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Silkensen, Erik (M.S., Computer Science)

Type-Oriented Island Parsing

Thesis directed by Prof. Jeremy Siek

This thesis addresses the problem of specifying and parsing the syntax of domain-specific

languages (DSLs) in a modular, user-friendly way. That is, we want to enable the design of

composable DSLs that combine the natural syntax of external DSLs with the easy implementation

of internal DSLs. The challenge in parsing composable DSLs is that the composition of several

(individually unambiguous) languages is likely to contain ambiguities. In this thesis, we present

the design of a system that uses a type-oriented variant of island parsing to efficiently parse the

syntax of composable DSLs. In particular, we show that type-oriented island parsing is the first

parsing algorithm that is constant time with respect to the number of DSLs imported. We also show

how to use our tool to implement DSLs on top of a host language such as Typed Racket.
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Chapter 1

Introduction

Domain-specific languages (DSLs) provide high productivity for programmers in many do-

mains, such as computer systems, physics, linear algebra, and other sciences. However, a series of

trade-offs face the prospective DSL designer today. On the one hand, external DSLs offer natural

syntax and friendly diagnostics at the cost of interoperability issues [Beazley, 1996] and difficulty

of implementation. They are usually either implemented by hand or by using parser generators à

la yacc that require considerable expertise of their users. Meanwhile, many general-purpose lan-

guages include a host of tricks for implementing internal (or embedded) DSLs, such as templates

in C++ [Abrahams and Gurtovoy, 2004], macros in Scheme [Tobin-Hochstadt et al., 2011], and

type classes in Haskell [Hudak, 1998]; however, the resulting DSLs are often leaky abstractions: the

syntax is not quite right, compilation errors expose the internals of the DSL, and the debugger is

not aware of the DSL [Siek, 2010].

In this thesis, we make progress towards combining the best of both worlds into what we call

composable DSLs. Our goal is to enable fine-grained mixing of languages with the natural syntax

of external DSLs and the interoperability of internal DSLs.

At the core of this effort is a parsing problem: although the grammar for each DSL may be

unambiguous, programs that use multiple DSLs, such as the one in Figure 1.1, need to be parsed

using the union of their grammars, which are likely to contain ambiguities [Kats et al., 2010].

Instead of relying on the grammar author to resolve them (as in the LALR tradition), the parser

for such an application must efficiently deal with ambiguities.
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Application
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Figure 1.1: Our common case: an application using many DSLs.

We should emphasize that our goal is to create a parsing system that provides much more

syntactic flexibility than is currently offered through operator overloading in languages such as

C++ and Haskell. We are not trying to build a general purpose parser, that is, we are willing to

place restrictions on the allowable grammars, so long as those restrictions are easy to understand

(for our users) and do not interfere with composability.

As a concrete, motivating example, we consider the union of grammars for matrix algebra,

regular expressions, and sets outlined in Figure 1.2. Written in the traditional style, the union

of these individually unambiguous grammars is greatly ambiguous; importing many DSLs such as

these can increase the parse time by orders of magnitude even though the program is otherwise

unchanged. Of course, an experienced computer scientist will immediately say that the separate

grammars should be merged into one grammar with only one production for each operator. How-

ever, that would require coordination between the DSL authors and is therefore not scalable.

1.1 Type-Oriented Grammars

To address the problem of parsing composed DSLs, we observe that different DSLs typically

define different types. For example, our Matrix Algebra DSL defines Matrix, Vector, and Scalar

types. The Regexp DSL defines Regular Expressions and Set defines Sets. We suggest an alternate
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module MatrixAlgebra {
Expr ::= Expr "+" Expr [left,1]

| Expr "-" Expr [left,1]
| Expr "*" Expr [left,2]
| "|" Expr "|" | Id; · · ·

}

module RegularExpressions {
Expr ::= "’" Char "’" | Expr "+" | Expr "*"

| Expr "|" Expr [left] | Id; · · ·
}

module Sets {
Expr ::= Expr "+" Expr [left,1]

| Expr "-" Expr [left,2] | Id; · · ·
}

import MatrixAlgebra, RegularExpressions, Sets;
A + B + C // Ambiguous!

Figure 1.2: Ambiguity due to the union of DSLs.
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style of grammar organization that we call type-oriented grammars, inspired by Sandberg [1982].

In this style, a DSL author creates one nonterminal for each type in the DSL and uses the most

specific nonterminal/type for each operand in a grammar rule. Figure 1.3 shows the example

from Figure 1.2 rewritten in a type-oriented style, with nonterminals for Matrix, Vector, Scalar,

Regexp, and Set.

1.2 Type-based Disambiguation

While the union of the DSLs in Figure 1.3 is no longer itself ambiguous, programs such as

A + B + C · · · are still highly ambiguous if the variables A, B, and C can each be parsed as either

Matrix, Regexp, or Set. Many prior systems [Paulson, 1994; Bravenboer et al., 2005] use chart

parsing [Kay, 1986] or GLR [Tomita, 1985] to produce a parse forest and then type check to filter

out the ill-typed trees. This solves the ambiguity problem but these parsers are still inefficient on

ambiguous grammars (see Chapter 4).

This is where our contribution comes in: island parsing with eager, type-based disambiguation

is able to efficiently parse progorams that simultaneously use many DSLs. We use a chart parsing

strategy, called island parsing [Stock et al., 1988] (or bidirectional bottom-up parsing [Quesada,

1998]), that enables our algorithm to grow parse trees outwards from what we call well-typed

terminals. The statement

declare A:Matrix, B:Matrix, C:Matrix { . . . }

gives the variables A, B, and C the type Matrix. We integrate type checking into the parsing process

to prune ill-typed parse trees before they have a chance to grow, drawing inspiration from the field

of natural language processing, where selection restriction uses types to resolve ambiguity [Jurafsky

and Martin, 2009].

Our approach does not altogether prohibit grammar ambiguities; it strives to remove ambi-

guities from the common case when composing DSLs so as to enable efficient parsing.
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module MatrixAlgebra {
Matrix ::= Matrix "+" Matrix [left,1]

| Matrix "-" Matrix [left,1]
| Matrix "*" Matrix [left,2];

Scalar ::= "|" Vector "|"; · · ·
}

module RegularExpressions {
Regexp ::= "’" Char "’" | Regexp "+"

| Regexp "*" | Regexp "|" Regexp; · · ·
}

module Sets {
Set ::= Set "+" Set [left,1]

| Set "-" Set [left,2]; · · ·
}

import MatrixAlgebra, RegularExpressions, Sets;
declare A:Matrix, B:Matrix, C:Matrix {
A + B + C

}

Figure 1.3: Type-oriented grammars for DSLs.
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1.3 Contributions

(1) We present the first parsing algorithm, type-oriented island parsing (Chapter 3), whose

time complexity is constant with respect to the number of DSLs in use, so long as the

nonterminals of each DSL are largely disjoint (Chapter 4).

