A VISUAL LAMBDA CALCULUS

Wayne Citrin, Richard Hall, Benjamin Zorn

CU-CS-757-95

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A Visual Lambda Calculus

Wayne Citrin, Richard Hall, Benjamin Zorn
Department of Electrical and Computer Engineering / Computer Science
University of Colorado
Boulder, Colorado, USA
{citrin,rickhall,zorn} @cs.colorado.edu

ABSTRACT

The lambda calculus is a formal symbolic term rewrite system that has been used for many years both as a
mechanism for defining the semantics of programming languages, and as the basis for functional
programming languages. In this paper, we propose a visual representation of lambda expressions. Our
representation, Visual Expressions (VEX) has several advantages over traditional textual lambda calculus.
VEX can be used in teaching the concepts of lambda calculus as a replacement for or augmentation to the
teaching traditional textual rewrite rules. Many semantic issues in lambda calculus that are confusing to
students, including substitution, free variables, and binding, become apparent and explicit in VEX.
Finally, VEX provides a framework in which both the static and dynamic (partially simplified)
representation of lambda expressions can be understood.

1.0 INTRODUCTION

The lambda calculus is a widely used and powerful notation for describing computable functions. It serves
as the basis of functional languages, and is also the basis of denotational semantics. In order to accomplish

these tasks, lambda calculus provides a set of seemingly simple textual rewrite rules.

Although the rules seem to be simple, in fact they are not. This deceptive simplicity has led to errors even
among experts. For example, it has been claimed that “most formulations of the rule for substitution which

were published, even by the ablest logicians, before 1940, were demonstrably incorrect” [8].

It has been our experience that this difficulty is most apparent in teaching beginners. Not only does the
notion of substitution and lambda capture confound students, as it does experts, but notions of higher-
order functions, currying, abstraction, environments and free variables, and least fixpoint recursion also

present difficulties.

Part of the problem resides in the syntax: nested lambda expressions break up expressions and separate
related items, and the uninitiated student is unable to use such useful visual cues as adjacency to decipher

the expressions.

Another problems lie in the abstractness of the material, and in the existence of certain features required to
give the expression meaning that are only implicitly referred to, such as the notion of an environment that

contains bindings of free variables.

In order to address these problems, we introduce VEX (Visual EXpressions), a completely visual
representation of the lambda calculus. By completely visual, we do not mean that the notation contains no
text (text is suitable for labels and constant values), but only that the semantics of the language is based on
a purely graphical set of transformation rules — no knowledge of the underlying textual language is
necessary to understand the semantics. VEX has been developed in the context of VIPR (Visual Imperative
PRogramming language) [5, 6], a completely visual imperative programming language, in order to provide
a representation for expressions and functions in that framework, but we believe that VEX has value outside

that framework, particularly in the teaching of functional concepts.

This paper is organized as follows. In the second (next) section, we present a motivating example
comparing use of a complex lambda expression (the Y combinator) with a simpler but equivalent VEX
expression. In the third section, we build our visual lambda calculus, first by specifying the syntax, then
by providing graphical equivalents for the substitution rule and by showing how graphical equivalents of
the three rewrite rules (o, B, and n) may be specified using the graphical substitution rule, and finally by
showing how the three rewrite rules may be represented by very simple and intuitive graphical
transformation rules that make no explicit reference to the substitution rule. We then, in the fourth section,
provide a formal specification of the operational semantics of VEX, employing a notation originally used to
specify the semantics of ViPR and defined in [5]. In the fifth section, we discuss some additional issues,
including the treatment of recursion, and the use of certain syntactic extensions (particularly, let
expressions), and associated concepts such as environments and closures. In the sixth section, we discuss
related work in graphical functional languages, completely visual languages, and the teaching of functional

programming languages. Finally, we draw conclusions and report on the current status of the work.

2.0 MOTIVATING EXAMPLE

The Y combinator, defined by

Y=hf(hx f(xx))(x f(xx))
is a construct used, among other purposes, in order to prove results involving fixpoints and recursion. We
employ it in our opening example in order to contrast the surprising and non-intuitive behavior of the

textual version with the more intuitive behavior of the graphical version.

