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ABSTRACT 

Top, Laken M.  (M.A., Mathematics) 

Calculus and Commutativity: An Investigation of Student Thinking Regarding the Sequencing of 
Mathematical Processes in Calculus 

Thesis directed by Professor Eric Stade   

 Previous research has demonstrated that students enrolled in calculus courses continue to 

struggle with old algebra ideas along with new calculus-specific concepts.  In this study we seek 

to investigate student thinking around the sequencing of mathematical processes (SMP) by 

examining student work in a one-semester university calculus course.  Our results indicate that 

students enrolled at the calculus level continue to struggle with algebraic order of operations in 

addition to making new mistakes with respect to the commutativity of differentiation and other 

operations; these errors are often evidenced in student failure to apply the product, quotient, or 

chain rules.  We examine these SMP mistakes through the theoretical lenses of APOS theory, 

conceptual and procedural thinking, and structural and operational thinking.  In addition, we look 

at two student sense-making strategies - using demarcating symbols and naming differentiation 

rules - to explore whether these are correlated with student propensity to make SMP-type errors. 
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CHAPTER 1 
 

INTRODUCTION 
 

“Does it matter which step I do first?”  This is a student question that could be heard in a 

college mathematics classroom with nearly the same frequency as in an elementary mathematics 

classroom.  The order in which mathematical operations are performed is truly a consideration 

that spans all levels of mathematics.  In middle school, this concern most often surfaces in 

problems where students must decide whether to prioritize working inside parentheses, 

multiplying, dividing, adding, or subtracting. For this reason, the order of operations in 

mathematics is often associated with the PEMDAS mnemonic which is intended to help students 

remember the correct order for simplifying an expression: Parentheses, Exponents, 

Multiplication, Division, Addition, and Subtraction.  The importance of sequencing 

mathematical processes extends far beyond this short list of operations however. For high school 

and undergraduate students, the situation becomes even more complicated since performing 

geometric transformations, composing and otherwise manipulating functions, finding limits, 

derivatives, and integrals, etc. all require some understanding of whether the processes involved 

commute with one another.  Specifically, in calculus, the non-commutativity of differentiation 

with other operations such as multiplication and division may cause issues for students.  In 

addition to learning how to sequence these new processes that they are encountering, students at 

higher levels also need to retain their understanding of the order of basic operations as well since 

mathematics is a subject that continues to build on itself.    

Because of their omnipresence in every level of mathematics, sequencing issues deserve 

more attention in classrooms and in educational research.  Since order of operations is so 

frequently tied to PEMDAS, we introduce a new term ‘sequencing of mathematical processes’ or 
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SMP to refer to all situations where the order in which mathematical operations are performed 

may affect the result.  We hypothesize that student difficulties with the sequencing of 

mathematical processes in earlier mathematics courses will continue to present themselves as 

students advance through the math curriculum.  We also hypothesize that more advanced 

students may have a better understanding of the mathematical procedures involving multiple 

operations, but may still struggle when asked more abstract, conceptual questions about the 

commutativity of such processes. Additionally, it may be the case that errors resulting from 

reasoning misconceptions for younger students may persist as procedural errors for more 

advanced students.  These conjectures led us to construct this study with the purpose of 

examining student thinking about SMP for students enrolled in a one-semester calculus course.    

Research Questions 

 Specifically, in this study we seek to investigate the following research questions in the 

context of a one-semester undergraduate calculus course:  

 How do problems with the sequencing of mathematical processes manifest themselves 

across levels of mathematics?  What is the relationship between typical student issues 

with the order of mathematical operations at lower levels of math (e.g. Pre-Algebra) and 

those that appear in more advanced classes (e.g. Calculus)?  

 Are there any apparent differences between students’ conceptual and procedural 

understandings of the sequencing of mathematical processes? 

 How often are student errors in calculus related to sequencing mathematical processes 

and using the order of operations? 

 Which student errors stem from misconceptions in reasoning, and which stem from 

carelessness or lack of procedural knowledge? 
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Limitations of Study 

 Due to the lack of prior research on the broader category of SMP, this study is intended to 

be an initial foray into the field.  As such, there are several limitations of which to be cautious 

and aware.  

 First, the data set used in this study is limited.  The primary sources of data analyzed 

come from student work submitted as part of a one-semester calculus course.  Most of the 

assessments analyzed were not specifically designed for this study, but were simply intended to 

evaluate student understanding of the course topics in general.  Thus, it must be acknowledged 

that some of the questions could have been better worded in order to elicit student thinking that 

would better illuminate their understanding of SMP.  Furthermore, the data was collected across 

two semesters and the types, timing, and wording of assessments changed over that period.  

Thus, results are not directly comparable across the two semesters.  However, since the intention 

of this study was to provide an overview of students’ conceptions and use of SMP, this 

comparison is not necessary at this stage.  

 Second, the data analysis reported in this thesis was conducted by a single researcher.  

Certainly, cross-checking with other members of the research team would benefit the reliability 

of the data analysis.  The consistency of results found by triangulating the multiple data sources 

analyzed, however, is also reassuring of the validity of this work.   

 Third, this study took place in a calculus course that was intentionally designed for 

students majoring in the life sciences, with specific emphasis on material applicable to their 

chosen career trajectories and a de-emphasis on some other traditional calculus topics.  Thus the 

results may not reflect the work of students enrolled in a more typical multi-semester calculus 

course. 
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 Students were allowed to self-select into the study for both semesters of the course in 

which student work was examined.  As a result, there may be some selection bias in terms of 

participants.  It seems reasonable to assume, however, that the population consists of a mix of 

high-achieving, ambitious students, and struggling students in need of the extra credit offered, 

thus averaging out to typical classroom representation.         

 Finally, it must be emphasized that this work is preliminary and naturally incomplete.  

Certainly, more research is needed to further investigate where and how SMP appears in calculus 

contexts and how it intersects with student learning of calculus concepts.  Our hope in this study 

is simply to establish a warrant for research in this area and provide motivation for further 

investigation. 

Organization of Thesis 

 This thesis is organized into six chapters.  This first chapter is intended to introduce the 

language and definition of SMP.  Chapter 2 provides a brief literature review of prior educational 

research on order of operations as well as student learning in calculus.  Additionally, the second 

chapter presents three theories of mathematical learning that will be used as a conceptual 

framework for subsequent analysis.  Chapter 3 describes our methodology and the data used for 

this study.  Chapter 4 presents the results and findings while Chapter 5 provides a discussion 

intended to consider the findings in more depth and link them back to the theoretical perspectives 

described in the literature review.  Finally, Chapter 6 is a conclusion and offers suggestions for 

future research. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

 Because SMP is an extension of the more commonly used term “order of operations” we 

review research conducted in that field in this chapter.  Additionally, since our focus is on order 

of operations in calculus, we take this occasion to offer a brief review of research concerning 

student learning and misconceptions in calculus.  Third, we summarize three theoretical 

perspectives on mathematical learning that have been used to understand student learning with 

respect to the order of operations, with the goal of using these perspectives as a lens through 

which to examine our own findings in future chapters.  Finally, we provide a more in-depth look 

at some studies that are closely related to our own, with the intent of distinguishing our study and 

illustrating how it will contribute to the existing research in the field.  While we acknowledge 

that this literature review is not exhaustive, we do feel that it provides a good overview of the 

types of prior studies and findings that have been published. 

Order of Operations Research 

Throughout the literature exists a general acknowledgement that the order of operations is 

important at all levels of math and a better understanding of these concepts is important for 

student success throughout their mathematics careers (Schrock & Morrow, 1993).  Furthermore, 

beyond its importance, students also struggle with order of operations at all levels (Stephens, 

2016).  Despite these claims, relatively little research has been done on the order of operations in 

math education, particularly within higher levels of mathematics.  The types of studies that do 

exist primarily fall into two categories: student misconceptions about order of operations or more 

practitioner-focused methods for teaching order of operations. 
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Student Learning and Misconceptions 

 Research on student learning with respect to the order of operations often focuses on 

middle to high school students enrolled in pre-algebra or algebra classes.  This is likely due to 

the emphasis of this branch of research on the PEMDAS acronym.  PEMDAS is frequently used 

to introduce students to the correct order of elementary math operations and stands for 

Parentheses, Exponents, Multiplication, Division, Addition, and Subtraction.  Students are often 

taught to remember this mnemonic by reciting the phrase, “Please Excuse My Dear Aunt Sally” 

or some other variation.   

 Many of the studies on student learning emphasize that PEMDAS is often treated literally 

in instruction, leading to student errors; interpreting PEMDAS literally causes students to think 

that multiplication always precedes division or similarly that addition always comes before 

subtraction (Dupree, 2016).  In addition, students (and teachers) routinely struggle with 

interpreting parentheses, failing to see them as a symbol of grouping rather than an operation that 

must always be performed first (Dupree, 2016).  PEMDAS has also been shown to encourage 

left-to-right thinking, that is, that operations must be performed from left to right in an 

expression (Ameis, 2011; Dupree, 2016).  

 Beyond issues with PEMDAS, research has demonstrated that students also struggle with 

interpretation of negatives in the context of the order of operations (Booth et al., 2014).  Authors 

have suggested that this may have to do with children’s difficulties in comprehending and 

conceptualizing a number less than zero (perhaps due to their lack of exposure with negative 

integers in real life situations) or that students may find it challenging to understand the concept 

of an additive inverse (Fuadiah, Suryadi, and Turmudi, 2017).  Furthermore, students 

demonstrate difficulty in dealing with the combination of exponents and negative signs, often 
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struggling to understand when the negative sign is “sticky” or included in the exponent operation 

(as in 2  but not in 2 ) or when the exponent itself is negative (Pitta-Pantazi, Christou, and 

Zachariades, 2007; Cangelosi et al., 2013).  Similar findings have been produced in a 

developmental math study in which student difficulties with negative signs, exponents, fractions, 

and parentheses were highlighted (Titus, 2010). 