(2) We present our extensible parsing system1 that adds several features to the parsing al-

gorithm to make it convenient to develop DSLs on top of a host language such as Typed

Racket [Tobin-Hochstadt and Felleisen, 2008] (Chapter 5).

(3) We demonstrate the utility of our parsing system with an example in which we embed

syntax for two DSLs in Typed Racket.

Chapter 2 introduces the basic definitions and notation used in the rest of the thesis. We

discuss our contributions in relation to the prior literature in Chapter 6 and conclude in Chapter 7.

1 Code available at: http://extensible-syntax.googlecode.com



Chapter 2

Background

We review the definition of a grammar and parse tree and present our framework for com-

paring parsing algorithms, which is based on the parsing schemata of Sikkel [1998].

2.1 Grammars and Parse Trees

A context-free grammar (CFG) is a 4-tuple G = (Σ,∆,P, S) where Σ is a finite set of

terminals, ∆ is a finite set of nonterminals, P is finite set of grammar rules, and S is the start

symbol. We use a, b, c, and d to range over terminals and A,B,C, and D to range over nonterminals.

The variables X,Y, Z range over symbols, that is, terminals and nonterminals, and α, β, γ, δ range

over sequences of symbols. Grammar rules have the form A → α. We write G ∪ (A → α) as an

abbreviation for (Σ,∆,P ∪ (A→ α), S).

We are ultimately interested in parsing programs, that is, converting token sequences into

abstract syntax trees. So we are less concerned with the recognition problem and more concerned

with determining the parse trees for a given grammar and token sequence. The parse trees for a

grammar G = (Σ,∆,P, S), written T (G), are trees built according to the following rules.

(1) If a ∈ Σ, then a is a parse tree labeled with a.

(2) If t1, . . . , tn are parse trees labeled X1, . . . , Xn respectively, A ∈ ∆, and A→ X1 . . . Xn ∈ P,
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then the following is a parse tree labeled with A.

A

}}
}}

}}
}}

BB
BB

BB
BB

t1 · · · tn

We sometimes use a horizontal notation A→ t1 . . . tn for parse trees and we often subscript parse

trees with their labels, so tA is parse tree t whose root is labeled with A. We use an overline to

represent a sequence: t = t1, . . . , tn.

The yield of a parse tree is the concatenation of the labels on its leaves:

yield(a) = a

yield([A→ t1 . . . tn]) = yield(t1) . . . yield(tn)

Definition 2.1.1. The set of parse trees for a CFG G = (Σ,∆,P, S) and input w, written T (G, w),

is defined as follows

T (G, w) = {tS | tS ∈ T (G) and yield(tS) = w}

Definition 2.1.2. The language of a CFG G, written L(G), consists of all the strings for which

there is a parse tree. More formally,

L(G) = {w | T (G, w) 6= ∅}

2.2 Parsing Algorithms

We wish to compare the essential characteristics of several parsing algorithms without getting

distracted by implementation details. Sikkel [1998] introduces a high-level formalism for presenting

and comparing parsing algorithms, called parsing schemata, that presents each algorithm as a

deductive system. We loosely follow his approach but make some minor changes to better suit our

needs.

Each parsing algorithm corresponds to a deductive system with judgments of the form

H ` ξ
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where ξ is an item and H is a set of items. An item has the form [p, i, j] where p is either a parse

tree or a partial parse tree and the integers i and j mark the left and right extents of what has

been parsed so far. The set of partial parse trees is defined by the following rule.

If A→ αβγ ∈ P, then A→ α.tβ.γ is a partial parse tree labeled with A.

We reserve the variables s and t for parse trees, not partial parse trees. A complete parse of an

input w of length n is a derivation of H0(w) ` [tS , 0, n], where H0(w) is the initial set of items that

represent the result of tokenizing the input w.

H0(w) = {[wi, i, i+ 1] | 0 ≤ i < |w|}

Example 2.2.1. The (top-down) Earley algorithm [Earley, 1968, 1970] applied to a grammar

G = (Σ,∆,P, S) is defined by the following deductive rules.

(Hyp)
ξ ∈ H
H ` ξ (Fnsh)

H ` [A→ .tα., i, j]
H ` [A→ tα, i, j]

(Init)
S → γ ∈ P

H ` [S → ..γ, 0, 0]

(Pred)
H ` [A→ .tα.Bβ, i, j] B → γ ∈ P

H ` [B → ..γ, j, j]

(Compl)
H ` [A→ .sα.Xβ, i, j] H ` [tX , j, k]

H ` [A→ .sαtX .β, i, k]}

Example 2.2.2. A bottom-up variation [Sikkel, 1998] of Earley parsing is obtained by replacing

the initialization (Init) and prediction (Pred) rules with the following bottom-up rule (BU).

(BU)
H ` [tX , i, j] A→ Xβ ∈ P

H ` [A→ .tX .β, i, j]

Example 2.2.3. Figure 2.1 shows the first half of the bottom-up Earley derivation of a parse tree

for A + B with the grammar:

E ::= E "+" E | "A" | "B"

For this example, the set of items H is

H0(A + A) = {[A, 0, 1], [+, 1, 2], [B, 2, 3]}.
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(Compl)

(BU)

(Fnsh)

(BU)

(Hyp)
[A, 0, 1] ∈ H
H ` [A, 0, 1] E→ A ∈ P
H ` [E→ .A., 0, 1]

H ` [E→ A, 0, 1] E→ E + E ∈ P
H ` [E→ .[E→ A]. + E, 0, 1]

(Hyp)
[+, 1, 2] ∈ H
H ` [+, 1, 2]

H ` [E→ .[E→ A] +. E, 0, 2]

Figure 2.1: A partial (bottom-up Earley) derivation of the parse tree for "A + B", having parsed
"A + " but not yet "B".



Chapter 3

Type-Oriented Island Parsing

The essential ingredients of our parsing algorithm are type-based disambiguation and island

parsing. In Chapter 4, we show that an algorithm based on these two ideas parses with time

complexity that is independent of the number of DSLs in use, so long as the nonterminals of the

DSLs are largely disjoint. (We also make this claim more precise.) But first, in this chapter we

introduce our type-oriented island parsing algorithm (TIP).

Island parsing [Stock et al., 1988] is a bidirectional, bottom-up parsing algorithm that was

developed in the context of speech recognition. In that domain, some tokens can be identified with

a higher confidence than others. The idea of island parsing is to begin the parsing process at the

high confidence tokens, the so-called islands, and expand the parse trees outward from there.

Our main insight is that if our parser can be made aware of variable declarations, and if a

variable’s type corresponds to a non-terminal in the grammar, then each occurrence of a variable

is treated as an island. We introduce the following special form for declaring a variable a of type

A that may be referred to inside the curly brackets.

declare a : A {. . .}

Specifically, if tX ∈ T (G ∪ {a→ A}), then the following is a parse tree in T (G).

