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ABSTRACT

Top, Laken M. (M.A., Mathematics)

Calculus and Commutativity: An Investigation of Student Thinking Regarding the Sequencing of
Mathematical Processes in Calculus

Thesis directed by Professor Eric Stade

Previous research has demonstrated that students enrolled in calculus courses continue to
struggle with old algebra ideas along with new calculus-specific concepts. In this study we seek
to investigate student thinking around the sequencing of mathematical processes (SMP) by
examining student work in a one-semester university calculus course. Our results indicate that
students enrolled at the calculus level continue to struggle with algebraic order of operations in
addition to making new mistakes with respect to the commutativity of differentiation and other
operations; these errors are often evidenced in student failure to apply the product, quotient, or
chain rules. We examine these SMP mistakes through the theoretical lenses of APOS theory,
conceptual and procedural thinking, and structural and operational thinking. In addition, we look
at two student sense-making strategies - using demarcating symbols and naming differentiation

rules - to explore whether these are correlated with student propensity to make SMP-type errors.
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CHAPTER 1
INTRODUCTION

“Does it matter which step I do first?” This is a student question that could be heard in a
college mathematics classroom with nearly the same frequency as in an elementary mathematics
classroom. The order in which mathematical operations are performed is truly a consideration
that spans all levels of mathematics. In middle school, this concern most often surfaces in
problems where students must decide whether to prioritize working inside parentheses,
multiplying, dividing, adding, or subtracting. For this reason, the order of operations in
mathematics is often associated with the PEMDAS mnemonic which is intended to help students
remember the correct order for simplifying an expression: Parentheses, Exponents,
Multiplication, Division, Addition, and Subtraction. The importance of sequencing
mathematical processes extends far beyond this short list of operations however. For high school
and undergraduate students, the situation becomes even more complicated since performing
geometric transformations, composing and otherwise manipulating functions, finding limits,
derivatives, and integrals, etc. all require some understanding of whether the processes involved
commute with one another. Specifically, in calculus, the non-commutativity of differentiation
with other operations such as multiplication and division may cause issues for students. In
addition to learning how to sequence these new processes that they are encountering, students at
higher levels also need to retain their understanding of the order of basic operations as well since
mathematics is a subject that continues to build on itself.

Because of their omnipresence in every level of mathematics, sequencing issues deserve
more attention in classrooms and in educational research. Since order of operations is so

frequently tied to PEMDAS, we introduce a new term ‘sequencing of mathematical processes’ or



SMP to refer to all situations where the order in which mathematical operations are performed
may affect the result. We hypothesize that student difficulties with the sequencing of
mathematical processes in earlier mathematics courses will continue to present themselves as
students advance through the math curriculum. We also hypothesize that more advanced
students may have a better understanding of the mathematical procedures involving multiple
operations, but may still struggle when asked more abstract, conceptual questions about the
commutativity of such processes. Additionally, it may be the case that errors resulting from
reasoning misconceptions for younger students may persist as procedural errors for more
advanced students. These conjectures led us to construct this study with the purpose of
examining student thinking about SMP for students enrolled in a one-semester calculus course.
Research Questions

Specifically, in this study we seek to investigate the following research questions in the
context of a one-semester undergraduate calculus course:

e How do problems with the sequencing of mathematical processes manifest themselves
across levels of mathematics? What is the relationship between typical student issues
with the order of mathematical operations at lower levels of math (e.g. Pre-Algebra) and
those that appear in more advanced classes (e.g. Calculus)?

e Are there any apparent differences between students’ conceptual and procedural
understandings of the sequencing of mathematical processes?

e How often are student errors in calculus related to sequencing mathematical processes
and using the order of operations?

e Which student errors stem from misconceptions in reasoning, and which stem from

carelessness or lack of procedural knowledge?



Limitations of Study

Due to the lack of prior research on the broader category of SMP, this study is intended to
be an initial foray into the field. As such, there are several limitations of which to be cautious
and aware.

First, the data set used in this study is limited. The primary sources of data analyzed
come from student work submitted as part of a one-semester calculus course. Most of the
assessments analyzed were not specifically designed for this study, but were simply intended to
evaluate student understanding of the course topics in general. Thus, it must be acknowledged
that some of the questions could have been better worded in order to elicit student thinking that
would better illuminate their understanding of SMP. Furthermore, the data was collected across
two semesters and the types, timing, and wording of assessments changed over that period.
Thus, results are not directly comparable across the two semesters. However, since the intention
of this study was to provide an overview of students’ conceptions and use of SMP, this
comparison is not necessary at this stage.

Second, the data analysis reported in this thesis was conducted by a single researcher.
Certainly, cross-checking with other members of the research team would benefit the reliability
of the data analysis. The consistency of results found by triangulating the multiple data sources
analyzed, however, is also reassuring of the validity of this work.

Third, this study took place in a calculus course that was intentionally designed for
students majoring in the life sciences, with specific emphasis on material applicable to their
chosen career trajectories and a de-emphasis on some other traditional calculus topics. Thus the
results may not reflect the work of students enrolled in a more typical multi-semester calculus

course.



Students were allowed to self-select into the study for both semesters of the course in
which student work was examined. As a result, there may be some selection bias in terms of
participants. It seems reasonable to assume, however, that the population consists of a mix of
high-achieving, ambitious students, and struggling students in need of the extra credit offered,
thus averaging out to typical classroom representation.

Finally, it must be emphasized that this work is preliminary and naturally incomplete.
Certainly, more research is needed to further investigate where and how SMP appears in calculus
contexts and how it intersects with student learning of calculus concepts. Our hope in this study
is simply to establish a warrant for research in this area and provide motivation for further
investigation.

Organization of Thesis

This thesis is organized into six chapters. This first chapter is intended to introduce the
language and definition of SMP. Chapter 2 provides a brief literature review of prior educational
research on order of operations as well as student learning in calculus. Additionally, the second
chapter presents three theories of mathematical learning that will be used as a conceptual
framework for subsequent analysis. Chapter 3 describes our methodology and the data used for
this study. Chapter 4 presents the results and findings while Chapter 5 provides a discussion
intended to consider the findings in more depth and link them back to the theoretical perspectives
described in the literature review. Finally, Chapter 6 is a conclusion and offers suggestions for

future research.



CHAPTER 2
LITERATURE REVIEW

Because SMP is an extension of the more commonly used term “order of operations” we
review research conducted in that field in this chapter. Additionally, since our focus is on order
of operations in calculus, we take this occasion to offer a brief review of research concerning
student learning and misconceptions in calculus. Third, we summarize three theoretical
perspectives on mathematical learning that have been used to understand student learning with
respect to the order of operations, with the goal of using these perspectives as a lens through
which to examine our own findings in future chapters. Finally, we provide a more in-depth look
at some studies that are closely related to our own, with the intent of distinguishing our study and
illustrating how it will contribute to the existing research in the field. While we acknowledge
that this literature review is not exhaustive, we do feel that it provides a good overview of the
types of prior studies and findings that have been published.

Order of Operations Research

Throughout the literature exists a general acknowledgement that the order of operations is
important at all levels of math and a better understanding of these concepts is important for
student success throughout their mathematics careers (Schrock & Morrow, 1993). Furthermore,
beyond its importance, students also struggle with order of operations at all levels (Stephens,
2016). Despite these claims, relatively little research has been done on the order of operations in
math education, particularly within higher levels of mathematics. The types of studies that do
exist primarily fall into two categories: student misconceptions about order of operations or more

practitioner-focused methods for teaching order of operations.



Student Learning and Misconceptions

Research on student learning with respect to the order of operations often focuses on
middle to high school students enrolled in pre-algebra or algebra classes. This is likely due to
the emphasis of this branch of research on the PEMDAS acronym. PEMDAS is frequently used
to introduce students to the correct order of elementary math operations and stands for
Parentheses, Exponents, Multiplication, Division, Addition, and Subtraction. Students are often
taught to remember this mnemonic by reciting the phrase, “Please Excuse My Dear Aunt Sally”
or some other variation.

Many of the studies on student learning emphasize that PEMDAS is often treated literally
in instruction, leading to student errors; interpreting PEMDAS literally causes students to think
that multiplication always precedes division or similarly that addition always comes before
subtraction (Dupree, 2016). In addition, students (and teachers) routinely struggle with
interpreting parentheses, failing to see them as a symbol of grouping rather than an operation that
must always be performed first (Dupree, 2016). PEMDAS has also been shown to encourage
left-to-right thinking, that is, that operations must be performed from left to right in an
expression (Ameis, 2011; Dupree, 2016).

Beyond issues with PEMDAS, research has demonstrated that students also struggle with
interpretation of negatives in the context of the order of operations (Booth et al., 2014). Authors
have suggested that this may have to do with children’s difficulties in comprehending and
conceptualizing a number less than zero (perhaps due to their lack of exposure with negative
integers in real life situations) or that students may find it challenging to understand the concept
of an additive inverse (Fuadiah, Suryadi, and Turmudi, 2017). Furthermore, students

demonstrate difficulty in dealing with the combination of exponents and negative signs, often



struggling to understand when the negative sign is “sticky” or included in the exponent operation
(as in (—2)? but not in —22) or when the exponent itself is negative (Pitta-Pantazi, Christou, and
Zachariades, 2007; Cangelosi et al., 2013). Similar findings have been produced in a
developmental math study in which student difficulties with negative signs, exponents, fractions,
and parentheses were highlighted (Titus, 2010).
Teaching Methods

Order of operations studies directed toward a practitioner audience also highlight
PEMDAS, but primarily discuss the pros and cons of the method or propose alternatives to
PEMDAS. Lee and Messner (2000) highlight interpretation difficulties and a lack of curricular
resources dealing with concatenations in expressions; they point out that calculators are not even
standardized in their simplification of certain expressions without grouping symbols and also
suggest that adding steps to PEMDAS may increase the potential of clarity. They are not alone
in their concern about these types of problems as others have also called for further support for
difficulties with the lack of grouping symbols amongst pre-service teachers (Glidden, 2008).
Glidden (2008) also points out that the literal interpretation of PEMDAS is not simply a student
misconception, but that pre-service teachers even have issues with order (e.g. multiplication
before division becomes prioritized over left-to-right simplification). These teacher difficulties
are especially important because teacher understanding (or misunderstanding) can be taken up by
students in ways that are very hard to correct (Papadopoulos, 2015).

A few solutions to these challenges have been proposed. For example, Schrock and
Morrow (1993) suggested that using calculators, mnemonics (such as PEMDAS) and increased
awareness among students and teachers may improve student execution of the order of

operations. Others have suggested that an emphasis on teaching division and subtraction as



multiplicative and additive inverses, respectively, may improve comprehension (Dupree, 2016).
Another alternative approach to PEMDAS is a “hierarchy of operators” triangle in which visuals
are used to indicate which operators are prioritized thus helping to dismantle the “rule” of left-to-
right thinking (Ameis, 2011). More recently, it has been suggested that technology could be
useful in order of operations instruction; Stephens (2016) proposes that equation editors may
help with the awareness of the importance of the order of operations since most editors require
slow and careful input of terms.
Misconceptions in Calculus

In general, as illustrated in the previous section, order of operations research has not
expanded to include a broader definition of SMP and still focuses on PEMDAS-type operations
in algebra. Research exists that examines misconceptions in higher levels of math such as
calculus, but these studies tend focus on other areas of student understanding. In a brief
literature review of calculus-specific education research, Sabella and Redish (2003) note that
many students lack a conceptual understanding of calculus topics, and are rarely asked to engage
in deeper thinking and more challenging problems, prompting the ‘calculus reform’ movement.
The authors provide a concise overview of research on student conceptual difficulties with four
broad calculus topics, namely functions and variables, limits and continuity, derivatives, and
integrals (Sabella and Redish, 2003). More recently, Rasmussen, Marrongelle, and Borba (2014)
provided an update on the state of calculus education research noting that studies have
concentrated on four main objectives: identifying students’ conceptual difficulties, investigating
learning processes, studying classrooms (specifically classroom interventions intended to
improve student learning), and understanding teachers’ ideas and methods. It is not our goal in

this section to recreate these prior literature reviews; rather, we present a brief overview of



studies that seem to most closely align with our goals in studying how SMP manifests itself in
calculus.

Any review of the calculus education research literature would be remiss to neglect the
two seminal papers published by Orton. One article (Orton, 1983a) was among the first to
investigate student learning with respect to differentiation, and the second study (Orton, 1983b)
remains among the few research articles to discuss student understanding of integration. In these
papers, Orton analyzes student work on a set of problems covering a wide variety of
differentiation and integration topics and subsequently categorizes student errors as structural,
executive, and arbitrary. These error categories were based on the work of Donaldson (1963)
and can briefly be described as students’ failures to follow correct procedures (structural),
students’ inabilities to understand the rule or concept necessary to solve the problem (executive)
and students’ tendencies to ignore part of the problem (arbitrary). In both his integration and
differentiation studies, Orton (1983a, 1983b) found that the majority of student difficulties were
structural, though a significant number of executive mistakes were made as well. Later authors
have attempted similar error classification studies, often providing a broad overview of student
errors and not focusing in on any specific topic (e.g. Muzangwa and Chifamba, 2012). Other
studies narrow in on student learning with respect to a particular calculus concept such as limits
(Williams, 1991), Riemann sums (Sealey, 2014), or the chain rule (Kabael, 2010) to name a few.