Teaching Methods 

Order of operations studies directed toward a practitioner audience also highlight 

PEMDAS, but primarily discuss the pros and cons of the method or propose alternatives to 

PEMDAS.  Lee and Messner (2000) highlight interpretation difficulties and a lack of curricular 

resources dealing with concatenations in expressions; they point out that calculators are not even 

standardized in their simplification of certain expressions without grouping symbols and also 

suggest that adding steps to PEMDAS may increase the potential of clarity.  They are not alone 

in their concern about these types of problems as others have also called for further support for 

difficulties with the lack of grouping symbols amongst pre-service teachers (Glidden, 2008).  

Glidden (2008) also points out that the literal interpretation of PEMDAS is not simply a student 

misconception, but that pre-service teachers even have issues with order (e.g. multiplication 

before division becomes prioritized over left-to-right simplification).  These teacher difficulties 

are especially important because teacher understanding (or misunderstanding) can be taken up by 

students in ways that are very hard to correct (Papadopoulos, 2015).   

A few solutions to these challenges have been proposed.  For example, Schrock and 

Morrow (1993) suggested that using calculators, mnemonics (such as PEMDAS) and increased 

awareness among students and teachers may improve student execution of the order of 

operations.  Others have suggested that an emphasis on teaching division and subtraction as 



8 
 

multiplicative and additive inverses, respectively, may improve comprehension (Dupree, 2016).  

Another alternative approach to PEMDAS is a “hierarchy of operators” triangle in which visuals 

are used to indicate which operators are prioritized thus helping to dismantle the “rule” of left-to-

right thinking (Ameis, 2011).  More recently, it has been suggested that technology could be 

useful in order of operations instruction; Stephens (2016) proposes that equation editors may 

help with the awareness of the importance of the order of operations since most editors require 

slow and careful input of terms. 

Misconceptions in Calculus 

In general, as illustrated in the previous section, order of operations research has not 

expanded to include a broader definition of SMP and still focuses on PEMDAS-type operations 

in algebra.  Research exists that examines misconceptions in higher levels of math such as 

calculus, but these studies tend focus on other areas of student understanding.  In a brief 

literature review of calculus-specific education research, Sabella and Redish (2003) note that 

many students lack a conceptual understanding of calculus topics, and are rarely asked to engage 

in deeper thinking and more challenging problems, prompting the ‘calculus reform’ movement.  

The authors provide a concise overview of research on student conceptual difficulties with four 

broad calculus topics, namely functions and variables, limits and continuity, derivatives, and 

integrals (Sabella and Redish, 2003).  More recently, Rasmussen, Marrongelle, and Borba (2014) 

provided an update on the state of calculus education research noting that studies have 

concentrated on four main objectives: identifying students’ conceptual difficulties, investigating 

learning processes, studying classrooms (specifically classroom interventions intended to 

improve student learning), and understanding teachers’ ideas and methods.  It is not our goal in 

this section to recreate these prior literature reviews; rather, we present a brief overview of 
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studies that seem to most closely align with our goals in studying how SMP manifests itself in 

calculus. 

Any review of the calculus education research literature would be remiss to neglect the 

two seminal papers published by Orton.  One article (Orton, 1983a) was among the first to 

investigate student learning with respect to differentiation, and the second study (Orton, 1983b) 

remains among the few research articles to discuss student understanding of integration.  In these 

papers, Orton analyzes student work on a set of problems covering a wide variety of 

differentiation and integration topics and subsequently categorizes student errors as structural, 

executive, and arbitrary.  These error categories were based on the work of Donaldson (1963) 

and can briefly be described as students’ failures to follow correct procedures (structural), 

students’ inabilities to understand the rule or concept necessary to solve the problem (executive) 

and students’ tendencies to ignore part of the problem (arbitrary).  In both his integration and 

differentiation studies, Orton (1983a, 1983b) found that the majority of student difficulties were 

structural, though a significant number of executive mistakes were made as well.  Later authors 

have attempted similar error classification studies, often providing a broad overview of student 

errors and not focusing in on any specific topic (e.g. Muzangwa and Chifamba, 2012).  Other 

studies narrow in on student learning with respect to a particular calculus concept such as limits 

(Williams, 1991), Riemann sums (Sealey, 2014), or the chain rule (Kabael, 2010) to name a few. 

Only a few studies seem to directly address SMP in calculus either as a focus concept 

itself or as a lens through which to analyze student understanding of other concepts.  One such 

study that does specifically allude to the order of operations as it presents itself in calculus is 

Musgrave, Hatfield, and Thompson’s (2015) paper on how students interpret differences in 

calculus.  They found that students had a broad range of definitions for the word ‘difference’ and 
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also identified differences in a variety of ways when asked to label them in a given expression.  

The authors point out that how students related definitions, symbols, and structure are directly 

related to the order of operations and leave this as an area for future research (Musgrave, 

Hatfield, and Thompson, 2015).  Another study investigated student difficulties with respect to 

negative signs and exponents, analyzing work from students enrolled in college algebra, pre-

calculus, first-semester calculus, and second-semester calculus (Cangelosi et al., 2013).  The 

authors claim that one of their main findings was that students struggle with the idea of inverses 

(both additive and multiplicative) across all levels of mathematics, and they call for further 

research in this area.  Note that both Cangelosi et al. (2013) and Musgrave, Hatfield, and 

Thompson (2015) restrict their definition of the order of operations to mean the operations 

named in PEMDAS; research that expands on that definition is surprisingly difficult to find. 

Theoretical Perspectives on Mathematical Learning 

 A number of theoretical perspectives have grown in popularity due to their usefulness in 

making sense about how students develop in mathematical understanding.  Many of these 

perspectives are evolutions and more modern interpretations of Donaldson’s (1963) error 

classifications used in Orton’s (1983a, 1983b) widely cited calculus studies.  Three perspectives 

in particular have been used prominently in order of operations analyses, namely APOS theory, 

conceptual and procedural thinking, and structural and operational thinking.  We describe these 

three theories in more detail below. 

APOS Theory 

The first perspective that we will consider classifies student sense-making as taking place 

through actions, processes, objects, and schemas, and thus is aptly named APOS theory 

(Dubinsky & McDonald, 2001).  The origins of this theory started with Piaget who studied 
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children’s learning development as they aged.  Piaget claimed that children learned mathematics 

by beginning with concrete actions (for example, moving pebbles) and gradually interiorizing 

those actions, constantly building on previous understanding as they progressed (Piaget, 1975).  

He coined the term “reflective abstraction” to describe his theory, which he claimed was a 

“reorganization of mental activity, as it reconstructs at a higher level everything that was drawn 

from the coordinates of actions” (Piaget, 1975, p. 7).  Others have built on Piaget’s ideas to 

develop APOS theory in which students participate in sense-making through reflecting on and 

interiorizing actions, processes, objects, and schemas.  

  Czarnocha et al. (1999) describe actions as student reactions to external instructions, 

that is, when students are able to carry out specific steps that were detailed for them.  Process, on 

the other hand, requires students to reflect on this action and to begin to internalize and take 

control of it.  Object represents a further stage of development in which a student has begun to 

recognize a construct as an entity which can be acted upon by transformations.  Finally, students 

begin to build schemas which link processes, objects, and actions in a coherent and structured 

way (Czarnocha et al., 1999).  The authors describe these levels of development in the context of 

cosets.  An action level understanding of cosets might involve students understanding how to 

construct a coset given a starting element and a process for constructing other elements such as 

“begin with 2 and add 4” (Czarnocha et al., 1999, p. 99).  At the process level students may 

begin to think about constructing a coset by using a single element to operate on other elements.  

Students can make another conceptual leap by beginning to think of cosets as objects (e.g. a left 

coset) that were formed through specific processes and have particular properties (e.g. 

cardinality).  Finally, thinking about operations between sets or developing an organization of 
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algebraic structures in which groups, rings etc. are located indicates that students are at a schema 

level of sense-making.  

APOS theory has been used as a tool to understand student’s sense-making in a number 

of calculus contexts including graphical interpretations of derivatives (Asiala et al., 1997), 

related rates (Tziritas, 2011), the chain rule (Jojo, Maharaj, and Brijlall, 2013) and integration 

(Maharaj, 2014). 

Conceptual and Procedural Thinking 

 A second perspective that has been employed to understand student misconceptions at all 

levels of mathematics is that of conceptual and procedural thinking.  This framework is laid out 

by Tall et al. (2001) where they describe mathematics as a land of procedures and concepts. 

Symbols that we use often stand for both; for example, addition and sum can both be denoted 

with a  sign and differentiation and derivative are often represented by  or other symbolic 

variations.  Although often identified by the same symbol, concepts and procedures also remain 

distinct.  Counting is definitively a procedure, while number is a concept.  In some ways, the 

concept is the result of performing the process (addition leads to a sum, counting results in a 

number) and in fact, Gray and Tall (1994) formed the portmanteau ‘procept’ to describe this 

duality that symbols can represent.  Within this perspective, students begin at the procedure level 

where they are simply doing specific steps.  Increasing sophistication and development are 

indicated by moving on to process, where students are beginning to grow in flexibility and 

efficiency when performing procedures, and finally to procept, where students demonstrate 

symbolic understanding (Tall et al., 2001). 
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Structural and Operational Thinking 

The third and final perspective that we consider here is structural and operational 

thinking, which shares many similarities with the conceptual and procedural lens described 

above.  In this perspective, abstract concepts can be thought of structurally (as objects) and 

operationally (as processes) (Sfard, 1991).  Typically, operational thinking comes first and 

development happens through interiorization, condensation, and reification.  According to Sfard 

(1991), interiorization is the stage in which students begin to develop the ability to mentally 

envision what would happen when they performed a process without actually having to carry out 

the action.   At the same time, the student is becoming more proficient at performing the process 

as well.  Condensation happens when students become more comfortable combining and 

comparing processes, while in reification students begin to think of the result of the process as an 

object in and of itself.  The main difficulty for students in moving through this process is due to 

the fact that concepts often have multiple representations, but there is no way to actually 

visualize the concepts concretely.  Structural-level understanding that develops in the reification 

stage requires students to view mathematical things as real objects that exist which is extremely 

challenging.  To illustrate this, Sfard (1991) considers the example of a function.  Structurally, 

one might think of a function as a set of ordered pairs, while operationally a function is a way of 

transforming (or mapping) an input to an output.  Functions are represented in multiple ways, 

however, such as through algebraic expressions, graphs, or algorithms.  This creates confusion 

when students are trying to actually comprehend what a function is and trying to see it as an 

object because each representation captures a piece of the structural understanding, but none 

fully encompass the concept.   
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This perspective shares many similarities with the conceptual and procedural thinking 

framework laid out by Tall et al. (2001).  Indeed, Sfard (1991) uses the same counting versus 

number example that Tall et al. (2001) describe as procedure versus concept to demonstrate 

differences in young children’s thinking and the progression from operational to structural.  