X → declare a : A {tX}

To enable temporarily extending the grammar during parsing, we augment the judgments of our
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deductive system with an explicit parameter for the grammar. So judgments have the form

G;H ` ξ

This adjustment also enables the import of grammars from different modules.

We formalize the parsing rule for the declare form as follows.

(Decl)
G ∪ (A→ a);H ` [tX , i+ 5, j]

G;H ` [X → declare a : A {tX}, i, j + 1]

Note the i+ 5 accounts for “declare a : A {” and j + 1 for “}”.

Next we split the bottom-up rule (BU) into the two following rules. The (Islnd) rule

triggers the formation of an island using grammar rules of the form A → a, which arise from

variable declarations and from literals (constants) defined in a DSL. The (IPred) rule generates

items from grammar rules that have the parsed nonterminal B on the right-hand side.

(Islnd)
G;H ` [a, i, j] A→ a ∈ P G = (Σ,∆,P, S)

G;H ` [A→ a, i, j]

(IPred)

G;H ` [tB, i, j]
A→ αBβ ∈ P G = (Σ,∆,P, S)

G;H ` [A→ α.tB.β, i, j]

The (Islnd) and (IPred) rules introduce a minor restriction on grammars. If the right-

hand side of a rule does not contain any nonterminals, then it may only contain a single terminal.

Formally, if A→ X1 . . . Xn ∈ P and n > 1, then Xi ∈ ∆ for some i ≤ n. This restriction means that

our system supports single-token literals but not multi-token literals. For example, the grammar

rule A → "foo" "bar" is not allowed, but A → "foobar" and A → "foo" B "bar" "baz" are

allowed.

Finally, because islands appear in the middle of the input string, we need both left and

right-facing versions of the (Compl) rule.

(RCompl)
G;H ` [A→ α.sβ.Xγ, i, j] G;H ` [tX , j, k]

G;H ` [A→ α.sβtX .γ, i, k]}

(LCompl)
G;H ` [tX , i, j] G;H ` [A→ αX.sβ.γ, j, k]

G;H ` [A→ α.tXsβ.γ, i, k]}
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Definition 3.0.4. The type-oriented island parsing algorithm is defined as the deductive system

comprised of the rules (Hyp), (Fnsh), (Decl), (Islnd), (IPred) (RCompl), and (LCompl).

The TIP algorithm is correct in the following sense. Here we assume that each grammar G

meets the restriction stated above.

Theorem 1 (correctness). ∃i, j. G;H0(yield(tX) ` [tX , i, j] iff tX ∈ T (G).

Proof. We prove the soundness of TIP by induction on derivations (Lemma 1) and the completeness

by induction on trees (Lemma 2). in Chapter A.1.

The implementation of our algorithm explores derivations in order of most specific first, which

enables parsing of languages with overloading (and parameterized rules, as in Chapter 5.2). For

example, consider the following with an overloaded + operator.

Float ::= Int
Float ::= Float "+" Float
Int ::= Int "+" Int

The program 1 + 2 can be parsed at least three different ways: with zero, one, or two coercions

from Int to Float. Our algorithm returns the parse with no coercions, which we call most specific:

Int→ [Int→ 1] + [Int→ 2]

Definition 3.0.5. We inductively define whether A is at least as specific as B, written A ≥ B, as

follows.

(1) If B → A ∈ P, then A ≥ B.

(2) (reflexive) A ≥ A.

(3) (transitive) If A ≥ B and B ≥ C, then A ≥ C.

We extend this ordering to terminals by defining a ≥ b iff a = b, and to sequences by defining

α ≥ β iff |α| = |β| and αi ≥ βi for i ∈ {1, . . . , |α|}
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A parse tree node A → sα is at least as specific as another parse tree node B → tβ if and only if

A ≥ B and sα ≥ tβ.

We define the least upper bound, A ∨ B, with respect to the ≥ relation in the usual way.

Note that a least upper bound does not always exist.

Definition 3.0.6. The language of a CFG G recognized by the TIP algorithm, written L(G),

consists of all the strings for which there is a most specific parse tree. More formally,

L(G) = {w | ∃t ∈ T (G, w).∀t′ ∈ T (G, w). t′ 6= t→ t ≥ t′}



Chapter 4

Experimental Evaluation

In this chapter we evaluate the performance of type-oriented island parsing with experiments

in two separate dimensions. First we measure the performance of the algorithm for programs that

are held constant but the size of the grammars increase, and second we measure the performance

for programs that increase in size while the grammars are held constant.

4.1 Grammar Scaling

Chart parsing algorithms [Kay, 1986] have a general worst-case running time of O(|G|n3) for

a grammar G and string of length n. In our setting, G is the union of the grammars for the k

DSLs that are in use within a given scope, that is G =
⋃k
i=1 Gi, where Gi is the grammar for DSL

i. We claim that the total size of the grammar G is not a factor for type-oriented island parsing,

and instead the time complexity is O(mn3) where m = max{|Gi| | 1 ≤ i ≤ k}. This claim deserves

considerable explanation to be made precise.

Technically, we assume that G is sparse and that the terminals of G are well-typed, which we

define as follows.

Definition 4.1.1. Form a Boolean matrix with a row for each nonterminal and a column for each

production rule in a grammar G. A matrix element (i, j) is true if the nonterminal i appears on the

right-hand side of the rule j, and it is false otherwise. We say that G is sparse if its corresponding

matrix is sparse, that is, if the number of nonzero elements is much smaller than the number of

elements.
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Figure 4.1: Comparison of top-down, bottom-up, and island parsing with three styles of grammars.
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Definition 4.1.2. We say that a terminal a of a grammar G is well-typed if for each B such that

B → a ∈ P, B represents a type in the language of G.

We expect that the terminals of type-oriented grammars will be well-typed, and hypothesize

that, in the common case, the union of many type-oriented grammars (or DSLs) is sparse.

To verify that both the type-oriented style of grammar and the island parsing algorithm are

necessary for this result, we show that removing either of these ingredients results in parse times

that are dependent on the size of the entire grammar. Specifically, we consider the performance

of the top-down and bottom-up Earley algorithms, in addition to island parsing, with respect to

untyped, semi-typed, and type-oriented grammars.

We implemented all three algorithms using a chart parsing algorithm, which efficiently mem-

oizes duplicate items. The chart parser continues until it has generated all items that can be derived

from the input string. (It does not stop at the first complete parse because it needs to continue

to check whether the input string is ambiguous, which means the input would be in error.) Also,

we should note that our system currently employs a fixed tokenizer, but that we plan to look into

scannerless parsing.

To capture the essential, asymptotic behavior of the parsing algorithms, we count the number

of items generated during the parsing of the program.

4.1.1 A Small Experiment

For the first experiment we parse the expression --A with untyped, semi-typed, and typed

grammars.

