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The Colorado River Basin currently faces unprecedented stresses. Persistent 
dry conditions since 2000, along with the increasing recognition that 
warming temperatures are impacting the hydrology of the basin, have led to 
great concerns about the long-term reliability of basin water supplies. With 
ever-higher stakes for water resource planning and decision making, an even 
greater emphasis is placed on the tools that support those activities, notably 
Reclamation’s operations and planning models and similar models used at 
other agencies. The usefulness of these system models depends on many 
types of datasets and forecasts that serve as inputs to them, as well as the 
research and scientific understanding underpinning this complex chain of 
data and models. The development and refinement of the different links of 
the chain necessarily involves researchers, forecasters, and water managers. 

New research efforts have advanced our understanding of the hydroclimate 
of the basin and how key hydroclimate processes, variability, and changes 
can be captured in data and models. This rapid expansion of the scientific 
knowledge base, and the increasing complexity of the data and models used 
to operationalize that knowledge, parallel the growing uncertainties about 
the future climate and hydrology. Accordingly, basin stakeholders have 
recognized the importance of reassessing the scientific and technical basis 
for management and planning.  

By synthesizing the state of the science in the Colorado River Basin 
regarding climate and hydrology, this report seeks to establish a broadly 
shared understanding that can guide the strategic integration of new 
research into practice. The ultimate goal of that integration, and therefore 
of this report, is to facilitate more accurate short- and mid-term forecasts, 
and more meaningful long-term projections, of basin hydroclimate and 
system conditions.  

Past scientific advances have led to improvements in the various links in 
the chain of data and models, and to more accurate and actionable 
information for decision making. The ongoing efforts documented in the 
report strongly suggest that this progress will continue. At the longer time 
scales, however, research reveals and affirms large uncertainties that are 
difficult to reduce given both natural variability and the imperfections in 
our understanding, observations, and models, and our inability to fully test 
our predictions. 

Each chapter of the report focuses on one major link in the chain of data 
and models, covering a broad array of activities to better observe, model, 
forecast, and understand the climate and hydrology of the basin. Key points 
from each chapter are presented below, as well as a summary of the 
challenges identified in each chapter and the opportunities to address 
those challenges. Readers are encouraged to explore the full report for the 
context supporting these key points and challenges and opportunities.
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Chapter 2. Current Understanding of the 
Colorado River Basin Climate and Hydrology 

Key points 

• On average, about 170 million acre-feet (maf) of precipitation falls over 
the Colorado River Basin annually, but only about 10% (17 maf) becomes 
natural streamflow available for use.  

• The Upper Basin contributes the vast majority, about 92%, of the total 
basin natural streamflow as measured at Imperial Dam.  

• Elevation dramatically shapes the amount of precipitation and its 
relative contribution to runoff, so that 85% of annual runoff comes from 
the 15% of the basin’s area that is located in the mountain headwaters. 

• The position and activity of the mid-latitude storm track from October 
through May is the critical climatic driver of annual precipitation in the 
basin’s headwaters. 

• Snowmelt is the primary source of annual runoff from those mountain 
headwaters, as reflected in the prominent late-spring peak in the 
annual hydrograph. 

• Year-to-year variability in runoff is high and is mainly driven by 
variability in precipitation; decadal and multi-decadal variability in 
precipitation and in runoff is also present but no consistent cycles have 
been identified. 

• The predictability that does exist at shorter time scales (up to 1 year) 
comes mainly from the El Niño-Southern Oscillation (ENSO); the ENSO 
signal is generally weak in the Upper Basin but stronger in the Lower 
Basin. 

• Predictability at decadal and longer time scales using longer-lived 
climate phenomena (e.g., Atlantic Multidecadal Oscillation, Pacific 
Decadal Oscillation, etc.) has proven elusive.  

• The period since 2000 has been unusually drought-prone, but even 
more severe and sustained droughts occurred before 1900. 

• There has been a substantial warming trend over the past 40 years; the 
period since 2000 has been about 2°F warmer than the 20th-century 
average, and likely warmer than at any time in the past 2000 years. 

• Decreases in spring snowpack and shifts to earlier runoff timing in 
many parts of the Upper Basin, as well as decreases in annual Colorado 
River flows at Lees Ferry, Arizona, have occurred in recent decades. 
These changes in hydrology can be linked, at least in part, to the 
warming trend.  
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Challenges and opportunities 

Challenges 

• There is still considerable uncertainty in the quantification of the 
relative roles of temperature, precipitation, antecedent soil moisture, 
dust-on-snow, and vegetation change in recent and ongoing variability 
and change in Upper Basin snowpack and streamflow. 

• These factors have substantial spatial variability, but most studies have 
conducted analyses and presented findings only at the Upper Basin-
wide scale (e.g., at Lees Ferry). 

Opportunities 

• Conduct analyses of Upper Basin hydrologic change that are spatially 
disaggregated at least to the eight major sub-basins (Upper Green, 
Yampa-White, etc.), or focus only on the most productive headwaters 
areas, or both. 

• Pursue the various pathways to improve hydrologic modeling presented 
in Chapter 6. 

• Conduct intercomparisons of hydrologic models and statistical 
methods for assessing the factors behind hydrologic changes. 
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Chapter 3. Primary Planning Tools 

Key points 

• Three monthly Reclamation models, developed in RiverWare™, support 
planning at three time scales: 1) 24-Month Study (24MS) for short-term 
planning (up to 24 months), 2) Mid-Term Probabilistic Operations 
Model (MTOM) for mid-term planning (up to 60 months), and the 
Colorado River Simulation System (CRSS) for long-term planning 
(multiple decades). 

• The models use rules to incorporate operational policies set forth in 
Records of Decisions and other operational agreements, and some 
long-term studies also explore potential alternative policies. 

• Hydrologic inputs to the short-term and mid-term models are either 
flows forecast by the NOAA Colorado Basin River Forecast Center 
(CBRFC) or statistical averages of observed flows.  

• Hydrologic inputs to the long-term model may be based on historical 
hydrology, paleohydrology, climate change-informed hydrology, or 
hybrids.  

• Measured Upper Basin water demands for the short-term and mid-
term models are accounted for in the CBRFC’s forecast; Lower Basin 
water demands are provided by Lower Basin water users and Mexico. 
Both Upper and Lower Basin demands for the long-term model are 
based on projections supplied by water users. 

• Uncertainties, errors, and limitations arise from input data sources, 
assumptions about the future, and necessary simplifications of a 
complex water supply system. 

Challenges and opportunities 

Challenge 

Each Reclamation model (24MS, MTOM and CRSS) has different ways that 
uncertainty can be better quantified and either addressed or incorporated. 
In particular, each model uses a more simplistic method for projecting 
future inflows in the Lower Basin than in the Upper Basin (5-year averages 
for 24MS and MTOM rather than a forecast, and gaged flow in CRSS rather 
than natural flow). In the Upper Basin, demand projections may differ from 
actual water use trends and the representation of complex operating 
policies via rules deployed at the monthly time step may further contribute 
to this deviation. Finally, more in-depth analyses are needed to verify how 
well modeled operational policies reflect actual operations.  
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Opportunities 

• Complete the Forecast and Reservoir Operation Modeling Uncertainty 
Scoping (FROMUS) report and update its findings as models are refined. 

• Work with the CBRFC to develop unregulated flow forecasts for the 
Lower Basin. 

• Continue to work toward commitments outlined in the Colorado River 
Basin Study regarding the development of natural flows in the Lower 
Basin. 

• Work with Upper Basin states, water users, and tribes to refine long-
term demand projections. 

• Complete hindcasting studies that can help identify how simplifications 
in Reclamation’s models contribute to projection error. 

Challenge 

The coarse spatial resolution in CRSS has implications for studying 
demands and tributary flows. In the Upper Basin, water demands are 
represented in highly aggregated nodes and do not reflect water right 
priorities, which limits the ability to accurately model shortages to specific 
users under different scenarios. On the Lower Basin tributaries, because 
gaged flow is used rather than natural flow, demands are not explicitly 
modeled. CRSS uses a monthly time step that limits the ability to analyze 
the impacts to certain resources, in particular, ecological resources. 
Additionally, the exclusion of smaller tributaries limits the analyses that can 
be performed with CRSS. 

Opportunities 

• Review the configuration, number of nodes, and rules in the Upper 
Basin to explore implementing an allocation system that captures the 
distribution of water supply by water rights priority. 

• The quality, coverage, and resolution of data that is used to naturalize 
inflows has improved and might support model disaggregation in both 
time and space. 

• Explore iterative sub-basin implementations that are solved at shorter 
time scales or finer resolutions and that may be aggregated and fed into 
existing nodes in CRSS. 

Challenge 

Reclamation models are complex and the projections they generate are the 
product of combinations of many data sources and assumptions. It is 
critical that stakeholders and the public understand the uncertainty and 
how this uncertainty affects projections of risk in order to ensure the 
appropriate use of the results for decision making. Reclamation continues 
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to work toward improving such communication but there is room for 
improvement. Additionally, the models are not comprehensively 
documented, despite their critical importance in Colorado River Basin 
management and planning.  

Opportunities 

• Continue to improve and refine communication of model assumptions 
and uncertainty on Reclamation’s modeling website and in widely 
distributed modeling results (e.g., the 24MS reports). 

• Develop comprehensive, technical overviews of each of the models to 
share how each model is configured, how the rules are implemented, 
and how the inputs are derived. 
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Chapter 4. Observations—Weather and Climate 

Key points 

• Weather and climate data are collected and interpolated for specific 
reasons, so not all data and datasets are suitable for all uses. Users 
should be cautious about “off-label” use of climate data and should 
thoroughly investigate the suitability of data before it is applied outside 
of its planned uses. 

• Users of weather and climate datasets should be aware that the data 
reflect average or summary conditions over their spatial and temporal 
resolution and should not expect a gridded product to accurately 
reflect conditions at any particular point on the landscape at any given 
point in time. This is particularly true for high-relief landscapes like the 
Colorado River Basin. 

• Most of the existing high-resolution gridded datasets share some base 
information or use similar processing, or both, so they are not strictly 
independent. 

• There is not now, and likely never will be, perfect weather and climate 
data. Producers of climate information need to communicate, and users 
should be cognizant of, the strengths and weaknesses of the data they 
choose and how climate data choices influence their conclusions. 

• In the Colorado River Basin, the highest elevations have the lowest 
weather station densities and likely the least precise and accurate 
weather information. This is especially problematic for water resource 
questions, because such a large fraction of the runoff is generated at 
high elevations. 

Challenges and opportunities 

Challenge 

While commonly used gridded climate datasets show very similar variability 
and trends in precipitation and temperature for the basin, disagreements 
between the datasets are larger for the sparsely instrumented high-
elevation areas in the Upper Basin—the areas that generate the vast 
majority of the basin’s runoff.  

Opportunities 

• Use other types of measurements, such as streamflow and radar, to 
constrain the gridded estimates of temperature and precipitation, and 
add novel observation techniques (e.g., Airborne Snow Observatory) to 
bolster ongoing observations. 
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• Use numerical weather prediction models for spatiotemporal 
interpolation and validation of observation-based products.  

Challenge 

It is increasingly understood that the gridded climate datasets have 
inherent uncertainties and differ from each other, but how those 
uncertainties and differences manifest in the outputs of typical 
hydroclimate modeling and analysis tasks needs to be better explored and 
communicated to users.  

Opportunities 

• Conduct formal intercomparisons between gridded datasets in the 
context of specific applications and outputs (e.g., Alder and Hostetler 
2019 on the use of different gridded climate datasets for statistical 
downscaling of GCM data). 

• Application projects can consider including a testing phase in which 
multiple gridded datasets are tested on a limited portion of the project’s 
domain or analyses. 

• Both researchers and users can acknowledge that all data are 
imperfect, and move away from trying to identify a single “best” 
product toward greater consideration of the data characteristics that 
are, and are not, important for their questions and analyses.  
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Chapter 5. Observations—Hydrology 

Key points 

• Robust real-time observations and long-term records of snowpack, 
streamflow, soil moisture, and other hydrologic variables are key inputs 
to basin streamflow forecasting and system modeling. 

• Point measurements of these variables are not dense enough to fully 
represent spatial variability across the basin, and not necessarily sited 
to optimally inform streamflow forecasts.  

• For snowpack observations, the in situ SNOTEL network has limitations 
but remains essential to monitoring and skillful streamflow forecasting. 

• Spatially distributed snowpack data from models and remote sensing 
are increasingly used to augment SNOTEL data, though most of these 
sources depend on SNOTEL data for calibration.  

• Accurate and useful streamflow inputs depend on both the robustness 
of the gage network and the procedures used to adjust and naturalize 
gaged streamflows to account for human activity. 

• Flow naturalization methods try to estimate what the streamflow at a 
gage would have been, or will be, without the impacts of upstream 
human activity; naturalization methods vary from agency to agency, 
depending on the time scale and application. 

• Evaporation and evapotranspiration estimates are central to flow 
naturalization, thus as more types of observations become available, 
models used to calculate these variables are being refined in both 
physical process modeling and input data used. 

• In situ measurements of soil moisture and evaporation-related 
variables are especially sparse, and spatially distributed data from 
models and remote sensing have a larger role to play in condition 
monitoring and streamflow forecasting. 

• Realizing the full value of spatially distributed hydrologic data will 
ultimately require streamflow-forecasting and system-modeling 
frameworks that are explicitly designed to use those data as inputs. 

Challenges and opportunities 

Challenges: Snow 

• Inadequate characterization of the snowpack is still a major source of 
error in streamflow forecasts, especially in years with anomalous 
patterns of snow distribution in space and time—a phenomenon which 
appears to be more frequent in a changing climate 
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• The in situ (point) snow course and SNOTEL network was designed for 
the statistical streamflow forecasting paradigm, which is no longer used 
by CBRFC. 

• Many new spatially distributed SWE products are now available, but 
there have been few rigorous evaluations of these datasets, in part 
because it is difficult to validate spatial products with point 
measurements. 

• The SNOTEL network will remain essential to any conceivable future 
snow monitoring system in the basin, especially with additional sensor 
capacity at SNOTEL sites, but the network has been inadequately 
supported in recent years by USDA.  

Opportunities 

• Building on recent smaller scale pilot efforts to conduct larger scale, 
systematic intercomparisons of SWE datasets and products for the 
basin, including SNOTEL, ASO, and SNODAS and other spatially 
distributed modeled products. 

• Based on the results of such intercomparisons, pursuing “hybrid” 
approaches where multiple methods and datasets are combined in a 
way to best exploit their relative advantages. 

• Continuing and stepping up the modernization and expansion of the 
SNOTEL network, with more and better sensors, more imagery, and 
better data communication—all of which would necessitate more 
resources for NRCS to support the network.  

Challenges: Streamflow 

• Streamflow observations that could contribute to more accurate 
naturalization calculations are not available at many key sites, 
especially diversion and return flow locations. 

• Naturalizing the gage record requires adjustments that come with 
potential errors and uncertainties, many of which are impossible to 
address or resolve because of the dearth of early-period data and 
documentation.  

• Fully characterizing the natural hydrology of the basin is problematic 
with the exclusion of the Gila River from consideration.  

• A number of research activities use Reclamation’s natural flow record 
for baseline or reference purposes. For example, synthetic streamflow 
generation relies on the natural flow record for parameter estimation 
or for nonparametric sampling, tree-ring reconstructions of 
paleostreamflows are calibrated against the natural flows at Lees Ferry, 
and hydrologic simulations from the Variable Infiltration Capacity 



 

Executive Summary 13 
 

model that are used to project future streamflows were bias-corrected 
based on the natural flows at Lees Ferry and other gaging stations.  

Opportunities 

• Regarding gaging, the biggest gains in information going forward would 
be achieved by expanding the streamflow monitoring network to fill 
gaps in coverage. This includes gages at diversion sites and in locations 
to measure return flows or verify return flow and gain/loss 
calculations.  

• Increasing the spatial resolution of Reclamation’s models might be a 
useful avenue to pursue in order to simulate and analyze impacts from 
climate change on sub-basin hydrology.  

• Major modifications to the natural flow record, to improve consumptive 
use estimates for example, have implications for both the calibrations 
and other applications listed above, and for the record extension back 
to 1906 because the extended records were based on statistical 
analyses of the natural flow record that was in place at the time of 
extension. As more recent natural flow data becomes available, there is 
an opportunity to revisit the characterizations, calibrations, bias-
corrections, and record extension that were based on earlier versions 
of the natural flow record. 

Challenges: Soil moisture and evaporation 

• Compared with snowpack (which is variable over space and time), soil 
moisture is poorly monitored and understood, with frequent 
discrepancies between in situ measurements and modeled estimates. 

• Real-time soil moisture data is collected from at least 6 different in situ 
networks, with differing observing protocols (depth, etc.).   

• Reservoir evaporation estimates as used in basin system modeling have 
been based on decades-old data that does not reflect current climate 
conditions. 

• Estimates of evapotranspiration and crop water use have been 
constrained by physically incomplete methods and input data that are 
not spatially representative. 

Opportunities 

• Support and expand ongoing efforts to comprehensively collate in situ 
soil moisture measurements and merge these observations with 
spatially distributed modeled estimates (e.g., National Soil Moisture 
Network). 

• New satellite sensors and products (e.g., SMAP) that provide spatially 
comprehensive and consistent soil moisture estimates can likewise be 
compared and blended with other types of soil moisture data. 
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• When applicable, conduct testing of new soil moisture products to 
determine if they add value to the CBRFC forecast process. 

• Ongoing efforts will provide updated reservoir evaporation estimates 
for Lakes Mead and Powell; those efforts could be expanded to other 
large reservoirs in the basin. 

• Expand the in situ monitoring of evaporation/ET/PET with enhanced 
weather stations that capture all four variables needed for fully physical 
estimates (e.g. the Penman-Monteith method), and new flux towers 
needed for the Eddy Covariance method. 

• Better in situ data will also help in calibrating/validating remote 
sensing-based spatial estimates of ET and crop water use; use of these 
spatial estimates in the basin has been increasing, though it has been 
limited by user confidence in the data. 
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Chapter 6. Hydrologic Models 

Key points 

• With a range of hydrologic models readily available, it is important for 
prospective applications of models to articulate the objectives of the 
modeling as well as the requirements that the model must satisfy. 

• A single model is likely designed for a specific application or context 
and may not be optimal for a wider range of uses. 

• In the Colorado River Basin, the NWS models (streamflow forecasting) 
and the VIC model (sensitivity studies; climate change projection) have 
been the most-consulted hydrologic models for those respective 
applications. Each has varying capabilities and limitations. 

• Increasing model complexity does not guarantee improved model 
performance. Complexity should be increased subject to the 
consideration of process needs, data sufficiency, computational 
feasibility, and ultimately the model’s demonstrated performance. 

• For some applications, such as streamflow forecasting at a river 
location, simpler models may continue to offer valuable and even 
superior performance for years to come.  

• For other applications, such as understanding hydrologic sensitivity to 
climate change or hydrologic response to watershed changes, more 
complex process-oriented models are usually more appropriate.   

• Calibration (parameter estimation) is almost always needed to achieve 
high-quality simulations in all hydrologic models, and it is easier to 
implement in simpler models than in computationally intensive 
complex models.  

Challenges and opportunities 

Challenge  

The conceptual modeling approach used in operational forecasting is not 
well-suited to take full advantage of advances in process understanding and 
modeling. The process-complexity of the models used for short-range to 
seasonal forecasting could be increased, albeit in a careful manner. This 
must be done within a strategy that acknowledges and provides for 
commensurate changes in operational workflows, including the 
development of data assimilation approaches. 

Opportunity  

• Implement a testbed framework for operational modeling that can 
incrementally advance and benchmark modeling improvements for 
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different objectives, evaluating and justifying increases in complexity 
based on model performance.  

Challenge  

Distributed regional parameter estimation remains a vexing scientific 
challenge, and there is a critical need for accessible, efficient model 
calibration approaches to avoid the use of semi-calibrated land surface 
models in water supply applications (e.g., climate-change impact 
assessment). Without this capability, no model will perform well, and 
watershed-tuned conceptual models will be hard to outperform.  

Opportunity 

• Multiscale Parameter Regionalization (MPR) offers promise but will 
require more development to leverage both the strengths of the 
attribute-based parameter development and the greater optimization 
potential in individual basins. Improved understanding of parameter 
sensitivities in models such as VIC, multi-objective calibration 
(considering more variables than just streamflow), and broader use of 
geophysical attributes, may offer near-term paths for improvement. 

Challenge 

The widespread use of VIC and similar land surface models for climate 
change impact studies may have inadvertently limited the exploration and 
quantification of projected hydrologic changes. There is a need to identify 
processes that are not represented in models such as VIC and that lead to 
hydrologic impacts that affect stakeholders (such as dust-on-snow), and to 
require that models used in climate-change impact studies a) include 
parameterizations to represent those processes, and b) demonstrate that 
their process performance is realistic. 

Opportunity 

• New models and modeling frameworks such as SUMMA, Noah-MP, 
WRF-Hydro, and CTSM may offer a more flexible foundation for 
enhancing model process complexity in appropriate, and carefully 
benchmarked ways. Process parameterizations in individual models 
may be leveraged to expand the range of options in flexible model 
frameworks. This activity will ideally be deliberate, pursuing targeted 
model improvements and motivated by stakeholder needs assessments, 
rather than top-down or wholesale adoption of an alternate off-the-
shelf model.   
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Chapter 7. Weather and Climate Forecasting 

Key points 

• Uncertainty about upcoming weather and climate conditions translates 
into a major source of uncertainty in seasonal streamflow forecasts. 

• Weather forecasts out to 10 days have relatively high skill and are 
progressively improving; they are incorporated into the CBRFC’s 
operational streamflow forecasts. 

• Sub-seasonal (2 weeks to 12 weeks) and seasonal (3 months to 1 year+) 
climate forecasts have much lower skill, especially in the Upper Basin, 
and they are not incorporated in the CBRFC streamflow forecasts. 

• A major research effort has ramped up in the last decade to advance 
sub-seasonal and seasonal forecasting. 

• Sub-seasonal and seasonal forecasts for temperature are generally 
more skillful than forecasts for precipitation, and skill for both is 
generally higher for the Lower Basin than for the Upper Basin. 

• For precipitation, the Climate Prediction Center’s seasonal forecast skill 
in both basins has been positive for winter and spring, suggesting users 
should focus their forecast use on those seasons.    

• There are other opportunities to better utilize the skill that does exist 
in sub-seasonal and seasonal climate forecasts, such as using them to 
“nudge” the streamflow forecast ensemble during post-processing. 

Challenges and opportunities 

Challenge  

Limitations in our understanding of the connections between atmospheric 
and oceanic circulation patterns and processes, and Colorado River Basin 
precipitation variability in space and time, constrain the skill of climate 
forecast models in forecasting conditions for the basin. 

Opportunities 

• Support further research into these climate system dynamics to 
identify key patterns and variables. 

• Support further research into better representing those key patterns 
and variables in dynamical climate forecast models and statistical 
forecast tools. 
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Challenge 

The CBRFC and other streamflow forecasting units may not be able to 
capitalize on the skill that does exist in sub-seasonal and seasonal climate 
forecasts for the basin. 

Opportunities 

• Support ongoing CBRFC efforts to pilot the inclusion of sub-seasonal 
and seasonal forecasts in their forecast system. 

• Support further research into post-processing of CBRFC forecasts to 
generate climate-forecast-informed, use-specific streamflow forecasts. 

Challenge 

The limited skill and probabilistic nature of climate forecasts may not mesh 
well with decision frameworks so water managers are unable to extract 
value from the forecast information. 

Opportunities 

• Continue to support engagement between water managers and CPC 
and other climate forecasters to facilitate shared understanding of 
decision needs and forecast capabilities. 

• Study decision making by users and sectors that make better use of 
climate forecasts (e.g., crop futures traders), to assess transferability of 
tools and practices. 

• Develop decision support tools that bridge climate forecasts to the 
water resource decision space. 

Challenge  

The skill of climate forecasts is highly variable over both space and time, 
complicating the consistent use of forecasts. 

Opportunities  

• Selectively consult forecasts during those seasons when they have 
shown the most skill for the basin. 

• Support research to identify “forecasts of opportunity” specific to the 
basin, i.e., conditions of the ocean, atmosphere, and land surface during 
which forecasts are more likely to have skill and impact. 
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Chapter 8. Streamflow Forecasting 

Key points 

• Streamflow forecasts from the CBRFC are widely used by water 
managers in the basin and are critical inputs for Reclamation’s 
operational models, including seasonal forecasts for use in 24MS and 
MTOM. 

• Streamflow predictability at seasonal timescales in the Colorado River 
Basin arises primarily from the initial watershed moisture conditions, 
i.e., snowpack and soil moisture. 

• While using different methods, the CBRFC and NRCS operational 
forecasts both effectively capitalize on this predictability, with 
relatively high skill for forecasts issued in late winter and spring for the 
coming runoff season. 

• To improve streamflow forecasts within the current frameworks there 
are two main pathways: 1) improve estimates of initial watershed 
moisture conditions, and 2) improve basin-scale weather and climate 
forecasts and how they are used in streamflow forecasts. 

• Improvements in quantifying watershed conditions can come through 
better meteorological analyses, more in situ observations of snowpack 
and soil moisture, increased use of remotely sensed observations, 
advances in calibration strategies, and advances in data assimilation 
techniques.  

• Improvements in sub-seasonal and seasonal climate forecasts are being 
actively pursued by national modeling centers and the broader research 
community; targeted post-processing of climate forecasts can better 
leverage their current skill to inform seasonal streamflow forecasts.  

• Skill in streamflow forecasts for year 2 and beyond is entirely 
dependent on skill in decadal climate forecasts, which exists to some 
degree for temperature but not for precipitation. 

• Alternative forecast frameworks in which tasks are fully automated 
permit the use of a greater range of advanced methods and data. These 
frameworks have not yet been shown, however, to outperform the 
current operational forecasts. 

• Many potential forecast improvement elements have been 
demonstrated in a research context; systematic testing to benchmark 
and combine multiple elements could add up to significant overall 
improvements in operational forecasts. 
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Challenges and opportunities 

Challenge 

The modeling advances over the last three decades and their 
demonstration in forecasting contexts have not altered the reliance of RFC 
operational practices on the legacy models. There is a clear scientific 
rationale for enhancing the physics of the legacy models in many forecast 
cases, yet implementing modeling advances faces major hurdles for 
operational flow prediction in both the current in-the-loop forecast 
paradigm and the over-the-loop workflow. 

Opportunities 

• Effective approaches for regional parameter estimation (calibration) in 
more complex watershed process models to enable model streamflow 
simulations on a par with the performance of current legacy models. 

• Effective approaches for automated hydrologic data assimilation, to 
replace the many manual adjustments made by expert forecasters and 
enable skillful over-the-loop systems.   

• Automated interoperability of water management decisions and river 
basin modeling systems, to replace the manual incorporation of 
management effects like releases and diversions.  

Challenge 

There is little question that more extensive monitoring of watershed 
conditions, either by direct or remote measurements, would benefit 
hydrologic forecasting. The benefits can arise in two ways: 1) improving 
real-time analyses that provide the initial conditions for forecasts, which 
matter most when those conditions provide most of the forecast signal, 
such as in late spring; and 2) improving model implementation by helping 
constrain model parameters and guide structural implementation of those 
parameters.  

Opportunities 

• Expansion of real time measurements of streamflow, snow water 
equivalent (SWE), soil moisture, and ET. 

• Methodological research into how observations that are sparse or 
coarse (e.g., soil moisture) or collected as snapshots (e.g., ASO SWE) 
may be incorporated into a forecast workflow. 

• Development of both real-time and multi-year (retrospective) records 
that provide a foundation for research and methodological verification. 
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Challenge  

To open the door for adoption of more complex models, multi-faceted 
ensemble approaches, leveraging supercomputing, and other 
advancements in streamflow forecasting, the research and operational 
communities must develop effective automated hydrologic data 
assimilation methods. 

Opportunity 

• Experimentation and refinement of automated hydrologic data 
assimilation, particularly to enable over-the-loop prediction. 

Challenge  

It is clear that improved sub-seasonal (S2S) and seasonal climate 
predictions would have substantial benefit for mid-range hydrologic 
predictions, with a particular need for cool-season precipitation forecasts 
in the runoff-generating regions of the western U.S. Yet, S2S climate 
prediction has also long been a major scientific challenge, requiring large 
scale investments by the Earth system research community in improved 
global-scale observations, climate modeling, climate model data 
assimilation systems, and predictability studies. 

Opportunity 

• Invest in analysis and development of watershed-scale climate 
forecasts via both empirical and dynamical methods and sources as 
operational climate forecasting capabilities slowly evolve. 

Challenge 

The lack of a hydrologic forecasting testbed is a critical institutional gap. 
Support is needed to transition new research to operations for both the 
National Water Center and for the RFCs, and build the case for the viability 
of over-the-loop approaches.   

Opportunity 

• A testbed would support experimentation and systematic development 
of real-time forecast approaches, including new models, data 
assimilation techniques, post-processing approaches, model calibration 
techniques, climate and weather downscaling methods, verification and 
communication related to forecasts, and decision making.  
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Chapter 9. Historical Hydrology 

Key points 

• The observed historical streamflow record is used to generate 
ensembles of streamflow traces for input into system models for long-
range planning, as well as to validate and calibrate paleohydrology and 
climate changed-informed hydrology. 

• Multiple methods have been used to generate Colorado River Basin 
streamflow traces for system analysis; each has advantages and 
limitations and none is a clear best choice for all applications.  

• The index sequential method (ISM), which has been the most common 
method used in Reclamation system analyses for decades, has 
advantages but also significant limitations, most of which center on the 
fact that ISM traces do not deviate from the observed historical record. 

• Stochastic alternatives to ISM have been used to produce ensembles of 
traces that maintain many characteristics of the historical record while 
offering novel ranges, durations, and frequencies of flows.  

• Stochastic methods that are based on statistical summaries of the 
historical data, known as parametric methods, have the advantage of 
being able to generate values beyond the range of the observed record, 
but require assumptions about the underlying form of the population of 
streamflows. 

• Stochastic methods that are based on sampling directly from the 
historical data, known as nonparametric methods, do not require 
assumptions about the underlying form of the population of 
streamflows but are sensitive to the number of observations from 
which to sample.  

• Research trends are toward nonparametric methods of streamflow 
generation and toward hybrid methods that use historical hydrology 
with reconstructed tree-ring hydrology or climate change-informed 
hydrology.  

Challenges and opportunities 

Challenge 

Identifying the most appropriate method of incorporating historical 
hydrology in long-term planning in the Colorado River Basin is a key 
challenge. The full, observed historical record, especially when used with 
ISM, likely does not represent future hydrologic risk, but it is challenging to 
completely replace it because there is no clear best alternative. While 
Reclamation’s use of a segment of the observed hydrology (the Stress Test) 
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attempts to create a more realistic picture of risk, there is little guidance on 
which segments are most appropriate, and a shorter record reduces the 
range of hydrologic conditions available. Beyond ISM, there is much 
research but little consensus on alternative approaches to generating 
synthetic streamflow traces. 

Opportunity 

• One approach, informally suggested by Tarboton (pers. comm.), is that 
new streamflow generation models be tested against a comprehensive 
set of statistics. Extending that suggestion somewhat, a matrix could be 
established by Reclamation and basin stakeholders that identifies the 
most important features of synthetic traces and uses that matrix to 
guide research into new methods or to assess existing methods. 
Features in the matrix might include fidelity to particular historical 
statistics, ability to generate particular time steps, ability to simulate 
non-stationarity, ability to represent uncertainty, ease of 
implementation, ease of understanding, and robustness of inferences.  

Challenge 

One of the primary challenges facing water resources researchers and 
planners in applying the basin’s historical time series is how to use it to 
generate streamflow traces that allow study of the non-stationary 
hydroclimate. 

Opportunities 

• Explore performing diagnostics on the parameters used in parametric 
stochastic streamflow studies in the Colorado River Basin to assess the 
dependencies between and among parameters and to assess the 
complexities involved in incorporating non-stationarity into them. 

• Techniques for generating long-term streamflow sequences that blend 
historical observed hydrology with paleohydrology or climate change-
informed hydrology (or both) offer substantial promise. The paleo 
record offers extremes, durations, and frequencies not seen in the 
observed record, and the climate change-informed hydrologies offer 
potentially altered climate patterns and regional shifts that are absent 
or undetectable from the observed and paleo records.  

• A potentially useful effort might be to review approaches to other 
variables, and even other disciplines, for techniques that could be 
translated into streamflow synthesis techniques. 
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Chapter 10. Paleohydrology 

Key points 

• Tree-ring reconstructions of Colorado River streamflow extend the 
observed natural flow record up to 1200 years into the past and 
document a broader range of hydrologic variability and extremes than 
are contained in the observed records. 

• Most critically, several paleodroughts prior to 1900 were more severe 
and sustained than the worst-case droughts since 1900. 

• These “megadroughts” could recur in the future due to natural climate 
variability alone, but their recurrence risk is much increased by 
anthropogenic warming. 

• The century-scale mean and variability of Colorado River Basin 
hydroclimate has not been stationary over time. 

