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Direen, Randal Hugh (Ph.D., Electromagnetics)

Fundamental Limitations on the Terminal Behavior of Antennas and Nonuniform Transmission

Lines

Thesis directed by Prof. Edward F. Kuester

The Authoritative Dictionary of IEEE Standard Terms [1] provides two definitions for the

quality factor, or Q, of a resonant system. These definitions suggest a fundamental relationship

between the fractional bandwidth of a resonant system and the ratio of stored energy to dissipated

energy within that system. We show this relationship is in general not true. The success of this

relationship, however, inspires the research that follows. We seek to fine a more general, and

fundamental, relationship between the energy within a system and the terminal behavior of that

system. We apply our ideas to antennas theory and the theory of nonuniform transmission lines.



Dedication

To My God My Strength,

and to my wife Katie.



v

Acknowledgements

I am sincerely grateful to the people at the National Institute of Standards and Technology

(NIST). They supported me financially and encouraged me throughout my education. I thank

Perry Wilson, Mike Francis, and Ron Wittmann for all of their support and for doing everything

they could to keep me at NIST. A special thank you goes to my mentor Ron Wittmann, he provided

me with great insights into my thesis, and has been a great mentor to me in all areas of math and

physics.

It is a pleasure to thank my advisory committee: Professors Edward Kuester, James Curry,

Albin Gasiewski, and Dragan Macsimovic from the University of Colorado at Boulder; and Doctors

Michael Janezic and Christopher Holloway from the National Institute of Standards and Technology.

I cannot imagine having a better education then the one I received under Professor Kuester.

I am who I am because of the love of my father, my mother, and my brother. If you know

me you know my father Harry. There is nothing I cannot do if I want it bad enough, because

my mother Susan told me so. And, my brother James has walk with me through all that I have

accomplished. I am so grateful to them all.

My greatest delight on earth is my wife Katie. I love her with all of my heart, and without

her, this accomplishment has little value. She is the color in all I do. Thank you Love.

Finally, it is only by my God’s grace that I finish this thesis. It is His gifts in me, through

Christ, that have brought me to where I am. To Him I give all the glory.



vi

Contents

Chapter

1 Introduction 1

1.1 Definitions of Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Constant Resistance Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Purpose of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Fundamental Limitations of Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Terminal Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Basic Concepts and Notation 14

2.1 Functions of Time and Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Passivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Terminal Behavior 18

3.1 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Energy Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



vii

3.3 Bode-Fano Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Tapered Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Recoverable Energy 48

4.1 Recoverable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Calculation of Recoverable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Minimization Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Wiener-Hopf Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Time Harmonic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.5 Example 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Minimum Phase Darlington Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Transferable Energy 90

5.1 Variational Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Integral Equation Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Transferrable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Low Pass Filter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion and Future Work 102



viii

Bibliography 109

Appendix

A Time Harmonic Recoverable Energy 120

B Recoverable Energy Examples 126



ix

Figures

Figure

1.1 RLC circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 RLC circuit, with transmission line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 One port network. The total time-averaged energy stored in the matching network

plus the energy stored in the field of the antenna is infinite. . . . . . . . . . . . . . . 5

1.4 Equivalent circuit of TM spherical wave. . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Transfer function 1− |ρ(ω)|2 for θ = 8 and ζ = 5. . . . . . . . . . . . . . . . . . . . . 25

3.2 Transfer function 1− |ρ(ω)|2 for θ = 2 and ζ = 5. . . . . . . . . . . . . . . . . . . . . 25

3.3 3 dB bandwidth compared to energy bandwidth. . . . . . . . . . . . . . . . . . . . . 26

3.4 All Pass Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 All Pass Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Distorted Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Distortion as a function of modulated frequency ω0. . . . . . . . . . . . . . . . . . . 34

3.8 Maximum distortion occurs when ω0 = 0. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Distortion when ω0 = 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 Integration contour C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Nonuniform transmission line matching circuit. . . . . . . . . . . . . . . . . . . . . . 41

3.12 Low frequency approximation of nonuniform transmission line. . . . . . . . . . . . . 43

4.1 Single port network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



x
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Chapter 1

Introduction

Q, or “quality factor,” is a parameter often used to characterize RLC circuits. Consider, for

example, the circuit of Figure 1.1. The transfer function VL (ω) /V (ω) of the circuit is

H (ω) =

j
ω

ω0

1

Q

−
(

ω

ω0

)2

+ j
ω

ω0

1

Q
+ 1

(1.1)

where

ω0 =
1√
LC

(1.2)

is the resonant frequency, and

Q =
1

ω0RC
=
ω0L

R
(1.3)

The 3 dB bandwidth ∆ω is defined as the width of the range of frequencies at which the curve of

the transfer function |H (ω)| is 3 dB below the peak of the curve. The 3 dB fractional bandwidth

B3dB is

B3dB ≡ ∆ω

ω0
(1.4)

It can be shown, for the transfer function of Eqn. (1.1), that fractional bandwidth B3dB is related

to Q by

Q =
1

B3dB
(1.5)

Q can also be related to the time-averaged stored energy in this circuit by simple algebraic manip-

ulations

Q =
ω0Ẽstored

P
(1.6)
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Figure 1.1: RLC circuit.

where Ẽstored is the time-averaged stored energy within the circuit, and P is the time-averaged

power dissipated in the resistor R. Clearly,

1

B3dB
=
ω0Ẽstored

P
(1.7)

The relationship (1.7) is not unique to the circuit of Figure (1.1). A parallel RLC circuit will

also satisfy (1.7). A different system satisfying (1.7) is an electromagnetic mode within a resonant

cavity made of lossy metal. The energy Ẽstored is stored in the field of the mode and the power

dissipated P is lost in the metal walls of the cavity. In fact, there are many resonant systems

from engineering and physics where the relationship (1.7) is satisfied (at least approximately). For

this reason, it is common to report a value of Q in association with a resonant system as a figure

of merit—large values of Q indicate that the system has a narrow bandwidth and a large stored

energy.

1.1 Definitions of Q

Q is included in the IEEE dictionary of standards because of its broad applicability to different

kinds of resonant systems. But, defining Q so that (1.6) and (1.5) are true in general is not simple.

For the circuit of Figure 1.1, a transfer function was first determined and then parameterized with

Q. It followed that (1.5) and (1.6) could be shown by simple algebra. Because there are so many

different kinds of resonant systems with transfer functions that can first be parameterized by Q and

then have the results (1.5) and (1.6) follow, the dictionary of standards simply chooses to define
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Figure 1.2: RLC circuit, with transmission line.

Q by (1.5) or (1.6). Specifically, in the The Authoritative Dictionary of IEEE Standard Terms [1]

the definitions are:

2π times the ratio of the maximum stored energy to the energy dissipated per cycle
at a given frequency.

This is equivalent to (1.6). Another definition corresponds to bandwidth:

An approximate equivalent definition is that the Q is the ratio of the resonant fre-
quency to the bandwidth between those frequencies on opposite sides of the resonant
frequency, where the response of the resonant structure differs by 3 dB from that
at resonance.

This is equivalent to (1.5). Their is an obvious problem with these definitions: although there are

many systems that do satisfy (1.5) and (1.6), this does not mean that all resonant systems satisfy

them.

Figure 1.2 represents a system for which the IEEE definitions are inconsistent. The transmis-

sion line in this circuit is terminated in its own characteristic impedance; therefore, the magnitude

of the transfer function |H (ω)| is identical for both this circuit and the circuit of Figure 1.1. We

argue that if the circuit of Figure 1.1 is a resonant system, then the circuit of Figure 1.2 should

be one as well. The stored energy of the the two circuits, on the other hand, will not be the same

(unless l = 0). For the circuit of Figure 1.2 the stored energy inside the transmission line can be

made arbitrarily large by increasing the length l. The IEEE definitions suggest that an increase in
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the stored energy should lead to a decrease in bandwidth. Clearly, the definitions are inconsistent

because the bandwidth of the circuit in Figure 1.2 is the same for any length l.

1.2 Constant Resistance Circuits

There exists a class of circuit known as constant resistance circuits [2]. The transmission

line section followed by the resistor R in Figure 1.2 is in this class. Such circuits are identified by

having a constant and real valued input impedance, while having any number of elements within

them that can store energy. Multiplexers [3]-[5] are examples of this kind of circuit. We introduce

these circuits here because of their importance associated with the example above. Just as the

transmission line terminated in its characteristic impedance was used to replace the resistor in the

circuit of Figure 1.1, any constant resistance circuit can be used to replace R. In turn, this means

that their are an infinite number of circuits, known as equivalent networks [6, 7], that have the

transfer function (1.1). Rather complicated circuits with arbitrary amounts of stored energy will

have constant 3 dB bandwidths identical to the circuit of Figure 1.1. The IEEE definitions are

inconsistent for all of these.

1.3 Purpose of Thesis

Despite these inconsistencies, the definitions of Q that are in the dictionary of standards

suggest an intriguing and fundamental idea. That is, the terminal behavior of a resonant system

somehow corresponds to the energy inside that system. This idea inspires the research of this thesis.

In the following chapters we seek to find limitations on the terminal behavior of linear systems, and

to relate these limitations to the energy inside those systems. These ideas will be used to explore

fundamental limitations on antennas, as well as nonuniform transmission lines.

1.4 Fundamental Limitations of Antennas

In antenna theory, fundamental limitations are important and have been the topic of much

research: [8]-[25] (to cite only a few). Since many antennas are narrow band devices, it would
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a(ω)

b(ω)

Matching

Network 

Figure 1.3: One port network. The total time-averaged energy stored in the matching network plus
the energy stored in the field of the antenna is infinite.

appear that Q might apply naturally. However, determining the stored energy of an antenna is

problematic by nature.

Consider the one-port network shown in Figure 1.3. The input and output signals are the

waves a (ω) and b (ω), the transfer function is the reflection coefficient ρ (ω). The energy stored

inside the system is contained in the network used to match the input to the antenna, as well as in

the field generated by the current of the radiating antenna. The time-harmonic field generated by

the antenna occupies all of space, and when the total energy of this field is calculated, the result is

infinite. With the current definitions of Q, an infinite stored energy suggests that the bandwidth

at the input terminals must be zero. But, it is well known that all physical antennas have finite,

non-zero bandwidths. The definitions of Q, therefore, are inconsistent.

A parallel can be drawn between the resonant antenna of Figure 1.3 and the circuit of Figure

1.2. If the length l of the transmission line is allowed to go to infinity, the system will have a finite

bandwidth but an infinity stored energy—as was the case for the antenna of Figure 1.3.

Notice that the act of adding the transmission line to the simple RLC circuit (see Figure

1.2) did not change the terminal behavior of the system. We might conclude, then, that the energy

stored in the transmission line does not affect the bandwidth of the system, but only that energy

that resides in the capacitor C and the inductor L. This leads us to the question: is there a way to

separate a portion of the stored energy within a system that makes the definitions (1.5) and (1.6)

consistent when that energy is used in place of Ẽstored?



6

We now discuss some of the more important work carried out over the last century, and done

for the purpose of understanding fundamental antenna limitations.

Wheeler [8]-[10] and Chu [11] were apparently the first to explore fundamental limitations

of antennas. Although Wheeler did not use the symbol Q directly, a closely related term “power

factor” was used and is similar to the definition given by (1.3). Chu on the other hand, based his

work on the energy definition of Q. He too uses circuit models that model the input behavior of

the antenna and determines the stored energy within. Harrington [12] followed Chu’s ideas and

elaborated on them. It was mentioned above that the total stored energy outside of an antenna

at a single frequency is not finite; in 1964 Collin and Rothschild [13] introduced a kind of energy

based on subtracting the energy of the radiated field from the total energy, the result is a finite

energy, which they used for their definition of Q. Following Collin and Rothschild, other authors

such as Fante [14] and McLean [15] extend Collin and Rothschild’s idea to be applicable more

generally. Levis [16], and Rhodes [17, 18] chose to base their definition of Q on bandwidth. But,

as it is pointed out by Yaghjian and Best [19], the reactance doesn’t provide a unique method for

determining bandwidth. More recently there have been a number of people working on Bode-Fano

like limitations for antennas [20]-[24]. These sort of limitations have not yet been tied to stored

energy, but may lead there in future work. Despite all attempts since the late 1940s, fundamental

limitations of antennas (especially those based on Q) have yet to find a firm footing in physics: all

proposed attempts have certain undesired problems. These problems are illustrated below through

some of the more important work done in the last century.

Wheeler based his work [8] on modeling electrically small antennas with simple circuit. From

the models, he gave expressions for antenna efficiencies based on parameters he called radiation

power factors. The power factors are unitless quantities which are closely related to the definition

of Q, given by (1.3). Without resorting to any ideas about stored energy, Wheeler makes claims

about the limitations on the bandwidth of small antennas via basic circuit analysis.

Apparently unaware of Wheeler’s work, Chu studied the physical limitations of antennas
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L

C C

LZn Z0

n

n n-1

n-1

TM

Figure 1.4: Equivalent circuit of TM spherical wave.

using the energy definition of Q [11] (1948). To obtain his results, Chu was content with calculating

only the stored energy outside a sphere that was as small as possible, and yet completely contained

the arbitrarily shaped antenna of interest—a so-called minimum sphere. He ignored the energy

inside the sphere, arguing that this energy would only increase the total stored energy; since his

interest was to find a bound, an energy smaller than the total stored energy was acceptable. He

expanded the field outside the minimum sphere into spherical modes and from the field components

of each of these modes, he determined an impedance. Focusing on the transverse magnetic modes,

Chu determined that each mode had an impedance of

ZTM
n (x) = jZo

[xhn (x)]
′

xhn (x)
(1.8)

where

x = kr (1.9)

Here Z0 is the characteristic impedance of free space, hn (x) is the spherical Hankel function of

the second kind, k = 2π/λ where λ is the wavelength, and r is the radius of the minimum sphere.

This impedance by itself has no obvious relationship to the energy stored outside the minimum

sphere; however, Chu cleverly recognized that a circuit could be synthesized from the impedance

(1.8), and his particular circuit has the form of that in Figure 1.4. The capacitors and inductors

can be determined from

Cn =
x

Z0nω
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and

Ln =
Z0x

nω

From the synthesized circuit, stored energy and dissipated power can be calculated for the circuit;

Chu assumed these quantities obtained from the circuit were the correct quantities for the stored

energy and dissipated power of the field due to a mode, outside the minimum sphere. Though

his method is clever, it is unclear if the circuit of Figure 1.4 represents the circuit for the given

impedance (1.8). For instance the resistor Z0can be replaced by any constant resistance circuit

(see Section 1.2) and ZTM
n will not change. There may exist a different circuit that stores less than

the energy of Chu’s circuit, and therefore the result Chu obtained would not be a lower bound on

energy.

Collin and Rothschild proposed a different method for calculating Q [13] that is simpler to

calculate than the one suggested by Chu. Chu [11] pointed out that after the first couple of modes,

calculation of his stored energy becomes unwieldy. Collin and Rothschild base their work on the fact

that the time-averaged power P flowing through a sphere centered on an antenna will be constant.

It is certainly true that at distances far enough away from the antenna the fields will radiate at the

speed of light c, and in some region of that distance you may conclude that the energy per unit

length along the radial direction is simply

Ur =
P

c
(1.10)

From Pointing’s theorem, the total energy per unit length anywhere outside the minimum sphere

containing the antenna is

Ut (r) =
1

4

∫

Ω

[

ε |E|2 + µ |H|2
]

r2 dΩ (1.11)

Here, E and H are the electric and magnetic fields generated by the antenna, ε and µ are the

permittivity and permeability respectively, and the integral is to be taken over all 4π steradians

of solid angel Ω. Collin and Rothschild’s method for calculating stored energy1 was to assume

1 This energy subtraction method was used earlier by Kessenikh in 1939 [26] to determine stored energy around
an antenna.
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that the energy (1.10) represented the radiated energy throughout all space outside of a minimum

sphere, so that the total stored energy outside the minimum sphere could be obtained by

Wstored =

∞
∫

a

[

Ut (r)−
P

c

]

dr (1.12)

Because of the spherical symmetry, the fields outside of the minimum sphere may be expanded into

spherical modes. Collin and Rothschild’s results yield a rather simple expression for the Q of each

of these modes, and is much easier to calculate than Chu’s method. Although simple in principle,

this method has a number of problems. Levis [16] pointed out that the method wrongly assumes

the speed of the radiated energy is constant throughout the sphere. This must be postulated and its

truth is not obvious. Another defect is that the method requires (1.10) and (1.11) to be subtracted

before they are integrated in (1.12), otherwise the stored energy would be

Wstored =

∞
∫

a

Ut (r) dr −
∞
∫

a

P

c
dr

where each integral by itself is infinite. There are an infinite number of ways to subtract infinity

from infinity to get a finite number.

The ambiguity in finding a unique stored energy of an antenna led researchers to pursue

limits based on the bandwidth definition of Q (1.5). Levis [16] and Rhodes [18, 17] claimed that

stored energy could not be defined rigorously. Bandwidth, on the other hand, is a value that

can be observed by measurement. To make the their work rigorous, Rhodes pointed out that the

bandwidth definition of Q approaches asymptotically to

Q =
1

B3dB
∼
ω0

∣

∣

∣X
′

0

∣

∣

∣

2R0
(1.13)

for large Q. R0 is the input resistance to the antenna at resonance, X0 is the input reactance

at resonance and the prime denotes differentiation with respect to frequency ω. Rhodes further

defines what he calls the observable stored energy 〈〈U〉〉 via

Q =
ω0 〈〈U〉〉

P
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where Q is the asymptotic value (1.13). Since the true stored energy cannot be observed by

measurement, 〈〈U〉〉 is defined this way assuming that energy and bandwidth are fundamentally

related by (1.6) and (1.5). The input resistance and reactance of the antenna can be determined

from the fields at the input port of the antenna

R (ω) + jX (ω) =
−1

2

∫

sE×H∗ · n̂ da
1

2
|I|2

where I is the current fed to the antenna and s is the surface at the input port. The so-called

reactance theorem [17] may be used to find an expression forX ′ (ω) in terms of the fields surrounding

the antenna. Provided that the asymptotic formula (1.13) is a reasonable measure of bandwidth,

the work done by Rhodes supplies a rigorous definition of antenna Q.

Yaghjian and Best [19] show that a definition of bandwidth based on the derivative of re-

actance does not always exist. The problem arises when antennas are tuned in antiresonance

frequency ranges. In these ranges, the expression (1.13) does not represent an accurate approxima-

tion for bandwidth. Yaghjian and Best introduce the Matched VSWR Bandwidth. Their definition

is attractive because it is well defined over all frequency ranges—even in antiresonance regions.

Their Q based on the Matched VSWR Bandwidth is

QMVB ∼
ω0

∣

∣

∣
Z

′

0

∣

∣

∣

2R0

where

Z0 = R0 + jX0

Gustafsson, Sohl and Kristensson [20]-[22] use a different approach for determining antenna

limitations based on Bode-Fano limitations. Almost all of the work described above is restricted to

antennas that are placed inside a hypothetical sphere. Gustafsson et. al. are not limited by this

restriction, and have considered arbitrary shapes. Another advantage of their technique is that the

Bode-Fano type limitations can be applied unambiguously to the transfer function of a system as

a measure of the terminal behavior, which cannot be said about the measure of B as it has been

introduced in this chapter.
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Interesting, and very recent, work done by Yaghjian [25] attempts to approximate the stored

energy of an electrically small antenna using the static limit of the fields about the antenna. This

work also has the advantage of being independent of having to assume that the antenna resides

within a minimum sphere. Results obtained by Yaghjian show very similar results to Gustafsson

et. al. who determined their limits only from the properties of the transfer function. It would thus

seem that a connection could be made between stored energy and the Bode-Fano type limits. But,

this has yet to be determined.

1.5 Terminal Behavior

A 3 dB bandwidth is one measure of the terminal behavior of a system, but this form of

measurement gives only limited information about how the input and output terminals of a system

behave. 3 dB bandwidth is well suited for describing the width of certain kinds of transfer functions,

but it is also known that there are other methods for measuring the width of a curve, and that

this number alone can be misleading. The standard deviation of a curve, for instance, is another

way to measure width, and it may be that this width has advantages over 3 dB bandwidth. There

does not exist a universal method for associating a width to a curve, and therefore, other forms of

characterizing the transfer function of a system should be considered. For instance, a bandwidth

measurement does not (usually) take into consideration the phase of the transfer function. The

phase behavior of a system can affect the fidelity with which a signal is transmitted, and it may be

that the energy inside of a system not only affects the magnitude of the transfer function, but the

phase as well.

1.6 Thesis Overview

In this thesis we study limitations on the terminal behavior of linear systems, and seek to

relate these limitations to the energy inside those systems. We have shown in this chapter the

problems that arise when Q is used improperly; the following chapters seek to determine if there

are definitions similar to the IEEE definitions (see Section 1.1) that are more generally consistent.
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This work is important to the study of antenna theory and nonuniform transmission lines.

Clear from the discussion above, there is great interest in understanding fundamental limitations

of antennas. But, since the definitions of Q are not always consistent, much of the work done in the

past is either in question or wrong. We are also interested in limitations on nonuniform transmission

lines used as matching circuits. Nonuniform lines are used to match loads over broad frequency

ranges, and understanding fundamental limitations on these devices is useful to designers.

To lay our work on a solid foundation, Chapter 2 introduces basic concepts and notation.

Chapter 3 is a study of the terminal behavior of systems. We introduce methods for mea-

suring both bandwidth and distortion. A couple of these measures require the use of numerical

calculation, and we discuss the value of these calculations in seeking fundamental limitations. We

will also introduces Bode-Fano limitations. At the end of the chapter a new bound for nonuniform

transmission lines is discovered; we discuss its implications and its relationship to the energy within

the transmission line.

Recoverable energy from a one-port network will be derived in Chapter 4. This is a new type

of energy that can be determined from the terminals of a system alone. We will show that this

energy is better suited, in general, than stored energy for the energy definition of Q (1.6). Chapter

4 will develop the theory of recoverable energy from a one-port network, and several examples will

be provided to show the value of this energy. We show, for instance, that recoverable energy is

the energy that resides in the capacitor and inductor of Figure 1.2. Therefore, recoverable energy

solves the problem of how we separate the portion of stored energy in the system that makes the

Q definitions (see (1.5) and (1.6)) consistent, from the stored energy within the transmission line

(see Section 1.4). We will also use recoverable energy to verify Chu’s results (see Section 1.4).

We will show that his lowest order circuit representing an electric dipole, does indeed store the

smallest amount of energy that can be determined from the terminal characteristics alone. We end

the chapter by showing that recoverable energy is equal to the stored energy of a minimum phase

Darlington circuit. Minimum phase Darlington circuits can be synthesized from an understanding
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of the terminal behavior of a system alone. Such circuits have interesting properties which will lead

us into a discussion about other energies that would be interesting to study in future research.