Untyped In the untyped scenario, all grammar rules are defined in terms of the expression

nonterminal (E), and variables are simply parsed as identifiers (Id).

module Untypedk {
E ::= Id | "-" E;

}
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The results for parsing --A after importing k copies of Untyped, for increasing k, are shown

in Figure 4.1(a). The y-axis is the number of items generated by each parsing algorithm and the

x-axis is the total number of grammar rules at each k. In the untyped scenario, the size of the

grammar affects the performance of each algorithm, with each generating O(k2) items.

We note that the two Earley algorithms generate about half as many items as the island

parser because they are unidirectional (left-to-right) instead of bidirectional.

Semi-typed In the semi-typed scenario, the grammars are nearly type-oriented: the

Semityped0 module defines the nonterminal V (for vector) and each of Semitypedi for i ∈ {1, . . . , k}

defines the nonterminal Mi (for matrix); however, variables are again parsed as identifiers. We call

this scenario semi-typed, because it doesn’t use variable declarations to provide type-based disam-

biguation.

module Semityped0 {
E ::= V;
V ::= Id | "-" V;

}

module Semitypedi {
E ::= Mi;
Mi ::= Id | "-" Mi;

}

The results for parsing --A after importing Semityped0 followed by Semitypedi for i ∈

{1, . . . , k} are shown in Figure 4.1(b). The lines for bottom-up Earley and island parsing coin-

cide. Each algorithm generates O(k) items, but we see that type-oriented grammars are not, by

themselves, enough to achieve constant scaling with respect to grammar size.

We note that the top-down Earley algorithm generates almost twice as many items as the

bottom-up algorithms: the alternatives for the start symbol E grow with n, which affects the

top-down strategy more than bottom-up.

Typed The typed scenario is identical to semi-typed except that it no longer includes the

Id nonterminal. Instead, programs using the Typed module must declare their own typed variables.
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module Typed0 {
E ::= V;
V ::= "-" V;

}

module Typedi {
E ::= Mi;
Mi ::= "-" Mi;

}

The results for parsing --A after importing Typed0 followed by Typedi for i ∈ {1, . . . , k}

and declaring A:V are shown in Figure 4.1(c). The sparsity for this example is O(1/k), and now

the terminal (as V) is well-typed. The island parsing algorithm generates a constant number of

items as the size of the grammar increases, while the Earley algorithms remain linear. Thus, the

combination of type-based disambiguation, type-oriented grammars, and island parsing provides a

scalable approach to parsing programs that use many DSLs.

4.1.2 A Larger Experiment

For a second experiment we measure the performance of each algorithm for a sequence of

matrix algebra operations with expanded versions of the grammars in Figure 1.3:

import MatrixAlgebra, RegularExpressionsk, Setsk;
B = A + u1 * v1’ + u2 * v2’;
x = b * (B’ * y) + z;
w = a * (B * x);

In this example, we import grammars for RegularExpressions and Sets, k times each. For the

untyped and semi-typed scenarios, the result is too ambiguous and we terminated their execution

after waiting for several minutes. For the typed scenario, we declare the variables A and B as type

Matrix; u1, u2, v1, v2, and w-z as type ColVector; a and b as type Scalar; the sparsity of the

typed example is O(1/k).

Figure 4.2 shows a graph for parsing the above program with each algorithm. As before,

the y-axis is the number of items generated during parsing, and the x-axis is the number of DSLs

that are imported. The top-down Earley algorithm scales linearly with respect to the number of
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Figure 4.2: Comparison of parsing algorithms for a type-oriented matrix algebra DSL and increasing
grammar size.
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DSLs imported and generates many more items than the bottom-up algorithms. The island parsing

algorithm generates a constant number of items as the number of DSLs increases; the bottom-up

Earley algorithm scales linearly but at a shallow rate.

4.1.3 Discussion

The reason type-oriented island parsing scales is that it is more conservative with respect to

prediction than either top-down or bottom up, and so grammar rules from other DSLs that are

irrelevant to the program fragment being parsed are never used to generate items.

Consider the (Pred) rule of top-down Earley parsing. Any rule that produces the non-

terminal B, regardless of which DSL it resides in, will be entered into the chart. Note that such

items have a zero-length extent which indicates that the algorithm does not yet have a reason to

believe that this item will be able to complete.

Looking at the (BU) rule of bottom-up Earley parsing, we see that all it takes for a rule

(from any DSL) to be used is that it starts with a terminal that occurs in the program. However,

it is quite likely that different DSLs will have rules with some terminals in common. Thus, the

bottom-up algorithm also introduces items from irrelevant DSLs.

Next, consider the (Islnd) rule of our island parser. There is no prediction in this rule.

However, it is possible for different DSLs to define literals with the same syntax (same tokens).

(Many languages forbid the overloading of constants, but it is allowed, for example, in Haskell.)

The performance of the island parser would degrade in such a scenario, although the programmer

could regain performance by redefining the syntax of the imported constants, in the same way that

name conflicts can be avoided by the rename-on-import constructs provided by module systems.

Finally, consider the (IPred) rule of our island parser. The difference between this rule and

(BU) is that it only applies to nonterminals (which correspond to types), not terminals. As we

previously stated, we assume that the nonterminals (types) in the different DSLs are, for the most

part, disjoint. Thus, the (IPred) rule typically generates items based on rules in the relevant

DSL’s grammar and not from other DSLs.
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4.2 Program Scaling

In this section we measure the performance of each algorithm as the size of the program

increases and the grammar is held constant. The program of size n is the addition of n matrices

using the matrix algebra grammar from the previous section. As before, we consider untyped,

semi-typed, and typed scenarios.

Untyped The untyped scenario is exponentially ambiguous:

import MatrixAlgebra, RegularExpressions, Sets;
A + A + · · · + A

While the above program with n terms produces O(2n) parse trees, the Earley and island parsing

algorithms can produce a packed parse forest in polynomial space and time [Allen, 1995].

Figure 4.3(a) shows the results for each algorithm with a logarithmic scale on the y-axis. The

y-axis is the number of generated items (including production of parse trees), and the x-axis is the

program size. Because our implementation does not use packed forests, all three algorithms are

exponential for the untyped scenario.

Semi-typed The program for the semi-typed scenario is identical to the untyped scenario

and is also ambiguous; however, the number of parse trees does not grow with increasing program

size. Figure 4.3(b) shows the results for each algorithm, now on a linear scale. Here all the

algorithms are O(n2).

Typed The program is no longer ambiguous in the typed scenario:

import MatrixAlgebra, RegularExpressions, Sets;
declare A:Matrix {

A + A + · · · + A
}

Figure 4.3(c) shows the results for each algorithm on a linear scale and with axes as before. All

three algorithms are O(n2) for the typed scenario. These results suggest that type-oriented Earley

and island parsing are O(n2) for unambiguous grammars.
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Figure 4.3: Comparison of parsing algorithms for increasing program size. Figure (a) uses a loga-
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We should note that the top-down Earley algorithm parses the above program in O(n) time

when the grammars are rewritten to be LR(0); however, the bottom-up Earley and island algorithms

remain O(n2). Of course, one of our goals is to avoid asking our users to learn what LR(0) means

and rewrite their grammars.