Textually, we wish to show that, for any lambda expression e, (Y e)=e(Y ¢); that is, (Y e) defines a fixpoint
on el.We can do this by expanding (Y e) as follows:

111 this example, and in the treatment of lambda calculus in the next section, we rely on the survey by Hudak [11]. The reader
is referred to this survey and its excellent and extensive bibliography for further information on the lambda calculus and its
application in functional programming.

(Ye) =(Axe(xx))(hxe(xx))

(H = e((k x.e(xx))(Axe(x x)))
=e¢(Ye)

The step denoted by the second line above is the difficult one, with its use of a functional argument, and
the functional value substituted for the identifier x. We will attempt to do better in our graphical

representation.

The VEX representation of the Y combinator is given in figure 1. A few features should be noted. First, an
expression (abstraction or not) is represented by a closed figure. Parameters are represented by closed
figures that are tangent to, and inside, another closed figure. Thus, the circles labeled f and x represent
parameters. Items that would be identifiers in the textual lambda calculus are also represented by circles in
VEX. Each of the circles in the two small clusters of three circles represents an identifier. One can determine
that they are identifiers because they are connected by undirected edges to a labeled circle, representing the
definition of a parameter (in the cases in figure 1) or a free variable (not in figure 1, but described in section
3.0). Application of functions is represented by closed figures tangent to, and external to, each other. A
small arrow indicates which figure represents the applied function and which represents the argument (the

arrow points to the argument).

One should note that VEX expressions consist of a small number of graphical elements (closed figures,
undirected edges, arrows, and labels) used in multiple ways. As we will see in subsequent sections,
however, the context in which a graphical element is used is sufficient to unambiguously determine its

meaning.

Figure 1. VEX representation of the Y combinator

The basic principle of the VEX expression evaluation is that the graphical expressions are elaborated until no
further computation is possible. The resulting graphical expression is the value of the original expression.
Evaluation usually continues from the outside inward, so that element in the interior of a figure (or some
modification of that interior) is the result. Thus, when applying the expression of figure 1 to the value e,
we can intuit that the eventual result will resemble one of the clusters of three elements, where the first
(leftmost) element will be the argument (in this case, e), and the remaining elements will be copies of the

initial configuration (Y e). We will see this in the step-by-step evaluation below.

Figures 2 through 4 show the VEX equivalent of the evaluation given in equation (1) above. Figure 2
shows the Y combinator applied to the argument e. Figure 3 shows the results of this application,
substituting the argument for all identifiers bound to the parameter f. The result of the application in figure
3 involves substitution of the functional argument represented by the righthand figure for the parameter x in
the lefthand figure. The result, in figure 4, is the function e being applied to exactly the figure in figure 3.
Since figure 3, as well as figures 2 and 4, represent (Y e), figure 4 must also represent e(Y e), and we have

a fixpoint.!

The VEX representation has made explicit the notion of binding and substitution in a way that is much more
straightforward than that of the textual lambda calculus. The distinction between the two different but
identically named bound identifiers x is also made explicit. Finally, the notion of functional arguments and
higher-order functions is also made explicit. These issues are all frequently confusing to novices. This
example should give an idea of how VEX simplifies understanding of the lambda calculus, and the next
section, which describes the graphical versions of the various substitution and rewrite rules will further
illustrate the intuitive qualities of VEX.

Figure 2. VEX version of (Y e)

N QuickTime animation of this evaluation may be found at http://soglio.colorado.edu/Web/vex.mov.

(K XD G%‘O

Figure 3. VEX version of (A x. e(x x))(A x. e(x x))

Figure 4. VEX version of 6(7\, X. e(x x))(?» X. e(x x)) = e(Y e)

3.0 A VISUAL LAMBDA CALCULUS

In this section, we build a graphical version of the lambda calculus employing simple graphical
transformation rules instead of textual rewrite rules. We confine ourselves to the pure untyped lambda
calculus. Additions to this lambda calculus will be discussed in section 5. Our treatment of the textual

calculus is the one given in [11].

