass cutoffs 

of τ = 25‒37 h give similarly high correlation floors on raw data while the height of the floor 

decreases noticeably for cutoffs smaller than 21 h or larger than 41 h. 

 

Figure 2. Effect of diurnal-cycle and low-frequency removal on 1962‒2006 CAN hourly data 

correlation (local regression curves). Brown: no pre-processing (dashed, ∞); diurnal-cycle and 

seasonal bias removed (solid, 2160). Aqua: τ = 33 h high-pass filtered with diurnal cycle 

subtracted (solid, 33) and without diurnal-cycle subtracted (dashed, 33). 
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3 Results and Discussion 

 

3.1 Correlations 

Despite the differences in methodology, the behavior of correlation with distance and 

high-pass filtering window width qualitatively resembles the previous wind-power results of 

Ernst et al. (1999) and insolation work of Mills and Wiser (2011): correlation falls off more 

rapidly with site separation the smaller the window-width τ, as seen for the CAN data in Fig. 3. 

Interestingly, we observe that for some high-pass filter window widths (for example, a 65-hr 

window width in CAN), the correlations actually become negative between 500-km and 1000-

km separation distances, perhaps for reasons similar to those identified for solar correlations by 

Hoff and Perez (2010) and Hinkelman (2013).  

 

Figure  3. CAN correlation coefficients vs site separation simplified by robust local regression 

for multiple indicated high-pass window widths in hours.  

 

Substantial scatter of the correlation vs. distance values is a prominent feature of data 

from all three regions at all but the shortest filter widths (see Supplementary Figs. 5-7). We 

explored several potential causes of this large scatter as well as the negative correlations by 
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separating stations by region (north vs. south as well as east vs. west) and by azimuthal bearing. 

East/west differences (Fig. 4a) and north/south differences (Fig. 4b) explain neither the scatter 

nor the slight anti-correlations. It is clear from previous work (Buell, 1972, Ramanathan et al., 

1973; Julian and Thiebaux, 1975) that the longitudinal and transverse horizontal wind 

components have different correlation behaviors, with the transverse correlation falling faster 

and exhibiting more negative values, similar to the behavior of fully developed turbulence (von 

Kármán, 1948; Batchelor, 1953). Unfortunately, the CAN dataset provides wind speed but not 

wind direction. Nevertheless, some of the scatter in the CAN correlations can be attributed to the 

azimuthal bearing of each station pair, as stations separated along a line 10° North of West-East 

are systematically less correlated and more often anti-correlated than those perpendicular to that 

line (Fig. 4c). Šaltytė Benth and Šaltytė (2011) also observed directional anisotropy in wind-

speed correlation fall off. We presume the anisotropy we observe arises from the prevailing 

westerly winds produced by the large-scale circulation in this region, although, contrary to our 

expectation, we see higher correlations for stations separated along the crosswind direction.  

Finally, given previous work that has identified a connection between the interannual 

climate oscillation of the El Niño Southern Oscillation (ENSO) and Canadian wind resources (St. 

George and Wolfe, 2009), we separated the time series into intervals with strong climate signals 

(1988‒1989 La Niña and 1982‒1983 El Niño, 1964‒1965 La Niña and 1965‒1966 El Niño, 

1970‒1971 La Niña and 1972‒1973 El Niño), and calculated each site-pair’s correlation 

coefficient over the El Niño interval and over the La Niña interval. Comparison of all these 

periods gave results similar to that seen in Fig. 4d for the 1964‒1966 periods. No difference in 

correlations between El Niño and La Niña periods emerges (Fig. 4d). The pairwise differences 

between the ‘65‒66 El Niño and the ‘64‒65 La Niña correlations have mean |μ| = 0.0011 and 
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standard deviation 0.044 (see Fig. S8); the non-parametric sign test of null hypothesis H0 that μ = 

0 against alternative hypothesis H1 that μ ≠ 0, fails to reject H0 with a p-value of 0.12. 

 

 

Figure  4. Correlation vs station separation for τ = 65 h high-pass filtered CAN 1962‒2006 

hourly data. (a) Red: 1326 station pairs west of 100°W longitude, black 2080 station pairs east of 

100°W longitude. Means of 100-km-wide bins are shown by the solid line; the envelope 

represents ± one standard deviation σ; (b) red: 45 station pairs north of the Arctic Circle, black: 

5671 station pairs south of the Arctic Circle; (c) azimuth of each station-pair bearing indicated 

by color in compass; (d) correlations during a 19-month period of strong El Niño (red) and 

during a 19-month period of strong La Niña (black). Means of 100 km wide bins are shown by 

the solid line; the envelope represents ± one standard deviation σ. 

 

3.2 Correlation length estimates  

Figure 5 shows the results of our “integral-scale” calculations for CAN, AUS and BPA. 

The 5300-km geographic extent of Canada clearly exceeds the observed correlation lengths, 
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allowing the integration to fully saturate for even the widest filter, giving ξ2160 h = 273 km. The 

AUS data yield slightly larger values, with ξ2160 h = 368 km. The geographic extent of the BPA 

region is not sufficient for the correlation integration to saturate, making the ξ2160 h = 89 km 

obtained an underestimate of the full correlation length. 

 

Figure 5. Numerically integrated correlation as a function of integration range for indicated 

high-pass filter window widths in hours for: (a) CAN, (b) AUS, and (c) BPA; 2160-h curves 

result from removal of diurnal cycle and 90-day moving average—curves with shorter window 

widths are further high-pass filtered. Dashed lines in (b) and (c) are least-squares fits to the form 

βℓ[1 − e−(r/ℓ)], giving at τ = 2160 h β = 0.65 and ℓ = 685 km for AUS, β = 0.40 and ℓ = 323 km 

for BPA. Similar fit gives β = 0.70 and ℓ = 388 for CAN (not shown). 

 

Figure 6 shows the variation of correlation length ξτ with high-pass filter cutoff τ for the 

three regions; the ξ values for each region normalized by the maximum to facilitate comparison 

between datasets. The envelope surrounding the correlation length values as a function of τ 

indicates an empirically-found range of behavior common to all three datasets: 
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Figure 6. Correlation length vs high-pass window width for AUS, CAN and BPA data; shaded 

envelope spans [1 + τ0 /τ]‒2 to [1 +(τ0 /τ)2]‒½, with τ0 = 38 h. Dashed curve segments dependent on 

non-zero nugget. 

 

3.3 Discussion 

The characteristics of the correlation length-scale metric introduced in equation (1) and 

used above deserve further explication. This measure has the advantage that it is essentially free 

of assumptions about the functional form of the correlation vs. distance data. It quantifies the 

site-separation distance needed to reduce average inter-station correlation to a small value. 

However, it is important to remember, especially with data with such large scatter as observed 

here, that ξ τ  is just one of multiple possible measures of “how far is far enough”. For example, as 

seen in Fig. 1 for the CAN data, numerically integrating the scattered ρ(r) points according to 

equation (1) gives ξ65 h = 139 km (right-hand end of light-blue curve) while integrating the dark-

blue robust local-regression curve for the same window width gives the significantly larger value 

of 172 km (integral not shown). This occurs because the residuals of the local-regression fit are 

negatively skewed, and the “robust” fitting process (Cleveland, 1979) pulls the fit towards the 

median by assigning small weights to points determined to be outliers; here more often below the 

curve than above.  
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The integral-scale metric ξ τ  measures the separation distance required for correlation to 

fall to a value small compared to unity; this can be substantially less than the distance ℓ  over 

which it falls to a fraction (say, 1/e) of its initial value (at r = 0) if the initial value is small. This 

discrepancy between the integral-scale metric and the 1/e distance ℓ  can be seen from the 

parameters of fitting of an exponential form to the data, as shown by the dashed-lines in Fig. 5 

(b) and (c). Here we fit ξ(r) = βℓ(1 − e−r/ℓ) as would be the case for correlation falling as βe−r/ℓ  

with distance. Fitting results are shown in Table 3. Due to the large nugget effect (Matheron, 

1963) observed in all three regions, the best-fit correlation at zero site-separation, β, is 

substantially smaller than unity, proportionately reducing the area ξ  under the ρ(r) curve. For the 

CAN data this gives ξ(rN) ≈ βℓ , but in the AUS and BPA regions ξ(rN) < βℓ  since the regions 

sizes do not permit separations r large enough to bring ρ(r) to zero and hence to bring ξ  to 

saturation. 

The nugget effect has a particularly strong influence on ξ τ  values at small τ. Had we 

constrained ρ(0) = 1 rather than estimating the value at the origin using local regression, Figure 6 

would have shown the decline in ξ τ/ξ2160 ending at a floor value limited by our trapezoid-rule 

integration to half the separation of the closest site pair (0.03, 0.01, and 0.07 for CAN, AUS, and 

BPA, respectively), affecting only the dashed portion of the curves. 

 

Table 3. Comparison of least-squares fit parameters (β, ℓ) to integral-scale correlation-length 

metric (𝛏𝐦𝐚𝐱). 

Dataset 𝝉 (hr) 𝜷 ℓ (km) 𝜷 ℓ (km) 𝝃𝒎𝒂𝒙 (km) 

CAN 2160 0.70 388 273 273 

AUS 2160 0.65 685 447 368 

BPA 2160 0.40 323 130 89 
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4 Conclusions 

 

Variability in wind-generated electricity can be reduced by interconnecting wind farms 

across large regions, as distant wind farms are only weakly correlated. We investigate the 

geographic extent needed for this aggregation to be effective using three extensive data sets. 

Using a “non-parametric” estimator ξ based on the area under the correlation vs. distance curve, 

we found for the slowest variabilities 𝜉max = 273 km for 10-m wind speeds in Canada, 368 km 

for wind-plant generation in southeastern Australia, and 89 km for tower wind-speeds in the 

northwestern US. Since the Australia and BPA regions are small enough that even for the most 

distant sites correlation never drops to zero, our ξ values for the widest filter window-widths are 

underestimates of the extent needed for fully effective aggregation. Quantities more 

representative of the extent needed for smoothing the slowest variabilities are given by the larger 

βℓ values of 447 km and 130 km respectively, in Table 3, obtained by fitting ξ(r) to the form 

βℓ(1 − e−r/ℓ) and extrapolating ξ to r = ∞. These values can be compared to like values from 

previous work listed in Table 1.  

Although the regional length scales have different magnitudes, we find a dependence of ξ 

on variability time-scale that is remarkably similar across the three regions, as seen in Fig. 6. At 

time scales τ shorter than 38 hours, ξ falls at least as fast as τ −1, while at longer scales it is 

essentially constant. Thus, on time scales longer than a day or so the variability-reduction benefit 

of aggregating wind power over a region of a given size will be independent of time scale. For 

time scales shorter than a day, the faster the variability, then the more smoothing that region 

could provide. It is the shrinking of correlation length with time scale that gives high-frequency 

spectral slopes a larger magnitude for power aggregated over a region compared to a single site 

(Beyer et al., 1990; McNerney and Richardson, 1992; Nanahara et al., 2004; Katzenstein et al., 
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2010; Tarroja et al., 2011; Fertig et al., 2012); similarly for solar power (Curtright and Apt, 

2008; Marcos et al., 2011).  

Our findings help disentangle the effects on variability reduction of generator number, 

region size, and variability time scale. In general, aggregating the outputs of N uncorrelated 

generators should reduce variability magnitudes by a factor of √𝑁. A geographic region of area 

A has roughly N ≈ A/(2ξ ) 2 potential uncorrelated sites; thus, for a fully populated region 

(Hasche, 2010) variability could be attenuated by a factor up to √𝐴/(2𝜉). For time scales shorter 

than τ ≈ 1.5 days, the number of potential uncorrelated sites within a fixed area, and hence 

achievable attenuation, grows at least as fast as 1/τ. If the actual number of generators in a region 

is less than A/(2ξ ) 2, the lesser number will determine attenuation.  

Further work to better understand whether the high degree of scatter in correlation vs. 

distance is a stable manifestation of some unidentified geographic process or is just persistent, 

random temporal variation that would average away over longer records would improve model 

utility. Additionally, analysis of solar data over a large region could determine if time and length 

scale of solar variability are linked in a way similar to what we found here for wind. 
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CHAPTER III 

STABILITY AND TURBULENCE EFFECTS ON POWER CURVES 

 

Global growth in wind development suggests an increasing reliance on wind generation, 

motivating efforts to refine all steps of the wind resource assessment and power performance 

testing processes, including the calculation of annual energy production (AEP), a critical 

parameter for wind farm financing pre- and post-wind farm construction. The AEP depends both 

on the wind speed distribution at a site and the wind turbine power curve. Calculating and 

understanding a wind turbine power curve is crucial for power performance testing and AEP 

assessments.  

We use 2.5 months of detailed upwind and nacelle-based measurements from a utility-

scale wind turbine and calculate power curve and AEP and explore their sensitivity to different 

atmospheric parameters. We find that: (1) increased turbulence intensity (TI) and turbulence 

kinetic energy (TKE) undermines power production at wind speeds near rated, but increases 

power production at lower speeds, (2) decreased stability as defined by the Bulk Richardson 

number undermines power production at wind speeds near rated, but increases power production 

at lower speeds, and (3) wind resource estimates that fail to consider these atmospheric regimes 

may overestimate the AEP. 

In this chapter we suggest that different power curves be calculated for different 

conditions, which will allow for a more refined understanding of how the turbine is operating in 

different atmospheric conditions, and may lead to a more accurate and reliable performance 

result and AEP calculation. 
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The following is adapted and reformatted from: 

St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Wind turbine 

power production and annual energy production depend on atmospheric stability and turbulence, 

Wind Energ. Sci., 1, 221-236, doi:10.5194/wes-1-221-2016, 2016. 

 

Abstract 

 

Using detailed upwind and nacelle-based measurements from a General Electric [GE] 

1.5sle model with a 77-m rotor diameter, we calculate power curves and annual energy 

production (AEP) and explore their sensitivity to different atmospheric parameters to provide 

guidelines for the use of stability and turbulence filters in segregating power curves. The wind 

measurements upwind of the turbine include anemometers mounted on a 135-m meteorological 

tower as well as profiles from a lidar. We calculate power curves for different regimes based on 

turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability 

parameters such as the Bulk Richardson number (𝑅𝐵). We also calculate AEP with and without 

these atmospheric filters and highlight differences between the results of these calculations. The 

power curves for different TI regimes reveal that increased TI undermines power production at 

wind speeds near rated, but TI increases power production at lower wind speeds at this site, the 

U.S. Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, 

power curves for different 𝑅𝐵 regimes reveal that periods of stable conditions produce more 

power at wind speeds near rated and periods of unstable conditions produce more power at lower 

wind speeds. AEP results suggest that calculations without filtering for these atmospheric 

regimes may overestimate the AEP. Because of statistically-significant differences between 

power curves and AEP calculated with these turbulence and stability filters for this turbine at this 

site, we suggest implementing an additional step in analyzing power performance data to 

incorporate effects of atmospheric stability and turbulence across the rotor disk. 
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1 Introduction 

 

Power performance testing and annual energy production (AEP) assessments rely on 

accurate calculations of wind turbine power curves. Previous work on power performance 

highlights the role of turbulence intensity (TI) and wind shear in influencing power production 

(Elliot and Cadogan, 1990; Hunter et al., 2001; Kaiser et al., 2003; Sumner and Masson, 2006; 

Gottschall and Peinke, 2008; Antoniou et al., 2009; Rareshide et al., 2009; Wharton and 

Lundquist, 2012a, 2012b; Clifton et al., 2013a; Dörenkämper et al., 2014). Wharton and 

Lundquist (2012b) also found that vertical TI and turbulence kinetic energy (TKE) affect power 

performance and Rareshide et al. (2009) found that veer affects power performance. 

Atmospheric stability induces deviations of power from the manufacturer power curve (MPC) 

(Motta et al., 2005; van den Berg, 2008; Vanderwende and Lundquist, 2012; Wharton and 

Lundquist, 2012b), and atmospheric variations across the rotor disk can influence power 

performance results (Sumner and Masson, 2006; Wagner et al., 2009; Choukulkar et al., 2016).  

Because the power curve so closely impacts AEP, factors that influence power 

performance typically influence AEP calculations as well. As suggested by the works mentioned 

above, the two most closely explored atmospheric factors with regard to AEP are TI and wind 

shear, but the existing studies do not agree on the influence of TI and wind shear on AEP. The 

simulation-based study of Antoniou et al. (2009) found that low wind shear supported high AEP. 

For low wind speeds, the highest AEP occurred during conditions of high TI, but at higher wind 

speeds, the highest AEP occurred when TI was low. In contrast, based on data from a number of 

wind farms in the continental United States, Rareshide et al. (2009) also compared AEP 

calculated with different TI and shear combinations, and found that AEP typically decreased 

with increasing TI, but increased with increasing shear. 
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In this study, we also investigate the influence of different atmospheric stability and 

turbulence regimes on wind turbine power curves and AEP calculations, incorporating a broad 

set of atmospheric parameters as well as different approaches to measuring these parameters. In 

Sect. 2 we describe our data set, which includes an upwind meteorological (met) tower with 

measurements spanning the rotor disk as well as a wind-profiling lidar. In Sect. 3 we present our 

data analysis methods, which include filtering the data by atmospheric parameters like shear, TI, 

and atmospheric stability. The effects of atmospheric parameters on power curves and AEP are 

presented in Sect. 4, and in Sect. 5 we summarize conclusions about the effects of atmospheric 

stability and inflow turbulence on power curves and AEP calculations.  

2 Data  

 

2.1 Measurement site 

The measurements used in this analysis were collected at the U.S. Department of Energy 

(DOE) National Wind Technology Center (NWTC, Fig. 1) at the National Renewable Energy 

Laboratory (NREL), located just south of Boulder, Colo., and about 5 km east of the Colorado 

Front Range (Clifton et al., 2013b; Aitken et al., 2014b). The prevailing wind direction at 80 m 

(hub height) at this site during this campaign (29 November 2012 – 14 February 2013) was 

west–northwesterly. 
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Figure 1. Left: Local map of the NWTC with instrument locations and topographic contours in 

meters above sea level. Right: The regional setting of the NWTC between the Greater Denver 

Metro area and Boulder, with the Front Range of the Rocky Mountains shown in the higher 

topography west of the site. (Courtesy of Joshua Bauer and Billy Roberts at NREL.) 

 

This wind direction also dominated a 14-year period from a neighboring met tower at the 

NWTC (Clifton and Lundquist, 2012). During the winter, the downslope flow from the nearby 

Rocky Mountains is frequently channeled through Eldorado Canyon, located just west-northwest 

of the NWTC (Banta et al., 1996; Poulos et al., 2000, 2007; Clifton et al., 2013b; Aitken et al., 

2014b). The NWTC site slopes upward with about 20 m in elevation change toward the west for 

about 1.5 km before dropping off 20 m towards the highway on the western edge of the site. The 

surface is mostly short grass. 
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2.2 Upwind measurements 

Upwind measurements were taken using a Renewable NRG Systems 

(NRG)/LEOSPHERE WINDCUBE v1 vertically-profiling Doppler lidar (Courtney et al., 2008; 

Rhodes and Lundquist, 2013) and a 135-m met tower. The tower supports several levels of cup 

anemometers, vanes, sonic anemometers, and temperature sensors, along with precipitation and 

air-pressure sensors (Fig. 2, Table 1) all on booms pointing in the dominant wind direction 

(west-northwest). Data were collected during the winter season, typically the season of the 

strongest winds at the NWTC (from 29 November 2012 through 14 February 2013). The lidar is 

located about 216 m (2.7 D) west of the General Electric (GE) 1.5sle turbine on the NWTC site. 

The met tower is located approximately 160 m (2.0 D) west-northwest of the turbine (Fig. 1). 

Because different instruments employ different averaging methods, Fig. 3 demonstrates that all 

wind speed data sets were synchronized and illustrates how the power output responds to 

changes in wind speed. 

2.2.1 Lidar  

The NRG/LEOSPHERE WINDCUBE v1 lidar measures volumetric-averaged wind 

speeds and directions every 20 m from 40 m to 220 m, thereby spanning the entire vertical extent 

of the turbine rotor disk. The wind speeds are measured with an accuracy of 0.2 m s–1 and the 

wind directions are measured with an accuracy of 1.5° (Courtney et al., 2008). First, we filtered 

the nominally 1-Hz measurements of the horizontal wind speeds and directions for suitable 

carrier-to-noise ratio (CNR). Next, we averaged these 1-Hz data to 10-min averages for 

comparison with the tower and turbine data. The lidar takes a volumetric measurement, assuming 

homogeneity over the entire volume it is measuring. This process introduces an uncertainty in 

the lidar measurements in inhomogeneous flow (Bingöl et al., 2009; Rhodes and Lundquist, 
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2013; Lundquist et al., 2015); this possible source of error is discussed in further detail in the 

supplement (Sect. S1).  

2.2.2 Meteorological tower 

The M5 met tower (NWTC, 2016, similar to the M4 tower at the site, which was studied 

by Rinker et al., 2016) is instrumented with cup anemometers at 3, 10, 30, 38, 55, 80, 87, 105, 

122, and 130 m, and vanes at 3, 10, 38, 87, and 122 m (Fig. 2 and Table 1). Barometric pressure 

and precipitation sensors are located at 3 m and temperature sensors at 3, 38, and 87 m (Table 1). 

Sonic anemometers are mounted at 15, 41, 61, 74, 100, and 119 m (Fig. 2 and Table 1). The 

tower booms are directed at 278°, into the prevailing wind direction, slightly north of west. 

Measurements from the sonic anemometers at 15 and 74 m are used to calculate turbulent fluxes 

of momentum and heat for assessment of atmospheric stability and turbulence as discussed in the 

following sections.  

2.3 Wind turbine data 

A GE 1.5MW turbine (GE 1.5/77 sle) with an 80-m hub height was chosen for this study. 

The GE 1.5MW is the most widely deployed utility-scale turbine in the world with more than 

12,000 turbines deployed around the globe as of 2009 (GE Energy, 2009). The supervisory 

control and data acquisition (SCADA) system of the turbine provides 10-min averages of nacelle 

wind speed, nacelle orientation, turbine power, blade pitch angles, and generator speed set point. 

These measurements can be compared with the upwind measurements to quantify power curves 

and AEP. The cup anemometer mounted on the nacelle of the turbine is a NRG IceFree Hybrid 

XT Turbine Control Anemometer. The GE 1.5sle reaches its nameplate capacity, 1.5 MW, at a 

wind speed of 14 m s–1 (GE Energy, 2009). We refer to this wind speed as the rated wind speed 
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for the rest of this article. The lower and upper extremes of the swept area of the GE 1.5sle in 

this study are approximately 41.5 m and 118.5 m above ground. More details on this turbine and 

power performance testing results as well as instrument and site calibration information can be 

found in Mendoza et al. (2015). 

 

 

Figure 2. 135-m meteorological tower configuration with some key heights labeled. This tower 

varies slightly from the M4 tower described in Clifton et al. (2013b), but data are available 

online (NWTC, 2016). 
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Table 1. 135-m met tower instrument information. 