Chapter 5

A System for Extensible Syntax

In this section we describe the parsing system that we have built as a front end to the

Racket programming language. In particular, we describe how we implement four features that

are needed in a practical extensible parsing system: associativity and precedence, parameterized

grammar rules, grammar rules with variable binders and scope, and rule-action pairs [Sandberg,

1982] which combine the notions of semantic actions, function definitions, and macros. We also

extend type-oriented grammars so that nonterminals can represent structural types.

5.1 Associativity and Precedence

We view associativity and precedence annotations (as in Figure 1.2, e.g., [left,1]) as a

must for our parsing system because we do not expect all of our users to be computer scientists,

that is, we do not expect them to know how to manually factor a grammar to take associativity

and precedence into account. Further, even for users who are computer scientists, they probably

have something better to do with their time than to factor grammars.

Our treatment of associativity and precedence is largely based on that of Visser [1997],

although we treat this as a semantic issue instead of an optimization issue. From the user

perspective, we extend rules to have the form A → α[`, p] where ` indicates the associativity

(` ∈ {left, right, non,⊥}) and p indicates the precedence (p ∈ N⊥). We use an ordering < on prece-

dences that is the natural lifting of < on N. Instead of the ordered set (N⊥, <) we could use any

partially ordered set, but prefer to be concrete here.



26

To specify the semantics of precedence and associativity, we use the notion of a filter to

remove parse trees from consideration if they contain precedence or associativity conflicts [Visser,

1997]. But first, we annotate our parse trees with the precedence and associativity, so an internal

node has the form A→`,p t.

Definition 5.1.1. We say that a parse tree t has a root priority conflict, written conflict(t), if one

of the following holds.

(1) It violates the right, left or non-associativity rules, that is, t has the form:

• A→`,p (A→`,p tAα)sα where ` = right or ` = non.

• A→`,p sα(A→`,p tαA) where ` = left or ` = non.

(2) It violates the precedence rule, that is, t has the form:

t = A→`,p s(B →`′,p′ t)s′ where p′ < p.

Definition 5.1.2. A tree context C is defined by the following grammar.

C ::= � | A→l,p t1 . . . C . . . tn

The operation of plugging a tree t into a tree context C, written C[t], is defined as follows.

�[t] = t

(A→`,p t1 . . . C . . . tn)[t] = A→`,p t1 . . . C[t] . . . tn

Definition 5.1.3. The filter for a CFG G is a function on sets of trees, F : ℘(TG) → ℘(TG), that

removes the trees containing conflicts. That is,

F(Φ) = {t ∈ Φ |6 ∃t′C, t = C[t′] and conflict(t′)}

Definition 5.1.4. The set of parse trees for a grammar G (with precedence and associativity) and

input w, written T (G, w), is defined as follows.

T (G, w) = {tS | tS ∈ F(T (G)) and yield(tS) = w}
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The change to the island parsing algorithm to handle precedence and associativity is straight-

forward. We simply make sure that a partial parse tree does not have a root priority conflict before

converting it into a (complete) parse tree. We replace the (Fnsh) rule with the following rule.

(FnshP)
G;H ` [A→ .tα., i, j] ¬conflict(A→ tα)

G;H ` [A→ tα, i, j]

We can now restate the correctness theorem for the algorithm including associativity and

precedence annotations.

Theorem 2 (correctness). ∃i, j. G;H0(yield(tX)) ` [tX , i, j] iff tX ∈ F(T (G)) and ¬conflict(tX).

Proof. By Lemmas 3 and 4 in Section A.2

5.2 Parameterized Rules

With the move to type-oriented grammars, the need for parameterized rules immediately

arises. For example, consider how one might translate the following grammar rule for conditional

expressions into a type-oriented rule.

E ::= "if" E "then" E "else" E

We would like to be more specific than E for the two branches and for the left-hand side. So

we extend our grammar rules to enable the parameterization of nonterminals. We can express a

conditional expression as follows, where T stands for any type/nonterminal.

∀T. T ::= "if" Bool "then" T "else" T

To simplify the presentation, we describe parameterized rules as an extension to the base

island parser (without precedence). However, our parsing system combines both extensions. Here

we extend grammar rules to include parameters: ∀x.A → α. (x may not contain duplicates, and

any variable in α must be in x.) We use x, y, z to range over variables and we now use the variables

A,B,C,D to range over nonterminals and variables.
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To handle parameters we need the notion of a substitution σ, that is, a partial function from

variables to nonterminals. The initial substitution σ0 is everywhere undefined. We extend the

action of a substitution to symbols, sequences, and rules in the following natural way.

σ(a) = a

σ(X1 . . . Xn) = σ(X1) . . . σ(Xn)

σ(A→ α) = σ(A)→ σ(α)

The notation σ[X 7→ Y ] creates a new, extended substitution, defined as follows.

σ[X 7→ Y ](Z) =


Y if X = Y,

σ(Z) otherwise.

We write σ[X 7→ Y ] to abbreviate

σ[X1 7→ Y1] · · · [X|X| 7→ Y|Y |].

We write [X 7→ Y ] to abbreviate σ0[X 7→ Y ].

Next we update the definition of a parse tree to include parameterized rules. The formation

rule for leaves remains unchanged, but the rule for internal nodes becomes as follows.

If A ∈ ∆, ∀x.A → α ∈ P, and σ = [x 7→ B], then σ(A) → tσ(α) is a parse tree
labeled with σ(A).

The definition of the language of a CFG with parameterized rules requires some care be-

cause parameterized rules introduce ambiguity. For example, consider the parameterized rule for

conditional expressions given above and the following program.

if true then 0 else 1

Instantiating parameter T with either Int or E leads to a complete parse. Of course, instantiating

with Int is better in that it is more specific. We formalize this notion as follows.

Next we turn to augmenting our island parsing algorithm to deal with parameterized rules.

We wish to implicitly instantiate parameterized grammar rules, that is, automatically determine
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which nonterminals to substitute for the parameters. Towards this end, we define a partial function

named match that compares two symbols with respect to a substitution σ and list of variables y

and produces a new substitution σ′ (if the match is successful).

match(X,X, σ, y) = σ

match(x, Y, σ, y) =



σ if x ∈ y and

σ(x) = Y

σ[x 7→ Y ] if x ∈ y and

x /∈ dom(σ)

Next, we augment a partial parse tree with a substitution to incrementally accumulate the

matches. So a partial tree has the form ∀x.A →σ α.tβ.γ. We then update four of the deduction

rules as shown below, leaving (Hyp), (Decl), and (Islnd) unchanged.