This section will describe the graphical transformation rules informally. A selection of formal rule

specifications is given in section 4, and a more complete description appears in [7].

Syntax
VEX models the pure untyped lambda calculus. We assume that expressions consist of identifiers and other

expressions, and that abstractions may only have a single parameter.

In VEX, identifiers and lambda expressions are both represented by sets of closed figures. Identifiers are
recognized by the fact that they are connected to a labeled root node by an undirected edge. Compound
(non-identifier) expressions have an internal structure representing their component subexpressions. Thus,
in figure 5, ring 2 represents an identifier that is an instance of the identifier x (due to the fact that it is
connected to the root node x — labeled 1), and ring 3 is a compound expression with one subexpression
(labeled 5). (Note that the numeric labels on figure 5 are not part of the expression but are solely for

purposes of explanation.)

Function application is represented by two expressions externally tangent to each other. An ordering on the
two expressions is imposed by an arrow at the tangent point. The expression at the tail of the arrow
represents the function being applied, and the expression at the head represents the argument. In figure 5,
circles 2 and 3 represent a function application, where circle 3 and its contents represents the applied

function, and circle 2 represents the argument.

Figure 5. Syntax of a VEX expression

Abstraction is represented by an expression circle containing an identifier root node internally tangent to it.
The root node represents the parameter, and the contents of the expression circle represents the abstraction
body. Thus, in figure 5, circle 3 and its contents represent an abstraction, where circle 4 is the parameter

and circle 5 is the body.

Figure 5, therefore, represents the expression (Ay.y)x.

Free and bound identifiers

As can be seen in figure 5, VEX expressions make explicit the distinction between free and bound
identifiers. An identifier is free in a given expression if its root node is not internally tangent to a ring in
that expression. For example, in figure 5, the identifier labeled 2 (and consequentially all identifiers
connected to node 1) are free in the VEX expression represented by the whole diagram. On the other hand,
the identifier denoted by ring 5 (y) is bound in the expression represented by ring 3 and its contents,

although it is free in the expression represented by ring 5.

One can see that certain seemingly anomalous situations can occur, such as that in figure 6, in which the
identifier x seems to be both free and bound in the expression labeled 1. However, textual names in VEX
have no semantic value; the actual “name” of an identifier ring is the root node to which it is connected.
Thus, the “name” of the identifier represented by ring 3 is the root node labeled 2 in the diagram, while the

root node whose label is 4 is the “name” of the identifier represented by ring 5. The textual label on the root
node is simply a comment meant to enhance readability, although we currently require root nodes to have
names in order to distinguish them from other types of rings. In this case, it is simply a coincidence that
both identifiers are named x. There is no difference in power between VEX and conventional textual lambda
calculus in this regard: any expression like that given in figure 6 can be written textually by renaming one
of the variables (e.g., Ax.x’(x)). It is recommended, however, that names be chosen to avoid such

confusion.

Figure 6. Free and bound identifiers - representation of A x. x’(x)
It should be noted that this graphical definition exactly reflects the traditional definition of free variables in
textual lambda calculus. If we define fi(e) as the set of free variables in a given expression e, then for a
single-identifier expression x, fu(x)={x}, and likewise G——O, which represents the expression x,
clearly indicates that the set of free variables in that expression is {x}.

Similarly, fi(e, ;)= fv(e;)u fi(e,) and the diagram

61 e 62

2

where the unconnected lines are a notation that indicates that the undirected edges each connect to some
ring in the interior of rings ¢, and e,, suggests the same relationship, since, inductively, if a, b, and c are

the free identifiers in ¢, and ¢ and d are the free identifiers in e,, then clearly a, b, ¢, and d are the free
variables in (e, e,).

Finally, concerning abstractions, fv(Ax.e)= fi(e)-{x}. Similarly, it is clear from
) C

el

that if a, b, and x are free in e,, then only a and b are free in e,.