Type Instrument Mounting Heights (m) Accuracy 

Cup anemometer Met One SS-201 3, 10, 38, 87, 122 0.5 m s–1 

Cup anemometer Thies 4.3351.10.0000  30, 55, 80, 105, 130 0.2 m s–1 

Wind vane Met One SD-201  3, 10, 38, 87, 122 3.6° 

Air temperature 

sensor 

Met One T-200A platinum 

RTD 

3, 38, 87 0.1°C 

Differential 

temperature sensor 

Met One T-200A 38, 87, 122 0.1°C 

Sonic anemometer ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.01 m s–1 

Boom triaxial 

acceleration sensor 

Summit 34201A 15, 41, 61, 74, 100, 119  

Sonic temperature ATI ‘K’ type 15, 41, 61, 74, 100, 119 0.1°C 

Barometric pressure 

sensor 

AIR AB-2AX 3  

Dew point 

temperature sensor 

Therm-x 9400ASTD 3, 38, 87, 122  

Precipitation sensor Vaisala DRD11A 3  
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Figure 3. Time series from 11 January 2013 from 08:00 to 17:00 Mountain Standard Time 

(MST): (a) is a time series of 80-m wind speeds measured by the cup on the tower; (b) is a time 

series of 80-m wind speeds measured by the lidar; (c) is a time series of the hub-height wind 

speeds measured by the cup anemometer on the nacelle; and (d) is a time series of the power 

output from the turbine.  

 

3 Analysis methods 

 

Before calculating atmospheric parameters, all meteorological and turbine data are 

checked for data quality as described in Sect. 3.1. 

3.1 Data quality control 
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3.1.1 Lidar  

All lidar-measured wind-speed measurements are filtered by CNR: only measurements 

with a CNR greater than –18 dB are retained. Lower CNR results from clean-air conditions 

(Aitken et al., 2012), which occur frequently on Colorado’s Front Range in the winter. After 

additional filtering for quality control purposes (such as removing bad data as defined by the 

manufacturer’s wind speed and temperature limits), the data recovery rate is approximately 33.5 

% for horizontal wind speeds and directions at 40 m, 40 % for horizontal wind speeds and 

directions at 60 and 120 m, and 45 % for horizontal wind speeds and directions at 80 and 100 m.  

3.1.2 Meteorological tower 

Quality control filtering methods performed on the met tower data discard data that are 

flagged for a number of reasons, including irregular timing (the time between measurements is 

inconsistent), insufficient percentage of data points within an averaging period (less than 95 %), 

low standard deviation (less than 0.01 % of the mean) or constant values during the measurement 

interval (which indicate icing events), empty data channels, bad values as defined by 

manufacturer limits, or when an instrument records a “NaN” in place of a real measurement. 

After filtering for quality control purposes, the met tower provides horizontal wind speeds and 

directions and temperatures about 90 % of the time at all levels during this study. 

Several spikes in wind speed occur in the raw sonic anemometer data. Therefore, a de-

spiking filter is applied based on the change in wind speed from each data point to the next. Data 

points are removed if they are preceded and followed by changes exceeding the lowest 99 % of 

all changes. After filtering the spikes in the sonic anemometers as well as the previously 
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discussed quality control procedure, the sonic anemometers provide wind speed and temperature 

about 90 % of the time at 15 m and about 60 % at 74 m during this study. 

3.2 Wind speed and direction subselection 

Although the dominant wind direction at the site is west-northwesterly, other wind 

directions do occur. To ensure the lidar and met tower measurements are upwind of the turbine, 

we consider only data from time periods of hub-height wind from the 235°–315° wind direction 

sector. This sector includes the most frequent and highest wind speeds as measured by both 

upwind instruments (Fig. 4). Only wind speeds between cut-in (3.5 m s–1) and cut-out (25 m s–1) 

are considered to ensure that the turbine is operating.  

 
Figure 4. Wind roses for (a) lidar 80-m altitude and (b) met tower 87-m altitude, the closest to 

hub-height with both a cup and vane. Wind speed bins are 2 m s–1 and wind directions bins are 

10°. The black outline highlights the chosen wind direction sector. 

 

3.3 Filtering turbine underperformance 

After filtering for quality control as well as wind speed and direction, a large number of 

times occur when the turbine is producing significantly less power than expected—
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underperforming—as seen in Fig. 5a. We test two methods to isolate and discard the cases where 

the turbine is producing significantly lower power, inconsistent with “normal operation.” The 

first approach relies on blade pitch angle to segregate data and flag most of these 

underperforming periods; this approach could be used by wind plant owner-operators with access 

to limited SCADA parameters. When more SCADA parameters are available, such as generator 

speed set point, these values may be used in a more rigorous way to filter on curtailment and to 

define normal turbine operation. 

3.3.1 Filtering based on blade pitch angle 

Without access to the turbine control system or data more refined than 10-min averages, 

typical blade pitch angles can be quantified as a function of wind speed (Fig. 5b). The median 

value for blade pitch angle for each wind speed bin as well as ± 4.5 median absolute deviation 

(MAD), equivalent to 3 σ, are shown by the red envelope in Fig. 5b. (We use MAD here instead 

of mean absolute deviation so that the calculation is not biased by a few outliers.) When plotted 

on a power curve using the tower 80-m cup anemometer for wind speed, Fig. 5a, the majority of 

the points outside of the ± 4.5 MAD envelope and between 5 and 17 m s–1 show 

underperformance. To identify underperformance, then, we calculate MAD blade pitch angles 

from each blade for each wind speed bin between 5 and 17 m s–1. Time periods with blade pitch 

angles outside of ± 4.5 MAD are discarded. While variability on timescales shorter than 10 min 

may affect turbine operation, the effective filtering seen in the red scatter in Fig. 5a suggests that 

this approach is sufficient. This filtering by blade pitch angle also has the advantage of using 

only data to which a typical wind plant operator would have access.   

 After filtering for hub-height wind speed and direction, positive power production, and 

blade pitch angle, 1,240 out of 7,949 lidar 80-m wind speed data points remain (16 %), and 2,235 
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out of 9,918 met tower 80-m wind speed data points remain (23 %). Concurrent lidar, met tower, 

and turbine data that fulfill the various screening criteria occur during 1,107 10-min periods.  

 

Figure 5. (a) Scatter power curve based on the tower 80-m wind speed. Blue dots show points 

that are outside of the median absolute deviation (MAD) envelope in (b) and the red dots 

represent points that are within the MAD envelope in (b). The vertical grey dashed line marks 

rated speed; (b) blade pitch angle from a single blade versus tower 80-m wind speed. Red 

envelope represents ±⁡4.5 MAD of the blade pitch angle within wind speed bins 0.5 m s–1 wide.  

 

3.3.2 Filtering based on extensive SCADA turbine operational parameters 

Access to a number of turbine control parameters from the SCADA on the DOE GE 1.5 

allows for a more accurate definition of normal turbine operation, mostly based on generator 

speed set point filtered on curtailment. However, from cut-in wind speed until around 5.5 m s–1, 
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using generator speed set point to filter the data results in discarding too many data points. 

Therefore, between cut-in wind speed and about 5.5 m s–1, the generator speed set point is not 

used; rather data points are discarded only when the turbine is not grid connected and is faulted. 

Above 5.5 m s–1, only generator speed set point is used to filter on curtailment and for normal 

operation. The data points filtered using this method are represented in Fig. 6 in blue, while the 

red points in Fig. 6 represent the data points that pass this filtering method.  

 

Figure 6. Scatter power curve using the tower 80-m wind speed. Blue dots show points filtered 

out using turbine control parameters described in Sect. 3.3.2. Red dots show data points that 

passed this filtering process. The grey dashed line marks rated speed. 
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After filtering for hub-height wind speed and direction, positive power production, and 

normal turbine operation, 1,227 out of 7,949 lidar 80-m wind speed data points remain (15 %), 

and 2,249 out of 9,918 met tower 80-m wind speed data points remain (23 %). Concurrent lidar, 

met tower, and turbine data that fulfill the various screening criteria occur during 1,127 10-min 

periods. 

3.3.3 Comparison of different turbine operation filters 

The turbine operation filters described in Sect. 3.3.2 not only filter out all of the times 

when the turbine is producing significantly less power than expected, but allows the use of about 

2 % more data points deemed “bad” by the blade pitch angle filtering method described in Sect. 

3.3.1. Many of the data points that would be discarded using the blade pitch angle filtering 

method are between cut-in wind speed and 10 m s–1, and lie reasonably within the expected 

power curve, on top of data points that passed through the filter. Therefore, the remaining 

analysis is based on data filtered using the methodology described in Sect. 3.3.2. 

3.4 Power curves  

Power curves based on wind speeds normalized by air density following International 

Electrotechnical Commission (IEC) 61400-12-1 (2015) can be used to evaluate turbine 

performance. The observed power curves, comparing power production to 80-m tower 

anemometer wind speeds (Fig. 7a), 80-m lidar wind speeds (Fig. 7b), and nacelle anemometer 

wind speeds (Fig. 7c), generally show good agreement with an approximation of the MPC (GE 

Energy 2009). This approximated MPC is determined by placing the publicly-available MPC for 

the GE 1.5sle on a grid (with dimensions of 0.5 m s–1 by 50 kW) and estimating expected power 

produced at each wind bin. 
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The nacelle-mounted anemometer does not observe the ambient wind speed that the rotor 

disk experiences because the wind that flows through the rotor disk and along the nacelle during 

operation is modified by the blades and nacelle (Antoniou and Pedersen 1997; Smith et al. 2002; 

Frandsen et al. 2009; Zahle and Sørensen 2011). However, power curves calculated using nacelle 

wind speeds are shown here along with power curves calculated using upwind measurements in 

order to compare the different methods. In many cases, operators calculate these nacelle-based 

power curves due to lack of other data. 

 
Figure 7. Power curves after filtering for wind speeds between 3.5 and 25 m s–1, wind directions 

between 235°and 315°, and for normal turbine operation: (a) turbine power production versus 

80-m cup anemometer wind speed from the met tower; (b) turbine power production versus 80-m 

wind speed from the lidar; (c) turbine power production versus hub-height wind speed from the 

anemometer on the nacelle. The black line represents an approximation of the manufacturer 

power curve for the GE 1.5sle (GE Energy, 2009). Wind speed is normalized for density 

following IEC 61400-12-1 (2015). The grey dashed line marks rated speed. 

 

The power curves created from 10-min tower and nacelle-mounted anemometer 

measurements (Fig. 7a, Fig. 7c, respectively) show less variability than the lidar power curve 

(Fig. 7b). It is especially apparent from the power curve created from 10-min lidar measurements 

(Fig. 7b) that the lidar variability at this particular site is vulnerable to inhomogeneity in the 

flow. Although lidars are widely available and used in the field (Clifton, 2015), the variability 

between the lidar and tower measurements (Fig. 8) indicates sufficient inhomogeneity in the flow 

at this particular site (as observed by Aitken et al., 2014b) to cause us to discuss and show other 
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upwind data from the tower from this point forward. Note, however, that not all sites are subject 

to the inhomogeneity seen at the NWTC, and all instruments available for wind measurement 

should be considered. Concurrent met tower and turbine data that fulfill the screening criteria 

occurred during 2,240 10-min periods, equivalent to about 373 h of data, which is more than 

twice the 180 h of data that the IEC 61400-12-1 standard (2015) recommends for power 

performance testing.  

 
Figure 8. Lidar 80-m wind speeds compared to tower 80-m wind speeds filtered for wind speeds 

between 3.5 and 25.0 m s–1, wind directions between 235° and 315°, and for normal turbine 

operation. Black dashed line represents a 1:1 relationship. 
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3.5 Atmospheric stability regimes  

Numerous approaches are available for classifying the atmospheric stability of a given 

10-min or 30-min time period. Bulk Richardson number (𝑅𝐵) calculations use temperature and 

wind speed differences from the lowest met tower measurement to the height of the top of the 

rotor disk to compare the buoyant production of turbulence to the wind-shear-generated 

mechanical production of turbulence (Stull, 1988) as 

𝑅𝐵 =⁡
𝑔⁡∆𝑇⁡∆𝑧

𝑇̅⁡∆𝑈2   ,                                                                                                                               (1) 

where g is the gravitational constant 9.81 m s–2, ∆z is the change in height, ∆T is the change in 

10-min averages of temperature across ∆z, 𝑇̅ is the mean temperature across ∆z, and ∆U is the 

change in the 10-min averages of horizontal wind speed across ∆z. Note that Eq. (1) does not 

consider wind direction variability because cup anemometer measurements provide only 

information about horizontal wind speed. Typical stability classifications based on 𝑅𝐵 

calculations are as follows: turbulent flow in unstable conditions when 𝑅𝐵⁡is less than 0, laminar 

flow in stable conditions when 𝑅𝐵 is greater than 0.25, and neutral conditions when 𝑅𝐵 is 

between 0 and 0.25 (Stull, 1988). These stability classifications are similar to those used in 

previous work on stability effects on wind turbine fatigue and loading in Kelley (2011), and 

slightly different from the stability classifications used in Vanderwende and Lundquist (2012). 

The distribution of 𝑅𝐵 calculated from the tower measurements for this campaign (Fig. 9), 

however, suggests that slightly different regimes, shown in Table 2, could be used to better 

represent the data at this site. Similar to the approach used in Aitken et al. (2014b), the 𝑅𝐵 

distribution is split roughly into thirds to allow for less overlap between stable and unstable 
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regimes. The uncertainty in 𝑅𝐵 for these instruments over the measurement period is about 0.01, 

therefore the 𝑅𝐵 classifications used are larger than the uncertainty.  

 

Figure 9. 𝑅𝐵 distribution using thresholds in Table 2, including data filtered for tower 80-m 

wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for 

normal turbine operation. 

 

 Obukhov length (L) is also a useful measure of atmospheric stability, relying on surface 

stresses as well as heat fluxes to estimate the height in the surface layer at which the buoyant 

production of turbulence dominates wind-shear-generated mechanical production of turbulence 

(Stull, 1988) as 
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𝐿 = ⁡−
𝑢∗

3

𝑘⁡𝑔
⁡

𝑇𝑣

𝑤′𝑇𝑠′̅̅ ̅̅ ̅̅ ̅̅
   ,                                                                                                                          (2) 

where 𝑢∗ is the friction velocity, k is the von Karman constant 0.41,  𝑇𝑣 is the virtual 

temperature, 𝑤′ is the vertical wind speed fluctuation in the 30-min averaging period, and 𝑇𝑠′ is 

the sonic temperature fluctuation in the 30-min averaging period. L calculations are based on 

sonic anemometer measurements at 15 m and temperature measurements interpolated to 15 m to 

ensure L is calculated using measurements within the surface layer. Typical stability 

classifications are used in this work and are based on L calculations as defined by Muñoz-

Esparza et al. (2012); shown in Table 2. These classifications are slightly different from those 

used in Wharton and Lundquist (2012b). The distributions of L are shown in Fig. 10.  
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Figure 10. L distribution using thresholds in Table 2. Note that some neutral cases are outside of 

these axes. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 87-m 

wind directions between 235° and 315°, and for normal turbine operation. 

 

Table 2. Defined stability regimes 

Stability class 𝑹𝑩 L (m) α 

Unstable conditions 𝑅𝐵⁡< –0.03 –1,000  < L ≤ 0 α < 0.11 

Neutral conditions –0.03 < 𝑅𝐵< 0.03 |L| ≥ 1,000 0.11 < α < 0.17 

Stable conditions 𝑅𝐵 > 0.03 0 ≤ L < 1,000 α > 0.17 

 

When the 𝑅𝐵 and L stability approaches are compared against one another and against 

time-of-day, as in Fig. 11, the stability parameters differ slightly in their definitions of unstable 
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and stable. Because of differences in stability classes due to varying approaches to defining 

atmospheric stability, we treat 𝑅𝐵-defined stability classes separately from L-defined stability 

classes in the power curves. 

 

Figure 11. L versus 𝑅𝐵. Blue box represents where both L and 𝑅𝐵 agree on the stable conditions; 

percentage (24 %) represents the percentage of data points in this box. Red box represents where 

both L and 𝑅𝐵 agree on the unstable conditions; percentage (11 %) represents the percentage of 

data points in this box. Includes data filtered for tower 80-m wind speeds between 3.5 and 25 m 

s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 

 

3.6 Turbulence regimes  

TI can also be used to describe atmospheric conditions, as demonstrated by Rareshide et 

al. (2009), Wagenaar and Eecen (2011), and Wharton and Lundquist (2012a). TI is typically 

defined as  

𝑇𝐼 = ⁡
𝜎80𝑚

𝑈80𝑚
∗ 100 ,                                                                                                                         (3) 
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where 𝜎80𝑚 is the 10-min standard deviation of the horizontal wind speed at 80 m and  𝑈80𝑚 is 

the 10-min mean horizontal wind speed at 80 m. Although the TI approach has been used 

successfully at other locations, the NWTC consistently features strong turbulence likely resulting 

from the terrain characteristics of the site (Fig. 12, Fig. 13), making it difficult to distinguish 

typical stability classes from TI calculations. This strong ambient turbulence has led to the 

choice of site-specific turbulence classification defined in Table 3.  

When the atmospheric stability regimes are compared to the TI regimes defined here 

(Fig. 14), the 𝑅𝐵 and TI regime percentages also differ slightly in their definitions of unstable 

atmospheric conditions and highly turbulent conditions. Most of the daytime points are within 

the unstable regime as defined by 𝑅𝐵; however, only about 17 % of the data fall within unstable 

conditions with higher TI. This comparison, again, emphasizes the highly turbulent 

characteristics of the NWTC.  

 To further understand the turbulence characteristics demonstrated during this campaign, 

we also calculate TKE using the 74-m 3D sonic anemometer mounted on the M5 met tower. 

Although TI is a parameter typically calculated and analyzed in the wind industry, TKE has the 

advantage of including the vertical component of the wind: 

𝑇𝐾𝐸 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅)  ,                                                                                                       (4) 

where we calculate TKE per unit mass, u’ is the perturbation from a 30-min average of the zonal 

component of the wind, v’ is the perturbation from a 30-min average of the meridional 

component of the wind, and w’ is the perturbation from a 30-min average of the vertical 

component of the wind. Using this TKE approach also reveals the strong turbulence at the 

NWTC, only slightly affected by the diurnal cycle during this wintertime campaign (Fig. 12, Fig. 
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15). Turbulence classifications based on TKE are determined by the distribution in Fig. 15 and 

are listed in Table 3. 

Many cases with relatively high TI or TKE are considered neutral and stable according to 

our stability definitions in Table 3. Depending on whether TI, TKE, 𝑅𝐵, or L is considered as a 

measure of atmospheric stability, a particular time period may be classified differently. In other 

words, different results are found depending on the metric selected. 

 

Figure 12. TI (a) and TKE (c) calculated with near hub-height tower measurements versus time 

of day, where hour 0 and hour 24 represent local midnight. The blue line represents the mean TI 

in the corresponding hour and the error bar represents the standard deviation. The blue rectangle 

represents nighttime hours and the red rectangle represents daytime hours. Mean and standard 

deviation of TI (b) and TKE (d) calculated with near hub-height tower measurements in each 

wind speed bin. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 

87-m wind directions between 235° and 315°, and for normal turbine operation. 
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Figure 13. TI distribution using thresholds in Table 3. Includes data filtered for tower 80-m wind 

speeds between 3.5 and 25 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation. 

 

Table 3. Defined turbulence regimes 

Turbulence regime TI (%) TKE (m2 s–2) 

High turbulence  TI > 20 TKE > 6.5 

Medium turbulence 15 < TI < 20 3.0 < TKE < 6.5 

Low turbulence TI < 15 TKE < 3.0 
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Figure 14. TI versus 𝑅𝐵 . Blue box represents where both TI and 𝑅𝐵 agree on the stable 

conditions; percentage (15 %) represents the percentage of data points in this box. Red box 

represents where both TI and 𝑅𝐵 agree on the unstable conditions; percentage (17 %) represents 

the percentage of data points in this box. Includes data filtered for tower 80-m wind speeds 

between 3.5 and 25 m s–1, 87-m wind directions between 235° and 315°, and for normal turbine 

operation. 
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Figure 15. TKE distribution using thresholds in Table 3. Includes data filtered for tower 80-m 

wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for 

normal turbine operation. 

 

3.7 Wind shear regimes 

To estimate the effect of the wind speed vertical profile across the rotor disk, the wind 

shear exponent or power law exponent parameter, α, is typically used in the wind energy 

industry: 

𝛼 =⁡
log(

𝑈2
𝑈1

)

log(
𝑧2
𝑧1
)
 ,                                                                                                                                  (5)  
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where 𝑧1 is the reference height,⁡𝑧2 is the height above ground level, 𝑈2 is the wind speed at 

height 𝑧2, and 𝑈1is the wind speed at height 𝑧1. At the NWTC during this study, the average 

wind shear exponent using the 122 m and 38 m tower wind speeds as 𝑧2 and 𝑧1, respectively,  is 

0.15. The standard deviation is 0.14 and the maximum wind shear exponent is 1.10.  

 

Figure 16. Shear exponent distribution using thresholds in Table 2. Includes data filtered for 

tower 80-m wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 

315°, and for normal turbine operation. 

 

For this period of time at this site, however, it was rare for the rotor equivalent wind 

speed (REWS) to deviate significantly from the hub-height wind speed (Sect. S2). Therefore, 

shear exponents are separated into regimes simply by splitting the shear exponent distribution 
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into thirds (Table 2, Fig, 16). Other approaches to classify stability regimes using shear 

exponents such as combining with other stability measures such as L and 𝑅𝐵, (Vanderwende and 

Lundquist, 2012) or using a REWS in the power curves (Elliott and Cadogan, 1990), may work 

at other sites.  

4 Results 

 

To explore the variability in the power curves, we apply filters to the power curves based 

on factors such as atmospheric stability and TI. We apply a new method to calculate AEP using 

these classifications. We can consider periods with low TI to be approximately “stable” by 𝑅𝐵 

and 𝐿; “unstable” conditions would generally have high TI. Our results show that, generally, at 

this site with little veer, stable conditions (with varying degrees of significance) lead to over-

performance at wind speeds just below rated power. At lower wind speeds, however, unstable 

conditions lead to over-performance. 

4.1 Power curves 

The NWTC site generally exhibits high TI throughout this data collection period. Even 

so, some differences in power produced emerge at wind speeds between 5 and 7 m s–1 and at 

wind speeds between 10 and 14 m s–1 after separating the TI into relative classes of low, 

medium, and high TI (Fig. 17a, Fig. 17c, Fig. 18a, Fig. 18c, Table 3). Statistically-distinct 

differences within each wind speed bin between the TI classes defined in Table 3 are determined 

by the Wilcoxon rank sum test with a 1 % significance level. These statistically-distinct bins are 

denoted by closed circles in Fig. 17a, Fig. 17c, Fig. 18a, and Fig. 18c. This statistical test shows 

that for the power curves using nacelle winds, periods of relatively high TI produce significantly 

more power than periods of relatively low TI at wind speeds between 5 and 9 m s–1 (Fig. 17a, 
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Fig. 18a). For the power curves using upwind tower winds, periods of relatively high TI produce 

significantly more power than periods of relatively low TI at wind speeds between 6.0 and 6.5 m 

s–1 (Fig. 17c, Fig. 18c). Conversely, power curves using nacelle winds show that at wind speeds 

between 10.5 and 13.5 m s–1, periods of relatively low TI produce significantly more power than 

periods of relatively high TI. Power curves using upwind tower winds show that at wind speeds 

between 9.5 and 15.5 m s–1, periods of relatively low TI produce significantly more power than 

periods of relatively high TI. Rareshide et al. (2009) found similar behavior.  