Only a few studies seem to directly address SMP in calculus either as a focus concept
itself or as a lens through which to analyze student understanding of other concepts. One such
study that does specifically allude to the order of operations as it presents itself in calculus is
Musgrave, Hatfield, and Thompson’s (2015) paper on how students interpret differences in

calculus. They found that students had a broad range of definitions for the word ‘difference’ and
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also identified differences in a variety of ways when asked to label them in a given expression.
The authors point out that how students related definitions, symbols, and structure are directly
related to the order of operations and leave this as an area for future research (Musgrave,
Hatfield, and Thompson, 2015). Another study investigated student difficulties with respect to
negative signs and exponents, analyzing work from students enrolled in college algebra, pre-
calculus, first-semester calculus, and second-semester calculus (Cangelosi et al., 2013). The
authors claim that one of their main findings was that students struggle with the idea of inverses
(both additive and multiplicative) across all levels of mathematics, and they call for further
research in this area. Note that both Cangelosi et al. (2013) and Musgrave, Hatfield, and
Thompson (2015) restrict their definition of the order of operations to mean the operations
named in PEMDAS; research that expands on that definition is surprisingly difficult to find.
Theoretical Perspectives on Mathematical Learning

A number of theoretical perspectives have grown in popularity due to their usefulness in
making sense about how students develop in mathematical understanding. Many of these
perspectives are evolutions and more modern interpretations of Donaldson’s (1963) error
classifications used in Orton’s (1983a, 1983b) widely cited calculus studies. Three perspectives
in particular have been used prominently in order of operations analyses, namely APOS theory,
conceptual and procedural thinking, and structural and operational thinking. We describe these
three theories in more detail below.
APOS Theory

The first perspective that we will consider classifies student sense-making as taking place
through actions, processes, objects, and schemas, and thus is aptly named APOS theory

(Dubinsky & McDonald, 2001). The origins of this theory started with Piaget who studied
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children’s learning development as they aged. Piaget claimed that children learned mathematics
by beginning with concrete actions (for example, moving pebbles) and gradually interiorizing
those actions, constantly building on previous understanding as they progressed (Piaget, 1975).
He coined the term “reflective abstraction” to describe his theory, which he claimed was a
“reorganization of mental activity, as it reconstructs at a higher level everything that was drawn
from the coordinates of actions” (Piaget, 1975, p. 7). Others have built on Piaget’s ideas to
develop APOS theory in which students participate in sense-making through reflecting on and
interiorizing actions, processes, objects, and schemas.

Czarnocha et al. (1999) describe actions as student reactions to external instructions,
that is, when students are able to carry out specific steps that were detailed for them. Process, on
the other hand, requires students to reflect on this action and to begin to internalize and take
control of it. Object represents a further stage of development in which a student has begun to
recognize a construct as an entity which can be acted upon by transformations. Finally, students
begin to build schemas which link processes, objects, and actions in a coherent and structured
way (Czarnocha et al., 1999). The authors describe these levels of development in the context of
cosets. An action level understanding of cosets might involve students understanding how to
construct a coset given a starting element and a process for constructing other elements such as
“begin with 2 and add 4” (Czarnocha et al., 1999, p. 99). At the process level students may
begin to think about constructing a coset by using a single element to operate on other elements.
Students can make another conceptual leap by beginning to think of cosets as objects (e.g. a left
coset) that were formed through specific processes and have particular properties (e.g.

cardinality). Finally, thinking about operations between sets or developing an organization of
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algebraic structures in which groups, rings etc. are located indicates that students are at a schema
level of sense-making.

APOS theory has been used as a tool to understand student’s sense-making in a number
of calculus contexts including graphical interpretations of derivatives (Asiala et al., 1997),
related rates (Tziritas, 2011), the chain rule (Jojo, Maharaj, and Brijlall, 2013) and integration
(Mabharaj, 2014).
Conceptual and Procedural Thinking

A second perspective that has been employed to understand student misconceptions at all
levels of mathematics is that of conceptual and procedural thinking. This framework is laid out
by Tall et al. (2001) where they describe mathematics as a land of procedures and concepts.

Symbols that we use often stand for both; for example, addition and sum can both be denoted
: . : . o d .
with a + sign and differentiation and derivative are often represented by d—z or other symbolic

variations. Although often identified by the same symbol, concepts and procedures also remain
distinct. Counting is definitively a procedure, while number is a concept. In some ways, the
concept is the result of performing the process (addition leads to a sum, counting results in a
number) and in fact, Gray and Tall (1994) formed the portmanteau ‘procept’ to describe this
duality that symbols can represent. Within this perspective, students begin at the procedure level
where they are simply doing specific steps. Increasing sophistication and development are
indicated by moving on to process, where students are beginning to grow in flexibility and
efficiency when performing procedures, and finally to procept, where students demonstrate

symbolic understanding (Tall et al., 2001).



13

Structural and Operational Thinking

The third and final perspective that we consider here is structural and operational
thinking, which shares many similarities with the conceptual and procedural lens described
above. In this perspective, abstract concepts can be thought of structurally (as objects) and
operationally (as processes) (Sfard, 1991). Typically, operational thinking comes first and
development happens through interiorization, condensation, and reification. According to Sfard
(1991), interiorization is the stage in which students begin to develop the ability to mentally
envision what would happen when they performed a process without actually having to carry out
the action. At the same time, the student is becoming more proficient at performing the process
as well. Condensation happens when students become more comfortable combining and
comparing processes, while in reification students begin to think of the result of the process as an
object in and of itself. The main difficulty for students in moving through this process is due to
the fact that concepts often have multiple representations, but there is no way to actually
visualize the concepts concretely. Structural-level understanding that develops in the reification
stage requires students to view mathematical things as real objects that exist which is extremely
challenging. To illustrate this, Sfard (1991) considers the example of a function. Structurally,
one might think of a function as a set of ordered pairs, while operationally a function is a way of
transforming (or mapping) an input to an output. Functions are represented in multiple ways,
however, such as through algebraic expressions, graphs, or algorithms. This creates confusion
when students are trying to actually comprehend what a function is and trying to see it as an
object because each representation captures a piece of the structural understanding, but none

fully encompass the concept.
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This perspective shares many similarities with the conceptual and procedural thinking
framework laid out by Tall et al. (2001). Indeed, Sfard (1991) uses the same counting versus
number example that Tall et al. (2001) describe as procedure versus concept to demonstrate
differences in young children’s thinking and the progression from operational to structural.

Stard (1991) however, emphasizes that the seemingly disparate ways of understanding
mathematical concepts as operational and structural actually complement one another and are
inseparable; she highlights this as a distinguishing factor in operational/structural theory, as
opposed to the conceptual/procedural theories described previously. Sfard (1991) also strives to
combine epistemology and ontology in developing the theory and calls attention to the ways that
structure and operation interact with math representations, psychology and concept development,
and cognitive processes.

Similar Studies

In the final section of this literature review, we note that there are two studies that closely
model our research questions, and thus deserve some careful explication. Both studies that we
highlight in this section are trying to understand the order of operations in the context of higher
education; the first study bears methodological similarities to our own study and the second
shares content and theoretical framing aspects.

Order of Operations and Business Students

In their study, Pappanastos, Hall, and Honan (2002) ask if business students understand
the order of operations. The researchers distributed a survey instrument consisting of pre-algebra
and algebra-level problems. They then compare student responses across the number of years
the student had been in college (e.g. freshmen versus sophomores versus juniors). The authors

found that college-level business students struggled with the same things as in prior middle and
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high school studies, namely exponents, parentheses, negatives, and left-to-right order of
operations. This study is methodologically similar to our own, since we also distributed
assessments and analyzed student responses for order of operations issues (to be described in
detail in Chapter 3). We viewed Pappanastos, Hall, and Honan’s (2002) study as a foundation to
build upon as it exemplified that students in higher education also struggle with order of
operations and provided guidelines for the types of errors that we may see arise with our own
population of interest. One of the main distinguishing factors that sets our study apart from this
one is that we did not ask specific algebra questions, but rather looked at where these issues
naturally arose in the context of calculus problems (see our methodology described in Chapter
3).
The Chain Rule and Natural Science Students

The second study that we highlight here used an APOS perspective to look at students
majoring in the natural sciences and their understanding of derivatives, particularly the chain rule
(Mabharaj, 2013). The author suggests some initial benchmarks for examples of how student
understanding of derivatives might appear at different APOS levels. For example, Maharaj
(2013) proposes that a student with an action level understanding may be able to perform a
simple power rule derivative when given an exact expression for the original function, whereas a
student with a process orientation might be able to combine a number of steps, such as first
simplifying the original expression and then applying a differentiation rule. In the object phase,
students may be able to recognize a composition of two functions, enabling them to identify the
two functions making up the expression in order to apply the chain rule to the problem.
According to Maharaj (2013) the schema phase involves understanding multiple aspects or

characteristics of the function and knowing how to find them; he suggests finding maxima and
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minima of a function which requires making connections between differentiation rules, critical
points, and where the derivative is positive or negative. After establishing this framework,
Mabharaj (2013) analyzes six questions that were distributed to students as an assessment. One
major finding that he reports is the difficulty that students have with applying the chain rule for
differentiation, and he implies that greater instructional emphasis on the object conception of
function composition may be helpful in remedying this struggle, but he points to the need for
further research on this subject. Our study is similar to Maharaj’s (2013) study in many ways.
First, our populations are similar, since many of the students participating in our study are also
life (or natural) science majors. Second, our assessments are also designed to be a set of
standard calculus problems. Finally, we also hope to analyze student responses through the
APOS perspective. The main factor that distinguishes our study from that of Maharaj (2013) is
the SMP lens that we also hope to apply to our analysis; it is possible that some of the errors that
were presented in his research could also be attributed to difficulties understanding SMP.

We feel that our study design begins to fill a void in the world of mathematics education
research as it seeks to merge calculus studies with order of operations studies. In particular, we
seek to expand our definition of the order of operations to the sequencing of mathematical
processes in order to ask how order and commutativity manifest themselves in the context of
“new-to-students” calculus operations. As a result, our current study has a slightly broader scope
than most prior order of operations studies. We also find that our focus is different than typical
calculus misconceptions studies because we are not looking at student understanding of a
particular calculus concept, but rather we seek to understand how SMP appears in calculus and
where students struggle with those concepts including and beyond the typical order of

operations. In other words, our study is less about exploring student understanding of what a



derivative is and more about investigation student understanding of how other operations

commute with differentiation.
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CHAPTER 3
METHODOLOGY
Data Set

The data used in this study consisted of exams, homework assignments, and quizzes
collected from students enrolled in MATH 1310 at the University of Colorado Boulder (CU
Boulder) during the Fall 2017 and Spring 2018 semesters. MATH 1310, officially titled
Calculus, Systems, and Modeling, is a one-semester 5-credit hour calculus course that is aimed at
students intending to major in the life sciences. As such, it addresses conventional calculus
topics such as differentiation and integration methods, but primarily develops these concepts in
the context of biological applications. A full syllabus is included in the Appendix for the curious
reader. There were three sections of the course taught in each of the Fall 2017 and Spring 2018
semesters, with relatively equal enrollment across the sections. Each section had a different
instructor, with the exception that one instructor taught a section in both semesters. The course
coordinator remained the same across the two semesters. Additionally, all sections took
common exams and were assigned the same homework, quizzes, and tutorials.

The initial semester, Fall 2017, was primarily intended as a pilot investigation, and only
one exam was collected for analysis that term. The data for that semester was requested
retroactively per Institutional Review Board standards and blinded before research commenced;
in total, 96 students enrolled in MATH 1310 in Fall 2017 elected to participate in the study. The
exam analyzed was the second of three midterms that were given over the course of the semester
and assessed concepts such as basic differentiation rules (constant multiple, sum, product, chain,
and quotient rules), maxima, minima, and inflection points, local linearity and the Microscope

Equation, and application problems involving related rates and exponential growth. The full
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exam is included in the Appendix. This exam was chosen for analysis since it was administered
about halfway through the Fall 2017 semester, and thus provided the opportunity to investigate
what types of problems students were struggling with, what strategies they were using, and how
SMP-related ideas were being exhibited as students progressed through the course.

Table 1. Summary of data analyzed.
Assessment Name Semester Given  Description N

Second Exam Fall 2017 1.5 - hour second midterm assessing: 96
e Basic differentiation rules
e Extrema, concavity and inflection
points
e Differentiability
e Related rates
e Exponential growth
Pop Quiz Spring 2018 Quiz given during class assessing: 46
e Combining differentiation rules to
find a given function’s derivative
with or without the requirement to
name the rules used*
Homework Spring 2018 Take-home assignment assessing: 62
e Ability to write and evaluate
correctness of differentiation rules
using formal mathematical notation
e Ability to write and evaluate
correctness of differentiation rules
using mathematical language
Third Exam Spring 2018 1.5 - hour third midterm assessing;: 52
Derivatives involving arctan
Exponential decay
Definite integrals
Riemann sums
Distance and velocity applications
Fundamental Theorem of Calculus
Final Exam Spring 2018 2.5 - hour final assessing: 56
o Differentiation rules
e Definite and indefinite integrals
e Hypothesis testing and confidence
intervals
¢ Riemann sums
e Tangent lines
* Two versions of the Spring 2018 pop quiz were created as described in the body of the text.
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The remaining data was collected over the course of the Spring 2018 semester. Students
were asked during the first month of the course if they would be willing to allow analysis of their
class assignments. In total, 63 of the 92 students enrolled in the course agreed to participate.
Note that the number of papers analyzed for a given assignment may not equal 63 since not all
students submitted every assignment. The exact number of students whose work was analyzed
for each individual assignment is indicated in Table 1. The assignments examined from the
Spring 2018 semester consisted of one homework assignment specifically designed to assess
SMP-related issues, one midterm exam, one “pop quiz” developed on the basis of preliminary
results, and the final exam. These assignments were collected at various points throughout the
semester, starting in Week 6. Table 1 describes each of the assignments in more detail, but the
full assessments can also be seen in the Appendix. Notably, two versions of the pop quiz were
created. The first version was given to students in two sections of the course, and simply asked
them to find the derivative of the given function. The second version was distributed to the other
section and asked students to find the same derivative, but included additional instructions asking
them to name the differentiation rules they used and how many times they used each of them in
the process. The rationale for this choice is described in more detail in the analysis section
below. Both versions of the quiz are included in the Appendix.