Substitution rules

The rules for substitution are one of the chief stumbling blocks of the textual lambda calculus, tripping up
both experts and novices. Although they seem intuitive, they turned out to be quite difficult to formulate.
The chief problem has to do with renaming of free variables that are “imported” into a context in which
variables of the same name are bound. The different cases can be complex, and result at least in part from
the problem of naming in textual lambda calculus. When naming does not exist (or rather, when it simply
becomes a matter of identifying a particular root node), and when name clashes cannot occur, the process
is greatly simplified. Thus, while the lambda calculus substitution rule, as described in [11], involves an
extensive and complex case analysis, in VEX, where there is no possibility of name clashes, and variables

carry their “freeness” explicitly, the substitution rule is much simpler.

To substitute for a variable in VEX, a “substitution arrow” is used. The arrow originates in the root node of
the identifier being substituted for, and ends at the expression being substituted. Thus, as in figure 7, if we
wish to substitute the given expression (equivalent to Ay.y) for x, we run an arrow from x’s root node to
the figure for the expression. The first step is to substitute the thing pointed to for the thing at the tail of the
arrow, as in figure 8. In the next step, all identifiers connected to the former root node are substituted for,

and the original expression and the undirected edges disappear (figure 9).
Variables may also be substituted for other variables, as is shown in figure 10.

The same simple two-step process holds for all substitutions, thus greatly simplifying the substitution rule
by eliminating consideration of various combinations of free and bound variables and by avoiding concerns

about renaming.

(D

SO

Figure 7. Substitution - initial configuration
Figure 8. Substitution - first step
Figure 9. Substitution - second step

Figure 10. Substitution of one variable for another

Rewrite rules

The main part of lambda expression evaluation is the application of the various rewrite rules, commonly
known as o-conversion, -reduction, and n-reduction. We will consider each of these, first providing the
direct graphical equivalent of the textual rule (generally employing the substitution rule), and then, if
possible, providing a simple rule without substitution.

The first rule, ai-conversion, also known as renaming, is specified textually as
Ax.es %xj.[xj/xi]e, where x; & fv(e).
In other words, one may rename any bound variable with any other name, as long as it doesn’t conflict

with a name already used for a free variable in the function body.

The VEX equivalent is given in figure 10 above. Note that variable “freeness” is graphically explicit, so we
need only worry about using a free variable to the extent that the new identifier not employ a root node
already free in the expression. Examination of figure 10 suggests that, in VEX, it is sufficient simply to
change the label on a root node representing a bound variable; no explicit substitution need be performed.
Thus, the a-conversion rule may be applied as in figure 10 without the intermediate step. This

simplification is clearly in the spirit of the renaming conversion; the substitution operation in the textual

version is merely an artifact resulting from the textual process of renaming.

B-reduction is a symbolic formulation of function application, and is specified textually as

(Ax.e)e, = e,/ x]e.
In other words, application involves substituting the argument for all instances of the parameter. In VEX,
the substitution rule may be explicitly employed to perform the substitution, as in figure 11, or the
intermediate steps may be skipped, and the values propagated to their destinations, as was done in the
example in figures 2 through 4.

Cricate
- d

Figure 11. Application

The final rule, n-reduction, relates an abstraction to its underlying expression body in certain cases:
Ax.(ex)=e if x& fu(e).

Again, in VEX we detect whether or not x is free in e by looking for connecting links from x’s root node

into e. Figure 12 suggests that VEX’s equivalent of n-reduction simply involves collapsing the connection

between the parameter and the argument and eliminating the pair.

)0

Figure 12. n-reduction

As we can see, the graphical versions of the rewrite rules provided by VEX at the very least lend insight to
the mechanisms and rationale of the more arcane textual rewrite rules, and at best provide a simple,
intuitive framework for understanding lambda calculus that requires no knowledge of the underlying

textual language.

4.0 FORMAL SPECIFICATION OF VEX

Space does not permit a complete discussion of the formal specification of VEX, or of the formalism used to
generate that specification. The complete VEX specification will appear in [7], and an extensive discussion
of the underlying formalism appears in [5]. Here we will give some of the flavor of the formal specification

by giving the specification of the two-step substitution rule.