 

Figure 17. Nacelle anemometer power curves with (a) TI regimes and (b) 𝑅𝐵 regimes. Eighty-

meter tower anemometer power curves with (c) TI regimes and (d) 𝑅𝐵 regimes. Median statistics 

are used to avoid outlier effects. Statistically distinct differences within each wind speed bin 

between the regimes are determined by the Wilcoxon rank sum test with a 1 % significance level 

and denoted by closed circles. Includes data filtered for tower 80-m wind speeds between 3.5 and 

25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 

Envelopes represent ± 1 MAD for each wind speed bin. The grey dashed line marks rated speed. 
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Figure 18. Nacelle anemometer power curves shown as the anomaly from the neutral or medium 

power curve of the (a) TI regimes and (b) 𝑅𝐵 regimes. Eighty-meter tower anemometer power 

curves shown as the anomaly from the neutral or medium power curve of the (c) TI regimes; (d) 

𝑅𝐵 regimes. Median statistics are used to avoid outlier effects. Statistically distinct differences 

within each wind speed bin between the regimes are determined by the Wilcoxon rank sum test 

with a 1 % significance level and denoted by closed circles. Includes data filtered for tower 80-m 

wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for 

normal turbine operation. Envelopes represent ± 1 MAD for each wind speed bin. The grey 

dashed line marks rated speed. 

  

On the other hand, power curves separated by 𝑅𝐵-defined stability class show only a few 

bins that are statistically distinct in power produced (Fig. 17b, Fig. 17d, Fig. 18b, Fig. 18d). 

Power curves using nacelle winds show that at most wind speeds between 6.5 and 9.0 m s–1, 

periods of unstable conditions produce significantly more power than periods of stable 
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conditions. Power curves using upwind tower winds show that at wind speeds around 7 m s–1, 

periods of unstable conditions produce significantly more power than periods of stable 

conditions. Power curves using both nacelle winds and tower winds show that at wind speeds 

around 12 m s–1, periods of stable conditions produce significantly more power than periods of 

unstable conditions.  

Distinct differences between power curves calculated from nacelle winds and power 

curves calculated from upwind tower winds occur in the power curves of both of these 

atmospheric parameters. Statistically distinct wind speed bins in power curves calculated from 

nacelle winds tend to be similar to those in power curves calculated from tower winds near rated 

speed. At lower wind speeds, however, between about 5 and 9 m s–1, many more statistically 

distinct differences emerge between nacelle power curves than between tower power curves, 

most notably in the power curves segregated by TI regimes. Turbine operations are especially 

variable in this region of rapid increase in power with wind speed. The turbine reacts directly to 

the conditions as measured by instruments on the turbine. The nacelle-mounted anemometer 

observes winds that flow through the rotor disk and along the nacelle during turbine operation, 

and therefore likely measures different wind speeds than the upwind met tower. The nacelle 

anemometer observes complex flows behind the rotor disk that are strongly influenced by 

ambient turbulence, leading to more statistically significant differences in the nacelle power 

curves for TI regimes. 

Agreement between the TI and 𝑅𝐵 methods means that at wind speeds around rated, low 

TI and high stability result in over-performance relative to high TI and low stability. Both 

methods also agree that somewhere in between cut-in and rated, sometimes called “region 2,” 

high TI and low stability result in over-performance relative to low TI and high stability. Power 
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curves separated by L-defined stability class as well as power curves separated by shear class do 

not show any statistically-significant differences in power produced between unstable and stable 

periods (not shown). Power curves separated by TKE class show few statistically-significant 

differences in power produced between high and low TKE periods, likely because of the few 

data points available for the 30-min averaging period, therefore these results are shown in the 

supplement (Sect. S4). 

4.1.1 Underlying physics 

The large variability reported in the literature (and herein) regarding power production 

can be understood by recognizing the interactions between a pitch-controlled turbine and the 

atmosphere: the operation of control algorithms changes with wind speed, with varying effects 

depending on the ambient turbulence.  

Sensitivity to atmospheric turbulence occurs at low wind speeds, near cut-in wind speed. 

In these conditions, the turbine generator speed (revolutions per minute, RPM) increases, as does 

the generator torque. As a result, the blades will often pitch backward, changing the angle of 

attack to generate more lift, and the power production ramps up. At low wind speeds and higher 

turbulence, the turbine can react to the higher variation in wind speed and can capitalize on the 

variation seen in the wind flow because of the additional lift resulting from the blade pitch, and 

the turbine produces more power. Conversely, at low wind speeds with lower turbulence, the 

variation in wind speed is lower, and so the turbine experiences more consistent wind than in 

highly turbulent conditions and therefore produces less power. 

At higher wind speeds, closer to or just below rated speed, control mechanisms seek to 

maintain rated generator speed, rather than continuing to increase generator speed. The blades 
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will pitch forward (or “feather”), allowing the power production to maintain rated power. This 

process effectively decreases the amount of lift when compared to lift generated by a non-

feathered blade.  At these wind speeds during periods of high TI, a turbine reacts to the high 

variation in wind speed with subtle changes in blade pitch. For example, if the turbine detects a 

drop in wind speed, the blades may pitch back to generate more lift, but then if the wind speed 

increases quickly after, the blades will pitch forward again. If the blade pitch cannot immediately 

respond to increases in wind speed, then power losses occur. At these higher wind speeds, lower 

turbulence enables consistent blade pitch to match atmospheric conditions, and so the turbine can 

capture more power. 

It is also important to mention the strong connection between turbulence and shear: high 

shear will eventually erode turbulence (Wharton and Lundquist, 2012a). Periods of high shear 

generally coincide with periods of low turbulence and vice versa. With low shear, the mean wind 

speed is more consistent over the height of the rotor disk. However, since we did not see 

significant differences in power curves for different shear regimes here, we cannot speculate 

further on this in this analysis. Finally, if veer occurs in the wind profile (as in Vanderwende and 

Lundquist, 2012 and Dörenkamper et al., 2014), which usually occurs only in stable or low 

turbulence atmospheric conditions, that veer will generally undermine power production as the 

turbine blades are not oriented perpendicular  to the flow at all vertical levels. 

4.2 Annual energy production 

AEP allows developers and operators to quantify the projected energy production of a 

turbine. To quantify the impact on AEP of these stability- and turbulence-driven differences in 

power curves, we use a Weibull distribution for wind speed and calculate AEP with no filter, as 

well as with TI and stability filters. These turbulence and stability filters for the AEP calculations 
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can be further explained as AEP calculated using the power curves calculated from nacelle winds 

(Fig. 17a,b) as well as the power curves calculated from upwind tower winds (Fig. 17c,d). These 

power curves are used together with a sample wind distribution using Weibull distribution 

parameters based on wind speed data separated into each stability class (Table 4) as suggested by 

IEC 61400 12-1 (2015) for a site-specific AEP. For each of these filters, separate AEP 

calculations are made for each regime, weighted by the number of data points in that regime, and 

then added together to compare with the AEP calculated with no atmospheric filter. Note that 

although data are collected only during 2.5 months in the winter of 2012, AEP is calculated for 

an entire year to show values closer to a representative AEP value.  

Table 4. Weibull parameters for the case of no stability or turbulence filter as well as for each 

turbulence and stability class.  

 Scale parameter Shape parameter Mean 

No filter 10.04 2.63 8.90 

low TI regime 10.83 2.59 9.60 

med TI regime 10.81 2.90 9.63 

high TI regime 8.52 2.81 7.57 

low 𝑹𝑩 regime 10.12 3.09 9.05 

med 𝑹𝑩 regime 13.29 3.45 11.96 

high 𝑹𝑩 regime 7.64 3.10 6.83 

 

Results in Table 5 show a higher AEP when using no filter, followed by an AEP 

calculated with a TI filter and then a stability filter. The lower AEP calculated when separating 

by stability and turbulence regimes suggests that the AEP calculated using no filters may be 

overestimating the production, perhaps because the higher and lower extremes of the parameter 

ranges bias the averages in each bin.  

AEP results in Table 5 also show that the AEP calculated using nacelle winds 

underestimates the AEP when compared with an AEP calculated using upwind tower 

measurements. This underestimation of the nacelle anemometer-calculated AEP is true for both 
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the AEP calculated for the entire dataset as well as with each stability or turbulence filter and is 

likely because the nacelle anemometer underestimates the ambient wind speed due to flow 

interference of the rotor disk and nacelle. 

Table 5. AEP in megawatt-hours/year calculated for different atmospheric and turbulence 

regimes using a Weibull distribution with a scale and shape parameter associated with the 

corresponding wind speed distribution.  

 No filter TI filter 𝑹𝑩 filter 

AEP using tower data 7,479.3 7,409.6 7,278.7 

AEP using nacelle data 7,430.6 7,388.9 7,266.7 

 

When the AEP’s low and high regimes are compared to the medium regimes of their 

respective atmospheric parameters, the AEP for medium-TI periods is higher than that for low-TI 

periods and for high-TI periods for both the nacelle anemometer-calculated AEP and the tower-

calculated AEP (Table 6). Using low- and high-TI power curves results in an AEP smaller than 

that calculated using the medium-TI power curve. These results are likely obtained because the 

low-TI power curve loses production at lower wind speeds and the high-TI power curve loses 

production around rated speed. When using a stability filter, the AEP calculated with the low-𝑅𝐵 

power curve is higher than that with the high-𝑅𝐵 power curve (Table 6). This contrast between 

AEP calculated for the low stability regime and AEP calculated for the high stability regimes 

suggests that the unstable power curve (Fig. 17b,d) gains enough production at lower wind 

speeds to surpass the production gain by the stable power curve (Fig. 17b,d) near rated speed. 

 

 

 



 

70 
 

Table 6. AEP in percentage calculated for different filter regimes using a Weibull distribution 

with a scale factor and a shape factor representative of the corresponding wind speed 

distribution. Medium regime is set at 100 % and low and high regimes are percentages compared 

to the medium regime. The highest value within each row is italicized. 

Filter Low regime Medium regime High regime  

TI using tower data 85.03 100.00 68.20 

𝑹𝑩 using tower data 116.28 100.00 71.33 

TI using nacelle data 84.76 100.00 68.32 

𝑹𝑩 using nacelle data 115.86 100.00 70.52 

 

5 Conclusions 

 

Using 2.5 months of data from upwind and nacelle-based instruments, we calculate 

power curves for different regimes of atmospheric stability and turbulence as well as AEP with 

and without these atmospheric filters. This work focuses not only on the idea of calculating 

different power curves for different atmospheric conditions for power performance testing but 

also highlights the differences in AEP that can emerge from the application of stability- or 

turbulence-dependent power curves. We also summarize extensive data quality-control methods, 

including two approaches for filtering out turbine underperformance or curtailments. 

Statistically-significant differences emerge among power curves segregated by TI and 

𝑅𝐵. At wind speeds between 5 and 7 m s–1, during periods of high TI, significantly more power 

is produced than during periods of low TI. From about 10 to 14 m s–1 (near rated wind speed), 

during periods of low TI, significantly more power is produced than during periods of high TI. 

During periods of stable conditions, significantly more power is produced than during periods of 

unstable conditions around 12 m s–1, and significantly less power is produced than during periods 

of unstable conditions at some wind speeds between 6.5 and 9.0 m s–1. Statistically significant 

distinctions in power curves did not occur when filtering for TKE, L, yaw error, wind shear, or 

wind veer for this data set at this site, perhaps explaining why stable conditions promote 
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overperformance here, as in Wharton and Lundquist (2012b). A site with veer, however, exhibits 

underperformance in stable conditions (Vanderwende and Lundquist 2012). 

After calculating an AEP for each regime and comparing the high and low regimes with 

the medium regime, differences between AEP calculated using different atmospheric filters are 

revealed. An AEP calculated with no atmospheric or turbulence filter is higher than any AEP 

calculated with these filters. In addition, the AEP calculated using a TI filter shows that the AEP 

calculated with the medium TI regime is greater than the AEP calculated with the low or high TI 

regimes. The AEP calculated with the 𝑅𝐵 filter shows that the low regime AEP is much larger 

than the AEP in the high and medium regimes.  

As a small percent difference in AEP leads to a large deviation in cost for both operators 

and manufacturers, calculating different power curves for different atmospheric conditions may 

not only be a practical approach, but may lower the financial risks for both operators and 

manufacturers. 

 As discussed by Rareshide et al. (2009), manufacturers increasingly filter out data that 

represent what they consider anomalous or extreme atmospheric conditions for power 

performance testing. The IEC-61400-12-1 standard (2015) calls for at least 180 h of data to be 

used in a power performance test. Consequently, if manufacturers filter out data based on higher 

TI values, for instance, this means that more data must be gathered to make up for the discarded 

data. We see this discarding of data as unnecessary and potentially more costly. We suggest that 

instead of discarding these data, different power curves be calculated for different conditions. 

This approach can allow for a more nuanced understanding of how a turbine operates in different 

atmospheric conditions, and may lead to a more accurate and reliable performance result and 

AEP calculation. 
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CHAPTER IV 

STABILITY AND TURBULENCE EFFECTS ON NACELLE TRANSFER FUNCTIONS 

 

Power performance validation has traditionally relied on hub-height wind speed 

observations from a meteorological tower upwind of a turbine. However, tower installation and 

maintenance can be time-consuming and expensive. Alternatively, every utility-scale turbine 

installed around the world already has an anemometer mounted on the nacelle. With sufficiently 

accurate transfer functions to correct for the interference of the rotor blades and nacelle, is it 

possible the supervisory control and data acquisition (SCADA) data from these instruments can 

provide a valuable, extensive, and continuous source of turbine-specific performance 

information? 

We use 2.5 months of detailed upwind and nacelle-based measurements from a utility-

scale wind turbine and investigate the influence of different atmospheric stability regimes and 

turbulence regimes on nacelle transfer functions (NTFs) used to correct nacelle-mounted 

anemometer measurements. We find that: (1) fitting the data to a fifth-order polynomial to 

estimate the NTF results in a slightly higher r-squared value and smaller root mean squared error 

(RMSE) than fitting to a second-order polynomial, (2) the use of NTFs in annual energy 

production (AEP) calculations results in less than a 1% difference from the AEP calculated with 

the upwind met tower wind speed, and (3) during periods of relatively low stability and high 

turbulence intensity (TI) and turbulence kinetic energy (TKE), the nacelle anemometer 

underestimates the ambient wind speed more than during periods of relatively high stability and 

low TI and TKE at wind speed between cut-in and rated. 
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This chapter shows that correcting nacelle winds using NTFs results in more accurate 

AEP estimates similar to estimates obtained using upwind meteorological tower-based wind 

speeds. Further, stability and turbulence metrics have been investigated for their influence on 

NTFs and found to have an effect on NTFs below rated speed. We suggest calculating different 

NTFs for different conditions to determine the sensitivity of the NTFs to these atmospheric 

conditions, understanding of which may lead to a more accurate and reliable performance result 

and AEP calculation. 

The following chapter is adapted and reformatted from: 

St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Atmospheric 

turbulence affects wind turbine nacelle transfer functions, Wind Energ. Sci. Discuss., 

doi:10.5194/wes-2016-45, in review, 2016. 

  

 Abstract 

 

Despite their potential as a valuable source of individual turbine power performance and 

turbine array energy production optimization information, nacelle-mounted anemometers have 

often been neglected because complex flows around the blades and nacelle interfere with their 

measurements. This work quantitatively explores the accuracy of and potential corrections to 

nacelle anemometer measurements to determine the degree to which they may be useful when 

corrected for these complex flows, particularly for calculating annual energy production (AEP) 

in the absence of other meteorological data. Using upwind meteorological tower measurements 

along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate 

empirical nacelle transfer functions (NTFs) and explore how they are impacted by different 

atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for 

deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the 
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nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an 

AEP that comes within 1 % of an AEP calculated with upwind measurements.  We also calculate 

unique NTFs for different atmospheric conditions defined by temperature stratification as well as 

turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability 

as defined by the Bulk Richardson number (𝑅𝐵), the nacelle-mounted anemometer 

underestimates the upwind wind speed more than during periods of high stability at some wind 

speed bins below rated speed, leading to a more steep NTF during periods of low stability. 

Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates 

the upwind wind speed more than during periods of low turbulence at most wind bins between 

cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for 

different regimes of atmospheric stability and turbulence for power performance validation 

purposes.  

1 Introduction 

 

Traditionally, each wind turbine has an anemometer and wind vane mounted on its 

nacelle, behind the hub (Fig. 1). Measurements collected from these instruments are used for 

yaw control and turbine cut-in/cut-out procedures. Nacelle measurements could also be used to 

help improve turbine or park efficiency. For example, power performance verifications for 

individual turbines can now be based on the nacelle anemometer with suitable nacelle transfer 

functions (NTFs) (International Electrotechnical Commission [IEC] 61400-12-2 2013). Nacelle 

measurements can also provide critical input for wind farm production optimization (Fleming et 

al., 2016). With sufficiently accurate NTFs, these data can provide a valuable, extensive, and 

continuous source of turbine-specific performance information. 
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Power performance validation has traditionally relied on hub-height wind speed 

observations from a meteorological (met) tower upwind of a turbine (Link and Santos, 2004; IEC 

61400-12-1, 2015). The IEC 61400-12-1 (2015) standards require a met tower to be placed at the 

turbine location prior to turbine erection (the so-called “site calibration” procedure) for a power 

performance test to be considered valid (of sufficiently low total uncertainty) in complex terrain. 

However, it is not feasible to erect “site calibration” met towers after the turbine has been 

erected. And, even if “site calibration” is not required because a site is in simple terrain, tower 

erection is time-consuming and unrealistic to complete for every turbine at a given park. These 

factors motivate exploration of the use of nacelle-mounted anemometers to provide wind speed 

data for power performance validation.  

 

Figure 1. GE-1.5/77 sle turbine at the National Wind Technology Center. Photo credit: Dennis 

Schroeder/NREL (image gallery number 25872). 
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Several studies have found that nacelle anemometer measurements can be adjusted by the 

use of transfer functions between some upwind hub-height measurement and the nacelle-

mounted anemometer measurement (Antoniou and Pedersen, 1997; Hunter et al., 2001, Smith et 

al., 2002; Smaïli and Masson, 2004). The IEC 61400-12-2 (2013) standard now allows the use of 

nacelle-mounted anemometers to verify power curves based on these transfer functions, or fitted 

functions of correction factors between upwind hub-height wind speed (UHWS) measurements 

and nacelle-mounted anemometer wind speed (NAWS) measurements.  

An empirical NTF may not result in a linear relationship between the UHWS and NAWS. 

In fact, Antoniou and Pedersen (1997) found that the transfer functions fit well with a fifth-order 

polynomial curve. Hunter et al. (2001) similarly found a non-linear relationship and that a linear 

regression would overestimate the wind speed between 6 and 11 m s–1 and underestimate the 

wind speed at wind speeds less than 4 m s–1 and greater than 16 m s–1. Smith et al. (2002) found a 

linear relationship with the exception of wind speeds below cut-in and wind speeds about 15 m s–

1.  

In previous work, the relationship between UHWS measurements and NAWS 

measurements has been found to depend on multiple factors. Antoniou and Pedersen (1997) 

found that relations between the UHWS and the NAWS were dependent on rotor settings such as 

blade pitch angle and the use of vortex generators, yaw error, anemometer position, and terrain. 

They concluded that if these factors were kept constant, the relation could be used for all wind 

turbines of the same make and type. Frandsen et al. (2009) found a dependence on flow 

induction caused by the rotor. Dahlberg et al. (1999) discovered that pitch angle affects the 

relation. Dahlberg et al. (1999), Smith et al. (2002), and Frandsen et al. (2009) also stressed the 

importance of the correct calibration of the nacelle anemometers and that this calibration has an 
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effect on the error measured in the relation. Zahle and Sørensen (2011) found that the inflow 

angle to the rotor and yaw misalignment influences the relationship. Smith et al. (2002) 

concluded the relation may depend on turbine controls, topography, and nacelle height and 

position. Smaïli and Masson (2004) implemented a numerical model and concluded that a 

relation should account for rotor-nacelle interactions and hypothesized that wakes, topography, 

and nacelle misalignment would all have some effect on the relation. To summarize, the factors 

found to be relevant in NTFs are: rotor settings, yaw error, anemometer position, terrain, flow 

induction (decrease in wind speed just in front of or just behind the rotor), nacelle anemometer 

calibration, and inflow angle.  

The roles of inflow turbulence and atmospheric stability on NTFs have not yet been 

explored. However, previous work on power performance and annual energy production (AEP) 

does acknowledge the role of atmospheric stability, wind shear, and turbulence intensity (TI) in 

inducing deviations of power from the manufacturer power curve (MPC) (e.g., Sumner and 

Masson, 2006; Antoniou et al., 2009; Rareshide at el., 2009; Wagenaar and Eecen, 2011; 

Wharton and Lundquist, 2012a; Vanderwende and Lundquist, 2012; St. Martin et al., 2016).  

In this study, we quantify the effect of NTF-corrected nacelle anemometer measurements 

on the AEP and investigate the influence of different atmospheric stability and turbulence 

regimes on these NTFs. In Sect. 2, we briefly summarize our data set, which includes upwind as 

well as nacelle-based measurements, as well as our data analysis methods which include filtering 

based on turbine operation, and definitions of the stability and turbulence regimes. We present 

results of AEP calculations as well as separate NTFs for different stability and turbulence 

regimes in Sect. 3, and in Sect. 4 we summarize conclusions about the effect of the NTF on the 

AEP as well as the effects of atmospheric stability and inflow turbulence on the NTFs.  



 

79 
 

2 Data and methods 

 

2.1 Meteorological and turbine data  

For this analysis, we use 2.5 months of data collected at the U.S. Department of Energy 

(DOE) National Wind Technology Center (NWTC) at the National Renewable Energy 

Laboratory (NREL) during the wintertime (29 November 2012–14 February 2013). Ten-minute-

averaged turbine supervisory control and data acquisition (SCADA) data used in this study are 

from a General Electric (GE)-1.5-MW turbine (GE-1.5/77 sle, Fig. 1), with a cut-in wind speed 

of 3.5 m s–1, rated wind speed of 14 m s–1, and cut-out wind speed of 25 m s–1. A map of the site 

can be found in St. Martin et al. (2016) (Fig. 1). See Mendoza et al. (2015) for power 

performance test results from the DOE GE-1.5 along with instrument and site calibration 

information. 

Upwind data include 1-Hz measurements of wind speed and direction averaged to 10 min 

from a Renewable NRG Systems (NRG)/LEOSPHERE WINDCUBE v1 vertically profiling 

Doppler lidar (2.7 D upwind) and 10- and 30-min averages from a 135-m met tower (2.0 D 

upwind). Volumetric-averaged wind speeds and directions are measured by the lidar every 20 m, 

from 40 m to 220 m. Comparison of the lidar wind profiles to those from the met tower suggest 

that the lidar data at this site suffered from inhomogeneities as a result of complex flows (Bingöl 

et al., 2009; Rhodes and Lundquist, 2013; Lundquist et al., 2015), and so the majority of this 

paper will focus on the results of the analysis using the tower data. On the met tower, cup 

anemometers placed at 3, 10, 30, 38, 55, 80, 87, 105, 122, and 130 m measure wind speed, vanes 

placed at 3, 10, 38, 87, and 122 m measure wind direction, and three-dimensional (3-D) sonic 

anemometers placed at 15, 41, 61, 74, 100, and 119 m measure the components of the wind. 
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Barometric pressure and precipitation amounts are measured at 3 m and temperature is measured 

at 3, 38, and 87 m. See Fig. 2 in St. Martin et al. (2016) for a schematic of the tower. 

As discussed in St. Martin et al. (2016), meteorological and turbine data are filtered for 

quality assurance. Data are only considered during time periods when the turbine is operating 

and wind direction indicates the turbine is located downwind of the lidar and met tower (235°–

315°). As the turbine data from the SCADA system is available in 10-min increments, variability 

of the turbine parameters on a shorter timescale cannot be discerned. However, we filter for 

“normal turbine operation” based on curtailment using generator speed set point for wind speeds 

greater than 5.5 m s–1, whereas for wind speeds less than 5.5 m s–1, we discard data when the 

turbine is not grid-connected and is faulted (Fig. 6 in St. Martin et al., 2016). 