(PFnsh)
G;H ` [∀x.A→σ .tα., i, j]
G;H ` [σ(A)→ tα, i, j]

(PIPred)

G;H ` [tB, i, j] match(B′, B, σ0, x) = σ
∀x.A→ αB′β ∈ P G = (Σ,∆,P, S)

G;H ` [∀x.A→σ α.tB.β, i, j]

(PRCompl)

G;H ` [∀x.A→σ1 α.sβ.X
′γ, i, j]

G;H ` [tX , j, k]
match(X ′, X, σ1, x) = σ2

G;H ` [∀x.A→σ2 α.sβtX .γ, i, k]}

(PLCompl)

G;H ` [tX , i, j]
G;H ` [∀x.A→σ1 αX ′.sβ.γ, j, k]

match(X ′, X, σ1, x) = σ2

G;H ` [∀x.A→σ2 α.tXsβ.γ, i, k]}

Here we restate the correctness theorem, now for the algorithm including parameterized rules.

Theorem 3 (correctness). ∃i, j. G;H0(yield(tX)) ` [tX , i, j] iff tX ∈ T (G).

Proof. By Lemmas 5 and 7 in Section A.3
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5.3 Grammar Rules with Variable Binders

Variable binding and scoping is an important aspect of programming languages and domain-

specific languages are no different in this regard. Consider what would be needed to define the

grammar rule to parse a let expression such as the following, in which n is in scope between the

curly brackets.

let n = 7 { n * n }

To facilitate the definition of binding forms, we add two extensions to our extensible parsing system:

labeled symbols [Jim et al., 2010] and a scoping construct [Cardelli et al., 1994]. First, to see an

example, consider the below grammar rule.

∀S T. T ::= "let" x:Id "=" S { x:S; T }

The identifier Id is now labeled with x, which provides a way to refer to the string that was parsed

as Id. The curly brackets are our scoping construct, that is, they are treated specially. The x:S

inside the curly brackets declares that x is in scope during the parsing of T. Effectively, the grammar

is extended with the rule S→ x (but with S replaced by the nonterminal that it is instantiated to

and with x replaced by its associated string).

The addition of variable binders and scoping complicates the parsing algorithm because we

can no longer proceed purely in a bottom-up fashion. In this example, we cannot parse inside the

curly brackets until we have parsed the header of the let expression, that is, the variable name

and the right-hand side S. Our parsing system handles this by parsing in phases, where initially,

all regions of the input enclosed in curly braces are ignored. Once enough of the text surrounding

a curly-brace enclosed region has been parsed, then that region is “opened” and the next phase of

parsing begins.
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5.4 Rule-Action Pairs

Sandberg [1982] introduces the notion of a rule-action pair, which pairs a grammar rule with

a semantic action that provides code to give semantics to the syntax. The following is one of his

examples but written using our parsing system on top of Typed Racket.

Integer ::= "|" i:Integer "|" ⇒ (abs i);

The above example defines syntax for the absolute value operation on integers and it defines how to

compute the absolute value with code in Typed Racket. After a declaration such as the one above,

the programmer can use the notation |x| in the rest of the current scope, including subsequent

actions within rule-action pairs.

In Sandberg’s paper, it seems that rule-action pairs behave like macros. In our system, we

provide rule-action pairs that behave like functions as well (with call-by-value semantics). The ⇒

operator introduces a function (as in the above example) and the = operator introduces a macro.

For example, one would want to use a macro to define the syntax of an if expression (Figure 5.1)

to avoid always evaluating both branches. We refer to a rule-action pair that defines a function as

a rule-function and a rule-action pair that defines a macro as a rule-macro.

The implementation of our parsing system translates an input program, containing a mixture

of Typed Racket plus our grammar extensions, into a program that is purely Typed Racket. In the

following we describe the translation.

We use two auxiliary functions to compute the arguments of rule-functions and rule-macros

for translation. The support of a sequence α is the sequence of variables bound in α; the binders of

α is the sequence of variable bindings in α. In the following definitions we use list comprehension

notation.

supp(α) = [xi | αi ∈ α, αi = xi : Bi]

binders(α) = [xi : Bi | αi ∈ α, αi = xi : Bi]
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For both rule-functions and rule-macros, our system generates a unique name f and m,

respectively, for use in the Typed Racket output. Then a rule-function of the form ∀x.Af → α⇒ e

is translated to the definition:

(: f (All (x) (B -> A)))
(define f (λ (supp(α)) e))

A rule-macro of the form ∀x.Am → α = e is translated to the following:

(define-syntax-rule (m x supp(α)) e)

The type parameters x are passed as arguments to macros so they can be used in Typed Racket

forms. For example, the rule for let expressions in Figure 5.1 translates to a typed-let expression

in Racket using the parameter T1.

Next we show the translation of parse trees to Typed Racket, written JtK. The key idea is

that we translate a parse tree for a rule-function pair into a function application, and a parse tree

of a rule-macro pair into a macro application,

JAf → tαK = (f Jtα′K)

J∀x. Am →σ tαK = (m σ(x) Jtα′K)

where in each case α′ = binders(α). Terminals simply translate as themselves, JaK = a.

5.5 Structural Nonterminals

Consider the following rules for accessing the elements of a pair:

∀T1 T2. T1 ::= p:(T1 × T2) "." "fst" ⇒ (car p);
∀T1 T2. T2 ::= p:(T1 × T2) "." "snd" ⇒ (cdr p);

In these grammar rules, (T1 × T2) is a structural nonterminal ; it represents a structural type

in a type-oriented grammar. We can enable structural nonterminals by allowing the syntax of

nonterminals to be extended on a per-module basis.
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In particular, let Type be a reserved symbol giving the syntax of types (i.e., nonterminals) in

a type-oriented grammar. We initially define

Type ::= Id | "(" Type ")";

where Id is an alphanumeric identifier and parentheses are available for disambiguation. Now any

module can extend the syntax of Type by simply including new rules for it inside a types block.

Our system will scan the types block first and update its internal metagrammar before parsing

the rest of the module. For example, for the pair example we may have:

types {
Type ::= Type "×" Type;

}

However, we need a way to map new structural types to Typed Racket types. We accomplish

this with a special kind of rule-function pair: the ≡ operator introduces a function that is evaluated

at compile time, turning Type parse trees into Typed Racket types. Thus the initial Type rules are

defined to, by default, map type names to themselves.

Type ::= T:Id ≡ T | "(" T:Type ")" ≡ T;

For pairs, we use Typed Racket’s Pairof type constructor:

types {
Type ::= S:Type "×" T:Type ≡ (Pairof S T);

}

From an implementation perspective, we translate a Type rule-function pair ∀x. Type→ α ≡ e

into the following function:

(λ (supp(α))
(define-syntax-rule (subst supp(α)) ’e)
(subst supp(α)))

The translation of Type parse trees into Typed Racket values is otherwise no different than a normal

rule-function pair.
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5.6 Examples

Here we present examples in which we add syntax for two DSLs to the host language Typed

Racket.

5.6.1 Giving ML-like Syntax to Typed Racket

The module in Figure 5.1 gives ML-like syntax to several operators and forms of the Typed

Racket language. The grammar rules for Int and Id use regular expressions (in Racket syntax) on

the right-hand side of the grammar rule.