The specification formalism for the graphical transformation rules is a two-dimensional system based on
Milner-style operational semantics [16]. Each rule has a “before” part that must match the current
expression configuration to have an effect. If a “before” part matches, the configuration is altered to
conform to the corresponding “after” part. A configuration may match more than one rule, in which case
one must be chosen. Where this leads to ambiguity, it will be the same ambiguity that would occur in

reducing a lambda expression.

Figure 13 shows the graphical transformation rule for the first step of substitution. (For technical reasons,
the complete rule is actually a bit more complex than this — the rule given here shows the manipulations on
all items that actually participate in the substitution. See [5] for a more complete discussion of this.) In
figure 13, R, R’, R”, and Name are metavariables. R, R’, R” represent collections of closed figures, labels,
and any arrows or undirected edges connecting them. Name stands for a label on a root node. Any closed

figures or edges must exist in the diagram. Dotted edges refer to zero or more copies of the arrows.

In figure 13, the root node labeled Name is replaced by the collection of items R’. If R’ refers to any other
items (denoted by R”), those connections will be carried along, too. R represents to the things that refer to
Name. Note that there must be at least one edge into some circle in R from Name (represented by the solid

edge), although there may be more (represented by the dotted edge).

The second step of the substitution rule is given in two parts by figures 14 and 15. It shows the newly
substituted expression being substituted into all occurrences. The first part, in figure 14, shows that if there
are two or more occurrences of an identifier, one of them should be substituted into, and the connection to
that occurrence eliminated. In the second part (figure 15), where there is exactly one occurrence, the
occurrence is substituted for, and both the connection and the root node should be eliminated. All other

transformation rules are of a similar nature.

R" -
@ R'~” ’R'/
// I\\ // !\\
[[
R | R |
) / \ /
_‘/ _‘/

Figure 14. Second step of substitution rule (part 1)

_—/7Ru _ R
R" R:
-~ ~ ~ TN
/ \ / \
I O \ = | \
\ R ! \ R I
AN / \ /
~ _ ~ - s

Figure 15. Second step of substitution rule (part II)

5.0 ADDITIONAL I[ISSUES

In order to make the lambda calculus (and functional programming languages based on it) more usable,
certain extensions are often added, including constants, tuple constructors and selectors, conditional
operators, primitive functions, and local definitions. None of these extensions increase the power of the
calculus, but they increase readability and writability of expressions. Similarly, VEX has equivalent
extensions to enhance readability and writability while maintaining the expressiveness of the notation. In

addition, both the lambda calculus and VEX must address the notion of recursive definitions.

5.1 Constants and primitives

Although primitive constants and primitive operators are not necessary for the expressiveness of lambda
calculus, such entities are generally considered useful and are added to the language. Similarly, we add

equivalent operators to VEX.

Constants in VEX are represented by closed figures containing the constants’ values. Figure 16 shows

sample VEX constants (0, 1, true, and false), and an example of function application involving constants.

Figure 16. VEX constants

In order to aggregate information in lambda calculus, ordered tuple constructs are used. VEX provides the
equivalent in the form of the selector construct. Selectors model generalized tuples that may be indexed by
values from any domain; that is, for any index set /, and for a set of sets A; each corresponding to an
elementiin [

[T ={f:I—-> Jalrea,vie 1}.

iel iel
In other words, tuples are represented as functions, and each tuple comes with its own built-in selector

operations.

A selector construct is drawn as a function abstraction containing a set of closed figures each representing
one possible index value. Each of the internal closed figures is labeled with the corresponding index value
and its content is an expression representing its value. Figure 17 shows a selector construct representing
the tuple (3,4) and the application of the selection operation (3,4){ 1 to obtain the first element of the tuple.

Figure 17. A selector construct

If the parameter is only used for indexing, it may be omitted. The parameter may also be bound to

identifiers inside the internal expressions, in which case the conventional undirected edges are employed.