Further, it is possible that the nacelle-reported wind speeds used in this analysis have 

been subjected to a simple, built-in transfer function before the retrieval from the SCADA 

system of the DOE GE 1.5sle turbine. We see this uncertainty as an advantage to our analysis as 

a typical wind plant operator would only have access to similar data.  

2.2 AEP calculations  

To simulate a scenario in which a wind plant operator only has nacelle-based 

measurements and no upwind tower or remote-sensing measurements, we calculate an AEP (as 

described in Sect. 9.3 of IEC 61400-12-2, 2013) using only nacelle winds to compare to an AEP 

calculated with upwind met tower 80-m winds. We then correct the nacelle-based measurements 

with NTFs and calculate AEP based on these results for comparison as well. Although data for 

this analysis only spans 2.5 months in the wintertime at the NWTC during the 2012–2013 

season, we calculate AEPs using the total amount of hours in an entire year to show values close 



 

81 
 

to a representative AEP value. A sample wind distribution using Weibull distribution parameters 

representative of the data set (scale parameter: λ = 10.04 m s–1, shape parameter: k = 2.63, figure 

not shown) is used in these calculations as suggested by IEC 61400 12-1 (2015) for a site-

specific AEP.  

2.3 Stability metrics  

We calculate Bulk Richardson number (𝑅𝐵), Obukhov length (L), and the power law 

exponent (α) and use these as stability metrics for these data. Using wind speed and temperature 

differences between surface and upper tip (3 m and 122 m, respectively) tower measurements, 

we calculate 10-min values of 𝑅𝐵 to compare the buoyant production of turbulence to the 

mechanical production of turbulence. Using near-surface flux measurements at 15 m (within the 

surface layer) as well as surface temperature and humidity measurements interpolated to 15 m, 

we calculate 30-min values of L to estimate the height at which the buoyant production of 

turbulence dominates the mechanical production of turbulence. Using horizontal wind speeds as 

measured by cup anemometers at 38 m and 122 m (lower tip and upper tip of the rotor disk), we 

calculate 10-min values of α to quantify the wind speed vertical profile across the rotor disk. 

Though some previous studies combine metrics to define stability (Vanderwende and Lundquist, 

2012), the three atmospheric stability metrics discussed here are treated separately with regard to 

the NTFs because of slight differences between their definitions of unstable and stable conditions 

(see Fig. 11 in St. Martin et al., 2016). These differences may be attributed to distinctions 

between each approach in defining atmospheric stability, a difference in averaging period, 

heights of the measurements used in the calculations, or how⁡𝑅𝐵 and L use wind speed and 

temperature measurements to define stability, whereas α uses only wind speed measurements.  
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Further, we calculate TI and turbulence kinetic energy (TKE) to provide turbulence 

metrics and estimate the effect of hub-height inflow turbulence on the NTFs. Using 80-m wind 

speed measurements from the met tower, we calculate 10-min values of TI, or the standard 

deviation of the horizontal wind speed normalized by the average horizontal wind speed at hub 

height. Using 74-m wind measurements from a 3-D sonic anemometer on the tower, we calculate 

30-min values of TKE per unit mass, or the sum of the variances of the components of the wind 

divided by two. Note that after filtering out spikes in the raw 74-m sonic anemometer data, only 

about 367 thirty-min TKE values remain (183.5 h) and the fewer number of data points likely 

affects the statistical significance of the NTFs for different TKE regimes.  

Regimes or classifications for these stability and turbulence parameters are defined in 

Table 1 and described in detail in St. Martin et al. (2016), along with more detailed descriptions 

of the data from the lidar, tower and turbine, as well as filtering methods. 

Table 1. Defined stability and turbulence regimes. 

Regime 𝑹𝑩 L (m) α TI (%) TKE  (m2 s–2) 

Low 𝑅𝐵⁡< –0.03 –1,000  < L ≤ 0 α < 0.11 TI < 15 TKE < 3.0 

Medium –0.03 < 𝑅𝐵< 0.03 0 ≤ L < 1,000 0.11 < α < 0.17 15 < TI <20 3.0 < TKE < 6.5 

High 𝑅𝐵 > 0.03 |L| ≥ 1,000 α > 0.17 TI > 20 TKE > 6.5 

 

3 Results 

 

To explore the variability of the NTF, we calculate specific NTFs filtered by atmospheric 

stability metrics, TI, and TKE. We investigate filters that have either previously been found to 

affect the transfer function or are suspected to have an effect on the transfer functions based on 

power curve studies (e.g., St. Martin et al., 2016). Additionally, we explore the effects of yaw 

error and wind veer and distributions of these variables, but, as in St. Martin et al. (2016), yaw 
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error and wind veer do not seem to impact either the power curves or the NTFs at this site and 

therefore are not shown.  

3.1 Preliminary NTFs  

A general NTF (Fig. 2a) compares the tower 80-m wind speed to the nacelle-reported 

wind speed using all data that pass the wind speed, wind direction, and normal operation criteria 

defined in Sect. 2.1 and in more detail in Sect. 3.2 and 3.3 in St. Martin et al. (2016). As a fifth-

order polynomial fit was found to be suitable for power curve assessment in previous work by 

Antoniou and Pedersen (1997) and Hunter et al. (2001), we also apply this type of fit to the wind 

speeds in this work to estimate an empirical transfer function between 80-m tower wind speed 

measurements and nacelle-mounted anemometer wind speed measurements (Fig. 2a). The r-

squared value of the fifth-order polynomial fit to the data is 0.9912, which means the fit line 

predicts 99.12% of the variance in the tower data. The root-mean-square error (RMSE) of the 

fifth-order polynomial fit is 0.3615 m s–1. After correcting the nacelle-measured wind speeds 

using this NTF, deviations between the corrected nacelle wind speed and the tower 80-m wind 

speeds (Fig. 2b) vary between -0.2 and 0.2 m s–1 throughout all wind speed bins between cut-in 

and cut-out wind speed.  
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Figure 2. Comparison of upwind wind speeds with nacelle anemometer wind speeds: (a) Scatter 

is the upwind tower 80-meter (m) wind speed versus nacelle wind speed. Red line is the fifth-

order polynomial fit and empirical transfer function between the tower 80-m observations and 

the nacelle-mounted anemometer observations. Dashed line is 1:1.  (b) Average deviation in 

fifth-order polynomial nacelle transfer function (NTF)-corrected nacelle-mounted anemometer 

wind speed from tower 80-m wind speed versus tower 80-m wind speed. The dashed line 

indicates a 0 m s–1 change. The figure includes data filtered for the tower 80-m wind speeds 

between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation.  

 

Based on the small coefficients of the third-, fourth-, and fifth-order of the fit in Fig. 2a, a 

fifth-order polynomial may be unnecessarily complex. Therefore, a second-order polynomial fit 

is also calculated to estimate an empirical transfer function. The r-squared value of the second-

order polynomial fit with the data is also very high, 0.9909 (Fig. 3a). The RMSE of the second-

order polynomial fit is 0.3680 m s–1. After correcting the nacelle-measured wind speeds using 

this NTF, deviations between the corrected nacelle wind speed and the tower 80-m wind speeds, 

shown in Fig. 3b, vary from about -0.3 to 0.2 m s–1 at wind speed less than about 22 m s–1 but 

grow to about 0.8 m s–1 at higher wind speeds. Though there are fewer data points at these higher 

wind speed bins, this larger deviation of the second-order NTF-corrected wind speeds from the 

upwind wind speeds at higher wind speeds suggests that a fifth-order polynomial NTF is 

unnecessary until high wind speeds are considered. 
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Figure 3. Comparison of upwind wind speeds with nacelle anemometer wind speeds. (a) Scatter 

is the upwind tower 80-m wind speed versus nacelle wind speed. Red line is the second-order 

polynomial fit and empirical transfer function between the tower 80-m observations and the 

nacelle-mounted anemometer observations; gray line is the fifth-order polynomial fit. Dashed 

line is 1:1. (b) Average deviation in the second-order polynomial NTF-corrected nacelle-

mounted anemometer wind speed from tower 80-m wind speed versus tower 80-m wind speed is 

shown. Dashed line indicates a 0 m s–1 change. Includes data filtered for tower 80-m wind speeds 

between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation.  

 

Both transfer functions for this dataset (Fig. 2a, Fig. 3a) are close to linear at low wind 

speeds but non-linear just before rated speed (14 m s–1), hence the higher-order polynomial fits. 

This behavior suggests that at wind speeds below about 9 m s–1, the nacelle anemometer 

measurement closely corresponds to the upwind wind speed. Above this wind speed threshold, 

however, the nacelle anemometer underestimates the upwind wind speed by almost 2 m s–1 

around rated speed to about 4 m s–1 at upwind wind speeds near 20 m s–1;  higher ambient wind 

speeds are associated with more significant slow-downs around the nacelle.  

Comparison of the NTF developed from the upwind tower measurements and the NTF 

developed from the upwind lidar measurements (Fig. 4a) emphasizes that the lidar measurements 

exhibit greater variability ranging over all relevant wind speeds. The variability in the lidar 
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measurements caused by the inhomogeneity of the flow suggests that the tower measurements 

are more reliable for calculating power curves and transfer functions at this particular site, which 

is known to experience complex and inhomogeneous flow (Aitken et al., 2014b). Despite the 

larger variability in the lidar data set for both the transfer function (Fig. 4a) and deviations 

between the corrected nacelle wind speed and the upwind wind speeds (Fig. 4b), both transfer 

functions in Fig. 4a show linearity at lower wind speeds and non-linearity at higher wind speeds. 

 

 

 
Figure 4. (a) NTFs calculated employing fifth-order polynomial fits using tower hub-height data 

(green) and lidar hub-height data (blue). Envelopes represent ± σ of the data within the same bins 

as the bins the NTFs are calculated with. Includes data filtered for tower 80-m wind speeds 

between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation. Dashed line is 1:1; (b) shows the average deviation in NTF-corrected nacelle-

mounted anemometer wind speed from tower 80-m wind speed (green) and lidar 80-m wind 

speed (blue) versus tower 80-m wind speed. Dashed line indicates a 0 m s–1 change. 

 

To try to quantitatively explain this change in the transfer function from linear to non-

linear and to connect with possible flow blockage behind the rotor and along the nacelle, the 

non-dimensional Froude number (Stull, 1988) for flow around the nacelle is calculated. Froude 
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numbers are investigated during stable conditions using measurements from the tower at the 

surface and around hub height and using a range of length scales from 1–10 m to represent the 

length and width of the nacelle. However, distinctions between these two wind speed regions 

could not be seen in these calculations as Froude numbers were found to be positive and increase 

with increasing wind speed.  

Additionally, because the transfer functions become non-linear between cut-in wind 

speed and rated speed, the transfer function may be impacted by turbine operations in that region 

of the power curve possibly because of root vortices (Whale et al., 2000). Just below rated speed, 

the blades begin to pitch forward to maintain rated generator speed, thus allowing power 

production to remain near rated power (Fig. 5). This “feathering” of the blades changes the flow 

around the blades and therefore the wind that affects the nacelle-mounted anemometer 

measurement. Though this hypothesis cannot be further investigated within this campaign as 

higher resolution data from the SCADA system are unavailable, this does make a compelling 

argument for installing 3-D sonic anemometers on nacelles so vertical velocity can be measured 

to further understand the 3-D wind structures behind the rotor and along the nacelle, and how 

these flow structures change as inflow wind speed increases. 
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Figure 5. Scatter power curve using 80-m tower winds after filtering for wind speeds between 

3.5 and 25 m s–1, wind directions between 235°and 315°, and for normal turbine operation. 

Colors of the scatter points correspond to blade pitch angles. The grey dashed line marks rated 

speed. 

3.2 Annual energy production and NTFs 

It is important to understand the characteristics of the NTF and how it changes with wind 

speed, as this under-estimation of the ambient wind speed, especially at wind speeds in which the 

growth in power production with wind speed is the most significant, could result in a significant 

overestimation of AEP in power performance verification.   

With no NTF correction applied (aside from the transfer function that is built into the 

SCADA system by the manufacturer), the AEP calculated with nacelle winds (AEP_nacelle) 

overestimates the AEP calculated with 80-m tower winds (AEP_upwind) by 5.96 % (Table 2). 
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This overestimation of AEP is expected as the nacelle anemometer consistently underestimates 

the upwind wind speed, which leads to the misrepresentation of higher power output at lower 

wind speeds and therefore a higher AEP.  

Table 2. Top row: Annual energy production (AEP) in megawatt-hours/year calculated using 

upwind tower measurements (AEP_upwind), nacelle winds (AEP_nacelle), corrected nacelle 

winds using the NTF calculated with a fifth-order polynomial (AEP_NTF5th), and corrected 

nacelle winds using the NTF calculated with a second-order polynomial (AEP_NTF2nd). Bottom 

row: AEP in percentage calculated as the difference from AEP_upwind.  

 AEP_upwind AEP_nacelle AEP_NTF5th  AEP_NTF2nd  

AEP (MWh/y) 7,479.3 7,924.7 7.479.1 7,465.8 

% of tower winds 100.00 105.96 100.00 99.82 

 

The use of the general NTF to correct the nacelle anemometer measurements reduces the 

AEP error significantly (Table 2). With the application of the fifth-order polynomial NTF 

(AEP_NTF5th), AEP_NTF5th underestimates AEP_upwind by only 0.003 %, whereas with the 

application of the second-order polynomial NTF (AEP_NTF2nd), AEP_NTF2nd underestimates 

AEP_upwind by 0.18 %. Therefore, using either the fifth-order polynomial or the second-order 

polynomial for the NTF results in an AEP similar to that of an AEP calculated with upwind hub-

height winds; though both lead to a slight underestimation. 

3.3 Atmospheric stability effects of NTFs 

The value of atmospheric-stability segregation for NTFs seems to depend on how 

stability is defined. Some statistically significant distinctions in the NTFs for 𝑅𝐵-defined 

unstable and stable cases do emerge (Fig. 6a, Table 3), particularly for wind speeds between 7 

and 11 m s–1. Closed circles in Fig. Figure a-c represent statistically distinct wind speed bins 

between the stability classes and are determined by the Wilcoxon rank sum test with a 1 % 

significance level. Stable cases follow a linear relationship more closely for low and moderate 
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wind speeds (less than 11 m s–1), whereas unstable cases show more deviation from the 1:1 line 

at wind speeds greater than 8 m s–1.  Conversely, no statistically significant distinctions emerge 

in the NTFs for L-defined stability classes for this site using our dataset (Fig. 6b, Table 3). 

Distinctions in the NTFs for α-defined cases (Fig. 6c, Table 4) emerge only around 13.5 m s–1—

much closer to rated speed—and stable cases underestimate the upwind wind speed more than 

unstable cases.  

 

Figure 6. Tower 80-m NTFs calculated using fifth-order polynomial fits with stability regimes 

based on (a) 𝑅𝐵, (b) L, and (c) α. Error bars represent ± σ of the data within the same bins as the 

bins with which the NTFs are calculated. Statistically distinct differences within each wind speed 

bin between the stability classes are determined by the Wilcoxon rank sum test with a 1 % 

significance level and denoted by closed circles. Black arrows point towards statistically distinct 

bins. The figures include data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 

87-m wind directions between 235° and 315°, and for normal turbine operation. Average 

deviation in NTF-corrected nacelle-mounted anemometer wind speed from tower 80-m wind 

speed is shown during stable conditions (blue) and during unstable conditions (red) versus tower 

80-m wind speed with stability regimes based on (d) 𝑅𝐵, (e) L, and (f) α. Dashed line indicates a 

0 m s–1 change. 
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Table 3. Coefficients for fifth-order polynomial NTFs for stability metrics. 

 𝑹𝑩   L   

Regime Convective Neutral Stable Convective Neutral Stable 

𝒂𝟏 -6.4141x10–5 3.7809x10–5 -3.0593x10–4 -6.7085x10–4 2.9071x10–6 -3.8242x10–5 

𝒂𝟐 0.0030 -0.0025 0.0142 0.0287 -4.4810x10–4 0.0016 

𝒂𝟑 -0.0539 0.0621 -0.2473 -0.4721 0.0153 -0.0245 

𝒂𝟒 0.4628 -0.6843 2.0334 3.7194 -0.1881 0.1789 

𝒂𝟓 -0.8555 4.4391 -6.8356 -12.9316 2.0185 0.4534 

𝒂𝟔 2.9265 -5.9942 11.3853 19.7947 -1.9273 0.5361 

 

Table 4. Coefficients for fifth-order polynomial NTFs for the shear exponent. 

 α   

Regime Convective Neutral Stable 

𝒂𝟏 -2.3643x10–5 1.4220x10–5 -5.9409x10–6 

𝒂𝟐 0.0011 -0.0011 7.3499x10–5 

𝒂𝟑 -0.0202 0.0301 0.0038 

𝒂𝟒 0.1781 -0.3451 -0.0689 

𝒂𝟓 0.2889 2.7912 1.4373 

𝒂𝟔 1.0387 -3.2175 -0.7869 

 

This behavior shown by NTFs segregated by 𝑅𝐵 suggests that below rated speed in 

convective conditions, the nacelle anemometer underestimates the ambient wind speed more than 

in stable conditions. We speculate that at wind speeds below rated, mixing in the atmosphere 

during more convective conditions, as well as the turbine interaction with these turbulent eddies, 

may result in additional motion that exaggerates blockage effects by the rotor and nacelle and 

causes underestimation by the nacelle-mounted anemometer.   
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We apply the NTFs to the nacelle anemometer measurements to evaluate the deviations 

from the upwind met tower data (Fig. 6d-f); however, the results show no consistency or 

systematic distinctions between stability metrics, stability classes, or wind speed. 

3.4 Turbulence effects on NTFs 

The hypothesis that convectively-driven mixing and turbulence causes underestimation 

by the nacelle-mounted anemometer is further supported in the NTFs segregated by TI (Fig. 7a, 

Table 5) and TKE classes (Fig. 7b, Table 5). Distinctions between unstable and stable cases in 

the transfer functions for wind speeds between 5.5 and 12 m s–1 are also apparent when the 

transfer functions are segregated by TI class (Fig. 7a) and for wind speeds around 12 m s–1 when 

the transfer functions are segregated by TKE class (Fig. 7b). Periods of relatively high TI and 

TKE result in greater underestimations of the wind speed by the nacelle anemometer from just 

above cut-in wind speed to about 12 m s–1. 
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Figure 7. Tower 80-m NTFs calculated using fifth-order polynomial fits with turbulence regimes 

based on (a) turbulence intensity (TI) and (b) turbulence kinetic energy (TKE). Error bars 

represent ± σ of the data within the same bins as the bins with which the NTFs are calculated. 

Statistically distinct differences within each wind speed bin between the stability classes are 

denoted by closed circles. Figures include data filtered for tower 80-m wind speeds between 3.5 

and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal turbine operation. 

Average deviation in NTF-corrected nacelle-mounted anemometer wind speed from tower 80-m 

wind speed is shown during stable conditions (blue) and during unstable conditions (red) versus 

tower 80-m wind speed with turbulence regimes based on (c) TI and (d) TKE. Dashed line 

indicates a 0 m s–1 change. 

  

Corrections to the nacelle wind speeds using NTFs based on atmospheric turbulence 

show lower deviations from the ambient wind speed below rated speed and larger deviations 

from the ambient wind speed after rated speed for high TI cases. However, similar to the results 
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in Fig. 6d‒f, Fig. 7c‒d also show inconsistencies between deviations from the upwind speed for 

the different turbulence metrics and regimes.  

Table 5. Coefficients for fifth-order polynomial NTFs for turbulence metrics. 

 TI   TKE   

Regime High Med Low High Med Low 

𝒂𝟏 -9.0463x10–5 1.5534x10–5 2.3161x10–5 -1.3295x10–5 -6.7464x10–5 4.5266x10–4 

𝒂𝟐 0.0045 -0.0012 -0.0017 6.0813x10–4 0.0031 -0.0156 

𝒂𝟑 -0.0842 0.0305 0.0428 -0.0103 -0.0539 0.2048 

𝒂𝟒 0.7602 -0.3409 -0.4763 0.0949 0.4418 -1.2609 

𝒂𝟓 -2.1704 2.7552 3.3911 0.6268 -0.6458 4.6488 

𝒂𝟔 5.0077 -3.2307 -4.4045 0.6460 2.3183 -3.9372 

 

4 Conclusions 

 

Over two months of data from both upwind instruments and nacelle-based instruments 

are used to quantify general nacelle transfer functions (NTFs) as well as NTFs that vary with 

atmospheric stability and turbulence parameters. We show that correcting nacelle winds using 

these NTFs results in more accurate annual energy production (AEP) estimates that are similar to 

estimates obtained using upwind meteorological (met) tower-based wind speeds. Further, 

multiple factors have been investigated for their influence on NTFs, including both parameters 

known to influence wind power production and parameters never before investigated in the 

context of transfer functions.  

We find that fitting the data to a fifth-order polynomial to estimate the NTF results in a 

slightly higher r-squared value and smaller root-mean-square error (RMSE) than fitting to a 

second-order polynomial. The small differences in the uncertainties between the two methods 
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seem insignificant, as the r-squared value of 0.9909 using the second-order polynomial is 

comparable to the 0.9912 value using the fifth-order fit. However, though the r-squared value of 

the second-order fit is high, after correcting the nacelle winds with the second-order NTF, larger 

deviations from the upwind tower winds occur than if a fifth-order NTF is used, especially at 

higher wind speeds. 

At wind speeds below 9 m s-1, the nacelle anemometer measurement closely corresponds 

to the upwind wind speed measurement. Above this wind speed threshold, however, the nacelle 

anemometer underestimates the upwind wind speed, which could result in a significant 

underestimation of power production and could be perceived as turbine over-performance (or 

mask turbine under-performance) if not corrected for by a NTF.  Additionally, the non-linear 

nature of the transfer functions above 9 m s-1 or so suggests that the transfer function may be 

impacted by turbine operations near rated speed and how they affect the flow behind the rotor 

disk and along the nacelle.  

The use of NTFs in AEP calculations results in a less than 1 % difference from the AEP 

calculated with the upwind met tower wind speed. AEP calculations reveal that an AEP 

calculated using a fifth-order polynomial correction to the nacelle winds results in a 0.003 % 

underestimation of the AEP calculated with the upwind wind speed, whereas an AEP calculated 

using a second-order polynomial correction results in a 0.18 % underestimation of the AEP 

calculated with the upwind wind speed. Both are sizeable improvements over using the 

uncorrected nacelle wind speed, which leads to a 5.96 % overestimation when compared to the 

AEP calculated with the upwind wind speed. 

Statistically significant distinctions emerge in the transfer functions for unstable and 

stable cases as defined by the Bulk Richardson number (𝑅𝐵), particularly for wind speeds 
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between 9 and 11 m s–1. At these wind speeds before rated, in unstable conditions, the nacelle 

anemometer underestimates the ambient wind speed more often than in stable conditions. Similar 

but more prominent behavior is found in transfer functions separated by turbulence intensity (TI) 

and turbulence kinetic energy (TKE) classifications: during periods with relatively high TI and 

TKE, the nacelle anemometer underestimates the ambient wind speed more than during periods 

of relatively low TI and TKE, between about 6 and 12 m s–1. We speculate that turbine 

interaction with the mixing in the atmosphere during more convective and turbulent conditions 

may result in additional motion, thereby exaggerating the blockage by the nacelle and thus 

underestimation by the nacelle-mounted anemometer.  