• The early 20th century high-flow years (1905–1930) may have been the 
wettest multi-decadal period in 500–1000 years. 

• Methodological choices in the handling of the tree-ring data can 
influence the reconstructed flow values and metrics, such as the 
duration of droughts. 

• Planning hydrologies derived from tree-ring paleohydrology can 
provide plausible stress tests that are more extreme than the observed 
hydrology, and have been used for that purpose in several recent 
planning studies in the basin.  

Challenges and opportunities 

Challenge 

At present, only seven tree-ring site chronologies in the Upper Basin 
extend beyond 2005, so current streamflow reconstructions do not have 
the benefit of full calibration against the early 21st century dry period. 
Additionally, Reclamation’s ongoing revisions of natural flow estimates may, 
cumulatively, substantially revise the target hydrology for tree-ring flow 
reconstructions. 

Opportunities 

• Develop new or updated tree-ring site chronologies that the can be 
included in the calibration of any forthcoming streamflow 
reconstructions.  

• Consider recalibration of, as well as assessment of the sensitivity of, the 
tree-ring flow reconstructions to the revised natural flows. 
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• Generate new, targeted reconstructions for the key water supply 
regions of the Upper Basin like the ongoing project funded by the USGS 
Southwest Climate Adaptation Science Center, in collaboration with 
basin water managers.  

Challenge 

Key to applications of paleohydrology to future climate scenarios is 
understanding how modes of natural variability itself will change over the 
coming decades. It is unclear which methods of blending paleohydrology 
data and climate projections have the most robust physical foundation, and 
more work is needed to examine the issue of persistence in streamflow 
reconstructions and to determine its source. 

Opportunity 

• Develop plausible scenarios and characteristics of future basin drought 
over the next several decades through integration of paleohydrology 
data and climate projections. Some of this work is underway, as 
described above. 

Challenge 

Existing tree-ring reconstructions of annual and growing-season 
temperature for the basin are not nearly as skillful as reconstructions of 
precipitation and streamflow, limiting our ability to tease apart the drivers 
of past low-flow periods and place the recent warming trend in context. 

Opportunity 

• Renew efforts to develop a robust reconstruction of past basin 
temperatures, building on current investigations using bristlecone pine, 
plus updating and re-measuring other collections of trees that are 
limited in growth by temperature.  
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Chapter 11. Climate Change-Informed Hydrology 

Key points 

• Climate change-informed hydrology is increasingly used in basin 
planning studies to complement other long-range hydrologic 
information. 

• Most approaches to developing this information begin with global 
climate models (GCMs) driven by one of several emissions scenarios; 
the approaches incorporate multiple processing steps, with 
corresponding methodological choices that each have implications for 
the final output and its uncertainty.  

• GCMs are the best tools we have for exploring and quantifying 
physically plausible future climate changes at global to sub-continental 
scales. They have deficiencies in representing some key climate system 
features relevant to basin-scale climate, as well as reproducing 
historical basin-scale climate patterns themselves. 

• Downscaling methods make GCM output more usable for finer-scale 
hydrologic modeling, such as projections of future streamflows. 
Downscaled projections are not necessarily more accurate than the 
underlying GCM output in depicting future climate change. 

• Further warming is projected by all GCMs to continue in the basin as a 
consequence of continuing greenhouse gas emissions; basin 
temperatures are projected to rise by 2.5°F–6.5°F by mid-century 
relative to the late 20th century average. 

• The direction of future precipitation change for the basin is much less 
certain than temperature change. The GCMs show some overall 
tendency toward increasing annual precipitation in the northern parts 
of the Upper Basin, and toward decreasing precipitation from the San 
Juan Basin south through the Lower Basin.  

• The projected trends in precipitation are relatively small compared to 
the high year-to-year natural, or internal, variability in precipitation. 
Most GCMs project increased precipitation variability in the future. 

• Mainly due to the pervasive effects of warming temperatures on the 
water cycle, nearly all of the many datasets of climate change-informed 
hydrology and related studies show a strong tendency toward lower 
annual runoff volumes in the Upper Basin and the Lower Basin, as well 
as reduced spring snowpack and earlier runoff.  

• The overall spread of potential future hydroclimatic changes for the 
basin, as depicted across the GCM-driven projections, has not been 
reduced over the past decade and may not be appreciably reduced by 
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forthcoming data and methods, not least because much of the spread is 
due to unpredictable natural climate variability.  

Challenges and opportunities 

Challenge 

GCM disagreements in changes of key climate variables: 1) GCMs do not 
agree on the magnitude of warming to expect globally, or in the basin, for a 
given emissions scenario-timeframe combination; 2) GCMs do not agree on 
the direction and magnitude of annual precipitation change for the basin. 
Based on past history, further improvements in GCMs (e.g., better 
resolution of CMIP6 GCMs) will likely only slowly reduce these 
disagreements. 

Opportunities 

• Pursue additional guidance beyond the GCM ensemble regarding 
changes in these uncertain variables, e.g., recent observed trends, 
climate theory, and expert opinion (e.g., surveys of researchers). 

• Identify specific hydroclimate conditions, events, and sequences that 
lead to vulnerability; there may be greater consensus among the GCMs 
regarding these than in the changes in annual or seasonal average 
precipitation, for example. 

Challenge 

Due to GCM uncertainty and other factors, the range of projected future 
outcomes for basin hydrology (e.g., change in annual runoff volume at Lees 
Ferry) from GCM-based ensembles is very broad, and most planning 
decisions cannot address the full range of potential future conditions 
without incurring regrets from under- or over-preparation. 

Opportunities 

• Methods are available (e.g., scenario development, hydrologic 
storylines) to at least reduce the number of traces from the ensemble, 
improving their tractability for planning, and potentially identifying 
more physically plausible and likely outcomes. 

• Alternative planning paradigms may be more appropriate for decision 
making under deep uncertainty. In planning, emphasize those 
outcomes associated with greater vulnerability and impacts, i.e., drier 
projections. 

Challenge 

GCM resolution, while improving, is still coarser than that required for 
realistic modeling of basin hydrology and system modeling, requiring the 
application of downscaling methods. 
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Opportunity 

• The HighResMIP experiment within CMIP6 will soon make available an 
ensemble of GCM projections at 25–50 km resolution. This is still 
coarser than the resolution optimal for hydrologic modeling but will 
provide a useful test of what added value can be expected from high-
resolution GCMs. 

Challenge 

Statistically downscaled projection datasets, which dominate applications 
of regional climate data in water supply assessments, are perfectly 
adequate as sequences to input in hydrology models, but they add little to 
our physical understanding of future changes beyond what the GCMs can 
tell us. The very high resolution of these datasets (1–12 km) can also mislead 
users as to their accuracy and added value. 

Opportunity 

• For water supply assessments, look to dynamically downscaled or 
hybrid methods and datasets (e.g., NA-CORDEX, ICAR, En-GARD) for 
more physically oriented guidance that can provide context for 
statistically downscaled datasets, or replace them. 

Challenge 

The sources of uncertainty and differences in climate change-informed 
hydrology for the basin have been identified and explored to varying 
degrees, but not fully examined, including the underlying methodological 
choices. Thus, data users have incomplete information about uncertainty, 
and may not be aware of the subjective choices underlying particular 
results of hydrologic assessments. 

Opportunities 

• Support comprehensive evaluations of the differences stemming from 
downscaling methods, bias-correction methods, and hydrologic 
models. 

• Provide visualization tools of future climate and hydrology that are not 
limited to a single dataset and allow the users to toggle between 
datasets to clearly see commonalities and differences. 

Challenge 

Any given ensemble of climate change-informed hydrology (e.g., CMIP5 
BCSD) is a complex dataset that is challenging to obtain, analyze, and 
interpret; the increasing proliferation of similar datasets and their 
respective underlying methodological approaches can be bewildering to 
even sophisticated users. 
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Opportunities 

• For both researchers and practitioners, support efforts to provide 
guidance on the appropriate use of existing datasets, e.g., Vano et al. 
(2018), and WUCA training workshops. 

• Develop and disseminate new methods and datasets only when there is 
a compelling use case and clear added value over existing datasets. 



Volume I of the Colorado River Basin State of the Science report provides important background and 
context for considering the different datasets, models, and tools described in the subsequent volumes 
and chapters. Chapter 1 succinctly lays out the need for the report as well as its objectives, intended 
audience, approach, and organization. It also contains a primer on sources of uncertainty to help 
readers navigate more focused discussions of uncertainty in later chapters.  

Chapter 2 is a technical report unto itself; it describes what is known about the fundamental features of 
the Colorado River Basin’s hydroclimate, their spatial and temporal variability, and the mechanisms 
behind that variability. This knowledge base is dependent on the primary datasets and models 
described in Volume II (Chapters 4, 5, and 6) while also informing the productive application of those 
data and models, and similarly it underpins the application of the weather, climate, and streamflow 
forecasting methods described in Volume III (Chapters 7 & 8). The chapter concludes with a detailed 
discussion of recent trends in basin hydroclimate and their likely causes, which provides critical 
context for the long-term planning datasets described in Volume IV (Chapters 9–11). 

Chapter 3 provides a detailed overview of the three primary Reclamation operations and planning 
models that support basin decision making. It describes the underlying configurations, assumptions, 
and applications of the three models. The chapter details how these models use observational data, 
streamflow forecasts, and planning hydrologies as a prelude to the discussion of those inputs in 
subsequent chapters. 

Volume I 
Background and Context 

 
Chapter 1. Introduction 

Chapter 2. Current Understanding of Colorado River Basin Climate and Hydrology 

Chapter 3. Primary Planning Tools 
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1.1 Background and need 

The Colorado River Basin is a vital source of water, ecosystem services, 
hydropower, recreation, and other amenities for the seven basin states 
(Colorado, Wyoming, Utah, New Mexico, Arizona, Nevada, and California), 
at least 22 federally recognized tribes, and the Republic of Mexico (Figure 
1.1). The Colorado River system is managed and operated in accordance 
with the Law of the River, which consists of compacts, treaties, federal 
laws, regulations, contracts, and court decisions and decrees. 

There is an increasing imbalance between supply and demand in the basin. 
Water use, including consumptive use, within the basin has steadily 
increased over time and, when combined with deliveries to Mexico, is now 
approaching the average historical water supply (Figure 1.2). The average 
conditions, over time and across the basin, suggest a (barely) sufficient 
supply and, by smoothing out the variability, mask existing and prospective 
shortages.  

Since 2000, the basin has experienced an extended dry period in which the 
average annual water supply has been 18% lower than the historical 
average. The enormous storage capacity of the system’s reservoirs (about 
60 million acre-feet), nearly full at the beginning of the dry period, 
combined with voluntary conservation has permitted full deliveries of 
water to the Lower Basin states through this period, with only local 
shortages to uses in Upper Basin states. But the cumulative streamflow 
deficit of about 40 million acre-feet (maf) since 2000 has contributed to the 
depletion of system storage to about 45% of capacity. 

The depleted state of system reservoirs leaves the system vulnerable; the 
water surface elevation of Lake Mead has hovered around the upper 
thresholds (1075’ and 1090’) for imposing curtailments on Lower Basin 
states under the 2007 Interim Guidelines and the 2019 Drought 
Contingency Plan.  

This recent drought, along with the increasing recognition that rising 
temperatures impact the hydrology of the basin, has led to further 
concerns about the long-term reliability of basin water supplies. Warming 
temperatures observed across the basin in the last few decades have 
discernibly impacted snowpacks, melt and runoff timing, runoff efficiency, 
and total basin runoff. It is unclear whether the period of below-normal 
precipitation since 2000 is indicative of future precipitation, but unless 
average basin precipitation increases substantially, system runoff and water 
supply are expected to decline over the next several decades due to 
warming alone.  

Law of the River 
See Reclamation’s 
website for links to 
many of the relevant 
documents.  
 
Link: 
https://www.usbr.gov/l
c/region/pao/lawofrvr.h
tml 

https://www.usbr.gov/lc/region/pao/lawofrvr.html
https://www.usbr.gov/lc/region/pao/lawofrvr.html
https://www.usbr.gov/lc/region/pao/lawofrvr.html
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Figure 1.1  
Geographic setting of the Colorado River Basin. Upper Basin: portions of the basin that lie in Colorado, 
Utah, Wyoming, New Mexico, and Arizona that are tributary to the river upstream of the Colorado River 
Compact point at Lee Ferry, Arizona. Lower Basin: portions of the basin in Arizona, California, Nevada, and 
New Mexico that are downstream of Lee Ferry. 
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Water resource managers in the basin have long relied on short-term (1 
month to 2 years) forecasts of system conditions to guide operations and 
other decision making. Recently, the U.S. Bureau of Reclamation 
(hereinafter “Reclamation”) has instituted mid-term probabilistic forecasts 
(2 to 5 years) to bridge short-term forecasts with longer-term planning 
projections. When the system is close to critical operational thresholds, 
such as the 1075’ and 1090’ levels in Lake Mead, the need for accurate and 
actionable short-to-mid-term forecasts of system conditions becomes 
even more critical.  

Until recently, long-term water planning (5 to 50 years) in the basin was 
based on the historical hydrologic record under the assumption of 
hydroclimatic stationarity, that is, that the historical average and variability 
would remain stable. That assumption was first challenged several decades 
ago by tree-ring records showing the instability of century-scale 
hydroclimate in the basin, and has become even less tenable due to climate 
change (Milly et al. 2008; 2015). When developing the 2007 Interim 
Guidelines, Reclamation, recognizing the limitations of the conventional 
assumption of stationarity, used tree-ring reconstructed, pre-historic flows 
to provide a broader view of flow variability (Reclamation 2007b), and also 
surveyed the state of knowledge regarding the potential impact of climate 
change on water resources in the basin (Reclamation 2007c). Since that 
time, climate model projections have played larger roles in informing the 
hydrologic traces in Reclamation planning studies (Reclamation 2012e). 
Reclamation’s experience, and that of other water agencies working with 
climate model data, has revealed considerable challenges in both 

 

Figure 1.2 
Historical water supply and 
consumptive water use for 
the Colorado River Basin, 
as aggregated at Imperial 
Dam, from 1922 to 2016, 
smoothed with a 10-year 
running average. Since 
2000, water use has 
exceeded water supply on 
a 10-year basis, as well as 
in most individual years. 
(Source: USGCRP 2018, 
revised from Reclamation 
2012e) 
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translating global climate projections to changes in the hydrology of the 
Colorado River Basin and in interpreting the system impacts associated 
with those changes given the uncertainties in the data and models. 

The past decade has seen dozens of new research efforts aimed at better 
understanding the climate and hydrology of the Colorado River Basin, and 
at refining the data and models used to guide basin management and 
planning. There have been parallel efforts to explore new approaches to 
planning and decision making under uncertainty. Many of these efforts 
have been conducted by, or with funding from, Reclamation and other 
basin water agencies. Many other research studies, while not explicitly 
guided by the needs of basin water managers, can still provide relevant 
information and insight. Given this rapidly expanding scientific knowledge 
base, the increasing complexity of the data and models used to 
operationalize that knowledge, and the growing uncertainties about the 
hydroclimatic future, basin stakeholders have recognized the importance of 
reassessing the scientific and technical basis for management and planning. 
The impending formal review of the 2007 Interim Guidelines, which must 
begin in 2020 (U.S. Secretary of the Interior 2007), and the potential 
renegotiation of those guidelines, has created additional impetus for such a 
reassessment.  

In May, 2017, the Southern Nevada Water Authority hosted a conference, 
the Colorado River Hydrology Research Symposium (Cawthorne 2017), to 
give water resource practitioners and researchers an opportunity to 
exchange information about operational practices and research initiatives, 
with a focus on opportunities to improve inputs to existing basin planning 
tools and to enhance the utility of those tools. One outcome of that 
symposium was recognition that a document that synthesized the current 
research and assessed it in the context of the primary planning processes 
was necessary. 

1.2 Objectives and approach 

The intention of this report is to assess scientific knowledge and technical 
practice in a systematic way, across the multiple timescales and the diverse 
data and models used to inform management and planning in the basin. It 
describes the concepts, methods, models, and datasets that currently 
contribute to Reclamation’s and other stakeholders’ operations and 
planning, as well as knowledge gaps, uncertainties, and future challenges 
and opportunities. No new research or quantitative analyses were 
performed for this report beyond the basic characterization of existing 
datasets. 
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Objectives 
By synthesizing the state of the science in the Colorado River Basin 
regarding climate and hydrology, the report seeks to establish a broadly 
shared understanding that can guide the strategic integration of new 
research into practice. The ultimate goal of that integration, and therefore 
of this report, is to facilitate more accurate short- and mid-term forecasts, 
and more meaningful long-term projections, of basin hydroclimate and 
system conditions.  

The specific objectives of this report include the following: 

• Synthesize recent findings that can inform forecasts (short-term and 
mid-term) and projections (long-term) of hydroclimate and system 
conditions.   

• Convey the knowledge gaps and uncertainties associated with each 
area of the science and technical practice, as well as with key datasets 
and models. 

• Prompt research ideas and inform research priorities by describing 
opportunities for closing knowledge gaps. 

• Inform the scientific community about Reclamation models, how they 
support operations and planning, and related research needs. 

• Provide a broadly accepted foundation of scientific and technical issues 
on which to enter the formal review and potential renegotiation of the 
Interim Guidelines.  

Sources 
This report draws from over 700 primary sources, mainly peer-reviewed 
research articles published in academic journals, as well as agency studies, 
reports, analyses, and other sources. It builds on prior planning studies, 
research syntheses, and information needs assessments that have focused 
on the Colorado River Basin and water resources management that are 
listed in Table 1.1. 

Audience 
This report was written to be a clear and useful reference for readers who 
come to it with a moderate level of scientific and technical understanding 
of hydrology, though much of the text is fully accessible to any reader. The 
audience for the report includes water resource engineers and analysts 
who routinely work with inputs to, or outputs from, Reclamation models or 
who otherwise engage with water operations and planning in the basin; 
decision makers who will prescribe changes to operations, plans, and 
policies, and could benefit from better understanding of the science that 
informs these activities; research program managers seeking insights on 
high impact priorities to promote; and researchers who could benefit from 
better understanding of the planning and decision context in the basin. The 
report is also intended to inform the funding and production of research 
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that effectively supports basin water management activities, and is 
therefore also aimed at the broader community of water interests in the 
basin. 

Table 1.1 

Planning studies, research syntheses, and information needs assessments referenced in this report. 

Document Year Geographic scope Reference 

Planning studies conducted by Reclamation or basin stakeholders 

Final EIS—Colorado River Interim 
Guidelines for Lower Basin Shortages and 
Coordinated Operations for Lake Powell 
and Lake Mead, Appendices N and U 

2007 Colorado River Basin 
Reclamation (2007b; 
2007c) 

Colorado River Basin Supply and Demand 
Study 

2012 Colorado River Basin Reclamation (2012e) 

Colorado River Water Availability Study 2012 
Major Colorado River 
tributary basins within 
the state of Colorado 

Colorado Water 
Conservation Board 
(2012) 

SECURE Water Act report 2016 Western U.S. Reclamation (2016) 

Colorado River Basin Ten Tribes Partnership 
Tribal Water Study 

2018 Colorado River Basin Reclamation (2018) 

Climate change assessments that cover part or all of the Colorado River Basin 

Climate Change in Colorado 2008 Colorado Ray et al. (2008) 

Joint Front Range Climate Change 
Vulnerability Study 

2012 Colorado 
Woodbury et al. 
(2012) 

Assessment of Climate Change in the 
Southwest United States 

2013 Southwestern U.S. Garfin et al. (2013) 

Climate Change in Colorado  2014 Colorado Lukas et al. (2014) 

Fourth National Climate Assessment, 
Volume I 

2017 U.S. 
US Global Change 
Research Program 
(2017) 

Fourth National Climate Assessment, 
Volume II, Chapter 25 

2018 Southwestern U.S. 
Gonzalez et al. 
(2018) 

Stakeholder needs assessments for climate information 

Options for Improving Climate Modeling to 
Assist Water Utility Planning for Climate 
Change 

2009 U.S. Barsugli et al. (2009) 

Addressing Climate Change in Long-Term 
Water Resources Planning and 
Management: User Needs for Improving 
Tools and Information 

2011 U.S. Brekke (2011) 

Short-Term Water Management Decisions: 
User Needs for Improved Climate, Weather, 
and Hydrologic Information 

2013 U.S. Raff et al. (2013) 
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1.3 Organization 

The organization of the report centers on the three main Reclamation 
operations and planning models for the basin and the respective timescales 
those models are designed to inform. The models are:  

• 24-Month Study Model (24MS)—short term (current month to 24 to 36 
months in the future) 

• Mid-Term Probabilistic Operations Model (MTOM)—mid-term (current 
month to 2 to 5 years in the future) 

• Colorado River Simulation System (CRSS)—long term (5 to 50 years) 

In general, operational and planning decisions by Reclamation or basin 
stakeholders use information from the four categories of models or data 
listed below. 

I. System Models. The three primary Reclamation models listed above, 
and equivalent models built and used by other organizations. They use 
as inputs the data from categories III and IV, and are also calibrated 
with data from category II.   

II. Primary data and models. Observations, estimates, or simulations of 
climate and hydrologic conditions that are relevant across all time 
scales. They are used to calibrate, provide inputs to, and validate 
models and analyses in categories I, III, and IV. 

III. Short- and mid-term forecast tools. Models and methods for 
forecasting weather, climate, and streamflow as the basis for short-to-
mid-term operations. 

IV. Long-term planning hydrology. Data and models (historically-based, 
paleo-reconstructed, and climate change-informed) used to represent 
past and current variability, and to project long-term future conditions 
for planning purposes. 

This report is organized into four volumes (I–IV) corresponding to these 
categories, reflecting the flow of information through the chain of models 
and data. While that flow actually culminates with the Reclamation system 
models, those models are described early in the report (Volume I, Chapter 
3) to set the stage for consideration of the manifold inputs to those models. 
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In Chapters 3 through 11, the text describes the following for each type of 
model or data: 

• Importance to the chain of models and data, and thus to basin 
operations and planning   

• The specific data and methods currently used in the Reclamation 
models, and how they compare with other data and methods 

• Recent or ongoing efforts at improvement in this area 
• Key challenges, knowledge gaps, and uncertainties that remain 
• Opportunities for further progress 

1.4 Topics beyond the scope of this report 

This report does not evaluate current basin operations and policy or 
provide recommendations. It also does not address ecosystem processes 
except as they affect water supply, nor does it cover water quality concerns 
in any detail.  

Water use is obviously a critical component of the system water balance in 
the Colorado River Basin. Specific aspects of water use are briefly 
addressed in this report: the representation of consumptive water uses and 
losses in the Reclamation system models (Chapter 3); methods for 
measuring and monitoring water uses and losses (Chapter 5); and the 
effects of climate change on consumptive use (Chapter 11). Other sections 
may include discussions of data, tools, and concepts that, while oriented 
toward water supply, are relevant to the quantification of current 
consumptive uses and losses and the forecasting of future water demand. 
But a comprehensive treatment of the scientific and technical issues 
surrounding water use in the basin is beyond the scope of this report. The 
state of monitoring and forecasting water use in the basin for planning 
purposes is described in Technical Report C of the Colorado River Basin 
Water Supply and Demand Study (Reclamation 2012d). 
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SPOTLIGHT 

 

The uncertainties in hydroclimate forecasts and projections, and therefore in water supply expectations, 
present tantalizing research questions for scientists but are a source of frustration for water resource 
practitioners charged with providing a reliable water supply. Given the stakes involved, it is reasonable that 
Colorado River Basin planners and managers desire greater certainty in water supply forecasts and long-
term projections; they need some sense of the likelihood of hydrologic shifts, especially shifts to the dry side.  

Uncertainty stems from either randomness in the behavior of the system being modeled (aleatory 
uncertainty) or incomplete knowledge of the system (epistemic uncertainty). The aleatory uncertainty in 
hydroclimate processes is effectively synonymous with natural variability and, as such, can’t be reduced by 
more research or computing power or data collection. Just as we cannot buy down the uncertainty in a coin 
flip, we cannot buy down aleatory uncertainty in hydroclimate processes. However, aleatory uncertainty as 
manifested in variability is an intrinsic element of hydrologic systems, so its conceptual and practical nature 
is well understood by water resource managers and stakeholders.  

Epistemic uncertainty, on the other hand, can be chipped away at by improving our understanding, compu-
ting power, and data collection. There is epistemic uncertainty about aleatory uncertainty (variability) which 
frequently will be reduced simply by making more observations. For example, the exceptional nature of the 
wet period at the beginning of the 20th century was revealed over time as the observed records of precipita-
tion and streamflow became longer. There are several general types of epistemic uncertainty in modeling 
natural systems, illustrated in Figure 1.3 and described below: 

• Conceptual. Uncertainty that comes from incomplete understanding of the system to be modeled, so 
that relevant variables and processes are not represented in the model or the underlying dependencies 
between and among processes and variables is poorly understood.  

• Structural. Uncertainty that comes from inadequate specification of the underlying physics and other 
physical relationships in the model, or the imperfect fit of a statistical model. Approximation or 
simplification of processes over time and space is another source of structural uncertainty. 

• Parameter. Uncertainty that comes from errors in specifying model parameters—usually these are fixed 
coefficients or terms based on observations. Aggregation or simplification of inputs over time and space 
is another source of parameter uncertainty.  

• Data. Uncertainty that arises from limitations in observing systems and measurement techniques. Data 
uncertainty is fundamental because it confounds our conceptual and quantitative understanding of 
natural systems. Calibration of model parameters against imperfect data contributes to parameter 
uncertainty.  

• Initial conditions. Uncertainty that comes from imperfectly capturing the state of the system that 
begins a model simulation; it includes measurement error, and even more so, uncertainties related to the 
spatial and temporal interpolation between observations.  
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Uncertainties accumulate such that the combined uncertainty in the ultimate planning model output is 
much larger than the uncertainty at any intermediate step; however, because of interdependencies, the 
combined uncertainty isn’t a simple addition. Ultimately, depending on the variable and time scale of 
interest, the combined epistemic uncertainties may be matched or exceeded by that stemming from the 
natural variability of the Colorado River Basin. 

This report summarizes the current understanding in the research community about the uncertainties in 
hydroclimate analyses. However, the full range of uncertainty in future system outcomes, as it applies to the 
Colorado River Basin, also includes future land use, future water demand, and the future state of 
institutions, economies, technologies, and policies that influence and constrain water demand and 
allocation. Water resource practitioners in the basin are trying to make the best decisions possible about 
infrastructure, operations, and demand management given the uncertainty in future water supply. Studies 
to support decision making in this new environment are beginning to explore alternative analytical 
approaches that address the lack of information about the future by first evaluating system sensitivities, 
vulnerabilities, or failure modes. This emerging paradigm is reflected in the “decision making under deep 
uncertainty” (DMDU) movement. DMDU often uses computationally intensive methods, testing a system’s 
vulnerability to a range of possible futures under multiple policy options, to formulate robust decisions. It is 
possible that approaches to decision making such as these may be more likely to benefit management and 
planning than efforts to reduce some of the epistemic uncertainties, but discussion and evaluation of the 
approaches and the trade-offs is beyond the scope of this report. 

 

 

 
 

Figure 1.3  
Sources of uncertainty in modeling natural 
systems. The figure shows hypothetical 
probability density functions combining to 
representing the overall uncertainty in 
model output. 

http://www.deepuncertainty.org/
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Key points 
• On average, about 170 million acre-feet (maf) of precipitation falls over 

the Colorado River Basin annually, but only about 10% (17 maf) becomes 
natural streamflow available for use.  

• The Upper Basin contributes the vast majority, about 92%, of the total 
basin natural streamflow as measured at Imperial Dam.  

• Elevation dramatically shapes the amount of precipitation and its 
relative contribution to runoff, so that 85% of annual runoff comes from 
the 15% of the basin’s area that is located in the mountain headwaters. 

• The position and activity of the mid-latitude storm track from October 
through May is the critical climatic driver of annual precipitation in the 
basin’s headwaters. 

• Snowmelt is the primary source of annual runoff from those mountain 
headwaters, as reflected in the prominent late-spring peak in the 
annual hydrograph. 

• Year-to-year variability in runoff is high and is mainly driven by 
variability in precipitation; decadal and multi-decadal variability in 
precipitation and in runoff is also present but no consistent cycles have 
been identified. 

• The predictability that does exist at shorter time scales (up to 1 year) 
comes mainly from the El Niño-Southern Oscillation (ENSO); the ENSO 
signal is generally weak in the Upper Basin but stronger in the Lower 
Basin. 

• Predictability at decadal and longer time scales using longer-lived 
climate phenomena (e.g., Atlantic Multidecadal Oscillation, Pacific 
Decadal Oscillation, etc.) has proven elusive.  

• The period since 2000 has been unusually drought-prone, but even 
more severe and sustained droughts occurred before 1900. 

• There has been a substantial warming trend over the past 40 years; the 
period since 2000 has been about 2°F warmer than the 20th-century 
average, and likely warmer than at any time in the past 2000 years. 

• Decreases in spring snowpack and shifts to earlier runoff timing in 
many parts of the Upper Basin, as well as decreases in annual Colorado 
River flows at Lees Ferry, Arizona, have occurred in recent decades. 
These changes in hydrology can be linked, at least in part, to the 
warming trend.  

2.1 Introduction 

Describing the spatial and temporal variability of the Colorado River Basin’s 
hydroclimate, and recent trends in hydroclimate, can help frame 
expectations of future basin hydrology even before consulting the tools 
explicitly designed for forecasting and projection. It also provides context 
for the different datasets and modeling platforms that are considered in 
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much greater detail in later chapters. Understanding the physical 
mechanisms that drive basin climate and hydrology, and their links with the 
global climate system, can also help identify and understand issues with the 
output of both hydrology models (Chapter 6) and global climate models 
(Chapter 11).     

2.2 Overview of the basin 

Within its 240,000 square miles, the Colorado River Basin hosts an 
extraordinary diversity of hydroclimatic environments across an elevation 
range from sea level to over 14,000’ (4300 m). Some of the mountain 
headwaters receive over 60” of precipitation per year and have annual 
average temperatures well below freezing, while the driest desert valleys 
see 4” of precipitation per year and maximum daily temperatures over 120°F 
(Figure 2.1). Due to the rugged topography, abrupt climatic gradients are 
common, with annual precipitation increasing by a factor of up to 5 over 
less than 20 miles from base to summit of mountain ranges and high 
plateaus.  

The large majority of the basin has an arid or semi-arid climate—that is, 
under 20” of annual precipitation—and produces little or no runoff. The 
precipitation returns to the atmosphere as water vapor before reaching a 
stream by evaporating from soil and open water, sublimating from the 
snowpack, or transpiring from natural vegetation and crops—processes 
collectively known as evapotranspiration, or ET. The relatively spatially 
restricted mountain areas at high elevations, that are wet and cold enough 
to allow a seasonal snowpack to accumulate, produce a highly 
disproportionate amount of total basin runoff; about 85% of the average 
annual runoff is contributed by 15% of the surface area of the basin 
(Christensen and Lettenmaier 2007). The vast majority of these highly 
productive headwaters are located in the Upper Basin, primarily in western 
Colorado, and also in southwestern Wyoming and northeastern Utah. 
Accordingly, the Upper Basin accounts for, on average, 92% of the total 
natural streamflow as measured at Imperial Dam (Table 2.1).  

Runoff efficiency is highest in the mountainous northern and eastern sub-
basins of the Upper Basin (Figure 2.1), averaging 25–30% averaged across 
those basins. The highest elevation catchments within those sub-basins 
may see runoff efficiencies of 40–60%. Averaged across the Upper Basin, 
runoff efficiency is about 16%, and for the entire basin, it is only around 10% 
(Table 2.1). Both values are comparable to the runoff efficiency estimated 
for the Upper Missouri basin (about 12%; McCabe and Wolock 2019), but far 
lower than the runoff efficiency for the Columbia River Basin and the river 
basins that head in California’s Sierra Nevada (40–50%; Das et al. 2011). 
Significantly, basins with relatively low runoff efficiency have higher 

Colorado River at 
Lees Ferry  

The USGS gage at 
Lees Ferry, Arizona, 
number 09380000, 
records Colorado 
River streamflows 
immediately above 
the mouth of the 
Paria River, 16 miles 
downstream from 
Glen Canyon Dam, 
and 1 mile above the 
Colorado River 
Compact point at 
Lee Ferry, Arizona. 
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sensitivity of runoff to variability and changes in both temperature and 
precipitation (Das et al. 2011). 

 
Figure 2.1 

Colorado River Basin observed average annual temperature (upper left), observed average annual 
precipitation (upper right), modeled average annual runoff (lower right) and modeled annual 
average runoff efficiency, over the 1981-2010 period. (Data: Livneh et al. 2013; the average 
temperature and precipitation patterns shown are nearly identical to those seen in the PRISM and 
gridMet datasets. See Chapter 4 for discussion of these and other gridded climate datasets.) 
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Table 2.1 

Long-term (1906–2017) average water-year natural runoff, average water-year precipitation, and 
calculated runoff efficiency for sub-basins of the Colorado River. (Data: Runoff from Reclamation, after 
Prairie and Callejo (2005) except for Gila River; Gila River from Lukas, Wade, and Rajagopalan (2013); 
Precipitation from NOAA NCEI). 