We then use this module in the following program and save it to the file let.es:

import ML;
let n = 7 {
if n < 3 then print 6;
else print 2 + n * 5 + 5;

}

Then we compile it and run the generated let.rkt by entering

$ esc let.es
$ racket -I typed/racket let.rkt
42

where esc is our extensible syntax compiler. The result, of course, is 42.

5.6.2 A DSL for Sets

The module in Figure 5.2 defines syntax for set literals and for computing the union, inter-

section, and cardinality of sets. Each rule-macro expands to a Racket library call.

After importing this DSL, programmers can use the set syntax directly in Typed Racket. We

can also combine the Sets module with the ML module from before, for example:

import ML, Sets;
let A = {1, 2, 3} {

let B = {2, 3, 4} {
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module ML {
Integer ::= x:Integer "+" y:Integer [left,1]
⇒ (+ x y);

Integer ::= x:Integer "*" y:Integer [left,2]
⇒ (* x y);

Boolean ::= x:Integer "<" y:Integer ⇒ (< x y);
∀T. Void ::= "print" x:T ";" ⇒ (displayln x);

∀T. T ::= "if" t:Boolean "then" c:T "else" a:T
= (if t c a);

∀S T. T ::= "let" x:Id "=" y:S { x:S; z:T }
= (let: ([x : S y]) z);

∀S T. T ::= e:S f:T [left] = (begin e f);

Integer ::= #rx"^[0-9]+$";
Id ::= #rx"^[a-zA-Z][a-zA-Z0-9]*$";

}

Figure 5.1: An example of giving ML-like syntax to Typed Racket.

module Sets {
types {
Type ::= T:Type "Set" ≡ (Setof T);
Type ::= T:Type "Seq" ≡ (Listof T);

}

∀T. T Set ::= "{" x:T "}" = (set x);
∀T. T Set ::= "{" x:T xs:(T Seq) "}"

= (list->set (cons x xs));
∀T. T Seq ::= "," x:T = (list x);
∀T. T Seq ::= "," x:T xs:(T Seq)

= (cons x xs);

∀T. T Set ::= s:(T Set) "|" t:(T Set) [left,1]
= (set-union s t);

∀T. T Set ::= s:(T Set) "&" t:(T Set) [left,2]
= (set-intersect s t);

∀T. Integer ::= "|" s:(T Set) "|"
= (set-count s);

}

Figure 5.2: An example of giving set literal syntax to Typed Racket.
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let C = {3, 4, 5} {
print |A & C|;
print A | B & C;

}
}

}

Saving this program in abc.es, we can then compile and run it:

$ esc abc.es
$ racket -I typed/racket abc.rkt
1
#<set: 1 2 3 4>



Chapter 6

Related Work

There have been numerous approaches to extensible syntax for programming languages. In

this section, we summarize the approaches and discuss how they relate to our work. We organize

this discussion in a roughly chronological order.

In the Lithe language, Sandberg [1982] merges the notion of grammar rule and macro defi-

nition and integrates parsing and type checking. Unfortunately, he does not describe his parsing

algorithm. Aasa et al. [1988] augments the ML language with extensible syntax for dealing with

algebraic data types. They develop a generalization of the Earley algorithm that performs Hindley-

Milner type inference during parsing. However, Pettersson and Fritzson [1992] report that the

algorithm was too inefficient to be practically usable. Pettersson and Fritzson [1992] build a more

efficient system based on LR(1) parsing. Of course, LR(1) parsing is not suitable for our purposes

because LR(1) is not closed under union, which we need to compose DSLs. Several later works

also integrate type inference into the Earley algorithm [Missura, 1997; Wieland, 2009]. It may be

possible to adapt these ideas to enable our approach to handle languages with type inference.

Cardelli et al. [1994] develop a system with extensible syntax and lexical scoping. That is,

their system supports syntax extensions that introduce variable binders. Their work inspires our

treatment of variable binders in Section 5.3. Cardelli et al. [1994] base their algorithm on LL(1)

parsing, which is also not closed under union. Also, their system differs from ours in that parsing

and type checking are separate phases.

The OCaml language comes with a preprocessor, Camlp4, that provides extensible syn-



38

tax [de Rauglaudre, 2002]. The parsing algorithm in Camlp4 is “something close to LL(1)”.

Goguen et al. [1992] provide extensible syntax in the OBJ3 language in the form of mixfix

operators. In OBJ3, types (or sorts) play some role in disambiguation, but their papers do not

describe the parsing algorithm. There is more literature regarding Maude [Clavel et al., 1999], one

of the descendents of OBJ3. Maude uses the SCP algorithm of Quesada [1998], which is bottom-up

and bidirectional, much like our island parser. However, we have not been able to find a paper that

describes how types are used for disambiguation in the Maude parser.

The Isabelle Proof Assistant [Paulson, 1994] provides support for mixfix syntax definitions.

The algorithm is a variant of chart parsing and can parse arbitrary CFGs, including ambiguous

ones. When there is ambiguity, a parse forest is generated and then a later type checking pass

(based on Hindley-Milner type inference) prunes out the ill-typed trees.

Ranta [2004] develops the Grammatical Framework which integrates context free grammars

with a logical framework based on type theory. His framework handles grammar rules with variable

binders by use of higher-order abstract syntax. The implementation uses the Earley algorithm and

type checks after parsing.

Several extensible parsing systems use Ford’s Parsing Expression Grammar (PEG) formal-

ism [Ford, 2004]. PEGs are stylistically similar to CFGs; however, PEGs avoid ambiguity by in-

troducing a prioritized choice operator for rule alternatives and PEGs disallow left-recursive rules.

We claim that these two restrictions are not appropriate for composing DSLs. The order in which

DSLs are imported should not matter and DSL authors should be free to use left recursion if that

is the most natural way to express their grammar.

Danielsson and Norell [2008] investigate support for mixfix operators for Agda using parser

combinators with memoization, which is roughly equivalent to the Earley algorithm. Their algo-

rithm does not use type-based disambiguation during parsing, but they note that a type-checking

post-processor could be used to filter parse trees.

The MetaBorg [Bravenboer et al., 2005] system provides extensible syntax in support of

embedding DSLs in general purpose languages. MetaBorg is built on the Stratego/XT toolset
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which in turn used the syntax definition framework SDF [Heering et al., 1989]. SDF uses scannerless

GLR to parse arbitrary CFGs. The MetaBorg system performs type-based disambiguation after

parsing to prune ill-typed parse trees from the resulting parse forest. Our treatment precedence

and associativity is based on their notion of disambiguation filter [van den Brand et al., 2002]. We

plan to explore the scannerless approach in the future. Bravenboer and Visser [2009] look into the

problem of composing DSLs and investigate methods for composing parse tables. We currently do

not create parse tables, but we may use these ideas in the future to further optimize the efficiency

of our algorithm.