Distinctions in power curves (Sumner and Masson, 2006; Antoniou et al., 2009; 

Vanderwende and Lundquist, 2012; Dörenkämper  et al., 2014; St. Martin et al., 2016) can lead 

to a correlation between these and distinctions in NTFs as well as the idea of validating power 

performance data with similar atmospheric and operational characteristics with their 

corresponding power curve in an effort to decrease the amount of uncertainty in power 

performance testing.  

NTFs have recently been accepted for power curve validation under certain 

circumstances (IEC 61400-12-2, 2013). They can also enable the use of nacelle-mounted 

anemometers for AEP estimates, turbine performance analysis, and data assimilation for 

improved forecasting (Draxl, 2012; Delle Monache et al., 2013).  

 Further work could explore how turbine controls and characteristics such as thrust affect 

the transfer functions. Simulations of flow around the nacelle such as those of Keck (2012) could 

be expanded to account for variations in atmospheric stability and could be coupled with control 

software simulators. As Bibor and Masson (2007) suggest, a single transfer function should not 
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be used for every wind plant site and for every atmospheric and operating condition. Several 

atmospheric and operational conditions and how they affect the transfer functions should be 

investigated and perhaps combined to provide an algorithm for manufacturers and wind plant 

operators to use in power performance validation.  
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CHAPTER V 

SIMULATING WIND TURBINE WAKES IN WRF 

 

Wind turbine wakes and waking from nearby farms complicate estimations of the wind 

resource. Wakes are typically characterized by decreased wind speed and increased turbulence 

behind the rotor disk. Wind speed deficits caused by wakes can lead to decreased power 

production and thus lost revenue. Additionally, enhanced turbulence will increase mechanical 

loads on a turbine, which will decrease the lifetime of the turbine. Understanding and simulating 

these wind turbine wakes is imperative to accurately estimating and forecasting wind power 

production.  

We test the Weather Research and Forecasting (WRF) model’s Wind Farm 

Parameterization (WFP) using power production data from over 300 operating utility-scale wind 

turbines from four neighboring wind farms in the western US and address some of the challenges 

of doing this in complex terrain.  

For a case study including a strong down-ramp in wind speed and thus wind power 

production, we find WRF predicts the down-ramp too early. Though this error in timing 

undermines the subsequent evaluation of the WFP, some data suggest the WRF-WFP possibly 

overestimates wake effects. Further work could include investigation of how vertical resolution, 

power curve choice, and site-specific density corrections could improve simulations of power 

production in complex terrain. 

 

 



 

99 
 

The following is adapted and reformatted from: 

St. Martin, C. M., and Lundquist, J. K.: Simulating wind turbine wakes from multiple interacting 

wind farms in the western US using the WRF Wind Farm Parameterization, in preparation for 

Monthly Weather Review. 

The reader is advised to seek out the accepted or published version for the final results and 

conclusions from this study. 

 

Abstract 

 

Characterizing wind turbine wakes and their effects on downwind turbines is important 

for integrating renewably-generated electricity into power grids by correctly predicting available 

wind power. In this study, we advance validation efforts of the Weather Research and 

Forecasting model’s Wind Farm Parameterization (WRF-WFP). We employ meteorological 

observations, wind turbine power production data, and wind turbine nacelle observations from 

multiple wind farms located in the western United States at elevations above one kilometer. Data 

from four neighboring wind farms, including 348 turbines spread along a longitudinal distance of 

about 63 km, are available. Wind data from a 60-m meteorological tower upwind of the wind 

farm are also available. We simulate a case where we anticipate the largest wake effects, with 

upwind wind speed ranges from 5–11 m s-1 and when most, if not all, of the turbines are 

operating. WRF simulations with and without the current version of the WFP are compared. We 

find possible over-exaggeration of waking effects at wind speeds above 8 m s-1 from northerly 

wind directions, as well as early prediction of a down-ramp by WRF for the case simulated in 

this complex terrain. Subsequent evaluation of the role of vertical resolution, boundary 

conditions, and density variability may modify this conclusion. 
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1 Introduction 

 

Driven by the need for cost-effective, renewable energy sources, wind power 

development continues to increase across the world. The Global Wind Energy Council (GWEC) 

estimates a new record of globally installed wind capacity–more than 63 GW–came online in 

2015 (GWEC, 2016). As a result of increasing wind power of the grid, accurately estimating 

wind power production, from project siting to power validation and forecasting, is crucial to 

reducing the cost of the grid integration of wind (Giebel, 2003; Marquis et al., 2011; Wilczak et 

al., 2015). Forecasting wind speed ramps are especially difficult to model (Marquis et al., 2011) 

and are important as both excesses and deficits in power generation makes wind generation 

unattractive as a base load generator for grid operators. 

Wind turbine wakes not only result in power losses due to velocity deficits (Baker and 

Walker, 1984), but can also be characterized by increased turbulence within the wake (Elliott and 

Barnard, 1990). Decreased wind speed and increased turbulence in the wake of a turbine can 

influence both power production and mechanical loads on individual turbines and within wind 

farms. Understanding single wakes as well as aggregate wakes can make a significant difference 

in production estimates as wakes from neighboring farms can reduce the resource for any 

downwind farms. Efforts made to further understand wakes and how they affect production 

include observational studies, large eddy simulations (LES) of wakes, and mesoscale modeling 

of wakes.  

Observational studies give us insight into how these wakes vary with wind speed and 

atmospheric conditions. Elliott and Barnard (1990) found a linear relationship between the 

velocity deficit and downwind distance with maximum deficits occurring during lower wind 

speeds and higher turbulence. Other studies found the velocity deficit is the largest between 
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turbine cut-in wind speed and rated wind speed because of the variation in the thrust coefficient 

(Helmis et al., 1995, Barthelmie et al., 2007). Baker and Walker (1984) used kite anemometer 

measurements during nighttime conditions, and similar to Magnusson and Smedman (1994), 

found that during more turbulent conditions wakes dissipate more quickly than during less 

turbulent conditions. Using lidar measurements, Aitken et al. (2014b) found distinct wakes for 

stable and unstable conditions as well as turbulent conditions, and developed methods to 

determine the velocity deficit, size of the wake, and location of the wake centerline.  

As towers and remote sensing instruments can be costly and logistically difficult to 

deploy within every wind farm, numerical modeling is a valid alternative to simulate wind farm 

wakes. Several approaches exist to parameterize the effect of wind plants within numerical 

models. Computational fluid dynamics (CFD) or large eddy simulations (LES) parameterize 

turbine drag on local flows and are useful to study the interaction of an individual turbine with 

the atmosphere (Calaf et al., 2010; Lu and Porté-Agel, 2011; Sanderse et al., 2011; Wu and 

Porté-Agel, 2013; Aitken et al., 2014a; Mirocha et al., 2014; Vanderwende et al., 2016).  

Mesoscale models can also be used to study wind turbine wakes, however, with 

horizontal resolution on the order of 10s of kilometers, these models cannot resolve scales 

smaller than the grid size, and the effect of wind turbines must be parameterized. Mesoscale 

models either represent the effect of wind turbines by explicitly solving elevated drag and 

turbulent mixing (Baidya Roy et al., 2004; Blahak et al., 2010; Baidya Roy, 2011; Fitch et al., 

2012; Fitch et al., 2013; Fitch, 2015; Jiménez et al., 2015) or implicitly parameterize the effect of 

wind turbines by increasing the roughness length to represent the turbines (Keith et al., 2004; 

Frandsen et al., 2009). However, increasing the roughness length to parameterize the effect of 
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wind turbine wakes has been found to exaggerate the wind and turbulence in the wakes (Fitch 

2015) as well as the sensible heat fluxes (Fitch et al., 2013). 

Though mesoscale models parameterize the effect of individual turbines, mesoscale 

model resolution can allow investigation into the impact and interaction of multiple turbines and 

farms. One such mesoscale model is the Weather Research and Forecasting model 

(WRF).Within WRF, the Wind Farm Parameterization (WFP) parameterizes the downwind 

effects of a wind turbine by both introducing a momentum sink on the mean flow and by 

transferring kinetic energy into both electricity and turbulence kinetic energy (TKE) (Fitch et al., 

2012).  Turbine drag is represented using the thrust coefficient (Fitch et al., 2012).  User input to 

run this WFP in WRF includes locations of each wind turbine as well as a power curve and thrust 

coefficient curve for each turbine make and model.  

The work presented here evaluates the WFP in existing wind farms in a region of 

complex terrain. Only one other validation of this parameterization can be found in the literature, 

which is a simulation of an offshore wind farm that reproduced power deficits (Jiménez et al., 

2015). In Sect. 2, we describe the wind speed and power data from 348 turbines in four 

neighboring wind farm, the setup of our simulation in WRF, as well as the case study chosen for 

this study. In Sect. 3, we discuss the results. In Sect. 4 we make conclusions and suggest future 

work.  

2 Methods 

 

To evaluate the utility of including the Fitch et al. (2012) wind farm parameterization in 

wind energy forecasting simulations with WRF, we compare simulations to measurements, 

namely, wind speed and power data from over 300 wind turbines from four neighboring wind 

farms. 
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2.1 Observational data 

Meteorological data from a 60-m tower approximately 11 km northwest of the wind 

farms of interest and at an elevation of about 1,491 m above sea level (ASL) include 5-min 

averages of wind speed and direction at 10, 30 and 60 m, as well as temperature, pressure, and 

humidity measurements at 10 m. The prevailing wind directions shown in the met tower data 

from 1 January 2011 through 29 July 2013 are northwesterly and southeasterly (Fig. 1). After 

filtering out spikes above 40 m s–1 in the wind speed data, wind speed and direction data at 60 m 

are available 78.6 % of the time. 

 

Figure 1. Wind rose using 60-m wind speeds and directions from the tower about 11 km upwind 

of the wind farms from 1 January 2011 through 29 July 2013. 
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Five-minute averaged hub-height wind speed and power data from 348 turbines from four 

wind farms in the western US are available from January 2010 through December 2013. Aside 

from a brief period in September of 2011, turbine data are generally available, with only a few 

turbines missing from most daily files. So as not to include curtailed turbines, we only include 

data from a wind turbine if the power data availability during the duration of the case study is at 

least 80%. The 348 turbines span about 63 km from west to east and about 11 km from south to 

north. The terrain surrounding these farms in the western US is complex with some vegetation 

and some smaller rocky ravines. The terrain elevation within the wind farms slopes upward 

towards the west and ranges from 1,279 m ASL to 1,475 m ASL. We have data from four wind 

farms, which include two different types of turbines all with hub heights close to 80 m: the 

GE1.5 sle with a 77 m rotor diameter (Turbine Type 1), and the Siemens 2.3 MW turbine likely 

with a 90 m rotor diameter (Turbine Type 2) (USGS).   

The wind resource at a site is a driving factor for farm placement, however, there are 

other factors involved such as land permits, transmission costs, or mechanical loads concerns, 

which mean layouts can often be complex. In addition to complex farm layouts, other wind 

farms are often nearby, further adding to the complexity of the resource the turbines actually 

experience. Terrain and turbine layout, combined with the data from multiple neighboring wind 

farms, allow further testing of the WRF-WFP and perhaps more insight into how wakes interact 

across multiple wind farms in complex terrain (Fig. 2).  
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Figure 2. Map of the wind farms of interest as well as surrounding wind farms. The yellow 

outlines the wind farms simulated in this work. A distance legend is in the bottom left corner. 

Courtesy of USGS and Bing. 

 

2.2 Case study 

To test the performance of the WFP in simulating power produced and wake effects 

within these four neighboring wind farms,  we focus on a case study when: (1) the 60-m tower 

measures wind speeds between cut-in and rated speed, (2) the 60-m tower measures wind 

directions which ensure these four wind farms are least affected by neighboring wind farms to 

the south and west, and (3) few turbine data are missing. We simulate a case study focusing on 

the nighttime stable hours during the early morning of 30 October 2011 into the daytime unstable 

hours of 30 October 2011.  As temperature measurements are only available at one height on the 

met tower, atmospheric stability is determined by time of day. During these 12 hours, winds 

from the west ranged from about 5 to 11 m s–1 (Fig. 3a) and shear exponents calculated between 

10 m – 60 m ranged from 0.02 to 0.44. The wind farms of interest may be waked by neighboring 

wind farms about 12 km to the west (Fig. 2) during the last few hours of the case study as wind 

directions range from west-south-westerly to northerly (Fig. 3d). A downramp in nacelle wind 

speeds leading to a drop in power generation occurs around 4am local time on Oct 30 (Fig. 3b-c). 
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Figure 3. Time series from 00 LT on 30 October 2011 through 12 LT: (a) Wind speed time 

series from the 60-m met tower upwind of the wind farms. (b) Nacelle wind speed time series. 

(c) Normalized power observations from the wind farms. (d) Wind direction time series from the 

60-m met tower upwind of the wind farms. 

 

After filtering out turbines based on curtailment criteria listed in Sect. 2.1, 319 of the 

original 348 turbines remain. In addition, we discard times when the nacelle anemometers 

measure wind speeds outside of the mean wind speed over all turbines ± 3 σ so as not to include 

data when the anemometers could be malfunctioning. After filtering for the 319 turbines that 

were not curtailed during this case study as well as for when the nacelle anemometers were 

functioning correctly, 45,217 5-minute periods are left, or about 92 % of the original systems 

control and data acquisition (SCADA) data from this time period. Using these five-minute 

averaged power and nacelle wind speed measurements, observed power curves for this case 

study for the 319 turbines with data available and unaffected by curtailments (Fig. 4) show 

variability in power output at most wind speeds, and  likely outside of their respective 

manufacturer power curves. Note that there are two wind farms with approximately 100 turbines 
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located in the middle of the farms of interest for this work (Fig. 2), which could create wakes for 

the eastern wind farms during cases with northwesterly flow.  

 

Figure 4. Power output normalized by rated power vs nacelle wind speeds for 319 turbines 

during the case study. Different color scatter points represent different turbine make/models. 

 

The wind speed and power data from the 319 turbines that passed the curtailment criteria 

show the influence of wakes within these wind farms.  To illustrate wake effects seen only from 

the observed wind speed and power data, averaged over the first six hours of the case study on 

30 October 2011, for example, the largest power output is produced on the northern edge of the 

group of western farms and within the western group of turbines (Fig. 5a). These locations of 

higher power correlate with locations of wind speed near rated (Fig. 5b). Turbines on the 

southern edge of the farms observe lower wind speeds, possibly resulting from wake effects from 

the turbines to the north, which undermine power production. 
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Figure 5. Six-hour average of winds and power production at from 00 LT to 6 LT on 30 Oct 

2011. (a) Normalized power output from 319 turbines. (b) Nacelle wind speed from the turbines 

and 60-m wind speed and direction from upwind tower. The location of the tower is noted by the 

red circle. 

 

2.3 Model setup 

We use the WRF Model’s version 3.8.1 to simulate wakes within the four neighboring 

wind farms in the western US during a 12-hour period spanning the stable early morning hours 

of 30 October 2011into the unstable daytime hours of 30 October 2011. The simulations begin 

on 29 October 2011 at 1800 UTC to allow 12 hours of spin-up time, and end on 30 October 2011 



 

109 
 

at 1800 UTC. Boundary conditions are provided by the ERA-interim dataset. The outer domain 

has a horizontal resolution of 8.910-km and the innermost nested domain has a 990-m resolution 

(Table 1). The innermost domain is centered on the location of the wind farm (Fig. 6). The 

integration time step is 15 s. The vertical resolution is approximately 22 m below 300 m and 

stretches above 300 m to include 69 layers in total. Four layers intersect the rotor diameter of the 

turbines. Terrain elevation within the innermost domain varies from about 400 m to about 4,130 

m as seen in Fig. 7, although elevation within the wind farm itself varies from about 1,279 m to 

1,475 m.  

 

Table 1. Number of grid cells for each domain and horizontal resolution. 

Domain Number of grid cells in X Number of grid cells in Y Horizontal resolution (m) 

1 (outer) 410  400 8,910 

2 391 331 2,970 

3 (inner) 802 592 990 
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Figure 6. Outer domain and two nested inner domains of WRF runs. 

 
Figure 7. (a) Inner nested domain with terrain elevation. The red box denotes the location and 

extent of the wind farms. (b) Zoomed in on (a)’s red box to depict terrain elevation nearby; the 

turbines appear as black dots. Note that the aspect ratio in (b) is not 1:1. 
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The MYNN level 2.5 planetary boundary layer (PBL) scheme must currently be used to 

implement the WFP (Nakanishi and Niino, 2006). The microphysics scheme chosen is the 

aerosol-aware Thompson scheme (Thompson and Eidhammer, 2014), while the longwave and 

shortwave radiation schemes used the RRTMG scheme (Iacono et al., 2008). The simulations 

also used the unified Noah land-surface model (Elk et al., 2003) and for cumulus 

parameterization used the Kain-Fritsch scheme (Kain, 2004). 

 As described in Sect. 2.1, we only include a wind turbine if the observed power data 

availability during the 12-hour duration of the case study is at least 80%, so as not to compare 

curtailed turbines to our WRF-WFP simulations. Filtering out turbines for curtailments leaves 

319 turbines to be simulated with the WRF-WFP. We use a power and thrust curve from a GE 

1.5 sle in the WFP, and compare that normalized power curve to normalized power production 

from the real turbines. The number of wind turbines per grid cell varies from 1 to 5, with some of 

the more highly populated grid cells on the western side of the farms (Fig. 8). 

 

Figure 8. Number of turbines per 990-m x 990-m grid cell. 
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To compare the power output across the observations and simulations, we use the power 

data from the SCADA of the turbines as well as wind and power output from the WRF 

simulations. Observed power output is aggregated and normalized by rated power. The WRF-

WFP power output is also summed and normalized by rated power of the simulated turbine 

(GE.15 sle). We also take the hub-height horizontal winds, calculated from the WRF output with 

the WFP turned off, and convert to power based on the same power curve used to run WRF with 

the WFP turned on. 

 

3 Results 

 

Maps of hub-height winds from the WRF output with (Fig. 9a) and without the WFP 

(Fig. 9b) highlight differences between the outputs.  Wind speed differences are calculated as 

WRF-WFP winds minus WRF-noWFP winds (Fig. 9c); thus, we expect negative differences 

downwind of the wind farms to highlight wind speed deficits simulated by the WRF-WFP. 

Rather than a clear downwind wake signature, however, both accelerations and decelerations 

occur downwind of the wind farm, contrary to what has been observed in flat terrain (Fitch et al. 

2013a) or offshore (Jimenez et al. 2015). These widespread accelerations and decelerations may 

be explained by recent work (Rai et al., 2017), in which oscillatory behavior was observed in the 

simulated wind speed for all horizontal resolutions less than 1.2 km when using the MYNN 

boundary layer scheme in WRF.  
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Figure 9. For the hour of 06 UTC to 07 UTC on 30 October 2011: (a) hub-height wind speed 

from WRF with the WFP; (b) hub-height wind speeds from WRF without the WFP;  (c) 

differences in hub-height wind speeds. The black arrows represent hub-height wind direction 

from WRF with no WFP (a,c), WRF with the WFP (b).  

 

Throughout all 12 hours of the simulation, there are both reductions in wind speed, as 

well as increases in wind speed downwind of the wind farms (Fig. 10). This inconsistency is not 

due simply to spatial scale, as seen in the focused map of hub-height wind speed differences 

(Fig. 11). Even with this focus on a more refined region immediately in the vicinity of the wind 

farm, inconsistent wakes and accelerations occur downwind of the wind farms. Wind speeds at 

the surface exhibit similar behavior while differences are smaller in magnitude (Fig. 12). While 

observations have indicated some warming at the surface at night due to wind farm effects (Zhou 

et al., 2012; Rajewski et al., 2013), no distinct pattern emerges in surface temperature differences 

in these simulations (Fig. 13). 
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Figure 10. Differences in hub-height wind speed between WRF with no WFP and WRF with the 

WFP. The black dots represent the locations of the individual turbines. The white boxes on the 

bottom right corners of each plot contains a hub-height wind speed upwind of the wind farm. 

The black arrows represent hub-height wind direction from WRF with no WFP. 
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Figure 11. Differences in hub-height wind speed between WRF with no WFP and WRF with the 

WFP. The yellow dots represent the locations of the individual turbines. The white boxes on the 

bottom right corners of each plot contains a hub-height wind speed upwind of the wind farm. 

The black arrows represent hub-height wind direction from WRF with no WFP. 
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Figure 12. Differences in surface wind speed between WRF with no WFP and WRF with the 

WFP. The black dots represent the locations of the individual turbines. The white boxes on the 

bottom right corners of each plot contains a surface wind speed upwind of the wind farm. The 

black arrows represent wind direction at the surface from WRF with no WFP. 
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Figure 13. Differences in surface temperature between WRF with no WFP and WRF with the 

WFP. The black dots represent the locations of the individual turbines. The white boxes on the 

bottom right corners of each plot contains a surface temperature upwind of the wind farm. The 

black arrows represent wind direction at the surface from WRF with no WFP. 

 

 Power time series from the observations (Fig. 3c) as well as from both the output from 

WRF with the WFP and without the WFP reveal a significant drop in power output in the early 

morning hours of Oct 30, which WRF captures, but WRF predicts the drop in wind speed too 

early (Fig. 14). The WFP simulation performs worse than the simulation without the WFP: the 
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RMSE of the normalized power output without (with) the WFP is 0.1039 (0.1925) with a 

Pearson correlation coefficient of 0.9683 (0.9010).  

 

Figure 14. Time series of normalized total power output over all turbines. The black line 

represents the power time series from the SCADA from the wind turbines. The blue line 

represents the power time series from WRF with the WFP turned off, which is hub-height wind 

speeds projected on a GE 1.5sle power curve. The red line represents the power time series from 

WRF with the WFP tuned on, which is an output of the simulation.  

 

The differences between the power time series from the observations and from the WRF 

simulations indicate that both simulations predict a down-ramp sooner than observed, possibly 

caused by some instability, seen north of the wind farms in the first few panels of Fig. 11. This 

offset in timing can be addressed by shifting the observations forward in time. Even with this 

shift, the simulations without the WFP perform better. The optimal shift for the WRF-no WFP 
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simulation is 30 minutes, resulting in a Pearson correlation coefficient of 0.9793 and RMSE of 

0.0748, as seen in Fig.15. Even with this shift, the output from the WRF-WFP still predicts the 

down-ramp too early. Shifting the observations forward 1 hour and 25 mins (Fig. 16) results in a 

maximum Pearson correlation coefficient of 0.9637 between the observations and the WRF-

WFP. The RMSE of WRF with no WFP with this time shift of 85-mins is 0.1211 and the RMSE 

of WRF with the WFP turned on with this time shift is 0.0971. 

 

Figure 15. Time series of normalized total power output over all turbines with the observations 

shifted forward 30-mins to better match the WRF results. The black line represents the power 

time series from the SCADA from the wind turbines. The blue line represents the power time 

series from WRF with the WFP turned off, which is hub-height wind speeds projected on a GE 

1.5sle power curve. The red line represents the power time series from WRF with the WFP tuned 

on, which is an output of the simulation. 
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Figure 16. Time series of normalized total power output over all turbines with the observations 

shifted forward 85-mins to better match with the WRF-WFP results. The black line represents 

the power time series from the SCADA from the wind turbines. The blue line represents the 

power time series from WRF with the WFP turned off, which is hub-height wind speeds 

projected on a GE 1.5sle power curve. The red line represents the power time series from WRF 

with the WFP tuned on, which is an output of the simulation. 