Chapter 5 is about transferrable energy. The majority of this thesis is concerned with single-

port systems. Transferrable energy, on the other hand, provides insight into two-port systems.

We discuss the definition of transferrable energy and show how it can be used for characterizing

systems. Closely related to bandwidth is the idea of a bitrate, we define bitrate in this chapter

and show how it is related to transferrable energy. An example is considered and the relationship

between energy and bandwidth is again discussed.

Chapter 6 summarizes the thesis and provides insight and direction for future research.



Chapter 2

Basic Concepts and Notation

In the introduction, we used the word “system” without definition. The intent of this chapter

is to lay down a foundation for our work build upon. We assume that the audience has a good

understanding of linear systems; but, carefully defining ideas such as “system” or “passivity” will

help ensure our discussions in subsequent chapters are made as clear as possible.

We will introduce notation and several definitions below to define the kind of systems we

will be discussing in the thesis. We begin by introducing notation for functions of both time and

frequency, and we will define the Fourier transform that relates these functions between the two

domains. Next we will define what we mean by a system and a network and provide notation that

will remain consistent throughout all of the chapters. Finally, we will define passivity and causality

for systems. After we have made all the necessary definitions, we clearly state the kind of systems

considered in this thesis.

2.1 Functions of Time and Frequency

Functions of time will have a superscribed caret or “hat,”

â (t) (2.1)

In the frequency-domain, the caret is removed and the resulting function is related to the time-

domain function by

a (ω) = (F â) (ω) (2.2)
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where the operator F represents the Fourier transform

(F â) (ω) =

∞
∫

−∞

â (t) exp (−jωt) dt (2.3)

The inverse Fourier transform is

(

F−1a
)

(t) =
1

2π

∞
∫

−∞

a (ω) exp (jωt) dt (2.4)

2.2 Systems

For our purposes, a system is a physical device that can be modeled mathematically as:

b̂ (t) = ρ̂ (t) ∗ â (t) (2.5)

=

∫

ρ̂ (t− τ) â (τ) dτ

The function â (t) represents the input signal to the device and the function b̂ (t) represents the

output; ρ̂ (t) is the impulse response that characterizes the system. Systems defined with the defini-

tion above are generally known as linear and time-invariant systems (see [27]). The representation

(2.5) can be derived from an axiomatic treatment [28] whereby a general system is restricted to be

linear and time-invariant; nevertheless, the definition given above is sufficient for the proceeding

study. In the frequency-domain Eqn. (2.5) becomes simply

b (ω) = ρ (ω) a (ω) (2.6)

The function ρ (ω) will be referred to as the transfer function of the system. Systems with two

inputs and two outputs will also be considered provided they can be modeled as:

b̂1 (t) = Ŝ11 (t) ∗ â1 (t) + Ŝ12 (t) ∗ â2 (t) (2.7)

b̂2 (t) = Ŝ21 (t) ∗ â1 (t) + Ŝ22 (t) ∗ â2 (t)

and in the frequency domain this becomes






b1 (ω)

b2 (ω)






=







S11 (ω) S12 (ω)

S21 (ω) S22 (ω)













a1 (ω)

a2 (ω)






(2.8)
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2.3 Networks

In this thesis, one and two-port networks are considered only. The functions ak (ω) and bk (ω)

can be regarded as wave-amplitudes, and Snm (ω) of Eqn. (2.8) are the scattering parameters

(see Section 4.3 of [29]). For a one-port network ρ (ω) (2.6) is the reflection coefficient. It is

somewhat unconventional to work with the time-domain wave-amplitudes âk (t) and b̂k (t); however,

in Chapters 4 and 5 we will see that these signals are quite useful for formulating recoverable and

transferrable energy. The wave-amplitudes are normalized such that the power entering port k is

P̂ (t) = â2k (t)− b̂2k (t) (2.9)

2.4 Passivity

Passivity is defined in terms of the wave-amplitudes âk (t) and b̂k (t). A system that has N

ports is passive when
N
∑

k=1

∞
∫

−∞

[

â2k (t)− b̂2k (t)
]

dt ≥ 0 (2.10)

for all input signals âk (t) with corresponding output signals b̂k (t). Physically, the definition implies

that a system itself cannot supply energy to the outside world, it can only store it or dissipate it.

It is of interest to note that there is a more restrictive definition of passivity. In this definition,

a system is passive if
N
∑

k=1

t
∫

−∞

[

â2k (τ)− b̂2k (τ)
]

dτ ≥ 0 (2.11)

for all t; it implies that there is no instance in time t for which the system is able to supply

energy to the outside world. The definition (2.10) only restricts the total energy over all time to

be non-negative; however, (2.10) permits short periods of time for which energy can be supplied

from the system—a physical device, with no sources inside, would not permit this. One important

consequence of the more restrictive definition (2.11) is that a linear time-invariant and passive

system will always be causal (see [30]). For this thesis, we choose to make causality an added
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assumption about our systems, and although the definition (2.10) is less physically correct than

(2.11), the first definition will be sufficient for the chapters that follow.

2.5 Causality

Again, only systems that can be modeled by the convolution (2.5) will be considered in this

thesis; for this reason, a system is causal if the impulse response ρ̂ (t) of the system satisfies

ρ̂ (t) = 0 for t < 0 (2.12)

We may now clearly state: all systems in this thesis are modeled by a convolution integral

relating inputs to their corresponding outputs, and these systems are both passive and causal.

2.6 Summary

In this chapter we introduced notation and definitions for the purpose of clearly stating what

we mean by a system. These definitions will remain consistent throughout the thesis.



Chapter 3

Terminal Behavior

The transfer function of a system contains the information necessary for characterizing what

we call terminal behavior. Any number of operations may be applied to a transfer function to learn

something about the properties of a system. We may view these properties as observables—to

borrow an idea from quantum mechanics. A transfer function along with the various operations

applied to it is what we mean by terminal behavior. We discuss in this chapter certain operations

that can be applied to a system’s transfer function. One of our goals is to determine whether or

not these observed quantities are related to energy within the system.

Fractional bandwidth, introduced in Chapter 1, is one form of measure determined by opera-

tions applied to the transfer function. It is not the only possible measure of bandwidth, and others

will be discussed in this chapter. It may be that energy within a system is not only affected by the

width of the transfer function, but also by its phase. The phase can potentially distort the shape

of a signal passed through a system. We will discuss a definition of distortion that may be related

to the energy inside the system. Another form of measure applied to the transfer function has the

form

∞
∫

−∞

f (|H (ω)|) dω (3.1)

where f (·) is some known function (see p. 78 of [31]). Such operations are not affected by the

phase of the transfer function. Bode-Fano limitations are a measure of this kind, and they pivot

on understanding the causality of the system.
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The Bode-Fano limitations are intriguing in the study of matching circuits. At the end of this

chapter, we find a Bode-Fano limitation for nonuniform transmission lines. This is a new result,

and demonstrates the advantage that measures of the form (3.1) have over others. This form of

measure can be applied unambiguously to transfer functions, provided the integral in (3.1) exists.

This chapter defines different quantities for measuring terminal behavior and will provide

examples for how those quantities can be applied. We will begin by discussing a couple of different

measures of bandwidth, including what we call energy bandwidth. We will show how energy

bandwidth can be calculated and will provide an example of its use. Next, we will define distortion.

In this thesis, distortion measures the deviation of the shape of a pulse passed through a system; we

will provide an example that calculates the distortion of a pulse passed through an allpass circuit.

Finally, we will discuss Bode-Fano limitations and show how they may be used to obtain a bound

on the terminal behavior of a nonuniform transmission line.

3.1 Bandwidth

The 3 dB bandwidth defined in Chapter 1 is one example of a bandwidth, which could be

determined analytically for the circuit in Figure 1.1. For that particular circuit the bandwidth was

inversely proportional to the energy stored within, which implies that wide band signals could be

transferred through the system more easily when the stored energy of the circuit is low.

The standard deviation of a function is another common measure of its width. For a frequency

spectrum, it can be defined as

σ (|H (ω)|) =

√

√

√

√

√

√

√

√

∞
∫

−∞

(ω − ω0)
2 |H (ω)| dω

∞
∫

−∞

|H (ω)| dω
(3.2)

where ω0 is the center frequency. Although this measure has been useful in other areas of physics

and engineering, it is not well suited here. For example, the RLC circuit of Figure 1.1 in the

introduction has a standard deviation of infinity.
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3.1.1 Energy Bandwidth

An interesting measure of bandwidth, studied by Uffink [32, 33], is one which we will refer

to as “energy bandwidth”. Let

f (α, β) =

α+∆ωE/2
∫

α−∆ωE/2

ψ (ω) dω (3.3)

where

ψ (ω) =
|H (ω)|2

∞
∫

0

|H (ω)|2 dω

Define the bandwidth as the minimum value of ∆ωE over all α such that f (α,∆ωE) = C, where

C is a constant between 0 and 1. If this minimum is attained for a unique value of α, α can be

thought of as a center frequency. The integral (3.3) can be thought of as the fraction of energy

in |H (ω)|, if for the moment we regard |H (ω)| as a pulse who’s square magnitude has units of

power, about the frequency α within the band ∆ωE . For example, if C = 1/2 we seek to find the

smallest band ∆ωE for some frequency α over which the energy constitutes half of the total energy.

In general, determining this width requires numerical calculations.

To determine the width ∆ωE , let f (α,∆ωE) = C be written as

f (r) = C (3.4)

where r = [α,∆ωE (α)]. Let r0 be a point that satisfies (3.4) and r0 +∆r be another point, then

f (r0 +∆r) = C

and for small ∆r

f (r0 +∆r) = f (r0) +∇f (r0) ·∆r+O
(

|∆r|2
)

= C +∇f (r0) ·∆r+O
(

|∆r|2
)

thus

∇f (r0) ·∆r =O
(

|∆r|2
)
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which may be rewritten as

∇f (r0) ·
[

∆α,
∂

∂α
β (α)∆α

]

= O
(

|∆r|2
)

∇f (r0) ·
[

1,
∂

∂α
β (α)

]

=
O
(

|∆r|2
)

∆α

letting |∆r| → 0,we obtain a differential equation for the width ∆ωE as a function of center

frequency α:

∂

∂α
f (α,∆ωE) +

∂

∂∆ωE
f (α,∆ωE)

d

dα
∆ωE (α) = 0

A minimum ∆ωE (α) will occur at α where ∆ω′
E (α) = 0, and therefore when

∂

∂α
f (α,∆ωE) = 0 (3.5)

From Leibnitz’s Rule,

∂

∂α
f (α,∆ωE) = ψ (α+∆ωE/2)− ψ (α−∆ωE/2) = 0 (3.6)

The expressions (3.4) and (3.6) represent two equations that need to be solved for the unknowns α

and ∆ωE .

Note that if
α+∆ωE/2
∫

α−∆ωE/2

ψ (ω) dω = C (3.7)

then

C

ψmax

≤ ∆ωE (3.8)

and from Chebyshev’s inequality, it can be shown that

∆ωE ≤ 2√
1− C

σ (|H (ω)|)

This is a result due to Uffink [33].

As an example, consider the Lorentzian

ψ (ω) =
σ

Nπ

1

(ω − ω0)
2 + γ2

(3.9)
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where

N = 1 +
2

π
tan−1

(

ω0

γ

)

(3.10)

Using (3.4) and (3.6) to solve for α and ∆ωE , we have

tan−1

(

α+∆ωE/2− ω0

γ

)

− tan−1

(

α−∆ωE/2− ω0

γ

)

=
πCN

2
(3.11)

and

1

γ2 + (α− ω0 +∆ωE/2)
2 =

1

γ2 + (α− ω0 −∆ωE/2)
2

From symmetry, α = ω0, and from (3.11)

∆ωE = 2γ tan
πCN

4
(3.12)

This may be compared with 3 dB bandwidth ∆ω3dB which is

∆ω3dB = 2γ (3.13)

and if C = 1/2

∆ωE = 2σ tan

[

π

8

(

1 +
2

π
tan−1

(ω0

σ

)

)]

(3.14)

Clearly

∆ωE ≤ ∆ω3dB (3.15)

and for ω0 >> σ

∆ωE ≈ ∆ω3dB (3.16)

As another example, consider the transfer function of an electric dipole. Let

ψ (ω) =

√
N

ω2 − ω2
0 − iγω

(3.17)

be the transfer function relating the magnitude of the field E, of an incident electromagnetic plane

wave, to the magnitude of the dipole moment p (see p. 309 of [34]). N is a normalization factor

N =
γω0

√

4ω2
0 − γ2

π
√
2ReG

(3.18)
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and the constant G is

G =
1

√

√

√

√2− γ2

ω2
0

+ i

√

4
γ2

ω2
0

− γ4

ω4
0

(3.19)

To find β and α, the two equations and two unknowns are

2

πReG













Re

[

G tan−1

(

iG

√
2 (α+∆ωE/2)

ω0

)]

−Re

[

G tan−1

(

iG

√
2 (α−∆ωE/2)

ω0

)]













= C

N
(

(α+∆ωE/2)
2 − ω2

0

)2
+ γ2 (α+∆ωE/2)

2
=

N
(

(α−∆ωE/2)
2 − ω2

0

)2
+ γ2 (α−∆ωE/2)

2

then α is readily identified as

α = ω0

√

1− 2γ2 +∆ω2
E

4ω2
0

(3.20)

and we find

2

πReG













Re

[

G tan−1

(

iG
√
2

(
√

1− γ2

2ω2
0

− ∆ω2
E

4ω2
0

+
∆ωE

2ω0

))]

−Re

[

G tan−1

(

iG
√
2

(
√

1− γ2

2ω2
0

− ∆ω2
E

4ω2
0

− ∆ωE

2ω0

))]













= C

For ω0 >> γ,∆ωE we have α ≈ ω0. With C = 1/2

∆ωE ≈ γ (3.21)

Comparing this result with the 3 dB bandwidth for ω0 >> γ, we find that

∆ω3dB ≈ ∆ωE (3.22)

A numerical implementation of the calculation discussed above is easily achieved. A partic-

ularly interesting circuit used in the discussions in Chapter 4 (see Figure 4.6) has the reflection

coefficient

ρ (ω) =
−LCR2ω

2 + jω (L+ CR2 (R1 − Z0)) + (R1 +R2 − Z0)

−LCR2ω2 + jω (L+ CR2 (R1 + Z0)) + (R1 +R2 + Z0)
(3.23)
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In the limit as R2 goes to infinity, the circuit reduces to the simple series RLC circuit found in the

introduction (see Figure 1.1). The circuit is resonant at

ωo =

√

1

LC
−
(

1

CR2

)2

(3.24)

We choose the normalizations

w =
ω

ω0
(3.25)

θ = R2

√

C

L
(3.26)

and

ζ =

√

L

R2
1C

(3.27)

so that the reflection coefficient matched at ω0 is

ρ (ω) =

−w2

(

1− 1

θ2

)

+ 2jw
√

θ2 − 1
1

θ2
+

(

1 +
1

θ2

)

−w2

(

1− 1

θ2

)

+ 2jw
√

θ2 − 1

(

1

θ2
+

1

θζ

)

+

(

1 +
2

θζ
+

1

θ2

) (3.28)

We used Matlab to plot 1−|ρ (ω)|2 when θ = 8 and ζ = 5 (see Figure 3.1). In this case R2 is large,

therefore the circuit in Figure 1.1 is “nearly” equivalent to a series RLC circuit. The shaded region

represents the band of frequencies determined by the energy bandwidth measurement discussed

above. Calculation determined that α = 1.0096 (which is close to the resonant frequency w = 1),

∆ωE = 0.6361. In comparison, the 3 dB bandwidth ∆ω3dB of the curve is ∆ω3dB = 0.6664. Figure

3.2 is a plot of 1 − |ρ (ω)|2 when θ = 2 and ζ = 5. In this case R2 is smaller and becomes a more

significant part of the circuit in Figure 1.1. We determined that α = 0.8798 and ∆ωE = 1.1597.

Notice from the plot that there is no meaningful measure of 3 dB bandwidth ∆ω3dB because

1− |ρ (ω)|2 does not fall of to 1/2 at two distinct frequencies.

The energy bandwidth is always defined under the assumption that

∞
∫

0

|H (ω)|2 dω <∞ (3.29)

which means, physically, that the impulse response has finite energy. This makes energy bandwidth

a more useful measure than 3 dB bandwidth, which relies on |H (ω)| being sharp enough for it to
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Figure 3.1: Transfer function 1− |ρ(ω)|2 for θ = 8 and ζ = 5.
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Figure 3.2: Transfer function 1− |ρ(ω)|2 for θ = 2 and ζ = 5.

be defined. Using the transfer function of Eqn. (3.28) with ζ = 5, Figure 3.3 is a plot of of the

bandwidth measured using the 3 dB method and the energy method. Notice that as θ increases

the 3 dB bandwidth and energy bandwidth converge to the same value. But, the 3 dB measure
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Figure 3.3: 3 dB bandwidth compared to energy bandwidth.

is only defined for θ > 3. Not only is the energy bandwidth more generally applicable than 3 dB

bandwidth because it can be unambiguously applied in more situations, but—as will see in Chapter

4—it also seems to more closely corresponds to energy within a system in general.

3.2 Distortion

The bandwidth definitions of the previous section do not depend on the phase of the transfer

function. A signal passed through a system can be distorted from its original shape, even if the

magnitude of the transfer function is unity over all frequencies.

Consider, for example, the circuit of Figure 3.4 (a constant resistance circuit studied by P.

Nicolas [35]). When L = CZ2
0 , the transfer function, relating the input wave amplitude a (ω) to

the output wave amplitude b (ω) is

H (ω) =
j + CZ0ω

j − CZ0ω
(3.30)

where Z0 is the characteristic impedance of the transmission lines. The magnitude of H (ω) is unity

for all frequencies ω. Although the bandwidth of this circuit is in some sense infinite, the shape of
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Figure 3.4: All Pass Circuit.

the signal at the input will not be preserved at the output (unless L = C = 0). For example, if

CZ0 = 1/2 and the square pulse of Figure 3.5a having a width of 1 unit is passed into the system,

the signal of Figure 3.5b will be the resulting output.

In the context of this thesis, distortion is the deviation of a signal from its original shape

when it has been passed through a system (This is in the same context as Brillouin [36] understands

distortion). If the signal at the output is merely a copy of the input signal which has been translated

in time, or vertically scaled, we say that the output has not been distorted. A suitable measure of

distortion, therefore, should be invariant to vertical scaling and translations in time.

Determining distortion is useful for analyzing transmitted signals. For example, if a square

pulse (Figure 3.5a) is sent through a channel, a measure of distortion can help determine whether

the output pulse will be registered by a measuring instrument as a bit.

Quantifying distortion is often done by local approximations ofH (ω) about a center frequency

(see [34]-[37]). However, local approximations do not give a complete picture of the mechanisms

that cause distortion.

We desire a measure of distortion that considers the entire transfer function H (ω). Consider

the functional

W (m, θ) ≡

∞
∫

−∞

[

ĝ(t)−mf̂ (t− θ)
]2
dt

∞
∫

−∞

ĝ (t)2 dt

(3.31)
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Figure 3.5: All Pass Distortion.

where ĝ(t) is the output of the system:

ĝ (t) =

∞
∫

−∞

ĥ(t− t′)f̂
(

t′
)

dt′ (3.32)

Choosing the amplification constant m0 and the translation constant θ0 that minimize W (m, θ),

we define distortion as

D ≡W (m0, θ0) (3.33)

This definition is similar to one studied by Colombo [38].

To interpret the definition (3.33), consider a square pulse (Figure 3.6a) passed through a

linear system. The output of the system ĝ (t) is a time-shifted and attenuated copy of f̂ (t), which

is distorted. To calculate distortion D, we subtract m0f̂ (t− θ0) from ĝ (t) (Figure 3.6b) and choose

m0 and θ0 so that (3.31) is minimized. Clearly, if ĝ (t) is not distorted, then D = 0.

W (m, θ) will have a minimum with respect to m when

∂W

∂m
= 0 (3.34)
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Figure 3.6: Distorted Signal.

The m that will satisfy (3.34) is

m0 (θ) =

∞
∫

−∞

ĝ(t)f̂ (t− θ) dt

∞
∫

−∞

f̂ (t)2 dt

(3.35)

W may be rewritten

W (m, θ) =

∞
∫

−∞

[

ĝ2(t)− 2mĝ(t)f̂ (t− θ) +m2f̂2 (t− θ)
]

dt

∞
∫

−∞

ĝ (t)2 dt

= 1 +

m2
∞
∫

−∞

f̂2 (t) dt− 2m
∞
∫

−∞

ĝ(t)f̂ (t− θ) dt

∞
∫

−∞

ĝ (t)2 dt

and in terms of m0 (θ)

W (m, θ) = 1 +m (m− 2m0 (θ))

∞
∫

−∞

f̂ (t)2 dt

∞
∫

−∞

ĝ (t)2 dt

(3.36)

Thus, W (m, θ) is minimized with respect to θ when m0 (θ) is at a maximum.

Distortion (3.33) can therefore be calculated by determining (3.35) and then searching for

the θ0 that minimizes (3.31). Although there are few examples where this definition of distortion
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may be determined analytically, the problem is well suited for numerical computation.

Distortion may also be calculated in the frequency domain. Let F (ω), G (ω) and H (ω) be

the Fourier transforms of the function f̂ (t), ĝ (t) and ĥ (t) respectively. Then

m0 (θ) =

∞
∫

−∞

H (ω) |F (ω)|2 exp (jωθ) dω
∞
∫

−∞

|F (ω)|2 dt
(3.37)

After determining θ0, distortion may then be calculated by

D = 1−m2
0 (θ0)

∞
∫

−∞

|F (ω)|2 dt
∞
∫

−∞

|G (ω)|2 dt
(3.38)

To handle modulated signals, we use analytic signals [39]. The analytic signal f̂A (t) corre-

sponding to the real-valued signal f̂ (t) is a complex function defined by

f̂A (t) ≡ 1

π

∞
∫

0

F (ω) exp (jωt) dω (3.39)

The signal f̂ (t) can be determined from f̂A (t) by

f̂ (t) = 2Re f̂A (t)

In what follows, the subscript A will be used differentiate an analytic signal from a real-valued

signal.