The selector construct generalizes to other things besides tuple construct and selection. It may be used to
implement the conditional construct. The internal elements may be indexed with the values true and false,
and the result of indexing such a construct is the true (resp. false) case. Thus, the conditional construct
if b then ¢, else e, may be represented as

This, incidentally, represents the parallel conditional expression, in which the true and false cases are both
evaluated, rather than the sequential conditional expression proposed by McCarthy [15]. We plan to
investigate representation of sequential constructs in the future.

In addition to constants, VEX provides for primitive operators, as do most uses of the lambda calculus. A
primitive operator, like a constant, is a closed figure labeled with the name of the operator. Thus, the
addition operator is a circle labeled ‘+’. Figure 18 shows the binary addition operator as part of the
expression +(3,4). Note the use of the tuple/selector construct.

'®
iO)
evaluates to

Figure 18. Evaluation of + = A(x, y). x+y

The semantics of all the primitive operators can be specified by graphical transformation rules employing
the conventional semantics of the operators.

Our representation of primitive binary operators such as addition, above, is useful in that it may be used to
expose the mechanisms of currying, another concept that students often have a hard time grasping.
Comparison of the representation of addition in figure 18 and the representation of a curried addition
(ultimately employing the primitive binary addition operator) in figure 19 ahould reveal the links between
the two functions.

Figure 19. A curried version of addition A x. A y. x+ y

5.2 Closures and environments

It is quite common for functional programming languages to allow the user to define a local binding for an
identifier. This is typically done through the use of a let expression. For example, the expression
let fbe 3 in g means that all free occurrences of fin g are bound to 3. VEX provides a representation of
let expressions based on the conventional definition let f be g in 2 =(A f.h)g. Thus, the VEX equivalent of
let fbe 3 in g is given in figure 20. Note that the free occurrences of fin g may be readily identified,
and that the binding may be considered as a substitution that may be performed immediately or deferred
until later.

(O—0O

Figure 20. VEX representation of a local binding

It is useful to be able to collect the bindings given to all free variables of a given expression. This construct
is generally referred to as an environment. In figure 20, the environment of g consists of the root node of f
and its associated bindings (that is, the node labeled ‘3’ and the arrow connecting it to f’s root node). In the
VEX support environment, one may construct environments by indicating to the system the desired
expression and requesting the environment. From this, the system will collect copies of the free variables
(possibly making duplicates of the graphical representations of the bindings, but this will not affect the
meanings of the expressions), and group them together, placing a double box around them. VEX will also
collapse the environment into a single object, if desired (as a space-saving feature), which can later be re-

expanded. Figure 21 shows the representation of g’s environment in the expression from figure 20.

(O—0O

v s

Figure 21. Representation of environments

This environment representation is useful in explaining the concepts of local bindings, and the way that

subexpressions may possess separate environments. For example, consider the expression
let y be 1 in

(et x be 2 in Az X+ y)(let x be 3 in x+y))’
Figure 22 shows how the two subexpressions possess differing environments with different bindings for

x, but the same binding for y.

Figure 22. Multiple environments

Using VEX’s concrete representation of environments, it is quite straightforward to explain to students the

concept of a closure — the combination of an expression and its associated environment.

5.3 Recursion

The treatment of VEX, up to this point, has avoided dealing with recursion. However, the VEX
representation simplifies discussions of least fixpoints and their role in recursion. Consider the recursive
local definition letrec f be Ax. fin g. Figure 23 illustrates the recursive definition of f. Because of the
circular definition (f may be substituted for A x. f and the use of f refers back to the binding that refers to
itself), we can get a diagram with infinite regression, as is shown in figure 24. We can also see that the
environment of the abstraction Lx. f (and of g) clearly includes itself. That circular definition is in fact the
least fixpoint of the recursively defined environment of g that includes all approximations of f allowing a
bounded number of recursions. The substitution semantics specified by the VEX graphical transformation

rules yields the desired execution semantics.

Figure 23. A recursive function definition

Figure 24. Recursion as infinite regression

6.0 RELATED WORK

While there has been some work in visual techniques and functional programming, none of it has been
related to the visualization of lambda calculus and higher-order functions.