 

The WRF-WFP simulations result in larger differences in normalized power output from 

observed normalized power at higher wind speeds and more northerly directions, suggesting the 

WRF-WFP may be overestimating or exaggerating waking effects. At wind speeds less than 8 m 

s-1, errors in normalized power predicted by WRF and WRF-WFP compared to actual 

normalized power production vary from about -0.2 to 0.1. However, at wind speeds above about 

8 m s-1, errors increase for the WRF simulations to about -0.4 and for the WRF-WFP simulations 
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to about -0.6 (Fig. 9a). In contrast, differences in normalized power predicted by WRF-WFP 

versus power produced range from about -0.6 to 0.1 when winds are from the north, while 

differences in from WRF only range from about -0.3 to 0.1 at most wind directions (Fig. 9b).  

Turbine layout does not explain the larger deviations when winds are form the north because 

turbines are closer together in the E-W direction, not in the N-S direction.  

 

Figure 17. (a) Difference in normalized power vs upwind tower wind speed for 12-hour study, 

with one data point for each 5-min interval. Blue circles denote WRF and red circles denote 

WRF-WFP. (b) Difference in normalized power vs upwind tower wind direction for 12-hour 

study. 

 

Comparisons between WRF-predicted power and observed normalized power reveal the 

effects of the early prediction of the down-ramp by WRF. Deviations in normalized WRF-

simulated power from normalized observed power are larger; from about 0.4 to about 0.8 (Fig. 

18).   
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Figure 18. Normalized power as predicted by WRF vs observed normalized power. Blue circles 

represent results from WRF and red circles represent results of WRF-WFP. 

 

4 Conclusions 

 

We use power data from the systems control and data acquisition (SCADA) system on 

319 turbines from four neighboring wind farms to assess the ability of the Weather Research and 

Forecasting Model’s Wind Farm Parameterization (WRF-WFP) to forecast wind power 

production in complex terrain for a down-ramp case spanning the first 12 hours of 30 October 

2011. We conduct simulations with and without the WFP. 

 A strong down-ramp occurs during this time period, the timing of which both WRF and 

WRF-WFP predict too early. Errors in predicted power production show possible exaggerations 

of waking effects by the WRF-WFP at wind speeds above 8 m s-1 and northerly wind directions 

at this site. Differences between WRF with and without the WFP in hub-height wind speed, 
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surface winds, and surface temperature emerge throughout the inner domain, and vary downwind 

of the wind farms. These comparisons between observations, WRF runs, and WRF-WFP runs, 

reveal that there may be some instability upwind of the farms introduced early in the study 

period resulting in differences throughout the domain between WRF with the WFP and WRF 

without the WFP. Differences throughout the domain between WRF and WRF-WFP results 

could also be the result of the 990-m horizontal resolution of these simulations, as Rai et al. 

(2017) found oscillations in wind speed for horizontal resolutions less than 1.2 km when using 

the MYNN boundary layer scheme. Power output from the WRF-WFP is ahead of the 

observations by about 85 minutes, while power output calculated from hub-heights winds from 

WRF without the WFP is only ahead of the observations by about 30 minutes. The early 

prediction of the down-ramp by WRF results in differences in predicted power versus observed 

power. 

 Further investigation into why the WFP is not working optimally could include several 

tests to see if additional changes may bring the WFP results closer to the observations. As the 

down-ramp observed in this case study likely propagated error in the simulations, a longer case 

study without a down-ramp could be simulated to mitigate the added challenge of simulating a 

down-ramp in complex terrain. The horizontal resolution of the innermost domain should be 

greater than 1.2 km to avoid numerical artifacts as seen in Rai et al., (2017). Another change 

could be using a second power and thrust curve in the WFP for the 66 Siemens 2.3 turbines in 

the farm. Currently, a power and thrust curve for GE 1.5sle is used for all the turbines, but 

perhaps the difference in the Siemens 2.3 thrust curve would change the results. Other datasets 

for boundary conditions, such as the GFS dataset, could also change the results. And finally, 
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adjusting the power curve used in the WFP for a more location-specific density may result in the 

WFP producing more accurate power predictions.  
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CHAPTER VI 

CONCLUSION 

 

Technical  

 

A deeper knowledge of the interaction between wind energy and the atmospheric 

boundary layer could improve upon the efficiency of processes involved in the manufacturing of 

turbines, siting and development of wind plants, and operation of wind plants. As a part of my 

PhD research, I explored several of these possible improvements, including (a) mitigating wind 

power variability on the grid by aggregating wind farm power production, (b) improving power 

production validation by demonstrating the value of calculating different power curves for 

different atmospheric and turbulence regimes, (c) quantifying the skill of nacelle-mounted 

anemometers for power production validation using empirically-derived nacelle transfer 

functions (NTFs) and further improving these NTFs by calculating different NTFs for different 

atmospheric stability and turbulence regimes, and (d) further validating the Weather Research 

and Forecasting Model’s Wind Farm Parameterization (WRF-WFP) by evaluating model runs 

with power data from wind farms in complex terrain in the western US.  

After introducing wind energy as a part of the clean energy portfolio needed for 

mitigating climate change, in the second chapter of this dissertation, I investigated “how far is far 

enough” for aggregating wind power plants to reduce the variability in power production. Using 

wind speed data from over 100 sites in Canada and 14 sites in the US Pacific Northwest as well 

as power generation data from 29 wind farms in southeastern Australia, we studied the 

dependence of correlation length between site pairs on timescales. After high-pass filtering the 
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data on 0.25–2000-hour timescales and calculating correlations between site pairs for each high-

pass filter cut-off, we found that correlations fall to zero with increasing station separation 

distance. However, the characteristic correlation length varied with the high-pass filter: the 

higher the cut-off frequency, the smaller the distance between stations was required to become 

statistically uncorrelated. Since the site separation needed for statistical independence fell for 

shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind 

plants over smaller areas than otherwise estimated. We found similar behavior in all three 

datasets, which included years of both wind speed and power data, which suggests our results 

can be particularly useful for grid management.  

In the third chapter, I investigated the effects of atmospheric stability and turbulence on 

wind turbine power curves and annual energy production (AEP) estimates. The dataset consisted 

of 2.5 months of upwind measurements from a 135-m meteorological tower as well as nacelle-

based measurements from the supervisory control and data acquisition (SCADA) system on a 

GE 1.5MW turbine (GE 1.5/77 sle). We found that different power curves were produced for 

different stability and turbulence regimes: at lower wind speeds, low stability and high 

turbulence resulted in more power produced than high stability and lower turbulence. However, 

near rated wind speed, high stability and low turbulence resulted in more power produced than 

low stability and high turbulence.  

In addition, after separating data depending on turbulence or stability regime, AEP results 

revealed different AEPs for different turbulence and stability regimes. AEP calculated with no 

atmospheric or turbulence filter was higher than any AEP calculated with these filters. The AEP 

calculated using a TI filter showed that the AEP calculated with the medium TI regime was 

greater than the AEP calculated with the low or high TI regimes, and the AEP calculated with the 
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𝑅𝐵 filter showed that the low regime AEP was much larger than the AEP in the high and medium 

regimes. Though small, these differences in AEP suggest that different power curves should be 

calculated for different atmospheric conditions, as even small deviations in AEP result in large 

deviations in cost of energy. 

 In the fourth chapter, I explored the use of nacelle anemometer measurements for power 

performance validation through the application of nacelle transfer functions (NTFs).  Using the 

same met tower and turbine data as described in the third chapter, we calculated empirical NTFs 

with both fifth- and second-order polynomial fits. We found that the coefficient of determination 

of the fifth-order fit was only slightly higher than that of the second-order fit, though after 

correcting the nacelle winds using the fits, the deviations in the corrected wind speed from the 

upwind tower hub-height wind speeds increased at higher wind speeds. The higher coefficient of 

determination using the fifth-order polynomial fit suggested that the higher order NTF results in 

a better accurate representation of the upwind wind speed. The use of NTFs in AEP calculations 

resulted in a less than 1 % difference from the AEP calculated with the upwind met tower wind 

speed, suggesting that operators can use the nacelle anemometer as a reliable means of power 

production verification at this site.  

In addition, we explored the utility of transfer functions segregated by turbulence 

intensity (TI) and turbulence kinetic energy (TKE) classifications. During periods with relatively 

high TI and TKE, the nacelle anemometer underestimated the ambient wind speed more than 

during periods of relatively low TI and TKE at wind speeds between cut-in and rated, suggesting 

different turbulence regimes warrant the application of  different NTFs. 

 Finally, in the fifth chapter, I used wind speed and power data from 348 wind turbines at 

four neighboring wind farms to help validate the Weather Research and Forecasting Model’s 
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mesoscale Wind Farm Parameterization (WRF-WFP), which represents aggregate effects of 

wind turbine wakes. Our case study focused on the early to midday hours of 30 October 2011, 

based on upwind 60-m tower wind speed and direction measurements which indicated wind 

speeds between cut-in and rated peed of a turbine representative of the farms, as well as wind 

directions unaffected from other neighboring wind farms. In addition to varying differences 

between WRF and WRF-WFP simulations throughout the domain possibly attributed to 

horizontal resolution, we observed a strong down-ramp in the early morning hours of 30 October 

2011, which both WRF and WRF-WFP predict too soon. Further investigation into why the WFP 

is not working optimally may bring the WFP results closer to the observations. 

 In addition to the projects presented here, I have gained considerable experience with 

lidar data, field deployments, and field site forecasting. I evaluated lidar wind profiles in the 

complex terrain of Uttarakhand, India to validate WRF model output for wind resource 

assessment as part of an NREL technical report (Lundquist et al., 2013, 

http://www.nrel.gov/docs/fy14osti/61103.pdf), and took part in a number of field campaigns. 

During the fall of 2012, I forecasted wind speed and direction as well as the probability of strong 

turbulence at the National Renewable Energy Laboratory’s National Wind Technology Center 

(DOE NREL-NWTC) for the Turbine Outflow Dissipation Study (TODS). In the summer of 

2013, I joined the Crop Wind energy EXperiment (CWEX) to deploy lidars and a radiometer as 

part of the CU field team in Iowa. In the spring of 2015, I deployed lidars, surface flux stations, 

and radiosondes at the NOAA Boulder Atmospheric Observatory as part of the DOE 

eXperimental measurement campaign: Planetary boundary layer Instrumentation Assessment 

(XPIA). Finally, during the fall and winter of 2015–2016, I deployed and provided support for 
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lidars and radiometers along the Columbia River Gorge in Oregon and Washington as part of the 

DOE Wind Forecast Improvement Project Part 2 (WFIP2). 

In conclusion,  knowledge of atmospheric science can surmount challenges to the wind 

industry that prevent the industry from being as efficient and cost effective as possible. Future 

work could include analyzing data from turbine-tower pairs at several wind plant sites across 

both simple and complex terrain to see how turbulence- and stability-specific NTFs vary across 

different sites. Perhaps an operator doing power performance testing can take a set of  NTFs 

from a site with similar characteristics, such as wind climates and turbine models, and use those 

NTFs at their site without the need to deploy a tower. Further, as most turbines in a plant are 

waked by at least one other turbine in some wind direction sector, calculating NTFs for a turbine 

waked by one or more turbines in different atmospheric conditions could help validate and 

forecast power production for non-leading edge turbines without the additional cost of a post-

construction tower. Other work at the intersection of wind energy and atmospheric science could 

include investigating the use of nacelle-mounted lidars for the purpose of real-time turbine 

operation. If placed on the nacelle with the laser window facing the turbine rotor, lidars could 

measure out to distances of 200 m in front of the turbine rotor, possibly allowing control 

algorithms time to adjust based on the atmospheric conditions observed. If a nacelle-mounted 

lidar observed increased turbulence and decreased wind speed, indicative of wakes, a turbine 

controller could reduce loads by yawing out of the wake or feathering the blades. Finally, 

developing a universal, yet adjustable quality-control algorithm for cleaning wind data sets 

would be incredibly useful as virtually everyone uses their own algorithm, leading to either the 

inclusion of bad data or the discarding of good data and thus affecting the results. To increase the 

quality of the data used for analyses in all projects, besides regular instrument maintenance, 
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perhaps we should have an International Electrotechnical Comission (IEC) or International 

Energy Agency (IEA) working group, consisting of scientists and engineers from around the 

world in both academia and industry, collaborate to build guidelines for an all-inclusive quality 

control algorithm based on their collective experience.  

A Personal Perspective 

 

Throughout my academic experience and during two summers interning in the wind 

industry, I have observed a communication disconnect between industry and academia. This gap 

in communication can arise from time pressures and different intrinsic motivations, such as 

finishing a project for a customer, meeting a quota by the end of the fiscal quarter, or winning 

grants and publishing papers in an increasingly competitive academic environment.  

To address this communication gap to the benefit of both academia and industry, both 

groups need to make an effort to attend conferences in order to share ideas and experiences as 

well as to make connections, seek out and pursue academic-industry collaborations, publish in 

open-access journals, and share, read, and discuss relevant peer-reviewed work. Academics with 

recent published work or work that might seem of interest to industry should reach out directly to 

possible industry collaborators. For proprietary reasons, industry is not likely to reach out to 

academia with a problem they would like to solve, but if informal or personal connections grow 

between the two groups, academics might have a better idea of who might be interested in their 

work and to what application it can ultimately be applied. Open dialog between industry and 

academic science and engineering should be prioritized by both groups; collaboration on 

mutually-beneficial projects can result in outcomes leading to a decreased cost of energy and 

increased profits. Increasing the number of industry internships available to graduate students, 
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such as I experienced, could also provide industry with the benefit of students’ experience and 

knowledge of work in the scientific and engineering communities, and academia could benefit 

from students’ experience and connections in industry, leading to research projects more 

applicable to real-world problems. Ultimately, we can only realize the full potential of the ideas 

and concepts academia discovers and builds on if those ideas are applied in industry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 
 

REFERENCES 

 

Achberger, C., Chen,  D., and Alexandersson, H.: The surface winds of Sweden during 1999-

2000, International Journal of Climatology, 26, 159-178, 2006. 

Adams, T., and Cadieux, F.: Wind power in Ontario: quantifying the benefits of geographic 

diversity, Presented at the 2nd Climate Change Technology Conference, Hamilton, Ontario 1-15, 

2009. 

Aitken, M.L., Kosović, B., Mirocha, J.D., and Lundquist, J.K.: Large eddy simulation of wind 

turbine wake dynamics in the stable boundary layer using the Weather Research and Forecasting 

Model, Journal of Renewable and Sustainable Energy, 6, 033137, doi: 10.1063/1.4885111, 

2014a. 

Aitken, M.L., Lundquist, J.K., Pichugina, Y.L., and Banta, R.M.: Quantifying wind turbine wake 

characteristics from scanning remote sensor data, J. Atmos. Ocean. Tech., 31, 765–787, 

doi:10.1175/JTECH-D-13-00104.1, 2014b. 

Aitken, M.L., Rhodes, M.E., and Lundquist, J.K.: Performance of a wind-profiling lidar in the 

region of wind turbine rotor disks, J. Atmos. Ocean. Tech., 29, 347–355, doi:10.1175/JTECH-D-

11-00033.1, 2012. 

Antoniou, I., and Pedersen, T.F.: Nacelle Anemometry on a 1MW Wind Turbine, Risø National 

Laboratory, Roskilde, Denmark, 37 pp., 1997. 

Antoniou, I., Pedersen, S.M., and Enevoldsen, P.B.: Wind shear and uncertainties in power curve 

measurement and wind resources, Wind Engineering, 33, 449–468, 

doi:10.1260/030952409790291208, 2009. 

Archer, C. L., and Jacobson, M. Z.: Spatial and temporal distributions of U.S. winds and wind 

power at 80 m derived from measurements, Journal of Geophysical Research, 108, 4289, 2003. 

Archer, C. L., and Jacobson, M. Z.: Supplying Baseload Power and Reducing Transmission 

Requirements by Interconnecting Wind Farms, Journal of Applied Meteorology and 

Climatology, 46, 1701-1717, 2007. 

Australian Energy Market Operator, South Australian Wind Study Report 2013, iv, B-2, 2013. 

AWEA, Wind energy facts at a glance, 

http://www.awea.org/Resources/Content.aspx?ItemNumber=5059, last accessed: 22 November 

2016. 

AWEA, Wind energy secures significant CO2 emission reductions for the U.S., 2014. 

http://www.awea.org/MediaCenter/pressrelease.aspx?ItemNumber=6320. Last access: 21 

November 2016. 

Baidya Roy, S., Pacala, S.W., and Walko, R.L.: Can large wind farms affect local meteorology?, 

Journal of Geophysical Research, 109, D19101, doi: 10.1029/2004JD004763, 2004. 



 

133 
 

Baidya Roy, S.: Simulating impacts of wind farms on local hydrometeorology, J. Wind Eng. 

Aerodyn., 99, 491-498, doi: 10.1016/j.jweia.2010.12.013, 2011. 

Baïle, R., and Muzy, J. F.: Spatial Intermittency of Surface Layer Wind Fluctuations at 

Mesoscale   Range. Physical Review Letters, 105, 1-4, 2010. 

Baïle, R., Muzy, J. F., and Poggi, P.: Short-term forecasting of surface layer wind speed using a   

continuous random cascade model, Wind Energy, 14, 719-734, 2011. 

Banta, R.M., Oliver, L.D., Gudiksen, P.H., and Lange, R.: Implications of small-scale flow 

features to modeling dispersion over complex terrain,  J. Appl. Meteorol. , 35, 330–342, 1996. 

Baker, R.W. and Walker, S.N.: Wake measurements behind a large horizontal axis wind turbine 

generator, Solar Energy, 33, 5-12, doi: 10.1016/0038-092X(84)90110-5, 1984.  

Barthelmie, R.J., Frandsen, S.T., Nielsen, N.M., Pryor, S.C., Rethore, P.-E., and Jørgensen, HE.: 

Modelling and measurements of power losses and turbulence intensity in wind turbine wakes at 

Mid- delgrunden offshore wind farm, Wind Energy, 10, 217–228, 2007. 

Batchelor, G. K.: The Theory of Homogenous Turbulence, Batchelor G K and Goldstein S., 

Cambridge   University Press, Cambridge, 47-48, 1959. 

Beyer, H. G., Luther, J., and Steinberger-Willms, R.: Fluctuations in the combined power output 

from geographically distributed grid coupled wind energy conversion systems - an analysis in the 

frequency domain, Wind Engineering, 14 179-192, 1990. 

Beyer, H. G., Luther, J., and Steinberger-Willms, R.: Power fluctuations in spatially dispersed 

wind turbine systems, Solar Energy, 50, 297-305, 1993. 

Bibor, E., and Masson, C.: Power Performance via Nacelle Anemometry on Complex Terrain, 

Wind Energy, Springer Berlin Heidelberg, 43-47, 2007. 

Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning LIDAR error in complex terrain, 

Meteorologische Zeitschrift, 18, 189–195, doi:10.1127/0941-2948/2009/0368, 2009. 

Blahak, U., Goretzki, B., and Meis, J.: A Simple Parameterization of Drag Forces Induced by 

Large Wind Farms for Numerical Weather Prediction Models, EWEC Conference, 20-23 April 

2010, Warsaw, 186-189, 

http://proceedings.ewea.org/ewec2010/allfiles2/757_EWEC2010presentation.pdf, last accessed 1 

December 2016. 

Bonneville Power Administration: Meteorological Information from BPA Weather Sites. Can be 

found online at: http://transmission.bpa.gov/business/operations/wind/MetData.aspx. 

Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The effective 

number of spatial degrees of freedom of a time-varying field, Journal of Climate, 12, 1990-2009, 

1999. 

Buell, C. E.: Correlation functions for wind and geopotential on isobaric surfaces, Journal of 

Applied Meteorology, 11, 51-59, 1972. 



 

134 
 

Calaf, M., Meneveau, C.,and Meyer, J.: Large eddy simulation study of fully developed wind-

turbine array boundary layers, Physics of Fluids, 22, 015110, doi: 10.1063/1.3291077, 2010. 

Carlin, J., and Haslett, J.: The Probability Distribution of Wind Power From a Dispersed Array 

of Wind Turbine Generators, Journal of Applied Meteorology, 21, 303-313, 1982. 

Choukulkar, A., Pichugina, Y., Clack, C.T.M., Calhoun, R., Banta, R., Brewer, A. and Hardesty, 

M.: A new formulation for rotor equivalent wind speed for wind resource assessment and wind 

power forecasting, Wind Energy, 19,1439-1452, doi: 10.1002/we.1929, 2016. 

Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of 

the American Statistical Association, 74, 829-836, 1979. 

Clifton, A. Remote sensing of complex flows by Doppler wind lidar: issues and preliminary 

recommendations, NREL, Golden, Colo., 1–42, 2015. 

Clifton, A., and Lundquist, J.K.: Data clustering reveals climate impacts on local phenomena, J. 

Appl. Meteorol. Clim., 51, 1547–1557, doi:10.1175/JAMC-D-11-0227.1, 2012. 

Clifton, A., Kilcher, L., Lundquist, J. K., Fleming, P.: Using machine learning to predict wind 

turbine power output, Environ. Res. Lett., 8, 024009, doi:10.1088/1748-9326/8/2/024009, 2013a. 

Clifton, A., Schreck, S., Scott, G., and Lundquist, J. K.,: Turbine inflow characterization at the 

National Wind Technology Center, J. Sol. Energ.-T. ASME, 135, 031017, 

doi:10.1115/1.4024068,2013b. 

Cosseron, A., Gunturu, U. B., and Schlosser, C. A.: Characterization of the Wind Power 

Resource in Europe and its Intermittency, Energy Procedia, 40, 58-66, 2013. 

Courtney, M., Wagner, R., and Lindelöw, P.: Testing and comparison of LIDARs for profile and 

turbulence measurements in wind energy, IOP Conference Series Earth and Environmental 

Science, 1, 1–14, doi:10.1088/1755-1307/1/1/012021, 2008. 

Curtright, A. E., and Apt, J.: The Character of Power Output from Utility-Scale Photovoltaic 

Systems, Prog. Photovolt: Res. Appl., 16, 241-247, 2008. 

Dahlberg, J.A., Frandsen,S., Madsen, H.A., Antoniou, I., Pedersen, T.F., Hunter, R., Klug, H., 

and Albers, A.: Is the nacelle mounted anemometer an acceptable option in performance testing, 

Proceeding of the European Wind Energy Conference, Nice, 624-637, 1999. 

Davenport, A. G.: The spectrum of horizontal gustiness near the ground in high winds, Quarterly 

Journal of the Royal Meteorological Society, 87, 194-211, 1961. 

Delle Monache, L., Eckel, F.A., Rife, D.L., Nagarajan, B., and Searight, K.: Probabilistic 

Weather Prediction with an Analog Ensemble, Monthly Weather Review, 141, 3498-3516, doi: 

10.1175/MWR-D-12-00281.1, 2013. 

Dörenkämper, M., Tambke, J., Steinfield, G., Heinemann, D., and Kühn, M.: Atmospheric 

impacts on power curves of multi-megawatt offshore wind turbines, Journal of Physics: 

Conference Series, 555, 1–11, doi: 10.1088/1742-6596/555/1/012029, 2014. 



 

135 
 

Draxl, C.: On the Predictability of Hub Height Winds, DTU Wind Energy PhD-Report, 104 pp., 

2012. 

Elk, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, 

J.D.: Implementation of Noah land surface model advances in the National Centers for 

Environmental Prediction operational mesoscale Eta model, Journal of Geophysical Research, 

108, D22, doi: 10.1029/2002JD003296, 2003. 