Sfard (1991) however, emphasizes that the seemingly disparate ways of understanding 

mathematical concepts as operational and structural actually complement one another and are 

inseparable; she highlights this as a distinguishing factor in operational/structural theory, as 

opposed to the conceptual/procedural theories described previously.  Sfard (1991) also strives to 

combine epistemology and ontology in developing the theory and calls attention to the ways that 

structure and operation interact with math representations, psychology and concept development, 

and cognitive processes.   

Similar Studies 

In the final section of this literature review, we note that there are two studies that closely 

model our research questions, and thus deserve some careful explication.  Both studies that we 

highlight in this section are trying to understand the order of operations in the context of higher 

education; the first study bears methodological similarities to our own study and the second 

shares content and theoretical framing aspects.   

Order of Operations and Business Students 

In their study, Pappanastos, Hall, and Honan (2002) ask if business students understand 

the order of operations.  The researchers distributed a survey instrument consisting of pre-algebra 

and algebra-level problems.  They then compare student responses across the number of years 

the student had been in college (e.g. freshmen versus sophomores versus juniors).  The authors 

found that college-level business students struggled with the same things as in prior middle and 
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high school studies, namely exponents, parentheses, negatives, and left-to-right order of 

operations.  This study is methodologically similar to our own, since we also distributed 

assessments and analyzed student responses for order of operations issues (to be described in 

detail in Chapter 3).  We viewed Pappanastos, Hall, and Honan’s (2002) study as a foundation to 

build upon as it exemplified that students in higher education also struggle with order of 

operations and provided guidelines for the types of errors that we may see arise with our own 

population of interest.  One of the main distinguishing factors that sets our study apart from this 

one is that we did not ask specific algebra questions, but rather looked at where these issues 

naturally arose in the context of calculus problems (see our methodology described in Chapter 

3).   

The Chain Rule and Natural Science Students 

The second study that we highlight here used an APOS perspective to look at students 

majoring in the natural sciences and their understanding of derivatives, particularly the chain rule 

(Maharaj, 2013).  The author suggests some initial benchmarks for examples of how student 

understanding of derivatives might appear at different APOS levels.  For example, Maharaj 

(2013) proposes that a student with an action level understanding may be able to perform a 

simple power rule derivative when given an exact expression for the original function, whereas a 

student with a process orientation might be able to combine a number of steps, such as first 

simplifying the original expression and then applying a differentiation rule.  In the object phase, 

students may be able to recognize a composition of two functions, enabling them to identify the 

two functions making up the expression in order to apply the chain rule to the problem.  

According to Maharaj (2013) the schema phase involves understanding multiple aspects or 

characteristics of the function and knowing how to find them; he suggests finding maxima and 
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minima of a function which requires making connections between differentiation rules, critical 

points, and where the derivative is positive or negative.  After establishing this framework, 

Maharaj (2013) analyzes six questions that were distributed to students as an assessment.  One 

major finding that he reports is the difficulty that students have with applying the chain rule for 

differentiation, and he implies that greater instructional emphasis on the object conception of 

function composition may be helpful in remedying this struggle, but he points to the need for 

further research on this subject.  Our study is similar to Maharaj’s (2013) study in many ways.  

First, our populations are similar, since many of the students participating in our study are also 

life (or natural) science majors.  Second, our assessments are also designed to be a set of 

standard calculus problems.  Finally, we also hope to analyze student responses through the 

APOS perspective.  The main factor that distinguishes our study from that of Maharaj (2013) is 

the SMP lens that we also hope to apply to our analysis; it is possible that some of the errors that 

were presented in his research could also be attributed to difficulties understanding SMP. 

We feel that our study design begins to fill a void in the world of mathematics education 

research as it seeks to merge calculus studies with order of operations studies.  In particular, we 

seek to expand our definition of the order of operations to the sequencing of mathematical 

processes in order to ask how order and commutativity manifest themselves in the context of 

“new-to-students” calculus operations.  As a result, our current study has a slightly broader scope 

than most prior order of operations studies.  We also find that our focus is different than typical 

calculus misconceptions studies because we are not looking at student understanding of a 

particular calculus concept, but rather we seek to understand how SMP appears in calculus and 

where students struggle with those concepts including and beyond the typical order of 

operations.  In other words, our study is less about exploring student understanding of what a 
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derivative is and more about investigation student understanding of how other operations 

commute with differentiation. 
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CHAPTER 3 
 

METHODOLOGY 
 

Data Set 

 The data used in this study consisted of exams, homework assignments, and quizzes 

collected from students enrolled in MATH 1310 at the University of Colorado Boulder (CU 

Boulder) during the Fall 2017 and Spring 2018 semesters.  MATH 1310, officially titled 

Calculus, Systems, and Modeling, is a one-semester 5-credit hour calculus course that is aimed at 

students intending to major in the life sciences.  As such, it addresses conventional calculus 

topics such as differentiation and integration methods, but primarily develops these concepts in 

the context of biological applications.  A full syllabus is included in the Appendix for the curious 

reader.  There were three sections of the course taught in each of the Fall 2017 and Spring 2018 

semesters, with relatively equal enrollment across the sections.  Each section had a different 

instructor, with the exception that one instructor taught a section in both semesters.  The course 

coordinator remained the same across the two semesters.  Additionally, all sections took 

common exams and were assigned the same homework, quizzes, and tutorials. 

 The initial semester, Fall 2017, was primarily intended as a pilot investigation, and only 

one exam was collected for analysis that term.  The data for that semester was requested 

retroactively per Institutional Review Board standards and blinded before research commenced; 

in total, 96 students enrolled in MATH 1310 in Fall 2017 elected to participate in the study.  The 

exam analyzed was the second of three midterms that were given over the course of the semester 

and assessed concepts such as basic differentiation rules (constant multiple, sum, product, chain, 

and quotient rules), maxima, minima, and inflection points, local linearity and the Microscope 

Equation, and application problems involving related rates and exponential growth.  The full 
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exam is included in the Appendix.  This exam was chosen for analysis since it was administered 

about halfway through the Fall 2017 semester, and thus provided the opportunity to investigate 

what types of problems students were struggling with, what strategies they were using, and how 

SMP-related ideas were being exhibited as students progressed through the course.      

Table 1.  Summary of data analyzed. 

* Two versions of the Spring 2018 pop quiz were created as described in the body of the text. 

Assessment Name Semester Given Description N 

Second Exam Fall 2017 1.5 - hour second midterm assessing: 
 Basic differentiation rules 
 Extrema, concavity and inflection 

points 
 Differentiability  
 Related rates 
 Exponential growth 

96 

Pop Quiz Spring 2018 Quiz given during class assessing:  
 Combining differentiation rules to 

find a given function’s derivative 
with or without the requirement to 
name the rules used* 

46 

Homework Spring 2018 Take-home assignment assessing:  
 Ability to write and evaluate 

correctness of differentiation rules 
using formal mathematical notation 

 Ability to write and evaluate 
correctness of differentiation rules 
using mathematical language 

62 

Third Exam Spring 2018 1.5 - hour third midterm assessing:  
 Derivatives involving 𝑎𝑟𝑐𝑡𝑎𝑛 
 Exponential decay 
 Definite integrals 
 Riemann sums 
 Distance and velocity applications 
 Fundamental Theorem of Calculus 

52 

Final Exam Spring 2018 2.5 -  hour final assessing: 
 Differentiation rules 
 Definite and indefinite integrals 
 Hypothesis testing and confidence 

intervals 
 Riemann sums 
 Tangent lines 

56 
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   The remaining data was collected over the course of the Spring 2018 semester.  Students 

were asked during the first month of the course if they would be willing to allow analysis of their 

class assignments.  In total, 63 of the 92 students enrolled in the course agreed to participate.  

Note that the number of papers analyzed for a given assignment may not equal 63 since not all 

students submitted every assignment.  The exact number of students whose work was analyzed 

for each individual assignment is indicated in Table 1.  The assignments examined from the 

Spring 2018 semester consisted of one homework assignment specifically designed to assess 

SMP-related issues, one midterm exam, one “pop quiz” developed on the basis of preliminary 

results, and the final exam.  These assignments were collected at various points throughout the 

semester, starting in Week 6.  Table 1 describes each of the assignments in more detail, but the 

full assessments can also be seen in the Appendix.  Notably, two versions of the pop quiz were 

created.  The first version was given to students in two sections of the course, and simply asked 

them to find the derivative of the given function.  The second version was distributed to the other 

section and asked students to find the same derivative, but included additional instructions asking 

them to name the differentiation rules they used and how many times they used each of them in 

the process.  The rationale for this choice is described in more detail in the analysis section 

below.  Both versions of the quiz are included in the Appendix.  

Data Analysis 

Phase 1 

 The data analysis occurred in two phases.  First, the midterm collected during the Fall 

2017 semester was analyzed with the goal of uncovering preliminary results and informing the 

wording and types of questions asked on Spring 2018 assessments.  Three questions (one multi-

part) from Fall 2017 were selected for analysis, namely Question 1 (parts a – d), Question 2, and 
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Question 4; these are listed in Table 2 in Chapter 4 for reference.  These questions were chosen 

because of their potential to highlight students’ understanding of SMP, and all three problems 

required students to find derivatives using the sum rule, constant multiple rule, chain rule, 

product rule, quotient rule, or a combination of them.  Other questions on the Fall 2017 midterm 

were left out of the study because they presented problems for a clear analysis of students’ 

abilities to correctly sequence mathematical processes.  Some of the questions were word 

problems which required students to translate the language into mathematical symbols to set up 

the problem; we felt that difficulties in this process may have overshadowed the most relevant 

process-sequencing components to the problem since not all students may have started with the 

same mathematical expression.  Other questions involved graphing or fill-in-the-blank responses 

and we felt that it was too difficult to discern student thought processes in their solutions to these 

problems without having a think aloud session.  Thus we restricted our analysis to the questions 

on the exam that asked students to find the derivative of a given function expressed in standard 

mathematical notation.   