Basin or 
Sub-basin 
(gage) 

Natural 
Streamflow 

(maf) 

Proportion of 
Colorado River at 
Imperial Runoff 

(%) 

Precipitation 
(maf) 

Runoff 
Efficiency (%) 

Green River (nr 
Green River, UT) 

5.4 34% 

92 maf 
Upper Basin 

Total 
16% 

Colorado River (nr 
Cisco, UT) 

6.8 42% 

San Juan River (nr 
Bluff, UT) 

2.1 13% 

Total Upper Basin 
(Colorado River at 
Lees Ferry) 

14.8 92% 

Inflows between 
Powell and Mead 

0.8 5% 

78 maf 
Lower Basin 

Total 
 

(includes Gila 
River Basin) 

3% 

Inflows between 
Mead and 
Imperial Dam 

0.4 3% 

Total inflows 
between Powell 
and Imperial Dam 

1.3 8% 

Total Colorado 
River above 
Imperial Dam 

16.1 100% 

Gila River (nr 
Dome, AZ at 
mouth) 

1.1  

Total Colorado 
River at Yuma, AZ 

17.2  170 maf 10% 
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Because the vast majority of basin-wide runoff comes from mountain 
headwaters that are mainly restricted to the periphery of the Upper Basin, 
the assessment of past variability and likely future changes in Colorado 
River hydrology will be more meaningful if focused on these headwaters 
areas. However, these critical mountain areas have fewer and shorter 
observational records, and are more difficult to represent in models than 
the more extensive low- and mid-elevation regions of the basin.  

2.3 Moisture sources, storm tracks, and seasonality of 
precipitation 

The broad spatial patterns of annual precipitation and runoff in the 
Colorado River Basin described above, while largely driven by topography, 
also result from the dynamic motions of the atmosphere over the basin, 
including upper-level winds, storm tracks, and convergence of air masses. 
These atmospheric dynamics, while very chaotic on shorter time scales (i.e., 
weather), have some regularity on seasonal time scales. Accordingly, they 
help create distinct patterns of seasonality in precipitation across the basin 
(Figure 2.2), as well as some of the broad gradients in average annual 
precipitation (Sheppard et al. 2002).  

During the cool season, the primary moisture source for precipitation over 
the basin is the Pacific Ocean. In summer, the Gulf of California is the main 
source of moisture for the Lower Basin (Jana et al. 2018). In spring and 
summer, the Gulf of Mexico becomes a secondary moisture source for the 
far eastern portions of the basin. Also during spring and summer, a 
considerable fraction of precipitation across the basin is “recycled”—
derived from moisture that has evaporated from the land surface (Jana et al. 
2018).  

Starting off the water year, October is usually a transitional month as the 
atmospheric patterns characteristic of winter emerge. Rapid cooling in the 
Arctic drives increasingly large north-south contrasts in temperature 
between the tropics and the polar regions. This temperature contrast both 
strengthens the prevailing westerly winds and promotes the development 
of mid-latitude cyclonic storms and other disturbances. The core of the 
upper-level westerly winds, the polar jet stream, also shifts southward at 
this time. Storms preferentially form along the jet stream’s path, and then 
tend to follow that path eastward, so the “storm track” or preferred 
pathway for storms is largely determined by the jet stream’s location 
throughout the cool season.  
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Figure 2.2 

Average monthly precipitation (1981–2010) for the Upper Basin and headwaters of the Lower Basin. 
See text for description of the seasonally varying processes that contribute to these patterns. (Source: 
PRISM 800-m gridded data http://prism.oregonstate.edu; maps were generated by the Western 
Regional Climate Center https://wrcc.dri.edu/Climate/prism_precip_maps.php). 

http://prism.oregonstate.edu/
https://wrcc.dri.edu/Climate/prism_precip_maps.php
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The position and activity of the storm track from October through May is 
the critical climatic driver of annual precipitation in the basin’s headwaters, 
and thus of annual runoff. A single winter storm may bring 5–10% of annual 
precipitation to portions of the Upper Basin headwaters, so the occurrence 
of a handful of strong storms can make the difference between a drought 
year and a normal runoff year for the basin, or between a normal year and a 
wet year (Bolinger, Kummerow, and Doesken 2014). While individual storms 
move across the basin in 1–2 days, the storm track that they follow may 
persist in one location for several days to a few weeks.  

In midwinter (December–February), as the north-south temperature 
gradients reach their maximum, the mid-latitude storm track can split, and 
storms that follow the southern track will impact Lower Basin headwaters 
such as the Mogollon Plateau. These storms are less frequent than those 
affecting the Upper Basin but usually carry more moisture, drawing from 
more southerly and thus warmer Pacific moisture sources. Some of the 
storms reaching the West Coast along either pathway may entrain very 
long and concentrated plumes of low-level (<5,000’) moisture, known as 
atmospheric rivers, or AR, originating in the tropical Pacific. AR events have 
been recognized as the primary mechanism of extreme wintertime 
precipitation and flooding along the West Coast (Cayan et al. 2016). While 
the moisture transport in AR events is much reduced by interaction with 
the Coast Range and Sierra Nevada in California as the storm supporting 
the AR moves inland, of the 30–60 AR events that reach the West Coast 
annually, roughly 5–10 events bring substantial precipitation to at least 
some of the Lower Basin, and 3–6 to the Upper Basin (Ralph et al. 2019). 

In April and May, storms affecting the Upper Basin become less frequent as 
the westerly winds begin to weaken and shift northward, but tend to carry 
more moisture per storm because of the warmer springtime temperatures. 
In the Lower Basin, the southern storm track can still be active but the 
individual storms dry out (Lareau and Horel 2012), initiating a spring dry 
period of 2–3 months between winter and summer peaks in precipitation. 
Throughout the entire basin, especially in the Lower Basin, June is a 
relatively dry month, with infrequent large-scale storm systems and 
scattered convective storms (i.e., thunderstorms). 

In mid to late summer (July–September), intense heating of the land surface 
of northern Mexico and the Southwest induces a shift in the prevailing 
winds to southerly, drawing moist subtropical air northward. This pattern 
is known as the North American Monsoon or NAM (Adams and Comrie 1997; 
Sheppard et al. 2002). The often-daily convective storms associated with 
the NAM primarily affect the Lower Basin, with nearly all locations in 
Arizona and western New Mexico receiving 35–50% of the annual 
precipitation during the July–September period (Sheppard et al. 2002). As 
the intrusion of the NAM moisture plume advances northward in late 
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summer, the southern half of the Upper Basin sees increasing convective 
activity and precipitation as well (Jana et al. 2018). During the late summer 
and fall, landfalling Pacific tropical cyclones bring additional substantial 
moisture to the Lower Basin in some years (Hereford and Webb 1992). The 
net effect of these typical seasonal spatial patterns (Figure 2.2) is that 
different parts of the basin have characteristic precipitation seasonality, 
reflecting both north-south and elevational gradients (Sheppard et al. 2002; 
Lukas et al. 2014).  

The high-elevation headwaters of the Upper Basin have consistently high 
monthly precipitation from November through April, with generally lower 
precipitation in the other months. The low and mid-elevations of the Upper 
Basin have a more even distribution, with a May peak from northern 
Colorado northward, and a fall peak to the south. Locations in the Lower 
Basin at all elevations have a pronounced peak in July–September 
associated with the NAM, and a secondary peak in December–March.  

2.4 Influence of topography and elevation 

As described above, there are general differences between Upper Basin and 
Lower Basin precipitation and its seasonality that reflect latitudinal (north-
south) differences in key atmospheric dynamics. But the land itself—
topography and elevation—is even more important in driving the sharp 
local and regional gradients in precipitation and temperature, with 
profound implications for water supply.  

The key mechanism is orographic lift: Moist air masses are forced upslope 
by the terrain, cooling as they rise above the condensation level, where 
precipitation can occur (Barry and Chorley 2010). For a given parcel of 
moist air, the more rapid the vertical uplift, the greater the precipitation 
rate. Most mountain ranges in the Upper Basin are oriented north-south, 
creating abrupt barriers to the prevailing westerly moisture flow and 
enhancing orographic lift. Precipitation rates in a given storm event 
generally increase with increasing elevation on the windward (usually west-
facing) mountainside. This is mirrored on the leeward (usually east-facing) 
side of the range; the upper elevations of the leeward side generally receive 
‘spillover’ precipitation, but further downslope the air mass becomes 
progressively drier during its descent, creating a rain shadow effect. These 
orographic effects on precipitation are most pronounced in the winter 
when winds are the strongest (Redmond 2003). In the summer, although 
winds are weaker and tend to be more southerly or easterly, upslope 
forcing of moist air masses still occurs and can initiate convective storms 
over high terrain, such as the Mogollon Rim in Arizona. 

The aggregate of these orographic effects accounts for nearly all of the 
local-scale variability in annual and monthly precipitation shown in Figures 

orographic lift 

A process in which 
air is forced to rise 
and subsequently 
cool due to physical 
barriers such as hills 
or mountains. This 
mechanism leads to 
increased 
condensation and 
precipitation in 
higher terrain. 
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2.1 and 2.2. Typically, range and plateau crests receive 2–5 times more 
precipitation than the adjacent basins or valley bottoms (Redmond 2003). 
The familiar gradient in temperature with increasing elevation also has a 
predictable physical basis; temperatures cool by about 3.5°F per 1000’ of 
elevation gain due to falling atmospheric pressures with elevation 
(Sospedra-Alfonso, Melton, and Merryfield 2015). In winter, this relationship 
weakens at lower elevations due to the propensity for denser cold air to 
pool in basins and valley bottoms, leading to localized temperature 
inversions, especially when snow is on the ground. But on an annual basis, 
the observed gradient in temperature mirrors the gradient in precipitation 
in that both very closely reflect the topography (Figure 2.1). Gridded climate 
data products (see Chapter 4) must emulate these gradients in order to 
realistically interpolate temperature and precipitation values between 
weather stations. 

From the standpoint of water balance and runoff, the elevation-related 
precipitation and temperature gradients operate in the same direction: 
compared to lower elevations, higher elevations see both greater moisture 
inputs (i.e., precipitation) and lower ET losses, due to cooler temperatures 
and increased cloudiness reducing incoming solar radiation. Also, at higher 
elevations, a greater fraction of precipitation falls as snow, which is less 
susceptible to atmospheric re-uptake than rain. As an example, elevations 
near treeline (about 11,500’) in western Colorado typically receive about 40” 
of precipitation annually, mostly as snow, and hydrologic modeling 
(Chapter 6) suggests that roughly 50% (20”) of that is lost to ET, leaving 20” 
of runoff (Figure 2.1). A nearby mid-elevation site at 8000’ may receive 
about 20” of precipitation annually, about half as snow, but roughly 80% of 
the precipitation (16”) is lost to ET, leaving 4” of runoff—80% less runoff 
than the high-elevation case.  

2.5 The basin’s snowmelt-dominated hydrology 

As indicated in the previous discussion, a disproportionate share of basin-
wide precipitation falls in the high-elevation headwaters, where it also falls 
primarily as snow (Figure 2.3). These cooler mountain areas see lower 
fractional ET losses in all seasons, and precipitation falling as snow is less 
prone to ET losses than rain, particularly when falling on a snowpack 
surface and insulated from ground warmth. Accordingly, like most other 
basins in the western U.S., the primary component of runoff in the 
Colorado River Basin is snowmelt. Multiple studies have estimated the 
contribution of snowmelt to annual streamflow for portions, or all, of the 
mountainous West ranging from 60% to 85%, as compiled in Li et al. (2017). 
The most recent West-wide modeling analysis estimated that the 
contribution of snowmelt to total Upper Basin runoff is 71%, with a higher 
fraction (>80%) in the high-elevation headwaters sub-basins (Li et al. 2017). 
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For comparison, just about 50% of the total Upper Basin precipitation falls 
as snow (Rumsey et al. 2015); thus, the snow fraction of basin-wide annual 
precipitation has over twice the runoff efficiency of the rain fraction.  

The peak value of seasonal snow water equivalent (SWE), which usually 
occurs within 3–4 weeks of April 1 for most of the Upper Basin’s headwaters 
(see Figure 2.4), is an excellent predictor of April–July runoff and thus is 
closely monitored (Chapter 5) for runoff forecasting and water-supply 
planning (Chapter 8). The snowpack of the basin is effectively an enormous 
seasonal reservoir that fills and empties every year. This reservoir has 
average seasonal peak volume of 17–18 maf in the Upper Basin, equivalent to 
70% of the capacity of Lake Powell, according to spatial SWE estimates 
(Schneider and Molotch 2016; see Chapter 5).  

The basin’s snowpack accumulates over a 4- to 7-month period, with 
accumulation typically beginning in October at higher elevations in the 
Upper Basin, and beginning increasingly later in the fall or winter as one 

 

Figure 2.3 

Colorado River Basin modeled average April 1 snow water equivalent (SWE; left), and modeled 
average annual runoff (right). Note that the areas producing >1” of runoff in the Upper Basin closely 
coincide with the areas in which a seasonal snowpack builds. In the Lower Basin, much of the 
snowpack has already melted out by April 1; the snowpack is more extensive on March 1. (Data: 
Livneh et al. 2013) 
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moves downslope and southward in the basin. The winter climate 
(November–March) in the Upper Basin is colder than in the other mountain 
regions of the western U.S. (Lute, Abatzoglou, and Hegewisch 2015) and so 
the snowpack is less prone to melt loss prior to the spring peak. The peak 
SWE value in wind-sheltered locations at high elevations (e.g., SNOTEL 
sites, Chapter 5) typically averages 15”–50” in the Upper Basin, and 3”–10” in 
the Lower Basin (Figures 2.3 and 2.4).  

Field studies and modeling suggest that the equivalent of 10–20% of peak 
SWE over the basin is lost to sublimation—the transition of water from solid 
phase directly to gaseous phase—during the course of the season (Hood, 
Williams, and Cline 1999; Phillips 2013; Hultstrand and Fassnacht 2018). The 
highest losses occur during the spring months (March–May) when air 

 

Figure 2.4 

Historical snowpack accumulation and melt curves for the Colorado River headwaters above Cameo 
(average of ~30 SNOTEL sites), shown in inches of snow water equivalent (SWE). The colored shaded 
bands are bounded by the following percentiles (1981-2010): 1st (minimum), 10th, 30th, 70th, 90th, 
and 100th (maximum). Selected years are shown to illustrate a much-above-normal snowpack (2011), 
a near-normal snowpack (2016), and a much-below-normal snowpack (2002). Note that larger 
snowpacks tend to peak later, and that smaller snowpacks have slower daily melt rates, i.e., the 
declining limb is not as steep. (Source: adapted from NRCS Colorado Snow Survey) 



 

 

Chapter 2. Current Understanding of Colorado River Basin Climate and Hydrology 54 

temperatures and shortwave (solar) radiation are higher. The meltout of the 
snowpack occurs over 1-2 months, much faster than accumulation. 
Snowmelt typically begins in earnest in February or March in the Lower 
Basin, and in April or May in the Upper Basin. Snowmelt is driven primarily 
by greater shortwave radiation due to higher sun angles and longer days, 
though warmer air temperatures, especially above-freezing air 
temperatures at night, prime the snowpack for faster melt.  

The snowmelt rate is enhanced when the snow surface is dusty; typically, 
3–10 dust-on-snow events affect parts of the Upper Basin each spring, 
particularly the San Juan Basin, with the aggregate dust loading and thus 
impact on melt rates varying substantially from year to year (Deems et al. 
2013; Clow, Williams, and Schuster 2016; Painter et al. 2018). See the sidebar 
in Chapter 5 for further description of the dust-on-snow phenomenon and 
its effect on basin hydrology.  

The dominance of snowmelt in driving annual runoff is clearly expressed in 
the shape of the annual hydrograph for all streams and rivers in the Upper 
Basin, and for many streams and rivers in the Lower Basin as well. Figure 
2.5 shows the long-term average hydrograph for natural flows at Lees 

 

Figure 2.5 

Average annual hydrograph (monthly natural flows) for the Colorado River at Lees Ferry for the 1906–
2017 period, compared with the annual hydrographs for the lowest-flow year (1977) and the highest-
flow year (1984) on record. All three traces show low flows in winter and early spring, the rise to a 
May/June peak, and declining limb in summer and early fall. (Data: Reclamation, after Prairie and 
Callejo 2005)  
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Ferry, with the characteristic rapid rise in spring with snowmelt, a peak 
typically in May or June, and an equally steep declining limb back to 
baseflows by late summer. About 70% of the annual flow, on average, 
occurs during the April–July period typically used for seasonal water supply 
forecasting, while over 80% of the annual flow occurs during a longer 
period (March–August) that is more inclusive of snowmelt processes. 

While snowmelt contributes the large majority of total runoff in the basin, 
cool-season (October–April) rainfall at lower elevations can make 
substantial contributions to runoff in some years, particularly in the Lower 
Basin. Warm-season (May–September) rain generally makes very little 
contribution to the basin runoff, because ET rates are much higher during 
those months, especially during June, July, and August (Julander and 
Clayton 2018). However, rain during the growing season does play an 
important role in moderating water demand for agriculture and urban 
outdoor use.   

2.6 Groundwater and surface water 

In the Colorado River Basin, as elsewhere, groundwater resources are not 
quantified or understood nearly as well as surface water resources (Rumsey 
et al. 2015)—and are not well integrated into basinwide modeling, 
management, and planning. Groundwater is difficult to observe and 
manifests in extremely diverse forms, frustrating clear conceptualization 
and effective management. On one end of the spectrum, a groundwater 
body (i.e., aquifer) may have very high connectivity with surface waters 
(streams, rivers, lakes), a residence time of the water measured in weeks or 
months, and high temporal variability; on the other end, an aquifer may 
have little connectivity with surface waters, a residence time of thousands 
of years, and little variability over time apart from withdrawals for human 
use (Maxwell et al. 2016). In the latter case, the stored water represents 
recharge accumulated over millennia, including under different climate 
regimes than at present. Both of these extremes are present in the 
Colorado River Basin and other basins around the West.  

Given the scope of this report, a central question regarding groundwater in 
the basin is its role in the availability, variability, and predictability of 
surface water. Using geochemical tracers in stream water that provide 
evidence of subsurface contact, Miller et al. (2016) estimated that on 
average about 50% of the (surface) streamflow of the Upper Basin derives 
from groundwater. In just the high-elevation catchments producing most 
of the Upper Basin’s runoff, the groundwater fraction of streamflow is 
lower, around 30% (Miller et al. 2016; Carroll et al. 2018).  

These may seem like unexpectedly high fractions for a basin with a 
snowmelt-dominated hydrologic regime, in which the annual streamflow 
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volume is very strongly correlated with that year’s snowpack volume. 
Groundwater contributions to streamflow in mountain catchments were 
long believed to be minimal because of low aquifer storage potential and 
steep hydraulic gradients (Carroll et al. 2018). The resolution of this 
apparent conundrum is that only a portion of each spring’s snowmelt runs 
off on the surface directly to streams and rivers that same season; instead, 
much of the snowmelt enters the subsurface and becomes new 
groundwater. Stored groundwater in high-elevation catchments is 
displaced by this new snowmelt recharge and discharged to the stream 
channel as groundwater (Williams et al. 2015). In other words, the new 
snowmelt volume enters aquifers that have relatively high connectivity, and 
pushes out a proportional volume of older groundwater to streams.  

Miller et al. (2016) also show, as would be expected, that the high-elevation 
catchments have the highest groundwater discharge to surface water per 
unit area. In these catchments, the surface drainage network is denser than 
at lower elevations, and thus subsurface flow paths are generally shorter 
and shallower, with shorter residence times, mainly on the order of months 
to several years (Williams et al. 2015; Maxwell et al. 2016). In the lower-
elevation catchments of the Upper Basin, which collectively contribute 
much less to overall basin streamflow, the percentage of surface flow 
deriving from groundwater is greater, reflecting longer and deeper 
subsurface flow paths of groundwater to streams, with longer residence 
times (Miller et al. 2016; Maxwell et al. 2016).  

These findings collectively indicate that groundwater is tightly coupled to 
surface water in the most hydrologically productive catchments in the 
basin. It also appears that groundwater residence does not significantly 
modify the climate-driven signal of interannual variability as manifested in 
snowmelt-runoff volumes. Rosenberg et al. (2013) found that hydrologic 
model simulations of historical streamflows in the Upper Basin yielded 
similar skill regardless of whether a representation of groundwater was 
included in the model. They concluded that the absence of explicit 
groundwater information in the seasonal streamflow forecast models 
currently used by the Colorado Basin River Forecast Center (CBRFC) and 
Natural Resource Conservation Service (NRCS) was probably not 
detrimental to those forecasts, at least in the Upper Basin (Chapter 8). The 
CBRFC does model the initial (fall) soil moisture state in their streamflow 
forecast model (Chapter 5), which may capture variations in shallow 
groundwater storage as well. Groundwater is closely tied to soil moisture, 
since most groundwater comes from the fraction of soil moisture that 
escapes evapotranspiration and percolates down through the unsaturated 
vadose zone to the water table, recharging the fully saturated groundwater 
aquifer (Shelton et al. 2009). 
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2.7 Hydroclimatic variability of the basin 

Interannual variability 
A critical feature of the natural river system has been the large variability in 
hydroclimate conditions. Looking first at interannual variability (Figure 2.6), 
annual precipitation in the Upper Basin has varied by over a factor of 2.1 
from the driest water year in the historical record (1977; 11.4”) to the wettest 
water year (1997; 24.4”). Because the fraction of precipitation lost to ET is 
large (on average, 80% across the Upper Basin) and this fraction is greater 
in dry years and lower in wet years, the natural streamflow of the Upper 
Basin is even more variable than precipitation, varying by a factor of about 
4.5 from the lowest-flow water year (1977; 5.4 maf) to the highest-flow 
water year (1984; 24.4 maf).  

This difference in the respective extremes of variability implies that the 
precipitation sensitivity (or elasticity) of streamflow is roughly 2, since a 2-
fold change in precipitation is associated with about a 4-fold change in 
streamflow (Figure 2.6). More explicit assessments using empirical analyses 
or hydrologic models across the full range of variability suggest that the 
precipitation sensitivity of streamflow in the Upper Basin is likely between 
2.0 and 3.0; i.e., a 10% change in precipitation is associated with a 20-30% 
change in streamflow (Vano, Das, and Lettenmaier 2012; Hoerling et al. 
2019).  

The very close similarity between the variability in Upper Basin 
precipitation and Upper Basin (Lees Ferry) natural streamflow is apparent 
in Figure 2.6. Statistically, the precipitation record explains 61% of the 
variance in streamflow over the full period of overlap (1906–2019), and an 
even higher proportion (74%) over the 1980–2019 period. It is not clear if 
this apparent increase in the strength of the relationship between 
precipitation and streamflow in recent decades is a function of increasing 
robustness of the data underlying the basin-wide precipitation record (see 
Chapter 4) and the natural streamflow record, or actual changes in the 
physical relationship. 

Temperature does covary with precipitation during the warm season (i.e., 
dry April–September periods tend to also be warmer than normal, and wet 
April–September periods tend to also be cooler than normal). Also, 
temperature has an independent influence on streamflow, as will be 
detailed later in this chapter. Even so, precipitation is the most important 
driver of interannual streamflow variability in the basin, by a wide margin 
(Nowak et al. 2012; Woodhouse et al. 2016; McCabe et al. 2017), which makes 
it challenging to accurately assess the role of other factors, such as 
temperature or antecedent (previous fall) soil moisture. 
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A common measure of the magnitude of interannual variability in a time-
series is the coefficient of variation (CV), which is the ratio of the standard 
deviation to the mean. A higher CV indicates greater variability. The CV of 
annual precipitation is 0.16 in the Upper Basin, and slightly higher in the 
Lower Basin (Table 2.2). As noted above, the variability of annual streamflow 
is higher than that of precipitation; the CV of Upper Basin (Lees Ferry) 
annual natural streamflow (1906–2016) is 0.29. This is greater than for 
annual streamflow of the Columbia River (CV: 0.18; Vano, Das, and 
Lettenmaier 2012) but similar to the median CV (0.31) of the annual 
streamflow of 1,221 rivers in a global database (McMahon et al. 2007). 
Variability in annual streamflow is much higher in the Lower Basin 
compared to the Upper Basin, because the warmer climate and greater 
fractional ET losses further accentuate the variability in precipitation. For 
example, Little Colorado River annual gaged streamflow has a CV of 0.73 
(1906–2016), comparable to the CV for the relatively unimpaired 
headwaters of the Salt River, which share a watershed divide with the Little 
Colorado. The interannual variability in streamflow itself varies in 
magnitude over time (Pagano and Garen 2005).  

 
Figure 2.6 

Upper Basin water-year precipitation compared with Colorado River at Lees Ferry water-year natural 
streamflow, 1906–2019. The correlation between the two time-series is 0.77 (R2 = 0.61) over the 
entire record, with higher correlations over more recent periods. (Data: precipitation, NOAA NCEI; 
streamflow, Reclamation) 
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Table 2.2 

Variability and persistence in basin precipitation and streamflow over the 1906–2016 period. See text for 
explanation of indices. (Data: runoff from Reclamation, after Prairie and Callejo (2005); precipitation from 
NOAA NCEI) 

Region/gage and variable Coefficient of Variation (CV) Lag-1 Persistence 

Upper Basin annual precipitation 0.16 -0.10 

Lees Ferry annual natural streamflow 0.29 0.23 

Lower Basin annual precipitation 0.21 -0.01 

Little Colorado annual gaged streamflow 0.73 0.05 

 
Another important dimension of variability is persistence: the degree to 
which one year’s value is similar to the previous year’s value. Greater 
persistence indicates a tendency toward longer runs of wet years and dry 
years, with implications for storage needs and reservoir management. In 
both the Upper and Lower Basins, this year-on-year persistence (lag-1 
autocorrelation) of Upper Basin annual precipitation over the 1906–2016 
period is not statistically significant (Table 2.2); in other words, there is no 
meaningful relationship between current-year precipitation and the next 
year’s precipitation. 

Persistence in streamflow is often greater than that for precipitation, since 
soil moisture and groundwater storage anomalies generally produce a 
carry-over effect after wet years, as well as after dry years. Upper Basin 
(Lees Ferry) annual natural streamflow does have significant persistence 
over the 1906–2016 period, with a lag-1 autocorrelation of 0.23. Lower Basin 
gaged annual streamflows show less short-term persistence, with lag-1 
autocorrelations ranging from 0.05 to 0.10 over the 1906–2016 period for 
the Little Colorado, Bill Williams, and Virgin Rivers.  

Decadal-scale and longer variability 
While the large storage capacity of Colorado River Basin reservoirs buffers 
the system from many impacts of extreme annual variability (e.g., the 
record low flow year of 1977), departures from average conditions over 
several years and longer can accumulate into deficits of 20 to 40 maf that 
heavily deplete system storage, as with the most recent period. Thus, it is 
important to consider decadal-scale variability in basin precipitation and 
streamflow, which can be very simply depicted by a 10-year running 
average on the annual values, as in Figure 2.7 for Upper Basin streamflow.  
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Over the observed Lees Ferry record, the 10-year running average has 
varied by about +/-20% of the long-term average streamflow, with peaks 
above 18 maf in the 1920s and 1980s, and low points of 12.0–12.5 maf in the 
1960s and 2000s. The longest excursions away from the long-term average 
have been on the order of 20–30 years, and occurred roughly around 1906–
1930 (above), 1955–1980 (below), and 2000–2019 (below). With so few of 
these excursions to examine, it is difficult to say from the observed record 
alone if the 25-year period of 17–18 maf at the beginning of the record is 
unusual behavior for the system; however, as described below, tree-ring 
data suggests that it is unusual.  

Another way of examining decadal-scale variability is to use a weighted 
smoothing filter that emphasizes the values occurring in the middle of the 
smoothing period. This will make apparent any cyclical behavior that has a 
wavelength similar to the smoothing period. Figure 2.7 shows a 9-year 
weighted filter applied to the Lees Ferry streamflow record. While the 
filtered record stays close to the running average for most of the record, 
after 1980 the filtered record departs from the running average and shows 
stronger peaks and troughs up through the late 2000s. This quasi-decadal 
oscillation after 1980 was also seen in a wavelet analysis performed by 
Nowak et al. (2012). They found this oscillation to be the strongest periodic 
variability at any wavelength in the observed Lees Ferry streamflow 
record—but it was only active over the most recent three decades of the 
record. 

 
Figure 2.7 

Colorado River at Lees Ferry water-year natural streamflow (light blue), with a 10-year running 
average plotted on the 6th year (dark blue), and a 9-year Gaussian weighted filter (dotted), 1906–
2019. (Data: Reclamation) 
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A much longer perspective on decadal-scale variability in the Upper Basin 
can be seen in the 10-year running mean of a tree-ring reconstruction of 
Lees Ferry natural streamflow that spans from the years 762 to 2005 
(Figure 2.8; Meko et al. 2007). With this much longer context—about 10 
times longer than the observed record—the extended high-flow period 
from 1906–1930 appears to be quite unusual, with only two prior periods 
(late 1100s and early 1600s) that appear to be comparable. On the opposite 
extreme, there appear to be many extended low-flow periods with greater 
cumulative deficits than the 1955–1980 period, or the current 2000–2018 
period. Most notable among these are the low-flow periods of roughly 
1865–1905 and 1130–1160. Nowak et al. (2012) also performed a wavelet 
analysis on a shorter tree-ring reconstruction of Lees Ferry flows (back to 
1490) and found that a quasi-decadal oscillation was present only 
intermittently, for no more than 30–40 years at a time, most prominently in 
the early 1500s, early 1700s, and mid-1800s.  

Multi-decadal oscillations (about 20–80 years) were present during most of 
the 500-year record, but with different characteristic wavelengths. The 30-
year running mean of the Meko et al. (2007) Lees Ferry reconstruction 
(Figure 2.9) shows that oscillations with a wavelength close to 30 years 
were prominent around 1200, around 1600, and over the historical period 
from the late 1800s to present. It also indicates that the 30-year average—a 
period often used in climatology to describe the average climate—is itself 
subject to substantial variability.  

The key message of the reconstructed tree-ring record is that the 
variability of Colorado River hydroclimate is greater than one would infer 
from the observed record alone. A diverse array of decadal, multi-decadal, 
and century-scale flow sequences are present in the tree-ring record. As 
detailed in Chapter 10, the safest assumption is that any of these sequences 
could recur in the future due to natural variability alone. 
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2.8 Mechanisms of hydroclimate variability and their 
predictive value 

In general, the climate variability described in the previous section is the 
net effect of chaotic fluid motions in the Earth’s atmosphere and oceans as 
they act to maintain global equilibrium in energy and moisture, or what is 
called “internal variability.” The enormous heat storage capacity and slower 
movement of the oceans leads to patterns or modes of climate variability 
that play out over months to years, producing persistent and to some 
degree predictable influences on weather and climate over vast regions. 
This last point is especially important given the absence of consistent, 

Figure 2.8 

The 10-year running average of reconstructed Colorado River at Lees Ferry natural flow 762–2005 
(blue) and the 10-year running average of observed natural flow 1906–2005 (gray). The long-term 
reconstructed mean of 14.7 maf is shown by the dashed line. (Data: Meko et al. 2007; treeflow.info) 
 

Figure 2.9 

The 30-year running average of reconstructed Colorado River at Lees Ferry naturalized flow 762–
2005 (blue) and the 30-year running average of observed flow (gray). The long-term reconstructed 
mean of 14.7 maf is shown by the dashed line. (Data: Meko et al. 2007; treeflow.info) 

https://www.treeflow.info/
https://www.treeflow.info/
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regular hydroclimatic cycles at interannual and longer time scales in the 
basin. 

El Niño-Southern Oscillation (ENSO) 
The El Niño-Southern Oscillation, or “ENSO,” is the most important pattern 
of interannual global climate variability, and much of the skill in seasonal 
climate forecasting around the world is derived from it. The vast tropical 
Pacific Ocean absorbs tremendous amounts of solar energy that is 
redistributed northward and southward toward the poles. The key features 
of ENSO are changes in the sea-surface temperatures (SSTs) of the eastern 
tropical Pacific Ocean, the atmospheric pressure difference between 
eastern Pacific high pressure and western Pacific low pressure (the 
Southern Oscillation), and changes in the location of persistent bands of 
tropical thunderstorms. The Oceanic Niño Index (ONI) shows the irregular 
2- to 7-year time scale of the oscillation between the two phases of ENSO: 
the El Niño (warm phase) events and La Niña (cold phase) events 
(Figure 2.10).  

Once an El Niño or La Niña event is established, often during summer, it 
tends to persist into the following calendar year. Thus, ENSO events impart 
some memory and seasonal predictability to the global climate system.  

The massive transfers of energy accompanying ENSO influence the 
atmospheric circulation well beyond the tropics, including the position of 

teleconnection 

A physical linkage 
between a change in 
atmospheric/oceanic 
circulation in one 
region (e.g., ENSO) 
and a shift in weather 
or climate in a 
distant region (e.g., 
the Colorado River 
Basin). 