Define the modulated signal as

f̂Am (t;ω0) = f̂A (t) exp (jω0t) (3.40)

where f̂A (t) is now a complex envelope, and ω0 is the carrier frequency. The modulated output
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signal is then

ĝAm (t;ω0) =

∞
∫

−∞

ĥ
(

t′
)

f̂Am

(

t− t′
)

dt′

=

∞
∫

−∞

ĥ
(

t′
)

f̂A
(

t− t′
)

exp
(

jω0

(

t− t′
))

dt′

=





∞
∫

−∞

ĥ
(

t′
)

f̂A
(

t− t′
)

exp
(

−jω0t
′
)

dt′



 exp (jω0t)

We define the output signal envelope as

ĝA (t) =

∞
∫

−∞

ĥ
(

t′
)

exp
(

−jω0t
′
)

f̂A
(

t− t′
)

dt′ (3.41)

and thus

ĝAm (t;ω0) = ĝA (t) exp (jω0t) (3.42)

In terms of the modulated analytic signals

W (m, θ) =

∞
∫

−∞

∣

∣

∣ĝAm(t;ω0)− µf̂A (t− θ;ω0)
∣

∣

∣

2
dt

∞
∫

−∞

|ĝAm (t;ω0)|2 dt

=

∞
∫

−∞

∣

∣

∣
ĝA (t)−mf̂A (t− θ)

∣

∣

∣

2
dt

∞
∫

−∞

|ĝA (t)|2 dt

where

m = µ exp (−jω0θ) (3.43)

To minimize W , m must be split into real and imaginary parts

m = x+ jy (3.44)

then

∂D (x, y, θ)

∂x
=

2x
∞
∫

−∞

∣

∣

∣
f̂A (t)

∣

∣

∣

2
dt− 2Re

[

∞
∫

−∞

ĝA(t)f̂
∗
A (t− θ) dt

]

∞
∫

−∞

|ĝA (t)|2 dt
= 0
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yields

x (θ) =

Re

[

∞
∫

−∞

ĝA(t)f̂
∗
A (t− θ) dt

]

∞
∫

−∞

∣

∣

∣
f̂A (t)

∣

∣

∣

2
dt

and

∂D (x, y, θ)

∂y
=

2y
∞
∫

−∞

∣

∣

∣
f̂A (t)

∣

∣

∣

2
dt− 2 Im

[

∞
∫

−∞

ĝA(t)f̂
∗
A (t− θ) dt

]

∞
∫

−∞

|ĝA (t)|2 dt
= 0

returns

y (θ) =

Im

[

∞
∫

−∞

ĝ(t)f̂∗ (t− θ) dt

]

∞
∫

−∞

∣

∣

∣f̂ (t)
∣

∣

∣

2
dt

Putting the two results together, we get

m0 (θ) =

∞
∫

−∞

ĝA(t)f̂
∗
A (t− θ) dt

∞
∫

−∞

∣

∣

∣f̂A (t)
∣

∣

∣

2
dt

(3.45)

and finally distortion may be calculated by

D = 1− |m0 (θ0)|2

∞
∫

−∞

∣

∣

∣
f̂A (t)

∣

∣

∣

2
dt

∞
∫

−∞

|ĝA (t)|2 dt
(3.46)

where θ0 is the location where m0 (θ) is maximum.

In the frequency domain

m0 (θ) =

∞
∫

−∞

G (ω)F ∗ (ω) exp (jωθ) dω

∞
∫

−∞

|F (ω)|2 dω
(3.47)

which is identical to what it was before, except m is now complex. We have

G (ω) = Hm (ω)F (ω) (3.48)

Hm (ω) = H (ω + ω0) (3.49)
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thus

m0 (θ, ω0) =

∞
∫

−∞

H (ω + ω0) |F (ω)|2 exp (jωθ) dω
∞
∫

−∞

|F (ω)|2 dω
(3.50)

Finally, notice that for narrow band pulses

m0 (ω0) ≡ m (θ, ω0) ≈ H (ω0) (3.51)

Therefore, if the signal f̂A (t) is used to transmit pulses that are wide, m0 (ω0) is simply the transfer

function H (ω0).

We used Matlab to implement the procedure above for determining distortion D. As an

example, consider the allpass circuit of Figure 3.4 where CZ0 = 0.1, thus

H (ω) =
j + 0.1ω

j − 0.1ω
(3.52)

We send through this system a square pulse with unit height and unit width. The distortion D as

a function of carrier frequency ω0 is plotted in Figure 3.7. The plot indicates that the distortion

is the greatest when ω0 = 0. At ω0, Figure 3.8 shows the signal before it is passed through the

system f̂ (t) = 2Re f̂A (t), the output signal ĝ (t) = 2Re ĝA (t), and the scaled and shifted function

m0f̂ (t− θ0). In contrast, the distortion at ω0 = 200 is much smaller, which is indicated by Figure

3.9. f̂ (t), ĝ (t) and m0f̂ (t− θ0) are all present in this last plot, but it is difficult to delineate

between the three curves because the distortion is small.

Unlike the local approximation methods (see [34]-[37]), our measure provides a complete

picture of the mechanisms that cause distortion. The equations (3.46) and (3.50) are in no way

approximations. Although, in general, this measure requires numerical computation, routines can

be made robust and with little effort. For new research, numerical solutions are useful for experi-

menting with a large number of examples and doing so very quickly. The measure of distortion we

provide here is a good tool for seeing how different kinds of systems distort signals.
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Figure 3.7: Distortion as a function of modulated frequency ω0.
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3.3 Bode-Fano Limitations

A class of limitations useful for characterizing transfer functions has the form

∞
∫

−∞

f (|H (ω)|) dω ≤ K (3.53)

where f (·) is a known function and K is a positive constant. The inequality, known as a gain

bandwidth limitation [31], enforces a constraint on the transfer function and is useful for obtaining
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Figure 3.9: Distortion when ω0 = 200.

bounds on |H (ω)|.

Bode-Fano limitations [40, 41] are a subclass of the gain bandwidth limitations (3.53). The

kind of systems considered in this thesis are causal, implying that all transfer functions encountered

here are analytic in the lower half of the complex ω-plane (so called Herglotz functions). Bode and

Fano exploit this behavior as well as certain characteristics of H (ω) along the real line to obtain

constraints of the form (3.53).

To introduce the Bode-Fano limitations, we consider systems that can be characterized by

the reflection coefficient ρ (ω). From causality, ρ (ω) is analytic in the lower complex half-plane.

Consider the logarithm of the transfer function

ln ρ (ω) = ln |ρ (ω)|+ jφ (ω) . (3.54)

where ln |ρ (ω)| and φ (ω) are real functions of real-valued ω. The function ρ (ω) is the Fourier

transform of the real impulse response ρ̂ (t); therefore, ln |ρ (ω)| is an even function and φ (ω) is

odd. The function (3.54) is not generally analytic in the lower half-plane, because any zeros in

ρ (ω) will cause (3.54) to be singular. If we know where all the zeros (ω1, ω2, ...) of ρ (ω) are located
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in the lower complex plane, we can form the function

ρ̄ (ω) = ρ (ω)
(ω − ω∗

1) (ω − ω∗
2) ...

(ω − ω1) (ω − ω2) ...
(3.55)

so that the new function

ln ρ̄ (ω)

is analytic in the lower half-plane. With this new function, we form the contour integral

I =

∮

C

(ln ρ̄ (ω)−R∞) dω (3.56)

where C is the combination of a semicircle Cr, in the lower half-plane (see Figure 3.10) and the real

line over the domain [−r, r]. R∞ is the first term in the Laurent expansion taken about the origin

ln ρ (ω) = R∞ + j
φ∞
ω

+
R1

ω2
+ j

φ1
ω3

+ · · · (3.57)

which is valid provided that ln ρ (ω) is analytic everywhere outside some circle centered on the

origin. Clearly,

ln |ρ (ω)| = R∞ +
R1

ω2
+ · · · (3.58)

and

φ (ω) =
φ∞
ω

+
φ1
ω3

+ · · · (3.59)
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From Cauchy’s integral formula

I = 0 (3.60)

therefore, we may break the integral (3.56) into a sum of three parts

I1 + I2 + I3 = 0

where

I1 =

∮

C

(ln |ρ (ω)| −R∞) dω (3.61)

I2 = j

∮

C

φ (ω) dω (3.62)

and

I3 =

∮

C

ln

(

(ω − ω∗
1) (ω − ω∗

2) ...

(ω − ω1) (ω − ω2) ...

)

dω (3.63)

As r → ∞, I1 becomes

I1 =

∞
∫

−∞

(ln |ρ (ω)| −R∞) dω (3.64)

because the integral along the line Cr vanishes due to the fact that ln |ρ (ω)| −R∞ ∼ R1

ω2
for large

|ω|. Replacing φ (ω) with the expansion (3.59) in I2, it is trivial to show that

I2 = πφ∞ (3.65)

when r → ∞. The magnitude of

(ω − ω∗
1) (ω − ω∗

2) ...

(ω − ω1) (ω − ω2) ...

is unity for all ω (this function is a so-called Blaschke product). Consequently, the logarithm of

this product is a pure phase function along the real axis. Therefore, the integral of the logarithm

along the real axis is

j

∞
∫

−∞

N
∑

i=1

∠
(ω − ω∗

i )

(ω − ωi)
dω (3.66)
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where ∠ denotes the argument (phase angle) of a complex quantity, and N is the number of zeros

in the lower half-plane. Along the semicircle Cr, for larger |ω|, we have the asymptotic behavior

ln

(

(ω − ω∗
1) (ω − ω∗

2) ...

(ω − ω1) (ω − ω2) ...

)

∼ −
N
∑

i=1

2 Imωi

jω
(3.67)

Allowing r → ∞, we may rewrite (3.60) as

∞
∫

−∞

(ln |ρ (ω)| −R∞) dω + πφ∞ + j

∞
∫

−∞

N
∑

i−1

∠
(ω − ω∗

i )

(ω − ωi)
+ 2π

N
∑

i=1

Imωi = 0 (3.68)

Taking the real part of the above equation and arranging terms, we may write

∞
∫

−∞

(

ln
1

|ρ (ω)| +R∞

)

dω − 2π
N
∑

i=1

Imωi = πφ∞

Using the fact that the zeros ωi are known to be in the lower complex plane, and the fact that

ln |ρ (ω)| is an even function, we obtain the final result

∞
∫

0

(

ln
1

|ρ (ω)| +R∞

)

dω ≤ πφ∞
2

(3.69)

This is one of the results due to Bode and Fano, and is a gain-bandwidth limitation.

As an example of how one might use the limitation (3.69), consider the reflection coefficient

of a transmission line connected to a load consisting of a capacitor C in parallel with a resistor R:

ρ (ω) = −Z0 −R+ CRjωZ0

R+ Z0 + CRjωZ0
(3.70)

As the frequency goes to infinity, the reflection coefficient becomes −1. Therefore, the circuit does

not transfer energy to the resistor at higher frequencies. The Bode-Fano limitation characterizes

how the limit at infinite frequencies affects |ρ (ω)| over all frequencies. We may calculate

R∞ = lim
ω→∞

ln (ρ (ω)) = 0 (3.71)

and

φ∞ =
2

CZ0
(3.72)
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The integral becomes
∫ ∞

0
ln

1

|ρ (ω)| dω ≤ π

CZ0
(3.73)

Suppose now that we are interested in the reflection coefficient in the band ω1 to ω2. Since the

argument of the integral is always nonnegative, it is true that

∫ ω2

ω1

ln
1

ρmax

dω ≤ π

CZ0
(3.74)

where ρmax = max {|ρ (ω)|} within the band ω1 to ω2. Then

ln
1

ρmax

(ω2 − ω1) ≤
π

CZ0
(3.75)

and

ρmax ≥ exp

(

− π

(ω2 − ω1)CZ0

)

(3.76)

We have therefore obtained a limitation on the best we can do to minimize a reflection coefficient

within a bandwidth of interest.

Another Bode-Fano result, which will be useful to us later, is found when the reflection

coefficient of interest has a magnitude of unity at ω = 0. Using the same ideas from above, we form

the integral

I = Re

∮

C

1

ω2
(ln ρ̄ (ω)−R0) dω = 0 (3.77)

where R0 is the first term in the Taylor expansion

ln ρ (ω) = R0 + jωφ0 + ω2R1 + jω3φ1 + · · · (3.78)

which is taken about the origin of the complex ω-plane. We find that

∫ ∞

0

1

ω2

(

ln
1

|ρ (ω)| +R0

)

dω ≤ −π
2
φ0 (3.79)

where φ0 is the second term of the Taylor series (3.78).
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A transmission line connected to a resistor in series with a capacitor, will serve as an example

for the limit given by (3.79). Here the transfer function is

ρ (ω) =
(R− Z0)Cjω + 1

(R+ Z0)Cjω + 1
(3.80)

and

R0 = 0

φ0 = −2CZ0

Therefore

p.v.

∫ ∞

0

1

ω2
ln

1

|ρ (ω)|dω ≤ πZ0C (3.81)

3.3.1 Tapered Transmission Line

A tapered transmission line can be used as a broadband matching system to match a trans-

mission line to a resistive load. In some sense, the nonuniform transmission line is like a broadband

antenna, which is used to match a single port system to free space over a large band of frequencies.

We introduce a new limitation on nonuniform transmission lines based on Bode-Fano limitations.

Energy within the matching system will be considered in a later chapter.

The matching circuit illustrated in Figure 3.11 is used to match a transmission line with real

characteristic impedance Z0 to the resistor RL. Carefully tapering the nonuniform transmission line

in between the input port and the resistor RL, provides an engineer with the capability to design

broadband matching devices. This sort of matching device is always limited by its low frequency

behavior. At low enough frequencies, the wavelength can be made much larger than the length L of

the nonuniform line. For such frequencies, it is as if the input transmission line with characteristic

impedance ZL were connected directly to the load RL.

Since nonuniform transmission lines are limited by low frequency behavior, we seek a Bode-

Fano type limitation of the form

p.v.

∫ ∞

0

1

ω′2
ln

∣

∣

∣

∣

ρ (0, 0)

ρ (0, ω′)

∣

∣

∣

∣

dω′ ≤ −π
2
φ0 (3.82)
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Figure 3.11: Nonuniform transmission line matching circuit.

consistent with the the limitation (3.79) discussed above. To obtain this bound, we must first

ensure that the argument of the integral on the left hand side of the inequality is always positive,

then we must determine the constant φ0.

For the lossless nonuniform transmission line used as a matching circuit as in Figure 3.11,

the reflection coefficient Γ (x, ω) at any location x along the line is known to satisfy the nonlinear

differential equation1 [42]

dΓ

dx
− 2jβΓ +

(

1− Γ2
)

N = 0 (3.83)

where

N (x) =
1

2

d lnZc

dx
(3.84)

Zc (x) is the characteristic impedance of the nonuniform transmission line, and β (x) is the propa-

gation constant. Following Litvenenko [43], let

Γ = ρejθ (3.85)

where ρ (x, ω) and θ (x, ω) are real and continuous functions of location x and frequency ω. Placing

(3.85) back into the differential equation (3.83) leads to two real valued differential equations

ρ′ = −N
(

1− ρ2
)

cos θ (3.86)

1 This is a special form of the Riccati equation.
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and

θ′ = 2β +

(

ρ+
1

ρ

)

N sin θ (3.87)

The first differential equation may be written as

1

2

[

ln
1 + ρ

1− ρ

]′

= −N cos θ (3.88)

If we assume that ρ (L, ω) = 0, integrating the previous equation returns

ln
1 + ρ (0, ω)

1− ρ (0, ω)
=

∫ L

0
[lnZc (x)]

′ cos θ (x) dx (3.89)

solving this for ρ (0, ω) returns

ρ (0, ω) = tanh

(

1

2

∫ L

0
[lnZc (x)]

′ cos θ (x) dx

)

(3.90)

Now consider

|ρ (0, ω)| =

∣

∣

∣

∣

tanh

(

1

2

∫ L

0
[lnZc (x)]

′ cos θ (x) dx

)∣

∣

∣

∣

(3.91)

= tanh

∣

∣

∣

∣

1

2

∫ L

0
[lnZc (x)]

′ cos θ (x) dx

∣

∣

∣

∣

≤ tanh
1

2

∫ L

0

∣

∣[lnZc (x)]
′
∣

∣ |cos θ (x)| dx

The function |cos θ (x)| is bounded between 0 and 1 for all x, therefore

|ρ (0, ω)| ≤ tanh
1

2

∫ L

0

∣

∣[lnZc (x)]
′
∣

∣ dx (3.92)

To proceed, we now restrict the transmission lines to cases where [lnZc (x)]
′ is either positive or

negative for all x. This implies that the following analysis will pertain only to those transmission

lines where Zc (x) is either monotonically growing or decreasing. Consider first the case where

Zc (x) is monotonically increasing, it follows that

|ρ (0, ω)| ≤ tanh
1

2

∫ L

0
[lnZc (x)]

′ dx (3.93)
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Figure 3.12: Low frequency approximation of nonuniform transmission line.

This integral may be evaluated in closed form

tanh
1

2

∫ L

0
[lnZc (x)]

′ dx = tanh

[

1

2
ln
Zc (L)

Zc (0)

]

(3.94)

=
Zc (L)− Zc (0)

Zc (L) + Zc (0)

= ρ (0, 0)

A similar calculation provides the same result for a monotonically decreasing Zc (x). We have

therefore shown that

|ρ (0, ω)| ≤ |ρ (0, 0)| (3.95)

for all ω, provided that Zc (x) monotonically increases or decreases. In turn, we have discovered

the first desired result, that is that the argument of the integral (3.82) is always positive.

To determine the constant φ0, let

Zc (L) = RL (3.96)

i.e., there is no impedance discontinuity at the load end. We also let

Zc (0) = Z0 (3.97)

i.e., there is no discontinuity at the input end. At low frequencies, the tapered transmission line

may be approximated by the lumped circuit in Figure 3.12. If l (x) and c (x) are the inductance

and capacitance of the transmission line, per unit length, the propagation factor per unit length is

β (x) = ω
√

l (x) c (x) (3.98)
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and the characteristic impedance per unit length is

Zc (x) =

√

l (x)

c (x)
(3.99)

In terms of these functions, C1 is

C1 =
1

ω

∫ L

0

β (x)

Zc (x)
dx (3.100)

and L1 is

L1 =
1

ω

∫ L

0
β (x)Zc (x) dx (3.101)

Therefore, at low frequencies the input impedance looking into the nonuniform transmission line is

Zin = jωL1 +
1

1

RL
+ jωC1

(3.102)

From Zin, the factor φ0 is readily determined

φ0 = − 2Z0

R2
L − Z2

0

(

C1R
2
L − L1

)

(3.103)

Using the results above, the Bode-Fano limitation for monotonically increasing or decreasing

Zc (x) is

∫ ∞

0

1

ω′2
ln

∣

∣

∣

∣

ρ (0, 0)

ρ (0, ω′)

∣

∣

∣

∣

dω′ ≤ Z0π

R2
L − Z2

0

(

C1R
2
L − L1

)

(3.104)

=
π

4Z0ω

[1− ρ (0, 0)]2

ρ (0, 0)

∫ L

0

β (x)

Zc (x)

[

R2
L − Z2

c (x)
]

dx

= π

∫ L

0

β (x)

ω

Zc (x)

Z0

ρs
ρ (0, 0)

(1− ρ (0, 0))2

(1− ρs)
2 dx

Further simplifications may be made to determine a simple bound on |ρ (0, ω′)|. The right side of

the above Bode-Fano limitation can be written as

Z0π

R2
L − Z2

0

(

C1R
2
L − L1

)

=
π

4Z0ω

[1− ρ (0, 0)]2

ρ (0, 0)

∫ L

0

β (x)

Zc (x)

[

R2
L − Z2

c (x)
]

dx (3.105)

= π

∫ L

0

β (x)

ω

Zc (x)

Z0

ρs (x)

ρ (0, 0)

(1− ρ (0, 0))2

(1− ρs (x))
2 dx

where we define

ρs(x) =
RL − Zc (x)

RL + Zc (x)
(3.106)
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Since Zc (x) is either monotonically increasing or decreasing, |ρs(0)| is always the maximum of

|ρs(x)|, i.e.,

ρsmax ≡ |ρs(0)| = max {|ρs(x)|} (3.107)

Also note that

ρs (x)

ρ (0, 0)

is always positive by our earlier assumption. For β (x) constant, we have

Z0π

R2
L − Z2

0

(

C1R
2
L − L1

)

≤ π
β

ω

(

1− ρ2 (0, 0)
)

ρ (0, 0)

∫ L

0

ρs (x)

(1− ρ2s (x))
dx (3.108)

≤ π
βL

ω

(

1− ρ2 (0, 0)
)

ρ (0, 0)
max

{

ρs (x)

(1− ρ2s (x))

}

≤ π
βL

ω
.

This is a consequence of

(

1− ρ2s (0)
)

ρs (0)
max

{

ρs (x)

(1− ρ2s (x))

}

=

(

1− ρ2s (0)
)

ρs (0)

ρsmax

(1− ρ2smax)
= 1 (3.109)

and recognizing that ρs (0) = ρ (0, 0), and that (3.107). Over the range of frequencies

ω1 ≤ ω ≤ ω2

it is clear that

ln

∣

∣

∣

∣

ρ (0, 0)

ρmax

∣

∣

∣

∣

ω2 − ω1

ω1ω2
≤
∫ ∞

0

1

ω′2
ln

∣

∣

∣

∣

ρin (0)

ρin (ω)

∣

∣

∣

∣

dω′ (3.110)

where

ρmax = max {ρ (0, ω)} (3.111)

We have

ln

∣

∣

∣

∣

ρ (0, 0)

ρmax

∣

∣

∣

∣

ω2 − ω1

ω1ω2
≤ π

β

ω
L (3.112)

and if we set

ω1 =
vp
λ1

2π (3.113)

ω2 =
vp
λ2

2π
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and note that

β =
ω

vp
(3.114)

where vp is the phase velocity along the line, and λ1 and λ2 are the wavelengths corresponding to

ω1 and ω2, we see that

ln

∣

∣

∣

∣

ρ (0, 0)

ρmax

∣

∣

∣

∣

≤ 2π2L

λ1 − λ2
(3.115)

or

ρmax ≥ ρ (0, 0) exp

(

− 2π2L

λ1 − λ2

)

(3.116)

The Bode-Fano limitation (3.104) provides insight into how well a tapered transmission line per-

forms as a function of L. We emphasize that the bound is limited to monotonically tapered

transmission lines. But, this kind of characterization of the transfer function is attractive because

it can be applied unambiguously to ρ (0, ω). The limitation only requires that the integral in (3.104)

to exist.

3.4 Summary

We provide in this chapter tools useful for quantifying terminal behavior. In particular, energy

bandwidth ∆ωE (see Section 3.1.1) was defined as an alternative to 3 dB bandwidth ∆ω3dB. This

kind of width, at least for the examples we discussed, gave similar results to 3 dB bandwidth in

certain limits. But, as we have shown, energy bandwidth is more generally applicable than 3 dB

bandwidth. From the discussions in Chapter 1, it is not clear that 3 dB bandwidth should always

be the choice of measure that corresponds to the energy within a system, we will show in Chapter

4 an example where energy bandwidth is a better choice.