  In analyzing student responses to this midterm, we carefully combed through each of the 

problems selected, and recorded every type of mistake that students made or noted whether 

students correctly completed the entire problem.  After listing each mistake, we grouped them 

into larger categories which we called SMP, miscopy, forgotten rule or step, and 

misinterpretation of math symbol respectively.  Every mistake found fell under one of these 

categories and all of the categories emerged inductively from the data, with the exception of the 

SMP category.   Under the SMP heading we gathered any student mistake that resulted from 

students performing mathematical processes out of order, or using notation that implied a 

different sequencing than the correct response.  For example, students often placed parentheses 
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in the wrong places in their mathematical expressions or left parentheses out altogether but 

performed the subsequent steps correctly – we categorized these mistakes as students having an 

incorrect understanding of SMP.  As the name implies, miscopy was coded whenever a student 

rewrote the problem incorrectly or did not carry or incorrectly copied a term from a previous line 

in their work.  The third category, forgotten rule or step, was coded whenever students did not 

perform a necessary operation in the problem (e.g. forgot to take the derivative of a term) or 

when they incorrectly remembered something generally regarded as a fact (e.g. wrote that the 

derivative of cos 𝑥  was sin 𝑥  instead of sin 𝑥 ).  Finally, the category misinterpretation of 

math symbol was reserved for student mistakes that indicated that they did not understand 

mathematical notation; for example, students often interpreted exponentials incorrectly assuming 

that expressions like √𝑥  could be rewritten as 𝑥 / .  In addition to noting student mistakes on 

each problem, we also made note of some student strategies used to make sense of the problem; 

examples include demarcation and rule identification where students drew on their pages to help 

them group and label components of the problem or explicitly named the relevant rule or formula 

that could be used to solve the problem.  These mistakes and strategies are described in more 

detail in the findings in Chapter 4. 

Phase 2 

 Given our interest in SMP, we used the information we collected from the Fall 2017 data 

to construct problems on a variety of Spring 2018 assessments that allowed us to further 

investigate student understanding of SMP in calculus.  In particular, we formulated problems that 

required some students to name the differentiation rules that they applied when taking the 

derivative of a given function, while some students were not required to list the rules by name.  

This allowed us to analyze if rule-naming allowed students to better connect the conceptual and 
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procedural elements of the problem and ultimately helped them derive the correct result.  In 

addition, we asked questions about the differentiation rules in words and using formal 

mathematical notation to see if students were making conceptual and procedural connections 

when thinking about the formulas they had been given.  We also designed exams to include 

differentiation and integration problems that were conducive to further SMP analysis.   

 After collecting the new set of assessments from students, we again analyzed them and 

coded the mistakes that students made.  In this second phase, however, we primarily used 

deductive codes that were found to be sub-categories of our SMP code in Phase 1.  In particular, 

we focused on students’ propensity to assume commutativity of differentiation with other 

operations such as multiplication, division, and function composition.  For example, we looked 

at how frequently students tended to equate the derivative of the product of two functions with 

the product of the derivatives of the two functions; we named this code product/differentiation 

commutativity.  Similarly, we noted when students made this error with the quotient rule and the 

chain rule and called these codes quotient/differentiation commutativity and chain/differentiation 

commutativity.  We also continued to look at the strategies that students employed when solving 

differentiation or integration problems which were noticed in the first phase: demarcation and 

rule identification.  Our analysis also involved cross-tabulation between strategies and these 

SMP errors to see if certain strategies seemed to lead to fewer student mistakes.  Finally, we 

made notes of any new SMP-related errors that students made when solving the Phase 2 

problems.     
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CHAPTER 4  
 

FINDINGS 
 

Preliminary Phase 1 Results 

 In our Phase 1 analysis, we looked only at the second exam given to all MATH 1310 

sections in Fall 2017.  As indicated in the methodology, we looked only at student responses to 

Question 1 (parts a – d), Question 2, and Question 4 from this exam.  These problems are shown 

in Table 2 for reference.   

Table 2.  Problems from the Fall 2017 Second Exam used for the Phase 1 analysis. 
Number Question 

1a 
 
 

𝑑
𝑑𝑥

𝑥 3 cos 𝑥 2  

1b 
 
 
 

𝑑
𝑑𝑥

√𝑥
1

𝑥
√𝑥

𝑥
 

1c 
 
 

𝑒 ∙ ln 𝑒  Hint: simplify first, then differentiate. 

1d 
 
 
 

𝑑
𝑑𝑥

𝑥 3
sin 𝑥

 

2 
 
 
 
 

Suppose that 
𝑓 𝑥 𝑔 𝑥 1 2 

Find 𝑓 3 , given that 𝑔 3 2 and 𝑔 3 1. 

4 Find 
𝑑

𝑑𝑥
3 cos arctan 𝑥 𝑒 . 

At the end, please list all the rules you used, and how many times you used each. 
(The possible choices for rules are: Constant Multiple, Sum, Chain, Product, or 
Quotient.) 

 
We listed each of the mistakes made by students on these questions and found that they 

could be grouped into four major categories: SMP, miscopy, forgotten rule or step, and 



25 
 

misinterpretation of math symbol.  We also coded student responses if they were completely 

correct for a reference point.  The breakdown of student mistakes by category for each of the 

questions is shown in Table 3.  It is important to note that the frequency of the codes does not 

necessarily represent the number of students who made a mistake in a given category.  This is 

because each student was coded once for each unique sub-category mistake that they made, 

which could result in a student being coded multiple times for each major category.  For 

example, if a student left out necessary parentheses when solving a problem, and switched the 

order of terms in the numerator when using the quotient rule, the student would have been coded 

once for each of these mistakes, resulting in the student being coded twice for SMP since each of 

those errors was a sub-category of SMP.  The completely correct code count does indicate the 

number of students that correctly solved the problem however, since that category had no sub-

codes (either students answered the problem perfectly or not).       

Table 3.  Frequency of major category codes for student responses to Fall 2017 second exam 
questions.  Student N = 96.   
 

  
 As indicated in Table 3, there was a definite disparity in the relative difficulty of each of 

the exam problems.  As expected, Problem 1a was relatively straightforward, as it only required 

students to remember the sum rule, the power rule, the constant multiple rule, and the derivative 

of cos 𝑥; in our experience, these rules are not difficult for students to remember.  As a result, 79 

out of 96 or 82% of students answered Problem 1a perfectly.  The remaining problems presented 

 Exam Questions 
 1a 1b 1c 1d 2 4 

Completely correct 79 29 43 22 41 30 
Miscopy 4 3 3 1 17 10 

Forgotten rule or step 7 23 4 33 11 35 
Misinterpretation of math symbol -- 33 3 10 1 -- 

SMP 6 23 49 43 16 34 
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more of a challenge, however, as less than half of the students answered each of the remaining 

problems correctly.  

Miscopy 

 The miscopy code also had no sub-codes since it was used only when students rewrote 

the problem incorrectly or did not carry a term or sign from one line to the next when working 

through the problem.  These errors happened relatively infrequently, though student responses to 

Question 2 did seem to demonstrate more issues in this regard.  Most of these mistakes on 

Question 2 were due to the use of 𝑓 𝑥  and 𝑓′ 𝑥  notation; students seemed to forget to write the 

prime symbol to indicate the derivative when moving from line to line.  Additionally, students 

forgot to carry through the coefficient that resulted from taking the derivative even though they 

initially took the derivative correctly.  Overall, errors resulting from miscopying work seem 

minimal and they do not present much opportunity for intervention from the instructor.  

Certainly, students can be encouraged to double-check and keep their work tidy to make sure that 

they do not write things down incorrectly, but these errors are not a huge cause for concern from 

our perspective since they do not indicate any deep misunderstanding of the material.  

Forgotten Rule or Step 

 Most of the forgotten rule or step errors resulted from students forgetting to take the 

derivative of at least one term in the problem, or forgetting how to take the derivative.  On 

Question 1a, all of the student errors in this category were from students who forgot that the 

derivative of cos 𝑥 is sin 𝑥, not sin 𝑥.  On Question 1b, students often made mistakes with 

the power rule (likely due to the presence of fractional exponents), or spent so much time 

simplifying a term in the expression that they ultimately forgot to take the derivative of the term.  

Forgetting to take the derivative of a term also occurred frequently on Question 1c and 1d.  
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Question 1d also indicated that students frequently forget to include the denominator when 

performing the quotient rule, and that students often do not remember the rule for derivatives of 

the form 𝑎  where 𝑎 is a number and 𝑥 is a variable.  Finally, on Questions 2 and 4, students 

often forgot the chain rule, taking only the derivative of the outside function and neglecting to 

multiply by the derivative of the inside.  Question 4 also asked students to list which 

differentiation rules they applied to the problem and how many times they used each of them; 

this also led to a number of forgotten rule or step errors as students often did not list the constant 

multiple rule or incorrectly counted the number of times they used the simpler rules.   

Misinterpretation of Math Symbols 

 This preliminary analysis also indicated that students struggle with making sense of 

certain mathematical symbols, particularly exponents.  Students made no mistakes in 

interpretation on Questions 1a or 4, but Question 1b proved especially challenging for students in 

this regard.  This was overwhelmingly due to the combination of exponents and roots found in 

the problem.  One-third of the students struggled with interpreting √𝑥  and  correctly, often 

converting them to 𝑥 /  and 𝑥 /  respectively.  Interestingly, students did not struggle as much 

with √𝑥, as most correctly rewrote this as 𝑥 / .  Nonetheless, it is clear that students’ comfort 

levels are low when converting between root symbols and exponents, particularly when dealing 

with fractional exponents.  Student misinterpretations of symbols on Questions 1c, 1d, and 2 

were more scarce and scattered, with the largest issues involving the 3   term in Question 1d.  

We did notice that most of these interpretation struggles did not involve symbols introduced in 

calculus; rather, the types of expressions that students had difficulties with (e.g. exponents) 

should have been discussed more deeply in prior classes.  This is not surprising, as we have often 
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heard it said that students’ greatest struggle in calculus is algebra.  This data simply confirms the 

truth in this phrase.  