 
Figure 2.10  

The monthly Oceanic Niño Index (ONI), 1955–October 2018. The ONI is a 3-month running average 
of sea-surface temperatures in the central tropical Pacific (Niño 3.4 region). Values greater than 0.5 
(red dashed line) indicate El Niño conditions; values below -0.5 (blue dashed line) indicate La Niña 
conditions. (Source: NOAA Northwest Fisheries Science Center, 
https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/cb-mei.cfm) 

https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/cb-mei.cfm
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the jet stream and storm tracks over western North America (Figure 2.11). 
These “teleconnection” effects on the West were first described in the 
1980s (Redmond and Koch 1991; Bradley et al. 1987). During El Niño events, 
the position of the cool-season storm track tends to shift southward, or 
split in two, such that the Southwest (i.e., the Lower Basin) receives higher 
than normal precipitation, while the Pacific Northwest is drier than normal. 
La Niña events see a strengthening of the normal winter pattern in which 
storm tracks are more northerly, and so the case is reversed: The 
Southwest tends to be drier than normal during La Niña, while the Pacific 
Northwest is wetter than normal (Cayan, Redmond, and Riddle 1999).  

 
Figure 2.11 

Typical changes in atmospheric circulation over North America associated with El Niño and La Niña 
events, and the corresponding regional climate anomalies that are likely to occur. (Source: adapted 
from NOAA, https://www.climate.gov/news-features/featured-images/how-el-ni%C3%B1o-and-la-
ni%C3%B1a-affect-winter-jet-stream-and-us-climate)  

https://www.climate.gov/news-features/featured-images/how-el-ni%C3%B1o-and-la-ni%C3%B1a-affect-winter-jet-stream-and-us-climate
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In the past decade, a second “flavor” of El Niño event has been identified, 
with the maximum SST anomalies located in the Central Pacific (CP) in 
contrast with the Eastern Pacific (EP). In a CP El Niño, compared to 
traditional EP El Niño events, the winter drying influence on the Pacific 
Northwest is enhanced, but the winter wetting influence on the Southwest 
is similar (Yu and Zou 2013). It appears that CP El Niño events have become 
more common in recent decades (Freund et al. 2019).  

For the Lower Basin, the ENSO influence on hydroclimate is strongest in 
the winter season, and ENSO state (observed or forecasted) is a better 
predictor of Lower Basin cool season (October–March) precipitation than 
of Upper Basin cool season precipitation (Figure 2.12). Note that while the 
correlations shown for the Lower Basin (r = 0.4 to 0.6) are statistically 
significant, they also indicate that most of the variability in cool-season 
precipitation is not statistically associated with ENSO. Also, the reliability of 
the ENSO signal in the Lower Basin is asymmetric: La Niña events are more 
likely to be dry than El Niño events are likely to be wet.  

The Upper Basin lies across the transition region of the Southwest-Pacific 
Northwest ENSO dipole (Wise 2010), and so ENSO has less overall influence 
on Upper Basin cool-season precipitation and water-year streamflow than 
it does in the Lower Basin. Even so, there is some signal that can potentially 
be exploited for hydroclimate forecasting, especially in the northern and 
southern sub-basins of the Upper Basin (Figure 2.12).  

The Upper Green River basin, and to a lesser extent the headwaters of the 
Yampa-White and Colorado rivers, tend to mirror the Pacific Northwest; 
i.e., wetter outcomes in La Niña. This mainly reflects a midwinter 
(December–February) tendency for the polar jet stream and storm track to 
be enhanced during La Niña, resulting in wetter conditions over the high 
elevations of southern Wyoming and northern Colorado, and conversely, 
more frequent blocking of westerly flow and storms in those areas during 
El Niño, resulting in drier conditions (Wolter, Dole, and Smith 1999). 
Further south in the Upper Basin, the San Juan River basin tends to mirror 
the Southwest and Lower Basin; i.e., wet in El Niño. 

For Upper Basin-wide precipitation and streamflows (i.e., Lees Ferry), these 
opposing tendencies mostly cancel out, and it is hard to discern a clear 
tendency toward higher Lees Ferry flows in El Niño years and lower flows 
in La Niña years, even during strong events.  



 

 

Chapter 2. Current Understanding of Colorado River Basin Climate and Hydrology 66 

Figure 2.13 shows Lees Ferry water-year natural streamflows 
corresponding to El Niño (n = 12) and La Niña (n = 12) conditions in the 
beginning of the water year (i.e., fall) from 1980–2018. There are no 
meaningful differences in average or median flow between El Niño and La 
Niña cases, or between those and the ENSO-neutral cases (n = 14). The 
behavior at the lower tails of the distributions, however, appears more 
distinct: While there are no annual flows below 10 maf among the El Niño 
cases (0 of 12), 3 of 12 La Niña cases have flows below 10 maf, as do 4 of 14 
ENSO-neutral cases. 

 
Figure 2.12 

Correlation between October–March precipitation and August–January Niño 3.4 index from 1949–
2014. Yellow and orange colors indicate areas that tend to be wetter during El Niño events and drier 
during La Niña events; blue and purple colors indicate areas that tend to be wetter during La Niña 
events and drier during El Niño events. (Source: NOAA ESRL Physical Sciences Division)  
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Decadal and multi-decadal oscillations 

Pacific Decadal Oscillation (PDO) 
In the north Pacific, to the north of the ENSO source region in the tropical 
Pacific, is the home of the Pacific Decadal Oscillation (PDO). The PDO was 
identified in the mid-1990s as the principal mode of sea-surface 
temperature variability in the northern Pacific. The PDO’s warm phase has 
positive (warmer-than-normal, El Niño-like) anomalies in the eastern North 
Pacific and negative (cooler-than-normal, La Niña–like) anomalies in the 
central and western North Pacific (Mantua et al. 1997). The main oscillation 
from warm to cool and back is irregular but usually has a period of 10–40 
years, with occasional shorter excursions. The PDO is not a single well-
defined physical phenomenon like ENSO, and much of the variation in the 
PDO may actually be ENSO variability translating to the northern Pacific 
over longer time scales (Newman, Compo, and Alexander 2003; Newman et 
al. 2016; Chen and Wallace 2016). The ENSO dipole does appear to be 
strengthened when PDO is in the same phase as ENSO, so that the 
Southwest and the Lower Basin have had a stronger wet tendency during 

 
Figure 2.13 

Upper Basin (Lees Ferry) water-year natural flows from 1980–2018, split into three ENSO categories: 
12 fall El Niño cases, 12 fall La Niña cases, and 14 fall ENSO-neutral cases. El Niño conditions have 
been associated with higher average flow (“x” markers) than La Niña, but this difference is not 
statistically significant, nor are the differences from the average flow during ENSO-neutral years. 
(Data: Multivariate ENSO Index, K. Wolter; natural flows, Reclamation) 
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warm PDO + warm ENSO (i.e., El Niño), and a stronger dry tendency during 
cold PDO + cold ENSO (La Niña) (Gershunov and Barnett 1998; Brown and 
Comrie 2004; Wise 2010). However, these climate influences of PDO do not 
appear to be stable over time, which argues against their use in 
hydroclimate forecasting (McAfee 2014; Wise 2015). 

Quasi-Decadal Oscillation (QDO) 
The Quasi-Decadal Oscillation (QDO), another Pacific atmosphere-ocean 
oscillation with similarities to ENSO and PDO, but at an intermediate 
frequency (9–12 years) and greater regularity, was identified in the early 
2000s (Tourre et al. 2001). Like the PDO, it appears to modulate the activity 
of ENSO. A previously identified quasi-decadal periodicity in levels of the 
Great Salt Lake since the mid-1800s was found to be coherent with the 
QDO when a lag time representing hydrologic processes was included 
(Wang et al. 2011), enabling multi-year forecasts of Great Salt Lake levels, 
which have since been validated through one-half of a decadal cycle (Gillies 
et al. 2011; 2015). More recently, Wang et al. (2018), noting that the Upper 
Basin is adjacent to and atmospherically “downstream” of the watershed of 
the Great Salt Lake, and that the Upper Basin streamflow also has quasi-
decadal periodicity, asserted that there is potential for decadal-scale Upper 
Basin prediction based on the QDO. However, as noted earlier and shown 
in Figure 2.7, the quasi-decadal periodicity in Upper Basin (Lees Ferry) 
streamflow is strongest over the 1980–2015 period, and relatively weak 
prior to 1980, and it is not clear whether there is a solid basis for using the 
quasi-decadal oscillation in basin hydroclimate forecasts. 

Atlantic Multidecadal Oscillation (AMO) 
The Atlantic Multidecadal Oscillation (AMO) (Schlesinger and Ramankutty 
1994) is a slowly varying sea-surface temperature and pressure oscillation 
in the north Atlantic Ocean with an irregular 30–80-year cycle. A series of 
studies in the early 2000s (Gray et al. 2004; Hidalgo 2004; McCabe, Palecki, 
and Betancourt 2004) found that the positive (warm) phase of the AMO was 
statistically associated with increased risk of drought in the Upper Basin. A 
study using climate models found that the combination of negative PDO 
phase and positive AMO phase is the least favorable for moisture in the 
interior U.S. (Schubert et al. 2009).  

The trouble with multi-decadal oscillations 
Studies in the 2000s on the AMO, PDO and other oscillations raised hopes 
that observations and predictions of the AMO state, as well as PDO, could 
lead to better seasonal and longer hydroclimate forecasts for the basin 
(Reclamation 2007c). However, the physical mechanism by which the AMO 
actually affects conditions in the interior West is unclear, unlike with ENSO 
(Nowak et al. 2012). Like the PDO, the stability of the AMO’s climate 
teleconnections over time is questionable. Also as with the PDO, there have 
been very few cycles of warm and cold phases during the observational 
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period (since about 1900) to compare with basin hydroclimate indices. 
Statistical relationships that have been found during the past century may 
not be representative of future relationships, given the limited number of 
cases to draw from (Switanek and Troch 2011).  

The search for mechanisms of predictability continues 
The identification of ENSO and PDO influence on western U.S. 
hydroclimate has spurred additional studies to identify other potential 
teleconnections, mainly between gridded Pacific Ocean SSTs and pressure 
fields and various hydroclimatic indices. By examining statistical 
relationships among hundreds of variables, these exploratory analyses are 
at high risk of finding relationships (i.e., teleconnections) that are 
statistically significant over the period of analysis, but are not rooted in a 
robust physical mechanism and therefore fail to show predictive skill 
beyond the period of analysis.  

Recently, a new teleconnection was identified between sea-surface 
temperature and atmospheric pressure anomalies in the southwest Pacific 
Ocean near New Zealand in the late summer and fall, and winter 
(November–March) precipitation in the southwestern U.S., including the 
Lower Basin (Mamalakis et al. 2018). The authors’ proposed New Zealand 
Index (NZI) had generally higher correlations with Southwest winter 
precipitation than did typical ENSO indicators over the 1950–2015 period. 
They also noted the strength of the NZI relationship has increased over the 
entire analysis period, almost doubling. This latter finding indicates 
volatility in the NZI-Southwest climate relationship and the potential for it 
to return to statistical non-significance in the future. Also, it is not clear 
that the NZI has a physical mechanism distinct from ENSO. It is possible 
that the NZI could be an adjunct to ENSO indicators in statistical forecasts 
of Southwest winter precipitation, but much more thorough exploration of 
the teleconnection, including its behavior prior to 1950 and its linkage with 
ENSO, is needed. 

While the search for new teleconnections will undoubtedly continue in the 
research community, the inconvenient truth appears to be that most of the 
variability in basin hydroclimate is not associated with oscillations or 
discrete patterns that would potentially provide predictability on one or 
more time scales. This does not mean that the skill in seasonal precipitation 
forecasts cannot be improved (see Chapter 7), but that the skill may have a 
lower ceiling than both researchers and water managers would like.  

2.9 A closer look at basin drought 

Having described the overall hydroclimatic variability in the basin, and the 
key climatic mechanisms associated with that variability, it is important to 
take a closer look at the lower tail of the distribution of annual 
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hydroclimatic conditions (i.e., drought), which is the principal recurrent 
management challenge for water suppliers. 

Hydrologic droughts in the basin are generally initiated by below-normal 
precipitation in the cool season (October–April) due to weather patterns 
that suppress storm tracks over the headwaters of the Upper Basin. The 
resulting reduced snowpack produces below normal spring-summer 
runoff, with an earlier peak. Due to early meltout and the low precipitation 
leading to below normal soil moisture, the land surface can dry out earlier 
in the warm season than usual, increasing evaporative demand and creating 
a feedback toward further warming and drying of the surface. Depletion of 
soil moisture in a dry year can lead to below normal runoff in the following 
year even if the precipitation in the second year is near normal (Das et al. 
2011).  

Analyses of hydrologic drought are complicated by the need to identify 
meaningful measures and thresholds for what constitutes drought 
conditions, and thus when droughts begin and end, and their severity over 
space and time. Which measures and thresholds are meaningful depends 
on the specific application context. This is especially true for the Colorado 
River system, in which total consumptive use plus other depletions typically 
exceeds supply, such that under even average hydrologic conditions the 
levels of Lake Mead and Lake Powell will tend to decline. The recent 
declines in mainstem reservoir storage reflect both direct drought impacts 
and the system imbalance between supply and depletions, and it is difficult 
to disentangle the two factors. To assess the nature of recent drought 
conditions, it may be more meaningful to look at natural inflows to the 
system, such as those estimated at the Lees Ferry gage, than at reservoir 
levels.  

In the water supply analysis in Reclamation (2020) a “streamflow deficit” 
(i.e., drought) was defined as a two-year average flow less than 15 maf at 
Lees Ferry. The 2-year averaging acknowledges the buffering capacity of 
system reservoir storage. By this measure, the most severe drought in the 
observed record was from 2000–2005 (6 years), with a cumulative deficit of 
24 maf, exceeding the 7-year droughts in the 1930s and 1960s, in which the 
deficits were about 18 maf. There was another 6-year drought from 2012–
2017, with a cumulative deficit of 13 maf (Figure 2.14). Multi-year streamflow 
deficits of greater than 10 maf are clearly a recurrent feature of the basin’s 
hydroclimate, but the period since 2000 appears highly unusual in that it 
includes two such droughts: the most severe (2000–2005) and the 5th most 
severe (2012–2017). 
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Woodhouse (2012) analyzed the atmospheric and oceanic features 
associated with six multi-year Upper Basin droughts from the 1930s to the 
2000s, using a different drought definition than shown in Figure 2.14. Her 
analysis showed that each extended drought evolves in a unique way. The 
onset and persistence of some droughts is linked to La Niña events, while in 
other cases, drought years coincide with El Niño events. Most critically, 
past multi-year droughts have persisted through a variety of modes of 
natural variability. A key feature for drought years not associated with La 
Niña events has been a high-pressure anomaly centered over the Pacific 
Northwest, which tends to deflect storm tracks away from the Upper Basin. 

 
Figure 2.14 

Cumulative streamflow deficits (defined as 2-year running mean below 15 maf) for the Colorado River 
at Lees Ferry, Arizona, with the five longest and most severe droughts (2000–2005, 2012–2017, 
1988–1992, 1959–1965, 1931–1937) highlighted. (Source: Reclamation 2020) 
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The water supply analysis in the “Colorado River Basin Water Supply and 
Demand Study” (hereinafter “Basin Study”; Reclamation 2012e) examined 
the streamflow reconstruction by Meko et al. (2007) and compared the 
distribution of the reconstructed streamflow deficits during the historical 
period (1906–2005) with the distribution of reconstructed streamflow 
deficits (droughts) over the entire reconstruction (762–2005). That analysis 
showed that most droughts are 3 years or shorter (Figure 2.15). The 
distribution of deficits over the 20th century is similar to the distribution 
over the entire >1200-year period, except at the tails; i.e., events of very 
long duration or high severity, or both. Over the full reconstruction period, 
droughts with estimated durations of greater than 5 years and estimated 
cumulative deficits of greater than 15 maf were much more frequent than in 
the 1906–2005 period. 

 
Figure 2.15 

Drought characteristics over the most recent century (dashed gray line) from the Meko et al. (2007) 
tree-ring reconstruction of Lees Ferry natural flows, compared with the full reconstructed period 
(762–2005; solid black line). The full reconstruction contains extreme droughts with longer durations 
and larger cumulative deficits, as indicated by increasing divergences at lower exceedance 
probabilities (<10%). (Source: adapted from Reclamation 2012b)  
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2.10 Recent hydroclimate trends and likely causes 

The most prominent hydroclimatic change in the basin over the past 40 
years has been a substantial warming trend. Trends in precipitation are 
more difficult to discern. Changes in snowpack, runoff volume, and runoff 
timing have been observed and these can be linked, at least in part, to the 
warming trend. The recent trends in these and other variables for the 
Upper Basin specifically are summarized in Table 2.3. 

Table 2.3 

Summary of recent hydroclimate trends in the Upper Basin and the likely causes of those trends. See text 
in the sections below for references.  

Variable Trend since 1980s Likely causes, in order of importance 

Temperature Increasing* 
Anthropogenic climate change, natural 
variability 

Precipitation Decreasing 
Natural variability, anthropogenic climate 
change 

Snowpack water volume 
(April 1 SWE) 

Decreasing* 
Decreasing precipitation, warming 
temperatures 

Timing of snowmelt and 
runoff  

Earlier* 
Warming temperatures, dust-on-snow, 
decreasing precipitation  

Annual streamflow Decreasing 
Decreasing precipitation, warming 
temperatures 

* Trend has been found to be statistically significant for part or all of the Upper Basin by one or more studies 
 

Temperature 
The most conspicuous feature of the observed record of annual 
temperatures for the basin is the warming trend in recent decades (Figure 
2.16), as highlighted in many previous reports and studies (National 
Research Council 2007; Reclamation 2012e; Nowak et al. 2012). Since 1980, 
there has been a persistent and statistically significant warming trend of 
about +0.5°F per decade in both the Upper and Lower Basins, with a total of 
2.0°F of warming during the 40-year period of 1980–2019. In the Upper and 
Lower Basins, and over the entire basin (Figure 2.16), 2009–2018 was the 
warmest 10-year period in the record, and 2017 was the warmest single 
year. Of the 20 warmest years on record, 17 have occurred since 1994. While 
the upward trend has included both warmer and cooler years, every year 
since 1994—including relatively cool 2019—has been warmer than the 1970–
1999 average. The average temperature since 2000 has been 2.0°F warmer 
than the 20th-century average.  
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This warming has been observed in all seasons, with seasonal trends (+0.4°F 
to +0.7°F per decade) similar to those for annual temperatures. Daily 
maximum temperatures have warmed more (+0.65°F per decade) than the 
average temperatures (+0.5°F per decade) or the daily minimum 
temperatures (+0.4°F per decade). It is not clear whether the magnitude of 
warming has differed between lower and higher elevations within the basin 
(Lukas et al. 2014). 

Paleoclimatic reconstructions of temperature for locations within, or 
regions that include, the Colorado River Basin all indicate that the period 
since 1950 has been warmer than any time in the past 600 years, and that 
more recent temperatures, since 2000, are warmer than at any time in the 
past 2000 years (Hoerling et al. 2013). 

The warming trend for the basin since 1980 (+2.0°F) mirrors persistent 
warming trends seen over the same time period over the 11 western states 
(+1.7°F), the conterminous U.S. (+1.7°F), and the entire globe (+1.2°F). At the 
global scale, strong indications from multiple lines of evidence have led to 
the conclusion that it is extremely likely (>95% probability) that human 
influence through greenhouse gas emissions and other sources has been 
the dominant cause of the observed warming over the late 20th century and 
the 21st century (USGCRP 2017). Similarly, human influence has been 
detected in the observed warming trends for North America as a whole, and 

 
Figure 2.16 

Annually averaged temperature for the Colorado River Basin, 1895–2019, shown as departures from 
a 1970–1999 average. The gray line is a 10-year running average plotted on the 6th year. A 40-year 
linear trend (dashed yellow line) shows 2.4°F of warming from 1980–2019. (Data: NOAA NCEI) 
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for the northern and western regions of the U.S., including the Colorado 
River Basin (USGCRP 2017).   

Precipitation 
As shown previously (Figure 2.6), observed annual (water year) precipitation 
for the basin is far more variable on interannual time scales than 
temperature. For multi-decadal trends to statistically emerge from the 
background noise of this high variability, they would need to be large. While 
a straight-line fit to the 1980–2019 period for the Upper Basin does indicate 
lower average annual precipitation in more recent years, this declining 
trend is not statistically significant. The unusually high precipitation values 
in the 1980s means that any trend that starts in the vicinity of 1980 will tend 
downward. Importantly, the average annual precipitation over the past 20 
years (2000–2019) does not stand out relative to periods of the same length 
earlier in the observed record. A declining but non-significant trend is also 
seen in Lower Basin annual precipitation over the 1980–2019 period. 
Looking at only cold-season (Oct–Mar) precipitation, the percentage 
declines over the 1980–2019 period in both the Upper and Lower Basins are 
greater than the declines for annual precipitation. But as with annual 
precipitation, the overall, below-average, cold-season precipitation from 
2000–2019 is not an outlier in the context of the full observed record.  

Detection and attribution analyses for recent multidecadal periods indicate 
that the generally lower precipitation seen in the southwestern U.S., 
including the Colorado River Basin, in recent decades was likely caused by 
natural variability, and not human-caused climate change (Barnett et al. 
2008; Hoerling, Eischeid, and Perlwitz 2010; Lehner et al. 2018). New 
analyses using global climate models suggest that human-caused climate 
change is exerting a long-term tendency toward reduced precipitation in 
the region that includes the Colorado River Basin, though this tendency is 
small enough to be overwhelmed by natural variability, and is undetectable 
from the observed record of precipitation alone (Guo et al. 2019; Hoerling 
et al. 2019).  

Snowpack  
The peak water volume of the basin snowpack (e.g., April 1 SWE) is mainly 
determined by the amount of cold-season precipitation, but it can also 
reflect weather factors that lead to more or less snow loss (sublimation and 
melt) than usual during the cold season. Observations of SWE are available 
for portions of the basin since the 1930s and with much greater coverage 
over the basin starting in the late 1970s. These SWE records show 
interannual and decadal-scale variations in the regional snowpack that 
closely match the fluctuations in cold-season precipitation.  

In the mid-2000s, several studies reported declining trends in April 1 SWE 
at most SNOTEL and snow course measurement sites throughout the 
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western U.S. (Hamlet et al. 2005; Mote et al. 2005; Regonda et al. 2005). 
These studies linked the declining SWE trends with warming spring 
temperatures throughout the West, with a key mechanism being an 
increasing fraction of cold-season precipitation falling as rain instead of 
snow as temperatures have increased (Knowles, Dettinger, and Cayan 
2006). In the Colorado River Basin, declining SWE trends were generally 
weaker, or mixed with increasing trends, compared to other regions of the 
western U.S because winter temperatures are well below freezing, reducing 
the impact of this broader snow-to-rain shift (Hamlet et al. 2005; Knowles, 
Dettinger, and Cayan 2006). Later analyses specific to western Colorado 
also found declining trends in April 1 SWE, over the 1978–2007 period (Clow 
2010), and over 30-, 50-, and 70-year periods ending in 2012 (Lukas et al. 
2014). Clow (2010) partially attributed the decline in April 1 SWE to 
decreasing winter precipitation observed over the same period, also 
identifying a role for increasing spring temperatures.  

Newer analyses have reinforced that the observed declining trends in 
April 1 SWE in the western U.S. are substantial and pervasive (Mote et al. 
2018; Zeng, Broxton, and Dawson 2018; Fyfe et al. 2017). These analyses also 
report somewhat greater changes to snowpacks in the Colorado River Basin 
over the last several decades than was reported in the older studies. All of 
these studies indicate a role for warming temperatures in explaining the 
declining SWE, though they also suggest that recent precipitation trends 
have played an important role. A study that assessed the trends in April 1 
SWE across the West from 1984-2018 assigned greater importance to 
warming, finding that the declining SWE trends in the Upper Basin over 
that period were of roughly the same magnitude that would be expected 
from warming alone (Siler, Proistosescu, and Po-Chedley 2019). Two studies 
that analyzed gridded spatially explicit SWE datasets (see Chapter 5) found 
larger SWE declines than one would infer from SNOTEL sites alone, 
indicating that lower-elevation snow below most of the SNOTEL network 
has experienced greater changes than higher-elevation snow (Fyfe et al. 
2017; Zeng, Broxton, and Dawson 2018). Another recent study shows that 
these reductions in peak (April 1) SWE are one element of systemic changes 
to the seasonal snowpack accumulation and melt curves (e.g., Figure 2.4); 
across the western U.S., these curves are becoming significantly narrower 
and less skewed over time, indicating later onset of accumulation, earlier 
onset of melt, consequently slower melt, and shorter duration of snow 
cover (Evan 2018).  

To summarize the studies of snowpack in the western U.S. and 
corresponding conclusions for the Colorado River Basin: (a) April 1 SWE has 
declined over the past 35–60 years across most of the basin headwaters, 
and some of these declining trends are statistically significant; (b) at least a 
portion of the April 1 SWE decline in the basin is attributable to warming 
temperatures since the late 1970s, with a contribution from the decline in 
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cool-season precipitation during the most recent decades, which itself is 
likely due to natural variability; (c) because of the relatively cold winter 
climate of the Upper Basin’s headwaters, the snowpack is more resistant to 
warming-related impacts than most other regions of the West, and (d) 
within each sub-basin, lower elevations have generally seen larger 
reductions in April 1 SWE than higher elevations. 

Timing of snowmelt and runoff  
While the timing of peak spring runoff is not as important as the runoff 
quantity to overall basin water system outcomes due to the large system 
storage capacity, particular water uses can be sensitive to runoff timing, 
especially direct diversion for irrigation, and the variation and trends in the 
shape of the annual hydrograph can have implications for reservoir 
operations. The timing of snowmelt in the basin headwaters and peak 
runoff naturally varies from year to year, depending mainly on the size of 
the snowpack and the particular trajectory of the weather during the 
spring. Smaller snowpacks tend to become isothermal (i.e., reach 32°F 
throughout the snow column)—a precondition for rapid melt—earlier, and 
melt out earlier, than larger snowpacks. Persistent dry, sunny, spring 
weather—which is more likely to occur in low-snow years—will accelerate 
meltout, while frequent spring storms—more likely to occur in high snow 
years—will delay meltout. Snowpack size (e.g., April 1 SWE) and snowmelt 
and runoff timing are thus physically linked as well as observationally 
linked; a consistent shift in the timing of peak SWE and melt onset to dates 
earlier than April 1 will also register as a decline in April 1 SWE, even if peak 
seasonal SWE (SWEmax) does not decline.  

Given the findings of widespread declines in April 1 SWE as described 
above, it is unsurprising that multiple studies since the early 2000s that 
have specifically examined the timing of snowmelt and runoff in parts or all 
of the western U.S. have found widespread trends toward earlier snowmelt 
and runoff over the past 3–6 decades (Stewart, Cayan, and Dettinger 2005; 
Regonda et al. 2005; Clow 2010; Fritze, Stewart, and Pebesma 2011; Hoerling 
et al. 2013; Pederson, Betancourt, and McCabe 2013). The Evan (2018) study 
described above also confirms the general shift toward earlier snowmelt. 
For the Upper Basin in particular, the more recent of these studies have 
detected progressively larger and more pervasive shifts toward earlier 
spring runoff onset and peak runoff. Clow (2010) found shifts toward earlier 
snowmelt and runoff timing in western Colorado of 1–4 weeks from 1978 to 
2007. Similarly, Hoerling et al. (2013) found that for 13 of 17 gages in the 
Upper Basin, average runoff timing for 2001–2010 was earlier, by 1–3 weeks, 
than the average runoff timing for 1950–2000.  

As with the trends in April 1 SWE, it is difficult to separate the likely causes 
of the shift toward earlier snowmelt and runoff. Warming winter-spring 
temperatures almost certainly have a role, but the decline in cold-season 
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precipitation since 2000 appears to be an important driver as well. Episodic 
dust-on-snow deposition also causes earlier snowmelt and runoff (Chapter 
5; Painter et al. 2007; 2010; Deems et al. 2013). Snowpacks in the Upper 
Basin have become generally dustier in recent decades, with especially 
large effects on snowmelt and runoff timing in the San Juan Basin (Clow, 
Williams, and Schuster 2016; Painter et al. 2018). 

Streamflow volumes and runoff efficiency 
Among the indicators of hydroclimatic variability and change, annual 
streamflow volumes are the most directly relevant to basin water 
management and water use. Annual streamflow also integrates multiple 
processes and effects that play out over different temporal and spatial 
scales, complicating evaluation of the sources of variability and change.  

As basin water managers and water users are well aware, the period since 
2000 has seen overall below-average Upper Basin (Lees Ferry) flow 
volumes, with an average naturalized flow of 12.6 maf/year from 2000–
2019, which is 15% below the long-term average of 14.8 maf (1906–2019). 
(Average flow from 1999–2018 was marginally lower than from 2000–2019.) 
The next lowest 20-year period of flow is 1950–1969, which averaged 13.0 
maf/year. The cumulative streamflow deficit of roughly 47 maf since 2000 
relative to the long-term average accounts for a large portion of the 
current drawdown of Lakes Powell and Mead. The declining trend in Lees 
Ferry natural flows from 1980–2019 is almost statistically significant (p = 
0.06), and this trend is larger, compared to interannual variability, than the 
trend in Upper Basin water-year precipitation over the same period. 
However, even larger declining trends in Lees Ferry flows were observed 
over 40-year periods beginning in the 1910s and ending in the 1950s, so this 
recent decline is not unprecedented. 

Unlike Upper Basin natural flows, the available flow data for the Lower 
Basin is primarily gaged flows, or the net gain in flow between gages (see 
Chapter 5), so the following trends may reflect impacts from human 
activities. The total inflows between Lees Ferry and Lake Mead show a 
downward trend similar to that for the Upper Basin, with an average of 
1.02 maf/year from 2000–2016, 20% less than the long-term average of 
1.23 maf/year (1906–2016). Within that overall number, the gaged inflows 
from the four tributaries show the following departures for 2000–2016 
relative to the long-term mean: Paria River, -15%; Little Colorado 
River, -40%; Virgin River, -10%; and the Bill Williams River, -41%.  

As discussed previously in this chapter, the variability in water-year 
precipitation is the most important driver of variability in annual 
streamflow. The period of reduced Upper Basin flow since the 2000s and 
the overall declining trend in flow since the late 1970s has coincided with a 
decline in water-year precipitation as described earlier. The consensus of 
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recent studies is that roughly half or more of the recent low-streamflow 
anomaly (since 2000) is due to variability and trends in precipitation 
(Nowak et al. 2012; Udall and Overpeck 2017; C. A. Woodhouse et al. 2016; 
McCabe et al. 2017; Barsugli and Livneh 2018; Xiao, Udall, and Lettenmaier 
2018; Hoerling et al. 2019).  

But it is also clear that warming temperatures can lead to long-term 
reductions in streamflow. Hydrologic modeling has been used to put a 
range of values to the general expectation that runoff in the Colorado River 
Basin decreases with increasing temperatures. An analysis by McCabe and 
Wolock (2007) using their relatively simple water-balance model for the 
Upper Basin indicated a 5% decline in Upper Basin runoff per 1°F of 
warming. Intercomparisons using more sophisticated hydrologic models 
(see Chapter 6) calibrated for the basin hydrology indicate a 1.5% to 6% 
decrease (model average: 3.5% decrease) in Upper Basin runoff per 1°F of 
regional warming (Vano, Das, and Lettenmaier 2012; Vano and Lettenmaier 
2014). Based on this range of modeled temperature sensitivities of runoff, 
Udall and Overpeck (2017) concluded that approximately one-third (range: 
17-50%) of the Lees Ferry streamflow departure from 2000–2014, relative to 
the 20th-century average, was due to the effects of the warming alone, with 
the remainder due to decreased precipitation during the 2000–2014 period.  

Three more recent model-based studies, using different methodologies, 
came to conclusions at opposite ends of the range outlined by Udall and 
Overpeck (2017). Xiao, Udall, and Lettenmaier (2018), based on simulations 
of historical hydroclimate with the Variable Infiltration Capacity hydrologic 
model (see Chapter 6), concluded that a little more than one-half (54%) of 
the Lees Ferry streamflow departure from 2000–2014 was due to warming 
alone. Milly and Dunne (2020), using a different hydrologic model, also 
estimated that just over half of the 2000-2017 Lees Ferry streamflow 
departure was due to warming alone, and that the temperature sensitivity 
of runoff was about 5% per 1°F of regional warming. But based on 
simulations from three global climate models (GCMs) with embedded 
hydrology (or land surface) models, Hoerling et al. (2019) estimated that the 
temperature sensitivity of runoff was about 1.5% per 1°F of regional 
warming, and that about 20% of the Lees Ferry streamflow departure since 
2000 was due to warming.  