Data Analysis
Phase 1

The data analysis occurred in two phases. First, the midterm collected during the Fall
2017 semester was analyzed with the goal of uncovering preliminary results and informing the
wording and types of questions asked on Spring 2018 assessments. Three questions (one multi-

part) from Fall 2017 were selected for analysis, namely Question 1 (parts a — d), Question 2, and
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Question 4; these are listed in Table 2 in Chapter 4 for reference. These questions were chosen
because of their potential to highlight students’ understanding of SMP, and all three problems
required students to find derivatives using the sum rule, constant multiple rule, chain rule,
product rule, quotient rule, or a combination of them. Other questions on the Fall 2017 midterm
were left out of the study because they presented problems for a clear analysis of students’
abilities to correctly sequence mathematical processes. Some of the questions were word
problems which required students to translate the language into mathematical symbols to set up
the problem; we felt that difficulties in this process may have overshadowed the most relevant
process-sequencing components to the problem since not all students may have started with the
same mathematical expression. Other questions involved graphing or fill-in-the-blank responses
and we felt that it was too difficult to discern student thought processes in their solutions to these
problems without having a think aloud session. Thus we restricted our analysis to the questions
on the exam that asked students to find the derivative of a given function expressed in standard
mathematical notation.

In analyzing student responses to this midterm, we carefully combed through each of the
problems selected, and recorded every type of mistake that students made or noted whether
students correctly completed the entire problem. After listing each mistake, we grouped them
into larger categories which we called SMP, miscopy, forgotten rule or step, and
misinterpretation of math symbol respectively. Every mistake found fell under one of these
categories and all of the categories emerged inductively from the data, with the exception of the
SMP category. Under the SMP heading we gathered any student mistake that resulted from
students performing mathematical processes out of order, or using notation that implied a

different sequencing than the correct response. For example, students often placed parentheses
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in the wrong places in their mathematical expressions or left parentheses out altogether but
performed the subsequent steps correctly — we categorized these mistakes as students having an
incorrect understanding of SMP. As the name implies, miscopy was coded whenever a student
rewrote the problem incorrectly or did not carry or incorrectly copied a term from a previous line
in their work. The third category, forgotten rule or step, was coded whenever students did not
perform a necessary operation in the problem (e.g. forgot to take the derivative of a term) or
when they incorrectly remembered something generally regarded as a fact (e.g. wrote that the
derivative of cos(x) was sin(x) instead of — sin(x)). Finally, the category misinterpretation of
math symbol was reserved for student mistakes that indicated that they did not understand

mathematical notation; for example, students often interpreted exponentials incorrectly assuming

that expressions like Vx% could be rewritten as x'/5. In addition to noting student mistakes on
each problem, we also made note of some student strategies used to make sense of the problem;
examples include demarcation and rule identification where students drew on their pages to help
them group and label components of the problem or explicitly named the relevant rule or formula
that could be used to solve the problem. These mistakes and strategies are described in more
detail in the findings in Chapter 4.
Phase 2

Given our interest in SMP, we used the information we collected from the Fall 2017 data
to construct problems on a variety of Spring 2018 assessments that allowed us to further
investigate student understanding of SMP in calculus. In particular, we formulated problems that
required some students to name the differentiation rules that they applied when taking the
derivative of a given function, while some students were not required to list the rules by name.

This allowed us to analyze if rule-naming allowed students to better connect the conceptual and
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procedural elements of the problem and ultimately helped them derive the correct result. In
addition, we asked questions about the differentiation rules in words and using formal
mathematical notation to see if students were making conceptual and procedural connections
when thinking about the formulas they had been given. We also designed exams to include
differentiation and integration problems that were conducive to further SMP analysis.

After collecting the new set of assessments from students, we again analyzed them and
coded the mistakes that students made. In this second phase, however, we primarily used
deductive codes that were found to be sub-categories of our SMP code in Phase 1. In particular,
we focused on students’ propensity to assume commutativity of differentiation with other
operations such as multiplication, division, and function composition. For example, we looked
at how frequently students tended to equate the derivative of the product of two functions with
the product of the derivatives of the two functions; we named this code product/differentiation
commutativity. Similarly, we noted when students made this error with the quotient rule and the
chain rule and called these codes quotient/differentiation commutativity and chain/differentiation
commutativity. We also continued to look at the strategies that students employed when solving
differentiation or integration problems which were noticed in the first phase: demarcation and
rule identification. Our analysis also involved cross-tabulation between strategies and these
SMP errors to see if certain strategies seemed to lead to fewer student mistakes. Finally, we
made notes of any new SMP-related errors that students made when solving the Phase 2

problems.
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CHAPTER 4
FINDINGS
Preliminary Phase 1 Results
In our Phase 1 analysis, we looked only at the second exam given to all MATH 1310
sections in Fall 2017. As indicated in the methodology, we looked only at student responses to
Question 1 (parts a — d), Question 2, and Question 4 from this exam. These problems are shown
in Table 2 for reference.

Table 2. Problems from the Fall 2017 Second Exam used for the Phase 1 analysis.

Number Question
1 d
2 = [x? — 3 cos(x) + 2]
1b d 1 VxS
_ 3{/} 4+ —
dx x3 x
Ie % [eIn(3x*~cos()+5) . | (¢tan()) Hint: simplify first, then differentiate.
1d d [x? + 3"
EI sin(x) l

2 Suppose that

fO)=(gx)—1)°+2
Find f'(3), given that g(3) = 2 and g'(3) = —1.

4 Find

d .
- [3 cos(arctan(x) es"®))].

At the end, please list all the rules you used, and how many times you used each.
(The possible choices for rules are: Constant Multiple, Sum, Chain, Product, or
Quotient.)

We listed each of the mistakes made by students on these questions and found that they

could be grouped into four major categories: SMP, miscopy, forgotten rule or step, and
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misinterpretation of math symbol. We also coded student responses if they were completely
correct for a reference point. The breakdown of student mistakes by category for each of the
questions is shown in Table 3. It is important to note that the frequency of the codes does not
necessarily represent the number of students who made a mistake in a given category. This is
because each student was coded once for each unique sub-category mistake that they made,
which could result in a student being coded multiple times for each major category. For
example, if a student left out necessary parentheses when solving a problem, and switched the
order of terms in the numerator when using the quotient rule, the student would have been coded
once for each of these mistakes, resulting in the student being coded twice for SMP since each of
those errors was a sub-category of SMP. The completely correct code count does indicate the
number of students that correctly solved the problem however, since that category had no sub-
codes (either students answered the problem perfectly or not).

Table 3. Frequency of major category codes for student responses to Fall 2017 second exam
questions. Student N = 96.

Exam Questions
la 1b 1lc 1d 2 4

Completely correct 79 29 43 22 41 30

Miscopy 4 3 3 1 17 10

Forgotten rule or step 7 23 4 33 11 35
Misinterpretation of math symbol -- 33 3 10 1 --

SMP 6 23 49 43 16 34

As indicated in Table 3, there was a definite disparity in the relative difficulty of each of
the exam problems. As expected, Problem la was relatively straightforward, as it only required
students to remember the sum rule, the power rule, the constant multiple rule, and the derivative
of cos x; in our experience, these rules are not difficult for students to remember. As a result, 79

out of 96 or 82% of students answered Problem 1a perfectly. The remaining problems presented
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more of a challenge, however, as less than half of the students answered each of the remaining
problems correctly.
Miscopy

The miscopy code also had no sub-codes since it was used only when students rewrote
the problem incorrectly or did not carry a term or sign from one line to the next when working
through the problem. These errors happened relatively infrequently, though student responses to
Question 2 did seem to demonstrate more issues in this regard. Most of these mistakes on
Question 2 were due to the use of f(x) and f'(x) notation; students seemed to forget to write the
prime symbol to indicate the derivative when moving from line to line. Additionally, students
forgot to carry through the coefficient that resulted from taking the derivative even though they
initially took the derivative correctly. Overall, errors resulting from miscopying work seem
minimal and they do not present much opportunity for intervention from the instructor.
Certainly, students can be encouraged to double-check and keep their work tidy to make sure that
they do not write things down incorrectly, but these errors are not a huge cause for concern from
our perspective since they do not indicate any deep misunderstanding of the material.
Forgotten Rule or Step

Most of the forgotten rule or step errors resulted from students forgetting to take the
derivative of at least one term in the problem, or forgetting how to take the derivative. On
Question la, all of the student errors in this category were from students who forgot that the
derivative of cos x is — sin x, not + sin x. On Question 1b, students often made mistakes with
the power rule (likely due to the presence of fractional exponents), or spent so much time
simplifying a term in the expression that they ultimately forgot to take the derivative of the term.

Forgetting to take the derivative of a term also occurred frequently on Question 1c and 1d.
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Question 1d also indicated that students frequently forget to include the denominator when
performing the quotient rule, and that students often do not remember the rule for derivatives of
the form a* where a is a number and x is a variable. Finally, on Questions 2 and 4, students
often forgot the chain rule, taking only the derivative of the outside function and neglecting to
multiply by the derivative of the inside. Question 4 also asked students to list which
differentiation rules they applied to the problem and how many times they used each of them;
this also led to a number of forgotten rule or step errors as students often did not list the constant
multiple rule or incorrectly counted the number of times they used the simpler rules.
Misinterpretation of Math Symbols

This preliminary analysis also indicated that students struggle with making sense of
certain mathematical symbols, particularly exponents. Students made no mistakes in
interpretation on Questions 1a or 4, but Question 1b proved especially challenging for students in

this regard. This was overwhelmingly due to the combination of exponents and roots found in

. oy . 1
the problem. One-third of the students struggled with interpreting Vx5 and s correctly, often

converting them to x/5 and x~/3 respectively. Interestingly, students did not struggle as much

1/3 Nonetheless, it is clear that students’ comfort

with 3/x, as most correctly rewrote this as x
levels are low when converting between root symbols and exponents, particularly when dealing
with fractional exponents. Student misinterpretations of symbols on Questions 1c, 1d, and 2
were more scarce and scattered, with the largest issues involving the 3'"™®) term in Question 1d.
We did notice that most of these interpretation struggles did not involve symbols introduced in

calculus; rather, the types of expressions that students had difficulties with (e.g. exponents)

should have been discussed more deeply in prior classes. This is not surprising, as we have often
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heard it said that students’ greatest struggle in calculus is algebra. This data simply confirms the
truth in this phrase.
Sequencing of Mathematical Processes

The main category of interest for us in this study is SMP. As indicated in Table 3, a large
proportion of the errors that students made on differentiation problems were SMP related. The
vast majority of these SMP errors fell into two sub-categories: parentheses or
operation/differentiation commutativity. All sub-categories and the distribution of student errors
on the problems analyzed are indicated in Table 4. Note that in Table 4, since the numbers
represent sub-codes of SMP, students were only coded at most once for each error. That is, even
if a student misused parentheses multiple times in their solution to a problem, they were only
coded once for parentheses. Thus, the numbers in Table 4 represent the number of students who
made the mistake on each problem.

Table 4. Frequency of SMP sub-codes for student responses to Fall 2017 second exam
questions. Student N = 96.

Exam Questions
la. 1b 1lc 1d 2 4

Operation/differentiation commutativity 14 20 8 8 18
Parentheses 3 3 29 24 8 16

[a—y

Cancellation -- 3 -- 3 - -
Distributing or factoring 2 -- -- 3 -- --
Addition or subtraction -- 3 -- 5 - -

Table 4 clearly indicates the prominence of incorrect commutativity assumptions between
differentiation and other operations, namely, multiplication, division, and composition of
functions. The table also shows the difficulties that students had in working with parentheses.
We analyze these sub-codes in more detail in the following sections.

Other SMP sub-codes included cancellation, distributing or factoring, and addition or

subtraction as displayed in the table. Errors in student responses were coded as cancellation if
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students incorrectly assumed that terms cancelled; this usually occurred in quotient settings. For
: b, 1-b . .
example, several students equated expressions of the form aa—z to —. We viewed this as an

SMP error because students divided the a in the numerator by the a? in the denominator before
subtracting the b in the numerator. Distributing or factoring errors occurred in multiplication
settings, such as factoring expressions like (x + ay) and rewriting them as a(x + y) or
distributing the denominator of a single term to multiple terms in an expression (without
appropriately modifying the numerators). This was also a sub-code of SMP because students
assumed that multiplication by y by a and then adding x was the same as adding x and then
multiplying by a. Finally, addition or subtraction errors were coded when students reversed the
order of terms being subtracted (as if they followed addition rules). The most common example
of this error was students reversing the order of the terms in the numerator after differentiation
using the quotient rule. These last three categories only occurred on a couple of problems and
were relatively infrequent; at most 5% of students made such an error on any given problem.
Thus we concentrate our attention on the first two SMP sub-codes.

Parentheses and SMP. Student work demonstrated that students often understood the
correct order in which to perform operations, but they did not recognize the importance of
parentheses in signaling that order. In essence, they were following PEMDAS with assumed
parentheses. Students would incorrectly write an expression in the form a + b - x when it should
have been written as (a + b) - x. However, in subsequent lines of work, students would treat the
expression as if it had been written in the latter form. An example of this type of student mistake
is shown in Figure 1. Instructor marks can be seen in red in Figure 1, and denote places where
the student neglected to use the appropriate parentheses. Despite the fact that the student left the

parentheses out of their third line of work, their subsequent derivative expression indicates that
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they operated as if the parentheses were there. This type of mistake was extremely common
among students, especially on Questions Ic, 1d, and 4 (see Table 4). Parenthetical errors also
occurred when multiplying single terms with negative signs; on Question 1a, three students
wrote 3 — sin x instead of 3(— sin x) but proceeded with the problem as if they had used the

latter notation.