Sequencing of Mathematical Processes 

 The main category of interest for us in this study is SMP.  As indicated in Table 3, a large 

proportion of the errors that students made on differentiation problems were SMP related.  The 

vast majority of these SMP errors fell into two sub-categories: parentheses or 

operation/differentiation commutativity.  All sub-categories and the distribution of student errors 

on the problems analyzed are indicated in Table 4.  Note that in Table 4, since the numbers 

represent sub-codes of SMP, students were only coded at most once for each error.  That is, even 

if a student misused parentheses multiple times in their solution to a problem, they were only 

coded once for parentheses.  Thus, the numbers in Table 4 represent the number of students who 

made the mistake on each problem.  

Table 4.  Frequency of SMP sub-codes for student responses to Fall 2017 second exam 
questions.  Student N = 96.   
 
 
 
 
 
 
 
 
Table 4 clearly indicates the prominence of incorrect commutativity assumptions between 

differentiation and other operations, namely, multiplication, division, and composition of 

functions.  The table also shows the difficulties that students had in working with parentheses.  

We analyze these sub-codes in more detail in the following sections.   

 Other SMP sub-codes included cancellation, distributing or factoring, and addition or 

subtraction as displayed in the table.  Errors in student responses were coded as cancellation if 

 Exam Questions 
 1a 1b 1c 1d 2 4 

Operation/differentiation commutativity 1 14 20 8 8 18 
Parentheses 3 3 29 24 8 16 

Cancellation -- 3 -- 3 -- -- 
Distributing or factoring 2 -- -- 3 -- -- 
Addition or subtraction -- 3 -- 5 -- -- 
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students incorrectly assumed that terms cancelled; this usually occurred in quotient settings.  For 

example, several students equated expressions of the form  to .  We viewed this as an 

SMP error because students divided the 𝑎 in the numerator by the 𝑎  in the denominator before 

subtracting the 𝑏 in the numerator.  Distributing or factoring errors occurred in multiplication 

settings, such as factoring expressions like 𝑥 𝑎𝑦  and rewriting them as 𝑎 𝑥 𝑦  or 

distributing the denominator of a single term to multiple terms in an expression (without 

appropriately modifying the numerators). This was also a sub-code of SMP because students 

assumed that multiplication by 𝑦 by 𝑎 and then adding 𝑥 was the same as adding 𝑥 and then 

multiplying by 𝑎.  Finally, addition or subtraction errors were coded when students reversed the 

order of terms being subtracted (as if they followed addition rules). The most common example 

of this error was students reversing the order of the terms in the numerator after differentiation 

using the quotient rule.  These last three categories only occurred on a couple of problems and 

were relatively infrequent; at most 5% of students made such an error on any given problem.  

Thus we concentrate our attention on the first two SMP sub-codes. 

 Parentheses and SMP.  Student work demonstrated that students often understood the 

correct order in which to perform operations, but they did not recognize the importance of 

parentheses in signaling that order.  In essence, they were following PEMDAS with assumed 

parentheses.  Students would incorrectly write an expression in the form 𝑎 𝑏 ∙ 𝑥 when it should 

have been written as 𝑎 𝑏 ∙ 𝑥.  However, in subsequent lines of work, students would treat the 

expression as if it had been written in the latter form.  An example of this type of student mistake 

is shown in Figure 1.  Instructor marks can be seen in red in Figure 1, and denote places where 

the student neglected to use the appropriate parentheses.  Despite the fact that the student left the 

parentheses out of their third line of work, their subsequent derivative expression indicates that 
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they operated as if the parentheses were there.  This type of mistake was extremely common 

among students, especially on Questions 1c, 1d, and 4 (see Table 4).  Parenthetical errors also 

occurred when multiplying single terms with negative signs; on Question 1a, three students 

wrote 3 sin 𝑥 instead of 3 sin 𝑥  but proceeded with the problem as if they had used the 

latter notation.   

 
Figure 1.  Example of student work on Fall 2017 Second Exam Question 1c 
demonstrating forgotten parentheses.  Instructor marks are noted in red.   

 
This error seems to indicate that students do understand something about the order of operations, 

but do not understand the significance of proper notation in signaling the correct sequencing.  

 Operation/differentiation commutativity.  The other widespread SMP error discovered 

through our Phase 1 analysis was that of students assuming that differentiation could commute 

with other operations.  There were three main examples of this that we uncovered; 

product/differentiation commutativity, quotient/differentiation commutativity, 

chain/differentiation commutativity.  We named the codes as such because these errors 

corresponded to students’ lack of use of the product, quotient, and chain differentiation rules 

respectively.  As might be expected, product/differentiation commutativity codes indicated that 

students used multiplication and differentiation as commuting operations, that is, they assumed 
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that the derivative of a product of functions was equivalent to the product of the derivatives of 

the functions.  Similarly, quotient/differentiation commutativity was coded where students 

indicated that the derivative of a quotient of functions was the quotient of the derivatives of the 

functions, and chain/differentiation commutativity was coded where students equated the 

derivative of composed functions as the composition of the derivatives of the functions.  As 

shown in Table 4, these errors were made in all problems analyzed, but were particularly 

prevalent in Questions 1b, 1c, and 4.  Given proper simplification of terms, Question 1b did not 

actually require the use of the product, chain, or quotient rule, but most students were unable to 

(or chose not to) simplify the  term, instead opting to apply the product or quotient rule.  This 

resulted in four students making a product/differentiation commutativity error, and 10 students 

making a quotient/differentiation commutativity error.  On Question 1c, 19 out of the 20 

operation/differentiation commutativity errors were made when using the product rule, while one 

of the errors was made when using the chain rule (note that the problem involved using both the 

product rule and the chain rule).  Question 4 was a significantly more complicated problem, 

requiring the use of multiple differentiation rules.  On this problem, students made 12 

product/differentiation commutativity errors, and six chain/differentiation commutativity errors.  

The number of chain rule errors may have been larger relative to Question 1c given that Question 

4 required two uses of the chain rule and most students missed one of them, likely due to the 

large and complicated expression that the solution entailed.  We did notice however, that only 12 

students (13%) made mistakes with the product rule on Question 4 compared to 19 students 

(20%) on Question 1c despite the fact that Question 4 was a significantly more challenging 

derivative to compute.  One hypothesis that we developed to explain this was that requiring 

students to name the rules they used (as was done on Question 4) may help students in making 
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conceptual and procedural connections between the rule formulas they used and applying them 

to actual functions.  We explored this hypothesis and all three operation/differentiation 

commutativity sub-codes further in Phase 2.  

Phase 2 Results 

 In Phase 2, we chose to narrow our focus to just the operation/differentiation 

commutativity sub-category of our main SMP code.  Our primary reason for this restriction of 

attention was the calculus-specificity of these errors.  Although parenthetical errors were also a 

major component of the Phase 1 analysis that we conducted, most student mistakes involving 

parentheses are an extension of past mistakes and rules learned in previous classes; rarely, if at 

all, were the parentheses errors from Phase 1 unique to calculus.  The commutativity (or lack 

thereof) of differentiation with other operations, however, is a concept that students do not 

encounter until they reach calculus.  Since one of our goals in conducting this study was to 

propose ideas for interventions for students struggling in calculus, it made sense to devote our 

attention to these distinct calculus misconceptions.  

 As noted in Chapter 3, we used four different assessments from the Spring 2018 semester 

of MATH 1310 at CU Boulder for this Phase 2 analysis.  We approached the study of operation 

and differentiation commutativity from five different angles.  First, we looked at students’ 

propensities to make these types of SMP errors when differentiating products of functions, 

quotients of functions, or compositions of functions, to see if students were more inclined to 

make the mistake when encountering one type of problem over another.  Then we looked at two 

strategies that students employed to make sense of those types of problems - rule-naming and 

demarcation – to study how effective these tactics were in improving students’ ability to 

correctly sequence mathematical processes.  We also looked at students’ relative tendencies to 
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make commutativity errors when differentiating versus integrating, i.e. we tried to identify 

whether operation/integration commutativity errors were also common.  Finally, we studied 

students’ likelihood of assuming commutativity between differentiation and other operations 

when presented with the differentiation rules in words or symbols instead of in the context of a 

problem.  We present the findings from each of these five approaches to analysis in the 

subsequent sections. 

SMP Errors: Products, Quotients, and Chains 

 For our detailed comparison of problems whose correct solutions involved the product 

rule, the quotient rule, and the chain rule, we used one problem from the Spring 2018 third exam 

(Question 6 parts b, c, and d) and one problem from the Spring 2018 final exam (Question 1 

parts b, c, and d); these problems are listed in Table 5.   

Table 5.  Problems from the Spring 2018 Third and Final Exams used for the Phase 2 analysis. 
Number Question 

Spring 2018 Third Exam  
Find the following derivatives involving the arctangent function. 

6b 
 

𝑑
𝑑𝑥

ln 𝑥 arctan 8𝑥  

6c 
 

 

𝑑
𝑑𝑥

𝑒  

6d 
 
 

𝑑
𝑑𝑥

arctan 𝑥
𝑥

 

Spring 2018 Final Exam  
Find the derivative of each of the following functions. You do 
not need to simplify your answers. 

1b 
 

 

ℎ 𝑥
7𝑥

√𝑥 2
 

1c 
 

𝑝 𝑥 4𝑥 5 tan 3𝑥  

1d 𝑒   
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Our analysis presented problems, however, since the problems assigned to students on 

these assessments proved to be relatively easy for them; they seemed to be less challenging 

problems than the corresponding problems given on the Fall 2017 second exam (Question 1 parts 

b, c, and d shown earlier in Table 2).  In fact, over half of the students correctly solved each of 

the problems on the Spring 2018 assessments.  The most challenging problem proved to be 

Question 1d on the Spring 2018 final which 55% of the students answered incorrectly; the 

percentage of students with completely correct answers was higher on the other five problems 

analyzed from the Spring 2018 exams.  This presented problems for our analysis, since the 

number of students making mistakes was so small to begin with that the number making SMP-

related errors was even smaller.  Thus, we also included the Fall 2017 second exam data in this 

portion of the study for comparison.  The results are presented in Table 6.  Note that these 

findings are presented as percentages since the number of students in the study differed 

significantly across the three assessments. 