The warming effect on Upper Basin runoff has also been detected and 
quantified directly from the observational record, while taking into account 
the potentially confounding relationship between precipitation and 
temperature. Regression analysis by Nowak et al. (2012) indicated a 7.5% 
reduction in annual Upper Basin runoff for every 1°F warming, a larger 
reduction than shown by any of the hydrologic models. McCabe et al. (2017), 
using a similar regression analysis, concluded that the impact of warming 
temperatures on Upper Basin runoff was -7% for the period from the late 
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1980s through 2012, which implies a 4–5% reduction in annual runoff per 
1°F warming, within the range found with the hydrologic models. 
Woodhouse et al. (2016) inferred an impact of warm-season temperatures 
on Upper Basin runoff in recent decades from the increasing differences 
between the precipitation anomaly and the runoff anomaly, but did not 
quantify the impact.  

To summarize, compared with a decade ago, there is now substantial 
evidence from both hydrologic model experiments and analyses of the 
observed record that recent warming temperatures have already had a role 
in reducing Colorado River flows. Those studies also indicate that the 
magnitude of the incremental impact of climate warming on streamflow 
remains uncertain. This mirrors the consensus of participants at a recent 
workshop on understanding the causes of the historical changes in flow of 
the Colorado River (Barsugli and Livneh 2018). The workshop report also 
underscored that a key challenge in quantifying the role of temperature is 
the uncertainty in the observed records of temperature and especially 
precipitation, which is much more spatially and temporally variable than 
temperature. The most runoff-productive mountain areas have relatively 
sparse observations, and the different gridded climate datasets used to 
calibrate hydrologic models and in other analyses can have substantial 
differences over these mountain areas (see Chapter 4; Barsugli and Livneh 
2018). For that matter, the record of naturalized runoff for the Upper Basin 
(Lees Ferry) used for many of these analyses has uncertainties that are not 
well quantified or broadly appreciated within the research and application 
communities (see Chapter 5).  

Other recent studies, using both hydrologic models and field observations, 
have focused on the mechanisms by which warming acts to reduce 
Colorado River streamflows, including those mechanisms described earlier 
as impacting the snowpack. Following the seasonal sequence of events, 
these mechanisms include: 

• Fall (and spring) precipitation increasingly comes as rain instead of 
snow, which reduces runoff efficiency (Berghuijs, Woods, and 
Hrachowitz 2014). 

• Sublimation losses from snowpacks during the winter and spring are 
higher due to the warmer, “thirstier” atmosphere (Foster et al. 2016). 

• Snowmelt initiates earlier in the spring, which leads to slower average 
melt rates (see Figure 2.4), which reduces runoff efficiency (Barnhart et 
al. 2016). 

• The earlier meltout exposes soils earlier in the warm season, increasing 
the absorption of solar radiation at the land surface and leading to 
increased seasonal evaporation (Deems et al. 2013, Milly and Dunne 2020). 
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• The growing season for natural vegetation and crops starts earlier and 
lasts longer, leading to increased seasonal transpiration (Deems et al. 
2013). 

• Evapotranspiration rates generally increase with warmer temperatures 
(Foster et al. 2016; Milly and Dunne 2020). 

The energy budget changes (i.e., increase in sublimation and 
evapotranspiration) appear to be a more important contributor to the 
overall temperature effect on runoff in the basin than the phase change in 
precipitation from snow to rain (Foster et al. 2016). This is consistent with 
other modeling analyses that have examined the seasonal dimension of 
temperature’s effects; those studies have indicated that warming during the 
warm season (April–September) is much more effective at reducing runoff 
than warming of the same magnitude during the cold season (October–
March) (Das et al. 2011; McCabe et al. 2017). 

2.11  Challenges and opportunities 

The most pressing challenges in our understanding of the historical and 
recent hydroclimate of the Colorado River Basin regard the recent changes 
in the key variables described in the previous section. Better quantification 
of these trends (how much things have changed), and more confident 
attributions of them to the respective causal factors (why things have 
changed), would facilitate greater inclusion of these changes in short-term 
and mid-term forecasting (Chapter 8) and long-term planning (Chapters 
9-11).  

Challenges 
• There is still considerable uncertainty in the quantification of the 

relative roles of temperature, precipitation, antecedent soil moisture, 
dust-on-snow, and vegetation change in recent and ongoing variability 
and change in Upper Basin snowpack and streamflow. 

• These factors have substantial spatial variability, but most studies have 
conducted analyses and presented findings only at the Upper Basin-
wide scale (e.g. Lees Ferry). 

Opportunities   
• Conduct analyses of Upper Basin hydrologic change that are spatially 

disaggregated at least to the eight major sub-basins (Upper Green, 
Yampa-White, etc.), or focus only on the most productive headwaters 
areas, or both. 

• Pursue the various pathways to improve hydrologic modeling presented 
in Chapter 6. 

• Conduct intercomparisons of hydrologic models and statistical 
methods for assessing the factors behind hydrologic changes. 
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Key points 
• Three monthly Reclamation models, developed in RiverWare™, support 

planning at three time scales: short-term (up to 24 months), mid-term 
(up to 60 months), and long-term (multiple decades). 

• The models use rules to incorporate operational policies set forth in 
Records of Decisions and other operational agreements, and some 
long-term studies also explore potential alternative policies. 

• Hydrologic inputs to the short-term and mid-term models are either 
flows forecast by the NOAA Colorado Basin River Forecast Center 
(CBRFC) or statistical averages of observed flows.  

• Hydrologic inputs to the long-term model may be based on historical 
hydrology, paleohydrology, climate change-informed hydrology, or 
hybrids.  

• Measured Upper Basin water demands for the short-term and mid-
term models are accounted for in the CBRFC’s forecast; Lower Basin 
water demands are provided by Lower Basin water users and Mexico. 
Both Upper and Lower Basin demands for the long-term model are 
based on projections supplied by water users. 

• Uncertainties, errors, and limitations arise from input data sources, 
assumptions about the future, and necessary simplifications of a 
complex water supply system. 

3.1 Introduction 
Planning and operations models support decision making by providing 
computer-based representations of water supply systems that allow 
analysis of a variety of hydrologic, operational, administrative, and 
infrastructure scenarios. They are designed to represent systems with 
networks of inflows, uses, and storage that serve multiple objectives, and 
they are built to generate or accept large databases of streamflow data. 
These models track the movement and storage of water through river 
reaches, reservoirs, canals, and other infrastructure, and account for 
withdrawals and gains and losses. They usually simulate operations and the 
administrative rules that govern water allocation.  

World-wide, a number of generalized modeling tools have been used to 
simulate large scale river basin systems. There are differences and 
similarities among the tools in core solver type and the kinds of processes 
simulated, but most of them are flexible as to time step, spatial extent, 
resolution, and operations. They have advantages and limitations that make 
them more or less suitable for particular analyses. For more information 
about generalized, river basin system modeling tools, and some in-depth 
comparisons, see Wurbs (1994; 2012); Stratus Consulting (2005); Zagona 
(2010); US Army Corps of Engineers (2012); Johnson (2014); California Dept. 



 

Chapter 3. Primary Planning Tools 84 
 

of Water Resources (2016; 2019); Colorado State University (2017); DHI 
(2019); Lynker (2019); SEI (2019); Texas A&M University (2019a; 2019b). 

3.2 Reclamation’s models 
Reclamation manages the system reservoirs on the Colorado River within 
the legal and political framework captured in a body of documents known 
as “the Law of the River” (Nathanson 1978; Reclamation 2007e; 2015b). The 
Law of the River specifies Colorado River entitlements and priorities and 
comprises numerous operating criteria, regulations, and administrative 
decisions included in federal and state statutes, interstate compacts, court 
decisions and decrees, an international treaty, and contracts with the 
Secretary of Interior. As such, modeling undertaken by Reclamation to 
support basin management must be able to represent both the challenging 
institutional setting and the complex physical system. The results of 
modeling studies are a familiar, standardized foundation for Reclamation’s 
stakeholder outreach and in some instances are the basis for determining 
official operations. The core of this modeling is a mass balance calculation 
that accounts for water entering the system, water leaving the system (e.g., 
from consumptive use of water, trans-basin diversions, evaporation), and 
water moving through the system (i.e., either stored in reservoirs or flowing 
in river reaches). 

Since the 1990s, Reclamation has developed system models using 
RiverWare™, an object-oriented, generalized river basin modeling platform 
developed in partnership with the University of Colorado's Center for 
Advanced Decision Support for Water and Environmental Systems 
(CADSWES) and the Tennessee Valley Authority (Biddle 2001; Zagona et al. 
2001). 

Reclamation’s three basin-wide planning and operations models are the 24 
Month Study (24MS), the Mid-Term Probabilistic Operations Model 
(MTOM), and the Colorado River Simulation System (CRSS). The three 
models and their applications are summarized in Figure 3.1. 
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The core elements that characterize the three models are listed below. 

• Purpose 
• Time step and simulation horizon 
• Structure and resolution 
• Physical processes (evaporation and bank storage) 
• Inputs 

o Initial reservoir conditions 
o Operational policies 
o Future water use/demand 
o Future inflows 

• Outputs (variables, deterministic vs. probabilistic) 

All three models run on a monthly time step, use the same methods to 
estimate reservoir evaporation and bank storage (monthly coefficients 
applied to surface area and single coefficients applied to total reservoir 
storage, respectively), and represent the same operating policies, but are 
otherwise different in multiple respects.  

RiverWare supports “rule-based” simulation (Zagona 2010), in which logic 
statements, rather than hard-coded values, are used to represent 
operational policy. This capability makes RiverWare well suited to simulate 
the requirements stipulated by the Law of the River. A simple rule might 
take the form of “If Reservoir A elevation is x, and forecast inflow is y, then 
make release z.” An example of a RiverWare rule that might be executed in a 
Colorado River simulation is provided in Figure 3.2. 

 

Figure 3.1 

Reclamation's 
basin-wide 
planning and 
operations 
models (Source: 
adapted from 
Fulp 2003) 
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The “objects” in RiverWare’s object-oriented modeling system may be 
reservoirs, river reaches, stream confluences, diversions, inflows, canals, 
pipelines, gages, or other water resources features (CADSWES 2018). Each 
object is assigned attributes ranging from its capacity to its representation 
of physical processes. Water flows between objects via links, but mass 
balance is calculated at the object level. 

Each model is described in detail in the sections that follow, organized from 
shortest to longest time scale.  

 
Figure 3.2 

Sample rule from CRSS as implemented in RiverWare (Source: Reclamation) 
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24-Month Study Model (24MS) 
The 24-Month Study model (24MS) is an operations model developed by 
Reclamation to support planning for the upcoming 24 months. 24MS began 
as a FORTRAN program, was re-implemented in RiverWare in 1997, and 
continues to be refined to better represent the physical system and 
evolving operational policies.   

The model is run every month to provide basin-wide operational updates as 
hydrology and demand projections evolve. The August modeling results are 
used to determine the annual operating conditions for Lake Powell and 
Lake Mead for the upcoming year as reported in Reclamation’s Annual 
Operating Plan for Colorado River Reservoirs (AOP). Under certain 
conditions, the April modeling results may prompt adjustments to Powell 
operations. The operating tiers for Lake Powell and Lake Mead determine 
release volumes from Lake Powell, and also whether and by how much 
deliveries from Lake Mead to Lower Basin water users and Mexico will be 
reduced (under shortage conditions) or supplemented (under surplus 
conditions). Operational tiers, release volumes, and water delivery 
conditions were set forth in the 2007 Interim Guidelines (U.S. Secretary of 
the Interior 2007) and Minute 319 (International Boundary and Water 
Commission 2012), and were more recently augmented and extended by the 
Drought Contingency Plan (DCP; Reclamation 2019c) and Minute 323 
(International Boundary and Water Commission 2017). Per the Interim 
Guidelines, the August 24MS projections of January 1 reservoir elevations 
determine the operating tiers for Lakes Powell and Mead for the upcoming 
calendar year. Subsequent April 24MS projections of September 30 
elevations of Lakes Powell and Mead may result in an adjustment to the 
annual release volume from Lake Powell. 

The structure of 24MS is driven by its core purpose, which is to simulate 
operations at 12 Reclamation reservoirs. Each 24MS simulation is initialized 
with current reservoir elevations (conditions from the last day of the 
previous month). Every time 24MS is run, Reclamation employees in the 
Upper and Lower Colorado regional reservoir operations offices input 
projected reservoir operations by hand. This manual approach takes 
advantage of the expertise of reservoir operators and obviates the need for 
reservoir operations logic in the model but limits the ability to incorporate 
operational and hydrologic uncertainty (discussed below and in 
Reclamation 2015a). The model is not exclusively manual input—in years 2 
and 3 of the 24MS simulation, Lower Basin operations are automated and 
driven by rules that reflect projected operating conditions for Lake Mead. 
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Figure 3.3 
Map of sub-basins and forecast points for 24MS and MTOM. The basins in the map are color-coded to match the 
sub-basins shown in Table 3.1. (Source: Reclamation) 
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Table 3.1 

Sources of inflows used in 24MS and MTOM. The cells in the table are color-coded to match the sub-
basins shown in Figure 3.3. (See additional explanation below; Source: Reclamation) 

CRSS 

natural 

flow 

point 

USGS Gage Name 
USGS 

Gage # 

Relevant 24MS/MTOM 

forecast sub-basin 

Relevant MTOM/24MS 

forecast point 

1 

Colorado River At 

Glenwood Springs, 

CO 

09072500 

Lake Powell 12 

2 
Colorado River Near 

Cameo, CO 
09095500 

3 
Taylor River Below 

Taylor Park, CO 
09109000 Taylor Park Reservoir 8 

4 

Gunnison River 

Below Blue Mesa, 

CO 

09124700 Blue Mesa Reservoir 7 

5 
Gunnison River At 

Crystal , CO 
09128000 

Crystal Reservoir 5 

Morrow Point Reservoir 6 

6 
Gunnison River Near 

Grand Junction, CO 
09152500 

Gunnison R. gains Crystal to 

Grand Junction* 
4* 

7 
Dolores River Near 

Cisco, UT 
09180000 

Lake Powell 12 

8 
Colorado River Near 

Cisco, UT 
09180500 

9 
Green R Bel 

Fontenelle Res, WY 
09211200 Fontenelle Reservoir 1 

10 
Green R. Nr Green 

River, WY 
09217000 

Flaming Gorge Reservoir 2 

11 
Green River Near 

Greendale, UT 
09234500 

12 
Yampa River Near 

Maybell, CO 
09251000 

Yampa River at Deerlodge 

Park*  
3* 

13 
Little Snake River 

Near Lily, CO 
09260000 

14 
Duchesne River Near 

Randlett, UT 
09302000 

Lake Powell 12 15 
White River Near 

Watson, UT 
09306500 

16 
Green River At Green 

River, UT 
09315000 
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CRSS 

natural 

flow 

point 

USGS Gage Name 
USGS 

Gage # 

Relevant 24MS/MTOM 

forecast sub-basin 

Relevant MTOM/24MS 

forecast point 

17 
San Rafael River Near 

Green River, UT 
09328500 

18 
San Juan River Near 

Archuleta, NM 
09355500 

Vallecito Reservoir 10 

Navajo Reservoir 11 

19 
San Juan River Near 

Bluff, UT 
09379500 

Animas R. at Durango*  9* 

Lake Powell 12 

20 
Colorado R At Lees 

Ferry, AZ 
09380000 

Lake Powell 12 

Gains Powell to Lees Ferry 

Gage (not visible on map) 
13 

21 
Paria River at Lees 

Ferry, AZ 
09382000 

Gains above Grand Canyon 14 22 
Little Colorado River 

near Cameron, AZ 
09402000 

23 
Colorado River near 

Grand Canyon, AZ 
09402500 

24 
Virgin River at 

Littlefield, AZ 
09415000 

Gains above Hoover 

(Lake Mead) 
15 

25 
Colorado River below 

Hoover Dam, AZ-NV 
09421500 

26 
Colorado River below 

Davis Dam, AZ-NV 
09423000 

Gains above Davis 

(Lake Mohave) 
16 

27 
Bill Williams below 

Alamo Dam, AZ 
09426000 

Gains above Parker 

(Lake Havasu) 
17 

28 
Colorado River below 

Parker Dam, AZ-CA 
09427520 

29 
Colorado River above 

Imperial Dam, AZ 
09429490 Gains Parker to Imperial 18 

NA 
(CRSS only extends 

to Imperial) 
-- 

Gains Imperial to Northerly 

International Border 
19 

 
Table 3.1 summarizes how water is aggregated in CRSS via natural flow 
points versus how it is aggregated in 24MS and MTOM via forecast points. 
The colors in the two right-most columns correspond to the colors of the 
MTOM/24MS sub-basins in Figure 3.1. In general, the table conveys spatial 
relationships and does not imply that natural flows are used directly to 
derive 24MS/MTOM forecasts (which are generated by the CBRFC). 
Forecast sub-basins/points with an asterisk (*) only exist in MTOM; the 
RiverWare rules used by MTOM need these sub-basins to approximate how 
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the reservoir operators use gage information when running the 24MS 
manually. 

Inflows 
Streamflow “forecasts” used in 24MS runs are actually flow sequences 
constructed by piecing together flows from some or all of the sources listed 
in Table 3.1.  

ESP flow sequences are created by initializing the CBRFC models with 
current basin conditions (e.g., soil moisture, antecedent streamflow, 
snowpack). Then, historical 1981 to 2015 temperature and precipitation data 
are used to drive the CBRFC streamflow forecast modeling workflow, 
generating 35 equally likely 60-month forecasts from those initial 
conditions (Powell 2015). “Official” CBRFC forecasts combine near-term 
temperature and precipitation forecasts, ESP modeling, and expert 
forecaster analysis, the latter of which sometimes refines the forecast 
based on anticipated upcoming storms. The ESP and official forecasting 
procedures used by the CBRFC are described in more detail in Chapter 8. 

24MS is run every month to generate “most probable” projections of 
reservoir levels. The inflow sequences used in these runs are constructed 
differently depending on the month. Figure 3.4 shows how construction of 
the Upper Basin most probable deterministic flow sequence varies over the 
course of a water year. To aid understanding of Figure 3.4, the October, 
January, and June sequences are described below. 

In October, median flow values for the first three months are taken from 
the official forecasts provided by the CBRFC; for the rest of Year 1 (always 
defined as the span from the current month through the upcoming 
September), the monthly running median of the ESP forecast is used; Year 2 
(always defined as the span from the upcoming October through following 
September) uses 30-year climatology except for October and November 
where a linear interpolation between the median ESP forecast value for 
September and climatology for January is used to smooth the sequence. 
This method uses actual forecasted values in the first three months only, it 
does not use or reflect actual forecasted values in the other months. 

For January runs of the 24MS most probable run, flows for the first three months 
are again taken from median CBRFC official forecasts. April through July flow 
values are the median monthly values from the CBRFC’s April-through-July runoff 
forecasts. Starting with the August flow value, the flow sequences then revert to 
the same procedure used for the October flow sequences: median ESP through 
September followed by interpolation to climatology in Year 2 and beyond.  

For the June most probable 24MS run, the first three months’ flows are 
median CBRFC official forecasts followed by median ESP values for 
September through Year 2. 
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Lower Basin flow sequences for the most probable 24MS run are based on 
historical intervening flows. These are flows that have been calculated 
using mass balance between upstream and downstream gages. For each 
Lower Basin inflow, a trace is constructed by stringing together each 
month’s 5-year average flow from the preceding five years. For example, 
the May inflow used in this run would be the average of the previous five 
May intervening flows and the June inflow would be the average of the 
previous five June intervening flows, etc. This is true for Years 1 and 2 and 
beyond. 

In January, April, August, and October, two additional 24MS simulations are 
performed to characterize the uncertainty associated with the forecast; 
these are the “maximum probable” and “minimum probable.” The flow 
sequences for these runs use the same data sources but in most places use 

 
Figure 3.4 

24MS Most Probable Forecast construction methods for Upper Colorado unregulated inflows. 
(Source: Reclamation) 
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percentiles instead of averages. For the Upper Basin, the maximum 
probable traces are constructed using the 90th percentile of the CBRFC’s 
official forecasts, April-through-July forecasts, and ESP forecasts in Year 1, 
then linear interpolation is used to match up with the 75th percentiles of 
monthly values from the 1981–2010 record. Year 3 (when modeled) reverts 
back to the 30-year average. The minimum probable traces are constructed 
the same way as the maximum probable traces except that they start with 
10th percentile flows in Year 1, go to 25th percentile flows in Year 2, and then 
revert back to 30-year average flows. The percentiles used for maximum 
and minimum traces step back toward the mean because it is assumed that 
multiple years of extreme conditions in a row will not occur. 

In January, April, and October, the maximum probable Lower Basin flows 
are constructed by stringing together flows corresponding to the 90th and 
75th percentiles of the monthly flows from the preceding five years for 
Years 1 and 2, respectively, then reverting back to the average for Year 3 
(i.e., the procedure for the most probable traces is used in Year 3). In a 
similar fashion, the 10th and 25th percentile flows are used to construct the 
flow sequence for the minimum probable trace. For August runs, the 
months of August and September use 5-year averages even for the 
maximum and minimum probable, and then Years 2 and 3 use 90th and 
75th or 10th and 25th percentiles, respectively. Only the runs using the 
most probable flows are used for setting operational tiers. 

Demands 
Reclamation does not explicitly model Upper Basin water use in 24MS, but 
the unregulated inflow forecasts provided by the CBRFC have the impacts 
of some upstream uses in them (any “unmeasured” depletions and return 
flows are still represented in the inflows; the CBRFC’s unregulated 
streamflow development is discussed in more detail in Chapters 5 and 8). 
There are three exceptions: the 24MS model’s projections of monthly 
diversions from the Gunnison Tunnel, the Azotea Tunnel, and the Navajo 
Indian Irrigation Project (NIIP); the unregulated inflows provided by the 
CBRFC have not been depleted by those diversions. Lower Basin demands 
are modeled based on monthly schedules provided by water users. Water 
users provide updated schedules throughout the year. 

Output 
Output from 24MS consists primarily of monthly projected reservoir 
elevations, releases, and power generation. These results are posted in 
tabular form to the Reclamation website each month and provide decision 
support for basin stakeholders. Example 24MS output showing projected 
elevations in Lakes Powell and Mead from January, 2020 runs are provided 
in Figure 3.5 and Figure 3.6, respectively. 

24MS output 

Look for links under 
the heading “2-Year 
Projected 
Operations” at 
https://www.usbr.go
v/lc/riverops.html for 
monthly tabulated 
24MS output.  

https://www.usbr.gov/lc/riverops.html
https://www.usbr.gov/lc/riverops.html
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Figure 3.5 

Example 24MS output for Lake Powell. (Source: Reclamation) 

 
Figure 3.6 

Example 24MS output for Lake Mead. (Source: Reclamation)  
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Mid-Term Probabilistic Operations Model (MTOM) 
MTOM was developed in 2015 to enable Reclamation to simulate reservoir 
operations under a wider range of potential future streamflow than is used 
in 24MS (Bracken 2011; Reclamation 2015). The 24MS model is limited in its 
ability to incorporate hydrologic and operational uncertainty because it is a 
deterministic model that uses a single hydrologic trace and reservoir 
operations must be input manually. MTOM addresses this by using an 
ensemble of hydrologic traces and rules that execute reservoir operations 
throughout the basin in accordance with the Law of the River. The rules 
and their relationships are designed to mimic the process used to run the 
24MS model (Reclamation 2015a). The current operational use of MTOM is 
to inform CRSS when generating 5-year projections (Reclamation provides 
the output of MTOM modeling upon request). Though the ability to use 
ensembles is advantageous for some purposes, MTOM cannot replace 24MS 
because current policy explicitly states that the most probable projections 
from 24MS will be used to set operations at Lakes Powell and Mead (U.S. 
Secretary of the Interior 2007; International Boundary and Water 
Commission 2017; Reclamation 2019c). Reclamation is currently working 
toward making MTOM projections more prominent and readily available.  

Inflows  
Like 24MS, MTOM runs are initialized with current reservoir conditions and 
the model takes unregulated streamflow forecasts as Upper Basin inflows. 
However, MTOM can use any number of hydrologic traces of 1 to 5 years in 
length instead of just one. MTOM’s structure is almost identical to that of 
24MS; it includes the same 12 reservoirs and inflow locations but has three 
additional forecast points in the Upper Basin: Yampa River at Deerlodge, 
Gunnison River gains between Crystal Reservoir and Grand Junction 
(including the North Fork of the Gunnison), and Animas River at Durango. 
These points were added to the model’s structure and rule logic to 
automate a process that had been done manually in 24MS. Table 3.1 and the 
map in Figure 3.3 show these additional forecast points.  

Demands 
Water use and demands used in MTOM are also similar to those used in 
24MS—only three Upper Basin diversions are projected in the model. 
However, the impacts of some use are represented in the unregulated flow 
forecasts provided by the CBRFC (see Chapters 5 and 8). Lower Basin 
demands are equal to the demand schedules provided by the Lower Basin 
states (Reclamation 2015a) in the current year of operations, and may be 
adjusted in the out years for different operating conditions.  

 



 

Chapter 3. Primary Planning Tools 96 
 

MTOM is most commonly run using the 35 traces that make up the CBRFC’s 
ESP forecasts but has more recently also been run with experimental 
forecasts (Baker 2019).  

Output 
MTOM output includes inflows, releases, reservoir contents, deliveries to 
water users, and indicators of operational conditions that are key to 
implementing the Interim Guidelines (Powell 2015). Currently, the most 
common use of MTOM is to initialize CRSS to produce 5-year projections of 
system conditions. See the “Development of five-year projections” section 
of this chapter for further information and an example of MTOM-CRSS 
output. 

Colorado River Simulation System (CRSS) 
Reclamation’s first effort at computer simulation of the Colorado River 
system was in 1969, as part of studies to support the Long Range Operating 
Criteria negotiations (Reclamation 1969). That work was followed by 
Reclamation’s development of the Colorado River Simulation Model in the 
1970s, written in FORTRAN. A database of model inflows and demands was 
developed in the 1980s and the combined modeling tool—basin model plus 
database plus output utility—was called the Colorado River Simulation 
System, or CRSS (Reclamation 1983). CRSS was implemented in RiverWare 
in 1996 with essentially the same spatial and temporal resolution as the 
original FORTRAN model (Reclamation 2010). Over the years, features have 
been added to CRSS that have improved its user interface, analysis 
capabilities, database management system, and output summarization 
capabilities. CRSS is also updated to represent new or refined information 
about the system, e.g., physical relationships and new operational policies. 
Note that water salinity is also simulated in CRSS, but that capability is not 
discussed in this report. 

CRSS enables Reclamation to explore impacts to the basin under different 
supply, demand, and policy configurations for years to decades into the 
future. It has been used for policy analyses in dozens of studies, including 
the Interim Guidelines EIS (Reclamation 2007f), the Basin Study 
(Reclamation 2012e), Minutes 319 and 323 (International Boundary and 
Water Commission 2012; 2017), and the Colorado River Basin Ten Tribes 
Partnership Tribal Water Study (Reclamation 2018). Most recently, it was 
used to provide guidance for basin-wide drought contingency planning 
(Reclamation 2019c). CRSS is currently being used in studies of how climate 
change hydrology derived from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) affects future projections (Chapter 11). It is also 
currently used in conjunction with 24MS or MTOM, or both, to generate 
official 5-year projections.  
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The Upper Basin reservoirs in CRSS are slightly different from those 
represented in 24MS and MTOM: Fontenelle, Flaming Gorge, Starvation 
(which is a lumped representation of multiple smaller reservoirs), Taylor 
Park, Blue Mesa, Morrow Point, Crystal, Navajo, and Powell (Vallecito is only 
in 24MS and MTOM while Starvation is only in CRSS). The Lower Basin 
reservoirs are the same: Mead, Mohave, and Havasu.  

CRSS simulations always start in January. When running the model in any 
month other than January it is initialized using projections from the 24MS 
or MTOM of December 31 of the current year, and the CRSS simulations 
start in January of the following year. Reservoir operations are simulated 
via rulesets reflecting either current Law of the River or potential future 
alterations to operations.  

Inflows 
Of the 29 inflow points in CRSS, 14 are upstream of Reclamation’s 
headwaters reservoirs and 15 are intervening flows along reaches within the 
model (Reclamation 2007a). The map in Figure 3.7 shows the inflow points 
represented in CRSS. The inflow points on the map correspond to the USGS 
gages listed in Table 3.1. Table 3.1 also describes the relationships between 
CRSS inflow points and the forecast points used in 24MS and MTOM. 

Unlike the inflows to 24MS and MTOM, which are based on unregulated 
inflow forecasts from the CBRFC, CRSS uses natural flow as streamflow 
inputs. The terms “unregulated” and “natural” describe the level of 
upstream human activity remaining in the inflow datasets after 
naturalization calculations are made. The CBRFC unregulated inflows, 
described in detail in Chapters 5 and 8, are forecasted streamflows that are 
adjusted for upstream measured diversions, imports, and reservoir 
regulation. They do not account for upstream unmeasured uses or 
unmeasured return flows. In contrast, in the CRSS natural flow dataset, 
observed streamflows are naturalized by backing out both measured and 
unmeasured impacts, including consumptive uses, imports, and reservoir 
operations (see Chapter 5 for details about naturalization).  

The CRSS streamflow paradigm allows Reclamation to simulate reservoir 
operations under long-term projections of both supply and demand. 
Hundreds of historical and theoretical inflow time-series or traces have 
been analyzed in CRSS to evaluate system impacts under different 
hydrologic assumptions. These assumptions generally fall into three 
categories: observed hydrology, paleohydrology, and climate change-
informed hydrology. Development and use of data in each of these 
categories is described in detail in Chapters 5, 9, 10, and 11 of this report.  
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Figure 3.7 
Map of CRSS inflow points. See Table 3.1 for details about each inflow location. (Source: Reclamation) 
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Demands 
The 115 delivery points in CRSS represent about 500 water users 
throughout the basin across all sectors. In the Lower Basin, each mainstem 
user is individually represented. In the Upper Basin, nodes often represent 
spatial aggregations of many water users. To understand representation of 
water use in CRSS it is necessary to distinguish between demand (volume 
of water needed to meet identified uses), diversion (volume of water 
withdrawn from the river system), and depletion (volume of water that is 
diverted and not returned to the river after use). In the Upper Basin, long-
term demand projections that increase over time are provided to 
Reclamation by the Upper Colorado River Commission (UCRC). The official 
projections currently used were developed in 2007. These demands are 
modeled in CRSS via diversion and depletion schedules provided by the 
states (Reclamation 2007d). The Upper Basin states produced updated 
depletion schedules in 2016 for eventual incorporation into Reclamation 
models (see callout box; S. McGettigan, pers. comm.). In exploratory 
studies, a variety of future demand scenarios are tested in CRSS to 
understand system response to climatic and social impacts on demands 
(Reclamation 2012b).  

In CRSS, when there is not enough water, users in the Upper Basin 
experience shortage. Because CRSS does not model water allocation based 
on water rights, the Upper Basin shortages occur to the aggregated 
demands, irrespective of seniority, and therefore are not reported as 
shortages to individual demands.  

For the Lower Basin states and Mexico, there are multiple diversion and 
depletion schedules that allow CRSS to model water use under surplus 
conditions, normal conditions, and the prescribed reductions under 
specific shortage conditions. Per the Interim Guidelines (U.S. Secretary of 
the Interior 2007), all Powell and Mead operating conditions are 
determined based on August projections of January 1 elevations. For long-
term studies, CRSS does not replicate an August projection, it sets the 
upcoming year’s operating conditions using its “actual” modeled January 1 
reservoir contents. Additionally, the Lower Basin states and Mexico provide 
Intentionally Created Surplus (ICS) and Intentionally Created Mexican 
Allocation (ICMA) schedules and assumptions, respectively, that may 
increase or decrease deliveries in any given year.   

Output 
Typical CRSS simulations yield time series of reservoir releases, water 
surface elevations, hydropower generation, consumptive uses, and 
streamflows at select locations. The results of ensembles of runs are often 
summarized statistically to give a sense of the distribution of potential 
future conditions, as shown in Figure 3.8.  

Updated depletion 
schedules from 
UCRC 

The currently used 
Upper Basin 
depletion schedule, 
dated December, 
2007, is available 
here: 
http://www.ucrcomm
ission.com/RepDoc/
DepSchedules/Dep_
Schedules_2007.pdf 
 
And an updated 
depletion schedule, 
dated December, 
2016, is available 
here: 
http://www.ucrcomm
ission.com/RepDoc/
DepSchedules/CurFu
tDemandSchedule.p
df. 

http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/Dep_Schedules_2007.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/Dep_Schedules_2007.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/Dep_Schedules_2007.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/Dep_Schedules_2007.pdf
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf.
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf.
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf.
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf.
http://www.ucrcommission.com/RepDoc/DepSchedules/CurFutDemandSchedule.pdf.
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Development of Five-Year Projections 
For studies that look beyond Year 1, 24MS or MTOM is combined with CRSS 
to take advantage of the capabilities of all three models. A key example of 
this is the generation of official 5-year projections. The combined modeling 
approach for those studies is shown in Figure 3.9. 

Because MTOM has demonstrated skill at 1- to 2-year lead times (Baker 
2019), Reclamation uses it, with ESP forecasts, to simulate the first year, 
yielding 35 projections of end-of-year reservoir elevations. Those 
projections are then used to initialize CRSS. Each initialized CRSS run uses 
multiple, long-term naturalized flow traces generated by the index 
sequential method. (The index sequential method, or ISM, is described in 
Chapter 9.) Besides its demonstrated skill, an additional advantage to 
simulating the first year in MTOM is that it incorporates uncertainty during 
that year that, when combined with the ISM traces, represents a broader 
range of potential future conditions. 