We also in this chapter defined a measure for distortion (see Section 3.2). Bandwidth, at least

in the definitions we present here, is only concerned with the magnitude of the transfer function

and not the phase. To get a more complete description of terminal behavior, we defined distortion
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D (see Eqn. (3.46) and (3.50)). Unlike other measures of distortion, the definition we provide is in

no way approximate.

Although measures such as the energy bandwidth and distortion are best suited for numerical

computations, they are simple to implement robustly. They can be used with little difficulty to

explore many different kinds of examples with little effort. This is useful for experimental purposes

and is very helpful when trying to find how such quantities may be related to the energy within

the systems to which they are being applied. In an age where computation is inexpensive, tools

such as these are valuable assets for research.

The Bode-Fano limitation for nonuniform transmission lines (3.104) is a new result that places

a limitation on the reflection coefficient ρ (0, ω). The result shows, clearly, that longer transmission

lines will have larger bandwidths (or, equivalently, at higher frequencies the bandwidth is larger).

We will show in Chapter 4 a method for determining a portion of the energy within these nonuniform

transmission lines at large frequencies, and that one over this energy is consistent with the result

found here.



Chapter 4

Recoverable Energy

Recoverable energy is a kind of energy that can be calculated uniquely from the reflection

coefficient ρ (ω) of a one-port network. This is in contrast to stored energy, which requires infor-

mation about the internal structure of a system, e.g., the configuration of inductors and capacitors

along with the currents and voltages associated with them. Because of its unique relationship to

the terminal behavior, recoverable energy may somehow be uniquely related to the bandwidth of

a system in general. This is impossible to do with stored energy, because as we showed in Chapter

1, there are classes of circuits that have different stored energies but the same terminal behavior.

We introduce the recoverable energy Erec of a one-port network in this chapter and show how it

can be calculated given the reflection coefficient ρ (ω) of a one-port network. We will also define

the new parameter

Qrec =
ω0Erec

P

simply by replacing U with Erec in the definition of Q from Chapter 1 (1.6). An example will be

studied to see how Qrec is related to the definitions of bandwidth from Chapter 3.

It was discovered from results leading to a calculation of recoverable energy that Darlington

synthesis is closely related to the problem of determining recoverable energy. We show that the

recoverable energy from a one-port network is equal to the stored energy of a minimum phase

Darlington circuit, which has been synthesized from the reflection coefficient ρ (ω). A Darlington

circuit is a circuit constructed from a lossless two-port network terminated in a single resistance,

and it will be shown that the resulting lossless two-port is, in general, nonreciprocal.
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The first part of this chapter is a derivation of the quantity we call recoverable energy (4.61),

and the second part contains four examples revealing how important this energy is for under-

standing terminal behavior. Deriving recoverable energy is a lengthy process and requires solving

a variational problem; the next two sections lead us to a functional (4.12) that will need to be

minimized. The section that follows these two, will show that minimizing the functional results

in having to solve an integral equation (4.19). We solve this integral equation using the so-called

Wiener-Hopf technique and the final result is given by Eqn (4.57). Because we will be interested

in time-harmonic recoverable energy only, we provide a method for calculating this quantity and

obtain the result given by Eqn. (4.61). Four examples follow that demonstrate how recoverable

energy can be calculated. These examples show the importance of this kind of energy, which is

determined from the terminal behavior of a system alone.

4.1 Recoverable Energy

Consider the network of Figure 4.1. The real valued signal â (t) represents the wave-amplitude

(see Chapter 2) due to some source incident on the one-port network; the real valued signal b̂ (t)

represents the wave-amplitude reflected from the network. We assume that the system meets the

requirements specified in Chapter 2 that permit b̂ (t) to be expressed as

b̂ (t) = ρ̂ (t) ∗ â (t)

where ρ̂ (t) is the real valued impulse reflection response of the system. We also assume that the

energy inside the network is initially zero. Energy is put into the system by controlling â (t) up to

a time t0. The energy put into the network is thus

Ein =

t0
∫

−∞

[

â2 (t)− b̂2 (t)
]

dt (4.1)

We require â (t) to be in the set of functions L2 and that Ein <∞. After the time t0, â (t) is then

used to extract energy back out of the system. The energy extracted from the system is

Eout = −
∞
∫

t0

[

â2 (t)− b̂2 (t)
]

dt (4.2)
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Figure 4.1: Single port network.

We define recoverable energy Erec as the maximum energy that can be extracted from the system

by an optimally chosen â (t) in the time interval t ≥ t0.

Recoverable energy has been studied before, but in different contexts. In 1963 Breuer and

Onat [44, 45] studied what they called “recoverable work” within viscoelastic solids. In this case,

Breuer and Onat were interested in determining a fraction of the work done on a solid for t < 0

by straining it mechanically. They determined this fraction of work, which they called recoverable

work, by choosing an optimal straining function in a similar manner to what we are doing here. In

1990 Polevoi [46] studied how much electromagnetic energy could be extracted from a dissipative

and dispersive medium. He used current densities to transfer energy, in the form of electromagnetic

fields into and out of the medium. Using an optimal current density function defined for t > 0 he

determined maximum extractable energy. Glasgow, Meilstrup and Peatross et al. [47] as well as

Amendola, Fabrizio and Golden [48] also looked into the dissipative and dispersive medium problem

that Polevoi had studied.

4.2 Calculation of Recoverable Energy

The function â (t) can be split into a sum of two different functions

â (t) = âp (t) + âf (t) (4.3)
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The p in the function âp (t) stands for the past and means âp (t) is equal to â (t) for t < t0. The f

in the function âf (t) stands for the future, âf (t) is equal to â (t) for t ≥ t0. Consequently,

âp (t) = 0 for t ≥ t0 (4.4)

and

âf (t) = 0 for t < t0 (4.5)

Figure 4.2 illustrates the decomposition of â (t).

Restating the definition, for a given function âp (t) ∈ L2, recoverable energy is the maximum

Eout over all possible âf (t). For calculation purposes, it is easier to minimize the energy lost to

the network

Elost = Ein − Eout (4.6)

By definition, Elost is nonnegative because the system is passive. It is also true that

Elost ≤ Ein <∞ (4.7)

which implies that we cannot extract more energy than has been put into the system. From (4.6),

(4.1), (4.2), and the definition of passivity in Chapter 2, we have

Elost =

∞
∫

−∞

[

â2 (t)− b̂2 (t)
]

dt ≥ 0 (4.8)

Once a minimum Elost is found, the maximum Eout (i.e., the recoverable energy) is found via (4.6).

In functional form, energy lost to the system is

Elost [âf ] =

∞
∫

−∞

[

â2 (t)− [ρ̂ (t) ∗ â (t)]2
]

dt ≥ 0 (4.9)

where â (t) = âp (t)+ âf (t). A clever way to write this last expression that simplifies the minimiza-

tion calculation later, uses the identity

∞
∫

−∞

â2 (t) dt =

∞
∫

−∞

δ (t) [â (t) ∗ â (−t)] dt (4.10)
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Figure 4.2: Decomposition of â(t).

The identity allows us to write the second part of the integral (4.9) as

∞
∫

−∞

[ρ̂ (t) ∗ â (t)]2 dt =

∞
∫

−∞

δ (t) [ρ̂ (t) ∗ â (t) ∗ ρ̂ (−t) ∗ â (−t)] dt (4.11)

=

∞
∫

−∞

[ρ̂ (t) ∗ ρ̂ (−t)] [â (t) ∗ â (−t)] dt

Elost [âf ] can then be transformed to

Elost [âf ] =

∞
∫

−∞

[δ (t)− ρ̂ (t) ∗ ρ̂ (−t)] [â (t) ∗ â (−t)] dt ≥ 0 (4.12)

4.3 Minimization Requirements

If âf (t) minimizes the energy lost to the system (4.12), then any other function âf (t)+∆̂f (t)

will make Elost larger. The âf (t) that minimizes Elost must, therefore, satisfy

Elost

[

âf + ∆̂f

]

− Elost [âf ] ≥ 0 (4.13)
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for all ∆̂f (t), such that

∆̂f (t) = 0 for t < t0 (4.14)

Clearly,

âf (t) + ∆̂f (t) = 0 for t < t0

Let

K̂ (t) = δ (t)− ρ̂ (t) ∗ ρ̂ (−t)

so that the functional Elost

[

âf + ∆̂f

]

can be written as

Elost

[

âf + ∆̂f

]

=

∞
∫

−∞

K̂ (t)
[(

â (t) + ∆̂f (t)
)

∗
(

â (−t) + ∆̂f (−t)
)]

dt (4.15)

= Elost [âf ] + Elost

[

∆̂f

]

+2

∞
∫

−∞

K̂ (t)
[

∆̂f (t) ∗ â (−t)
]

dt

It follows that if (4.13) must be true for all ∆̂f , then

Elost

[

∆̂f

]

+ 2

∞
∫

−∞

K̂ (t)
[

∆̂f (t) ∗ â (−t)
]

dt ≥ 0

or

Elost

[

∆̂f

]

+ 2

∞
∫

−∞

[

K̂ (t) ∗ â (t)
]

∆̂f (t) dt ≥ 0 (4.16)

must be true for for all ∆̂f . From passivity (see Chapter 2), Elost

[

∆̂f

]

is greater than or equal to

zero for all ∆̂f . Thus, ensuring that (4.16) is true for all ∆̂f , requires that

∞
∫

−∞

[

K̂ (t) ∗ â (t)
]

∆̂f (t) dt ≥ 0 (4.17)

for all ∆̂f (t). The function ∆̂f (t) is arbitrary and in the above expression, it can always be replaced

by −∆̂f (t). Remembering that ∆̂f (t) satisfies (4.14), to ensure that the integral in (4.17) is never

negative it is necessary that

K̂ (t) ∗ â (t) = 0 for t ≥ t0 (4.18)
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almost everywhere. This last equation can be rewritten as

â (t)−
∞
∫

−∞

h (τ − t) â (τ) dτ = 0 for t ≥ t0 (4.19)

where

h (t) = ρ̂ (t) ∗ ρ̂ (−t) (4.20)

and we remember that

â (t) = âp (t) + âf (t)

Equation (4.19) is also sufficient for (4.13) to be true, for if it is true then

Elost

[

âf + ∆̂f

]

− Elost [âf ] = Elost

[

∆̂f

]

which is clearly positive because Elost

[

∆̂f

]

is always positive.

4.4 Wiener-Hopf Solution

An analytic solution exists for the integral equation (4.19), subject to the constraint (4.5).

The tool we use to determine a solution is the Wiener-Hopf technique (see Chap. 2 of [49]). In this

section we use this technique to determine âf (t) for a particular âp (t). Before we do, however, we

present a few results from complex variable theory [50] that are needed to carry out the process.

We also introduce the projection operators P± that are useful for simplifying the analysis.

Cauchy’s Integral Formula. If the function f (z) is analytic inside and on a simply

connected closed contour C in the complex plane, then at any point interior to the contour

f (z) =
1

2πj

∫

C

f (ζ)

ζ − z
dζ (4.21)

where the integration is carried out in the counterclockwise direction

Jordan’s lemma. If f (z) satisfies f (z) → 0 uniformly as |z| → ∞ in the upper half of the

complex z-plane, as well as on then real axis, then

lim
R→∞

∫

CR

f (z) ejzt dz = 0 for t > 0 (4.22)



55

CR

R

Im{z}

Re{z}

Figure 4.3: The contour CR in the complex z-plane, illustrating Jordan’s lemma.

The path CR is a semicircle in the upper half-plane with radius R (see Figure 4.3). If f (z) → 0

uniformly in the lower complex plane and on the real axis, the above statement is true when CR is

a semicircle in the lower complex plane and t < 0.

Liouville’s theorem. A function that is analytic and bounded over the whole complex plane

must be constant.

From Parsaval’s theorem, Elost (4.12) can be written as

Elost =
1

2π

∞
∫

−∞

(

1− |ρ(ω)|2
)

|a (ω)|2 dω ≥ 0 (4.23)

(The hats over all functions have been removed to indicate that the functions have been transformed

to the frequency domain.) It follows from passivity (see Chapter 2), that if Elost ≥ 0 for all a (ω),

then

1 ≥ |ρ(ω)| (4.24)

almost everywhere. For Eloss to remain finite,
(

1− |ρ(ω)|2
)

|a (ω)|2 must fall off faster than 1/ω

as |ω| → ∞. For a general reflection coefficient ρ(ω) that does not approach unity as |ω| → ∞, the

fall off requirement implies that

a (ω) ∼ o

(

1√
ω

)

for |ω| → ∞ (4.25)

where o(1/
√
ω) indicates that |a (ω)| falls off faster than 1/

√
ω. The fall off restriction would be

relaxed if |ρ(ω)| → 1 as |ω| → ∞, however, we do not consider such cases in this thesis.
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Im{ω}

Re{ω}

jε

R-R

-jε

C

Figure 4.4: Integration path.

If a function G (ω) is analytic within a strip containing the real line, i. e., within |Imω| ≤ ε

(see Figure 4.4), and falls off as ω−σ as Reω → ±∞ for some σ > 0 within that strip, then G (ω)

can be decomposed into a sum of two functions

G (ω) = G+ (ω) +G− (ω) (4.26)

where the subscripts + and − indicate that the functions G+ (ω) and G− (ω) are analytic in the

upper and lower complex ω-half-planes respectively. A proof can be found on p. 44 of [49] and is

summarized here. Suppose that G (ω) is analytic in the strip where |Imω| ≤ ε. Applying Cauchy’s

integral theorem, the integral over the contour C (shown in Figure 4.4) is

G (ω) =
1

2πj

∮

C

G (ζ)

ζ − ω
dζ

Integration over the vertical sections of the contour vanish as |R| → ∞ because G (ω) decays in the

strip as ω−σ. Letting |R| to go to infinity, the above integral becomes

G (ω) =
1

2πj

∞−jε
∫

−∞−jε

G (ζ)

ζ − ω
dζ − 1

2πj

∞+jε
∫

−∞+jε

G (ζ)

ζ − ω
dζ

The first integral is taken along the lower section of the contour, and the second integral is taken

along the upper. We define

G+ (ω) ≡ 1

2πj

∞−jε
∫

−∞−jε

G (ζ)

ζ − ω
dζ (4.27)

and

G− (ω) ≡ −1

2πj

∞+jε
∫

−∞+jε

G (ζ)

ζ − ω
dζ (4.28)
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It is clear by inspection that G+ (ω) is a function that is analytic everywhere in the upper half-plane

(Imω > 0), and G− (ω) is analytic everywhere in the lower half-plane (Imω < 0).

The behavior of the functions G+ (ω) and G− (ω) at infinity is discussed on p. 44 of [49].

When G (ω) falls off as ω−σ, where σ > 1, then

G± (ω) ∼ M±

ω

where M± are a finite constants. When 1 > σ > 0 the functions fall off as

G± (ω) ∼ M±

ωσ

If σ = 1, then

G± (ω) ∼M±

lnω

ω

To simplify the analysis that follows, it is convenient to introduce the projection operators

P+ and P−. The purpose of these operators is to project out the functions G+ (ω) and G− (ω)

from the function G (ω) described above. We define the operators by

P±φ(ω) = lim
ε→0

± 1

2πj

∞
∫

−∞

φ(ζ)

ζ − (ω ± jε)
dζ (4.29)

where ε is a small positive real number. Equivalently, the operators can be defined as

P±φ(ω) =
1

2
φ(ω)± 1

2πj
p.v.

∞
∫

−∞

φ(ζ)

ζ − ω
dζ (4.30)

where p.v. indicates that the integral must be taken as a Cauchy principal value integral. The

functions (4.27) and (4.28) can now be written as

G± (ω) = P±G (ω) (4.31)

P+ and P− have several properties needed for later calculations. Let an inner product be

defined by

〈φ, ψ〉 =
∞
∫

−∞

φ (ξ)ψ∗ (ξ) dξ (4.32)
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The first interesting property of the operators is

〈P±φ, ψ〉 = 〈φ,P±ψ〉 (4.33)

which is to say that the operators P± are self-adjoint. The proof follows from the definition (4.29)

〈P±φ, ψ〉 =

∞
∫

−∞

P± [φ (ξ)]ψ∗ (ξ) dξ

= lim
ε→0

± 1

2πj

∞
∫

−∞

∞
∫

−∞

φ(ζ)ψ∗ (ξ)

ζ − (ξ ± jε)
dζdξ

= lim
ε→0

∓ 1

2πj

∞
∫

−∞

∞
∫

−∞

φ(ζ)ψ∗ (ξ)

ξ − (ζ ∓ jε)
dζdξ

=

∞
∫

−∞

lim
ε→0

∓ 1

2πj

∞
∫

−∞

ψ∗ (ξ) dξ

ξ − (ζ ∓ jε)
φ(ζ) dζ

=

∞
∫

−∞

P∓ [ψ∗ (ζ)]φ(ζ) dζ

Since

(P±φ)
∗ = P∓ [φ∗]

which follows from (4.30),we have

〈P±φ, ψ〉 =
∞
∫

−∞

φ(ζ) (P± [ψ (ζ)])∗ dζ

and the proof is complete. The properties

P±P±φ = P±φ (4.34)

and

P∓P±φ = 0 (4.35)

follow trivially from the definitions. The final property

〈P±φ,P∓φ〉 = 0
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follows from (4.33) and (4.35). It states that P±φ and P∓φ are orthogonal with respect to the

product (4.32).

From the projection operators (4.30), it follows that a function k̂ (t) ∈ L2 satisfying

k̂ (t) = 0 for t < 0 (4.36)

has a spectrum analytic in the lower complex ω-plane. To demonstrate this, we take the Fourier

transform of k̂ (t)

k (ω) =

∞
∫

0

k̂ (t) e−jωt dt

now k (ω) falls off like ω−1 as |ω| → ∞ and, therefore, it can be split into the sum of two functions

k (ω) = P+ [k (ω)] + P− [k (ω)] = P+

∞
∫

0

k̂ (t) e−jωt dt+ P−

∞
∫

0

k̂ (t) e−jωt dt

The operators P± can be brought under the integrals to operate on e−jωt, resulting in

P+e
−jωt = 0 for t ≥ 0

and

P−e
−jωt = e−jωt for t < 0

Therefore,

P+ [k (ω)] = 0

and

P− [k (ω)] =

∞
∫

0

k̂ (t) e−jωt dt = k (ω)

which implies that k (ω) is analytic in the lower half-plane. It can similarly be shown that a function

k̂ (t) ∈ L2 satisfying

k̂ (t) = 0 for t ≥ 0

will have a spectrum analytic in the upper complex plane. From (4.4) and (4.5), we can con-

clude that the spectra af (ω) and ap (ω) are analytic in the upper and lower complex half-planes

respectively. A final tool necessary for the solution of the integral equation (4.19) is the product
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factorization of K (ω) ≡ 1−|ρ (ω)|2. This function can be factored into the product of two auxiliary

functions

K (ω) = κ− (ω)κ+ (ω) (4.37)

where, again, + and − indicate that the corresponding functions are analytic in the upper and

lower complex planes respectively. The function |ρ (ω)| is even, and therefore K (ω) is even, thus

κ− (ω)κ+ (ω) = κ− (−ω)κ+ (−ω) (4.38)

If κ− (ω) is analytic in the lower complex plane, then κ− (−ω) will be analytic in the upper complex

plane. The symmetry (4.38) suggests that κ− (ω) is equal to κ+ (−ω) to within a constant factor.

So in addition to the factorization (4.37), without loss of generality we require that

κ− (ω) = κ+ (−ω) (4.39)

For this thesis we only consider functions K (ω) that are both analytic within a strip about the

real axis and have no zeros within the same strip. We also require K (ω) → K∞ as |ω| → ∞,

where 0 ≤ K∞ < 1. (The restriction means |ρ (ω)|2 → 1 as |ω| → ∞ is not permitted.) With these

demands, a unique factorization (4.37) is possible, and its proof is constructive. Let

G (ω) = ln
K (ω)

K∞

where the argument of the logarithm is restricted to (−π, π]. From (4.37) and (4.39)

G (ω) = lnκ− (ω) + lnκ+ (ω)− lnK∞

Clearly, G (ω) is analytic in a strip about the real axis and goes to zero as |ω| → ∞, hence G (ω)

itself can be decomposed as

G (ω) = P−G (ω) + P+G (ω)

and thus

lnκ− (ω) + lnκ+ (ω)− lnK∞ = P−G (ω) + P+G (ω)
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Applying the projections operators P± to the left and right side of the above equation, we have

lnκ± (ω)− 1

2
lnK∞ = P±G (ω)

or

κ− (ω) =
√

K∞ exp (P−G (ω))

and

κ+ (ω) =
√

K∞ exp (P+G (ω))

From the definition (4.30)

P±G (ω) =





1

2
ln
K (ω)

C2
± 1

2πj
p.v.

∞
∫

−∞

lnK (ζ)− lnK∞

ζ − ω
dζ





It is clear that

p.v.

∞
∫

−∞

lnK∞

ζ − ω
dζ = 0

therefore, the result for κ± (ω) becomes

κ± (ω) =
√

K∞ exp









1

2
ln
K (ω)

K∞

± 1

2πj
p.v.

∞
∫

−∞

lnK (ζ)

ζ − ω
dζ









=
√

K∞ exp



ln

√

K (ω)

K∞



 exp



± 1

2πj
p.v.

∞
∫

−∞

lnK (ζ)

ζ − ω
dζ





=
√

K (ω) exp



± 1

2πj
p.v.

∞
∫

−∞

lnK (ζ)

ζ − ω
dζ





and finally

κ± (ω) =
√

K (ω) exp (∓jφκ (ω)) (4.40)

where the phase function φκ (ω) is

φκ (ω) =
1

2π
p.v.

∞
∫

−∞

lnK (ζ)

ζ − ω
dζ

It is sometimes convenient to write this as

φκ (ω) =
ω

π
p.v.

∞
∫

0

lnK (ζ)

ζ2 − ω2
dζ
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to emphasize that it is an odd function of ω. This completes the proof that K (ω) can be uniquely

factored.

From (4.40)

κ± (ω) = κ∗∓ (ω)

for real ω. For brevity, we will henceforth omit the subscript of κ− (ω), and define

κ (ω) ≡ κ− (ω)

and it follows that the factorization (4.37) can be written as

K (ω) = κ (ω)κ∗ (ω) (4.41)

or

K (ω) = |κ (ω)|2

Therefore, the function κ (ω) has the following properties:

|κ (ω)|2 = 1− |ρ (ω)|2 (4.42)

and

κ (ω) = |κ (ω)| exp (jφκ (ω)) (4.43)

where

φκ (ω) =
ω

π
p.v.