Jim et al. [2010] develop a grammar formalism and parsing algorithm to handle data-dependent

grammars. One of the contributions of their work is ability to bind parsing results to variables that

can then be used to control parsing. We use this idea in Section 5.3 to enable grammar rules with

variable binding. Their algorithm is a variation of the Earley algorithm and does not perform

type-based disambiguation but it does provide attribute-directed parsing.



Chapter 7

Conclusions

In this thesis we presented a new parsing algorithm, type-oriented island parsing, that is

the first parsing algorithm to be constant time with respect to the size of the grammar under

the assumption that the grammar is sparse. (Most parsing algorithms are linear with respect to

the size of the grammar.) Our motivation for developing this algorithm comes from the desire to

compose domain-specific languages, that is, to simultaneously import many DSLs into a software

application.

We present an extensible parsing system that provides a front-end to a host language, such

as Typed Racket, enabling the definition of macros and functions together with grammar rules that

provide syntactic sugar. Our parsing system provides precedence and associativity annotations,

parameterized grammar rules, and grammar rules with variable binders and scope.

In the future we plan to pursue further opportunities to improve the performance of the

algorithm and to provide diagnostics for helping programmers resolve the remaining ambiguities

that are not addressed by typed-based disambiguation.
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Appendix A

Proofs

Here we assume that G meets the restriction on grammars stated in Section 3, i.e., if A →

X1 . . . Xn ∈ P and n > 1, then Xi = B, B ∈ ∆, and 1 ≤ i ≤ n.

A.1 Correctness of TIP3

This proof is included in the proofs of TIP5.1 and TIP5.2.

Lemma 1 (soundness). If ∃i, j. G;H0(yield(tX) ` [tX , i, j], then tX ∈ T (G).

Proof. By induction on G;H0(yield(tX)) ` [tX , i, j].

Lemma 2 (completeness). If tX ∈ T (G), then

∃i, j. G;H0(yield(tX)) ` [tX , i, j].

Proof. By induction on tX .

Theorem 1 (correctness). ∃i, j. G;H0(yield(tX) ` [tX , i, j] iff tX ∈ T (G).

Proof. By Lemmas 1 and 2.

A.2 Correctness of TIP5.1

Lemma 3 (soundness). If ∃i, j. G;H0(yield(tX)) ` [tX , i, j], then tX ∈ F(T (G)) and ¬conflict(tX).
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Proof. By induction on G;H0(yield(tX)) ` [tX , i, j]. The only possible last step in a derivation

of [tX , i, j] is an application of the FnshP rule, in which case we must have tX ∈ F(T (G)) and

¬conflict(tX).

Lemma 4 (completeness). If tX ∈ F(T (G)) and ¬conflict(tX), then ∃i, j. G;H0(yield(tX)) `

[tX , i, j].

Proof. By induction on tX .

• Case tX = a. All terminals are items in the initial set H0; by the Hyp rule, we have the

derivation G;H0 ` [a, i, i+ 1].

• Case tX = A→ t1 . . . tn. By definition, there is a corresponding rule A→ X1 . . . Xn ∈ P.

We assume the claim holds for the subtrees t1 . . . tn.

∗ Case n = 1, G;H0 ` [t1, i, j] and t1 = a. By the Islnd rule, we have the derivation

G;H0 ` [A→ a, i, j].

∗ Case 1 ≤ k ≤ n, G;H0 ` [tk, i, j], and tk = tB. Let α = X1 . . . Xk−1 and β =

Xk+1 . . . Xn. By the IPred rule, we have G;H0 ` [A→ α.tB.β, i, j]. By the induction

hypothesis, we have derivations for eachX ∈ α and β; therefore, a series of applications

of the LCompl and RCompl rules leads to G;H0 ` [A→ .tαBβ., i, j], for some i and

j. An application of the FnshP rule completes the derivation G;H0 ` [tX , i, j].

• Case tX = X → declare a : A {t′X}. We assume the claim holds for t′X , i.e., G ∪ {a →

A};H ` [t′X , i, j]. An application of the Decl rule completes the derivation.

Theorem 2 (correctness). ∃i, j. G;H0(yield(tX)) ` [tX , i, j] iff tX ∈ F(T (G)) and ¬conflict(tX).

Proof. By Lemmas 3 and 4.

A.3 Correctness of TIP5.2

Lemma 5 (soundness). If ∃i, j. G;H0(yield(tX)) ` [tX , i, j], then tX ∈ T (G).
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Proof. By induction on derivations. The only possible last step in a derivation of [tX , i, j] is an

application of the PFnsh rule.

Lemma 6. If ∀x. A→ αXβ ∈ P and σ = [x 7→ B], then match(X,σ(X), σ,X) = σ′.

Proof. If X ∈ ∆ or X ∈ Σ, then σ(X) = X and the claim holds. Otherwise X is a variable, and

by definition we must have X ∈ x and σ(X) = B, and the claim holds.

Lemma 7 (completeness). If tX ∈ T (G), then

∃i, j. G;H0(yield(tX)) ` [tX , i, j].

Proof. By induction on tX .

• Case tX = a. All terminals are items in the initial set H0; by the Hyp rule, we have the

derivation G;H0 ` [a, i, i+ 1].

• Case tX = σ(A)→ tσ(α). By definition, there is a corresponding rule ∀x. A→ α ∈ P and

σ = [x 7→ B]. We assume the claim holds for the subtrees tσ(α1) . . . tσ(αn).

∗ Case n = 1, G;H0 ` [tσ(α1), i, j] and tσ(α1) = a. By the Islnd rule, we have G;H0 `

[σ(A)→ a, i, j].

∗ Case 1 ≤ k ≤ n, σ(αk) = B, B ∈ ∆, and G;H0 ` [tB, i, j]. We need to show

match(αk, B, σ0, x) = σ′ for some σ′. Because σ(αk) ∈ ∆, αk must be either B or

some x ∈ x; thus match(αk, B, σ0, x) = σ0 if αk = B and σ0[x 7→ B] otherwise.

Let αL = α1 . . . αk−1 and αR = αk+1 . . . αn. Then by the PIPred rule we have

[∀x. A→σ′
αL.tB.αR, i, j]. By the induction hypothesis, we have derivations for each

σ′(αk), αk ∈ αL or αR, and we have match(αk, σ′(αk), σ′, x) = σ′′ by Lemma 6.

Therefore, a series of applications of the PLCompl and PRCompl rules leads to

G;H0 ` [∀x. A→σ′
.tα., i, j] for some σ′. An application of the PFnsh rule completes

the derivation.
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• Case tX = X → declare a : A {t′X}. We assume the claim holds for t′X , i.e., G ∪ {a →

A};H ` [t′X , i, j]. An application of the Decl rule completes the derivation.

Theorem 3 (correctness). ∃i, j. G;H0(yield(tX)) ` [tX , i, j] iff tX ∈ T (G).

Proof. By Lemmas 5 and 7.