 
Figure 3.8 

Example CRSS results. (Reclamation 2018) 
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Example output from combined MTOM-CRSS runs made in August, 2019 is 
provided in Figure 3.10 below. In this example, 35 unregulated inflow 
forecast traces from the CBRFC were used in MTOM to simulate 35 sets of 
potential December 31, 2019 reservoir elevations. These 35 sets provided a 
distribution of potential December 31, 2019 reservoir elevations and became 
the initial reservoir conditions used in CRSS, with ISM sequences, to 
simulate years 2020 through 2024. This modeling workflow generates a 
distribution of different operational conditions through 2024. 

 

 
Figure 3.9 

Schematic showing how MTOM and CRSS can be coupled to perform five-year projections. 
December 31 projections from 24MS are used instead of MTOM projections toward the end of the 
calendar year when there is little uncertainty. (Source: Reclamation website page “Colorado River 
System 5-Year Projected Future Conditions, https://www.usbr.gov/lc/region/g4000/riverops/crss-
5year-projections.html, 2019) 

https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
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Figure 3.10 

MTOM-CRSS output example. The figure shows the percent of traces with event or system condition. 
Results from August 2019 MTOM/CRSS using the full natural flow record. (1906–2017) (Source: 
Reclamation webpage “Colorado River System 5-Year Projected Future Conditions” 
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html 

 

https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
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3.3 Uncertainty and error 
The purpose of Reclamation modeling is to project future system 
conditions given varying inputs and operations. In the short-term, e.g., 
when running 24MS, the inputs are forecasts that incorporate some skillful 
knowledge of upcoming hydrology, water use, etc. For mid- and long-term 
modeling, inputs are based on ranges of possible futures. Any projection of 
the future is inherently uncertain, but uncertainty increases as projections 
go further out. Simplifications and assumptions required to model the 
system also introduce uncertainty into projections. Since both the input 
data and the representation of the system are imperfect, there are 
uncertainties at each step. Though each of the Reclamation models handles 
uncertainty differently, they are all impacted by four primary sources: 
streamflow, initial conditions, water use and demand, and reservoir 
operations.  

Streamflow 
Of the four sources, uncertainty in future streamflow has the largest 
impact on system projections. The three Reclamation models take inflows 
that have been developed through multiple methods applied to many 
different data types. Each inflow dataset has a provenance that reflects the 
availability of primary data, intermediate analytical techniques and models, 
and the goals of the application of the dataset. The inflow datasets are 
discussed in detail in Chapters 5, 8, 9, 10, and 11. 

24MS and MTOM both currently use unregulated streamflow generated by 
the CBRFC. The observations, historical relationships, and assumptions 
built into their forecasting framework all aggregate into the streamflow 
Reclamation uses in its models. Reclamation contributes additional 
uncertainty to streamflow inputs to 24MS and MTOM by, for example, 
using historical averages for Lower Basin flows, calculating intervening flow 
through a mass balance calculation, and interpolating between CBRFC 
products. For studies using 24MS, uncertainty is acknowledged four times 
per year by simulating probable minimum and maximum hydrology (in 
January, April, August, and October). Annual Year 1 streamflow uncertainty 
decreases throughout the year as snowpack and temperature conditions 
develop. The case is the same with MTOM, although it is always run with 
ensemble hydrology and results are presented as probabilistic views of a 
range of possible outcomes rather than as a single outcome. 

Historical natural flow used in CRSS has different sources of uncertainty 
than unregulated flow. It is a purely derived product; Reclamation uses data 
collected from USGS and other operators’ gage sites, consumptive use 
records, records of reservoir storage and releases, and other data to 
compute the natural flow. Simplifications in all of these data sources 
propagate through the computation. Intervening natural flows have 
additional uncertainty because they are calculated via mass balance 
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between measured flows and become catchalls for residual errors in 
groundwater interactions and non-natural components of the upstream 
inflows, such as reservoir evaporation and bank storage, rather than 
reflecting natural gains and losses exclusively. Reclamation is aware of 
these issues; their work plan includes additions or refinements to estimates 
of Upper Basin irrigated acreage and evapotranspiration, Lower Basin 
consumptive use, and both Lake Powell and Lake Mead evaporation.  

Although the historical natural flow uncertainties described above do exist, 
CRSS is also often driven by synthetic hydrologic inputs that attempt to 
capture long-term changes. To the extent that the synthetic hydrology is 
independent of the natural flows, uncertainties in generating natural flows 
become less relevant, though synthetic flows also carry some level of 
uncertainty depending on how they were developed. 

Initial conditions 
24MS and MTOM are always initiated with current reservoir conditions so 
initial conditions are not a source of uncertainty for these models. CRSS is 
initialized with December 31 projections of the current year from either 
24MS or MTOM. Specifically, for the August CRSS run only one set of initial 
conditions from the 24MS model are used because there is little 
uncertainty in the end-of-calendar-year reservoir elevations and because 
the coordinated reservoir operations for the upcoming year are determined 
by that 24MS run. In any other month, the CRSS initial conditions are taken 
from a set of 35 MTOM projections. This uncertainty is intentional and 
enables Reclamation to present a broader range of potential future 
conditions. 

Water use and demand 
In 24MS and MTOM, the only representations of Upper Basin water use are 
the implicit unmeasured depletions and return flows left in CBRFC’s 
unregulated flow forecasts and the three diversions described in previous 
sections. As such, the uncertainty about water use is a function of Upper 
Basin unmeasured depletions and return flows and Reclamation’s or water 
users’ projections of the three diversions. In the Lower Basin, water users 
provide monthly water use schedules. The uncertainty in Year 1 Lower 
Basin water use can be significant early in the year but decreases as the 
year progresses. Sources of water use and demand uncertainty are similar 
in MTOM, but most projections are based on historical schedules and 
embedded model logic so the uncertainty does not decrease over time.  

Water demand assumptions for CRSS are provided by the Upper and Lower 
Basin states and key water users throughout the basin. Significant 
uncertainty exists when projecting future demand, but this uncertainty is 
greater in the Upper Basin than in the Lower Basin because Lower Basin 
water users have reached their full apportionments. Incomplete records of 
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historical demand in the Upper Basin (as opposed to consumptive use, 
which is computed) further confound this issue because it is difficult to 
know how much projected demand deviates from historical demand. To 
address this uncertainty, the 2012 Basin Study (Reclamation 2012e) adopted 
a scenario planning approach to project future basin-wide water demand. 
The application of such an approach represents a new paradigm in the 
basin and a significant advancement in basin long-term planning. 
Reclamation and the basin states recognize the importance of continued 
refinement of scenario planning as part of a robust long-term planning 
framework for the basin. 

Reservoir operations  
Reclamation’s models must represent complex operating policies, some of 
which are at sub-monthly timescales, through rules, which introduce 
uncertainty into projections. Some sources of uncertainty can be reduced 
with sufficient information and some cannot (e.g., adaptive management 
provisions for reservoirs or futures where no operational detail is 
provided). Reclamation has begun using hindcasts to identify sources of 
uncertainty that can be addressed. Hindcasts are performed by initializing a 
model to a historical state and using perfect knowledge of “future” 
conditions as inputs. This allows Reclamation to differentiate model 
uncertainty from input uncertainty.  

Current estimates of projection uncertainty 
One approach to understanding uncertainty in Reclamation projections is 
to compare the results of 24MS most probable runs to what actually 
occurred. This is the equivalent of quantifying error in the projections due 
to all uncertainties combined. Figure 3.11 shows the evolution of error in 
reservoir elevation projections for 24MS runs performed each month for 
the years 2008 to 2014 (Reclamation 2019b). The outlook length is longest 
on the left hand side of the plot (i.e., the January projection of the 
December 31st elevation 24 months in the future) and the lead time 
decreases going toward the right hand side of the plot. Error is highest at 
longer lead times and decreases over the course of the monthly projections. 
The projected year, e.g., 2013, is used as the symbol indicating how accurate 
each projection of that year was from 24 months in advance to the 
simulation performed in December 2013. For example, because 2013 was a 
dry year, the projection of Lake Powell’s elevation 24 months in advance 
(i.e., the projection made in January 2011) was far higher than the eventual 
elevation.  

In general, 24MS projections are more accurate at shorter lead times, 
though there are exceptions. The largest errors occurred in extreme years: 
2011 was very wet while 2012 and 2013 were very dry. The year 2011 also 
demonstrates how, when the forecasted Lake Powell inflow results in a 
change of projected operating tiers, there can be significant implications 
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for the skill of Lake Mead projections. August end of calendar year 
projections, highlighted in green, averaged less than 2 feet of error for the 
2008 to 2014 period. 

 

 
Figure 3.11  

Projections of Lakes Powell and Mead EOCY elevation compared with observed values from various 
outlook lengths (each point represents a projection of December of the year shown) for the period 
2008-2014. (Source: Reclamation 2019b).  
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It is important to understand these errors and reduce uncertainty where 
possible because of the decision-making context of 24MS. Reservoir 
projections used in tier determinations can be sensitive to fairly small 
errors in inputs to 24MS, particularly when Lake Powell or Lake Mead 
elevations are hovering near tier thresholds. For example, 24MS currently 
uses 5-year running average values for intervening flows between Lake 
Powell and Lake Mead. Observed intervening flows can deviate from those 
averages enough to change Mead’s elevation by a few feet, potentially 
moving it from normal to shortage operations or vice versa (FROMUS; 
Reclamation and Colorado Basin River Forecast Center in preparation). 

As discussed above, the importance of the uncertainty underlying MTOM 
and CRSS projections is conceptually different from how it impacts 24MS 
because they were developed to assess risk under uncertainty. Additionally, 
CRSS is often used to compare risks under different future supply, demand, 
or operations scenarios, i.e., it is used to evaluate the sensitivity of the 
system to different inputs or assumptions (Reclamation 2012e). 

Ongoing efforts to address uncertainty 
In addition to the efforts mentioned under specific headings above, 
Reclamation is engaged in multiple projects to identify, reduce, or account 
for uncertainty in each of the three models. In collaboration with the 
CBRFC, Reclamation is preparing a report identifying the sources of error 
and uncertainty associated with 24MS. The draft Forecast and Reservoir 
Operation Modeling Uncertainty Scoping report (Reclamation and Colorado 
Basin River Forecast Center in preparation) addresses over a dozen 
parameters, summarizes the cost and time required to reduce the error and 
uncertainty in each of them, and estimates the impact that reduction would 
have on 24MS projections.  

A version of MTOM was adapted to be run in “verification mode” to 
produce hindcasts as part of recently completed research that uses MTOM 
as a testbed for experimental hydrology forecasts (Baker 2019). Results of 
the hindcasting are currently being drafted in a Reclamation report. MTOM 
will continue to be refined as further studies are completed. 

A CRSS verification model has also been developed, but hindcast studies are 
in preliminary phases. Finally, because long-term hydrologic uncertainty is 
extremely large and cannot be reduced, Reclamation continues to explore 
decision-making under deep uncertainty (DMDU) methods similar to the 
robustness concepts used during the 2012 Basin Study (Reclamation 2012e). 
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3.4 Limitations due to simplification 
All models of river basin systems have limitations because they are 
simplifications, in both space and time, of complex physical and 
institutional processes. Simplification is clearly reasonable but it can 
introduce error that affects the ability of Reclamation and others to 
accurately simulate the Colorado River Basin and limits the level of analysis 
that can be performed. 

Representation of natural flows in the Upper Basin 
Natural flows in the Upper Basin are represented by aggregating large 
runoff-producing areas on the Colorado, Green, and San Juan rivers. This 
level of spatial resolution was set with the original FORTRAN model built in 
the 1980s (Reclamation 1983) and has changed very little (the current 
version contains an additional inflow point on the Taylor River). Wheeler, 
Rosenberg, and Schmidt (2019) describe in detail the implications of both 
the spatial and temporal resolution on the utility of CRSS for particular 
types of analyses in the Upper Basin. They assert that the coarse resolution 
of CRSS in the Upper Basin is “inappropriate for use in resolving water 
supply and environmental tradeoffs in many tributary watersheds such as 
the upper Colorado, Dolores, Yampa, Little Snake, Duchesne, White, San 
Rafael, Little Colorado, or Virgin River watersheds” (Wheeler, Rosenberg, 
and Schmidt 2019). It is also true, however, that CRSS was not designed to 
perform those types of analyses and was rather designed as a tool for long-
range basin planning centered on the federal reservoirs. The impacts of 
CRSS’s coarse resolution in the Upper Basin on scenario outcomes have not 
been studied. 

The development and limitations of natural flows are discussed in further 
detail in Chapter 5. 

Representation of natural flows in the Lower Basin 
The treatment of Lower Basin tributaries in CRSS limits the ability to fully 
assess the natural water supply of the basin (Reclamation 2012e). For four of 
the inflow points below Lees Ferry (the Paria, Little Colorado, Virgin, and 
Bill Williams rivers), CRSS uses historical inflows (not natural flows) based 
on USGS streamflow gages. In addition, the Gila River is not included in 
CRSS, making the uncertainties associated with the Gila River and the other 
Lower Basin tributaries and how they may contribute to system reliability 
difficult to discern (Lukas, Wade, and Rajagopalan 2013). 

Since the 2012 Basin Study, Reclamation has been engaged in efforts to 1) 
resolve and correct, in collaboration with the basin states, the 
methodological and data inconsistencies in Reclamation’s Consumptive 
Uses and Losses Reports pertaining to all of the Lower Basin tributaries 
(Reclamation “Plans & Reports” n.d.); 2) develop natural flows for the Little 
Colorado, Virgin and Bill Williams rivers and modify CRSS to use natural 
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flows for those tributaries; and 3) explore the feasibility and usefulness of 
computing natural flows for the Gila River Basin and the feasibility and 
usefulness of adding that basin to CRSS. See Basin Study supplements 
Appendix C11 and Tech Report C (Reclamation 2012a; 2012d) for more-
detailed discussions of these issues. 

Representation of the physical and institutional setting 
The spatial and temporal detail of CRSS (and 24MS and MTOM) limit the 
ability to assess impacts to basin resources, in particular water deliveries 
and shortages in the Upper Basin and ecological resources (Reclamation 
2012e). For example, over 4,000 square miles of watershed above Glenwood 
Springs are simplified, lumping headwater reservoir operations, major 
exports to the Front Range, and over 100,000 acres of irrigated agriculture 
at one node. Limitations due to the spatial simplifications of CRSS are also 
described by Wheeler, Rosenberg, and Schmidt (2019). Such simplifications 
require that natural systems are evaluated through approximations at 
larger spatial scales and longer time steps (e.g., monthly versus daily) than 
preferred or required for more detailed assessments. 

Simplifications in CRSS’s institutional representation of the basin also result 
in limitations. For example, CRSS tracks shortages in the Upper Basin when 
the flow is insufficient to meet the local demands as opposed to simulating 
the complex water rights system in each state that would be needed to 
appropriately model shortages to individual water rights holders. In 
addition, CRSS does not have the capability to assign Upper Basin shortages 
in the event that a “Compact Call” is modeled; in such cases CRSS injects 
deficit water directly above Lake Powell. 

The implications of this limitation were made clear in the 2012 Basin Study 
and in the 2018 Ten Tribes Partnership Study. During the 2012 Basin Study 
analyses, it was discovered that two senior downstream water rights in 
Colorado were subject to shortages in the model despite their priority, 
because CRSS allocates water sequentially from upstream to downstream. 
This issue was identified and rectified by modifying CRSS to ensure that 
these two particular senior rights (the Shoshone Power Plant and the 
senior users from the Grand Valley Irrigation Company) were satisfied 
before upstream rights received water (Reclamation 2012f). In the 2018 Ten 
Tribes Partnership Study, to partially address the water rights concern, the 
CRSS representation of a tribal diversion on the Duchesne River was moved 
upstream to ensure that it received its senior allocation, and the State of 
Colorado’s StateMod model was used for simulation of tribal rights on the 
San Juan River in order to ensure the proper allocation to water rights in 
that basin (Reclamation 2018). 

The general areas of uncertainty, error, and limitations noted above begin 
with the input data and extend through the representation of the 
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institutional setting. As noted, in most cases, the areas present 
opportunities for additional research and development and improvement of 
model representation and available data. Reclamation continues to pursue 
these opportunities, as appropriate, in an effort to continually improve 
their modeling capabilities. 

3.5 Challenges and opportunities 

Challenge 
Each Reclamation model (24MS, MTOM, and CRSS) has different ways that 
uncertainty can be better quantified and either addressed or incorporated. 
In particular, each model uses a more simplistic method for projecting 
future inflows in the Lower Basin than in the Upper Basin (5-year averages 
for 24MS and MTOM rather than a forecast, and gaged flow in CRSS rather 
than natural flow). In the Upper Basin, demand projections may differ from 
actual water use trends and the representation of complex operating 
policies via rules deployed at the monthly time step may further contribute 
to this deviation. Finally, more in-depth analyses are needed to verify how 
well modeled operational policies reflect actual operations. (Challenges 
associated with hydrologic uncertainty are described in Chapters 5, 8, 9, 10, 
and 11.) 

Opportunities 
• Complete FROMUS report and update its findings as models are 

refined. 
• Work with the CBRFC to develop unregulated flow forecasts for the 

Lower Basin. 
• Continue to work toward commitments outlined in the Colorado River 

Basin Study regarding the development of natural flows in the Lower 
Basin. 

• Work with Upper Basin states, water users, and tribes to refine long-
term demand projections. 

• Complete hindcasting studies that can help identify how simplifications 
in Reclamation’s models contribute to projection error. 

Challenge 
The coarse spatial resolution in CRSS has implications for studying 
demands and tributary flows. In the Upper Basin, water demands are 
represented in highly aggregated nodes and do not reflect water right 
priorities, which limits the ability to accurately model shortages to specific 
users under different scenarios. On the Lower Basin tributaries, because 
gaged flow is used rather than natural flow, demands are not explicitly 
modeled. CRSS uses a monthly time step that limits the ability to analyze 
the impacts to certain resources, in particular, ecological resources. 
Additionally, the exclusion of smaller tributaries limits the analyses that can 
be performed with CRSS. 



 

Chapter 3. Primary Planning Tools 111 
 

Opportunities 
• Review the configuration, number of nodes, and rules in the Upper 

Basin to explore implementing an allocation system that captures the 
distribution of water supply by water rights priority. 

• The quality, coverage, and resolution of data that is used to naturalize 
inflows has improved and might support model disaggregation in both 
time and space. 

• Explore iterative sub-basin implementations that are solved at shorter 
time scales or finer resolutions and that may be aggregated and fed into 
existing nodes in CRSS. 

Challenge 
Reclamation models are complex and the projections they generate are the 
product of combinations of many data sources and assumptions. It is 
critical that stakeholders and the public understand the uncertainty and 
how this uncertainty affects projections of risk in order to ensure the 
appropriate use of the results for decision making. Reclamation continues 
to work toward improving such communication but there is room for 
improvement. Additionally, the models are not comprehensively 
documented, despite their critical importance in Colorado River Basin 
management and planning.  

Opportunities 
• Continue to improve and refine communication of model assumptions 

and uncertainty on Reclamation’s modeling website and in widely 
distributed modeling results (e.g., the 24MS reports). 

• Develop comprehensive, technical overviews of each of the models to 
share how each model is configured, how the rules are implemented, 
and how the inputs are derived. 



Volume II of the Colorado River Basin State of the Science report focuses on primary data and 
models that are relevant across all time scales. While Volumes III and IV concentrate on short- to 
mid-term forecasting and long-term outcomes, respectively, the data and models addressed in this 
volume can be applied to Colorado River Basin studies performed at all of those time scales. The 
chapters in this volume describe how primary weather, climate, and hydrology data are collected 
and how datasets of other variables are built from primary data. A simple regurgitation of the vast 
literature about the primary data would not serve the goals of this report. The focus, instead, is on 
compiling, summarizing, and offering objective assessment of the data and the work that has been 
done to make it available. The objective of this volume is to be a uniquely useful reference for 
readers.  

Chapter 4 is a reference for weather and climate data. It begins with a description of the methods 
and equipment that have been used to collect weather data, from the installation of the first weather 
stations in the basin in the late 1800s, to the emergence of remotely-sensed distributed data. It 
explains how point data become gridded datasets, how missing data are treated, how large scale 
data are disaggregated, which datasets have common source data, and how quantitative biases can 
be introduced. Knowledge about the methods behind, and idiosyncrasies of, the datasets, along with 
their strengths and weaknesses is presented to help readers determine which data sources are 
better fits for their applications. The chapter provides a detailed comparison of 11 gridded datasets. 
It explains things to consider when comparing values and trends from these datasets, and practical 
and scientific considerations when selecting a gridded dataset. 

Volume II 
Primary Data and Models That Inform All Time Horizons 

 
Chapter 4. Observations—Weather and Climate 

Chapter 5. Observations—Hydrology 

Chapter 6. Hydrologic Models 
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Chapter 5 is a reference to hydrology data—snowpack, streamflow, soil moisture, evaporation, and 
evapotranspiration—that are key inputs to streamflow forecasting and system modeling. Snowpack, 
soil moisture, and evaporation/evapotranspiration data are all gathered using three methods—in 
situ measurements, modeled estimates, and remote sensing. Chapter 5 provides a comprehensive 
description of the multiple data sets developed by each method, and an explanation of the 
advantages and limitations of each. Streamflow, on the other hand, has been measured in essentially 
the same way across the basin since measurements commenced at the end of the 19th century: 
stream gages that measure stream stage, which is subsequently translated to flow by a rating curve 
that is essentially an empirical hydraulic model of the gage site. This chapter explains the 
uncertainties in the gage record, which arise from measurement error but to a larger degree from 
errors in the rating curves. Measured streamflows are naturalized or deregulated for use in models. 
This process introduces more uncertainty, and the sources and implications of this uncertainty are 
thoroughly described in this chapter. The chapter closes with a summary of challenges and 
opportunities regarding hydrology data. 

Chapter 6 is devoted to describing the evolution, application, and trade-offs of a number of runoff 
and land surface models that are the foundation of applications at the smallest time scale, 
streamflow forecasting, to the largest time scale, climate change projections. This chapter is 
complemented by Chapters 8 and 11, which place hydrology models in the context of forecasting and 
projection applications, and by Chapters 4 and 5, which describe the provenance and qualities of the 
data used to force and validate hydrology models. The advantages and disadvantages of the 
hydrology models are summarized and their usefulness for either forecasting or simulating climate 
sensitivity or both is assessed. Not surprisingly, the evolution of hydrologic models follows a path of 
increasing complexity, from empirical conceptual runoff models, to simple water balance models, 
which led to distributed land surface models and fine-scale physically explicit models and finally to 
coupled land-atmosphere models. Models of all of these types continue to be applied in the basin, 
and Chapter 6 describes the models currently in use in the basin and explores emerging models and 
approaches that could improve forecasting and projection. The chapter closes with an examination 
of knowledge gaps, challenges and opportunities for improvement. 
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Key points 
• Weather and climate data are collected and interpolated for specific 

reasons, so not all data and datasets are suitable for all uses. Users 
should be cautious about “off-label” use of climate data and should 
thoroughly investigate the suitability of data before it is applied outside 
of its planned uses. 

• Users of weather and climate datasets should be aware that the data 
reflect average or summary conditions over their spatial and temporal 
resolution and should not expect a gridded product to accurately 
reflect conditions at any particular point on the landscape at any given 
point in time. This is particularly true for high-relief landscapes like the 
Colorado River Basin. 

• Most of the existing high-resolution gridded datasets share some base 
information or use similar processing, or both, so they are not strictly 
independent. 

• There is not now, and likely never will be, perfect weather and climate 
data. Producers of climate information need to communicate, and users 
should be cognizant of, the strengths and weaknesses of the data they 
choose and how climate data choices influence their conclusions. 

• In the Colorado River Basin, the highest elevations have the lowest 
weather station densities and likely the least precise and accurate 
weather information. This is especially problematic for water resource 
questions, because such a large fraction of the runoff is generated at 
high elevations. 

4.1 Introduction 

Weather and climate are important drivers of many hydrologic processes 
and thus have a profound influence on water availability in the Colorado 
River Basin (Nash and Gleick 1991; Christensen et al. 2004; Barnett and 
Pierce 2009; Rasmussen et al. 2011; Vano, Das, and Lettenmaier 2012). There 
is increasing awareness of the fact that weather and climate also influence 
water demand for agricultural (Wisser et al. 2008), municipal (Kenney et al. 
2008), and industrial (van Vliet et al. 2016) uses. Accordingly, any assess-
ment of hydrologic variability in the Colorado River Basin must consider the 
underlying weather and climate variability in spatially and temporally 
explicit ways, which makes climate data and datasets (gridded 
interpolations of station observations and potentially other information) 
particularly critical.  

Most climate data were initially collected in the context of weather 
observation in particular locations and largely for specific reasons, such as 
assessing irrigation demand, evaluating water supply, or ensuring aviation 
safety (Tables 4.1 and 4.2). These primarily purpose-driven measurements, 
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however, are now used in much broader ways. As part of spatially extensive 
networks, long-term records are used to understand spatio-temporal 
variability in climate and in the hydrologic processes it influences. 

Table 4.1 

Planned uses and operating agencies for station networks commonly used in hydrologic research 
within the Colorado River Basin. 

Network/Operating Agency Planned Uses Citations and Information 

Cooperative Observer 
Program (COOP) 

Routine weather 
and climate 
monitoring to track 
changes, improve 
forecasts, and 
assist with public 
safety 

National Oceanic and Atmospheric 
Administration (NOAA) 2019; National 
Weather Service (NWS), n.d.; Iowa State 
University, n.d. NWS via volunteers 

Automated Surface Observing 
System/Automated Weather 
Observing System 
(ASOS/AWOS) Aviation, weather 

monitoring 

National Weather Service (NWS), n.d.; Iowa 
State University, n.d.; National Oceanic and 
Atmospheric Administration (NOAA), n.d.; 
Federal Aviation Administration (FAA) 2019; 
National Oceanic and Atmospheric 
Administration (NOAA), n.d.; Iowa State 
University, n.d. 

NWS/FAA 

Snow Telemetry Network 
(SNOTEL) Monitoring snow 

for water resources 
Schaefer and Paetzold 2001; Natural Resource 
Conservation Service (NRCS), n.d. 

NRCS 

Remote Automated Weather 
Station Network (RAWS) Fire weather 

(primarily) 

Zachariassen et al. 2003; Western Regional 
Climate Center (WRCC), n.d.; National 
Interagency Fire Center (NIFC), n.d. USFS, BLM, NPS, BIA, FEMA, 

FWS, state 

Cooperative Agricultural 
Weather Network (AgriMET) Agriculture; ET 

calculation 
Reclamation 2019a 

Reclamation 

Colorado Mesonet 
(CoAgMET) Agriculture; ET 

calculation 
Colorado State University (CSU) 2019 

Colorado Climate Center at 
CSU 

Soil Climate Analysis Network 
(SCAN) Agriculture; ET 

calculation 

Schaefer and Paetzold 2001; Natural Resource 
Conservation Service (NRCS), n.d.; Iowa State 
University, n.d. NRCS 
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Network/Operating Agency Planned Uses Citations and Information 

Community Collaborative 
Rain, Hail and Snow Network 
(CoCoRaHS) Precipitation 

measurement 

Doesken and Reges 2010; Reges et al. 2016; 
“CoCoRaHS: Community Collaborative Rain, 
Hail & Snow Network” n.d. Colorado Climate Center at 

Colorado State University via 
volunteers 

US Climate Reference 
Network (USCRN) Long-term climate 

monitoring 

NOAA National Centers for Environmental 
Information n.d.; NOAA National 
Environmental, Satellite, Data, and Information 
Service 2007; Diamond et al. 2013 NOAA 

 
For many purposes, however, weather station data are not sufficient. 
Individual station records can contain gaps when measurements were not 
made. Moreover, there is incomplete spatial coverage. To resolve these 
problems, point weather data have been used to develop gridded data 
products. In the development of gridded datasets, the landscape is overlain 
with a grid, and station observations are interpolated or aggregated to 
estimate a value for each grid cell. This process is carried out at regular 
time steps (most frequently daily or monthly) for some number of years 
(e.g., 1950–2010). Because multiple stations—and potentially other types of 
data—are used in the development of the gridded data, the resulting 
products are spatially and temporally complete, i.e., there are values for 
every grid cell and the time series contain no gaps.  

Within the Colorado River Basin, weather and climate data are used for a 
number of purposes. First, weather and climate data are used to calibrate 
hydrologic and streamflow forecast models used in scientific studies and 
for water resource management decisions. Once these models have been 
calibrated, weather and climate data are used as inputs to drive them. 
Climate data, particularly gridded datasets, have also been used extensively 
to downscale and bias-correct climate model projections that are then used 
as inputs to hydrologic models. The output from these future simulations is 
then used in a variety of ways to assess the reliability of water supplies in 
the Colorado River Basin under a range of future climate conditions (Vano, 
Das, and Lettenmaier 2012; Vano and Lettenmaier 2014; Ayers et al. 2016). In 
addition to their use as model inputs, compiled weather data have been 
used to analyze climate patterns and trends across the basin (Hidalgo and 
Dracup 2003; Mo, Schemm, and Yoo 2009; Nowak et al. 2012) and to better 
understand historical patterns of hydrologic variability (McCabe and 
Wolock 2007; Woodhouse et al. 2016; McCabe et al. 2017). Climate data have 
also been used in the analysis and calibration of paleoclimate proxies, 
primarily tree rings, that then provide long-term histories of streamflow, 
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temperature, precipitation, and snow in the basin (Meko et al. 2007; 
Woodhouse and Pederson 2018).  

Table 4.2 

General information about station networks commonly used in hydrologic research within the Colorado 
River Basin. Network start year indicates the earliest available data collected, but not all stations in the 
network have coverage back to the start of the network. The “Available Variables” column describes 
the most common variables available from the network, although there can be data gaps, and some 
stations may provide additional variables. 

Network Available Variables 
Minimum 
Temporal 
Resolution 

Network Start 
Year 

Cooperative Observer 
Program (COOP) 

Maximum temperature, minimum 
temperature, snowfall, precipitation 

Daily 1890 

Automated Surface 
Observing 
System/Automated 
Weather Observing 
System (ASOS/AWOS) 

Temperature, pressure, wind, 
dewpoint, precipitation (type, amount, 
intensity), visibility, ceiling height, 
other comments 

Hourly or sub-
hourly; some 
stations collect 
1- and 5-
minute 
observations 

ASOS: late 
1980s/1990s, 
AWOS 
implemented 
earlier 

Snow Telemetry Network 
(SNOTEL) 

Temperature, precipitation, snow 
water equivalent. Usually also solar 
radiation, snow depth, wind, humidity; 
subset of stations: soil moisture and 
temperature 

Sub-daily; 
some stations 
are hourly 

1979 

Remote Automated 
Weather Station Network 
(RAWS) 

Precipitation, wind, air temperature, 
humidity, fuel temperature, fuel 
moisture, solar radiation 

10-minute 
Late 1970s, 
early 1980s 

Cooperative Agricultural 
Weather Network 
(AgriMET) 

Temperature, precipitation, humidity, 
soil temperature and moisture, wind, 
radiation 

Some variables 
at 15 minutes 

Early 1980s 

Colorado Mesonet 
(CoAgMET) 

Temperature, humidity, wind, 
radiation, precipitation, soil 
temperature 

5-minute Early 1990s 

Soil Climate Analysis 
Network (SCAN) 

Soil temperature and moisture, 
humidity, wind, radiation, 
precipitation, temperature 

Hourly Early 1990s 

Community Collaborative 
Rain, Hail and Snow 
Network 
(CoCoRaHS) 

Precipitation, snowfall, hail, and flood 
reports; some evapotranspiration 

Daily 1998 

US Climate Reference 
Network (USCRN) 

Temperature, precipitation, wind 
speed, humidity, radiation, soil 
temperature and moisture 

Hourly 2003 
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Numerous approaches have been taken to provide these data in ways that 
meet diverse user needs. Most data products fall into one of four main 
categories: 1) in situ point data collected at weather stations, 2) statistically 
interpolated data, 3) physically interpolated data (i.e., reanalyses), and 
4) spatially continuous data derived from a remotely sensed product. This 
chapter focuses on in situ data and statistically interpolated data, as these 
are the kinds of data that have been used most frequently to understand 
the hydrology of the basin. However, one product discussed here, the 
North American Land Data Assimilation Scheme (NLDAS-2) is derived from 
reanalysis (Xia et al. 2012). 

4.2 In situ observations 

In situ weather station data are simply records of weather variables (e.g., 
temperature and precipitation) at specific locations. These stations are the 
underlying source of all weather and climate information from the late 
1800s, when the first weather stations were installed in the Colorado River 
Basin, until the late 20th century, when remotely sensed climate monitoring 
from satellites first became widely available (Davis 2007). Although the first 
weather stations in the basin were put into place in the late 1800s, there 
were relatively few stations, and their spatial coverage was quite limited 
(Figure 4.1). As the number of stations has increased over time, their spatial 
distribution has increased, as has the diversity of environments that they 
sample in the basin (McAfee et al. 2019). That said, weather station coverage 
is still more complete in river valleys where towns and cities are located, 
and few high-quality stations were installed at high elevations prior to the 
late 1970s or early 1980s (McAfee et al. 2019).  