Table 6.  Percentage of students who made operation/differentiation commutativity errors on 
three assessments.   

 Product Quotient Chain 

Fall 2017 Second Exam (N=96) 24% 14% 6% 
Spring 2018 Third Exam (N=52) -- 2% 2% 
Spring 2018 Final Exam (N=56) 2% 2% 5% 

 
 The Fall 2017 second exam data clearly indicate that students tend to have greater 

difficulty recognizing the need to use the product rule rather than the quotient or chain rule.  It 

must be acknowledged that the Spring 2018 data do not support this claim, but we see a lower 

number of operation/differentiation commutativity errors on those exams in general.  This may 

be due to the fact that the Spring 2018 exams are assessments given later in the semester, that is, 

we are comparing a second exam with a third and final exam.  It is possible that students enrolled 

in the Spring 2018 semester made the same number of SMP errors on their second exam, but had 
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simply learned from their mistakes by the time they took the third and final exams.  

Unfortunately, since we are comparing across different semesters, it is not possible to confirm 

this hypothesis with this data.  An additional problem with the Spring 2018 analysis is that the 

percentage of students making mistakes on each of the exams that semester are much lower, thus 

skewing the data slightly.  In fact, one out of 10 students who answered the Spring 2018 final 

exam questions incorrectly, made a product/differentiation commutativity error; this number 

corresponds to roughly 10% of mistakes made on those problems.  When controlling for the 

number of students making mistakes, the quotient rule and chain rule for the same exam 

accounted for 12% and 6% respectively.  This does seem to indicate that the product and 

quotient rule are more challenging to remember for students, which agrees with the Fall 2017 

exam data.   

One hypothesis for students’ inclination to simply take the product or the quotient of the 

function derivatives rather than applying the appropriate rule is that these two scenarios present 

the extremes of delineating the two (or more) functions that are being dealt with in the problem.  

Two functions are often adjoined with no symbols in between them to denote a product, e.g. 

𝑥 tan 𝑥 .  Even if a symbol is used, it is often a subtle “ ∙ ” sign as in  

𝑒  ∙ ln 𝑒  which was found on the Fall 2017 second exam.  It may be that 

these types of notations are not sending a clear signal to students that a product is present.  A 

third way to represent a product is through the use of parentheses, such as 4𝑥 5 tan 3𝑥 , 

but our preliminary data analysis from Phase 1 indicated that students often do not see 

parentheses as necessary when multiplying and thus they may not be cued to think of the product 

rule through this type of notation either.  On the other hand, the notation typically used for the 

quotient rule (e.g.  from Fall 2017 second exam) may provide too much separation 
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between the functions, causing students to see differentiating them almost as separate problems.  

We will explore this idea of demarcation in greater depth in the next section.    

Student Use of Demarcation Symbols 

 In addition to analyzing student errors across problems, we also looked at student 

strategies for making sense of the problems they were given.  In particular, we found two 

strategies that emerged inductively from the data, demarcation and rule-naming.  For the former, 

we found that students used a variety of symbols or labels to separate out components of the 

problem.  For example, students would specifically write 𝑓 𝑥  and 𝑔 𝑥  on their papers to 

denote the presence of two functions in a product, quotient, or chain rule situation.  Students also 

tended to make use of parentheses, square brackets, or underlining to clarify the different pieces.  

We analyzed student use of these two methods by examining two questions from the Spring 

2018 third and final exams (Question 6 parts b, c, and d, and Question 1 parts b, c, and d, 

respectively – shown in Table 5).  Combining student responses from both exams, we found that 

when students specifically labelled the individual functions involved in the problem, they were 

generally more likely to get the problem completely correct than other students.  On product rule 

problems, 80% of students who labeled functions 𝑓 𝑥  and 𝑔 𝑥  on their papers answered the 

problem correctly, while only 70% of students who did not label the functions got the solution 

right.  Similarly, for quotient rule problems, 90% of students who labeled the functions correctly 

found the derivative, while only 64% of students who did not label ultimately answered the 

problem correctly.  This pattern did break down for chain rule problems, however; only 60% of 

students who labelled solved the full problem correctly, while 69% of students who did not label 

ended with the right answer.  It must be noted, however, that only 5 students labelled chains of 

functions across both exams, while 20 and 29 students labelled functions on product or quotient 
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problems respectively.  The small sample size of students who actually used this sense-making 

strategy on chain rule problems may skew the data.  This strategy did seem effective for the 

nearly 20% and 30% of students who used it on product or quotient rule problems and this seems 

to support the hypothesis from the previous section that students who are able to recognize a 

product or a quotient are more often able to apply the rule correctly.  In other words, student 

difficulties with SMP do not seem to be the result of them forgetting the rule or misapplying the 

rule, but rather with their ability to connect the need for the rule with the given problem.  

Labeling the individual functions that make up the problem may be one strategy for helping 

students make this link. 

Rule-Naming Strategy Effectiveness 

 Another strategy that students used frequently was rule-naming.  This strategy was 

actually required on one of the problems on the Fall 2017 second exam (Question 4, shown in 

Table 2), and we noticed that students were less likely to make SMP errors on Question 4 than 

on Question 1c (shown in Table 2) which similarly required the application of the product and 

chain rules.  On Question 4, students were required to list each of the differentiation rules that 

they had applied and count the number of times they had used each, while on Question 1c no 

additional instructions were given aside from differentiating the function.  Despite Question 4 

being more challenging from a mathematical point of view, only 34 students made SMP errors 

on that problem, while 49 students made SMP errors on Question 1c (Table 3).  Out of these 

SMP errors, 12 students (13%) made the product/differentiation commutativity error on Question 

4 while 19 students (20%) made the same error on Question 1c.  This led us to postulate that 

rule-naming was a strategy for helping students make sense of the connections between the 

conceptual rules and the procedural aspect of taking a derivative.   
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 To test this hypothesis we developed another assessment.  We wanted to make sure that 

the difference in the functions given was not a confounding factor in our previous results.  To 

that end, we gave the Spring 2018 students an in-class quiz and asked two of the sections to 

simply differentiate the given function while the other section was asked to name the 

differentiation rules they used and the number of times they used them.  The given function was 

𝑓 𝑥 sec 𝑥 ln 𝑥 1 ; both versions of the quiz can be found in the Appendix.  We found 

that 24% (seven out of 29) of students who were not given the additional instructions made the 

product/differentiation commutativity error, while only 6% (one out of 17) students who were 

required to name the rules made the same error.  This was yet another indicator to us that rule-

naming could be an effective strategy in helping students correctly make conceptual and 

procedural connections.     

SMP Errors: Derivatives v. Integrals 

 In addition to understanding the differences in students’ SMP errors related to product, 

chain, and quotient derivative problems, we also wanted to see if students had a greater 

propensity to make SMP errors when dealing with integrals versus derivatives.  For this analysis 

we focused on comparing derivative problems involving products to integral problems involving 

products, and derivatives of quotients to integrals of quotients.  Due to the lack of an appropriate 

integral “chain” problem, we left function composition out of this examination.  The problems 

analyzed are shown in Table 7. 

 When coding student responses to these questions for operation/differentiation 

commutativity or operation/integration commutativity errors, we found that no students made this 

type of SMP error on the integrals of products problems (Questions 7a and 7c).  These mistakes 

were not prevalent in the derivative of a product analog either though; only one student out of 56 
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made a product/differentiation commutativity error.  The quotient results were similarly 

uneventful.  Only one out of 56 students made commutativity errors on each of the derivative 

and integral problems (Questions 1b and 7b).   

Table 7.  Problems analyzed from the Spring 2018 Final Exam for comparison of SMP errors 
between integrals and derivatives.  

Number Question 

Products:  
1c 

 
 
 

Find the derivative of each of the following functions. You do 
not need to simplify your answers. 

𝑝 𝑥 4𝑥 5 tan 3𝑥  

7a 
 

 
 
 
 

Calculate the following definite and indefinite integrals using 
substitution.  Please show your work.  In particular, clearly 
specify what you are calling 𝑢, and what is 𝑑𝑢. 

6𝑡 6𝑡 2  𝑑𝑡 

7c 
 
 

Calculate the following definite and indefinite integrals using 
substitution.  Please show your work.  In particular, clearly 
specify what you are calling 𝑢, and what is 𝑑𝑢. 

𝑒 sin 𝑒 𝑑𝑥
 

 
 

Quotients: 
 

 
 

1b 
 

 
 
 

Find the derivative of each of the following functions. You do 
not need to simplify your answers. 

ℎ 𝑥
7𝑥

√𝑥 2
 

7b Calculate the following definite and indefinite integrals using 
substitution.  Please show your work.  In particular, clearly 
specify what you are calling 𝑢, and what is 𝑑𝑢. 

𝑞
𝑞 ln 3

 𝑑𝑞 

 
Part of this SMP-error absence may be due to the high number of students who answered these 

problems correctly, Questions 1b and 1c, as well as Questions 7a and 7c had correct responses 

rates of 70% or higher.  Less than half (approximately 48%) of the students answered Question 

7b correctly, but the errors were primarily due to forgetting absolute value signs or forgetting a 
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constant when changing variables; none of these errors were SMP-related.  Another reason that 

the mistakes on the integral problems were limited may have been the specificity of the 

instructions given.  Students were told in the problem to use the substitution method to compute 

the integrals and our previously reported findings indicate that rule names may be critical in 

helping students make sense of a problem.  The comparison of integrals and derivatives certainly 

warrants further exploration with better designed problems that would allow us to see student 

mistakes more clearly. 

Students’ Conceptual and Procedural Understanding of Differentiation Rules 

  A final approach that we used to learn about students’ understanding of SMP and 

differentiation was to look at their ability to assess SMP errors in mathematical statements of the 

differentiation rules.  We gave students a take-home worksheet on which they were asked to 

identify errors in statements of the common differentiation rules when they were written in 

words or in mathematical notation.  Students were first given examples, such as the one seen 

below:  

“State whether each of the given statements is true or false.  If the statement is true, 

identify it by name.  If it’s false, make it true by replacing everything that comes after “is 

equal to” with appropriate verbiage and identify the corrected statement by name.  