P {emwm_cost‘l”s) -ln(eta“("))l Hint: simplify first; then differentiate.
ok
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Lale """ 7 = tualx) ¥ Jnand € ucds eock stiel

% - cos(x} 45 :
2 N3 (045} bia ey s

A X ze —coSx) -3'5)- tunle) 9 product yale

o~
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Figure 1. Example of student work on Fall 2017 Second Exam Question 1c
demonstrating forgotten parentheses. Instructor marks are noted in red.

This error seems to indicate that students do understand something about the order of operations,
but do not understand the significance of proper notation in signaling the correct sequencing.
Operation/differentiation commutativity. The other widespread SMP error discovered
through our Phase 1 analysis was that of students assuming that differentiation could commute
with other operations. There were three main examples of this that we uncovered,
product/differentiation commutativity, quotient/differentiation commutativity,
chain/differentiation commutativity. We named the codes as such because these errors
corresponded to students’ lack of use of the product, quotient, and chain differentiation rules
respectively. As might be expected, product/differentiation commutativity codes indicated that

students used multiplication and differentiation as commuting operations, that is, they assumed
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that the derivative of a product of functions was equivalent to the product of the derivatives of
the functions. Similarly, quotient/differentiation commutativity was coded where students
indicated that the derivative of a quotient of functions was the quotient of the derivatives of the
functions, and chain/differentiation commutativity was coded where students equated the
derivative of composed functions as the composition of the derivatives of the functions. As
shown in Table 4, these errors were made in all problems analyzed, but were particularly
prevalent in Questions 1b, 1c, and 4. Given proper simplification of terms, Question 1b did not

actually require the use of the product, chain, or quotient rule, but most students were unable to

5
(or chose not to) simplify the g term, instead opting to apply the product or quotient rule. This

resulted in four students making a product/differentiation commutativity error, and 10 students
making a quotient/differentiation commutativity error. On Question Ic, 19 out of the 20
operation/differentiation commutativity errors were made when using the product rule, while one
of the errors was made when using the chain rule (note that the problem involved using both the
product rule and the chain rule). Question 4 was a significantly more complicated problem,
requiring the use of multiple differentiation rules. On this problem, students made 12
product/differentiation commutativity errors, and six chain/differentiation commutativity errors.
The number of chain rule errors may have been larger relative to Question 1c given that Question
4 required two uses of the chain rule and most students missed one of them, likely due to the
large and complicated expression that the solution entailed. We did notice however, that only 12
students (13%) made mistakes with the product rule on Question 4 compared to 19 students
(20%) on Question 1c despite the fact that Question 4 was a significantly more challenging
derivative to compute. One hypothesis that we developed to explain this was that requiring

students to name the rules they used (as was done on Question 4) may help students in making
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conceptual and procedural connections between the rule formulas they used and applying them
to actual functions. We explored this hypothesis and all three operation/differentiation
commutativity sub-codes further in Phase 2.

Phase 2 Results

In Phase 2, we chose to narrow our focus to just the operation/differentiation
commutativity sub-category of our main SMP code. Our primary reason for this restriction of
attention was the calculus-specificity of these errors. Although parenthetical errors were also a
major component of the Phase 1 analysis that we conducted, most student mistakes involving
parentheses are an extension of past mistakes and rules learned in previous classes; rarely, if at
all, were the parentheses errors from Phase 1 unique to calculus. The commutativity (or lack
thereof) of differentiation with other operations, however, is a concept that students do not
encounter until they reach calculus. Since one of our goals in conducting this study was to
propose ideas for interventions for students struggling in calculus, it made sense to devote our
attention to these distinct calculus misconceptions.

As noted in Chapter 3, we used four different assessments from the Spring 2018 semester
of MATH 1310 at CU Boulder for this Phase 2 analysis. We approached the study of operation
and differentiation commutativity from five different angles. First, we looked at students’
propensities to make these types of SMP errors when differentiating products of functions,
quotients of functions, or compositions of functions, to see if students were more inclined to
make the mistake when encountering one type of problem over another. Then we looked at two
strategies that students employed to make sense of those types of problems - rule-naming and
demarcation — to study how effective these tactics were in improving students’ ability to

correctly sequence mathematical processes. We also looked at students’ relative tendencies to
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make commutativity errors when differentiating versus integrating, i.e. we tried to identify
whether operation/integration commutativity errors were also common. Finally, we studied
students’ likelihood of assuming commutativity between differentiation and other operations
when presented with the differentiation rules in words or symbols instead of in the context of a
problem. We present the findings from each of these five approaches to analysis in the
subsequent sections.
SMP Errors: Products, Quotients, and Chains

For our detailed comparison of problems whose correct solutions involved the product
rule, the quotient rule, and the chain rule, we used one problem from the Spring 2018 third exam
(Question 6 parts b, ¢, and d) and one problem from the Spring 2018 final exam (Question 1
parts b, ¢, and d); these problems are listed in Table 5.

Table 5. Problems from the Spring 2018 Third and Final Exams used for the Phase 2 analysis.
Number Question

Spring 2018 Third Exam

Find the following derivatives involving the arctangent function.

6b d
Tx [In(x) arctan(8x)]
6¢c arctan(x)
L€ ]
6d d [arctan (x)]
dx x
Spring 2018 Final Exam
Find the derivative of each of the following functions. You do
not need to simplify your answers.
1b heO 7x°
x) =
Vo + 2
1c p(x) = (4x3 + 5)tan(3x)

1d e3ln(5x)
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Our analysis presented problems, however, since the problems assigned to students on
these assessments proved to be relatively easy for them; they seemed to be less challenging
problems than the corresponding problems given on the Fall 2017 second exam (Question 1 parts
b, ¢, and d shown earlier in Table 2). In fact, over half of the students correctly solved each of
the problems on the Spring 2018 assessments. The most challenging problem proved to be
Question 1d on the Spring 2018 final which 55% of the students answered incorrectly; the
percentage of students with completely correct answers was higher on the other five problems
analyzed from the Spring 2018 exams. This presented problems for our analysis, since the
number of students making mistakes was so small to begin with that the number making SMP-
related errors was even smaller. Thus, we also included the Fall 2017 second exam data in this
portion of the study for comparison. The results are presented in Table 6. Note that these
findings are presented as percentages since the number of students in the study differed
significantly across the three assessments.

Table 6. Percentage of students who made operation/differentiation commutativity errors on
three assessments.

Product Quotient Chain

Fall 2017 Second Exam (N=96) 24% 14% 6%
Spring 2018 Third Exam (N=52) -- 2% 2%
Spring 2018 Final Exam (N=56) 2% 2% 5%

The Fall 2017 second exam data clearly indicate that students tend to have greater
difficulty recognizing the need to use the product rule rather than the quotient or chain rule. It
must be acknowledged that the Spring 2018 data do not support this claim, but we see a lower
number of operation/differentiation commutativity errors on those exams in general. This may
be due to the fact that the Spring 2018 exams are assessments given later in the semester, that is,
we are comparing a second exam with a third and final exam. It is possible that students enrolled

in the Spring 2018 semester made the same number of SMP errors on their second exam, but had
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simply learned from their mistakes by the time they took the third and final exams.
Unfortunately, since we are comparing across different semesters, it is not possible to confirm
this hypothesis with this data. An additional problem with the Spring 2018 analysis is that the
percentage of students making mistakes on each of the exams that semester are much lower, thus
skewing the data slightly. In fact, one out of 10 students who answered the Spring 2018 final
exam questions incorrectly, made a product/differentiation commutativity error; this number
corresponds to roughly 10% of mistakes made on those problems. When controlling for the
number of students making mistakes, the quotient rule and chain rule for the same exam
accounted for 12% and 6% respectively. This does seem to indicate that the product and
quotient rule are more challenging to remember for students, which agrees with the Fall 2017
exam data.

One hypothesis for students’ inclination to simply take the product or the quotient of the
function derivatives rather than applying the appropriate rule is that these two scenarios present
the extremes of delineating the two (or more) functions that are being dealt with in the problem.
Two functions are often adjoined with no symbols in between them to denote a product, e.g.

¢

x% tan(x). Even if a symbol is used, it is often a subtle sign as in

eIn(3x*~cos(+5) . | (etan(@)) which was found on the Fall 2017 second exam. It may be that
these types of notations are not sending a clear signal to students that a product is present. A

third way to represent a product is through the use of parentheses, such as (4x3 + 5)tan(3x),
but our preliminary data analysis from Phase 1 indicated that students often do not see

parentheses as necessary when multiplying and thus they may not be cued to think of the product

rule through this type of notation either. On the other hand, the notation typically used for the

2 2ln(x)
quotient rule (e.g. [x 3 5 ] from Fall 2017 second exam) may provide too much separation

sin(x
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between the functions, causing students to see differentiating them almost as separate problems.
We will explore this idea of demarcation in greater depth in the next section.
Student Use of Demarcation Symbols

In addition to analyzing student errors across problems, we also looked at student
strategies for making sense of the problems they were given. In particular, we found two
strategies that emerged inductively from the data, demarcation and rule-naming. For the former,
we found that students used a variety of symbols or labels to separate out components of the
problem. For example, students would specifically write f (x) and g(x) on their papers to
denote the presence of two functions in a product, quotient, or chain rule situation. Students also
tended to make use of parentheses, square brackets, or underlining to clarify the different pieces.
We analyzed student use of these two methods by examining two questions from the Spring
2018 third and final exams (Question 6 parts b, ¢, and d, and Question 1 parts b, ¢, and d,
respectively — shown in Table 5). Combining student responses from both exams, we found that
when students specifically labelled the individual functions involved in the problem, they were
generally more likely to get the problem completely correct than other students. On product rule
problems, 80% of students who labeled functions f(x) and g(x) on their papers answered the
problem correctly, while only 70% of students who did not label the functions got the solution
right. Similarly, for quotient rule problems, 90% of students who labeled the functions correctly
found the derivative, while only 64% of students who did not label ultimately answered the
problem correctly. This pattern did break down for chain rule problems, however; only 60% of
students who labelled solved the full problem correctly, while 69% of students who did not label
ended with the right answer. It must be noted, however, that only 5 students labelled chains of

functions across both exams, while 20 and 29 students labelled functions on product or quotient
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problems respectively. The small sample size of students who actually used this sense-making
strategy on chain rule problems may skew the data. This strategy did seem effective for the
nearly 20% and 30% of students who used it on product or quotient rule problems and this seems
to support the hypothesis from the previous section that students who are able to recognize a
product or a quotient are more often able to apply the rule correctly. In other words, student
difficulties with SMP do not seem to be the result of them forgetting the rule or misapplying the
rule, but rather with their ability to connect the need for the rule with the given problem.
Labeling the individual functions that make up the problem may be one strategy for helping
students make this link.
Rule-Naming Strategy Effectiveness

Another strategy that students used frequently was rule-naming. This strategy was
actually required on one of the problems on the Fall 2017 second exam (Question 4, shown in
Table 2), and we noticed that students were less likely to make SMP errors on Question 4 than
on Question 1c¢ (shown in Table 2) which similarly required the application of the product and
chain rules. On Question 4, students were required to list each of the differentiation rules that
they had applied and count the number of times they had used each, while on Question 1c¢ no
additional instructions were given aside from differentiating the function. Despite Question 4
being more challenging from a mathematical point of view, only 34 students made SMP errors
on that problem, while 49 students made SMP errors on Question 1c¢ (Table 3). Out of these
SMP errors, 12 students (13%) made the product/differentiation commutativity error on Question
4 while 19 students (20%) made the same error on Question 1c. This led us to postulate that
rule-naming was a strategy for helping students make sense of the connections between the

conceptual rules and the procedural aspect of taking a derivative.
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To test this hypothesis we developed another assessment. We wanted to make sure that
the difference in the functions given was not a confounding factor in our previous results. To
that end, we gave the Spring 2018 students an in-class quiz and asked two of the sections to
simply differentiate the given function while the other section was asked to name the
differentiation rules they used and the number of times they used them. The given function was
f(x) = sec?(x*)In(x? + 1); both versions of the quiz can be found in the Appendix. We found
that 24% (seven out of 29) of students who were not given the additional instructions made the
product/differentiation commutativity error, while only 6% (one out of 17) students who were
required to name the rules made the same error. This was yet another indicator to us that rule-
naming could be an effective strategy in helping students correctly make conceptual and
procedural connections.

SMP Errors: Derivatives v. Integrals

In addition to understanding the differences in students’ SMP errors related to product,
chain, and quotient derivative problems, we also wanted to see if students had a greater
propensity to make SMP errors when dealing with integrals versus derivatives. For this analysis
we focused on comparing derivative problems involving products to integral problems involving
products, and derivatives of quotients to integrals of quotients. Due to the lack of an appropriate
integral “chain” problem, we left function composition out of this examination. The problems
analyzed are shown in Table 7.

When coding student responses to these questions for operation/differentiation
commutativity or operation/integration commutativity errors, we found that no students made this
type of SMP error on the integrals of products problems (Questions 7a and 7c). These mistakes

were not prevalent in the derivative of a product analog either though; only one student out of 56
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made a product/differentiation commutativity error. The quotient results were similarly

uneventful. Only one out of 56 students made commutativity errors on each of the derivative

and integral problems (Questions 1b and 7b).

Table 7. Problems analyzed from the Spring 2018 Final Exam for comparison of SMP errors
between integrals and derivatives.