Weather recording technology has also changed over time. Figure 4.2a 
shows a COOP station in Granger, Utah from around 1930. Temperature is 
measured inside a Cotton Region Shelter with a liquid thermometer. While 
some COOP stations still use these sensors, others use an electronic 
thermometer referred to as Maximum Minimum Temperature System or 
MMTS inside a shield composed of white plates. Both can be seen in Figure 
4.2b, the COOP station in Logan at Utah State University. Automated 
Weather Observing System, or ASOS, stations (Figure 4.2c) also use 
electronic temperature sensors. 

Almost all weather stations record daily minimum and maximum 
temperature and daily precipitation (the total liquid content of all rain, 
snow, and other precipitation that accumulates in a rain gage). The 
intended or primary use of the station dictates where it is located, what 
other variables it measures, and the temporal resolution of those data. 

NWS Cooperative 
Observer Program  

Link: 
https://www.weather.g
ov/coop/ 

https://www.weather.gov/coop
https://www.weather.gov/coop/
https://www.weather.gov/coop/


 

Chapter 4. Observations—Weather and Climate 120 
 

 

 
Figure 4.1 
Map showing stations from the Global Historical Climatology Network located in or near the Colorado River Basin 
that have first record dates prior to 1950. 
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The need to monitor for specific reasons has led to the development of 
specific weather station networks—collections of stations using very similar 
instrumentation designed to measure weather for an explicit purpose. For 
example, the SNOTEL network was developed primarily to assess water 
resource availability in the western United States (Schaefer and Paetzold 
2001). (It is possible for a station to belong to multiple networks. For 
example, the weather station at Grand Junction Walker Field is an ASOS 
station that also belongs to the COOP network.)  

Because much of the western U.S. relies on water delivered as winter 
precipitation and stored in mountain snowpacks (e.g., Christensen et al. 

 
Figure 4.2 
Photos of (a) a COOP station in Granger, UT, taken around 1930, (b) the COOP station at Utah State University which 
measures temperatures using both a Cotton Region Shelter and the Minimum Maximum Temperature System. (c) the 
ASOS station at Milford, UT. Panel a is from the NOAA Photo Library. Panels b and c are from the Western Regional 
Climate Center Station Pictures resource.  

https://photolib.noaa.gov/Collections/National-Weather-Service/Measuring-Instruments-and-Methods/emodule/660/eitem/4232
https://wrcc.dri.edu/Monitoring/Stations/station_pic_show.php?snet=Coop&sstate=UT&stag=logan&ipic=1&stitle=Logan%2C+Utah+State+University
https://wrcc.dri.edu/Monitoring/Stations/station_pic_show.php?snet=ASOS&sstate=UT&stag=milford&ipic=1&stitle=Milford
https://wrcc.dri.edu/Monitoring/Stations/station_pics.php
https://wrcc.dri.edu/Monitoring/Stations/station_pics.php
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2004), stations in the SNOTEL network are typically located in small valleys 
in the mountains, where snow collects (Schaefer and Paetzold 2001). 
Stations are instrumented to provide multiple measurements of the 
snowpack such as snowfall, snow depth, and snow water equivalent (SWE) 
that are not routinely measured at other networks. They are also often 
designed to function in areas with deep snow by, for example, measuring 
precipitation at heights well above 6 feet, although the World 
Meteorological Organization notes that most gages are placed about 3 feet 
above the surface (World Meteorological Organization 2008). Normally, the 
use of tall rain gages would enhance undercatch, because wind speeds 
increase with height; however, this may not influence the degree of 
undercatch at SNOTEL stations because many SNOTEL sites are forested 
(Serreze et al. 1999). Figure 4.3 shows the Arapaho Ridge SNOTEL station in 
Colorado. The view of the rain gage relative to the surrounding vegetation 
suggests that the gage is taller than three feet. The SNOTEL station also 
includes a snow-depth sensor and a snow pillow, equipment that is 
relatively standard for SNOTEL stations but not common in other weather 
station networks. 

Tables 4.1 and 4.2 describe the characteristics of seven station networks 
that are common across the western U.S. and that are frequently used to 
understand hydrology and consumer demand in the Colorado River Basin. 
These tables are not comprehensive; there are smaller and more localized 
networks that may also be used in hydrologic analyses. In some cases, data 
from smaller networks are provided via similar, more comprehensive 

 

Figure 4.3 

Photo of the 
Arapaho Ridge 
SNOTEL site 
northwest of Longs 
Peak in Colorado. 
(Source: Brian 
Domonkos, Natural 
Resources 
Conservation 
Service) 
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networks. For example, the AgriMet webpage provides access to data from 
NICENet, AgWxNet, and some state-run stations that provide similar kinds 
of measurements (Reclamation 2019a).  

Figure 4.4 shows stations in or within 6.2 miles (10 km) of the basin in the 
Soil Climate Analysis Network (SCAN), and the AgriMET, CoAgMet, 
SNOTEL, RAWS, and COOP networks. Only stations that reported in the 21st 
century (i.e., stations that have an end date later than 2000) are shown. 
RAWS and COOP station locations were identified from the Global 
Historical Climatology Network (GHCN) database on the basis of their 
identification codes. The GHCN is an extensive collection of global weather 
station data that meet minimum criteria for record length and metadata 
(Menne et al. 2012). Station records included within the GHCN are 
subjected to automated quality control and assurance checks (Peterson, 
Vose, et al. 1998; Durre et al. 2010). 

Although different station networks were developed for different purposes, 
all station data are prone to a common set of errors. Missing data is a 
common problem that occurs at both manual and automated stations 
because of equipment malfunction and reporting failures. Station records 
are also prone to inhomogeneities—non-climatic changes in the mean or 
variance of the data—caused by changes in instrumentation, time of 
observation, local surroundings, and even observers, as well as by 
relocation of the entire station (Karl et al. 1986; Karl, Diaz, and Kukla 1988; 
Quayle et al. 1991; Peterson, Easterling, et al. 1998; Menne and Williams 
2009; Menne, Williams, and Vose 2009). Some of these inhomogeneities are 
correctable, and some are not. One notable recent example of this is the 
inhomogeneity in minimum temperature at SNOTEL sites caused by a 
network-wide changeover to new thermometers beginning in the mid-
1990s and extending through the early 2000s (Oyler, Dobrowski, et al. 2015).  

In Colorado, the change in instrumentation occurred primarily in 2004–
2006 (Rangwala et al. 2015). The change in instrumentation led to the 
appearance of rapidly warming minimum but not maximum temperatures 
and a correspondingly sharp reduction in the daily temperature range 
(Rangwala et al. 2015). This particular inhomogeneity appears to be 
correctable, either through comparison with near-by stations as in Oyler, 
Dobrowski, et al. (2015), or through corrections developed by the Natural 
Resources Conservation Service (Ma 2017). In general, there are any number 
of mechanisms for correcting inhomogeneities (Menne and Williams 2009; 
Peterson, Easterling, et al. 1998; Hamlet and Lettenmaier 2005), most of 
which rely on the presence of a nearby station with a homogenous record. 
Inhomogeneities may be more difficult to correct in areas where, or during 
times when, there are few weather stations to compare the suspect station 
against.  

USBR Agrimet Network 
Map 

 
Link: 
https://www.usbr.gov/p
n/agrimet/agrimetmap/
agrimap.html 

https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
https://www.usbr.gov/pn/agrimet/agrimetmap/agrimap.html
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Figure 4.4 
Locations of presumably active weather stations in or near the Colorado River Basin. COOP and RAWS locations were 
derived from the GHCN, so COOP and RAWS stations not included in the GHCN are not shown on the map. 
Likewise, stations in the COOP network but that are also ASOS or AWOS stations may not be represented on this 
map depending on their coding the in the GHCN. 
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Inhomogeneities that develop due to gradual changes in the surrounding 
environment can be more challenging to adjust for (Menne, Williams, and 
Vose 2009). The presence of multiple kinds of inhomogeneities in a record, 
for example, at a station that is moved from one location to another while 
also being impacted by urbanization, may further complicate correcting the 
record. 

Precipitation measurements are also affected by undercatch, where less 
precipitation is captured by the gage than actually falls. Undercatch occurs 
because of 1) evaporation from the gage; 2) wetting error (i.e., water that 
adheres to the sides of the gage and may not be fully measured); 
3) turbulence, wherein turbulent air flow over the mouth of the gage 
pushes rain drops and snowflakes away from the gage opening; and 4) for 
snow, bridging across the top of the gage, which makes it more likely that 
precipitation will be lost before measurement. The last can also shift the 
apparent timing and intensity of precipitation if snow accumulates over the 
mouth of the gage only to fall in, all at once, at a later time. The degree of 
undercatch varies with the type of gage used, the use and kind of shielding, 
wind speed, precipitation phase, and precipitation intensity (Adam and 
Lettenmaier 2003; Goodison, Louie, and Yang 1998). Numerous studies have 
evaluated catch efficiency for a range of gage and shield combinations. A 
clear finding is that unshielded gages measure less rain and snow than 
shielded gages (Hanson, Johnson, and Rango 1999; Rasmussen et al. 2012). 
This may be of concern because some networks, like CoCoRaHS (Reges et 
al. 2016) and RAWS (National Wildfire Coordinating Group 2014) use 
unshielded gages. Owing to the high variability in undercatch due to 
equipment combined with environmental conditions, making accurate 
correction is difficult, although some attempts have been made (e.g., Yang 
et al. 1998). 

Although rain and snow are particularly difficult to quantify, any 
meteorological measurement can contain error. Stations that are not 
regularly maintained and calibrated can collect inaccurate or imprecise 
data, even in the absence of damage (Leeper, Rennie, and Palecki 2015). As 
with precipitation, different models of temperature sensors and logging 
equipment may measure slightly different values (Lin and Hubbard 2004), 
and different types of shielding on temperature sensors can also modify the 
temperature observed because they differ in the degree of shading and 
airflow past the temperature sensor they provide (Hubbard, Lin, and 
Walter-Shea 2001). Liquid thermometers can also be subject to parallax 
error (Linacre 1992), for example, when a thermometer at a fixed height is 
read by observers of different heights. Measurement error associated with 
other variables is also expected (Linacre 1992). Recording errors of all kinds 
can also be a problem, particularly for manual stations (Leeper, Rennie, and 
Palecki 2015; Menne et al. 2012; Linacre 1992).  
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Consequently, another consideration in the use of station data is whether 
and in what way the data have been quality controlled (QC) prior to release. 
Not all networks conduct extensive QC, those that do may use different 
procedures, and QC protocols may evolve over time. The AgriMet network 
regularly maintains and calibrates equipment, applies automated checks to 
sub-daily data collected at its stations, flags potentially erroneous values in 
near real-time and then uses manual checks daily (Hamel, n.d.). The 
SNOTEL network also relies on a combination of equipment maintenance, 
flagging, and eyes-on evaluations of data (Kuiper et al. 2014). Other 
networks, such as RAWS, may have less standardized quality control 
(Zachariassen et al. 2003; Brown et al. 2011). Integrative networks typically 
apply their own checks. The Global Historical Climatology Networks 
investigate data records independently and in relationship to nearby 
stations, typically flagging suspect data (e.g., Global Historical Climatology 
Network; Durre et al. 2010; Menne et al. 2012).  

In general, in situ weather station data are most appropriate for 
characterizing the climate variables they were designed to measure in their 
immediate surroundings, assuming that they are routinely and 
appropriately maintained. However, many stations have proven to be useful 
outside of their intended purpose, especially when analyzed in innovative 
ways. For example, SNOTEL stations are designed primarily to describe the 
depth and water content of the snowpack, understand how it developed 
over the course of the season, and track year-to-year variability in the 
snowpack at that location. Although SNOTEL stations were not necessarily 
designed for long-term climate monitoring, they are generally well 
maintained stations that, barring the instrumentation-related 
inhomogeneity, would be effective in tracking temperature trends in higher 
elevations. RAWS stations have been used for a much larger array of 
applications than originally intended (Brown et al. 2011). AgriMet stations 
are not designed to track snowpack, most notably because they are not 
usually instrumented with a snow pillow and snow-depth sensor. They are, 
however, equipped with both tipping bucket and weighing precipitation 
gages. When both types of precipitation measurements are available, they 
can be leveraged to effectively distinguish rain and snow (Strachan 2016). In 
other cases, beneficial uses have been identified for what would otherwise 
be errors or weaknesses. For example, the placement of COOP stations in 
populated areas has diminished their ability to track regional climate 
variability (without correction), but it has allowed the detection and 
quantification of urban heat islands. 

Agrimet Weather 
Station Equipment and 
Sensors 

 
Link: 
https://www.usbr.gov/p
n/agrimet/aginfo/senso
rs.html 

https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
https://www.usbr.gov/pn/agrimet/aginfo/sensors.html
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4.3 Statistically interpolated gridded data 

Statistically interpolated data fill spatial gaps between existing point 
measurements using a variety of techniques. Most statistically interpolated 
data are aggregated to represent grids or rasters of varying spatial 
resolution; however, there are some climate data provided not for regular 
grids, but for irregular areas like climate divisions, counties, or basins. 
Some of these irregular area products are themselves developed from 
gridded products. For example, the latest (2019) version of the climate 
division data are derived from a roughly 3.1-mi (5-km) resolution gridded 
product called nClimGrid (Vose et al. 2014).  

The interpolation used to make gridded data may be based solely on 
observations, with the value at a given point based on some, usually 
distance weighted, function of values at nearby stations. This is more 
common for coarser resolution (> 0.5°) products. Most higher-resolution (< 
10-mile) products, however, also incorporate some physiographic 
information to more accurately reflect the strong influence of terrain on 
spatial variability in climate. For example, all of the products described in 
this chapter incorporate an adjustment for the lapse rate or expected 
decrease in temperature with elevation. Different statistical methods for 
interpolation are used in different products. Although they are not 
discussed here, Daly (2006) provides an overview of commonly used 
interpolation methods. 

Gridded data products 
For most hydrologic modeling applications, relatively high-resolution 
gridded data are preferable, so the focus here is on selected, commonly 
used products listed in Table 4.3 and described in Table 4.4.  

Table 4.3 

General information about gridded data products commonly used in hydrologic research within the 
Colorado River Basin. Definitions are provided in the glossary. 

Product Name Variables 
Spatial 
Resolution 

Spatial 
Coverage 

Temporal 
Resolution 

Temporal 
Coverage 

PRISM AN81d 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp 

30 sec (~0.5 mi) 
& 2.5 min (~2.5 
mi) 

CONUS Daily 
1981–near 
present  

PRISM AN81m 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp 

30 sec (~0.5 mi) 
& 2.5 min (~2.5 
mi) 

CONUS Monthly 
1895–near 
present  

PRISM LT81m 
Tmax, Tmin, Tmean, Tdew, 
VPDmax, VPDmin, Prcp, 
VPR 

30 sec (~0.5 mi) CONUS Monthly 
1895–near 
present  

TopoWx Tmax, Tmin 30 sec (~0.5 mi) CONUS 
Daily, 
monthly 

1948–2016 
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Product Name Variables 
Spatial 
Resolution 

Spatial 
Coverage 

Temporal 
Resolution 

Temporal 
Coverage 

Livneh 2013/ 
Maurer 2002 

Tmax, Tmin, Prcp, Wind, 
SolRad & VIC-simulated 
baseflow, canopy water, 
ground heat flux, sensible 
heat flux, latent heat flux, 
net radiation, SWE, soil 
moisture, surface runoff, 
total ET 

L: 1/16° (~3.8 
mi)  

 

M: 1/8° (~7.5 
mi)  

CONUS & 
Columbia 
River Basin 

Sub-daily, 
Daily, 
monthly 

L: 1915–
2011 

 

M: 1950–
2000 

Livneh 2015 

Tmax, Tmin, Prcp, Wind, 
SolRad & VIC-simulated 
baseflow, canopy water, 
ground heat flux, sensible 
heat flux, latent heat flux, 
net radiation, SWE, soil 
moisture, surface runoff, 
total ET 

1/16° (~3.8 mi) 

N. America 
south of 53°N 
through 
Mexico 

Daily, 
monthly 

1950–2013 

gridMET 

Tmax, Tmin, Prcp, RHmin, 
RHmax, SpecHum, Wind, 
SolRad & derived burning 
index, fuel moisture, ERC, 
PDSI, rET-alfalfa, rET-grass, 
VPD 

2.5 min (~2.5 
mi) 

CONUS Daily 
1979–very 
near 
present 

Hamlet 2005 Tmax, Tmin, Prcp, Wind  1/8° (~7.5 mi) 
CONUS plus 
Columbia 
River Basin 

Daily 1915–2003 

Hamlet 2010 Tmax, Tmin, Prcp, Wind 1/16° (~3.8 mi) 
CONUS plus 
Columbia 
River Basin 

Daily 1915–2006 

Daymet v. 3 
Tmax, Tmin, Prcp, SolRad, 
DayLength, VPR, SWE 

1 km (~0.6 mi) 
N. America, 
north of 14°N 

Daily 
1980–end 
of last full 
year 

Newman 
gridded 
ensembles 

Prcp, Tave, DTR 1/8° (~7.5 mi) 

CONUS & 
portions of 
Mexico and 
Canada  

Daily 1980–2016 

nClimGrid Tmax, Tmin, Prcp 5 km (~3.1 mi) CONUS Monthly 
1895–
present 

NLDAS-2 

Tave, SpecHum, Prcp, 
Wind, Pres, SolRad, DLWR, 
& numerous land-surface 
model outputs derived 
from the forcing variables 

1/8° (~7.5 mi) 

CONUS, parts 
of Canada and 
Mexico, (125° 
to 67°W, 25° 
to 53°N)  

Hourly 
1979–near 
present 
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PRISM (Parameter-elevation Relationships on Independent Slopes Model) 
was one of the first higher-resolution (< 10-mile) gridded climate products 
(Daly et al. 1994, 1997, 2002, 2008), and it is one of the few to extend back to 
the late 19th century. Because of its long history and good temporal 
coverage, PRISM has long been considered a solid climate data choice. It 
also incorporates one of the most diverse networks of stations (Table 4.4), 
particularly for precipitation. Many new, higher-resolution gridded 
products have been developed over the last 10–20 years. Development 
decisions regarding the spatial and temporal (daily versus monthly) 
resolution, the time span of the product, and which variables to supply—
although most supply only temperature or precipitation, or both—are made 
to match the product to its intended use and the developers’ assessment of 
what the underlying data can reasonably support.  

Table 4.4 

Input data and development methodologies used in the production of commonly used gridded climate 
datasets.  

Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

PRISM AN81d / 
PRISM AN81m 

All networks listed in 
Table 4.2, plus Canadian 
and Mexican federal 
networks, numerous 
smaller networks, RADAR 
data, and information 
from the NCEP/NCAR 
Reanalysis  

Normals are developed using 
the PRISM methodology, 
wherein the regression 
accounts for distance to the 
coast, elevation, cold-air 
pooling, and boundary layer 
thickness. Climatologically 
aided interpretation is then 
used to develop the 
temporally varying datasets. 
Some radar data also used to 
inform precipitation. 

PRISM aims to make a "best 
estimate" given available 
information. Additional details 
about adjustments between 
daily and monthly data for 
different versions of each are 
provided in PRISM (2016) 
Table 5. 

Access: 
http://www.prism.oregonstate.
edu/ (2.5 min, free) 

prism_orders@nacse.org (30 
sec, $) 

Daly, Neilson, 
and Phillips 
(1994); Daly, 
Taylor, and 
Gibson (1997); 
Daly et al. (2002; 
2008); Daly, 
Smith, and Olson 
(2015; PRISM 
2016) 

PRISM LT81m AGRIMET, ASOS, AWOS 
& WBAN, COOP, RAWS, 
SNOTEL, Canadian and 
Mexican federal 
networks, and stations 
run by the H.J. Andrews 
Experimental Forest, the 
Western Regional 
Climate Center, the 
Minnesota Climatology 
Working Group, and the 
North Dakota State 
Water Commission 

Normals are developed using 
the PRISM methodology, 
wherein the regression 
accounts for distance to the 
coast, elevation, cold-air 
pooling, and boundary layer 
thickness. Climatologically 
aided interpretation is then 
used to develop the 
temporally varying datasets. 
Some information from 
RADAR is also used to inform 
precipitation. 

The LT81m version aims for 
"temporal consistency" and so 
uses only networks with 20+ 
year records. 

 

Access: 
prism_orders@nacse.org ($) 

Daly, Neilson, 
and Phillips 
(1994); Daly, 
Taylor, and 
Gibson (1997); 
Daly et al. (2002; 
2008); PRISM 
(2016); Daly, 
Smith, and Olson 
(2015) 

PRISM 

 
Link: 
http://www.prism.oreg
onstate.edu/ 

http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
mailto:prism_orders@nacse.org
mailto:prism_orders@nacse.org
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

TopoWx 

GHCN-D (incl. COOP, 
ASOS, WBAN, RAWS, 
SNOTEL), SNOTEL, 
RAWS that might not be 
in GHCN-D. Requires 5+ 
years data, MODIS LST 
(MYD11A2) 

Station records are 
homogenized and gap-filled 
prior to interpolation. A terrain 
index based on the PRISM 
DEM is used to predict cold-
air pooling. Grids of monthly 
averages are derived using 
kriging; geographically 
weighted regression is used to 
interpolate daily anomalies, 
which are added to the 
monthly averages to get daily 
values. 

Annual updates will 
incorporate both new 
observations and model 
enhancements, resulting in 
improved datasets, but 
versions will be incompatible.  

 

Access: 
http://www.scrimhub.org/reso
urces/topowx/ (free) 

Oyler, 
Dobrowski, et al. 
(2015); Oyler, 
Ballantyne, et al. 
(2015); Oyler et 
al. (2016); Oyler, 
n.d. 

Livneh 2013/ 
Maurer 2002 

COOP temperature and 
precipitation from 
stations with 20+ years of 
data. Environment 
Canada stations in 
Canada and Mexican 
Meteorological Service 
Stations in Mexico, with 
gap-filling as needed 
from NCEP/NCAR 
Reanalysis and GPCP 
precipitation. Wind from 
NCEP/NCAR R1. Wind 
values before 1948 are 
the average of available 
years. 

Temperatures were adjusted 
to the elevation of the grid cell 
before interpolation assuming 
a constant lapse rate of -
6.5°C/km (-3.6°F/1000 ft). 
Precipitation amounts were 
adjusted to be consistent with 
patterns in the 1961-90 PRISM 
climatology. VIC uses MTCLIM 
to estimate humidity and 
radiation variables from 
temperature and precipitation. 

Access: 
https://www.esrl.noaa.gov/psd
/data/gridded/data.livneh.htm
l (free) or 
http://ciresgroups.colorado.ed
u/livneh/data/daily-
obserational-
hydrometeorology-data-set-
conus-extent-canadian-extent-
columbia-river-basin (Livneh, 
free) 

http://www.engr.scu.edu/~em
aurer/gridded_obs/index_grid
ded_obs.html (Maurer 
updated, free) 

Maurer et al. 
(2002); Livneh et 
al. (2013); NOAA 
ESRL, n.d.; 
Livneh, n.d. 

Livneh 2015 

As in Livneh et al. (2013): 
COOP stations in the 
U.S. with 20+ years of 
data, Environment 
Canada (EC) stations in 
Canada, Mexican 
Meteorological Service 
stations in Mexico 

Methods are similar to 
L13/M02. Precipitation was 
adjusted to the 1981-2020 
PRISM climatology in CONUS 
and the Vose et al. (2014) 
climatology in Mexico and 
Canada.  

One of the goals was to 
reduce spatial inhomo-
geneities associated with 
differing national precipitation 
measurement standards for 
better hydrologic simulation in 
transboundary basins. 

Access: 
https://data.nodc.noaa.gov/cg
i-
bin/iso?id=gov.noaa.nodc:012
9374;view=html (free) or 
ftp://192.12.137.7/pub/dcp/ar
chive/OBS/livneh2014.1_16de
g/ (free) 

Maurer et al. 
(2002); Livneh et 
al. (2013, 2015); 
Livneh, n.d. 

http://www.scrimhub.org/resources/topowx/
http://www.scrimhub.org/resources/topowx/
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://ciresgroups.colorado.edu/livneh/data/daily-obserational-hydrometeorology-data-set-conus-extent-canadian-extent-columbia-river-basin
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/%7Eemaurer/gridded_obs/index_gridded_obs.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
ftp://192.12.137.7/pub/dcp/archive/OBS/livneh2014.1_16deg/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

gridMET 

NLDAS-2, PRISM, 
Climate Forecast System 
Reanalysis for the 
previous few days to 
week  

Daily NLDAS-2 output is 
interpolated to the PRISM grid 
and then temperature, 
precipitation, and humidity are 
adjusted to display spatial 
variability as in PRISM. No 
higher resolution information 
is incorporated for any other 
variable. 

Access:  
http://www.climatologylab.org
/gridmet.html (free) 

Abatzoglou 
(2013; 2019) 

Hamlet 2005 Stations with at least one 
complete year (365 
consecutive days) and at 
least five total years of 
data from COOP, EC, 
monthly U.S. Historical 
Climatology Network 
(USHCN), Historical 
Canadian Climate Data 
(HCCD); Wind from 
Maurer et al. (2002) 
where wind values before 
1949 are the average of 
available years. 

Smoothed COOP and EC data 
are adjusted against 
smoothed homogenized data 
(USHCN and HCCD) at 
monthly time scales to 
account for major 
inhomogeneities. Elevation 
adjustment and interpolation 
as per Maurer et al. (2002) 
except that the lapse rate was 
-6.1°C/km (-3.3°F/1000 ft). 
Precipitation is adjusted to the 
PRISM climatology. 

The goal in Hamlet and 
Lettenmaier (2005) was to 
develop a more temporally 
homogenous dataset 
otherwise similar to Maurer et 
al. (2002). 

Maurer et al. 
(2002); Hamlet 
and Lettenmaier 
(2005) 

Hamlet 2010 

COOP, EC, monthly 
USHCN, HCCD; Wind 
from Maurer et al. (2002) 

Hamlet 2010 is constructed 
similarly to Hamlet 2005, but 
temperature is also adjusted 
to match the PRISM 
climatology. 

Additional details about the 
Hamlet 2010 data product 
were found in Henn et al. 
2018 and Lundquist et al. 
2015 

Maurer et al. 
(2002); Hamlet 
and Lettenmaier 
(2005); Deems 
and Hamlet 
(2010) 

Daymet v.3 

GHCN 

Locally derived elevation 
relationships and distance 
weighted regressions are used 
to estimate Tmax, Tmin, and 
precipitation. All other 
variables are estimated as a 
function of one or more of 
Tmax, Tmin, and precipitation 
using MTCLIM algorithms. 

Access: 
https://daymet.ornl.gov/ (free) 

Thornton, 
Running, and 
White (1997); 
Thornton and 
Running (1999); 
Thornton, 
Hasenauer, and 
White (2000); 
Thornton et al. 
(2016) 

http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
https://daymet.ornl.gov/
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Product Name 

Documentation 
Input Data Key methodologies Notes & Access 

Newman gridded 
ensembles 

GHCN and SNOTEL 
stations not included in 
GCHN 

This is developed using the 
probabilistic interpolation 
method of Clark and Slater 
(2006). For each grid point, T, 
DTR, and P are calculated as a 
function of distance-weighted 
station values, latitude, 
longitude, slope, aspect, and 
elevation. Uncertainty is 
gaged from the regression 
residuals, and then ensemble 
members are developed by 
combining the outcome of the 
regression with a random 
value generated from the 
uncertainty and a field of 
spatially and temporally 
correlated random numbers. 

The goal was to estimate 
potential uncertainty 
associated with preparing 
gridded climate data. 

 

Access: 
https://www.earthsystemgrid.o
rg/dataset/gridded_precip_an
d_temp.html  or 
https://doi.org/10.5065/D6TH
8JR2 (free) 

Clark and Slater 
(2006); Newman 
et al. (2015; 
2019) 

nClimGrid  GHCN stations in the 
COOP, ASOS, RAWS, 
SNOTEL, EC, and 
Mexican Meteorological 
Service networks, but 
only temperature is used 
from RAWS. Only stations 
with 10+ years of data 
since 1950 are included. 

Station values are adjusted for 
known biases, homogenized, 
and then interpolated in a way 
that accounts for latitude, 
longitude, elevation, distance 
to coast, cold-air pooling, 
slope, and aspect effects. 

This is the gridded data 
underlying the climate division 
data nClimDiv. 

 

Access: 
https://data.nodc.noaa.gov/cg
i-
bin/iso?id=gov.noaa.ncdc:C00
332 (free) 

Vose et al. 
(2014); NOAA, 
n.d. 

NLDAS-2 

NARR for most variables, 
CPC and radar for 
precipitation over U.S. 
(NARR over Canada and 
Mexico), satellite data for 
shortwave radiation 
augments NARR 

Coarse output is interpolated 
from ~20 mi to ~7.5 mi 
resolution and temporally 
interpolated to hours. 
Temperatures are adjusted 
assuming a static -6.5°C/km (-
3.6°F/1000 ft) lapse rate. 
Spatial patterns in 
precipitation are matched to 
those in PRISM. 

Access: 
https://ldas.gsfc.nasa.gov/nlda
s/nldas-2-forcing-data and 
https://disc.gsfc.nasa.gov/data
sets?keywords=NLDAS (free) 

Cosgrove 2003; 
Mitchell 2004; 
Xia et al. 2012 

 

https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://doi.org/10.5065/D6TH8JR2
https://doi.org/10.5065/D6TH8JR2
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://ldas.gsfc.nasa.gov/nldas/nldas-2-forcing-data
https://ldas.gsfc.nasa.gov/nldas/nldas-2-forcing-data
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
https://disc.gsfc.nasa.gov/datasets?keywords=NLDAS
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All of the higher resolution products explicitly account for changes in 
temperature with elevation, although they do so in different ways (Table 
4.4, Figure 4.5). Most products include a mechanism to adjust for changes in 
precipitation with elevation, as well. Interestingly, many use the elevational 
change in precipitation estimated by PRISM (Figure 4.6). Other decisions 
made in the construction of a dataset are typically made to avoid specific 
problems that arise from changes in the number, type, and location of 
stations and the common measurement errors described above.  

 
Figure 4.5 
Flow diagram of the data sources and processes used to produce the high-resolution gridded temperature products 
featured in this chapter. Note that the diagram does not accurately indicate the order of processing. For example, 
gap-filling in TopoWx occurs prior to adjustment for cold-air pooling. In addition to differences in choice of network, 
products may select different stations from the same network. 
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Common choices that must be made in developing a gridded data product 
include 1) which station network or networks to use, 2) which stations to 
use from those networks, 3) whether additional data from satellites, radar, 
or reanalysis is included, 4) what statistical method to use for interpolation, 
5) how to account for changes in temperature and precipitation related to 
elevation, aspect, slope, or other aspects of the terrain, and 6) whether to 
apply any additional corrections, such as filling gaps in the data, accounting 
for undercatch, or homogenizing—correcting shifts in the measured 
climate that are due to changes in the station or the area around the 
station rather than to actual changes in regional climate. 

These choices introduce some disagreement between different products, 
although there are clear similarities, as well. Figure 4.7 shows time series of 
average water year minimum and maximum temperature and total water-
year precipitation averaged over the Upper Colorado Basin for several of 
the products listed in Tables 4.3 and 4.4.  

 
Figure 4.6 
Flow diagram of the data sources and processes used to produce the high-resolution gridded precipitation products 
featured in this chapter. In addition to differences in choice of network, products may select different stations from 
the same network. 
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There are clearly strong correlations between the products. All of the 
datasets that provide precipitation data estimate that basin-wide average 
water-year precipitation is between 15.5” and 16” (1981–2010 average). They 
all show that water year 1997 was quite wet—estimates range between 21.0” 
and 22.1"—and that 2002 was dry—between 9.7” and 10.2”. Earlier in the 
record, however, there are much larger differences between precipitation 
estimates. For example, in 1927, the Livneh et al. (2013) data estimate 3.2” 
more precipitation over the Upper Colorado Basin than PRISM does. 
Likewise, all of the datasets indicate increasing temperatures since the 
1970s. All indicate that 1934 and 2000 were particularly warm years and that 
the mid-1970s had relatively low minimum temperatures.  

These plots also clearly demonstrate that both Livneh datasets estimate 
substantially cooler minimum temperatures than the other datasets, even 
though their estimates for maximum temperature are similar to the other 
data products. Early in the 20th century, the PRISM and nClimGrid data sets 
provide similar estimates of minimum temperature, but nClimGrid 
estimates cooler maximum temperatures.  