(i) The derivative of the sum of two functions is equal to the sum of the derivatives 

of those functions.  

Answer: True (sum rule). 

(ii) The derivative of the product of two functions is equal to the product of the 

derivatives of those functions.  
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Answer: False.  The derivative of the product of two functions is equal to the first 

function times the derivative of the second, plus the second function times the 

derivative of the first (product rule).” 

Similarly, students were asked to identify mistakes in the differentiation rules when written using 

symbols:  

“Listed below are eight mathematical statements: not all of them are true!  Identify each 

statement as being either a correct or an incorrect version of a known differentiation 

rule.  

Examples:  

(i) 𝑓 𝑥 𝑔 𝑥 𝑓 𝑥 𝑔′ 𝑥      Answer: product rule, incorrect version 

(ii) 𝑐𝑓 𝑥 𝑐𝑓′ 𝑥      Answer: constant multiple rule, correct version” 

The full worksheet can be seen in the Appendix.  

 When analyzing student responses to this worksheet, about 50% of the students scored 

perfectly, correctly identifying all of the correct and incorrect versions of the differentiation rules 

and modifying them appropriately if necessary.  There were a number of inconsistencies in the 

remaining students’ responses however.  Many students answered the statements written using 

mathematical symbols correctly, but incorrectly assessed their counterparts written using words.  

Three students thought that the statement for the constant multiple rule expressed in words was 

incorrect because they thought the derivative of a constant multiplied by a function was zero.  In 

effect, this is a product/differentiation commutativity error because students were multiplying the 

derivative of the constant by the derivative of the function to find the derivative of the constant 

multiplied by the function.  Many students also agreed with the statement that “the derivative of 

a chain of two functions is equal to the chain of the derivatives of those functions”, though they 
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failed to offer any explanation for this belief.  Students also agreed with the incorrect version of 

the quotient rule written in words which reversed the order of the terms in the numerator of the 

derivative.  There seemed to be much confusion around the quotient rule in general, since 

students often thought that both versions of the quotient rule written in symbols were correct, or 

that both versions were incorrect when in fact one was expressed correctly and the other 

expression reversed the order of the terms in the numerator.  This indicated that students struggle 

to recognize the importance of SMP when dealing with the subtraction in the numerator of the 

quotient rule.  Finally, many students interpreted the version of the product rule written as 

𝑓 𝑥 𝑔 𝑥 𝑓 𝑥 𝑔 𝑥 𝑔 𝑥 𝑓′ 𝑥  as incorrect.  This was mystifying to us for a while 

until we noticed one student’s response to this question which stated “ product rule, correct.  

(Usually written as 𝑓 𝑥 𝑔 𝑥 𝑔 𝑥 𝑓 𝑥 , the example given is written differently but 

produces the same answer).”  This student’s explanation may be a clue as to why other students 

struggled with this problem; since they were used to seeing the derivative of the first function 

being written first in the expression, they automatically assumed that this version of the product 

rule was incorrect.  This is interesting, however, given that students often assumed that the order 

of the terms in the quotient rule did not matter.  It is difficult to determine with our data whether 

students thought that the product rule expression did not commute because of the addition or 

because of the multiplication order (both are changed on the worksheet from the student’s 

suggested expression) but it is striking that students struggled with accepting commutativity in 

the product rule even though they were willing to overlook the term-switching in the quotient 

rule expressions.  These results certainly merit further investigation, perhaps by conducting 

think-aloud interviews with students so that they are able to fully explain their thought processes.  

In any case, it is clear that students struggle with translating between different ways of writing 
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the differentiation rules which may be one reason that students also made certain 

operation/differentiation commutativity errors when asked to apply the rules to find the 

derivative of given functions.      
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CHAPTER 5 
 

DISCUSSION 
 
 Many of our findings can be connected back to prior foundational research and theory, 

but analyzing student work through the lens of SMP also allows us to add to the body of 

knowledge about students’ ideas and struggles in calculus.  In particular, we found that our 

findings confirmed many of the errors presented in previous studies, especially those related to 

misinterpretation of exponents and grouping symbols.  We also found that naming rules may 

help students make procedural and conceptual links.  Our findings also demonstrated that 

students frequently lack flexibility in notation and expression which may be explained through 

learning theory.  Finally, we noticed connections between students’ APOS levels with respect to 

a given concept and their ability to correctly manipulate and sequence mathematical processes 

when working with that concept.  We use this section to elaborate on each of these points and 

link our own results to prior research. 

Confirmation of Errors 

 Perhaps not surprisingly, our findings confirmed many of the previously published errors 

and misconceptions that students have when solving procedural math problems.  Of these typical 

errors, two that stood out as exceptionally common were misinterpretation of exponents and 

misuse or lack of grouping symbols.  While our research agrees with previous studies, it is 

important to note that we found that these mistakes are made by students enrolled at the calculus 

level and in the context of calculus problems.  This differentiates our findings to some extent 

from prior research which primarily locates these mistakes in the context of algebra problems 

often directly intended to assess student understanding and manipulation of exponents and 

parentheses.  Though these results are not obviously related to our SMP-related research 
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questions, errors involving exponents and grouping symbols were so prevalent that we felt they 

merited a brief discussion here. 

Misinterpretation errors with exponents 

Our results demonstrated that undergraduate students misinterpret exponents in many of 

the same ways that high school students have been shown to do so.  Previous research illustrates 

that students have particular difficulty in interpreting negative exponents.  For many students, 

their initial understanding of an exponential expression of the form 𝑥  is tied to the procedure of 

multiplying 𝑥 by itself 𝑛 times; this process begins to break down and becomes harder to 

conceptualize when 𝑛 is not a natural number (Pitta-Pantazi, Christou, and Zachariades, 2007).  

The students in our study also struggled with the interpretation of negative exponents.  Previous 

research has suggested that this may be due to lack of understanding about inverses (Cangelosi et 

al., 2013).  We also hypothesize that many of students’ misconceptions about exponents may be 

related to difficulties in combining concepts since they are still working at an operational level of 

thinking instead of a structural level (as per Sfard, 1991).  For example, when exponents and root 

symbols are combined, as in √𝑥  or √𝑥, students often forget which expression can be rewritten 

as 𝑥 / .  In our experience, students view these as rules to remember, and have not yet reached 

the stage of thinking about square roots or exponents as objects in and of themselves that can be 

operated on and combined.  Students instead think of the square root as requiring them to 

complete the process of raising something to a fractional exponent, and determining what the 

exponent might be is a matter of rote memorization.     

Importance of grouping symbols 

In addition to agreeing with previous findings on exponents, our study also confirmed 

prior research related to student use of grouping symbols. Cangelosi et al. (2013) found that 
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students often deemed expressions with and without parentheses as equal even if they were not 

(e.g. 2  and 2 ), and we found that our students also viewed parentheses as non-essential 

when writing out their solutions.  We also discovered that students often completed the correct 

steps in the right order despite misusing parentheses or leaving them out altogether.  Again this is 

consistent with previous research which found that students often use personal shorthand 

notation, leaving out crucial components of the expression, but somehow remembering and 

operating as if they were there (Cangelosi et al., 2013).  Lee & Messner (2000) point to middle 

and high school textbooks as lacking explanations about when and why grouping symbols make 

a difference in evaluating expressions involving negatives and exponents.  If this is the case, then 

it should come as no surprise that students enrolled in calculus courses still struggle to 

understand the importance and meaning of parentheses. 

What’s in a Name? Connecting Procedures and Concepts 

Another major finding that we presented in Chapter 4 related to students’ use of rule 

names to facilitate finding the derivative correctly.  We found that students who were required to 

(or opted to) label the differentiation rule that they were applying at each step in the problem 

were less likely to make SMP-related errors.  Students who did not name the rules they were 

using, on the other hand, were more likely to make operation/differentiation commutativity 

errors, assuming for example that the derivative of a product of functions was the product of the 

derivatives of those functions.  We hypothesize that this is because students were not connecting 

procedures and concepts, but that rule-naming helps them to do so.  According to Tall et al. 

(2001), multiplication is a process while a product is a concept.  It may be that students saw the 

process of two functions being multiplied, but were not making the connection to the concept of 

a product of functions.  As suggested by the theory of conceptual and procedural learning (Tall et 
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al., 2001) students may still have a procedural level of understanding about functions, not yet 

recognizing them as entities that can be combined to form products, quotients, etc.  Since the 

differentiation rules are usually named after the concept instead of the process (e.g. product rule 

not multiplication rule), a lack of procedural and conceptual connection could mean that students 

are not triggered to use the product rule when looking at function multiplication.  The same 

hypothesis could also explain students’ operation/differentiation commutativity errors when 

working with other differentiation problems since both the chain rule and quotient rule are 

named after concepts instead of the processes of function composition and division.  We 

hypothesize that having students explicitly name the rules that they are applying forces them to 

consider the connections between the concepts and the processes.  Rather than seeing two 

functions multiplied together and simply taking the derivative of each, they must think through 

their repertoire of rules and realize that a product is the result of two functions being multiplied, 

and thus this is the correct occasion to apply the product rule. We propose that renaming the 

differentiation rules to reflect the processes instead (e.g calling the ‘product rule’ the 

‘multiplication rule’) might make it even easier for students to correctly find the derivative since 

the name would more closely match their current procedural level of understanding of functions.  

A consequence of this choice, however, may be that it leaves students “stuck” in this procedural 

way of thinking and does not encourage further development toward structural understanding.  

Further research is certainly warranted to determine the full benefits and disadvantages of this 

approach. 

Flexibility in Notation 

In our study we also found that students did not always choose the most efficient path to 

reach an answer, nor did they recognize the equivalence of the same expression written in 



48 
 

multiple ways.  One prime example of this was on an exam where students were asked to 

differentiate the term  (as part of a larger expression).  The vast majority of students identified 

this as an opportunity to apply the quotient rule; we postulate that this is because the division bar 

is a prominent symbol that cues students to think of a quotient.  This is clearly not an incorrect 

approach, but it is arguably the least efficient way to take the derivative of the term.  The best 

approach is probably to simplify the expression to 𝑥 /  first and then simply apply the power 

rule, and the second best option may be to recognize that the expression can be rewritten as the 

product 𝑥 / ∙ 𝑥  and then use the product rule.  Students often did not choose either of these 

more expedient options however.  Certainly, students’ struggles with interpreting exponents may 

have played a role in this decision, but we hypothesize that an explanation may go deeper than 

this.  Gray and Tall (1994) discuss that lack of flexibility in notation often indicates that students 

may not have reached the ‘procept’ level of understanding yet.  This could certainly be the case 

with the students in our study.  As students are still hovering between the procedure and process 

stages of understanding differentiation rules, they may still be applying a prescription for which 

rule to use based on what the initial expression looks like rather than thinking about how they 

could rearrange the expression to use a different approach.  This may in part be due to the lack of 

emphasis on different approaches in their classroom experiences. 