∞
∫

0

ln |κ (ω)|2

ζ2 − ω2
dζ (4.44)

From (4.43), (4.44) and the fact that |κ (ω)| is an even function, κ (ω) adheres to the symmetry

κ (−ω) = κ∗ (ω) (4.45)

when ω is real.

At this point, it is interesting to identify κ (ω) as the transmission coefficient of a minimum-

phase lossless two-port network. Notice that the magnitude squared of κ (ω) (4.42) is identical

to that of a transmission coefficient associated with a lossless two-port network. The fact that
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the phase φκ (ω) satisfies (4.44) means that the transfer function κ (ω) is minimum-phase [51]. It

is also interesting to note that lossless two-port circuits can be synthesized from ρ (ω) such that

the transmission coefficient of that circuit is the minimum-phase function κ (ω) (see [52]). The

general synthesis procedure is known as Darlington synthesis [53]. We explore the impact of this

observation at the end of this chapter once the recoverable energy has been determined.

We are now ready to solve the integral equation (4.19), with the constraint (4.5). Using the

Fourier representations of the functions âp (t) âf (t) and ĥ(t), (4.19) and (4.5) can be written as

I1 (t) =

∞
∫

−∞

J (ω) ejωtdω = 0 for t ≥ t0 (4.46)

and

I2 (t) =

∞
∫

−∞

af (ω) e
jωtdω = 0 for t < t0 (4.47)

where J (ω) = |κ (ω)|2 a(ω). I1 (t) is a function that is 0 for t ≥ t0 and I2 (t) is a function that is 0

for t < t0. These functions can be shifted to the left by t0 so that

I1 (t+ t0) =

∞
∫

−∞

J (ω) ejωt0ejωtdω = 0 for t ≥ 0 (4.48)

and

I2 (t+ t0) =

∞
∫

−∞

af (ω) e
jωt0ejωtdω = 0 for t < 0 (4.49)

and these conditions imply that we may write

P−

[

J (ω) ejωt0
]

= 0 (4.50)

and

P+

[

af (ω) e
jωt0
]

= 0 (4.51)

(see section following (4.36)). We said above that Eloss will be finite, so as a consequence J (ω) ejωt0

falls off faster than ω−1/2 as |ω| → ∞, and it can therefore be decomposed as

J (ω) ejωt0 = P−

[

J (ω) ejωt0
]

+ P+

[

J (ω) ejωt0
]
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and (4.50) implies that

J (ω) ejωt0 = P+

[

J (ω) ejωt0
]

(4.52)

Similarly, since af (ω) e
jωt0 falls off as ω−1 as |ω| → ∞, (4.51) implies that

af (ω) e
jωt0 = P−

[

af (ω) e
jωt0
]

(4.53)

The statements (4.52) and (4.53) together imply that a solution to (4.19) can be found if J (ω) ejωt0

is analytic in the upper complex plane and falls off faster than ω−1/2 as |ω| → ∞, and af (ω) e
jωt0

is analytic in the lower complex plane and falls off faster than ω−1 as |ω| → ∞. The solution for

af (ω) e
jωt0 now proceeds as follows: We first split a(ω) into the sum af (ω) and ap (ω)

J (ω) ejωt0 = κ (ω)κ∗ (ω) (af (ω) + ap (ω)) e
jωt0

since κ∗ (ω) is analytic in the upper complex plane, as is 1/κ∗ (ω), we can move it to the left side

of the equation

J (ω) ejωt0

κ∗ (ω)
= κ (ω) af (ω)e

jωt0 + κ (ω) ap (ω) e
jωt0 (4.54)

The left hand side of (4.54) is analytic in the upper half-plane, and the first term in the sum on

the right hand side is analytic in the lower half-plane. ap (ω) will fall off as ω−1, and we have

chosen |κ (ω)|2 such that |κ (ω)|2 → K∞, where 0 ≤ K∞ < 1, as |ω| → ∞. We can now split

κ (ω) ap (ω) e
jωt0 into a sum of two functions:

J (ω) ejωt0

κ∗ (ω)
= κ (ω) af (ω)e

jωt0 + P+

[

κ (ω) ap (ω) e
jωt0
]

+ P−

[

κ (ω) ap (ω) e
jωt0
]

and rearranging, we get

J (ω) ejωt0

κ∗ (ω)
− P+

[

κ (ω) ap (ω) e
jωt0
]

= P−

[

κ (ω) ap (ω) e
jωt0
]

+ κ (ω) af (ω)e
jωt0

Since the left side of the above equation is analytic in the upper half-plane and the right side is

analytic in the lower, the only way for the equality to hold is if both sides are equal to the same

entire function E (ω); thus

E (ω) = P−

[

κ (ω) ap (ω) e
jωt0
]

+ κ (ω) af (ω)e
jωt0
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We find that

af (ω)e
jωt0 =

E (ω)− P−

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

Since af (ω)e
jωt0 → 0, κ (ω) →

√
K∞ and P−

[

κ (ω) ap (ω) e
jωt0
]

→ 0 as |ω| → ∞, the entire

function E (ω) must go to zero as |ω| → ∞. By Liouville’s theorem, E (ω) must be zero everywhere,

and therefore

af (ω)e
jωt0 = −P−

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

The solution âf (t) is finally

âf (t) = F−1

[

−e
−jωt0P−

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

]

To calculate the minimum Eloss, notice that

a(ω) = ap (ω) + af (ω)

= ap (ω)−
e−jωt0P−

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

and that we can split the second term in the sum so that we get simply

a(ω)ejωt0 = ap (ω) e
jωt0 −

[

κ (ω) ap (ω) e
jωt0

κ (ω)
− P+

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

]

=
P+

[

κ (ω) ap (ω) e
jωt0
]

κ (ω)

therefore

|a (ω)|2 =
∣

∣P+

[

κ (ω) ap (ω) e
jωt0
]∣

∣

2

|κ (ω)|2

From (4.23), and with the notation min{Eloss} to indicate that the expression is a minimum over

all possible âf (t)

min{Eloss} =
1

2π

∞
∫

−∞

(

1− |ρ(ω)|2
)

|a (ω)|2 dω

=
1

2π

∞
∫

−∞

|κ (ω)|2
∣

∣P+

[

κ (ω) ap (ω) e
jωt0
]∣

∣

2

|κ (ω)|2
dω

=
1

2π

∞
∫

−∞

∣

∣P+

[

κ (ω) ap (ω) e
jωt0
]∣

∣

2
dω
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The recoverable energy follows from

Erec = Ein −min{Eloss} (4.55)

First, note that by Parsaval’s theorem and (4.1)

Ein =

∞
∫

−∞

[

â2p (t)− b̂2p (t)
]

dt

=
1

2π

∞
∫

−∞

[

|ap (ω)|2 − |bp (ω)|2
]

dt

where âp (t) and b̂p (t) are both zero for t ≥ t0; consequently, both ap (ω) e
jωt0 and bp (ω) e

jωt0 are

analytic in the upper half-plane. The function b (ω) ejωt0 is given by

bf (ω) e
jωt0 + bp (ω) e

jωt0 = ρ (ω) ap (ω) e
jωt0 + ρ (ω) af (ω) e

jωt0

Applying the operator P+, we have

bp (ω) e
jωt0 = P+

[

ρ (ω) ap (ω) e
jωt0
]

+ P+

[

ρ (ω) af (ω) e
jωt0
]

(4.56)

The reflection coefficient ρ (ω) is the Fourier transform of a (possibly generalized) function ρ̂ (t)

that is zero for t < 0 (by causality); it is therefore analytic in the lower half-plane. The function

af (ω) e
jωt0 is also analytic in the lower half-plane, and this means that P+

[

ρ (ω) af (ω) e
jωt0
]

= 0.

Equation (4.56) is now

bp (ω) e
jωt0 = P+

[

ρ (ω) ap (ω) e
jωt0
]

thus

Ein =
1

2π

∞
∫

−∞

[

|ap (ω)|2 −
∣

∣P+

[

ρ (ω) ap (ω) e
jωt0
]∣

∣

2
]

dt

The recoverable energy (4.55) is now expressible as

Erec =
1

2π

∞
∫

−∞







|ap (ω)|2 −
∣

∣P+

[

ρ (ω) ap (ω) e
jωt0
]∣

∣

2

−
∣

∣P+

[

κ (ω) ap (ω) e
jωt0
]∣

∣

2






dω



67

From the self-adjoint property (4.33) and the property (4.34)

Erec =
1

2π

∞
∫

−∞







|ap (ω)|2 − ρ∗ (ω) a∗p (ω) e
−jωt0P+

[

ρ (ω) ap (ω) e
jωt0
]

−κ∗ (ω) a∗p (ω) e−jωt0P+

[

κ (ω) ap (ω) e
jωt0
]






dω

We now use P+ [φ (ω)] = 1− P− [φ (ω)] to write

Erec =
1

2π

∞
∫

−∞















|ap (ω)|2

−ρ∗ (ω) a∗p (ω) e−jωt0
[

ρ (ω) ap (ω) e
jωt0 − P−

[

ρ (ω) ap (ω) e
jωt0
]]

−κ∗ (ω) a∗p (ω) e−jωt0
[

κ (ω) ap (ω) e
jωt0 − P−

[

κ (ω) ap (ω) e
jωt0
]]















dω

After simplification

Erec =
1

2π

∞
∫

−∞















|ap (ω)|2
(

1− |ρ (ω)|2 − |κ (ω)|2
)

+ρ∗ (ω) a∗p (ω) e
−jωt0P−

[

ρ (ω) ap (ω) e
jωt0
]

+κ∗ (ω) a∗p (ω) e
−jωt0P−

[

κ (ω) ap (ω) e
jωt0
]















dω

By definition 1− |ρ (ω)|2 − |κ (ω)|2 = 0, and from the projection properties of P+ and P−:

Erec =
1

2π

∞
∫

−∞







ρ∗ (ω) a∗p (ω) e
−jωt0P2

−

[

ρ (ω) ap (ω) e
jωt0
]

+κ∗ (ω) a∗p (ω) e
−jωt0P2

−

[

κ (ω) ap (ω) e
jωt0
]






dω

Using the self-adjoint property one more time

Erec =
1

2π

∞
∫

−∞







(

P−

[

ρ (ω) ap (ω) e
jωt0
])∗ P−

[

ρ (ω) ap (ω) e
jωt0
]

+
(

P−

[

κ (ω) ap (ω) e
jωt0
])∗ P−

[

κ (ω) ap (ω) e
jωt0
]






dω

The final result for recoverable energy, given the functions ρ (ω) and ap (ω) is

Erec =
1

2π

∞
∫

−∞

∣

∣P−

[

ρ (ω) ap (ω) e
jωt0
]∣

∣

2
+
∣

∣P−

[

κ (ω) ap (ω) e
jωt0
]∣

∣

2
dω (4.57)

where the function κ (ω) is determined by (4.43) and (4.44).

4.4.1 Time Harmonic Solution

The solution (4.57) for recoverable energy requires information about the terminal behavior of

the one-port network given by the reflection coefficient ρ (ω), and information about the particular
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way energy is pumped into the one-port network, which enters the equation by ap (ω). Of particular

interest is the case when the signal used to put energy into the system is time-harmonic. This,

after all, would permit a comparison between the known definition of Q and a modified version

Qrec =
ω0Erec

Pin

The difficulty in finding recoverable energy for a sinusoidal input is that an input function like

âp (t) = cos (ω0t) defined for t < t0 and zero otherwise, is not L2. It would mean that an infinite

amount of energy had been put into the system (4.1) before energy began to be extracted. (A

unique solution for recoverable energy would then simply be impossible.) To work around this, a

technique used by Polevoi [46] will be used. Consider the function

âp (t) =











eµ(t−t0)A cos (ω0t) for t < t0

0 for t ≥ t0

(4.58)

where µ and A are positive real. This function does belong to L2, and therefore a unique solution

for recoverable energy can be obtained. After recoverable energy has been calculated we can let

the positive number µ go to zero, and in doing so, obtain a solution for recoverable energy for a

sinusoidal input. The details of this calculation are tedious and deferred to Appendix A. The final

result for the time-harmonic recoverable energy is

Erec(ω0, t0) = −A
2

2

(

Im
{

ρ∗ (ω0) ρ
′ (ω0)

}

+ Im
{

κ∗ (ω0)κ
′ (ω0)

})

+Im

{

A2

4

1− ρ2(ω0)− κ2(ω0)

ω0
e2jω0t0

}

where the prime denotes differentiation with respect to the argument ω0.

Up to this point the parameter t0 has been left in the derivation of recoverable energy with

little explanation for its purpose. Polevioi [46] uses this parameter to determine a time averaged

recoverable energy via

Ẽrec (ω0) =
1

T

T
∫

0

Erec(ω0, t0) dt0
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where

T =
2π

ω0

The time averaged recoverable energy is thus

Ẽrec (ω0) = −A
2

2

(

Im
{

ρ∗ (ωo) ρ
′ (ωo)

}

+ Im
{

κ∗ (ωo)κ
′ (ωo)

})

and is independent of t0. Dropping the subscript on ω and noting that the time averaged power

sent into the system is Pin = A2/2

Ẽrec (ω) = −Pin

[

Im
{

ρ∗ (ω) ρ′ (ω)
}

+ Im
{

κ∗ (ω)κ′ (ω)
}]

(4.59)

From this point on, only the time averaged recoverable energy Ẽrec will be of any concern to us,

and for this reason Ẽrec will be referred to simply as recoverable energy. Alternative, and useful,

ways to express recoverable energy are:

Ẽrec (ω) = −Pin

[

|ρ (ω)|2 Im
{

[ln ρ (ω)]′
}

+ |κ (ω)|2 Im
{

[lnκ (ω)]′
}

]

(4.60)

or, with

ρ (ω) = |ρ (ω)| ejφρ(ω)

and

κ (ω) = |κ (ω)| ejφκ(ω)

recoverable energy can be expressed as

Ẽrec (ω) = −Pin

[

|ρ (ω)|2 φ′ρ (ω) + |κ (ω)|2 φ′κ (ω)
]

(4.61)

At this point it is worth pointing out the similarity between the result (4.61) and a result due to

Kishi and Nakazawa. In their paper [54], they found that the time-averaged stored energy inside of

a lossless two-port network is identical to the recoverable energy given by (4.61), if κ (ω) is identified

with transmission coefficient S21 of the network and ρ (ω) with the reflection coefficient S11. This

connection provides an interesting interpretation of the physics behind recoverable energy, which

will be discussed further at the end of this chapter.
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The equation for recoverable energy (4.59) is similar in form to a result found by W. E. Smith

[55], which, however, was obtained with a different goal in mind. Smith knew that determining

the stored energy within a circuit from the terminal behavior alone is not possible. A constant

resistance circuit (see section 1.2), for example, will look like a pure resistance from the terminals,

yet it may store energy. Smith instead determined a minimum energy that must be present inside a

circuit given an arbitrary impedance Z (ω). The recoverable energy (4.59) discovered in this thesis

is the minimum energy Smith presents. This means that not only must at least this amount of

energy be present within the circuit, but we have shown that no more than this amount can be

extracted from the circuit, and have explicitly shown how this can be done.

Calculating the recoverable energy of a circuit is simplified by the fact that the reflection

coefficient ρ (ω) can be expressed as the rational function

ρ (ω) = ρ0

Nρ
∏

i=1
(ω − αi)

Mρ
∏

i=1
(ω − βi)

(4.62)

where αi are the zeros of ρ (ω), βi are its poles and ρ0 is a complex constant with the requirement

|ρ0| < 1 1 . The fact that |ρ (ω)| ≤ 1 puts the following restriction on Nρ and Mρ

Nρ ≤Mρ

For the rational function (4.62) to represent a causal transfer function, all of the poles βi are

required to be in the upper half-plane, which makes ρ (ω) analytic in the lower complex plane. The

magnitude squared of the function κ (ω) is

|κ (ω)|2 =

∣

∣

∣

∣

∣

Mρ
∏

i=1
(ω − βi)

∣

∣

∣

∣

∣

2

− |ρ0|2
∣

∣

∣

∣

∣

Nρ
∏

i=1
(ω − αi)

∣

∣

∣

∣

∣

2

Mρ
∏

i=1
(ω − βi)

[

Mρ
∏

i=1
(ω − βi)

]∗

and since |ρ0| < 1, the number of zeros that |κ (ω)|2 has is equal to the number of its poles. The

numerator of |κ (ω)|2 is real, making it necessary for the its roots to come in conjugate pairs.

1 Reflection coefficients with |ρ
0
| = 1 must be handled with care. It will be shown in the examples that such

situations can usually be handled by carefully adding a resistor to a circuit to make sure |ρ
0
| < 1 at least initially.

That resistor can be removed after the calculation of recoverable energy through some limiting process.



71

Factoring the numerator as

∣

∣

∣

∣

∣

∣

Mρ
∏

i=1

(ω − βi)

∣

∣

∣

∣

∣

∣

2

− |ρ0|2
∣

∣

∣

∣

∣

∣

Nρ
∏

i=1

(ω − αi)

∣

∣

∣

∣

∣

∣

2

= |κ0|2
Mρ
∏

i=1

(ω − ξi)





Mρ
∏

i=1

(ω − ξi)





∗

where |κ0|2 = 1 − |ρ0|2 and ξi are the roots of the numerator of |κ (ω)|2 that are in the upper

complex plane. The factorization

|κ (ω)|2 = κ (ω)κ∗ (ω)

now amounts to finding the zeros of the numerator of |κ (ω)|2 and constructing

κ (ω) = κ0

Mρ
∏

i=1
(ω − ξi)

Mρ
∏

i=1
(ω − βi)

where κ0 =
√

1− |ρ0|2. To calculate recoverable energy note that

[ln ρ (ω)]′ =



ln ρ0 +

Nρ
∑

i=1

ln (ω − αi)−
Mρ
∑

i=1

ln (ω − βi)





′

=

Nρ
∑

i=1

1

ω − αi
−

Mρ
∑

i=1

1

ω − βi

and

[lnκ (ω)]′ =

Mρ
∑

i=1

1

ω − ξi
− 1

ω − βi

The formula (4.60) can now be used to find Ẽrec

Ẽrec (ω) = −Pin Im





Nρ
∑

i=1

|ρ (ω)|2
ω − αi

+

Mρ
∑

i=1

|κ (ω)|2
ω − ξi

−
Mρ
∑

i=1

1

ω − βi



 (4.63)

We now provide four examples demonstrating how recoverable energy can be calculated, and

we show why recoverable energy is important.

4.4.2 Example 1

As a an example, consider the circuit in Figure 4.5. The input impedance is

Z (ω) =
jωCR1R2 +R1 +R2

jωCR2 + 1
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Figure 4.5: Circuit example 1.

The time-averaged stored energy inside of the capacitor is

Ẽstored =
1

4
C |VC |2 (4.64)

where VC is the voltage across the capacitor. We determine this voltage to be

VC =

R2||
1

jωC

R1 +R2||
1

jωC

V

where V is the voltage across the circuit terminals. (The notation || means that the circuit elements

are in parallel, i.e., a||b = (1/a+ 1/b)−1.) For plotting purposes, it is convenient to choose the

normalizations

r1,2 =
R1,2

Z0

and

τ = CZ0

The voltage across the capacitor is now

VC =
r2

(r1 + r2) + jωτr1r2
V (4.65)

Assuming that this one-port network is fed by a transmission line with a characteristic impedance

of Z0, the reflection coefficient is

ρ (ω) =
Z (ω)− Z0

Z (ω) + Z0

=
jωCR2 (R1 − Z0) + (R1 +R2)− Z0

jωCR2 (R1 + Z0) + (R1 +R2) + Z0

=
jωτr2 (r1 − 1) + (r1 + r2)− 1

jωτr2 (r1 + 1) + (r1 + r2) + 1
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At the terminals of the one-port network, the voltage may be written as the sum of a forward

traveling voltage V+ plus the reflected voltage V− = ρV+; taking this in conjunction with (4.64)

and (4.65), the stored energy inside of this circuit is

Ẽstored (ω) =
1

4
C

∣

∣

∣

∣

r2
(r1 + r2) + jωτr1r2

(1 + ρ (ω))V+

∣

∣

∣

∣

2

= 2τPin
r22

ω2τ2r22 (r1 + 1)2 + (r1 + r2 + 1)2

where Pin = |V+|2 /(2Z0) is the average power delivered to the system.

To calculate recoverable energy, notice that ρ (ω) has the form

ρ =
jωa+ b

jωc+ d
(4.66)

=
a

c

(

ω − j
b

a

)

(

ω − j
d

c

)

where

a = τr2 (r1 − 1)

b = r1 + r2 − 1

c = τr2 (r1 + 1)

and

d = r1 + r2 + 1

It follows that

|κ (ω)|2 = 1− |ρ (ω)|2

=
ω2
(

c2 − a2
)

+ d2 − b2

c2
(

ω − j
d

c

)(

ω + j
d

c

)

or

|κ (ω)|2 =
(

c2 − a2
)

c2

(

ω − j

√

(

d2 − b2
)

(c2 − a2)

)(

ω + j

√

(

d2 − b2
)

(c2 − a2)

)

(

ω − j
d

c

)(

ω + j
d

c

)
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By inspection we determine

κ (ω) =

√

(

c2 − a2
)

c2

(

ω − j

√

(

d2 − b2
)

(c2 − a2)

)

(

ω − j
d

c

) (4.67)

which is analytic in the lower complex plane and has no zeros in the lower complex plane. Sticking

(4.66) and (4.67) into the expression for Ẽrec (ω) (4.63), and after a little algebra we find that

Ẽrec (ω) = 2τPin

r22 − 2r2

(

√

r1 (r1 + r2)− r1

)

ω2τ2r22 (r1 + 1)2 + (r1 + r2 + 1)2

Comparing Ẽrec (ω) to the time-averaged stored energy Ẽstored (ω), we see that

Ẽrec (ω) = Ẽstored (ω)− 2τPin

2r2

(

√

r1 (r1 + r2)− r1

)

ω2τ2r22 (r1 + 1)2 + (r1 + r2 + 1)2

The second term to the right of the equal sign is nonnegative for all physical r1, r2 and τ , i.e., when

these parameters are nonnegative. We can think of this second term as the part of the stored energy

within the circuit that cannot be recovered. It is clear, in this example, that Ẽrec (ω) ≤ Ẽstored (ω)

for all ω. Equality is achieved either if r2 → 0 or if r1 → ∞.