One related area is the visualization of LISP expressions and data structures, and visualization of the
dynamics of their evaluation. Typically, visualization of data structures involves the visualization of
structures built from Lisp cons cells. KAESTLE [3, 4] is a typical example of such a system, displaying a

box-and-arrows diagram of the cons cells of a given data structure.

In order to display dynamic Lisp execution, Lieberman [14] presented a visual system, employing three
dimensions and color, to illustrate the process of evaluation. Still, programs visualized by Lieberman’s
system were written in textual Lisp, and the visualization environment displayed visual representations of

the underlying textual programs.

In contrast to these systems, Edel’s Tinkertoy [9] provided a visual version of Lisp, in which Lisp S-
expressions were drawn as trees. This system had the advantage of simplifying complex nested
expressions by eliminating parentheses, but the system still did not address the problem of visualization of

dynamically executing code.

A number of systems have been designed to help students learn functional programming. None of them
employ visual techniques, however. The LISP Tutor system [1, 17] is a typical system developed to assist
students in the acquisition of Lisp programming skills through the presentation of structured exercises.
However, while useful for teaching basic Lisp programming skills, it is not clear that the benefits of the
LISP Tutor carry over to the teaching of advanced and abstract concepts in functional programming and

denotational semantics.

One important feature lacking in all of the representations, visualizations, and teaching techniques
described above is a unification of the representation of the static program that was written, the
representation of the dynamic program being executed, and the user’s mental model of the executing
program. Completely visual programming languages provide this unification, and the completely visual
model has been adopted for VEX..

The concept of a completely visual programming language is due to Kahn [13], and is an extension of
graphical transformation languages, including BiTPicT [10] and ChemTrains [2]. In graphical
transformation languages, a program is a set of graphical transformation rules, represented as
“before/after” pairs of pictures, and program state is represented by a picture. Execution of a program

involves repeatedly attempting to match the program state picture to the “before” pictures of the rules.

Completely visual languages take this model further by combining the program and the program state in a
single picture. A graphical configuration is a snapshot representing both the current state and the remaining
program at some point in the program execution. The separate set of graphical transformation rules now
corresponds to the semantics of the programming language rather than the semantics of the program, which
is completely incorporated into the single program configuration diagram. In a completely visual language,
the static program, the dynamic visualization of the executing program, and (if the language has been
properly designed with reference to a particular application domain) the user’s mental model of the problem
are all represented using the same visual notation, and can be understood through a set of simple and
intuitive graphical transformation rules. If the completely visual language is a graphical representation of a
textual programming language, as is the case with Pictorial Janus, described below, a programmer can
write and understand programs in the graphical language without knowing anything about the underlying

textual language, but simply by understanding the set of graphical transformation rules.

The best known completely visual language is Pictorial Janus [13], based on the concurrent constraint
language Janus [18]. As mentioned above, a programmer can write and comprehend a Pictorial Janus
program without knowing anything about the underlying Janus program despite the fact that there is a non-
to-one correspondence between Pictorial Janus and Janus constructs. All that is necessary is an
understanding of Pictorial Janus’s graphical transformation rules. A detailed explanation of Pictorial Janus
is beyond the scope of this paper; readers should consult [12, 13].

7.0 CONCLUSIONS

VEX is a graphical representation of the lambda calculus and functional programming extensions that we
believe addresses a number of problems encountered by students when they first encounter the lambda
calculus. It addresses the confusing aspects of naming, substitution, and freeness by replacing textual

naming with explicit connectedness. It provides concrete visualizations for all values and expressions,

including functional arguments, higher-order functions, and abstractions. It also provides concrete

visualizations for environments and least fixpoints.

VEX also provides simple and intuitive graphical transformation rules in place of the more complex textual
rewrite rules of the lambda calculus, which often need to incorporate special cases to handle different
combinations of freen and bound variables. We believe that these simpler rules will also help students
understand the important issues in functional programming and lambda calculus. We do not believe that
VEX should replace the lambda calculus and be taught exclusively — the lambda calculus is more compact
than VEX and possesses a well-founded and extensive theoretical foundation — but we feel that it is useful
as a supplement to the lambda calculus, and may profitably be used in parallel with introduction of new and
complicated material.