Number

Question

Products:
1c

Ta

Tc

Quotients:

1b

Tb

Find the derivative of each of the following functions. You do
not need to simplify your answers.
p(x) = (4x3 + 5)tan(3x)

Calculate the following definite and indefinite integrals using
substitution. Please show your work. In particular, clearly
specify what you are calling u, and what is du.

f 6t*(6t° +2)11 dt

Calculate the following definite and indefinite integrals using
substitution. Please show your work. In particular, clearly
specify what you are calling u, and what is du.

In(m)
J- e* sin(e™) dx
1

n(z)

Find the derivative of each of the following functions. You do
not need to simplify your answers.

7x°
h) =725

Calculate the following definite and indefinite integrals using
substitution. Please show your work. In particular, clearly
specify what you are calling u, and what is du.

q2
- - d
fq3 +In3) !

Part of this SMP-error absence may be due to the high number of students who answered these

problems correctly, Questions 1b and 1c, as well as Questions 7a and 7¢ had correct responses

rates of 70% or higher. Less than half (approximately 48%) of the students answered Question

7b correctly, but the errors were primarily due to forgetting absolute value signs or forgetting a
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constant when changing variables; none of these errors were SMP-related. Another reason that
the mistakes on the integral problems were limited may have been the specificity of the
instructions given. Students were told in the problem to use the substitution method to compute
the integrals and our previously reported findings indicate that rule names may be critical in
helping students make sense of a problem. The comparison of integrals and derivatives certainly
warrants further exploration with better designed problems that would allow us to see student
mistakes more clearly.
Students’ Conceptual and Procedural Understanding of Differentiation Rules

A final approach that we used to learn about students’ understanding of SMP and
differentiation was to look at their ability to assess SMP errors in mathematical statements of the
differentiation rules. We gave students a take-home worksheet on which they were asked to
identify errors in statements of the common differentiation rules when they were written in
words or in mathematical notation. Students were first given examples, such as the one seen
below:

“State whether each of the given statements is true or false. If the statement is true,

identify it by name. Ifit’s false, make it true by replacing everything that comes after “is

equal to” with appropriate verbiage and identify the corrected statement by name.

(1) The derivative of the sum of two functions is equal to the sum of the derivatives

of those functions.
Answer: True (sum rule).
(i1) The derivative of the product of two functions is equal to the product of the

derivatives of those functions.
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Answer: False. The derivative of the product of two functions is equal to the first
function times the derivative of the second, plus the second function times the
derivative of the first (product rule).”
Similarly, students were asked to identify mistakes in the differentiation rules when written using
symbols:
“Listed below are eight mathematical statements: not all of them are true! Identify each

statement as being either a correct or an incorrect version of a known differentiation

rule.
Examples:
(1) % [f(x)g(x)] = f'(x)g'(x) Answer: product rule, incorrect version

(ii) dd—x [cf(x)] = cf'(x) Answer: constant multiple rule, correct version”

The full worksheet can be seen in the Appendix.

When analyzing student responses to this worksheet, about 50% of the students scored
perfectly, correctly identifying all of the correct and incorrect versions of the differentiation rules
and modifying them appropriately if necessary. There were a number of inconsistencies in the
remaining students’ responses however. Many students answered the statements written using
mathematical symbols correctly, but incorrectly assessed their counterparts written using words.
Three students thought that the statement for the constant multiple rule expressed in words was
incorrect because they thought the derivative of a constant multiplied by a function was zero. In
effect, this is a product/differentiation commutativity error because students were multiplying the
derivative of the constant by the derivative of the function to find the derivative of the constant
multiplied by the function. Many students also agreed with the statement that “the derivative of

a chain of two functions is equal to the chain of the derivatives of those functions”, though they
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failed to offer any explanation for this belief. Students also agreed with the incorrect version of
the quotient rule written in words which reversed the order of the terms in the numerator of the
derivative. There seemed to be much confusion around the quotient rule in general, since
students often thought that both versions of the quotient rule written in symbols were correct, or
that both versions were incorrect when in fact one was expressed correctly and the other
expression reversed the order of the terms in the numerator. This indicated that students struggle
to recognize the importance of SMP when dealing with the subtraction in the numerator of the
quotient rule. Finally, many students interpreted the version of the product rule written as

% [f(x)g(x)] = fx)g' (x) + g(x)f'(x) as incorrect. This was mystifying to us for a while
until we noticed one student’s response to this question which stated “ product rule, correct.
(Usually written as f'(x)g(x) + g'(x)f (x), the example given is written differently but
produces the same answer).” This student’s explanation may be a clue as to why other students
struggled with this problem; since they were used to seeing the derivative of the first function
being written first in the expression, they automatically assumed that this version of the product
rule was incorrect. This is interesting, however, given that students often assumed that the order
of the terms in the quotient rule did not matter. It is difficult to determine with our data whether
students thought that the product rule expression did not commute because of the addition or
because of the multiplication order (both are changed on the worksheet from the student’s
suggested expression) but it is striking that students struggled with accepting commutativity in
the product rule even though they were willing to overlook the term-switching in the quotient
rule expressions. These results certainly merit further investigation, perhaps by conducting
think-aloud interviews with students so that they are able to fully explain their thought processes.

In any case, it is clear that students struggle with translating between different ways of writing



the differentiation rules which may be one reason that students also made certain
operation/differentiation commutativity errors when asked to apply the rules to find the

derivative of given functions.

43
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CHAPTER 5
DISCUSSION

Many of our findings can be connected back to prior foundational research and theory,
but analyzing student work through the lens of SMP also allows us to add to the body of
knowledge about students’ ideas and struggles in calculus. In particular, we found that our
findings confirmed many of the errors presented in previous studies, especially those related to
misinterpretation of exponents and grouping symbols. We also found that naming rules may
help students make procedural and conceptual links. Our findings also demonstrated that
students frequently lack flexibility in notation and expression which may be explained through
learning theory. Finally, we noticed connections between students’ APOS levels with respect to
a given concept and their ability to correctly manipulate and sequence mathematical processes
when working with that concept. We use this section to elaborate on each of these points and
link our own results to prior research.

Confirmation of Errors

Perhaps not surprisingly, our findings confirmed many of the previously published errors
and misconceptions that students have when solving procedural math problems. Of these typical
errors, two that stood out as exceptionally common were misinterpretation of exponents and
misuse or lack of grouping symbols. While our research agrees with previous studies, it is
important to note that we found that these mistakes are made by students enrolled at the calculus
level and in the context of calculus problems. This differentiates our findings to some extent
from prior research which primarily locates these mistakes in the context of algebra problems
often directly intended to assess student understanding and manipulation of exponents and

parentheses. Though these results are not obviously related to our SMP-related research
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questions, errors involving exponents and grouping symbols were so prevalent that we felt they
merited a brief discussion here.
Misinterpretation errors with exponents

Our results demonstrated that undergraduate students misinterpret exponents in many of
the same ways that high school students have been shown to do so. Previous research illustrates
that students have particular difficulty in interpreting negative exponents. For many students,
their initial understanding of an exponential expression of the form x™ is tied to the procedure of
multiplying x by itself n times; this process begins to break down and becomes harder to
conceptualize when n is not a natural number (Pitta-Pantazi, Christou, and Zachariades, 2007).
The students in our study also struggled with the interpretation of negative exponents. Previous
research has suggested that this may be due to lack of understanding about inverses (Cangelosi et
al., 2013). We also hypothesize that many of students’ misconceptions about exponents may be
related to difficulties in combining concepts since they are still working at an operational level of

thinking instead of a structural level (as per Sfard, 1991). For example, when exponents and root

symbols are combined, as in Vx3 or ¥/x, students often forget which expression can be rewritten
as x%/3. In our experience, students view these as rules to remember, and have not yet reached
the stage of thinking about square roots or exponents as objects in and of themselves that can be
operated on and combined. Students instead think of the square root as requiring them to
complete the process of raising something to a fractional exponent, and determining what the
exponent might be is a matter of rote memorization.
Importance of grouping symbols

In addition to agreeing with previous findings on exponents, our study also confirmed

prior research related to student use of grouping symbols. Cangelosi et al. (2013) found that
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students often deemed expressions with and without parentheses as equal even if they were not
(e.g. (—2)? and —22), and we found that our students also viewed parentheses as non-essential
when writing out their solutions. We also discovered that students often completed the correct
steps in the right order despite misusing parentheses or leaving them out altogether. Again this is
consistent with previous research which found that students often use personal shorthand
notation, leaving out crucial components of the expression, but somehow remembering and
operating as if they were there (Cangelosi et al., 2013). Lee & Messner (2000) point to middle
and high school textbooks as lacking explanations about when and why grouping symbols make
a difference in evaluating expressions involving negatives and exponents. If this is the case, then
it should come as no surprise that students enrolled in calculus courses still struggle to
understand the importance and meaning of parentheses.
What’s in a Name? Connecting Procedures and Concepts

Another major finding that we presented in Chapter 4 related to students’ use of rule
names to facilitate finding the derivative correctly. We found that students who were required to
(or opted to) label the differentiation rule that they were applying at each step in the problem
were less likely to make SMP-related errors. Students who did not name the rules they were
using, on the other hand, were more likely to make operation/differentiation commutativity
errors, assuming for example that the derivative of a product of functions was the product of the
derivatives of those functions. We hypothesize that this is because students were not connecting
procedures and concepts, but that rule-naming helps them to do so. According to Tall et al.
(2001), multiplication is a process while a product is a concept. It may be that students saw the
process of two functions being multiplied, but were not making the connection to the concept of

a product of functions. As suggested by the theory of conceptual and procedural learning (Tall et
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al., 2001) students may still have a procedural level of understanding about functions, not yet
recognizing them as entities that can be combined to form products, quotients, etc. Since the
differentiation rules are usually named after the concept instead of the process (e.g. product rule
not multiplication rule), a lack of procedural and conceptual connection could mean that students
are not triggered to use the product rule when looking at function multiplication. The same
hypothesis could also explain students’ operation/differentiation commutativity errors when
working with other differentiation problems since both the chain rule and quotient rule are
named after concepts instead of the processes of function composition and division. We
hypothesize that having students explicitly name the rules that they are applying forces them to
consider the connections between the concepts and the processes. Rather than seeing two
functions multiplied together and simply taking the derivative of each, they must think through
their repertoire of rules and realize that a product is the result of two functions being multiplied,
and thus this is the correct occasion to apply the product rule. We propose that renaming the
differentiation rules to reflect the processes instead (e.g calling the ‘product rule’ the
‘multiplication rule’) might make it even easier for students to correctly find the derivative since
the name would more closely match their current procedural level of understanding of functions.
A consequence of this choice, however, may be that it leaves students “stuck” in this procedural
way of thinking and does not encourage further development toward structural understanding.
Further research is certainly warranted to determine the full benefits and disadvantages of this
approach.
Flexibility in Notation
In our study we also found that students did not always choose the most efficient path to

reach an answer, nor did they recognize the equivalence of the same expression written in
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multiple ways. One prime example of this was on an exam where students were asked to

5
differentiate the term g (as part of a larger expression). The vast majority of students identified

this as an opportunity to apply the quotient rule; we postulate that this is because the division bar
is a prominent symbol that cues students to think of a quotient. This is clearly not an incorrect
approach, but it is arguably the least efficient way to take the derivative of the term. The best
approach is probably to simplify the expression to x3/2 first and then simply apply the power
rule, and the second best option may be to recognize that the expression can be rewritten as the
product x5/ - x~1 and then use the product rule. Students often did not choose either of these
more expedient options however. Certainly, students’ struggles with interpreting exponents may
have played a role in this decision, but we hypothesize that an explanation may go deeper than
this. Gray and Tall (1994) discuss that lack of flexibility in notation often indicates that students
may not have reached the ‘procept’ level of understanding yet. This could certainly be the case
with the students in our study. As students are still hovering between the procedure and process
stages of understanding differentiation rules, they may still be applying a prescription for which
rule to use based on what the initial expression looks like rather than thinking about how they
could rearrange the expression to use a different approach. This may in part be due to the lack of
emphasis on different approaches in their classroom experiences.

Another example of students’ lack of flexibility in mathematical expression was shown in
our findings on students’ identification of correct and incorrect differentiation rule statements.

As described in Chapter 4, many students interpreted the version of the product rule written as

% [f(x)g(x)] = fx)g'(x) + g(x)f'(x) as incorrect. One student’s explanation next to their

correct identification of the rule provided some insight into this misconception since the student

pointed out that the product rule was “usually written as f'(x)g(x) + g'(x)f (x)” while “the
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example given is written differently but produces the same answer”. While this particular
student demonstrated flexibility in their ability to identify equivalent mathematical expressions,
their answer may provide a clue as to why other students were unable to make the same
connection. Students may be trained to think that in the product rule, the derivative of the first
function comes first, and may lack the advanced understanding required to recognize that in this
case the order does not matter. This is certainly an SMP-related issue and may explain why even
more advanced students continue to struggle with SMP errors. Interpreting mathematical
expressions in a flexible way is definitely a prerequisite to understanding when and where order
matters in mathematical operations. Gray and Tall’s (1994) ‘procept’ idea offers an explanation
for this difficulty, much as it justified students’ automatic use of the differentiation rule when
seeing a quotient as described above. Sfard’s (1991) distinction between structural and
operational thinking also provides a framework for understanding this student difficulty,
however. The student who correctly identified the product rule and defended their decision
illustrated more of a structural level of understanding of functions, recognizing that they are
objects that can be combined using various operations. Moreover, these operations sometimes
result in objects that are mathematically equivalent, even though they look slightly different.
Students who struggle with flexibility in notation and recognizing equivalent expressions may
have only an operational understanding of working with functions, viewing the expression as a
sequence of operations that must be performed in a certain order, rather than as an object that can
be manipulated without changing its outcome.
APOS and SMP
APOS theory as described by Dubinsky and McDonald (2001) also provides a strong

justification for student difficulties with SMP. Although the ‘P’ in APOS stands for process,
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correct sequencing of mathematical processes often requires students to be at a more advanced
level of understanding. It is reasonable to assume that students who are able to think about
functions, products, quotients, derivatives, etc. as objects are more likely to understand
commutativity (or the lack thereof) between such constructs. Furthermore, understanding the
connectivity between combinations of functions, derivatives, and differentiation rules requires
students to begin constructing a schema to organize all of these concepts. Maharaj (2013)
describes requisite components for students’ function and derivative schemas in order for
students to truly understand derivative problems encountered in calculus. His theory is based on
an initial description of constructing a schema for the chain rule by Clark (1997). Through
interviews with students, Clark discovered that for students to understand the chain rule, they
needed to construct schemas linking function composition and differentiation. Maharaj
generalized this by looking at functions and derivatives in general. He notes that not only do
students need to have an action and process understanding of these concepts, but they also need
to be able to assess the properties of a function as an object that allow a particular differentiation
rule to be applied (such as function composition requiring the chain rule). Beyond that, building
the arsenal of differentiation tools and recognizing various function types that cue when and how
to use the differentiation rules is really part of generating schema for derivatives and functions
and making connections between them (Maharaj, 2013).