4.4.3 Example 2

As an important example, consider the circuit of Figure 4.6. The details to find the stored

energy and the recoverable energy in this example are messy, the details have been deferred to

Appendix B. The input impedance to the circuit is found to be

Z (ω) =
jω
(

LC2ω2R2
2 + L− CR2

2

)

+ ω2C2R2
2R1 +R2 +R1

(

1 + ω2R2
2C

2
)

while the time-averaged stored energy is

Ẽstored (ω) = 2CZ0Pin

1 + CL

(

ω2 +
1

C2R2
2

)

(

R2 +R1 + Zo

R2
− ω2LC

)2

+ ω2

(

L

R2
+ C (R1 + Z0)

)2

We have assumed that the one-port network is fed by a transmission line with characteristic

impedance Z0, and the power delivered to the circuit is Pin. We define the resonant frequency

to be
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Figure 4.6: Circuit example 2.

ω0 =

√

1

LC
−
(

1

CR2

)2

which is the frequency at which Z (ω) is real. At the frequency ω0, we define the resistance R0 as

Ro ≡ Z (ω0) = R1 +
L

R2C

which is the impedance of the circuit at resonance. When R2 → ∞, the circuit becomes a series

RLC circuit with ω0 = 1/
√
LC and Ro = R1. In this example we only consider a range of R2 for

which

R2 ≥
√

L

C

In this range, the resonant frequency ω0 is real and we say that the circuit is resonant.

The reflection coefficient is

ρ (ω) =
−LCR2ω

2 + jω (L+ CR1R2 − CR2Z0) + (R1 +R2 − Z0)

−LCR2ω2 + jω (L+ CR1R2 + CR2Z0) + (R1 +R2 + Z0)

In Appendix B we find that

Ẽrec (ω) = Ẽstored (ω)− 2CR0Pin

2

R2

(

√

R1 (R1 +R2)−R1

)

(

R1 +R2 +R0

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 +R0)

)2

if we choose to match the circuit to Z0 at resonance (i.e., make Z0 = R0). Notice that the second

term in this sum is always positive, therefore

Ẽrec (ω) ≤ Ẽstored (ω) (4.68)
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for all physical values of R1, R2, L, and C (i.e., when R1, R2, L and C are nonnegative).

This is an important result, and solves the problem discussed in Section 1.4. When R2 → ∞

the circuit of Figure 4.6 becomes the RLC circuit of Figure 1.1, and the inequality (4.68) becomes

the equality

Ẽrec (ω) = Ẽstored (ω)

Recoverable energy Ẽrec (ω) was determined from the impedance of the circuit alone: no information

about the internal structure was required, which was needed to determine Ẽstored (ω). In Section

1.1 the energy definition for quality factor was given by

Qstored =
ω0Ẽstored (ω0)

P

where ω0 is the resonant frequency and P is the power dissipated in the circuit. (We put the

subscript stored on Q to distinguish it from the other quality factors to be defined below.) For the

series RLC circuit (see Figure 1.1) we showed that the energy definition of quality factor Qstored

and the fractional bandwidth B3dB were related by

Qstored =
1

B3dB

If recoverable and stored energy are equal for the circuit of Figure 1.1, and if we define the new

quality factor

Qrec =
ω0Ẽrec (ω0)

P
(4.69)

it must be true that

Qrec =
1

B3dB
(4.70)

holds for the circuit of Figure 1.1. The definition (4.69) is invariant to replacing the resistor of the

RLC circuit by a constant resistance circuit (see Section 1.2). For example, the recoverable energy

in the circuit depicted by Figure 1.2 is identical to that of the circuit of Figure 1.1. Both of these

circuits also have the same terminal behavior at the input. We conclude that the definition (4.69)

is the correct definition for quality factor for all circuits that are equivalent to Figure 1.1.
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It is interesting to compare different definitions of quality factor for the circuit of Figure 4.6

when R2 is allowed to vary. To do this, we choose the normalizations

w =
ω

ω0
θ = R2

√

C

L
ζ =

√

L

R2
1C

and thus

|ρ (w)|2 =
(

1− w2
)2

(

2 (θ/ζ + 1)
(

θ2 − 1
) + 1− w2

)2

+ w2
4 (θ/ζ + 1)2
(

θ2 − 1
)

The quality factors Qstored (which depends on stored energy (1.6)) and Qrec (which depends on

recoverable energy (4.69)) are

Qstored =
ζ
√

θ2 − 1

θ + ζ

and

Qrec =

[

(

1

θζ
+ 1

)

−
√

1

θζ

(

1

θζ
+ 1

)

]

Qstored (4.71)

We are also interested in the bandwidth definitions of Qstored. We know from Chapter 1 that the

definition (1.5) is exact for the circuit of Figure 1.1. To allow the parameter to be defined for

various parameters θ and ζ, we define

Q3dB ≡ 1

B
=

1

∆ω3dB

where ∆ω is the 3 dB bandwidth of the transfer function |κ (w)|2. In Chapter 3 we introduced the

energy bandwidth (see Section 3.1.1), we define therefore define

QEBW ≡ 1

∆ωE

where ∆ωE is the width determined by the procedure marked out in that chapter. The constant

C will be chosen as 1/2 in the present example.

Figure 4.7 is a plot of the four quality factors as a function of θ. For this case we set ζ = 7

and let θ run over the domain (1, 20) (note that θ ≥ 1 for the circuit to be resonant according to

our definition). As θ goes to infinity, Qrec approaches Qstored, which is clear from Eqn. (4.71).

But, for this value of ζ, θ needs to be far greater than 20 to see this limit graphically. Notice that
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Figure 4.7: Quality factors as functions of θ.

while Qrec does not directly correspond to Q3dB or QEBW , it does present a solution that is of the

same order of magnitude.

It is also important to note here the advantages energy bandwidth (see Section 3.1.1) has

over 3 dB bandwidth. For small θ, the 3 dB bandwidth does not even exist. Also notice how 3 dB

bandwidth intersects with Qrec. On the other hand, QEBW is always greater than Qrec, and the

trend of QEBW appears to match that of Qrec. In this example, energy bandwidth is the better

choice for measuring bandwidth, future studies will show if this is true in general.

It is curious that Qstored tracks both Q3dB and QEBW better than Qrec does; but, we should

remember that stored energy is not unique to the terminal behavior. We could replace the resistors

in this circuit by constant resistance circuits (see Section 1.2) and arbitrarily increase Q to whatever

we like without changing the terminal behavior. Therefore, Qrec is the correct factor to use, in

that it is a unique quantity determined from the terminals—a necessary characteristic if energy is

to correspond to terminal behavior.
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4.4.4 Example 3

We now consider the recoverable energy of a nonuniform transmission line. In Chapter 3 we

introduced the differential equation

dΓ

dx
= 2jβ (x) Γ−N (x)

(

1− Γ2
)

(4.72)

appropriate for the reflection coefficient Γ (x, ω) of a nonuniform transmission line. The function

N (x) is related to the characteristic impedance Zc (x) of the line by

N (x) =
1

2

d

dx
lnZc (x) (4.73)

and the propagation constant β (x) is related to the phase velocity v (x) by

β (x) =
ω

v (x)
(4.74)

Following Browning [56], we multiply the above Riccati equation by Γ∗ and take the real part

Γ∗ d

dx
Γ + Γ

d

dx
Γ∗ = −N (x) (Γ + Γ∗)

(

1− |Γ|2
)

(4.75)

or

d

dx

(

|Γ|2
)

= −N (x) (Γ + Γ∗)
(

1− |Γ|2
)

Dividing both sides by
(

1− |Γ|2
)

we have

−
d

dx

(

1− |Γ|2
)

(

1− |Γ|2
) = −N (x) (Γ + Γ∗)

or

d

dx
ln
(

1− |Γ|2
)

= N (x) (Γ + Γ∗) (4.76)

Integrating both sides over x from 0 to L produces

ln
(

1− |Γ (L, ω)|2
)

− ln
(

1− |Γ (0, ω)|2
)

=

∫ L

0
N (x) (Γ + Γ∗) dx (4.77)
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We now suppose that the nonuniform transmission line is matched at the load (see Figure 3.11),

i.e., Γ (L, ω) = 0. We also may identify the argument of the logarithm as |κ (ω)|2 = 1− |Γ (0, ω)|2.

Therefore, we have

ln
(

|κ (ω)|2
)

= −
∫ L

0
N (x) (Γ + Γ∗) dx

= −2

∫ L

0
N (x)ReΓdx (4.78)

From (4.44) we may determine the phase of the function κ (ω):

φκ (ω) = −p.v.
∫ ∞

−∞

∫ L
0 N (x) (Γ + Γ∗) dx

ω′ − ω
dω

From the fact that the reflection coefficient Γ (x, ω) is causal, and therefore analytic in the lower

half-plane, a straight forward calculation will show that

φκ (ω) = −
∫ L

0
N (x) ImΓdx (4.79)

It follows from (4.79) and (4.78) that

κ (ω) = |κ (ω)| exp (jφK (ω))

= exp

(

−
∫ L

0
N (x)ReΓdx

)

exp

(

−j
∫ L

0
N (x) ImΓdx

)

and clearly

κ (ω) = exp

(

−
∫ L

0
N (x) Γ (x, ω) dx

)

(4.80)

Up to this point, the analysis is exact. Provided that the reflection coefficient Γ (x, ω) is

known, it is possible to calculate the recoverable energy using ρ (ω) = Γ (0, ω) and the κ (ω)

determined from Eqn. (4.80). In general, these calculations are unwieldy. But, for large ω, i.e.,

when

ω >>

∣

∣

∣

∣

N (x) v (x)

2

∣

∣

∣

∣

(4.81)

and

ω >>

∣

∣

∣

∣

v (x)

2

d

dx
ln [v (x)N (x)]

∣

∣

∣

∣

(4.82)
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the reflection coefficient of a nonuniform transmission line, with the condition Γ (L, ω) = 0, has the

asymptotic behavior Γ (x, ω) ∼ v (x)N (x) /[2jω]. The function κ (ω) becomes

κ (ω) = exp

(

− 1

2jω

∫ L

0
v (x)N2 (x) dx

)

(4.83)

To calculate recoverable energy (4.59) we find that

κ∗ (ω)κ′ (ω) = − j

2ω2

∫ L

0
v (x)N2 (x) dx

and

ρ∗ (ω) ρ′ (ω) = −v (0)
2N2 (0)

4ω3

Keeping only the term of order ω−2 in Eqn. (4.59), we find the asymptotic behavior of the recov-

erable energy is

Ẽrec (ω) ∼
Pin

2ω2

∫ L

0
v (x)N2 (x) dx (4.84)

for when (4.81) and (4.82) are satisfied.

The stored energy within the nonuniform transmission line can be calculated from

Ẽstored (ω) =
1

4

∫ L

0

[

c (x) |V (x, ω)|2 + l (x)

Z2
c (x)

|V (x, ω)|2
]

dx (4.85)

(see [57]). Where c (x) and l (x) are the per-unit-length capacitance and inductance of the line.

The function V (x, ω) represents the voltage along the line. When ω satisfies (4.81) and (4.82), then

|Γ (x, ω)| << 1; therefore, we may use the WKB approximation (see [58]) for the voltage along the

line

|V (x, ω)| ≈
∣

∣

∣

∣

∣

V+

√

Zc (x)

Zc (0)

∣

∣

∣

∣

∣

where V+ is the voltage incident to the nonuniform line. In this approximation the stored energy

asymptotically approaches

Ẽstored (ω) ∼ Pintd (4.86)

where td is the time delay of the line:

td =

∫ L

0

1

v (x)
dx (4.87)
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Here we have used

v (x) =
1

√

l (x) c (x)
(4.88)

Zc (x) =

√

l (x)

c (x)
(4.89)

and

Pin =
|V+|2
2Zc (0)

(4.90)

The two asymptotic limits (4.84) and (4.86) demonstrate a dramatic difference between stored

energy and recoverable energy. For example, if we compare the quality factor defined for recoverable

energy

Qrec =
ωẼrec (ω)

P
(4.91)

=
1

2ω

∫ L

0
v (x)N2 (x) dx

to quality factor defined in the IEEE dictionary of standards

Q =
ωẼstored (ω)

P
(4.92)

= ωtd

we see that for large ω that Qrec goes to zero, while Q becomes infinite. It is well known that

appropriately-smooth nonuniform transmission lines, satisfying Γ (L, ω) = 0, will be better matched

as the frequency ω increases; therefore, at high frequencies the bandwidth about ω will be broad.

This is not what the Q in Eqn. (4.92) predicts. On the other hand, the inverse dependence of Qrec

on ω does appear to properly correspond to the bandwidth.

4.4.5 Example 4

As a final example, we attempt to show that the recoverable energy of the first-order transverse-

magnetic Chu circuit (see [11]) is equal to the stored energy within the circuit. This lowest order

Chu circuit is representative of an electric dipole antenna and is important to the study of electri-

cally small antennas.
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We discussed in Chapter 1 that ZTM
n (x) of Eqn. (1.8) represents the impedance of each

mode on a sphere of radius x = kr. (k is the wave number and r is the radius of the sphere.) From

the expression of Eqn. (1.8), Chu observed that he could construct a circuit with the impedance

ZTM
n (x) (see Figure 1.4). He then used this circuit, containing inductors and capacitors, to deter-

mine the energy stored within the field outside the sphere of radius kr. He argued that this energy

stored outside the sphere represents a lower bound on the total stored energy of an antenna that

just fits within the sphere.

Although the circuit of Figure 1.4 does represent one configuration having the impedance

ZTM
n (x), constant resistance circuits could always be used to replace the resistor Z0. Following the

discussion in Chapter 1 (see Section 1.2), an infinite number of configurations can be constructed

having the same impedance ZTM
n (x). Each of these configurations can potentially have different

stored energies. If there are an infinite number of circuits having the same impedance, which of

these should be chosen to calculate stored energy?

Chu’s intention was to find a lower bound on the stored energy of a radiating antenna. Since

there are an infinite number of configurations having the impedance ZTM
n (x), it is reasonable

then to seek the minimum stored energy that can be determined from the impedance alone. This

minimum stored energy, as we have discussed, is the recoverable energy.

Calculating recoverable energy for the circuit of Figure 1.4 is made difficult due to the be-

havior of the input impedance at ω = 0. At this frequency, the circuit looks like an open circuit

from the input terminals, i.e., ρ (0) = 1. Thus, the product factorization of |κ (ω)|2 = 1 − |ρ (ω)|2

(4.37) cannot be done since ln (|κ (ω)|) must be analytic in a strip. The problem can be mitigated

by considering the modified Chu circuit of Figure 4.8. We content ourselves with calculating the

recoverable energy of the first order Chu circuit only. The resistor R modifies the original Chu cir-

cuit so that there is no longer a zero in the function |κ (ω)| at zero frequency. Once the recoverable

energy has been determined for this modified circuit, we can let R → ∞ to remove the resistor.

The limiting procedure enables us to determine the recoverable energy of the classic Chu circuit.

We resort to a numerical calculation to find the recoverable energy of the modified Chu
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Figure 4.8: Modified Chu circuit.

circuit. It is evident from the algebra in Appendix B that recoverable energy calculations can be

unwieldy analytically. The difficulty is, in part, due to factoring second order polynomials and the

algebra that follows. We use Matlab to calculate Ẽrec (ω) from ρ (ω) and (4.63).

We choose the following parameters for the calculation:

Z0 = 1.00 Ω

C1 = 0.01 µF

and

L1 = 0.01 µH

These parameters correspond to a sphere of radius a = 0.47 meters. Figures 4.9-4.11 are plots of

the stored and recoverable energy as a function of kr. Recoverable energy is plotted for R = 10,

R = 100, and R = 1000. Notice how the plot of recoverable energy converges to that of the stored

energy as R increases. When R = 10000, the two plots are so close they cannot be distinguished.

Although this should be checked analytically, these results suggest that the recoverable energy and

the stored energy of the first-order transverse-magnetic Chu circuit are indeed the same.

The result found here is significant. It indicates that the circuit Chu utilized for the impedance

ZTM
1 (x) is the circuit associated with the minimum energy that can be determined from the

impedance alone. Therefore, the lower bound on stored energy which Chu provides in his paper is

justified.

It would be interesting to see if this is true for the rest of the spherical modes, i.e., ZTM
n (x)
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Figure 4.9: Modified Chu circuit with R = 10.
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Figure 4.10: Modified Chu circuit with R = 100.
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Figure 4.11: Modified Chu circuit with R = 1000.

where n > 1. Proving the result found here analytically and determining if stored energy is equal

to recoverable energy for higher order modes is left for future work.
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4.5 Minimum Phase Darlington Circuits

Another result from Smith’s paper [55], relevant to the study of recoverable energy, is that

a circuit can be synthesized from the impedance Z (ω) that will have a stored energy equal to its

minimum energy. The synthesis is known as minimum phase Darlington synthesis. Darlington

synthesis involves the construction of a circuit having an impedance Z (ω), which is constructed

from a lossless two-port network terminated in a single resistance (see Figure 4.13). Conventional

Darlington synthesis, discussed by Balabanian [59], will add phase factors to the lossless two-port

network. This will make the resulting network both realizable with passive devices and reciprocal.

An alternative was found by Hazony [52]. He found that the synthesis could be done without added

phase factors, which results in a lossless two-port having minimum phase transmission coefficients.

The draw back of this kind of synthesis is that the lossless two-port network will in general be

nonreciprocal and the nonstandard circuit element known as a gyrator (see [60]) must be used to

realize the circuit. Smith calls Hazony’s method of synthesis, minimum phase Darlington synthesis.

Since Smith’s minimum energy is equal to the recoverable energy, it is in turn true that a circuit

can be construct from an impedance Z (ω) for which the recoverable energy is identically equal to

the stored energy. Minimum phase Darlington synthesis can be used to find this circuit.

As an example, we determine the minimum phase Darlington synthesis of the circuit seen in

Figure 4.6. We use the procedure of Hazony’s mapped out by Karni in his book: see p. 297-299 of

[61]. The resulting circuit is shown in Figure 4.12, where

CM =
CR2

R1 +R2

RM = R1 +R2

and

RG =
√

R1 (R1 +R2)

The device at the bottom of the circuit is known as a gyrator, which is a nonreciprocal device.

The energy stored in this circuit is in the inductor and the capacitor. Basic circuit analysis may
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Figure 4.12: Minimum phase shift Darlington synthesis of the circuit of Figure 4.6.

be applied to determine the stored energy within the circuit. The resulting time-averaged stored

energy is

Ẽstored (ω) = 2CZ0Pin

(

1 + LC

(

1

C2R2
2

+ ω2

))

− 2

R2

(

√

R1 (R1 +R2)−R1

)

(

R1 +R2 + Z0

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 + Z0)

)2

We see that the stored energy of this circuit is identical to the recoverable energy of the circuit of

Figure 4.6.

It is some what curious that the recoverable energy of an arbitrary impedance requires a

Darlington synthesis containing a nonreciprocal network. Nonreciprocal passive networks require

gyrators, which are not standard devices. (These devices generally require active elements to

simulate them.) Smith questioned the possibility of obtaining a minimum phase and reciprocal

Darlington synthesis. This kind of circuit would have an energy larger than the recoverable energy.

It would be of interest to determine if such a synthesis could be done, and if so, does the stored

energy of this synthesized circuit produce a quality factor that more accurately tracks bandwidth.

Perhaps this quality factor would be more appropriate in Example 2.

4.6 Summary

The examples provided in this chapter demonstrate the value of recoverable energy. Eqn.

(4.59) provides a simple formula for its calculation, and despite some algebra, calculating Ẽrec (ω)

for the various examples in this chapter was straightforward.
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Figure 4.13: Darlington type circuit.

It is clear from Example 2 that recoverable energy solves the problem discussed in Chapter

1 concerning circuits equivalent to the RLC circuit of Figure 1.1. When the resistor of this circuit

was replace by a transmission line (see Figure 1.2), the stored energy would vary as a function

of the length l. Recoverable energy, on the other hand, returns the correct energy that makes

definitions (4.69) and (4.70) consistent for any length l. In fact, recoverable energy is the right

choice for any circuit equivalent to the RLC circuit. From the discussion on constant resistance

circuits (see Section 1.2), there are an infinite number of circuits that are equivalent to the RLC

circuit of Figure 1.1. Clearly, recoverable energy is the right choice for all of these circuits.

Example 3 was a dramatic result showing the difference between stored and recoverable

energy of a nonuniform transmission line. Clearly, the quality factor defined using Ẽrec (ω) (see

Eqn. (4.91)) implied the correct behavior for bandwidth as frequency increased. The quality factor

defined with stored energy (see Eqn. 4.92) did not. Also notice that the quality factor Qrec (4.91)

implied the same behavior for bandwidth that the Bode-Fano result of Chapter 3 did.

Example 4 verified Chu’s energy bound [11] for electrically small antennas. His choice of

circuit (see Figure 1.4) for the lowest order TM mode appears to be the circuit whose stored energy

is the smallest energy that can be determined from the mode impedance ZTM
1 (x). This is the first

time this has been verified.

Circuits can be synthesized from the reflection coefficient ρ (ω) that have a stored energy equal

to their recoverable energy. These circuits, in general, contain nonreciprocal elements. Finding the

stored energy of reciprocal minimum phase Darlington circuits is left for future research, but the
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energy contained in these circuits may provide insight into how energy and terminal behavior are

connected.



Chapter 5

Transferable Energy

Bandwidth is often associated with the amount of information transferred through a system.

For example, when comparing two communication channels, it has become common to say that a

channel capable of transferring 10 megabits per second has a lower bandwidth than one capable of

transferring 100 megabits per second. The connection to what is usually referred to as bandwidth is

obvious. A transfer function with a wide bandwidth can transfer narrow pulses in the time domain

with little distortion. More pulses, and therefore more information, can be transferred through

such systems.

In this chapter we consider bandwidth as a measure of the rate at which information can be

transferred through a system. We use a simple pulse scheme where a pulse defined over a finite

period of time is used to represent a bit of information. To connect this idea of bandwidth to energy

we assume it is important to transfer energy, localized in a single pulse over a finite period of time

T , from the input to output of a two-port system with as little energy as possible being smeared

outside the pulse period T . We assume that the detector we use to register a bit of information is

able to do so by measuring the energy within the time period of interest.

Take, for example, the two-port system of Figure 5.1. The input pulse â (t), which is equal

to zero outside the period T , is transferred through the two-port system. The resulting output

b̂ (t) is translated in time by θ, and is distorted such that some of the energy is smeared outside

the interval [θ, θ + T ]. We would like to select a pulse â (t) defined over the period T , that will

maximize the energy in b̂ (t) within the time interval [θ, θ + T ]. The idea here is that if the energy
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Figure 5.1: Two-port system.

at the output is maximized within [θ, θ + T ], then there is presumably little energy outside this

interval, which would indicate that higher bit rates could be achieved.