Elliott, D.L. and Barnard, J.C.: Observations of wind turbine wakes and surface roughness 

effects on wind flow variability, Solar Energy, 45, 265-283, doi: 10.1016/0038-092X(90)90012-

2, 1990.  

Elliott, D.L., and Cadogan, J.B.: Effects of wind shear and turbulence on wind turbine power 

curves, Proc. European Community Wind Energy Conference and Exhibition, Madrid, Spain, 

1990. 

Ernst, B., Wan, Y. H., and Kirby, B.: Short-Term Power Fluctuation of Wind Turbines: 

Analyzing Data From the German 25-MW Measurement Program from the Ancillary Services 

Viewpoint. National Renewable Energy Laboratory, NREL/CP-500-26722, 1-10, 1999. 

Fertig, E., Apt, J., Jaramillo, P., and Katzenstein, W.: The effect of long-distance interconnection 

on wind power variability, Environ. Res. Lett., 7, 1-6, 2012. 

Fisher, S. M., Schoof, J. T., Lant, C. L., and Therrell, M. D.: The effects of geographical 

distribution on the reliability of wind energy, Applied Geography, 40, 83-89, 2013. 

Fitch, A.C.: Climate impacts of large-scale wind farms as parameterized in a global climate 

model, Journal of Climate, 28, 6160-6180, doi: 10.1175/JCLI-D-14-00245.1, 2015. 

Fitch, A.C., Lundquist, J.K., and Olson, J.B.: Parameterization of Wind Farms in Climate 

Models, Journal of Climate, 26, 6439-6458, doi: 10.1175/JCLI-D-12-00376.1, 2013. 

Fitch, A.C., Olson, J.B., Lundquist, J.K., Dudhia, J., Gupta, A.K., Michalakes, J., and Barstad, I.: 

Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model, 

Monthly Weather Review, 140, 3017-3038, doi: 10.1175/MWR-D-11-00352.1, 2012. 

Fleming, P.A., Ning, A., Gebraad, P.M.O., and Dykes, K.: Wind plant system engineering 

through optimization of layout and yaw control, Wind Energy, 19, 329-344, doi: 

10.1002/we.1836, 2016. 

Frandsen, S.T., Jørgensen, H.E., Barthelmie, R., et al.: The making of a second-generation wind 

farm 977 efficiency model complex, Wind Energy, 12, 445–458,  doi: 10.1002/we.351, 2009. 

Frandsen, S., Sørensen, J.N., Mikkelsen, R., Pederesen, T.F., Antoniou, I., and Hansen, K.: The 

generics of wind  turbine nacelle anemometry, Proceedings of European Wind Energy 

Conference, Marseille, France, 2009. 



 

136 
 

Gartner: Hype Cycle for emerging energy technologies, 2014, 

https://www.gartner.com/doc/2811929/hype-cycle-emerging-energy-technologies, last access: 22 

November 2016.  

GE Energy: 1.5 MW wind turbine, 2009, 

http://geosci.uchicago.edu/~moyer/GEOS24705/Readings/GEA14954C15-MW-Broch.pdf, last 

access: 21 January 2013. 

Gibescu, M., Ummels, B. C., and Kling, W. L.: Statistical Wind Speed Interpolation for 

Simulating Aggregated Wind Energy Production under System Studies, Presented at the 9th 

International Conference on Probabilistic Methods Applied to Power Systems KTH, Stockholm, 

Sweden, 1-7, 2006. 

Giebel, G.: On the benefits of distributed generation of wind energy in Europe, PhD. thesis, Carl 

von Ossietzky Universität Oldenburg, 1-104, 2000. 

Geibel, G.: The State-Of-The-Art in Short-Term Prediction of Wind Power A Literature Review, 

Project ANEMOS, http://ecolo.org/documents/documents_in_english/wind-predict-

ANEMOS.pdf, last accessed 30 Dec 2016, 2003. 

GWEC: Global Wind Report: Annual Market Update 2015, 1-76, 2016. 

Gottschall, J., and Peinke, J.: How to improve the estimation of power curves for wind turbines, 

Environ. Res. Lett., 3, 1–7, doi: 10.1088/1748-9326/3/1/015005, 2008.Gunst, R. F.: Estimating 

spatial correlations from spatial-temporal meteorological data, Journal of Climate, 8, 2454-2470, 

1995. 

Hasche, B.: General statistics of geographically dispersed wind power, Wind Energy, 13, 773-

784, 2010. 

Haslett, J., and Raftery, A. E.: Space-time modelling with long-memory dependence: assessing 

Ireland’s wind power resource, Applied Statistics, 38, 1-50, 1989. 

Helmis, C.G., Papadopoulos, K.H., Asimakopoulos, D.N., Papageorgas, P.G., and Soilemes, 

A.T.: An experimental study of the near-wake structure of  wind turbine operating over complex 

terrain, Solar Energy, 54, 413-428, doi: 10.1016/0038-092X(95)00009-G, 1995.   

Hill, D. C., McMillan, D., Bell, K. R. W., and Infield, D.: Application of auto-regressive models 

to U.K. wind speed data for power system impact studies, IEEE Transactions on Sustainable 

Energy, 3, 134-141, 2012. 

Hinkelman, L. M.: Differences between along-wind and cross-wind solar irradiance variability 

on small spatial scales, Solar Energy, 88, 192-203, 2013. 

Hoff, T. E., and Perez, R.: Quantifying PV power Output Variability, Solar Energy, 84, 1782-

1793, 2010. 

Holttinen, H.: Hourly wind power variation in the Nordic countries, Wind Energy, 8, 173-195, 

2005. 



 

137 
 

Huang, J., Lu, X., and McElroy, M. B.: Meteorologically defined limits to reduction in the 

variability of outputs from a coupled wind farm system in the Central U.S., Renewable Energy, 

62, 331-340, 2014. 

Hunter, R., Pedersen, T.F., Dunbabin, P., Antoniou, I., Frandsen, S., Klug, H., Albers, A., and 

Lee, W.K.: European wind turbine testing procedure developments: Task 1: measurement 

method to verify wind turbine performance characteristics, Risø National Laboratory, Roskilde, 

Denmark,1–120, 2001. 

Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., and Collins, W.D.: 

Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer 

models, Journal of Geophysical Research, 113, D13103, doi: 10.1029/2008JD009944, 2008. 

IEA: Technology roadmap: Wind Energy 2013 edition, 2013, 

https://www.iea.org/publications/freepublications/publication/Wind_2013_Roadmap.pdf, last 

accessed: 22 November 2016. 

IEC 61400-12-1 Ed 2.0: Wind turbines – Part 12-1: power performance measurements of 

electricity producing wind turbines, IEC, Geneva, Switzerland, 2015. 

IEC 61400-12-2 Ed. 1.0: Wind turbines – Part 12-2: power performance of electricity producing 

wind turbines based on nacelle anemometry, IEC, Geneva, Switzerland, 2013. 

International Energy Agency: IEA Statistics with data up to July 2016: Monthly Electricity 

Statistics,15 October 2016, http://www.iea.org/media/statistics/surveys/electricity/mes.pdf, last 

accessed: 3 Nov 2016. 

IPCC: Climate Change 2014 Mitigation of climate change: working group III contribution to the 

fifth assessment report of the intergovernmental panel on climate change, pp. 1335, 2014, 

https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_full.pdf, last accessed 21 

November 2016. 

Jiménez, P.A., Navarro, J., Palomares, A.M., and Dudhia, J.: Mesoscale modeling of offshore 

wind turbine wakes at the wind farm resolving scale: a composite-cased analysis with the 

Weather Research and Forecasting model over Horns Rev, Wind Energy, 18, 559-566, doi: 

10.1002/we.1708, 2015. 

Julian, P. R., and Thiebaux, H. J.: On some properties of correlation functions used in optimum 

interpolation schemes, Monthly Weather Review, 103, 605-616, 1975. 

Justus, C. G., and Mikhail, A. S.: Energy statistics for large wind turbine arrays, Georgia 

Institute of Technology, 1978.   

Kahn, E.: The Reliability of Distributed Wind Generators, Electric Power Systems Research, 2, 

1-14, 1979. 

Kain, J.S.: The Kain-Fritsch Convective Parameterization: An Update, Journal of Applied 

Meteorology, 43, 170-181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 , 2004. 



 

138 
 

Kaiser, K., Hohlen, H., and Langreder, W.: Turbulence correction for power curves, Wind 

Energy Proc. European Wind Energy Conference and Exhibition, Madrid, 159–162, 2003. 

Katzenstein, W., Fertig, E., and Apt, J.: The variability of interconnected wind plants, Energy 

Policy, 38, 4400-4410, 2010. 

Keck, R.E.: A numerical investigation of nacelle anemometry for a HAWT using actuator disc 

and line models in CFX,  Renewable Energy, 48, 72-84, doi: 10.1016/j.renene.2012.04.004, 

2012. 

Keith, D.W., DeCarolis, J.F., Denkenberger, D.C., Lenschow, D.H., Malyshev, S.L., Pacala, S., 

and Rasch, P.J.: The influence of large-scale wind power on global climate, PNAS, 101, 16115-

16120, doi: 10.1073/pnas.0406930101, 2004. 

Kelley, N.D.: Turbulence-turbine interaction: the basis for the development of the TurbSim 

Stochastic Simulator, NREL, Golden, Colo., 2011. http://www.nrel.gov/docs/fy12osti/52353.pdf, 

last access: 8 May 2016. 

Kelley, N. D., Jonkman, B. J., and Scott, G.N.: The Great Plains Turbulence Environment: Its 

Origins, Impact and Simulation, Presented at the AWEA 2006 WindPower Conference, NREL, 

Golden, Colo., 2006. http://www.nrel.gov/docs/fy07osti/40176.pdf, last access, 27 November 

2016. 

Kempton, W., Pimenta, F. M., Veron, D. E., and Colle, B. A.: Electric power from offshore wind 

via synoptic-scale interconnection, Proceedings of the National Academy of Sciences of the 

United States of America, 107, 7240-7245, 2010. 

Kirby, B.: Frequency Regulation Basics and Trends, Oak Ridge National Laboratory, TM-

2004/291, 2005. 

Kiss, P., and Jánosi, I.  M.: Limitations of wind power availability over Europe: a conceptual 

study, Nonlinear Processes in Geophysics, 15, 803-813, 2008. 

Landberg, L.: Availability and variability of the European wind resource, International Journal of 

Solar Energy, 18, 313-320, 1997. 

Landberg, L.: Short-term prediction of the power production from wind farms, Journal of Wind 

Engineering, 80, 207-220, 1999. 

Lave, M., and Kleissl, J.: Cloud speed impact on solar variability scaling – Application to the 

wavelet variability model, Solar Energy, 91, 11-21, 2013. 

Lazard: Lazard’s levelized cost of energy analysis–version 9.0, November 2015, 

https://www.lazard.com/media/2390/lazards-levelized-cost-of-energy-analysis-90.pdf, last 

accessed: 22 November 2016. 

Link, H.F., and Santos, R: International Energy Agency Wind Turbine Round-Robin Test Task: 

Final Report, NREL, Golden, CO, 31 pp, 2004, last access: 24 May 2016, 

http://www.nrel.gov/docs/fy04osti/36238.pdf. 



 

139 
 

Louie, H.: Correlation and statistical characteristics of aggregate wind power in large 

transcontinental systems, Wind Energy, 17, 793-810, 2014. 

Lu, H., Porté-Agel, F.: Large-eddy simulation of a very large wind farm in a stable atmospheric 

boundary layer, Physics of Fluids, 23, 065101, doi: 10.1063/1.3589857, 2011. 

Lundquist, J.K., Churchfield, M.J., Lee, S., and Clifton, A.: Quantifying error of lidar and sodar 

Doppler beam swinging measurements of wind turbine wakes using computational fluid 

dynamics, Atmospheric Measurement Techniques, 8, 907–920, doi: 10.5194/amt-8-907-2015, 

2015. 

Lundquist, J. K., Purkayastha, A., St. Martin, C., and Newsom, R.: Estimating the Wind 

Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind 

Measurements, NREL Technical Report NREL/TP-5000-61103, 1-38, 

http://www.nrel.gov/docs/fy14osti/61103.pdf, 2013. 

Magnusson, M. and Smedman, A.S.: Influence of atmospheric stability on wind turbine wakes. 

Wind Eng., 18, 139–151, 1994. 

Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., and Izco, E.: From irradiance to output power 

fluctuations: the pv plant as a low pass filter, Prog. Photovolt: Res. Appl., 19, 505-510, 2011. 

Marcos, J., Marroyo, L., Lorenzo, E., García, M.: Smoothing of PV power fluctuations by 

geographical Dispersion, Progress in Photovoltaics: Research and Applications, 20, 226-237, 

2012. 

Marquis, M., Wilczak, J., Ahlstrom, M., Sharp, J., Stern, A., Smith, J.C., and Calvert, S.: 

Forecasting the wind to reach significant penetration levels of wind energy, Bulletin of the 

American Meteorological Society, September 2011, 1159-1171, doi: 

10.1175/2011BAMS3033.1, 2011. 

Matheron, G.: Principles of Geostatistics, Economic Geology, 58, 1246-1266, 1963. 

McNerney, G., and Richardson, R.: The Statistical Smoothing of Power Delivered to Utilities by 

Multiple Wind Turbines, IEEE Transactions on Energy Conversion, 7, 644-647, 1992. 

Mendoza, I., Hur, J., Thao, S., Curtis, A.: Power performance test report for the U.S. Department 

of Energy 1.5-megawatt wind turbine, NREL, Golden, Colo., 1–55, 2015, last access: 8 May 

2016, http://www.nrel.gov/docs/fy15osti/63684.pdf. 

Milligan, M., and Factor, T.: Optimizing the Geographic Distribution of Wind Plants in Iowa for 

Maximum Economic Benefit and Reliability, Wind Engineering, 24, 271-290, 2000. 

Mills, A. D., and Wiser, R. H.: Implications of Geographic Diversity for Short-Term Variability 

and Predictability of Solar Power, 2011 IEEE Power and Energy Society General Meeting, 2011. 

Mirocha, J.D., Kosović, B., Aitken, M.L., and Lundquist, J.K.: Implementation of a generalized 

actuator disk wind turbine model into the weather research and forecasting model for large-eddy 



 

140 
 

simulation applications, Journal of Renewable and Sustainable Energy, 6, 013104, doi: 

10.1063/1.4861061, 2014. 

Molly, J. P.: Balancing power supply from wind energy converting systems, Wind Engineering, 

1, 57-66, 1977. 

Motta, M., Barthelmie, R.J., and Vølund, P.: The influence of non-logarithmic wind speed 

profiles on potential power output at Danish offshore sites, Wind Energy, 8, 219–236, 2005. 

Muñoz-Esparza, D., Cañadillas, B., Neumann, T., and vanBeech, J.: Turbulent fluxes, stability 

and shear in the offshore environment: mesoscale modelling and field observations at FINO1, 

Journal of Renewable and Sustainable Energy, 4, 1–16, doi: 10.1063/1.4769201, 2012. 

Nakanishi, M., and Niino, H.: An Improved Mellor-Yamada Level-3 Model: Its Numerical 

Stability and Application to a Regional Prediction of Advection Fog, Boundary-Layer 

Meteorology, 119, 397-407, doi: 10.1007/s10546-005-9030-8, 2006. 

Nanahara, T., Asari, M., Sato, T., Yamaguchi, K., Shibata, M., and Maejima, T.: Smoothing 

Effects of Distributed Wind Turbines, Part 1, Coherence and Smoothing Effects at a Wind Farm, 

Wind Energy, 761-74, 2004. 

National Hydropower Association: FAQ, http://www.hydro.org/policy/faq/, last accessed: 27 

November 2016. 

NWTC 135-m Tower Data: https://nwtc.nrel.gov/MetData, last accessed: 18 May 2016. 

Palutikof, J. P., Cook, H. F., and Davies, T. D.: Effects of geographical dispersion on wind 

turbine performance in England: A simulation, Atmospheric Environment, 24A, 213-227, 1990. 

Poulos, G.S., Bossert, J.E., Pielke, R.A., and McKee, T.B.: The interaction of katabatic flow and 

mountain waves I: observations and idealized simulations, J. Atmos. Sci., 57, 1919–1936, 2000. 

Poulos, G.S., Bossert, J.E., Pielke, R.A., and McKee, T.B.: The interaction of katabatic flow and 

mountain waves II: case study analysis and conceptual model, J. Atmos. Sci., 64, 1857–1879, 

2007. 

Rai, R.J., Berg, L.K., Kosovic, B., Mirocha, J.D., Pekour, M.S., and Shaw, W.J.: Comparison of 

Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer 

Over Complex Terrain, Boundary-Layer Meteorol, 163, 69-89, 2017. 

Rajewski, D.A., Takle, E.S., Lundquist, J.K., Oncley, S., Prueger, J.H., Horst, T.W., Rhodes, 

M.E., Pfeiffer, R., Hatfield, J.L., Spoth, K.K., and Doorenbos, R.K.: Crop Wind Energy 

Experiment (CWES) Observations of Surface-Layer, Boundary Layer, and Mesoscale 

Interactions with a Wind Farm, Bulletin of the American Meteorological Society, May 2013, 

655-672, doi: 10.1175/BAMS-D-11-00240.1, 2013.   

Ramanathan, Y., Kulkarni, P. and Sikka, D. R.: On a study of winter season wind structure at 

500 mb in the Indian region for use in objective analysis of the wind field, Journal of Applied 

Meteorology, 12, 977-983, 1973. 



 

141 
 

Rareshide, E., Tindal, A., Johnson, C., Graves, A.M., Simpson, E., Bleeg, J., Harris, T., and 

Schoborg, D.: Effects of complex wind regimes on turbine performance, AWEA Windpower 

2009 meeting, Chicago, Ill., 2009. 

Rhodes, M.E., and Lundquist, J.K.: The effect of wind-turbine wakes on summertime US 

Midwest atmospheric wind profiles as observed with ground-based Doppler LIDAR, Boundary-

Layer Meteorol. 149, 85–103, doi:10.1007/s10546-013-9834-x, 2013. 

Rinker, J.M., Gavin, H.P., Clifton, A., Veers, P.S., and Kilcher, L.F.: Temporal coherence: a 

model for non-stationarity in natural and simulated wind records, Boundary-Layer Meteorol., 

159, 373–389, doi: 10.1007/s10546-015-0121-x, 2016. 

Robeson, S. M., and Shein, K. A.: Spatial coherence and decay of wind speed and power in the 

North-Central United States, Physical Geography, 18, 479-495, 1997. 

Šaltytė Benth, J., and Šaltytė, L.: Spatial-temporal model for wind speed in Lithuania, Journal of 

Applied Statistics, 38, 1151-1168, 2011. 

Sanderse, B., van der Pijl, S.P., and Koren, B.: Review of computational fluid dynamics for wind 

turbine wake aerodynamics, Wind Energy, 14, 799-819, doi: 10.1002/we.458, 2011. 

Şen, Z.: Cumulative Semivariogram Models of Regionalized Variables, Mathematical Geology, 

21, 891-903, 1989. 

Şen, Z., and Şahin, A. D.: Regional assessment of wind power in western Turkey by the 

cumulative semivariogram method, Renewable Energy, 12, 169-177, 1997.      

Simonsen, T. K., and Stevens, B. G.: Regional wind energy analysis for the central United 

States. Presented at Global Wind Power, 1-15, 2004. 

Sinden, G.: Characteristics of the UK wind resource: Long-term patterns and relationship to 

electricity Demand, Energy Policy, 25, 112-127, 2007. 

Smaïli, A., and Masson, C.: On the rotor effects upon nacelle anemometry for wind turbines, 

Wind Energy, 28, 695-714, doi: 10.1260/0309524043729958, 2004. 

Smith, B., Link, H., Randall, G., and McCoy, T.: Applicability of Nacelle Anemometer 

Measurements for Use in Turbine Power Performance Tests, AWEA Windpower, Portland, OR, 

2002. 

Sørensen, P., Cutululis, N. A., Vigueras-Rodríguez, A., Madsen,  H.,  Pinson, P., Jensen, L. E., 

Hjerrild, J., and Donovan, M.: Modelling of power fluctuations from large offshore wind farms, 

Wind Energy, 11, 29-43, 2008.  

St. George, S. and Wolfe, S. Z.: El Nino stills winter winds across the southern Canadian 

Prairies, Geophysical Research Letters, 36, 1-5, 2009. 

St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Wind turbine 

power production and annual energy production depend on atmospheric stability and turbulence, 

Wind Energ. Sci., 1, 221-236, doi:10.5194/wes-1-221-2016, 2016. 



 

142 
 

Stull, R.B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, 

Netherlands, 1988. 

Sumner, J., and Masson, C.: Influence of atmospheric stability on wind turbine power 

performance curves, J. Sol. Energ.-T ASME, 128, 531–538, doi:10.1115/1.2347714, 2006. 

Tarroja, B., Mueller, F., Eichman, J. D., Brouwer, J., and Samuelsen, S.: Spatial and temporal 

analysis of electric wind generation intermittency and dynamics, Renewable Energy, 36, 3424-

3432, 2011. 

Thomas, P. H.: Electric Power From the Wind, Federal Power Commission, 1-74, 1945. 

Thompson, G., and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and Precipitation 

Development in a Large Winter Cyclone, Journal of the Atmospheric Sciences, 71, 3636-3658, 

doi: 10.1175/JAS-D-13-0305.1, 2014. 

United Nations: Paris Agreement, 1-17, 2015. 

U.S. Energy Information Administration: Annual Energy Outlook 2016 Early Release: 

Annotated Summary of Two Cases, http://www.eia.gov/forecasts/aeo/er/pdf/0383er(2016).pdf, 

last accessed: 3 Nov 2016. 

U.S. Energy Information Administration: Frequently asked questions: How much electricity does 

an American home use?, 2016, https://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3, las accessed: 

22 November 2016. 

U.S. Energy Information Administration: Today in Energy, Total U.S. energy production 

increases for sixth consecutive year, https://www.eia.gov/todayinenergy/detail.php?id=25852, 

last accessed: 3 Nov 2016. 

U.S. Energy Information Administration: U.S. Crude oil and natural gas proved reserves 2014, 

2015, http://www.eia.gov/naturalgas/crudeoilreserves/pdf/usreserves.pdf, last accessed: 21 

November 2016. 

U.S. Energy Information Administration: Wind generation share exceeded 10% in 11 states in 

2015, https://www.eia.gov/todayinenergy/detail.php?id=28512, last accessed: 22 November 

2016. 

U.S. Geological Society Energy Resources Program, https://eerscmap.usgs.gov/windfarm/, last 

accessed 30 Dec 2016. 

U.S. Nuclear Regulatory Commission: Location of Projected New Nuclear Power Reactors, 

2016, http://www.nrc.gov/reactors/new-reactors/col/new-reactor-map.html, last accessed 27 

November 2016. 

van den Berg, G.P.: Wind turbine power and sound in relation to atmospheric stability, Wind 

Energy, 11, 151–169, 2008. 



 

143 
 

Vanderwende, B.J., Kosović, B., Lundquist, J.K., and Mirocha, J.D.: Simulating effects of a 

wind-turbine array using LES and RANS, J. Adv. Model. Earth Syst., 8, 1376-1390, doi: 

10.1002/2016MS000652, 2016. 

Vanderwende, B., and Lundquist, J.K.: The modification of wind turbine performance by 

statistically distinct atmospheric regimes, Environ. Res. Lett., 7, 1–7, doi:10.1088/1748-

9326/7/3/034035, 2012. 

von Kármán,  T.: Progress in the Statistical Theory of Turbulence, Proceedings of the National 

Academy of Sciences, 34, 530-539, 1948. 

von Meier, M.: Electric Power Systems: A Conceptual Introduction (Hoboken: Wiley), 2006. 