We also intend to continue to refine the VEX representation. We hope to make the representation cleaner,

and to continue work on the graphical formalism by which the graphical transformation rules are defined.

Finally, we are incorporating VEX into the VIPR programming language as the functional and expression-
oriented component, to complement the imperative control structures that already have a graphical
representation in VIPR. We are currently implementing a VIPR environment, and will soon begin to

incorporate VEX into it.

ACKNOWLEDGMENTS

This work was funded by the Colorado Advanced Software Institute and USWEST Technologies.
REFERENCES

[1] Anderson, J. R., F. G. Conrad, and A. T. Corbett, “Skill Acquisition and the LISP Tutor.”
Cognitive Science, 1989. 13(4): 467-505.

[2] Bell, B. and C. Lewis, “ChemTrains: A Language for Creating Behaving Pictures,” in IEEE
Symposium on Visual Languages. 1993. Bergen, Norway, 188-195.

[3] Bocker, H.-D., G. Fischer, and H. Nieper-Lemke, “The Role of Visual Representations in
Understanding Software.” Artificial Intelligence and Software Engineering, 1989. .

[4] Bocker, H.-D. and H. Nieper, “Making the Invisible Visible: Tools for Exploratory Programming,”
in First Pan Pacific Computer Conference. 1985. Melbourne, Australia, 563-579.

[5] Citrin, W., M. Doherty, and B. Zorn, “A Formal Definition of Control Semantics in a Completely
Visual Language,” Technical report CU-CS-673-93, Department of Computer Science, University of
Colorado, Boulder, September 1993 - revised June 1994.

[6] Citrin, W., M. Doherty, and B. Zorn, “Formal Semantics of Control in a Completely Visual
Programming Language,” in IEEE Symposium on Visual Languages. 1994. St. Louis, 208-215.

[7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Citrin, W., R. Hall, and B. Zorn, “Formal Specification of VEX transformation rules,” Technical
report in preparation, Department of Computer Science, University of Colorado, Boulder, January
1995.

Curry, H. B. and R. Feys, Combinatory Logic I. 1958, Amsterdam: North-Holland.

Edel, M., “The Tinkertoy Graphical Programming Environment,” in Visual Programming
Environments: Paradigms and Systems, Glinert, E., ed. 1990, IEEE-CS Press: Los Alamitos, CA.
299-304.

Furnas, G. W., “New graphical reasoning models for understanding graphical interfaces,” in Human
Factors in Computer Systems: CHI ‘91 Conference Proceedings. 1991. New Orleans, 71-78.

Hudak, P., “Conception, Evolution, and Application of Functional Programming Languages.”
Computing Surveys, 1989. 21(3): 359-411.

Kahn, K. M., “Towards Visual Concurrent Constraint Programming,” Technical Report SSL-91-
092, Xerox Palo Alto Research Center,

Kahn, K. M. and V. A. Saraswat, “Complete Visualizations of Concurrent Programs and Their
Executions,” in IEEE Workshop on Visual Languages. 1990. Skokie, IL, 7-15.

Lieberman, H., “A Three-Dimensional Representation of Program Execution,” in IEEE-CS
Workshop on Visual Languages. 1989. Rome, 111-116.

McCarthy, J., “A basis for a mathematical theory of computation,” in Computer Programming and
Formal Systems, Braffort, P. and D. Hirschberg, eds. 1963, North-Holland: Amsterdam. 33-70.

Milner, R., “Program semantics and mechanized proof,” in Foundations of Computer Science 11,
part 2, Apt, K. R. and J. W. de Bakker, eds. 1976, Mathematical Centre: Amsterdam. 3-44.

Pirolli, P., “A Cognitive Model and Computer Tutor for Programming Recursion.” Human-
Computer Interaction, 1986. 2: 319-355.

Saraswat, V., K. M. Kahn, and J. Levy, “JANUS: A step towards distributed constraint
programming,” in North American Logic Programming Conference. 1990. Austin, TX, 431-446.