We have seen that for certain systems, despite having effectively infinite amplitude band-

widths, distortion can make it difficult to identify a pulse at the output. Although these transfer

functions pass all of the energy presented at the input, and therefore have a zero recoverable energy,

there is a chance that they will distort the pulse and in turn limit the rate at which information

can be transferred.

We hope that the transferrable energy, defined below, will be useful as yet another piece of

the puzzle for understanding the connection between terminal behavior and energy.

In the following sections we first define transferrable energy, and then provide an example

showing the value of this kind of energy. Like recoverable energy, to find transferrable enegy we

must consider a variational problem. The variational problem leads to the need for solving the

integral equation given by Eqn. (5.6). We show that solving this equation will provide a quantity

that we will define as the transferrable energy (5.10). We will then provide a definition for bitrate

which is determined from transferrable energy. Finally, an example is provided that shows how

transferrable energy can be calculated numerically.

5.1 Variational Problem

We are interested in finding the input pulse â (t) that has a constant energy Ep, defined by

Ep =

T
∫

0

â2 (t) dt
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which is zero outside the domain [0, T ], and that will maximize the energy at the output within

the domain [θ, θ + T ]. A similar idea has been discussed by [62] and Chalk [63]. We thus require

â (t) = 0 for t /∈ [0, T ]

The interval energy at the output we defined as

Eout (θ, T ) =

T+θ
∫

θ

b̂2 (t) dt (5.1)

where

b̂ (t) =

T
∫

0

Ŝ (t− τ) â (τ) dτ

and Ŝ (t) = Ŝ21 (t), with subscripts omitted for brevity, is the impulse response of the two-port

system (see Sec. 2.2 of Chapter 2). From causality Ŝ (t) = 0 for t ≤ 0. The interval energy

Eout (θ, T ) may now be rewritten as

Eout (θ, T ) =

T
∫

0





T
∫

0

Kθ (τ1, τ2) â (τ1) dτ1



 â (τ2) dτ2

where

Kθ (τ1, τ2) =

T+θ
∫

θ

Ŝ (t− τ1) Ŝ (t− τ2) dt (5.2)

The kernel K is symmetric

Kθ (τ1, τ2) = Kθ (τ2, τ1) (5.3)

In general, the kernel cannot be written as a difference kernel Kθ (τ1 − τ2) (see p. 777 of [62]). This

would be possible if we were interested in the energy transferred to the output in the domain [0,∞)

instead of [θ, θ+T ]. Chalk [63] was interested in the [0,∞) case, and showed that for certain simple

examples he could determine the optimal pulse and maximum transferred energy analytically. This

was possible because the kernel could be written as Kθ (τ1 − τ2) (see [64]-[67]). In general, because

we are interested in maximizing energy within the period [θ, θ+T ], we consider numerical solutions.



93

To find the function â (t) that maximizes the energy at the output within [θ, θ + T ], while

the input energy in the pulse is a given constant Ep, we construct the functional

U
[

φ̂
]

= Eout (θ, T )
[

φ̂
]

+ µ



Ep −
T
∫

0

φ̂
2
(t) dt



 (5.4)

where µ is a Lagrangian multiplier (see Chp. 2 Sec. 12 of [68]). The stationary point â (t) is the

point where the linear principal part of U [â+ δâ]−U [â] vanishes (see Sec. 7.2.1 of [69]). δâ(t) can

be thought of as an infinitesimal variation from the true stationary point â(t). We will see below

that there are actually an infinite number of stationary points, but the one that returns the largest

Eout (θ, T ) is the one we desire. We have thus

U [â+ δâ]− U [â] = 2

T
∫

0





T
∫

0

Kθ (τ1, τ2) â (τ2) dτ2 − µâ (τ1)



 δâ (τ1) dτ1

+





T
∫

0

T
∫

0

Kθ (τ1, τ2) δâ (τ1) δâ (τ2) dτ1dτ2 − µ

T
∫

0

δâ2 (t) dt





The first integral is identified as the linear principal part, so we require that

T
∫

0





T
∫

0

Kθ (t, τ) â (τ) dτ − µâ (t)



 δâ (t) dt = 0 (5.5)

The condition

µâ (t) =

T
∫

0

Kθ (t, τ) â (τ) dτ for 0 ≤ t ≤ T (5.6)

is both necessary and sufficient for (5.5) to be satisfied (see [69]). The function â (t) that maximizes

Eout (θ, T ) for a constant Ep will satisfy this integral equation.

5.2 Integral Equation Solution

The integral equation (5.6) is a homogeneous Fredholm integral equation of type two (see

Sec. 1.2 of [69]). The operator in the integral equation takes a function â (t) on the interval [0, T ]

to [0, T ], i.e.

(Kθâ) (t) =

T
∫

0

Kθ (t, τ) â (τ) dτ for 0 ≤ t ≤ T (5.7)
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It will be compact for the cases we are interested, compactness follows from

T
∫

0

T
∫

0

|Kθ (t, τ)|2 dtdτ <∞

The operator is also self-adjoint, which follows from the symmetry of the kernel (5.3). As a con-

sequence, the spectrum will consist of 0 along with a finite or countably infinite number of real

eigenvalues µn (see theorem 4.7 p. 101 of [69]). For each of the eigenvalues µn there will be a

corresponding eigenfunction ân (t), each of which may be viewed as extrema of the functional (5.4).

We, however, are interested in the ân (t) that returns the largest Eout (5.1).

If the integral equation (5.6) for ân (t) is multiplied on both sides by ân (t) and integrated

over [0, T ], we see that

µn

T
∫

0

â2n (t) dt =

T
∫

0

T
∫

0

ân (t)Kθ (t, τ) ân (τ) dτdt (5.8)

We choose to normalize the functions ân (t) such that the input energy of each eignefunction is one

Ep =

T
∫

0

â2n (t) dt = 1

We recognize that the right side of (5.8) is the output energy of the system for a given ân (t), thus

µn = Eout (θ, T ) [ân]

The largest eigenvalue µmax (θ, T ) ≡ max {µn}, therefore, corresponds to the maximum energy, i.e.,

µmax (θ, T ) = max {Eout (θ, T )} (5.9)

The corresponding eigenfunction to the maximum eigenvalue (5.9) we call âmax (t).

To summarize, we can determine the maximum energy at the output and within the interval

[θ, θ + T ] by determining the maximum eigenvalue of the equation (5.6). The pulse launched into

the system is zero outside the interval [0, T ] and has unit energy. From passivity

0 ≤ µmax (θ, T ) ≤ 1



95

5.3 Transferrable Energy

A pulse that is transferred through a system will in general be delayed in time at the output.

For example, if the system were a lossless transmission line, the pulse at the output of the system

would be identical to the input pulse but delayed in time. We determine the delay time θ by

searching for the maximum of µmax (θ, T ) as a function θ. In general this is not something that can

be done analytically and requires a numerical search. We define θ0 to be the θ that corresponds to

the largest µmax (θ, T ) for a particular T . We now define transferrable energy Etran (T ) as

Etran (T ) ≡ Epµmax (θ0, T ) (5.10)

5.4 Bitrate

Once Etran (T ) is found, we can define the bitrate of the system. If the majority of the energy

that passes through the system is within [θ, θ + T ], we will say that a bit has been registered;

assuming here that we have a device that can detect this event. The ratio of transferrable energy

Etran (T ) to the total amount of output energy, or fractional energy, is defined as

x (T ) =
Etran (T )

∞
∫

0

b̂2max (t) dt

(5.11)

where the output signal b̂max (t) corresponds to âmax (t). x (T ) has a value between zero and one,

and as T goes to infinity x (T ) → 1.

As a criterion for registering a bit, we search for the T that corresponds to 90% of the energy

being within the interval [θ, θ + T ]. Thus, we seek T such that

x (T ) = 0.9

For this T , we define the bitrate br as

br ≡
1

T

Understanding br as a kind of bandwidth, the relationship between transferrable energy Etran (T )
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Figure 5.2: Two-port system.

and bitrate br is clear, i.e.,

Etran (1/br) = 0.9

∞
∫

0

b̂2max (t) dt

5.5 Low Pass Filter Example

As an example consider the two-port system shown in Figure 5.2. The impulse response Ŝ (t)

for this system is

Ŝ (t) = a exp (−at)u (t)

where u (t) is the unit-step function

u (t) =











0 for t < 0

1 for t > 0

and

a =
2

CZ0

The kernel determined from the impulse response (5.2) is

Kθ (τ1, τ2) = a2
T+θ
∫

θ

exp (−a (t− τ1))u (t− τ1) exp (−a (t− τ2))u (t− τ2) dτ1dτ2

= a2
T+θ
∫

θ

exp (−2at+ a (τ1 + τ2))u (t−max {τ1, τ2}) dτ1dτ2

Let

γ (t, τ) = exp (−2a (T + θ) + a (t+ τ))
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it is easy to show that

Kθ (t, τ) =











a

2
[exp (−2aθ + a (t+ τ))− γ (t, τ)] for 0 ≤ t, τ ≤ θ

a

2
[exp (−a |t− τ |)− γ (t, τ)] for θ < max{t, τ} < T + θ

We do not expect the system in this case to shift the signal transferred through the system

much if aT >> 1. In fact, we expect θ to be nearly zero. To simplify this example, we set θ to

zero. For smaller values of aT , this may not be accurate. The kernel becomes simply

K0 (t, τ) =
a

2
[exp (−a |t− τ |)− exp (−2aT + a (t+ τ))]

To find Etran (T ) we resort to a numerical computation. The integral in the equation (5.6) must

be handled with care because of the discontinuous derivative at t = τ in K0 (t, τ).

To apply the operator (5.7) numerically, we first split the integral into two parts

(K0â) (t) =

t
∫

0

K0 (t, τ) â (τ) dτ +

T
∫

t

K0 (t, τ) â (τ) dτ

We then approximate the integrals with Gaussian quadratures

(K0â) (t) ≈
N
∑

i=1

ωl
i (t)K0

(

t, τ li (t)
)

â
(

τ li (t)
)

+
N
∑

i=1

ωu
i (t)K0 (t, τ

u
i (t)) â (τ

u
i (t))

where N is the number of nodes to be used. Here ωl,u
i (t) are the weights of the of the quadrature

and τ l,ui (t) are the nodes. The l and u stand for lower and upper respectively; l corresponds to

the integral that is calculated along τ = [0, t], and u corresponds to the integral calculated along

τ = [t, T ]. The nodes are given by

τ li (t) =
t

2
xi +

t

2

τui (t) =
T − t

2
xi +

T + t

2

where xi are Legendre nodes (see p. 276 of [70]). The weights are

ωl
i (t) =

t

2
ωi

ωu
i (t) =

T − t

2
ωi
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where ωi are the Legendre weights. The Legendre nodes are chosen because the integrals are taken

over intervals of finite extent. The kernels we are interested in will be sufficiently smooth in the

domains [0, t] and [t, T ], so that the error in applying the integral operator decreases exponentially

as a function of N .

To put the integral equation (5.6) into a matrix form, consider the example where t is sampled

at locations {t1, t2, t3, t4} (this is the case where N = 2). Eqn. (5.6) is now approximated by

µ





















φ (t1)

φ (t2)

φ (t3)

φ (t4)





















=







Kl 0

0 Ku

























































φ
(

τ l1 (t1)
)

φ
(

τ l2 (t1)
)

φ
(

τ l1 (t2)
)

φ
(

τ l2 (t2)
)

φ (τu1 (t3))

φ (τu2 (t3))

φ (τu1 (t4))

φ (τu2 (t4))



















































(5.12)

where

Km =





















Km
1 (t1) Km

2 (t1)

Km
1 (t2) Km

2 (t2)

Km
1 (t3) Km

2 (t3)

Km
1 (t4) Km

2 (t4)





















and

Km
i (t) = ωm

i (t)Kθ (t, τ
m
i (t))

where m can be either l or u.

The kernel K (t, τ) is continuous, therefore, the functions φ (t) are smooth and can be repre-

sented by

φ (t) =
M
∑

i=1

φ (ti) li (t)
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where li (t) are the Lagrange interpolation polynomials. This permits the vector on the right of

(5.12) to be written as


















































φ
(

τ l1 (t1)
)

φ
(

τ l2 (t1)
)

φ
(

τ l1 (t2)
)

φ
(

τ l2 (t2)
)

φ (τu1 (t3))
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






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




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































= [L]




















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
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
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




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Figure 5.3: The ratio of output energy within [0, T ] to the output energy within [0,∞) as a function
of T .

is constructed, Etran (T ) can be determined using a suitable numerical software package.

We implemented the above numerical procedure in Python to calculate the bitrate br (see

Section 5.4) for the circuit of Figure 5.2. We choose the following parameters

Z0 = 50 Ω

and

C = 20 µF

Figure 5.3 is a plot of the fractional energy x (T ) from Eqn. (5.11). Graphically we determine that

x (T ) = 0.9 when aT ≈ 3.0. So, for this example, the bitrate is

br ≈ 667 bits per second

In general, we see that for small values of aT (for which setting θ = 0 is surely not accurate

enough), the fractional energy in the target interval is not very large, and the effect of the system

time constant versus signal duration is apparent.
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5.6 Summary

Transferrable energy (5.9) offers more insight into understanding the relationship between

the energy within a system and terminal behavior. Good numerical tools must be written to work

with general kernels (5.2), so that we can analyze other (and more complicated) examples.

The transferrable energy defined in this chapter provided us with a first step in understanding

how the energy passed through a system is related to bandwidth. Another form of transferrable

energy would also be interesting to look into. When we formulated the functional of Eqn. (5.4),

we constrained the output energy subject to the condition that the energy within the input signal

â (t) must be constant. However, when the signal â (t) arrives at the input of the two-port system, a

portion of that signal will be reflected back (unless the system is matched). It would be interesting

to constrain the output energy of the system subject to the condition that the energy that enters

into the system be held constant. In doing so, we would be able to determine the amount of energy

dissipated within the system and compare this to the total energy transferred. Perhaps a factor

similar to Q could then be defined by taking the ratio of energy transferred to energy dissipated.

It would be interesting to see the relationship between this factor and bandwidth, but we leave this

work to future studies.



Chapter 6

Conclusion and Future Work

We have shown that the IEEE standard definitions [1] for quality factor Q are at best ambigu-

ous (see Chapter 1). The RLC circuit of Figure 1.2 with an infinitely long transmission line clearly

made the definitions (1.5) and (1.6) for Q inconsistent. We solved this problem with recoverable

energy. For nearly a century1 , quality factor Q has been used to characterize resonant systems;

perhaps the IEEE standard [1] should be amended using recoverable energy if it is to last another.

In Chapter 3, we presented methods for characterizing the terminal behavior of a system.

Energy bandwidth (see Section 3.1.1) was defined, and it was shown to have particular advantages

over 3 dB bandwidth. For the cases studied, 3 dB bandwidth could not always be defined. Energy

bandwidth, however, can always be defined provided that the integral of Eqn. (3.29) exists. We

also showed in Chapter 4 that the quality factor defined using energy bandwidth QEBW was always

greater than the quality factor defined with recoverable energyQrec—QEBW also had the same trend

as Qrec. Future studies may show that this is true in general. We pointed out that bandwidth

measures only measured the magnitude of the transfer function; energy within a system may also

be related to the phase of a transfer function. To explore this , we introduced distortion and showed

how it could be calculated.

The Bode-Fano bounds, in Chapter 3, were used to put an upper bound on the reflection

coefficient ρ (ω) of a nonuniform transmission line. This is a new result that shows how well a

nonuniform line can be used as a matching circuit over a band of frequencies, assuming the line

1 See references [71]-[76] for the history of Q.
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is monotonically tapered. It may also be viewed as a first step in finding Bode-Fano limitations

for antennas. Antennas, after all, are devices used for matching a single port to free space. These

kinds of limitations have potential for making the connection to the energy within a nonuniform

line (or antenna). We leave finding this connection to future research.

Time-averaged recoverable energy Ẽrec (ω) can be determined from the reflection coefficient

ρ (ω) of a one-port system alone. This is an important characteristic if energy within the system is

to be related to the terminal behavior. Chapter 4 showed how to calculate Ẽrec (ω) for a general

one-port system (4.59).

Also in Chapter 4, we discussed an example (Example 2) showing that the recoverable energy

of the RLC circuit (see Figure 1.1) is identical to the stored energy of that circuit. This is an

important result meaning that if Ẽrec (ω0) is used to define the quality factor

Qrec =
ω0Ẽrec (ω0)

P
(6.1)

then the fractional bandwidth B3dB (define in Chapter 1), is related to Qrec by

Qrec =
1

B3dB
(6.2)

We found that this is also true for the circuit when stored energy was used to define quality factor

by (1.6); but, unlike the stored energy definition, Eqn. (6.1) is independent of any equivalent

network. For instance, the resistor R can be replaced with any constant resistance circuit (defined

in Chapter 1) and Qrec will be the same. As long as the transfer function of the RLC circuit (1.1)

does not change, B3dB will not change. The definitions (6.1) and (6.2) are, therefore, the correct

ones for circuits equivalent to the RLC circuit, i.e., having the transfer function (1.1).

The same example was also used to show how well Qrec could be used to predict bandwidth

when the circuit was more complicated than the RLC circuit of Figure 1.1. We considered the

circuit of Figure 4.6 (which becomes the simple RLC circuit when R2 → ∞). The quality factor

Qrec tracked the different bandwidth definitions of quality factor (see Figure 4.7) within the same

order of magnitude and had the same qualitative behavior. The question naturally arises: is there
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another form of energy, determinable from the terminals, that may be smaller than the recoverable

energy, but is better suited for defining a quality factor that is related to bandwidth? The answer

may result from finding the stored energy of a reciprocal minimum-phase Darlington network (see

Section 4.5). The construction of such a network was first hypothesized by Smith [55]. Currently,

this sort of synthesis has not been discovered, but future work may prove that the stored energy

of such a network can be used to define a quality factor that is better suited for making definitions

like (6.1) and (6.2) consistent.

Another example in Chapter 4 showed the high frequency asymptotic behavior of recoverable

energy from a nonuniform-transmission-line matching circuit. It was shown using this asymptotic

formula for Ẽrec (ω), that the quality factor Qrec went to zero as ω became large. This is consistent

with what is known about the bandwidth nonuniform transmission lines: as the frequency increases,

the transmission line provides a better and better match to the load, i.e., ρ (ω) → 0. Thus, the

bandwidth becomes broad as Qrec goes to zero in this limit—consistent with the definitions (6.1)

and (6.2). On the other hand, we showed that the quality factor defined using stored energy

actually increases as ω becomes large. This would suggest, by the definitions (1.6) and (1.5), that

the bandwidth should go to zero as ω goes to infinity, which is not true. This result may be

connected to the Bode-Fano limitation for nonuniform transmission lines in Chapter 3. We leave

this for future research.

The final example of Chapter 4 indicates that the stored energy and recoverable energy of

the lowest order Chu circuit are identical. This is an important result supporting Chu’s work [11].

Chu was in search of a lower bound on the stored energy contained outside of a radiating antenna.

In his original work, he merely discovered a particular circuit that could be used to model the

impedance of spherical modes. From that circuit he calculated the stored energy and stated that

the obtained energy was a lower bound. From our discussion of constant resistance circuits (see

Chapter 1), we known there are an infinite number of circuits that can have the same impedance.

We showed numerically, however, that Chu did indeed select a circuit whose stored energy was the

lowest energy that could be determined from the impedance. We did this by numerically calculating
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the recoverable energy of the circuit. In future work we intend to show this result analytically. It

is also our intent to determine the recoverable energy of Chu’s higher order circuits and see if those

too represent the correct circuits for calculating a lower bound on energy.

The recoverable energy (4.59) calculated in Chapter 4 is similar to a result found by Smith

[55]. Given an impedance (corresponding to our reflection coefficient ρ (ω)), Smith showed that

there must be at least the energy given by Eqn. (4.59) present in the circuit. By searching for the

maximum amount of energy that can be extracted from the circuit, we have shown that at most

the energy given by Eqn. (4.59) can be extracted, and we have shown explicitly how this can be

done.

There is another interesting result about recoverable energy that follows from Smith’s work

[55]. The the recoverable energy determined from the reflection coefficient ρ (ω), is equal to the

stored energy of a minimum-phase Darlington circuit (see Section 4.5) synthesized from ρ (ω). As

a consequence of the methods Smith used to find the minimum energy within a circuit, he showed

that minimum-phase Darlington circuits have exactly this much energy stored within them. It

follows from the fact that Smith’s minimum energy and our recoverable energy are the same, that

we find that these Darlington circuits can be synthesized having recoverable energy equal to their

stored energy.

Chapter 5 showed how transferrable energy is related to bitrates. This research may yet be

another piece of the puzzle in finding out if there exists a relationship between the energy within

a system and bandwidth. We defined bandwidth, in this chapter, using the idea of a bitrate. We

showed that we could define such a parameter if we maximized the energy within a time interval T

at the output by an optimal choice for an input signal defined over the same time interval T . The

bitrate was defined as: br = 1/T . In future research we would like to find the maximum energy

transferred given that the energy that enters the system is constant. This would be more consistent

with the current definitions of quality factor.

The work contained in this thesis opened many questions for future research:
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• Can recoverable energy be calculated given a reflection coefficient ρ (ω) measured over a

band of frequencies? In Chapter 4, we derived an expression for recoverable energy that

required knowing the magnitude of reflection coefficient ρ (ω) at all frequencies; therefore,

determining recoverable energy from measured data will have obvious problems. It may be

possible to use a priori information to estimate the magnitude of ρ (ω) outside the measured

band. This estimation along with the measured data might then be used to approximate

recoverable energy.

• Is the energy stored in a minimum-phase reciprocal Darlington circuit a more appropriate

energy to use in the definition of quality factor? By more appropriate, we mean to ask, to

what degree is such a quality factor approximate or exactly equal to 1/B3dB? We asked

this question in Chapter 4 following a discussion on minimum-phase Darlington synthesis.

The circuits that result from this kind of synthesis contain stored energy that is equal

to recoverable energy. These circuits, however, required the use of non-reciprocal circuit

elements (gyrators). Perhaps there is a synthesis procedure that can be performed using

only reciprocal elements, and that can be carried out in such a way as to add no unnecessary

phase. It may be that the energy stored in such a circuit is better suited for the definition

of quality factor, or at least gives a quality factor closer to the widely used value Qstored.