Wagenaar, J.W., and Eecen, P.J.: Dependence of power performance on atmospheric conditions 

and possible corrections, European Wind Energy Association (EWEA) 2011 conference, 

Brussels, Belgium, 2011. http://www.ecn.nl/docs/library/report/2011/m11033.pdf, last access: 9 

May 2016. 

Wagner, R., Antoniou, I., Pedersen, S., Courtney, M., and Jorgensen, H.: The influence of the 

wind speed profile on wind turbine performance measurements, Wind Energy, 12, 348–362, 

doi:10.1002/we.297, 2009. 

Wan, H., Wang, X. L., and Swail, V. R.: Homogenization and Trend Analysis of Canadian Near-

Surface Wind Speeds, Journal of Climate, 23, 1209-1225, 2010. 

Whale, J., Andersen, C.G., Bareiss, R., and Wagner, S.: An experimental and numerical study of 

the vortex structure in the wake of a wind turbine, J. Wind Eng. Ind. Aerodyn., 84, 1-21, doi: 

10.1016/S0167-6105(98)00201-3, 2000. 

Wharton, S., and Lundquist, J.K.: Atmospheric stability affects wind turbine power collection, 

Environ. Res. Lett., 7, 1–9, doi:10.1088/1748-9326/7/1/014005, 2012a. 

Wharton, S. and Lundquist, J.K.: Assessing atmospheric stability and its impacts on rotor-disk 

wind characteristics at an onshore wind farm, Wind Energy, 15, 525–546, doi:10.1002/we.483, 

2012b. 

Wiemken, E., Beyer, H. G., Heydenreich, W., and Kiefer, K.: Power characteristics of PV 

ensembles: experiences from the combined power production of 100 grid connected PV systems 

distributed over the area of Germany, Solar Energy, 70, 513-518, 2001. 

Wilczak, J., Finley, C., Freedman, J., Cline, J., et al.: The wind forecast improvement project 

(WFIP) A public-private partnership addressing wind energy forecast needs, Bulletin of the 

American Meteorological Society, October 2015, 1699-1718, doi: 10.1175/BAMS-D-14-

00107.1, 2015. 

Wu, Y-T. and Porté-Agel, F.: Simulation of Turbulent Flow Inside and Above Wind Farms: 

Model Validation and Layout Effects, Boundary-Layer Meteorol, 146, 181-205, doi: 

10.1007/s10546-012-9757-y, 2013. 



 

144 
 

Zahle, F., and Sørensen, N.N.: Characterization of the unsteady flow in the nacelle region of a 

modern wind turbine, Wind Energy, 13, 271-283, doi: 10.1002/we.418, 2011. 

Zhou, L., Tian, Y., Baidya Roy, S., Thorncroft, C., Bosart, L.F., and Hu, Y.: Impacts of wind 

farms on land surface temperature, Nature Climate Change, 2, 539-543, doi: 

10.1038/NCLIMATE1505, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

145 
 

APPENDIX A 

 

Supplementary Data for: 

St. Martin, C. M., Lundquist, J. K., and Handschy, M. A.: Variability of interconnected wind 

plants: correlation length and its dependence on variability time scale. Environ. Res. Lett., 10, 

044004, doi:10.1088/1748-9326/10/4/044004, 2015. 

 

S1 Additional information about datasets used 

Maps illustrating station and wind farm locations are shown in Figure S 1 for Australia 

(AUS), Canada (CAN) and Bonneville Power Authority (BPA). Names and locations of the 

Australian wind farms and BPA stations we use in this analysis are in Table S 1 and Table S 2, 

respectively. Data availability for AUS is greater than 98% for 25 of the 29 wind farms, for CAN 

is greater than 95% for 91 of the 117 sites, and for BPA is greater than 98% for 13 of the 14 sites 

used. A subset of 39 Canadian stations with 0.1% or less missing data is used for some of the 

analysis here: separation distances from these stations vary from a minimum of 64 km to a 

maximum of 5203 km.  

S2 Diurnal and seasonal cycles in data 

 Figure S 2 shows the periodogram and correlogram for the wind speed time-series data 

from a typical CAN station. For frequencies higher than about once per 90 days, the power 

spectrum of the raw data (gray) resembles a von Kármán (von Kármán, 1948) or Kaimal (Kaimal 

et al., 1972) spectrum, but with prominent peaks corresponding to a diurnal cycle and its 

harmonics. The autocorrelation calculated from the raw data similarly has maxima at multiples 

of 24-hour lag. At the lowest frequencies, the power spectral density increases with decreasing 

frequency; the autocorrelation function correspondingly does not approach zero for lags well in 

excess of several days. Inter-station correlation versus separation distance calculated from these 
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raw data show a “ripple” and a non-zero floor (Figure S 3a): the correlation reaches a minimum 

near 1500 km, then increases again to 2800 km, then decreases again, but not to zero. Removing 

the diurnal cycle and low-frequency variation from the time-series data according to the 

procedure described below removes the ripple in the correlation vs. distance behavior and results 

in the correlation falling to zero at large distances (Figure S 3b).    

S2.1 Filtering 

In light of the above, we suppose the wind speed (or generation) time-series 𝑣𝑖(𝑡)⁡at the 

i th station can be represented by a stochastic process 𝑣𝑖
𝑆(𝑡) with additive, seasonally-varying 

diurnal cycle 𝑆𝑖(𝑡): 𝑣𝑖(𝑡) = ⁡𝑣𝑖
𝑆(𝑡) +⁡𝑆𝑖(𝑡). Following a method similar to that of Baïle et al. 

(2011), we make a local estimate of the diurnal cycle in order to accommodate its seasonally-

varying nature. For each day of each station’s time-series record we utilize a data segment 

comprising that day and the 45 days on either side. We represent the diurnal cycle by the first 

four components of a Fourier series, determining the coefficients in equation (S 1) by least-

squares fitting to the data segment, apodized by a Welch (Welch, 1967) window with weights 

sets to zero at the locations of any missing data. 

                    𝑆(𝑡𝑖) = 𝑎0 + ∑ [𝑎𝑘 sin (
2𝑘𝜋𝑡𝑖

24
) + 𝑏𝑘 cos (

2𝑘𝜋𝑡𝑖

24
)]4

𝑘=1                                 (S1) 

After fitting separately for each day of the record (save the first and last 45 days which 

we discard), we subtract the appropriate cycle from the 24 hourly values of each days’ wind 

speed or power generation values. While not part of the diurnal cycle, we also subtract the 

seasonally-varying “bias” term 𝑎0, thereby also removing all trends slower than seasonal. 

To elaborate the dependence of spatial correlation scale on temporal fluctuation 

frequency, we calculate the correlation coefficient between time-series data for the various 
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stations or wind farms after the time-series data have been temporally high-pass filtered with 

various filter cut-offs. Accordingly, the CAN (AUS, BPA) data are smoothed (low-pass filtered) 

using a moving boxcar window with 17 (22) different averaging window widths ranging from 

three hours (15 minutes) to 2049 hours (1707 hours). Subtracting the smoothed series from the 

original yields a high-pass filtered series. Without further high-pass filtering, the pre-processed 

data already had seasonal trends lower than τ = 2160 h removed as described above; we utilize 

these data as well. An application of this approach to a 30-day time-series from one CAN station 

appears in Figure S 4. This de-trending of the time-series is applied to focus on the dependence 

of correlation length on timescale. 

S3 Correlation vs distance 

For each averaging window width (or equivalently, each high-pass filter cut-off), we 

calculate the (Pearson) correlation coefficient ρij for the de-trended and high-pass-filtered wind 

speed time-series for each pair of stations i and j. We ignore any time steps with missing values 

and create scatterplots of correlation ρ(rij) vs. station separation rij. 

S3.1.1 AUS correlations 

 Correlations in normalized, de-trended power generation between Australian wind farms 

drop with farm separation distance as shown in Figure S 5, dropping faster at smaller high-pass 

filter window widths. At larger window widths, there is larger scatter in the correlations and 

more prominent anti-correlations at the larger farm separation distances. 

S3.1.2 BPA correlations 

Wind speed correlations between the 91 station pairs in BPA also decrease with 

increasing distance as shown in Figure S 6. The smaller geographic extent of the BPA regions 
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makes it difficult to compare the BPA to CAN spatial correlation analysis results. The largest 

station separation distance in BPA is about 350 km compared to 5300 km in CAN, but BPA 

offers finer time resolution (5-min vs hourly).  

S3.2 Investigating large scatter in CAN correlations 

 Large scatter in correlations at shorter station separation distances can be seen in Figure 1 

and Figure S7. To further investigate the observed correlations that drop below zero in CAN as 

well as the large scatter in correlations at smaller station separation distances, we compare 

correlations for separate regions (east and west regions as well as north and south regions) as 

well as by azimuthal bearing.  

S3.2.1 Azimuthal bearing 

To investigate the hypothesis that the longitudinal vs. transverse bearing of a station-pair 

relative to the direction of prevailing winds could affect the correlation length scale, we plot 

correlation vs distance with points colored according to a scale given: 

 𝜎 = sin⁡(2𝜗 + 𝛿) (S2) 

where 𝜗 is the bearing from North of the station separation. We compare plots with different 𝛿’s, 

finding the δ value that accounted for the most scatter (δ = 110°).  

S3.2.2 Impact of climate oscillations 

 Most of the analysis uses all available data from 1962‒2006. To test the hypothesis that 

climate oscillations, such as the El Niño Southern Oscillation (ENSO), affect the correlations, we 

isolate periods of strong ENSO using the Multivariate ENSO Index (MEI). The MEI is based on 

observed values of sea level pressure, zonal and meridional components of the wind, sea surface 
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temperature, surface air temperature, and total cloudiness and the seasonal variations in these 

observed values (Wolter and Timlin, 1993). Strong ENSO events are determined by ranking 

bimonthly normalized MEI values (Wolter and Timlin, 2011). Lengths of ENSO events are 

determined by the number of consecutive bimonthly normalized MEI values that are positive (El 

Niño) or negative (La Niña). We isolate the 19-month El Niño event from April 1982 through 

October 1983, and the 19-month La Niña event from May 1988 through October 1989. As the 

plot in Figure 4(d) shows, the ENSO was found to have little to no effect on the correlations. We 

also isolated the 13-month El Niño event from April 1965 through April 1966 and the 13-month 

La Niña event from February 1964 through February 1965, the 13-month El Niño event from 

April 1972 through April 1973 and the 13-month La Niña event from September 1970 through 

September 1971, as well as the combination of these periods, and still did not find any significant 

difference in correlations between strong positive and strong negative ENSO periods. Calculated 

differences in the 1965-1966 El Niño and 1964-1965 La Niña correlations shown in Figure S7 

show a mean of -0.0011 and a standard deviation of 0.044.  
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Supplementary Data Tables 

Table S1: List of the Australian wind farms used in this work. 

Farm Name Farm ID Latitude Longitude 

Capital Wind Farm CAPTL_WF -35.164313 149.518197 

Cullerin Range Wind Farm CULLRGWF -34.805595 149.399996 

Gullen Range Wind Farm GULLRWF1 -34.614692 149.460105 

Gunning Wind Farm GUNNING1 -34.693318 149.378398 

Woodlawn Wind Farm WOODLWN1 -35.07191 149.566194 

The Bluff Wind Farm BLUFF1 -33.379859 138.800762 

Cathedral Rocks Wind Farm CATHROCK -34.848752 135.579549 

Clements Gap Wind Farm CLEMGPWF -33.491782 138.115395 

Hallett 1 Wind Farm HALLWF1 -33.308711 138.728828 

Hallett 2 Wind Farm HALLWF2 -33.563158 138.863633 

Lake Bonney Wind Farm LKBONNY2&3 -37.758933 140.40062 

Mt Millar Wind Farm MTMILLAR -33.700692 136.740144 

North Brown Hill Wind Farm NBHWF1 -33.238884 138.721145 

Snowtown Wind Farm Stage 2 North SNOWNTH1 -33.760186 138.140621 

Snowtown South Wind Farm SNOWSTH1 -33.856538 138.119708 

Snowtown Wind Farm Units 1 and 47 SNOWSTWN1 -33.684932 138.177357 

Starfish Hill Wind Farm STARHLWF -35.568967 138.142933 

Waterloo Wind Farm WATERLWF -34.003079 138.914961 

Wattle Point Wind Farm WPWF -35.123503 137.712455 

Musselroe Wind Farm MUSSELR1 -40.78006 148.002821 

Woolnorth Studland Bay / Bluff Point 

Wind Farm 

WOOLNTH1 

-40.680464 144.699311 

Challicum Hills Wind Farm CHALLHWF -37.389725 143.107857 

Macarthur Wind Farm MACARTH1 -38.040812 142.02954 

Mt Mercer Wind Farm MERCER01 -37.824887 143.874131 

Mortons Lane Wind Farm MLWF1 -37.837554 142.466641 

Oaklands Hill Wind Farm OAKLAND1 -37.681232 142.5530087 

Portland Wind Farm PORTWF -38.349937 141.589335 

Waubra Wind Farm WAUBRAWF -37.362083 143.601391 

Yambuk Wind Farm YAMBUKWF -38.31476 142.024078 
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Table S2: List of the BPA stations used in this work. 

BPA station Latitude Longitude Height AGL 

(m) 

Augspurger 45.736263 -121.680858 21.336 

BiddleButte 45.580749 -122.207451 22.5552 

ForestGrove 45.524249 -123.088548 9.144 

HoodRiver 45.688002 -121.52391 9.144 

HorseHeaven 45.933771 -119.634224 21.336 

MarysPeak 44.504299 -123.552464 6.096 

Megler 46.266005 -123.877276 53.34 

MtHebo 45.213434 -123.755384 15.24 

NaselleRidge 46.421801 -123.796896 30.48 

Roosevelt 45.764636 -120.240082 21.336 

Shanoko 45.02515 -120.835323 9.144 

Sunnyside 46.485693 -119.992561 9.144 

Tillamook 45.457724 -123.828638 9.144 

Troutdale 45.558324 -122.401734 30.48 
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Supplementary Data Figures 

 

Figure S1: (a) CAN (red and yellow dots) and BPA (aqua) station locations. Yellow dots indicate 

the CAN stations with at least 99.9% data availability; (b) Australian wind farm locations (red 

dots).   
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Figure S2: (a) Periodograms for a Canadian station calculated using the Welch method (Press et 

al. 2007) (471,168 hourly wind-speed data samples with 371 missing points replaced by overall 

mean, partitioned into seven Hamming-windowed 50% overlapping segments of length 

117,792).  Gray: raw data; blue; after 90-day high-pass filter and diurnal cycle removal. Kaimal 

PSD=10000[1+(2.8 d)f]−1; (b) correlograms: (1) raw data displaced up by 0.13, (2) data with 

diurnal cycle removed (not displaced), (3) data with both diurnal cycle and seasonally-varying 

bias removed. 

(a) (b)  

Figure S3: Correlations vs distance with data from 39 Canadian stations with little missing data: 

(a) high-pass filtered (τ = 257 h), but without removal of diurnal and bias; (b) both high-pass 

filtering (τ = 257 h), and diurnal cycle and seasonal bias removal. 
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Figure S4: Wind speed time-series from one Canadian site for 4/15‒5/20/1962. Top: raw time 

series. Top middle: with bias and Fourier terms removed. Bottom middle: after averaging with a 

17-hour moving window. Bottom: after subtracting the 17-hr window smoothed values from the 

original data. 
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Figure S5: Correlation vs site separation for 29 Australian farms. Five-minute net generation data 

from 2013 through 2014: (a) high-pass window width τ = 15 minutes; (b) τ = 5 hours; (c) τ = 21 

hours; (d) τ = 57 days. 
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Figure S6: Correlation vs site separation for 14 BPA stations. Five-minute data 2012‒2014: (a) 

High-pass window width τ = 15 minutes; (b) τ = 3 hours; (c) τ = 11 hours; (d) τ = 171 hours. 
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Figure S7: Correlation vs site separation for all 117 CAN stations, hourly surface data 1962‒

2006: (a) High-pass window width τ = 3 hours; (b) τ = 33 hours; c) τ = 257 hour; d) τ = 2049 

hours. 
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Figure S8: Histogram of correlation coefficient differences between the 1965-1966 El Niño and 

the 1964-1965 La Niña periods. The mean is -0.0011 and the standard deviation is 0.044. 
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APPENDIX B 

 

Supplementary Data for: 

St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck, S. J.: Wind turbine 

power production and annual energy production depend on atmospheric stability and turbulence, 

Wind Energ. Sci., 1, 221-236, doi:10.5194/wes-1-221-2016, 2016. 

 

S1 Lidar variability 

Lidar measurements of wind speed and direction exhibit larger variability than those from 

the met tower. This variability may be due to the lidar’s operating assumption of homogeneity 

across the measurement volume: the WINDCUBE v1 measures volumetric-averaged wind 

speeds and directions over a 20 m thick layer with an effective diameter on the order of the 

height of the measurement (30° beam angle) and assumes homogeneous flow within that layer. 

This assumption may not be reliable at this site: observations from scanning lidar of flow at the 

U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National 

Renewable Energy Laboratory (NREL) indicate that flow can be very inhomogeneous (Smalikho 

et al., 2013; Aitken et al., 2014).  

 Despite this potential for variability at the NWTC, the lidar and tower measurements are 

generally well-correlated (R = 0.96 and bias of 0.37 m s–1, with the lidar recording higher values 

than the anemometer for this time period; Fig. 8). Note that the bias is likely significantly 

influenced by the accuracies of the instrument compared (see Sect. 2.2.1 and Sect. 2.2.2). 

Previous work by Smith et al. (2006), Sathe et al. (2011) and Sanz Rodrigo et al. (2013) saw 

strong correlations between lidars and anemometers in flat terrain. Smith et al. (2006) found a 

correlation coefficient of 0.9843 between a ZephIR lidar and a cup anemometer at 80 m for 10-

min wind speed averages for 1 day, Sathe et al. (2011) found correlation coefficients greater than 
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0.98 between WINDCUBE and ZephIR lidars and sonic anemometers at 100 m for 10-min wind 

speed averages for 4–5 months, and Sanz Rodrigo et al. (2013) found correlation coefficients 

greater than 0.99 between WINDCUBE and ZephIR lidars and cup anemometers at 89 m for 10-

min wind speed averages for 10 days. Sanz Rodrigo et al. (2013) also performed lidar–tower 

comparisons in complex terrain in the Alaiz mountain range in Navarra, Spain, and found 

correlation coefficients greater than 0.98 between WINDCUBE and ZephIR lidars and cup 

anemometers at 78 m for 10-min wind speed averages for approximately 5 months. Our 

correlations between a lidar and an anemometer, based on 2.5 months of collecting wind speed 

and direction-filtered data in complex terrain in an atmosphere with relatively few aerosols for 

backscatter, resulted in a relatively high correlation coefficient of 0.96. Our correlation in an 

inhomogeneous flow is only slightly lower than other correlation coefficients previously found 

between lidars and towers in flat terrain.  

S2 Rotor equivalent wind speed  

Quantifying the wind profile across the entire swept rotor area (SRA) has been shown to 

improve correlations between wind inflow and power output (Wagner et al., 2009). Here, we 

calculate rotor equivalent wind speeds (REWS) following Wagner et al. (2009): 

𝑈𝑒𝑞 =⁡(∑ 𝑈𝑖
3

𝑖 ⁡
𝐴𝑖

𝐴𝑡𝑜𝑡
)
1/3

  ,                                                                                                           (S1) 

where i represents the index of the level, U is the horizontal wind speed, 𝐴𝑖 is the area of the 

turbine rotor disk of the level with the corresponding data point (the area of the sector defined by 

chord/arc relative to 360°, minus the area of the triangle), and 𝐴𝑡𝑜𝑡 is the SRA. When calculating 

the REWS from the lidar profiles, five levels (40, 60, 80,100, 120 m) are available; when 

calculating the REWS from the tower cup anemometer data, three levels (55, 80, 105 m) are 
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available, all of which use Thies anemometers. Cup anemometer data available at 38, 87, and 

122 m are not used in these REWS calculations for consistency because these are different 

instruments than those at 55, 80, and 105 m, which were are to calculate the REWS. 

Despite the variability in the shear exponent as calculated from the tower measurements 

(Sect. 3.7), the high correlations between the 80-m wind speeds and REWS shown in Fig. S1 

suggest that power curves for 80 m will be very similar to power curves for REWS for this data 

set. The high turbulence at the NWTC may have prevented the occurrence of larger wind shear 

across the rotor disk. This might lead to significant differences in REWS from 80-m wind 

speeds, which may manifest in the power curves at other sites. Differences between the REWS 

and the wind speed at hub height at other sites may also affect annual energy production 

calculations as in Scheurich et al. (2016). 

S3 Yaw error and veer 

Additionally, we explore the effects of yaw error and wind veer and distributions of these 

variables as shown in Fig. S2. To calculate yaw error, we subtract the wind direction as 

measured by the met tower near hub-height from the nacelle position as given by the supervisory 

control and data acquisition (SCADA) system. The resulting yaw error, however, is centered 

around 90° instead of 0°, which means the orientation of the turbine position is around 90° off of 

North. To correct for this, we assume that the yaw error should be 0° at rated power, so we take 

the average yaw error when the turbine was producing rated power (94.22°) and subtract this 

from the yaw error to get the correct values of yaw error. After correcting for the turbine yaw 

orientation offset, we determined that it is not appropriate to split the yaw error distribution into 

regimes as 78% of the data lie within   ± 5° yaw error and 96% of the data lie within ± 10° yaw 

error. 
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We found no impact of yaw error or wind veer on the power curves at this site. However, 

based on other locations (Vanderwende and Lundquist, 2012; Rhodes and Lundquist, 2013; 

Walton et al., 2014) where significant veer does occur, it may affect power production, but this 

site does not regularly experience that phenomena.  

S4 Power curves for different TKE regimes 

Likely due to a lack of sonic data at 74 m that passes our data quality control filters as 

discussed in Sect. 3.1 (60 %), few statistically-distinct bins emerge from the TKE power curves. 

Fig. S3 shows the nacelle and upwind tower power curves segregated by TKE regime. Only at 

about 12 m s–1 do statistically-significant differences in power curves emerge between the low 

and high TKE power curves: at 12 m s–1, cases within the low TKE regime produce significantly 

more power than cases within the high TKE regime.   
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Supplementary Figures 

 

Figure S1. REWS as a function of 80-m wind speed from (a) the tower and from (b) lidar. Black 

dotted line represents a 1:1 relationship. Includes data filtered for tower 80-m wind speeds 

between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and for normal 

turbine operation. 
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Figure S2. (a) Yaw error histogram and (b) wind veer histogram. Includes data filtered for tower 

80-m wind speeds between 3.5 and 25.0 m s–1, 87-m wind directions between 235° and 315°, and 

for normal turbine operation. 
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Figure S3. (a) Nacelle anemometer and (b) 80-m tower anemometer power curves with TKE 

regimes. (c) Naclle anemometer and (d) 80-m tower anemometer power curves shown as the 

anomaly from the neutral or medium power curve of the TI regimes. Median statistics are used to 

avoid outlier effects. Statistically distinct differences within each wind speed bin between the 

regimes are determined by the Wilcoxon rank sum test with a 1 % significance level and denoted 

by closed circles. Includes data filtered for tower 80-m wind speeds between 3.5 and 25.0 m s–1, 

87-m wind directions between 235° and 315°, and for normal turbine operation. Envelopes 

represent ± 1 MAD for each wind speed bin. The grey dashed line marks rated speed. 

 