Another example of students’ lack of flexibility in mathematical expression was shown in 

our findings on students’ identification of correct and incorrect differentiation rule statements.  

As described in Chapter 4, many students interpreted the version of the product rule written as 

𝑓 𝑥 𝑔 𝑥 𝑓 𝑥 𝑔 𝑥 𝑔 𝑥 𝑓′ 𝑥  as incorrect.  One student’s explanation next to their 

correct identification of the rule provided some insight into this misconception since the student 

pointed out that the product rule was “usually written as 𝑓 𝑥 𝑔 𝑥 𝑔 𝑥 𝑓 𝑥 ” while “the 



49 
 

example given is written differently but produces the same answer”.  While this particular 

student demonstrated flexibility in their ability to identify equivalent mathematical expressions, 

their answer may provide a clue as to why other students were unable to make the same 

connection.  Students may be trained to think that in the product rule, the derivative of the first 

function comes first, and may lack the advanced understanding required to recognize that in this 

case the order does not matter.  This is certainly an SMP-related issue and may explain why even 

more advanced students continue to struggle with SMP errors.  Interpreting mathematical 

expressions in a flexible way is definitely a prerequisite to understanding when and where order 

matters in mathematical operations.  Gray and Tall’s (1994) ‘procept’ idea offers an explanation 

for this difficulty, much as it justified students’ automatic use of the differentiation rule when 

seeing a quotient as described above.  Sfard’s (1991) distinction between structural and 

operational thinking also provides a framework for understanding this student difficulty, 

however.  The student who correctly identified the product rule and defended their decision 

illustrated more of a structural level of understanding of functions, recognizing that they are 

objects that can be combined using various operations.  Moreover, these operations sometimes 

result in objects that are mathematically equivalent, even though they look slightly different.  

Students who struggle with flexibility in notation and recognizing equivalent expressions may 

have only an operational understanding of working with functions, viewing the expression as a 

sequence of operations that must be performed in a certain order, rather than as an object that can 

be manipulated without changing its outcome.  

APOS and SMP 

 APOS theory as described by Dubinsky and McDonald (2001) also provides a strong 

justification for student difficulties with SMP.  Although the ‘P’ in APOS stands for process, 
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correct sequencing of mathematical processes often requires students to be at a more advanced 

level of understanding.  It is reasonable to assume that students who are able to think about 

functions, products, quotients, derivatives, etc. as objects are more likely to understand 

commutativity (or the lack thereof) between such constructs.  Furthermore, understanding the 

connectivity between combinations of functions, derivatives, and differentiation rules requires 

students to begin constructing a schema to organize all of these concepts.  Maharaj (2013) 

describes requisite components for students’ function and derivative schemas in order for 

students to truly understand derivative problems encountered in calculus.  His theory is based on 

an initial description of constructing a schema for the chain rule by Clark (1997).  Through 

interviews with students, Clark discovered that for students to understand the chain rule, they 

needed to construct schemas linking function composition and differentiation.  Maharaj 

generalized this by looking at functions and derivatives in general.  He notes that not only do 

students need to have an action and process understanding of these  concepts, but they also need 

to be able to assess the properties of a function as an object that allow a particular differentiation 

rule to be applied (such as function composition requiring the chain rule).  Beyond that, building 

the arsenal of differentiation tools and recognizing various function types that cue when and how 

to use the differentiation rules is really part of generating schema for derivatives and functions 

and making connections between them (Maharaj, 2013).   

Based on this prior research, it should come as no surprise that the students participating 

in our study struggled to make all of the connections between functions, operations on functions, 

and differentiation.  Students who made operation/differentiation commutativity errors often 

demonstrated action and process level understanding of functions and of derivatives through 

correct algebraic manipulations and through applications of the more basic differentiation rules 
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(i.e. the power rule, the sum rule, and the constant multiple rule).  Where students began to 

struggle with SMP errors was in contexts where multiple concepts were rolled in to one, such as 

function composition, powers, and the chain rule, or multiplication, trigonometric functions, and 

the product rule.  As Clark (1997) and Maharaj (2013) point out, these problems require students 

to combine ideas about each of the differentiation rules, functions, derivatives, and operations on 

functions, as well as the correct sequencing of processes to truly understand the solution to the 

problem.  The struggles that students had with correctly linking each of these components can be 

viewed as an indicator that they have not yet progressed to the object and schema stages of 

APOS.  Furthermore, these findings demonstrate a need for more focused research and 

classroom instruction on the role of SMP in calculus.  Although SMP may seem simple like a 

simple set of rules to remember, looking through the lens of APOS it becomes apparent that its 

ubiquity as well as its intersections with many other concepts requires students to engage in 

higher-order thinking in order to understand the sequencing of mathematical processes. 
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CHAPTER 6 
 

CONCLUSION 
 

This study demonstrated that SMP transcends levels of mathematics.  Our analysis of 

student work in a one-semester calculus course indicated that not only do students at the 

undergraduate level still struggle with PEMDAS-type algebra errors but they also encounter new 

sequencing problems as they are introduced to operations specific to calculus such as 

differentiation and integration.  Specifically, we found that students often make 

operation/differentiation commutativity mistakes, particularly with respect to the product, chain, 

and quotient rules.  That is, students frequently assume that the derivative of the product of two 

functions is the product of the derivatives of those two functions.  Likewise, students equate the 

derivative of a quotient of two functions with the quotient of the derivatives of those functions or 

the derivative of composed functions as the composition of the derivatives of the functions.  Up 

to a quarter of the students in our study made these SMP types of errors on given assessments, 

demonstrating that it is an issue worth further discussion.  

Better pre-algebra and algebra instruction is not sufficient to strengthen students’ 

development of SMP.  As students are introduced to new operations and new commutativity 

rules in calculus, focus on SMP still needs to be strong at that level of mathematics.  Since 

combining concepts requires the development of schemas (as per APOS theory), it is not enough 

to assume that students will extend their understanding of order of operations in middle school to 

SMP in calculus.  Furthermore, interchangeability of order becomes less of a given as students 

move upward in mathematics; differentiation and integration often do not commute with basic 

mathematical operations, and once linear algebra or abstract algebra are reached, students begin 
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encountering new algebraic structures that do not necessarily obey the commutative law.  Thus it 

cannot be assumed that instructors do not need to directly address SMP past algebra. 

Theories about student learning in mathematics provide clues about why correctly 

sequencing operations in calculus may be so difficult. Often, understanding the correct order of 

operations requires students to be flexible with how mathematical notation is presented, which in 

turn requires students to have an advanced ‘procept’ level understanding of the concepts 

involved.  Understanding the connections between functions, derivatives, and other operations 

requires students to begin to develop a structural understanding of each of the notions 

individually, and beyond that to begin to build schemas that organize and link the concepts with 

one another. 

Our study did indicate that students might find certain strategies useful for making 

procedural and conceptual connections, namely the use of demarcating symbols and rule-

naming.  Whether self-imposed or required in the problem, we found some evidence to indicate 

that students who identified differentiation rules at each step as they attempted to find a 

derivative were less likely to make SMP-type errors.  We also discovered that students used 

parentheses, brackets, or labelled individual functions in the problem as a way of making sense 

about the type of differentiation problem at hand.   

Implications for Future Research 

Certainly many questions remain to be answered about the sequencing of mathematical 

processes in calculus.  Our study primarily investigated the occurrences of SMP-type errors in 

product, chain, and quotient rule problems.  There are undoubtedly other areas of calculus (and 

courses beyond calculus) in which SMP plays a large role.  Understanding where SMP issues are 
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most prominent could help us better dissect student learning in this area and in turn assist us in 

developing better instructional strategies and interventions that target these SMP errors.    

Further studies about student strategies such as rule-naming and demarcation symbols 

and how they affect students’ propensities to make SMP-errors are also warranted.  In particular, 

conducting talk aloud interviews with students as they apply these strategies may help us 

understand how they interface with students’ sense-making processes.  Related to this, 

investigating how the specific names of rules cue students’ thoughts would also be a worthwhile 

venture.  Would naming rules after processes instead of concepts help students make stronger 

connections between functions, derivatives, and differentiation rules? 

Symbols have been shown to play an important role in students’ understanding of 

mathematical processes.  It is not entirely clear however, how symbol choice might impact 

students’ sense-making about SMP or student development in creating conceptual and 

procedural links.  For example, does using parentheses versus using a ∙ symbol make a difference 

in students’ abilities to make connections between the process of multiplication and the concept 

of product?  Does the choice of symbol affect students’ likelihood of choosing the correct 

differentiation rule to apply to the problem?  These are also questions worthy of further 

investigation. 

Finally, this study primarily focused on SMP in the context of differentiation problems.  

Our preliminary investigation into the differences in SMP errors in integration compared to 

differentiation was inconclusive, largely due to the lack of suitable problems for analysis.  

Designing an assessment that allows for direct comparison of operation/differentiation 

commutativity errors with operation/integration commutativity errors would provide much more 

insight into how students combine and sequence mathematical processes.  Overall, SMP is an 
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important and relatively unexplored area of mathematics education research, and we hope that 

this study encourages others to dive in and investigate further.   
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B: Spring 2018 MATH 1310 Daily Schedule 
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C: Fall 2017 MATH 1310 Second Exam
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D: Spring 2018 MATH 1310 Homework 
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E: Spring 2018 MATH 1310 Quiz Version A 
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F: Spring 2018 MATH 1310 Quiz Version B 
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G: Spring 2018 MATH 1310 Third Exam
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H: Spring 2018 MATH 1310 Final Exam
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