• Is there a gain bandwidth limitation (see Eqn. (3.53)) that is bounded by recoverable

energy? In Section 3.3 we discussed gain bandwidth limitations, of which the Bode-Fano

limitation was a common example. This kind of measure of terminal behavior can be

applied unambiguously to the magnitude of a transfer function; all that is required is

that the relevant integral exists. In Chapter 3, a Bode-Fano limitation was derived for

a nonuniform transmission line. We also saw in Chapter 4 how the recoverable energy

for a nonuniform transmission line went to zero as the frequency approaches infinity. We

discussed at the end of Chapter 4 that there seems to be a relationship between this Bode-

Fano limitation and the asymptotic behavior of recoverable energy, but we did not succeed
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in finding it. It would be interesting to see if this connection can be made for the nonuniform

transmission line, and perhaps for linear systems in general.

• In Chapter 3, the Bode-Fano limitation that was discovered for the nonuniform transmis-

sion line assumed that the inductance and capacitance, per unit length, of the line were

frequency independent. Is there a Bode-Fano limitation similar to the one in Chapter 3

that incorporates frequency dependence?

• For the simple RLC circuit in Chapter 1 (see Figure 1.1), we found in Chapter 4 that the

recoverable energy of this circuit is equal to its stored energy. This circuit possesses a single

mode of oscillations [77]. For this particular configuration of the inductor, capacitor, and

resistor, all the energy stored within it can be recovered from the input port. The circuit

of Figure 4.6 has two modes [77]; however, because of the configuration of the inductor,

capacitor, and two resistors in this circuit, we have some linear combination of two modes

and it appears that we cannot recover all the energy from the single port (perhaps because

of this). This may also explain why no energy can be recovered from constant resistance

circuits (see Section 1.2): these circuits may contain many modes, but such modes cannot

be “seen” from the input port, and so, no energy can be recovered from them. Can an

arbitrary circuit be decomposed into a linear combination of modes, and if so, is the energy

stored in the individual modes equal to the energy stored in the circuit? Is recoverable

energy at a given port generally not equal to stored energy because this port can only

partially “see” all these modes in some specific linear combination?

• The last question may also be related to the concepts of controllability and observability

from the study of control systems [78]. Perhaps the reason why all the energy stored within

a circuit cannot be recovered is because some modes are not observable?

The current IEEE dictionary definitions for Q, have been shown to have certain shortcomings.

But, the great success this parameters has had over the last century suggests that there is an
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underlying physics not yet fully understood. It is my hope that the work done in this dissertation

will inspire future researchers to explore further the connection between the energy inside a system

and that systems terminal behavior.
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Appendix A

Time Harmonic Recoverable Energy

The Fourier transform of the function

âp (t) =











eµ(t−t0)A cos (ω0t) for t < t0

0 for t ≥ t0

(A.1)

where µ is a positive constant, is

ap (ω) =

(

A

2

[

ejω0t0

(µ− j (ω − ω0))

]

+
A∗

2

[

e−jω0t0

(µ− j (ω + ω0))

])

e−jωt0

(Notice that this function is analytic in the upper complex plane.) To simplify the calculation of

recoverable energy, let

ap (ω) =

([

C

(ω − λ1)

]

−
[

C∗

(ω − λ2)

])

e−jωt0

where

C =
jAejω0t0

2

and

λ1 = ω0 − jµ λ2 = −ω0 − jµ

Calculating recoverable energy requires an evaluation of the integral (4.57). This in turn

requires evaluations of both P−

[

ρ (ω) ap (ω) e
jωt0
]

and P−

[

κ (ω) ap (ω) e
jωt0
]

. Because of the sim-

ilarity in calculation, consider

P−

[

γ (ω) ap (ω) e
jωt0
]

where γ is understood to be a function analytic in the lower half-plane, and can represent either ρ

or κ. From the definition of P− (4.29)
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P−

[

γ (ω) ap (ω) e
jωt0
]

= lim
ε→0

− 1

2πj

∞
∫

−∞

γ (ζ)

([

C

(ζ − λ1)

]

−
[

C∗

(ζ − λ2)

])

ζ − (ω − jε)
dζ

= lim
ε→0

− 1

2πj

∞
∫
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([

γ (ζ)C

(ζ − λ1) (ζ − (ω − jε))

]

−
[

γ (ζ)C∗

(ζ − λ2) (ζ − (ω − jε))

])

dζ

The integrand of the above integral decays at least as fast as 1/ζ2 when |ζ| → ∞; consequently,

the above integral may be evaluated as the sum of the residues in the lower complex plane, thus

P−

[

γ (ω) ap (ω) e
jωt0
]

= lim
ε→0









C

(

γ (ω − jε)

(ω − jε− λ1)
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(λ1 − (ω − jε))

)

−C∗

(
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(ω − jε− λ2)
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γ (λ2)
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)






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= C
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γ (ω)

ω − λ1
+
γ (λ1)

λ1 − ω

)

− C∗

(

γ (ω)

ω − λ2
+
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λ2 − ω
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and finally:

P−

[

γ (ω) ap (ω) e
jωt0
]

= C
γ (ω)− γ (λ1)

ω − λ1
− C∗γ (ω)− γ (λ2)

ω − λ2

Using the self-adjoint property of P± as well as their projection properties, the recoverable

energy (4.57) can be written as:

Erec =
1

2π

∞
∫

−∞

[D1 (ω) +D2 (ω)] a
∗
p(ω)dω

where

D1 (ω) = P−

[

ρ (ω) ap(ω)e
jωt0
]

ρ∗(ω)e−jωt0

and

D2 (ω) = P−

[

κ (ω) ap(ω)e
jωt0
]

κ∗(ω)e−jωt0

Notice that
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D1 (ω) = C

(

|ρ(ω)|2 − ρ∗(ω)ρ(λ1)

ω − λ1

)

(A.2)

−C∗

(

|ρ(ω)|2 − ρ∗(ω)ρ(λ2)

ω − λ2

)

and likewise

D2 (ω) = C

(

κ(ω)− κ∗(ω)κ(λ1)

ω − λ1

)

(A.3)

−C∗

(

|κ(ω)|2 − κ∗(ω)κ(λ2)

ω − λ2

)

Summing (A.2) and (A.3) together, we have

D1 (ω) +D2 (ω) = C
|ρ(ω)|2 + |κ(ω)|2 − ρ∗(ω)ρ(λ1)− κ∗(ω)κ(λ1)

ω − λ1

−C∗ |ρ(ω)|2 + |κ(ω)|2 − ρ∗(ω)ρ(λ2)− κ∗(ω)κ(λ2)

ω − λ2

and after simplifying:

D1 (ω) +D2 (ω) = C
1− ρ∗(ω)ρ(λ1)− κ∗(ω)κ(λ1)

ω − λ1

−C∗ 1− ρ∗(ω)ρ(λ2)− κ∗(ω)κ(λ2)

ω − λ2

The integral to calculate recoverable energy may now be written as

1

2π

∞
∫
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C
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Note that λ∗1 = −λ2, so that the integrand gives
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This is another integral whose integrand decays at least as fast as 1/ω2 as |ω| → ∞; thus the

integral may be solved by residue calculus. The first half of the integral evaluates to

F1 =
1

2π

∞
∫

−∞









|C|2 1− ρ∗(ω)ρ(λ1)− κ∗(ω)κ(λ1)

(ω − λ1) (ω + λ2)

+ |C|2 1− ρ∗(ω)ρ(λ2)− κ∗(ω)κ(λ2)

(ω − λ2) (ω + λ1)









dω

= 2πj
1

2π
|C|2









1− ρ∗(−λ2)ρ(λ1)− κ∗(−λ2)κ(λ1)
(−λ2 − λ1)

+
1− ρ∗(−λ1)ρ(λ2)− κ∗(−λ1)κ(λ2)

(−λ1 − λ2)









=
j |C|2
2jµ







1− ρ∗(ω0 + jµ)ρ(ω0 − jµ)− κ∗(ω0 + jµ)κ(ω0 − jµ)

+1− ρ∗(−ω0 + jµ)ρ(−ω0 − jµ)− κ∗(−ω0 + jµ)κ(−ω0 − jµ)







We are now free to allow the positive real constant µ go to zero since the integral has been evaluated.

Consider the following two expansions for small µ:

ρ∗(ω0 + jµ)ρ(ω0 − jµ) = |ρ (ωo)|2 + jρ∗′ (ω0) ρ (ωo)µ− jρ∗ (ωo) ρ
′ (ω0)µ+O

(

µ2
)

= |ρ (ωo)|2 − 2 Im
{

ρ∗′ (ω0) ρ (ωo)
}

µ+O
(

µ2
)

and

κ∗(ω0 + jµ)κ(ω0 − jµ) = |κ (ωo)|2 + jκ∗′ (ω0)κ (ωo)µ− jκ∗ (ωo)κ
′ (ω0)µ+O

(

µ2
)

= |κ (ωo)|2 − 2 Im
{

κ∗′ (ω0)κ (ωo)
}

µ+O
(

µ2
)
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Summing these together and putting them back into the result for F1, we have

I1 = j |C|2



















































1− |ρ (ωo)|2 − |κ (ωo)|2

2 Im {ρ∗′ (ω0) ρ (ωo)}µ

2 Im {κ∗′ (ω0)κ (ωo)}µ+O
(

µ2
)















/2jµ

+















1− |ρ (ωo)|2 − |κ (ωo)|2

2 Im {ρ∗′ (−ω0) ρ (−ωo)}µ

2 Im {κ∗′ (−ω0)κ (−ωo)}µ+O
(

µ2
)















/2jµ





































Clearly, ρ (−ω) = ρ∗ (ω), which follows from the fact that the impulse response ρ̂ (t) = F−1ρ (ω) is

real; from (4.45) we have κ (−ω) = κ∗ (ω). The derivatives of the functions when the arguments

are negative give ρ′ (−ω0) = −ρ′ (ω0) and κ′ (−ω0) = −κ′ (ω0). Simplifying the above expression

and then letting µ go to zero gives

F1 = −2 |C|2
(

Im
{

ρ∗ (ωo) ρ
′ (ω0)

}

+ Im
{

κ∗ (ωo)κ
′ (ω0)

})

The second half of the integral (A.4) evaluates in a similar way to

F2 =
1

2π

∞
∫

−∞









−C∗2 1− ρ∗(ω)ρ(λ2)− κ∗(ω)κ(λ2)

(ω − λ2) (ω + λ2)

−C2 1− ρ∗(ω)ρ(λ1)− κ∗(ω)κ(λ1)

(ω − λ1) (ω + λ1)









dω

= −j









C∗2 1− ρ∗(−λ2)ρ(λ2)− κ∗(−λ2)κ(λ2)
(−λ2 − λ2)

+C2 1− ρ∗(−λ1)ρ(λ1)− κ∗(−λ1)κ(λ1)
(−λ1 − λ1)









Again letting µ go to zero, we get

F2 = −j









C∗2 1− ρ∗(ω0)ρ(−ω0)− κ∗(ω0)κ(−ω0)

2ω0

−C2 1− ρ∗(−ω0)ρ(ω0)− κ∗(−ω0)κ(ω0)

2ω0









= j

[

C2 1− ρ2(ω0)− κ2(ω0)

2ω0
− C∗2 1− ρ∗2(ω0)− κ∗2(ω0)

2ω0

]

= − Im

{

C2 1− ρ2(ω0)− κ2(ω0)

ω0

}

The recoverable energy for the input signal given by (A.1) is the sum of the integrals F1 and

F2, thus
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Erec(ω0, t0) = −|A|2
2

(

Im
{

ρ∗ (ωo) ρ
′ (ω0)

}

+ Im
{

κ∗ (ωo)κ
′ (ω0)

})

+Im

{

A2

4

1− ρ2(ω0)− κ2(ω0)

ω0
e2jω0t0

}



Appendix B

Recoverable Energy Examples

For the circuit of Figure 1.2, we determine the three equations for the three unknowns I, I1

and I2 from Kirchhoff’s circuit laws:

I = I1 + I2

V − jωLI − IR1 − I1R2 = 0

I1R2 − I2
1

jωC
= 0

In terms of I2, the previous equations become

I1 =
I2

jωR2C

I =

(

1

jωR2C
+ 1

)

I2

V = (jωL+R1)

(

1

jωR2C
+ 1

)

I2 +
1

jωC
I2

The current through the capacitor is thus

I2 =
V

(jωL+R1)

(

1

jωR2C
+ 1

)

+
1

jωC

From the above results, the impedance at the input of the circuit Z is determined to be
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Z =
V

I

=

(jωL+R1)

(

1

jωR2C
+ 1

)

+
1

jωC
(

1

jωR2C
+ 1

)

=
(R1 +R2)− CLR2ω

2 + jω (L+ CR1R2)

(1 + jωR2C)

=
jω
(

LC2ω2R2
2 + L− CR2

2

)

+ ω2C2R2
2R1 +R2 +R1

(

1 + ω2R2
2C

2
)

Z is is resonant when its imaginary part becomes zero:

(

LC2ω2R2
2 + L− CR2

2

)

= 0

At resonance we define the parameter

Ro ≡ Z (ωo) =
ω2
oC

2R2
2R1 +R2 +R1

(

1 + ω2
oR

2
2C

2
)

where the resonant frequency ω0 is

ωo =

√

1

LC
−
(

1

CR2

)2

(B.1)

Ro may also be written as

Ro = R1 +
L

R2C

The circuit remains resonant provided that ω0 is real, and from (B.1) we see that the circuit is

resonant when

R2 ≥
√

L

C

As R2 → ∞

Z → jωL+R1 +
1

jωC

and

ωo →
1√
LC

.
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We assume that the circuit is fed by a transmission line having a characteristic impedance

Z0, so the reflection coefficient ρ (ω) is

ρ =
−LCR2ω

2 + jω (L+ CR1R2 − CR2Zo) + (R1 +R2 − Zo)

−LCR2ω2 + jω (L+ CR1R2 + CR2Zo) + (R1 +R2 + Zo)

We define the following notations:

α1 = LCR2 β1 = LCR2

α2 = L+ CR1R2 − CR2Zo β2 = L+ CR1R2 + CR2Zo

α3 = R1 +R2 − Zo β3 = R1 +R2 + Zo

We now choose to match the transmission line to the circuit so that it matches the circuit at

resoance, i.e., we choose Z0 = R0 so that ρ (ω0) = 0. The above parameters become

α1 = LCR2 β1 = LCR2

α2 = 0 β2 = 2 (L+ CR1R2)

α3 =
R2

2C − L

R2C
β3 =

R2
2C + 2R1R2C + L

R2C

(B.2)

The time-averaged stored energy is contained in the capcitor and the inductor of the circuit.

We determine the time-averaged stored energy ũC within the capacitor by

ũC =
1

4
C |V |2

and similarly for the inductor:

ũL =
1

4
L |I|2

It is clear from the circuit (see Figure 1.2) that the voltage accross the capcitor C is

VC =
1

jωC
I2

Therefore,
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ũC =
1

4
C

∣

∣

∣

∣

1

jωC
I2

∣

∣

∣

∣

2

=
1

4
C

|V |2
(

R1 +R2

R2
− ω2LC

)2

+ ω2

(

L

R2
+R1C

)2

and

ũL =
1

4
L

(

ω2C2 +
1

R2
2

)

|V |2

(

R1 +R2

R2
− ω2LC

)2

+ ω2

(

L

R2
+R1C

)2

The total time-averaged stored energy ũT = ũC + ũL within the circuit is thus

ũT =
1

4
|V |2

C + L

(

ω2C2 +
1

R2
2

)

(

R1 +R2

R2
− ω2LC

)2

+ ω2

(

L

R2
+R1C

)2

To put the voltage V in terms of the incident forward traveling voltage V+ on the transmission line

connected to these circuits (see the first circuit example of Chapter 4), we note that

2Z

Z + Zo
V+ = V

and

Z

Z + Zo
=

L

R2C
+R1 + j

((

ωL− 1

ωC

)

− R1

ωR2C

)

L

R2C
+R1 + Zo + j

((

ωL− 1

ωC

)

− R1

ωR2C
− Zo

ωR2C

)

The magnitude squared of the voltage can then be written as

|V |2 = |2V+|2

(

R2 +R1

R2
− ω2LC

)2

+ ω2

(

L

R2
+R1C

)2

(

R2 +R1 + Zo

R2
− ω2LC

)2

+ ω2

(

L

R2
+ C (R1 + Zo)

)2

and it follows that

Ẽstored (ω) = |V+|2
C + L

(

ω2C2 +
1

R2
2

)

(

R2 +R1 + Zo

R2
− ω2LC

)2

+ ω2

(

L

R2
+ C (R1 + Zo)

)2
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In terms of the incident power Pin = |V+|2 /2Zo, the time-averaged stored energy within the circuit

is

Ẽstored (ω) = 2CZoPin

1 + CL

(

ω2 +
1

C2R2
2

)

(

R2 +R1 + Zo

R2
− ω2LC

)2

+ ω2

(

L

R2
+ C (R1 + Zo)

)2

We use the expression (4.63) to calculate the recoverable energy Ẽrec. In terms of the pa-

rameters (B.2), the magnitude squared of the reflection coefficient is

|ρ (ω)|2 =
(

α3 − α1ω
2
)2

+ ω2α2
2

(β3 − α1ω2)2 + ω2β22

We notice in the list of parameters that α1 = β1. Factoring ρ (ω), we find that

ρ (ω) =
α1

β1

(

ω − 1

2α1

(

jα2 −
√

4α1α3 − α2
2

)

)(

ω − 1

2α1

(

jα2 +
√

4α1α3 − α2
2

)

)

(

ω − 1

2β1

(

jβ2 −
√

4β1β3 − β22

))(

ω − 1

2β1

(

jβ2 +
√

4β1β3 − β22

))

From here we can determine that

Im

[

2
∑

i=1

1

ω − αi

]

= α2

(

ω2α1 + α3

)

(α3 − α1ω2)2 + ω2α2
2

and

Im





Mρ
∑

i=1

1

ω − βi



 = β2

(

ω2β1 + β3
)

(β1ω
2 − β3)

2 + ω2β22

so that

Im





Nρ
∑

i=1

|ρ (ω)|2
ω − αi

−
Mρ
∑

i=1

1

ω − βi



 =
α2

(

ω2α1 + α3

)

− β2
(

ω2β1 + β3
)

(β3 − β1ω
2)2 + ω2β22

Since α2 = 0, we have

Im





Nρ
∑

i=1

|ρ (ω)|2
ω − αi

−
Mρ
∑

i=1

1

ω − βi



 = −β2
(

ω2β1 + β3
)

(β3 − β1ω
2)2 + ω2β22

or

Im





Nρ
∑

i=1

|ρ (ω)|2
ω − αi

−
Mρ
∑

i=1

1

ω − βi



 =

−2CRo

(

1 + LC

(

ω2 +
1

R2
2C

2

)

+
2R1

R2

)

(

R1 +R2 +Ro

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 +Ro)

)2
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To determine κ (ω), its magnitude squared is

|κ (ω)|2 = 1− |ρ (ω)|2

=

(

β3 − β1ω
2
)2

+ ω2β22 −
(

α3 − α1ω
2
)2

(β3 − β1ω
2)2 + ω2β22

=

(

β21 − α2
1

)

ω4 +
(

β22 − 2 (β1β3 − α1α3)
)

ω2 +
(

β23 − α2
3

)

(β3 − β1ω
2)2 + ω2β22

=

(

β22 − 2α1 (β3 − α3)
)

ω2 +
(

β23 − α2
3

)

(β3 − β1ω
2)2 + ω2β22

and factoring this, we have

|κ (ω)|2 =
D

(

ω + j

√

(

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)

)(

ω − j

√

(

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)

)

∣

∣

∣

∣

(

ω − 1

2β1

(

jβ2 −
√

4β1β3 − β22

))(

ω − 1

2β1

(

jβ2 +
√

4β1β3 − β22

))∣

∣

∣

∣

2

where

D =

(

β22 − 2α1 (β3 − α3)
)

β21

Selecting the part of this last equation that is analytic in the lower complex plane, and has zeros

only in the upper, we find that

κ =
√

(

β22 − 2α1 (β3 − α3)
)

(

ω − j

√

(

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)

)

−β1ω2 + jωβ2 + β3

Clearly,

Im





Mρ
∑

i=1

1

ω − ξi



 = Im













ω + j

√

(

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)

ω2 +

(

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)













or

Im





Mρ
∑

i=1

1

ω − ξi



 =

√

(

β22 − 2α1 (β3 − α3)
) (

β23 − α2
3

)

(

β22 − 2α1 (β3 − α3)
)

ω2 +
(

β23 − α2
3

)
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In terms of the circuit parameters

Im





Mρ
∑

i=1

|κ (ω)|2
ω − ξi



 =
4
C

R2
Ro

√

R1 (R1 +R2)

(

R1 +R2 + Zo

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 + Zo)

)2

From the calculations above, we find that the time-averaged recoverable energy for the circuit

of Figure 1.2 is

Ẽrec (ω) = 2CRoPin

1 + LC

(

ω2 +
1

R2
2C

2

)

− 2

R2

(

√

R1 (R1 +R2)−R1

)

(

R1 +R2 +Ro

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 +Ro)

)2

Comparing Ẽrec to Ẽstored, we can write Ẽrec as

Ẽrec (ω) = Ẽstored (ω)−
4CRoPin

1

R2

(

√

R1 (R1 +R2)−R1

)

(

R1 +R2 +Ro

R2
− LCω2

)2

+ ω2

(

L

R2
+ C (R1 +Ro)

)2

It is convenient, for the purpose of plotting all the quantities in this appendix, to choose the

normalizations

w =
ω

ωo

ζ =

√

L

R2
1C

τ = CR1 +
L

R2

and

θ = R2

√

C

L

With these normalizations, we see that the circuit will be resonant if

θ ≥ 1

The stored energy and the recoverable energy may now be written as

Ẽstored (w) =

2τPin

[

w2

(

1− 1

θ2

)

+

(

1 +
1

θ2

)]

(

1 +
1

θ2
+ 2

1

θζ
− w2

(

1− 1

θ2

))2

+ 4w2

(

1− 1

θ2

)(

1

θ
+

1

ζ

)2
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and

Ẽrec (w) = Ẽstored (w)

−
4τPin

(√

1

θζ

(

1

θζ
+ 1

)

− 1

θζ

)

(

1 +
1

θ2
+ 2

1

θζ
− w2

(

1− 1

θ2

))2

+ 4w2

(

1− 1

θ2

)(

1

θ
+

1

ζ

)2

To calculate

Q =
ωoẼstored (ω0)

P

the power P dissipated in the system is

P = Pin |κ (ω)|2

= Pin

(

β22 − 2α1 (β3 − α3)
)

ω2 +
(

β23 − α2
3

)

(β3 − β1ω
2)2 + ω2β22

The Q in terms of normalized variables is thus

Q =
ζ
√

θ2 − 1

θ + ζ

and defining

Qrec =
ωoẼrec (ω0)

P

we find that

Qrec =

[

(

1

θζ
+ 1

)

−
√

1

θζ

(

1

θζ
+ 1

)

]

Q