Based on this prior research, it should come as no surprise that the students participating
in our study struggled to make all of the connections between functions, operations on functions,
and differentiation. Students who made operation/differentiation commutativity errors often
demonstrated action and process level understanding of functions and of derivatives through

correct algebraic manipulations and through applications of the more basic differentiation rules



51

(i.e. the power rule, the sum rule, and the constant multiple rule). Where students began to
struggle with SMP errors was in contexts where multiple concepts were rolled in to one, such as
function composition, powers, and the chain rule, or multiplication, trigonometric functions, and
the product rule. As Clark (1997) and Maharaj (2013) point out, these problems require students
to combine ideas about each of the differentiation rules, functions, derivatives, and operations on
functions, as well as the correct sequencing of processes to truly understand the solution to the
problem. The struggles that students had with correctly linking each of these components can be
viewed as an indicator that they have not yet progressed to the object and schema stages of
APOS. Furthermore, these findings demonstrate a need for more focused research and
classroom instruction on the role of SMP in calculus. Although SMP may seem simple like a
simple set of rules to remember, looking through the lens of APOS it becomes apparent that its
ubiquity as well as its intersections with many other concepts requires students to engage in

higher-order thinking in order to understand the sequencing of mathematical processes.



52

CHAPTER 6
CONCLUSION

This study demonstrated that SMP transcends levels of mathematics. Our analysis of
student work in a one-semester calculus course indicated that not only do students at the
undergraduate level still struggle with PEMDAS-type algebra errors but they also encounter new
sequencing problems as they are introduced to operations specific to calculus such as
differentiation and integration. Specifically, we found that students often make
operation/differentiation commutativity mistakes, particularly with respect to the product, chain,
and quotient rules. That is, students frequently assume that the derivative of the product of two
functions is the product of the derivatives of those two functions. Likewise, students equate the
derivative of a quotient of two functions with the quotient of the derivatives of those functions or
the derivative of composed functions as the composition of the derivatives of the functions. Up
to a quarter of the students in our study made these SMP types of errors on given assessments,
demonstrating that it is an issue worth further discussion.

Better pre-algebra and algebra instruction is not sufficient to strengthen students’
development of SMP. As students are introduced to new operations and new commutativity
rules in calculus, focus on SMP still needs to be strong at that level of mathematics. Since
combining concepts requires the development of schemas (as per APOS theory), it is not enough
to assume that students will extend their understanding of order of operations in middle school to
SMP in calculus. Furthermore, interchangeability of order becomes less of a given as students
move upward in mathematics; differentiation and integration often do not commute with basic

mathematical operations, and once linear algebra or abstract algebra are reached, students begin
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encountering new algebraic structures that do not necessarily obey the commutative law. Thus it
cannot be assumed that instructors do not need to directly address SMP past algebra.

Theories about student learning in mathematics provide clues about why correctly
sequencing operations in calculus may be so difficult. Often, understanding the correct order of
operations requires students to be flexible with how mathematical notation is presented, which in
turn requires students to have an advanced ‘procept’ level understanding of the concepts
involved. Understanding the connections between functions, derivatives, and other operations
requires students to begin to develop a structural understanding of each of the notions
individually, and beyond that to begin to build schemas that organize and link the concepts with
one another.

Our study did indicate that students might find certain strategies useful for making
procedural and conceptual connections, namely the use of demarcating symbols and rule-
naming. Whether self-imposed or required in the problem, we found some evidence to indicate
that students who identified differentiation rules at each step as they attempted to find a
derivative were less likely to make SMP-type errors. We also discovered that students used
parentheses, brackets, or labelled individual functions in the problem as a way of making sense
about the type of differentiation problem at hand.

Implications for Future Research

Certainly many questions remain to be answered about the sequencing of mathematical
processes in calculus. Our study primarily investigated the occurrences of SMP-type errors in
product, chain, and quotient rule problems. There are undoubtedly other areas of calculus (and

courses beyond calculus) in which SMP plays a large role. Understanding where SMP issues are
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most prominent could help us better dissect student learning in this area and in turn assist us in
developing better instructional strategies and interventions that target these SMP errors.

Further studies about student strategies such as rule-naming and demarcation symbols
and how they affect students’ propensities to make SMP-errors are also warranted. In particular,
conducting talk aloud interviews with students as they apply these strategies may help us
understand how they interface with students’ sense-making processes. Related to this,
investigating how the specific names of rules cue students’ thoughts would also be a worthwhile
venture. Would naming rules after processes instead of concepts help students make stronger
connections between functions, derivatives, and differentiation rules?

Symbols have been shown to play an important role in students’ understanding of
mathematical processes. It is not entirely clear however, how symbol choice might impact
students’ sense-making about SMP or student development in creating conceptual and
procedural links. For example, does using parentheses versus using a - symbol make a difference
in students’ abilities to make connections between the process of multiplication and the concept
of product? Does the choice of symbol affect students’ likelihood of choosing the correct
differentiation rule to apply to the problem? These are also questions worthy of further
investigation.

Finally, this study primarily focused on SMP in the context of differentiation problems.
Our preliminary investigation into the differences in SMP errors in integration compared to
differentiation was inconclusive, largely due to the lack of suitable problems for analysis.
Designing an assessment that allows for direct comparison of operation/differentiation
commutativity errors with operation/integration commutativity errors would provide much more

insight into how students combine and sequence mathematical processes. Overall, SMP is an



important and relatively unexplored area of mathematics education research, and we hope that

this study encourages others to dive in and investigate further.
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APPENDIX

A: Spring 2018 MATH 1310 Syllabus

Math 1310-001: Calculus, Systems, and Modeling (CSM)  Course Syllabus Spring 2018
Class Meetings: Monday through Friday 9:00-9:50 AM, in BESC 1B81.
Instructor: Albany Thompson (email: albany.thompson@colorado.edu)

Office Hours: Tuesdays and Thursdays 10-11 AM in Math 216, and Fridays 11 AM-12 PM in
MATH 175.

Teaching Assistant: Natalie Coston (email: natalie.coston@colorado.edu)

Learning Assistant: Abigail Tubman (email: abigail.tubman@colorado.edu)

Prerequisites. Requires prerequisite course of APPM 1235 or MATH 1021 or MATH 1150 or
MATH 1160 (minimum grade C-) or an ALEKS math exam taken in 2016 or earlier, or placement
into caleulus based on your admissions data and/or CU Boulder coursework.

Course website. Please see

http://math.colorado.edu/~stade/CSM/CSM_Spring2018.html

for homework assignments and other stuff relevant to the course.

Text. Caleulus in Contert, Revised, by Stade, Callahan, et al., is free, and can be found online at
http://math.colorado.edu/~stade/CSM/textbook.html

(The text is still under development; this is not the final version.) There is also a link to this text
on our above course page.

Technology:

e Sage. In this course, we will make regular use of a FREE mathematical software package called
Sage, to model, program, graph, etc. To this end, you will NEED to set up a free account on the
CU Sage server. Instructions on how to do this, and further information on the Sage package
and on Sage requirements for this course, can be found by clicking on the link entitled “The
Sage Page” under the “General Information” header of our above course page.

For this course, you will be reguired to bring to class, on selected Tuesdays and Thursdays (and
sometimes Fridays), a device — laptop or tablet — with wifi and a web browser. You will be
using this device to ereate and run Sage code in your tutorials (see item (b) on the next page).
Your instructor will provide more information on this requirement.

e Calculator. For exams in this course, you will need to own an approved calculator that has
keys for basic operations (+,—, x, and <), and for basic transcendental (trigonometric and
exponential /logarithmic) functions, but does NOT have programming or graphing features.
Permissible calculators (all of which are in the same price range) are:

— Sharp EL-500W Electronic Calculator — the CU Bookstore should have tons of these; see
http://www.cubookstore.com/p-68896-sharp-electronic-calculator.aspx

Texas Instruments TI-30Xa Scientific Calculator

Texas Instruments TI-30XIIS Scientific Calculator

Hewlett Packard HP6S Scientific Calculator

Casio FX-260 Solar Scientific Calculator
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Math 1310-001: Calculus, Systems, and Modeling (CSM)  Course Syllabus Spring 2018

If you have a calculator that you would like to use for exams, and it is NOT one of the above,
you MUST get it approved by your instructor BEFORE the day of the exam.

Mathematics Academic Resource Center, also known as MARC. You may scck assis-
tance with your math questions at the MARC, which will be open (excluding holidays) Monday
Thursday 9 AM-9 PM and Friday 9 AM-4 PM, in Math 175.

Please see our course web page for the schedule of MARC tutors who are most familiar
with, and will be most able to help you with, the material for this course.

Requirements and grades. Your grade in this course will be computed on the basis of:

(a) Exams (68% of your final grade). You will have three evening exams, each worth 16% of
vour final grade. These exams will be take place from 6:15 until 7:45 PM on the following
Wednesdays:

February 7, March 7, and April 11, 2018 (location to be determined).

If you miss an evening exam and de not have a valid excuse, you will receive a zero for that exam
grade. If you do have a valid excuse, we will compute your course grade from the rest of the data
we have; that is, vou will not be penalized for missing the exam. (A note from a doctor will be
considered a valid excuse, as well as a note from the Office of the Dean of Students. No excuse
will be considered valid unless it is documented.)

We will review for each evening exam in class on the day before, and the day of, the exam itself.

You will also have a final exam, worth 20% of your final grade, on
Monday, May 7, 10:30 AM-1:00 PM (location to be determined).

(b) Tutorials (a.k.a. “worksheets”) (10% of your final grade). There will be group
assignments to be completed in class on Tuesdays and Thursdays. (On certain weeks, e.g. the
week before an evening exam, these tutorials may instead be on Thursdays and Fridays.)

These tutorials will be distributed in class, and you will work on them with your classmates in
groups of four or so. Your instructor (on Tuesdays), or your Teaching Assistant (TA) and
Learning Assistant (LA) (on Thursdays), will be present during tutorials to facilitate your work,
but the goal is for you (and your groupmates) to work through, and complete, these worksheets on
your own as much as possible.

To get full credit for a tutorial, you must attend class on that day, and participate in your group’s
explorations and discoveries. Another really good reason to take part in tutorials is: material
covered in tutorials WILL be on your exams.

Missed tutorials cannot be made up; if you miss a tutorial, you will receive a zero for that tutorial
grade. If you are more than five minutes late for any tutorial, you will get at most half credit for
that day. However, we will drop your lowest five tutorial scores.

(c) Homework (22% of your final grade). Homework for this class will come in three flavors:
(i) Individual written assignments (worth 10% of your final grade); (ii) “Mini Project” assignments
(worth 6% of your final grade); and a Term Project, which will be due in three stages (collectively
worth 6% of your final grade).

Mini Projects and the Term Project are to be completed collaboratively, in the same groups that
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you work with for tutorials. We will discuss formation of groups during the first week of classes.

All assignments will be posted on our course web page. Missed homeworks cannot be made up
Jor any reason; if you miss a homework, you will receive a zero for that homework grade. We will
drop your lowest two individual homework scores.

Note: Scores for your Mini Projects and Term Project may NOT be dropped. More details on
the Mini Projects and Term Projects will be supplied in class.

Please see the “Homework Assignment Guidelines” link under the “General Informa-
tion” header of our course page for important instructions on completing Individual,
Mini Project, and Term Project assignments!!!

Other important course information. Please see our course web page for important pol-
icy information regarding disabilities, religious holidays, classroom behavior, discrimination and
harassment, and the CU Honor Code.



MONDAY

MLK Day: no classes

B: Spring 2018 MATH 1310 Daily Schedule
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TUESDAY Introduction and tutorial: CSM and SIR
WEDNESDAY Section 1.2: The spread of disease: the S/IR model
THURSDAY Tutorial: SIR

FRIDAY Section 1.3: Prediction using SIR

MONDAY Section 1.3: Prediction using SIR (continued) First individual assignment due
TUESDAY Tutorial: Graphing with Sage, part |

WEDNESDAY Section 1.4: Functions and graphs

THURSDAY Tutorial: Graphing with Sage, part Il

FRIDAY Section 1.5: Linear functions Second individual assignment due

MONDAY

Section 2.1: Rates of change

TUESDAY Section 2.2: Local linearity (differentiability) First mini project due
WEDNESDAY Section 2.3: The microscope equation

THURSDAY Tutorial: Secant and tangent lines; rates of change

FRIDAY Tutorial: SIR and Euler's method (review) Third individual assignment due

MONDAY

Section 2.4: A global view

TUESDAY Review for Exam 1

WEDNESDAY Review for Exam 1 Exam 1, 6:15--7:45 PM, in HUMN 1B50
THURSDAY Tutorial: Functions and derivatives

FRIDAY Section 2.5: The chain rule

MONDAY Section 2.5: The chain rule (continued)

TUESDAY Tutorial: The chain rule

WEDNESDAY Section 2.6: More differentiation rules

THURSDAY Tutorial: More differentiation; the microscope equation

FRIDAY Section 2.6: More differentiation rules (continued) Fourth individual assignment due

MOMDAY Section 3.1: The exponential function

TUESDAY Tutorial: Population growth with Sage

WEDNESDAY Section 3.2: Modeling with differential equations Second mini project due
THURSDAY Tutorial: Monomers, Dimers, and Trimers

FRIDAY Section 3.3: Modeling populations Fifth individual assignment due




MONDAY
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Section 3.4: Modeling other phenomena
TUESDAY Section 3.5: The logarithm function
WEDNESDAY Section 3.5: The logarithm function (continued)
THURSDAY Tutorial: Derivatives of the logarithm function
FRIDAY Tutorial: More modeling with differential equations Sixth individual assignment due

MONDAY Section 3.5: The logarithm function (continued)

TUESDAY Review for Exam 2

WEDNESDAY Review for Exam 2 Exam 2, 6:15--7:45 PM, in HUMN 1B50
THURSDAY Tutorial: Exponential growth and decay

FRIDAY Section 3.6: Inverse functions and the arctangent function

MONDAY

Section 4.1 Power and energy

TUESDAY Tutorial: Arctangent derivatives

WEDNESDAY Section 4.2: Accumulation functions

THURSDAY Tutorial: The second derivative

FRIDAY Section 4.3: Riemann sums Seventh individual assignment due

MONDAY

Section 4.4: The definite integral Term project part 1 (proposal) due
TUESDAY Tutorial: Riemann Sums
WEDNESDAY Section 4.5: The Fundamental Theorem of Calculus
THURSDAY Tutorial: Polyhedra
FRIDAY Tutorial: Spirographs Eighth individual assignment due

MONDAY SPRING BREAK—NO CLASSES
TUESDAY SPRING BREAK—NO CLASSES
WEDNESDAY SPRING BREAK—NO CLASSES
THURSDAY SPRING BREAK—NO CLASSES
FRIDAY SPRING BREAK—NO CLASSES

MONDAY Section 5.1: Antiderivatives

TUESDAY Section 5.1: Antiderivatives (continued) Third mini project due
WEDNESDAY Tutorial: Riemann sums and Ebola

THURSDAY Tutorial: The Boulder Flood

FRIDAY Tutorial: Basic Integration Ninth individual assignment due




WEEK 18: APRIL 9-APRIL 13
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MONDAY

Tutorial: Integration and accumulation

TUESDAY Review for Exam 3

WEDNESDAY Review for Exam 3 Exam 3, 6:15--7:45 PM, in HUMN 1B50
THURSDAY Tutorial: Coin flipping and histograms

FRIDAY Section 5.2: Integration by substitution

WEEK 14: APRIL 16-APRIL 20

MONDAY Section 5.2: Integration by substitution (continued)

TUESDAY Tutorial: Integration by substitution

WEDNESDAY Section 5.3: Separation of variables Term project part 2 (first draft) due
THURSDAY Tutorial: Separation of Variables

FRIDAY Section 6.1: Relative frequency density Tenth individual assignment due

WEEK 15: APRIL 23-APRIL 27

MONDAY Section 6.1: Relative frequency density (continued)

TUESDAY Section 6.2

WEDNESDAY Section 6.2 (continued)

THURSDAY Tutorial: Probability and Statistics

FRIDAY Section 6.2 (continued) Eleventh individual assignment due

WEEK 16: APRIL 30-MAY 4

MONDAY

Section 6.2 (continued)

TUESDAY Section 6.2 (continued) Term project part 3 (final version) due
WEDNESDAY Final Exam Review

THURSDAY Final Exam Review Twelfth individual assignment due
FRIDAY Reading Day: no classes

FINAL EXAM MONDAY, MAY 7, 10:30 AM -- 1 PM,

IN HUMN 150 (NOT HUMN 1B5011)




C: Fall 2017 MATH 1310 Second Exam

MATH 1310: CSM
October 18, 2017

SECOND EXAM

I have neither given nor received unanthorized assistance on this exam.

Name:
Signature:
Section: O 001 ERIC STADE .......oviiiniiinnnn... (11aM)
O 002 NATALIE COSTON .....viviiiuniinnn.nn (1pm)
O 003 ALBANY THOMPSON ................... (2PM)

You must show your work on every problem of this exam, and
provider units with your answers wherever appropriate.

Please supply at least five decimal places for all numerical answers

(but leave out trailing zeroes; e.g. you don’t need to write 0.58000 if the

exact answer is 0.58).

GOOD LUCK!!

DO NOT WRITE IN THIS BOX!
”] Problem | Points Score

1 16 pts
6 pts
15 pts

9 pts
12 pts
15 pts
12 pts

8 15 pts
TOTAL | 100 pts

OO W N
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1. Find the following derivatives. Do not simplify vour answer.

(a) ;; [2* — 3cos(x) + 2]

1 Vab
\3/:?4——34-—
T x
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© <

(d) .

[eln(gmtms(”“’) -ln(etan(’:))} Hint: simplify first; then differentiate.

1.2 4 31n(:1:)
o |
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2. Suppose that

Find f’(3), given that ¢(3) = 2 and ¢/(3) = —1.
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3. You have one of those fancy ice spheres, and vou place it in a glass of water. When you first
take it out of the freezer, the radius of the sphere is 2 inches, and you observe that the radius
of the sphere is melting at a rate of 0.5 inches per hour. Recall that the volume of a sphere is
V= dard,

3

(a) What is the radius of the ice sphere after 2 hours? Include units.

(b) What is the volume of the ice sphere after 2 hours? Include units.

(¢) How fast is the volume of the ice sphere shrinking after 2 hours? include units.
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4. Find

€ [3 cos(arctan(z)e™“)].

dx

At the end, please list all the rules you used, and how many times you used each. (The possible
choices for rules are: Constant Multiple, Sum, Chain, Product, or Quotient.)



5. Let f(x) = v3+ 27,

(a) Write down the Microscope Equation for f(x) at = 1.

o which of the following quantities does the microscope equation, from part (a) of this
b) To which of the followi tities does tl i tion, f t f thi
problem, give a better estimate (circle the correct answer):

(i) /3 + (1.05)3 (ii) /3 + (7)°

Please explain briefly, without using a calculator. (Though you may check your answer with
a calculator if you would like.)
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(¢) A graph of f(x) = v3+ 2 appears below.

il.

iii.

y

1 1 +|Ax

On the above graph, draw the line tangent to y = f(z) at x = 1.

X

Let Az be a small number. Does the microscope equation, from part (a) of this
problem, give an overestimate or underestimate to /3 + (1 + Az)*? Circle the correct

answer:
(A) underestimate (B) overestimate

Please explain briefly, by referring to the graph above.

On the above graph, clearly mark (with dots) the three points with these coordinates:

(A) (L, f(1))  (B) (1+ Az, f(1+ Axz)) (C) (1 + Az, f(1) + f'(1)Az).

Put the correct letter ((A), (B), or (C)) next to each dot.

(d) Approximate v/4.331. Hint: 4.331 = 3 + (1.1)3.
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6. On the axes below is a graph of the function y = sin(x), for =5 <z < 3.

(a) Explain why reflecting y = sin(x), on this domain, about the line y = x gives a new function,
which we’ll call y = arcsin(z).

(b) Which of the following gives the graph of y = arcsin(x)? Circle the letter ((A), (B), or (C))
below the correct graph.

¥

(A) (B) (©)
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Find di[arcsin(:t:)]._ as follows (fill in the blanks; there are six of them).
T

Since the function y = arcsin(x) takes an input x to an output arcsin(z), we know that the
reflection y = sin(x) must take an input arcsin(x) to an x. That is,

sin(arcsin(z)) = . (1)
We differentiate both sides of this equation to get
finaresin(2))] = 1
— [sin(arcsin(x))| =
dx

or, using the chain rule on the left,

d
o & =1.
cos( ) iz ]
Dividing by cos(aresin(x)) then gives
d 1
i ()] = ) 9
dx [arcsin(x)] cos(arcsin(x)) @)

Now for any real number 8, we have cos(f) = /1 — (sin(#))?. But then

cos(aresin(x)) = /1 — (sin(arcsin(z)))? = \/l —( )2,

the last step by equation (1). Putting this back into equation (2) gives

d ,
e [aresin(x)] =

and we're done.

What is the slope of the line tangent to the graph of y = arcsin(z) at « = 07 Use the
previous part of this problem to answer. Please express your answer as a whole number.
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7. Allison is an eccentric cat lover. In 1993 she owned only 3 cats. Assume that the number of cats
that Allison owns grows exponentially.

(a) Write an initial value problem to model the growth of the number of cats that Allison owns
C(t).

(b) In 1996, Allison owned 6 cats. Given this additional information, write down a formula
C'(1) to model the number of cats that Allison will own after ¢ years (measured since 1993).

(¢) In what year does Allison own 100 cats?

(d) According to your model, how many cats does Allison own in 20177



8. Consider the function f(x) = —%1:3 - %.‘r.'z + 22 + 2 between & = —3 and & = 2. The graph of

f(x) is shown below.

3 1Y
2
14+
I I z
t 1
1 2
14
_9 4
34

(a) Find f'(x).

(b) Find f"(x).

(¢) On the graph, indicate the points where the function f(z) changes from increasing to
decreasing, or from decreasing to increasing. Use your answer to part (a) to find the exact
values of 2 where this occurs. Hint: —22? — 32 + 2 = —(2 + 2)(22 — 1).

(d) On the graph, indicate the point where the derivative, f'(x), changes from increasing to
decreasing. Use your answer to part (b) to find the exact value of x where this occurs.

(e) What is the slope of f(x) at the x-value that you found in part (¢)?
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D: Spring 2018 MATH 1310 Homework

Math 1310: CSM Spring 2018

Individual Homework #8: Due in class Friday, March 23

Part A: Integrals and Accumulation. Important note: the Sage program RIE-
MANN.sws, which you will need for parts of this assignment, may be found on our course
page, under the link that says “The Sage Page.”

Please read Sections 4.1-4.4. Also please do:

(a) Section 4.1 (pages 197-199): Exercises 2a, 4.

(b) Section 4.2, Part 1: Work as force x distance (page 206): Exercise 2abed.

(¢) Section 4.3, Part 1: Riemann sums “by hand” (pages 214-215): Exercises 1, 3.
(d) Section 4.3, Part 2: Using RIEMANN.sws (page 215): Exercises 4, 5, 6, 8.
(

¢) Section 4.4, Part 1: Evaluating integrals geometrically (pages 225-226): Exer-
cises labced, 4.

(f) Section 4.4, Part 2: Integrals and Riemann sums (pages 226-227): Exercise 7ac.

Part B: Differentiation review. The GOAL of the following exercises is explore differ-
entiation rules and formulas through an “order of operations” perspective.

(a) State whether each of the given statements is true or false. If the statement is true,
identify it by name. If it's false, make it true by replacing everything that comes after
“is equal to” with appropriate verbiage, and identify the corrected statement by name.

Examples:

(i) The derivative of the sum of two functions is equal to the sum of the derivatives of
those functions.
Answer: True (sum rule).

(ii) The derivative of the product of two functions is equal to the product of the deriva-
tives of those functions.
Answer: False. The derivative of the product of two functions is equal to the

first function times the derivative of the second, plus the second function times the
derivative of the first (product rule).

OK, these ones are for you. (Please provide an Answer according to the instructions
above, and as illustrated in the above examples.)

(iii) The derivative of a constant times a function is equal to the constant times the
derivative of that function.

(iv) The derivative of a chain of two functions is equal to the chain of the derivatives
of those functions.

(v) The derivative of the quotient of two functions is equal to the top function times
the derivative of the bottom, minus the bottom function times the derivative of
the top, all divided by the bottom function squared.
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Listed below are eight mathematical statements: not all of them are true! Identify
each statement as being either a correct or an incorrect version of a known differen-
tiation rule.

Examples:

d
(i) E[ f(x)g(z)] = f'(z)¢'(x) Answer: product rule, incorrect version
(ii) d—[cf(;c)] =cf'(x) Answer: constant multiple rule, correct version
T

OK, here are the rest. (Please provide an Answer according to the instructions above,
and as illustrated in the above examples.)

(i) [7(@) + 9(x)] = '(x) +0'(2)

(iv) Ir

() [ (g@)] = (5 )

(vi) d [f(vb)} _ g(x)f'(z) — f(x)g' (x)
da [ g(x) (g(x))?
. d S
(vii) - [f(9(x))] = fg(x))g (x)
d

(viii) —J[f(x)g(:f:)] = f(x)¢'(x) + g(x) f'(x)



Math 1310: CSM

E: Spring 2018 MATH 1310 Quiz Version A

Derivative review quiz ~ Name:

Find f'(z) if

f(z) = sec(z*) In(2? + 1).
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F: Spring 2018 MATH 1310 Quiz Version B

Math 1310: CSM Derivative review quiz ~ Name:

Find f'(x) if

f(x) = sec?(x) In(2® + 1).

Please also list all of the rules you used and how many times you used ecach. (The

possible choices for rules are: Constant Multiple, Sum, Chain, Product, or Quotient.)



G: Spring 2018 MATH 1310 Third Exam

MATH 1310: CSM
APRIL 11, 2018

THIRD EXAM

I have neither given nor received unauthorized assistance on this exam.

Name:
Signature:
Section: O 001 ALBANY THOMPSON ......covveininnn... (9aM)
O 002 SARAH ARPIN ............coviuinnn.. (11aM)
O 003 ATHENA SPARKS ..........covvuunnnn.. (2pM)

You must show your work on every problem of this exam, and provide units

with your answers wherever appropriate.

Please supply at least six decimal places for all numerical answers, unless
otherwise specified (but leave out trailing zeroes; e.g. you don’t need to write

0.580000 if the exact answer is 0.58).
Make sure your calculator is in radian mode!!!
GOOD LUCK!

DO NOT WRITE IN THIS BOX!

Problem | Points | Score

1 10 pts

2 12 pts

3 12 pts

4 14 pts

5) 16 pts

6 12 pts

7 12 pts

8 12 pts
TOTAL | 100 pts
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1. Evidence of life has been discovered on the faraway Planet X! There is no life currently on the
planet, but fossils have been found which indicate that life once existed on this planet.

In order to date the fossils, scientists are using a new chemical compound, CSM, which is known
to decay exponentially. It is known that the half-life of CSM is 6000 years. Scientists find a
Planet X fossil which contains 23% of the CSM that it would have started with. How old is
the fossil? Round your final answer to the nearest year, but keep at least 6 decimal places of
accuracy in your calenlations.



v =
2. Given the fact that / f(x)dx =3 and j
-2 =2
integrals:

()

dx
Joo 2

(a)

(c) /_ (g(z) + z)de

2

0

4
(d) If/ flz)de =7, find | f(z)dz.

g(z)dx

83

—2, find the values of the following definite



3. Given the graph of f(z) = |z — 1| — 3 below, evaluate the following definite integrals:

.1y
2 -
1 -

\ \ | xT

—4 -3 5
(1: T 3)
4
(a) fla)dx

&4
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4. A graph of the function f(x) = In(z) + 1 is shown below.

(a) On top of the above graph, draw the rectangles corresponding to a left endpoint Riemann
sum approximation, with n = 4 rectangles of equal baselength, to the area

/  fa) do.

3
(b) Use the rectangles in part (a) to provide a Riemann sum approximation to / Sf(x) dx.
J1

Please supply at least six decimal places.



(¢) Is your approximation in part (b) an underestimate or an overestimate? Please explain
geometrically, by referring to the graph above.

(d) Given that F(z) = xIn(x) is an antiderivative of f(x) = In(z) + 1, calculate the actual arca
3
/ f(x) dz. Please provide an answer in terms of the natural logarithm function, and also
1

supply a decimal answer with at least six decimal places.
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5. For this problem, please be careful with your units. (It may help to recall that 1 hour = 60
minutes.)

A red car, a green car, and a blue car enter a drag race in the desert.

(a) The red car has a constant velocity of 80 mi/hr. (It can instantly jump to 80 mi/hr from

start, and maintain that speed.) How far has the red car gone after 1 minute? Include units
in yvour answer.

(b) The green car has a velocity given by

{50 mi/hr  for the first 30 seconds,
u(t) =

90 mi/hr for the next 30 seconds.

How far has the green car gone after 1 minute? Include units in your answer.



(¢) The blue car has a velocity v(t) given by

v(t) = 1200V,

where v(t) is in mi/hr. How far has the red car gone after 1 minute? Include units in your
answer.

(d) If the race was 1.5 miles long, can you tell who won? Hint: compare your answers to parts
(a), (b), and (c) of this problem. Please explain your answer.

88



6. Find the following derivatives involving the arctangent function.

(a) ;;[2 arctan(3z) + 3z

(b) % [In(z) arctan(8x)]

©

- [earctan(:r)]

d .arctan(z)

(@) = |

r

&9



7. Use the Fundamental Theorem of Calculus to find the following indefinite integrals.

(a) j (3:5—|—5a:3—|—%rr+1) dx

(b) / (§+e."”"+2) dx

(c) ] ({‘/I + 6sin(3x) + 9"’) dx

1 1 1
(d) /(:L_'+l+:£2+.’?:’> dx
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8. This problem involves the contangent function cot(z), defined by

cos(x)

cot(x) = Sn(o)”

On the axes below is a graph of y = cot(z), for 0 < z < 7.

y

4

2 ?
i
3x

1§ 1

-4/

(a) Explain why reflecting y = cot(z), on this domain, about the line y = 2 gives a new function,
which we’ll call y = arccot(x).

(b) Which of the following gives the graph of y = arccot(x)? Circle the letter ((A), (B), or (C))
below the correct graph.

y y 2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A z
3r 3n s
4 4
x T
: 2 -4 -2 2 4 °
x z .
4 g -z
—4 2 2 4 F -4 2 2 4 o —

(A) (B) (€)



(c)

For this part of our problem, we will be using the fact (which is not hard to show) that

%[cot(m)] = —(1 + cot*(x)).

Find L;—E[arccnt(ﬁ:)J, as follows (fill in the blanks; there are five of them).
oa;

92

Since the function y = arccot(x) takes an input x to an output arccot(x), we know that the

reflection y = cot(x) must take an input arccot(z) to an output x. That is,
cot(arccot(x)) =
We differentiate both sides of this equation to get

%[cot(arccot(:ﬂ))] =1

or, using the chain rule and the fact that d[cot(z)]/dz = —(1 + cot?*(z)) on the left,

d

—(1 + cot?( ))'E[ =1

3

Now again, cot(arccot(x)) = 2 by (1), so equation (2) gives

d
—(1+ )a[ar(,(.ot(.f)] =1
or, dividing by —(1 + z?),
d
E[alccot(x}] = ,

and we're done.

(1)



H: Spring 2018 MATH 1310 Final Exam

MATH 1310: CSM
MAY 7, 2018

FINAL EXAM

I have neither given nor received unauthorized assistance on this exam.

Name:
Signature:
Section: O 001 ALBANY THOMPSON . ....oiuiiennn.n.. (9aM)
O 002 SARAI ARPIN . ......coiviniininn.n. (11an)
O 003 ATHENA SPARKS ........cvviiiiiinnn.. (2pM)

You must show your work on every problem of this exam, and provide units

with your answers wherever appropriate.

Please supply at least six decimal places for all numerical answers, unless
otherwise specified (but leave out trailing zeroes; e.g. you don’t need to write

0.580000 if the exact answer is 0.58).
Make sure your calculator is in radian mode!!!

GOOD LUCK!

DO NOT WRITE IN THIS BOX!
Problem | Points | Score
12 pts
7 pts
8 pts
8 pts
12 pts
10 pts
15 pts
12 pts
8 pts
8 pts
TOTAL | 100 pts

—

[<=] v R IEN Ji=x] ) BEPEN LR

=t
o

93



94

1. Find the derivative of each of the following functions. You do not need to simplify your
answers.

(a) f(x) =5+ w225 + 5

=I
]
o

(b) h(x)=

g
+
]

this problem is continued on the next page
P pag



(c) p(r) = (42® + 5) tan(3x)

(d) wv(x) = 3=

95



2. Solve the initial value problem

dy
dx

Your final answer must be written in the form

y = some function of z.
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3. The mean weight of a Gala apple is 76 grams. The owner of MacDonald’s orchard wants to
investigate whether their Gala apples weigh 76 grams, on average.

The owner collects and weighs a random sample of 40 apples. The mean of this sample is 80.4
grams and the standard deviation is 2.8 grams. Test, at the 95% level, the null hypothesis
Hy: =76 grams
against the alternative hypothesis
Hy @ pu # 76 grams,

where p is the mean weight of a Gala apple from MacDonald’s orchard. Please show your
work, and state the clearly the result of your hypothesis test.
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4. You and your research group completed a study, and hired a statistical group to create two
confidence intervals for you, based on your sample data. One of the intervals below is a 90%
confidence interval, and the other is a 99% confidence interval, created using the same data.

(197.1,202.9) , (198.2,201.8)

(a) Which is the 90% confidence interval, and which is the 99% confidence interval? Explain
your answer thoroughly.

(b) What was the mean of the sample from which these confidence intervals were calculated?

98



5. Below is the graph of the function f(z) = —%(z — 1) +5.

&
N
-1 1 2 3 4

(a) On top of the graph, draw the rectangles corresponding to a left endpoint Riemann sum
approximation, with n = 4 rectangles of equal length, to the area

./04 f(z)dx.

(b) Using the rectangles you drew in part (a), together with the equation of the function

pictured (f(z) = —1(z —1)* +5), provide a Riemann sum approximation to f04 flz)dz.

(this problem is continued on the next page)
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(c) On what subinterval of [0,4] is your Riemann sum from part (b) of this problem an
overestimate?

(d) On what subinterval of [0.4] is vour Riemann sum from part (b) of this problem an
underestimate?

4
(e) Find the exact value of/ f(x)dz. Hint: it might help to multiply f(x) out: that is,
0

¢
f(m):—%(m—])z—kﬁ:—%(azz—2m+1)+5:—%m2+.’r+§.
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6. Consider the graph of the function
flx)=5(x+1)*+20

below.

100 +

50 4
]
. / : : -
—_ -2 -1 1 2
—50 +

(a) Explain how, in general, the derivative of a function at a point is related to the tangent
line to the function at that point.

(b) Find the equation of the tangent line to f(x) at x = —2. Sketch your answer on the
graph above.
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7. Calculate the following definite and indefinite integrals using substitution. Please show vour
work. In particular, clearly specify what you are calling u, and what is du.

(a) /Gt"(ﬁt5+2)“dt

) [ -t
’ . r[h‘—}—ln(.'i)(qr
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In ()
(c) / e’ sin(e”) dx
1

n(m/2)
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8. Situated on the border between Xanadu and Cygnus X-1 is a town called La Villa Strangiato,
or LVS. LVS has a population of 100,000 demogorgons. A certain mysterious disease (rumored
to be contracted from cats) is spreading through this demogorgon population, according to
the usnal STR equations:

S'=—aSI,
I'=" aSI -0l
R = bi.

Here S,1, and R denote the number of demogorgons susceptible, infected, and recovered,
respectively, at any given time £. We agree that f is measured in days, and that S, I, and R
are measured in individual demogorgons.

It’s known that, for this particular disease, it takes 30 days on average to recover. (That is,
on average one stays infected for 30 days.)

It’s also observed that, after 10 days, there are 50,858 demogorgons still susceptible and 45,487
demogorgons infected — that is, S(10) = 50,859 and 7(10) = 45,487. It’s also noted that, six
hours (one quarter of a day) later, there are 47,388 demogorgons still susceptible — that is,
S5(10.25) = 47,388.

Assume throughout this problem that the total number of demogorgons always remains the
same.

(a) Using information given above, find the average rate of change of the susceptible popu-
lation from ¢ = 10 to ¢ = 10.25. Please include units in your answer.

(b) Find the approximate value of the transmission coefficient a. Hint: use your answer to
part (a) of this problem, above, as an approximation to S’(10). Then use one of the STR
equations. Please write your answer to at least siz decimal places, and include units in
your answer.

(this problem is continued on the next page)
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(¢) Using your answer to part (b) above. and additional information given in this prob-
lem, find the approximate value of Sp, the threshold value of S, to the nearest whole
demogorgon.

(d) Now approximate Sr in a different way, namely: by reading it off of the graph below.
(A rough estimate is fine.) Please show your work, by drawing appropriate lines on the
graph if necessary, and/or explain your answer. (Note: your answer might be somewhat
different from your answer to part (c¢) above; that’s the thing about estimates.) Again,
please include units in your answer.

Number of demogorgons

100000

T T T

80000

60000

40000

20000

T T T T

Time t

20 40 60 80
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9. The entire population of CU students is asked to rate this very story problem on a scale of
0-4, with 0 denoting “Really?” and 4 meaning “Even better than CSM!" (A rating of 4 is
not really possible; this is a hypothetical problem.)

CSM instructors Dr. Derivative and P. Probably, PhD are too tired at the end of the semester
to review all of the ratings, so they take a random sample of n = 100 CU students, and observe
the following ratings:

Rating (0|12 |3 4
Frequency | 10 [ 10 { 30 | 30 | 20

(a) Compute the mean T and standard deviation s of the above ratings.

(b) What proportion of the above data is within one standard deviation of the mean? (“Pro-
portion” means the total number of data points satisfving the given criterion, divided

bv the number of data points in the entire data set.)

(this problem is continued on the next page)
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(¢) Graduate student Sam Stats computes the mean rating of every single size-100 random
sample of CU students. Which of the following graphs - (i), (ii), or (iii) — do you
think best reflects the distribution of these sample means? Please explain. (Describe

completely how you are eliminating the incorrect choices.)

y

2 2.4 28"
(1)
y
~03 03 .
(ii)
y
X

2.4 4.8
(iif)
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10. Each vear, the vearly snowfall total in Sapporo, Japan is recorded. Here is a frequency table
for this data (in inches) as measured over a period of 75 years:

Snowfall (inches) | Frequency RFD

[0,100) 4 0.000533
[100,200) 10

[200,225) 17

[225,250) 33 0.017600
[250,275) 11

(a) Complete the third column of the table, by filling in the missing RFD values.

(b) On the axes below, draw an RFD histogram for this data:
I | I | |

0.018

I
1

0.015

0.012

o)
P
[aef

|
|

0.009

0.006

|
|

0.003

| | | | |
0.000 100 200 225 250 275

Snowfall

(¢) Find the area under your RFD histogram on the interval [200,250), and explain the
meaning of this area.