Newman et al. (2019) outline a few common sources of differences between 
gridded datasets. Numerous other dataset comparison papers such as 
Behnke et al. (2016), Henn et al. (2018) Lundquist et al. (2015), and Walton 
and Hall (2018) also discuss the source of discrepancies between data 
products. One of these is the choice of which weather stations to use. 
Products that use more weather stations or a more spatially diverse set of 
weather stations are more likely to capture detailed spatial patterns in 
temperature and precipitation. Almost all of the products rely directly or 
indirectly on data from the COOP network, although they may not sample 
the same stations owing to differences in selection criteria. Exactly which 
stations are chosen in any area by any product may not be clear without in-
depth inspection of the documentation or correspondence with the data 
developers. For more discussion on this, see Guentchev, Barsugli, and 
Eischeid (2010) and Newman et al. (2019). 

Other choices made in developing gridded datasets also clearly influence 
the outcome. Gridded datasets, like the Livneh data, that use a fixed lapse 
rate of -3.6°F/1000 feet (-6.5°C/km) tend to estimate colder temperatures, 
especially colder minimum temperatures and particularly during the winter 
when cold air pooling is common, than other products (Newman et al. 
2015), as can be seen in Figure 4.7. Other choices probably also cause 
differences between different datasets, but it is not always possible to draw 
clear lines between those choices (e.g., statistical interpolation method) 
and the results (Newman et al. 2019). Products like that described in 
Newman et al. (2015) use “probabilistic interpolation” to account for 
uncertainty by producing multiple reasonable spatial patterns of 
temperature and precipitation for each time step.  

TopoWx 

 
Link:  
http://www.scrimhub.or
g/resources/topowx/ 
 

Livneh 2013/Maurer 
2002 

 
Link: 
https://www.esrl.noaa.g
ov/psd/data/gridded/d
ata.livneh.html 
 

Livneh 2015 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.no
dc:0129374;view=html 
 

gridMET 

 
Link: 
http://www.climatology
lab.org/gridmet.html 

http://www.scrimhub.org/resources/topowx/
http://www.scrimhub.org/resources/topowx/
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://www.esrl.noaa.gov/psd/data/gridded/data.livneh.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
http://www.climatologylab.org/gridmet.html
http://www.climatologylab.org/gridmet.html
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Figure 4.7 
Time series of average water-year maximum (a) and minimum (b) temperature and water-year total precipitation (c) 
averaged over the Upper Colorado Basin. Note that Livneh15 provides monthly precipitation data as the average of 
the daily precipitation rate. Monthly totals were calculated by multiplying the daily rate by the number of the days in 
each month, ignoring February 29 in leap years. 
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Tables 4.3 and 4.4 describe the characteristics of 11 statistically interpolated 
gridded products that are commonly used for hydrologic applications in the 
western U.S. Despite disagreeing in some ways, these gridded products are 
also not entirely independent. Because the number of weather stations is 
limited, particularly at higher elevations, most products share at least some 
base information. There can also be closer interrelationships between 
products. For example, the Livneh et al. (2013) product uses the Maurer et 
al. (2002) methodology and is, in fact, billed as an “update and extension” of 
the earlier effort. 

Livneh et al. (2015) uses those same methods for temperature, with 
additional data from Mexico and southern Canada to produce a gridded 
product with coverage for all of North America south of 53°N. As a result, 
their estimates of water-year average temperature over the Upper Basin 
are nearly identical—the largest difference between the two is 0.24°F in 
minimum temperature, while differences in maximum temperature are 
even smaller. GridMET is made by taking the 1/8° (7.5-mi, 12-km) resolution 
North American Land Data Assimilation System (NLDAS-2) reanalysis and 
downscaling it to 2.5mi (4 km), using PRISM to guide the interpolation 
(Abatzoglou 2013). Thus, temporal variability in gridMET will track that in 
NLDAS-2, while its spatial patterns should be very similar, if not identical, 
to those in PRISM. 

As noted above and shown in Figure 4.6, many products account for fine-
scale spatial patterns in precipitation by adjusting their precipitation 
patterns to match those in PRISM. Among the eight products mapped in 
Figure 4.6, only Daymet and Newman do not use PRISM to adjust 
precipitation for elevation (TopoWx does not produce precipitation 
estimates). Henn et al. (2018) note that PRISM is used to adjust the spatial 
variability of precipitation in data produced by Livneh et al. (2013, 2015), 
Maurer et al. (2002), Hamlet and Lettenmaier (2005), Deems and Hamlet 
(2010), NLDAS-2 (Cosgrove 2003; Mitchell 2004; Xia et al. 2012), and the 
Climate Prediction Center (CPC) unified gage-based analysis of daily 
precipitation (Higgins et al. 2000). Interestingly, NLDAS-2 incorporates 
CPC precipitation early in product development (Cosgrove 2003; Mitchell 
2004; Xia et al. 2012), so NLDAS-2 uses PRISM precipitation once indirectly 
and once directly. GridMET, which further downscales NLDAS-2 to PRISM, 
essentially uses PRISM to adjust precipitation three times (Abatzoglou 
2013).  

Fewer gridded products provide information on climate variables such as 
wind, humidity, and radiation. Wind is an essential variable in hydrology. It 
is critical for assessing snow redistribution (Liston and Elder 2006). It is 
also required to accurately estimate evapotranspiration. Hobbins et al. 
(2012) noted that winds are particularly important in driving 
evapotranspiration over parts of the Colorado River Basin during the spring 

Daymet 

 
Link:  
https://daymet.ornl.gov 
 

Newman 

 
Link: 
https://www.earthsyste
mgrid.org/dataset/grid
ded_precip_and_temp.
html 
 

NClimGrid 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.nc
dc:C00332 
 

NLDAS-2 

 
Link: 
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.no
dc:0129374;view=html 

https://daymet.ornl.gov/
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00332
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
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and summer. Yet gridded wind variables are among the least certain and 
robust of all climate variables. Figure 4.8 shows the development pathways 
for wind in the datasets evaluated here. Essentially all wind variables in 
high-resolution data products are derived from the NCEP/NCAR Reanalysis 
(Kalnay et al. 1996; Maurer et al. 2002; Hamlet and Lettenmaier 2005; 
Deems and Hamlet 2010; Livneh et al. 2013; 2015) or from the North 
American Regional Reanalysis (Mesinger et al. 2006; Cosgrove 2003; 
Mitchell 2004; Xia et al. 2012; Abatzoglou 2013). Because there are few, if 
any, higher resolution wind products to correct against, most high-
resolution wind estimates do not actually contain any high-resolution 
patterns in wind. They simply reproduce the coarse winds in smaller grid 
boxes.  

Dataset developers encounter similar problems in constructing high-
resolution fields of radiation and humidity (Figure 4.9). The gridMET 
dataset interpolates NLDAS-2 humidity and radiation outputs without any 
additional adjustment (Abatzoglou 2013). The Daymet, Maurer, and Livneh 
datasets all use some formulation of the MTCLIM algorithm (Thornton, 
Running, and White 1997; Thornton and Running 1999; Thornton, 
Hasenauer, and White 2000) to estimate humidity and radiation from 
temperature. PRISM provides humidity estimates (dewpoint temperature 
and vapor pressure deficit), but not radiation, calculated from station-
measured relative humidity and air temperature (Daly, Smith, and Olson 
2015).  

CBRFC use of weather observations and gridded data 
As described in Chapters 5, 6 and 8, the Colorado Basin River Forecast 
Center (CBRFC) forecast model system requires values for temperature and 
precipitation that are area-averaged for each forecast zone (an elevation 
band within a catchment) represented in the model. The CBRFC generates 
these mean areal temperature (MAT) and precipitation (MAP) values for 
each forecast zone in real-time to drive the daily production of seasonal 
water supply forecasts and the daily (sometimes sub-daily) production of 
short-range (1-10 days) streamflow forecasts. The CBRFC has also 
generated them retrospectively, to create a historical dataset (1981-2015) 
that is used for forecast model calibration and verification. In both cases, 
the precipitation values are much more important to the forecast outcomes 
than the temperature values, and thus greater attention is given to the 
precipitation input data. The approach used to generate the MAT and MAP 
values has some commonalities with the gridded products described above, 
although the final real-time inputs (meteorological forcings) used to drive 
the CBRFC forecast models are spatially “lumped” and not on a uniform grid 
like the gridded products described above. The CBRFC endeavors to make 
the real-time data and the historical calibration data as similar as possible, 
so that the forecast model is trained on data that is comparable to, if not 
identical to, what it sees in real-time.  
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Figure 4.8 
Flow diagram of the data sources and processes used to produce the high-resolution gridded wind products featured 
here. 

 

 
Figure 4.9 
Flow diagram of the data sources and processes used to produce the high-resolution gridded humidity products 
featured here. 
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For the Upper Basin watersheds, which are generally snowmelt-dominated, 
real-time temperature and precipitation observations—the vast majority 
from SNOTEL stations—are used to directly produce the areal averages for 
forecast zones using station weightings determined through model 
calibration. The stations that are used have been pre-screened and vetted 
during the calibration process. Automated procedures identify potentially 
erroneous station values, which can be then manually corrected by 
forecasters. Freezing-level data from Rapid Refresh, NOAA’s hourly 
operational weather reanalysis, is used to run the SNOW-17 model which 
types the precipitation as rain or snow. The data used for real-time 
operations and for calibration are very similar, with the calibration data 
having undergone additional quality control procedures. 

For the Lower Basin watersheds, which are generally rainfall-dominated 
and respond more quickly to precipitation events, a denser station 
coverage is employed, with temperature and precipitation observations 
from multiple station networks, and then augmented by radar-based 
precipitation estimates to generate the real-time data. The radar data is 
most useful during the warm season when there is a larger radius of 
accurate information from the radar, due to reflection differences between 
rain and snow. The observations from all available stations are used, with 
no prior screening of stations, to create the highest possible station 
density. But the station temperature and precipitation values themselves 
are quality-controlled as in the Upper Basin. As in the Upper Basin, 
freezing-level data and SNOW-17 are used to type the precipitation into 
rain and snow. The real-time precipitation observations and radar 
precipitation estimates are transferred to a 4-km grid using an 
interpolation algorithm in the Multi-sensor Precipitation Estimate (MPE) 
software, the temperature observations are likewise transferred to a 4-km 
grid, and the grid cells within each forecast zone are then averaged to 
create the MAT and MAP data.  

The historical calibration data for the Lower Basin are generated in a similar 
manner as the real-time data, except only the station precipitation data are 
used—not radar-based estimates—and a different algorithm and a finer grid 
(800-m) are used for the intermediate gridding step. The CBRFC has also 
generated a matching 800-m gridded historical dataset for the Upper Basin, 
but it is not used for operations or calibration at this time. Both of these 
intermediate 800-m gridded datasets can be made available to researchers.  

In some respects, the real-time and historical meteorological forcings for 
the Colorado River Basin used by CBRFC can be considered to be of higher 
quality for hydrological modeling than many of the gridded datasets 
described earlier, since they are produced at higher resolution (at least 
during intermediate steps), use a greater number of stations, and use more 
rigorous quality control.  

Rapid Refresh 

Link: 
https://rapidrefresh.noa
a.gov/ 

https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
https://rapidrefresh.noaa.gov/
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The CBRFC recently worked with Utah State University to evaluate a 
physically based snow model that uses an energy balance to estimate 
snowpack processes, rather than just temperature and precipitation. 
Adoption of the potentially more accurate snow model, however, would 
require additional observational data that better characterized, at a 
minimum, surface radiation balance (P. Miller, pers. comm.). Due to the 
increased complexity of the energy balance model, real-time data may not 
be available for use within an operational framework. Increased model 
complexity may not necessarily yield more accurate results; for example, 
while radiation data are collected by a number of weather station networks 
focused on agricultural and water resource monitoring (Slater 2016), all but 
one of the gridded meteorological datasets discussed above that provide 
information on the surface radiation balance provide simulated—not 
observed—radiation fluxes (NLDAS-2 uses remotely sensed insolation). 

4.4 Strengths and weaknesses of gridded data products 

All gridded products that incorporate station data are likely to share common 
strengths and weaknesses related to those data. For example, any product that 
incorporates gage-measured precipitation—as do all of the datasets evaluated 
here—will display precipitation amounts that reflect undercatch (see Section 
14.2) and therefore underestimate precipitation, particularly precipitation that 
falls as snow, unless some correction is applied, as in Newman et al. (2015). 
Because different areas may experience higher winds, receive a greater 
fraction of precipitation as snow, or use predominantly different styles of 
precipitation gage, the influence of undercatch may vary spatially. 

The sparseness of observational data at high elevations—particularly prior to 
the late 1970s/early 1980s initiation of the SNOTEL and RAWS networks 
(Zachariassen et al. 2003; Schaefer and Paetzold 2001)—is another common 
weakness across all gridded data products. When and where the station 
network is sparse, there is greater opportunity for gridded datasets to differ as 
a result of other choices made in their development (e.g., lapse rate 
adjustment, interpolation method, etc.) (Walton and Hall 2018). Over the upper 
Colorado River Basin, this tends to lead to greater disagreement among 
datasets prior to the late 1970s and especially before the 1950s when there 
were generally fewer stations than in more recent decades (see Figure 4.7). 
There are also larger disagreements in areas with fewer weather stations, such 
as at higher elevations. For example, Henn et al. (2018) show greater absolute 
and relative differences between precipitation datasets at higher elevations in 
the Rocky Mountains. Figures in McAfee et al. (2019) suggest somewhat greater 
differences between datasets in temperature trends at higher elevations than 
trends at lower elevations, although there is some variability by month. 
However, the same paucity of high-elevation stations, and particularly high-
elevation stations with long records, means that there is very limited ability to 
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evaluate gridded products or weather simulations against independent 
observations. This is especially problematic in the context of water resources, 
as the alpine regions are critical water supply areas within the Colorado River 
Basin (see Chapter 2).  

As discussed above, choices about dataset construction are typically made so 
that the resulting data products are most appropriate for their intended 
purpose. As a result, different gridded data products have distinct 
characteristics. For example, TopoWx fills gaps and homogenizes data prior to 
gridding; as a result, temperature trends in TopoWx appear to be less variable 
in space than temperature trends in other products (see Figure 3 in Oyler et al. 
2015). Because of limited station observations, it is difficult to determine 
whether spatially smooth gradients of trend or more spatially complex 
distributions of trend reflecting local variability in the sign and magnitude of 
trend represent actual changes. In the San Juan Mountains, temperature 
trends between 1990 and 2005 were similar at COOP and SNOTEL stations, 
despite the fact that the SNOTEL stations were, on average, located about 
2580 feet higher in elevation than the COOP stations (Rangwala and Miller 
2010), suggesting that trends may be more spatially consistent at least in some 
parts of the western U.S. While some data characteristics may seem consistent 
with the choices made in their construction or with known characteristics of 
the underlying station network or networks used, a new analysis and review by 
Newman, Clark, Longman, et al. (2019) highlights the fact that not all 
discrepancies between datasets are predictable based on their compilation. 
Some strengths and weaknesses of the datasets described in Tables 4.3 and 4.4 
are listed in Table 4.5. 

Table 4.5 
Strengths and weaknesses associated with each of the gridded products described in Tables 4.3 and 4.4 

Product Name Strengths Weaknesses 

PRISM AN81d 

Very high resolution (~0.5 mi, 800 m) daily 
product. Ability to capture cold-air 
pooling in many environments. Data 
available to near present (lag typically 
around 6 months). 

Free daily product only available back 
to 1981. 

PRISM AN81m 
and LT81m 

Record extends back to 1895. Ability to 
capture cold-air pooling in many 
environments. Responsive to coastal, 
aspect, slope influence. Long history of 
use and well-known caveats. Data 
available to near present (lag typically 
around 6 months). 

Temporally changing station network. 
There can be slight differences in 
values and spatial patterns with 
updates. More temporally stable data 
(LT81m) are not free. 
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Product Name Strengths Weaknesses 

TopoWx 

Very high spatial resolution (~0.5 mi, 800 
m) daily data back to 1948. 
Homogenization and gap filling make data 
product potentially suitable for trend 
analysis. Incorporation of satellite data 
provides additional insight to spatial 
temperature patterns. 

Only temperature is available. 
Homogenization could mask real 
spatial diversity in trends. There can 
be slight differences in values and 
spatial patterns with updates. 

Livneh 2013/ 
Maurer 2002 

Daily data available back to 1915 (1950 for 
Maurer). Internally consistent 
hydrometeorological variables simulated 
by VIC are provided. 

Lapse rates may be too steep and 
temporally stable. It is unclear whether 
cold-air pooling can be evaluated—it 
may be possible in areas with 
particularly dense station coverage. 
There do not appear to be plans to 
update data past 2011. Precipitation is 
adjusted to PRISM, so spatial pattern 
will be similar to PRISM.  

Livneh 2015 

Daily data with coverage over Mexico and 
parts of Canada back to 1950. Internally 
consistent hydrometeorological variables 
are provided. 

Lapse rates may be too steep. It is 
unclear whether or not cold-air 
pooling can be evaluated—it may be 
possible in areas with particularly 
dense station coverage. There do not 
appear to be plans to update data 
past 2013. Precipitation is adjusted to 
PRISM, so spatial pattern will be 
similar to PRISM. 

gridMET 

High-resolution (2.5 mi, 4 km) daily data 
with multiple variables suitable for 
ecological and fire weather modeling. 
Data are available in very near real time, 
but the last few days to weeks are based 
on the Climate Forecast System, rather 
than NLDAS-2. 

Data are only available back to 1979. 
Variables other than temperature and 
precipitation are interpolated to 2.5mi 
(4 km), but are not adjusted for 
physiography at that scale, so 
variables may not be physically 
consistent. Precipitation and 
temperature are adjusted to PRISM, so 
spatial patterns will be similar to 
PRISM. 

Hamlet 2005 

Long-term temperature and precipitation 
trends are adjusted to match USHCN, so 
may be suitable for trend analysis. Daily 
data back to 1915. 

Data are only available through 2003 
and not specifically updated. Lapse 
rates may be too steep and static 
owing to fixed lapse rate. Precipitation 
is adjusted to PRISM, so spatial 
pattern will be similar to PRISM. 

Hamlet 2010 

Long-term temperature and precipitation 
trends are adjusted to match USHCN, so 
may be suitable for trend analysis. Daily 
data back to 1915. 

Data are only available through 2010 
and do not appear to be updated. 
Precipitation and temperature are 
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Product Name Strengths Weaknesses 

adjusted to PRISM, so spatial patterns 
will be similar to PRISM. 

Daymet v. 3 

Very high (~0.6 mi, 1 km) resolution daily 
data, with multiple variables suitable for 
ecological modeling. Data are updated 
frequently so data are available for very 
near present. Files of input station data for 
each grid cell are provided, so users can 
accurately identify stations used. 
Coverage for all of N. America 

Data are only available back to 1980. 
Interpolation methods may not be 
able to capture very fine scale 
variability in precipitation.  

Newman 
gridded 
ensembles 

These provide multiple estimates of daily 
temperature and precipitation for each 
day for uncertainty quantification and can 
be used to explicitly predict the 
probability of precipitation occurrence. 

The spatial resolution is relatively 
coarse. Data are only available 
through 2012 and update 
potential/schedule are unclear. 
Intended use requires a large amount 
of data. 

nClimGrid 
(gridded data 
underlying the 
climate division 
data nClimDiv) 

Monthly data are available back to 1895. 
Data are homogenized so may be suitable 
for trend analysis. Data are updated 
frequently. Spatio-temporal summaries, 
ranking, etc., are readily available through 
Climate at a Glance. 

This is a relatively new product; 
caveats associated with the data are 
not yet well defined. 

NLDAS-2 
Sub-daily records for a full suite of 
meteorological variables are available. 
Data are available for close to present. 

The spatial resolution is relatively 
coarse. Data are interpolated 
reanalysis, which are relatively prone 
to error. Behnke et al. (2016) note 
NLDAS-2 has some of the highest 
errors relative to station observations. 

 
For users with particular needs, there may be relatively little choice in 
which data product to use. Applications that require spatially continuous 
hourly data are limited to NLDAS-2 of the datasets evaluated here. In other 
cases, there may appear to be greater choice, but apparently different 
products may be very similar. Only the Maurer et al. (2002), Livneh et al. 
(2013 and 2015), Hamlet and Lettenmaier (2005), and Deems and Hamlet 
(2010) products provide daily precipitation data that extend back prior to 
the early 1980s or late 1970s. These five products differ very little from each 
other in underlying data or construction methodology. All are based 
exclusively on COOP data in the U.S., although there are some differences 
in which specific stations were used (Hamlet and Lettenmaier 2005). All 
except Hamlet 2010 (Deems and Hamlet 2010) use pre-defined temperature 
lapse rates (-3.6°F/1000 feet [-6.5°C/km] or -3.3°F/1000 feet [-6.1°C/km]) 
that are, at least for minimum temperature, steeper over the Upper Basin 
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than observed in other data products (McAfee et al. 2019; Newman et al. 
2015). Hamlet (2010) scales temperature to the PRISM climatology (Deems 
and Hamlet 2010). All of the products adjust precipitation patterns to the 
PRISM climatology, although they use different normal periods. All employ 
the same SYMAP interpolation. The primary differences between these 
products are that 1) they are supplied over different time periods and 
domains at different spatial resolutions, 2) the Hamlet (2005 and 2010) 
method homogenizes station data prior to interpolation, which the Maurer 
and Livneh methods do not (Maurer et al. 2002; Livneh et al. 2013; 2015; 
Hamlet and Lettenmaier 2005; Deems and Hamlet 2010), and 3) they adjust 
their precipitation to different PRISM precipitation climatologies—1961–
1990 for most vs. 1981–2010 for Livneh et al. (2015)—that display slightly 
different spatial patterns in precipitation. 

4.5 Considerations in the analysis of gridded data products 

Many of the characteristics of station and gridded data products discussed 
above imply certain limitations in their analysis. As noted by Newman et al. 
(2019), choices about which data to include, and particularly the density of 
input data, can have a significant influence on the effective resolution of 
the data. For example, a nominally high-resolution product based on a 
small number of stations may not be able to accurately reflect fine-scale 
spatial patterns, especially in complex terrain, such as in the Colorado River 
Basin. Users should also be aware that gridded products do not reflect 
variability that occurs at finer scales than their nominal resolution. For 
example, a product with 2.5 x 2.5 mi resolution will reflect the average 
temperature over 6.25 square miles, but local temperatures may vary 
substantially within that area. Likewise, a daily precipitation total does not 
imply information about when during the day precipitation fell or how 
heavy it was. A final consideration most pertinent to daily data is that 
different stations may use different start and end times for their day (e.g., 
9:00 a.m. vs. local midnight vs. 0:00 UTC), and those may change over time, 
so a given day may not cover the exact same period of time (see (Menne et 
al. 2012; Leeper, Rennie, and Palecki 2015). 

Intercomparison 
The first consideration is related to dataset intercomparison. Because 
different datasets are developed using different methods, disagreement in 
poorly observed areas may be expected (Walton and Hall 2018). Shared 
underlying station data can and should lead to agreement in areas where 
the station network is densest, so agreement between datasets in those 
areas or between specific grid cells and stations in those grid cells that 
contribute to the gridded product may not be effective measures of 
similarity or quality (Daly 2006). For example, Behnke et al. (2016) find the 
Livneh et al. (2013) and Maurer et al. (2002) datasets, which use only COOP 
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stations, to have relatively small biases in mean precipitation and maximum 
temperature, but they compare the gridded dataset to a set of weather 
stations that is likely dominated by COOP stations because of the chosen 
time period (1981–2010) and data completeness criteria. Station siting may 
also influence the representativeness of gridded products. Physiographic 
features that are not well sampled in the observational network may not be 
accurately portrayed in even the most complex and highest resolution 
gridded products. For example, Strachan and Daly (2017) found that 
systematic undersampling of mid-slope locations in the Great Basin drove 
biases in the representation of temperature patterns in PRISM, even at very 
high spatial resolutions. Gutmann et al. (2012) found that leeside 
precipitation amounts were overestimated in PRISM in parts of 
southwestern Colorado where there were few weather stations on leeward 
slopes.  

It is also important to be aware of interdependence between datasets 
beyond shared underlying data, so that agreement between those products 
is not over-interpreted in terms of confidence. Adjusting precipitation 
patterns in gridded datasets to match the PRISM climatology is very 
common, as is application of a pre-determined static lapse rate for both 
minimum and maximum temperatures (Figure 4.5). Even homogenization 
practices are very similar. TopoWx (Oyler, Ballantyne, et al. 2015) and 
nClimGrid (Vose et al. 2014) both use the pairwise comparison method 
described in Menne and Williams (2009), and Hamlet homogenizes station 
data to USHCN records, which are homogenized using the Menne and 
Williams (2009) pairwise method. 

Analysis of trends 
The second major consideration is related to the analysis of trends. Ideally, 
trend analysis should only be performed on data that are known to be free 
from inhomogeneities. As a result, many producers of gridded data caution 
against the use of their data for trend analysis. Redundancy in the input 
data might make it less likely that gridded data will display inhomogeneities 
particular to an individual station—for example, due to a station move 
(Groisman and Easterling 1994). In areas with few stations, however, 
inhomogeneities in individual stations, or the loss of an individual station, 
may be reflected in gridded products (McAfee, Guentchev, and Eischeid 
2014). Inhomogeneities that impact an entire station network are often 
reflected in gridded data (Groisman and Easterling 1994; Oyler, Dobrowski, 
et al. 2015). Adding data from new station networks preferentially located in 
different kinds of locations or using different instrumentation than existing 
stations can also induce inhomogeneities in gridded data (McAfee et al. 
2019) even when steps have been taken to mitigate the impact. Known 
network-wide or common spatially extensive causes of inhomogeneity in 
the region include changes in the time of observation (Karl et al. 1986) and 
instrumentation (Quayle et al. 1991) at COOP sites, urbanization (Karl, Diaz, 
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and Kukla 1988; Hausfather et al. 2013), changes in instrumentation at 
SNOTEL sites (Oyler, Ballantyne, et al. 2015), and introduction of new 
station networks (McAfee et al. 2019). Even the PRISM LT81m dataset, which 
includes only longer-duration station networks, is not recommended for 
trend analysis (PRISM 2016). Of the data products evaluated here, only 
nClimGrid, TopoWx, and the Hamlet products are homogenized in a way 
that may make them suitable for trend analysis (Oyler, Ballantyne, et al. 
2015; Oyler et al. 2016; Hamlet and Lettenmaier 2005; Deems and Hamlet 
2010; Vose et al. 2014; Walton and Hall 2018). Gap-filling and 
homogenization, however, could mask real spatial variability in trends, so 
homogenized data may be more appropriate for characterizing regional 
trends than highly local ones. The effects of homogenization can be seen in 
the precipitation trend maps shown in Henn et al. (2018) Figure 7. The trend 
patterns in the homogenized Hamlet et al. 2010 data (Deems and Hamlet 
2010) are spatially smoother than in the other products evaluated. The 
trend maps shown in Henn et al. (2018) also demonstrate that while major 
features of the 1982-2006 trend patterns are replicated—reductions in 
precipitation over the Lower Colorado Basin and increasing precipitation 
over California—there are localized differences in trend patterns and 
magnitudes over parts of the Upper Colorado Basin. 

Because of the complex ways in which choices about data selection, 
adjustment, and interpolation combine (Newman et al. 2019), it may be 
impossible to know whether gridded data contain detectable 
inhomogeneities without thorough statistical investigation. Guentchev, 
Barsugli, and Eischeid (2010) analyzed precipitation from the Maurer, BL 
(which is similar in construction to the Maurer data, but uses different 
stations and is not described Table 4.4), and PRISM datasets over the full 
Colorado River Basin for the second half of the 20th century. PRISM had the 
highest percent of grid cells without detectable inhomogeneities (88%), 
followed by Maurer (83%) and BL (77%). While all of the datasets were 
generally free of inhomogeneities, the inhomogeneities that exist were in 
the same places in all datasets. They tended to be clustered in specific, 
largely high-elevation sub-basins in the Lower Basin: the Little Colorado, 
the Lower Colorado-Lake Mead, and the Upper Gila. Repeating this type of 
analysis for the increased selection of temperature and precipitation data 
that are available now, as well as for specific time periods, would be 
beneficial and would help researchers in the region identify datasets that 
might be suitable for climate trend analysis or for use in hydrologic models 
whose output will be analyzed for long-term variability. 
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4.6 Considerations in gridded data product selection 

The single most important thing to know about selecting a gridded data 
product is that there is no perfect product—if there were perfect 
observations for every point, there would still be “errors” in all of the 
gridded products. For example, Gutmann et al. (2012) note that gridded 
precipitation from the Weather Research and Forecasting Model (WRF) and 
the 1971–2000 PRISM climatology predict different amounts of 
precipitation spillover from the windward to leeward side in parts of the 
San Juan Mountains. This is an area that did not have good leeside station 
coverage until recently; data from one station installed in late 2008 suggest 
that WRF was providing more accurate precipitation totals. Nor is there a 
best product, although there might be a best choice for certain 
applications. Data selection is necessarily based on both practical and 
scientific considerations. Many of the considerations that go into choosing 
a historical gridded climate data product are similar to those that might be 
used in climate change evaluation. In-depth discussion of the topic is 
provided by Vano et al. (2018) and Daly (2006), but some practical and 
scientific guidance for data selection is briefly outlined here.  

Practical considerations 
From a practical standpoint, a user might reasonably consider eight criteria 
about data products in choosing which to use. Many of the practical 
considerations are easily assessed with basic product metadata. 

1. Does the data product supply the weather or climate variables necessary 
for the application? Some analyses or modeling efforts may require a 
single variable, while others might require a much more extensive suite 
of variables. It is often easier to use multiple variables from a single 
gridded product because they are likely to be provided on the same grid, 
minimizing geospatial processing. 

2. Does the data product provide data with the appropriate temporal 
coverage? Specific considerations related to temporal coverage include 
the length of the dataset, how frequently it is updated, and latency—the 
lag in data availability relative to real-time. There may also be concerns 
related to how new data are released. Some data products, such as 
TopoWx, may release updates with new versions of historical data and, 
thus, may not be directly comparable to previous versions (although the 
two versions of TopoWx shown here are essentially identical over the 
Upper Basin). In this case, updating the data product may require 
downloading an entirely new database for the full period. Others, such as 
gridMET, simply extend the length of the data product during most 
updates.  

3. Does the data product provide data at the appropriate temporal 
frequency? Monthly data are somewhat more widely available than daily 
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data, which are, in turn, much more common than sub-daily data—at 
least at high spatial resolution.  

4. Does the data product cover the necessary spatial domain? For 
applications entirely within the Colorado River Basin, this is not often of 
concern. Most products provide reasonable coverage over the 
contiguous United States. However, applications that include 
transnational river basins (e.g., Rio Grande, Columbia), may require data 
to be consistent across national boundaries, and such data products are 
less common. 

5. Is the data product at the appropriate spatial resolution? Questions 
about spatial resolution may be practical—a model operates at X mi2 

resolution and requires input data at that resolution—or scientific—the 
process in question occurs at Y mi2 scale and cannot be detected in 
coarser data. Conversely, the spatial resolution of a data product will also 
influence computational time and storage demands, so data that are too 
finely scaled may be inconvenient. 

6. What resources are required to use the data? Although many data 
products are served free of cost, some data (e.g., PRISM LT81m) are only 
available for purchase. The decision to use a product that is not free 
would be contingent on funding and potentially on the user’s ability to 
justify the cost to a funder. Resource issues related to file conversion—
for example, from GRIB to GeoTiff for model compatibility—data storage 
or other processing steps could also influence the choice of dataset. 

7. Is it necessary to assess uncertainty, use multiple scenarios, or identify a 
single type of scenario? Only the Newman et al. 2015 dataset is explicitly 
designed to provide uncertainty quantification. However, it may be 
possible to include multiple datasets with input data and development 
techniques that are as different as possible. Related considerations may 
include whether specific datasets seem to routinely provide “best case” 
(e.g., robust average flows, modest flood peaks), middle-of-the-road, or 
“worst case” (e.g., lower total flow, high flood peaks) outcomes and which 
of those is most appropriate for the decision at hand. 

8. Are there any other practical considerations? There may be questions 
about whether a model being used has been parameterized with a 
specific climate dataset and whether there are consistency issues that 
need to be considered—for example, a desire to compare results from a 
new study with a previous one that would be simplified by using the 
same climate data.   
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Scientific considerations 
There are also scientific considerations related to dataset choice. Unlike 
the practical decisions, however, consideration of the scientific 
characteristics of data typically require a more in-depth knowledge of the 
data product. Daly (2006) provides a discussion around dataset choice in 
relation to physiographic features, along with background information on 
how common interpolation techniques handle physiography. Scientific 
considerations may apply particularly in post-hoc analysis of the results, in 
assessing the confidence and uncertainty around certain statements, as 
well as in gauging how widely the results could be applied to other regions, 
systems, or time periods. 

1. Is the effective resolution of the grid cell consistent with its nominal or 
apparent resolution? As computational capacity has improved, it has 
become possible to interpolate climate data to a very fine apparent 
resolution, even though little to no new information has been 
incorporated. For example, gridded data with a nominally high spatial 
resolution that rely on a low-density station network may have a lower 
effective than apparent resolution (Newman et al. 2019). The gridMET 
process adds additional climate-relevant information to NLDAS-2-
derived temperature, precipitation, and humidity, but simply 
interpolates winds and radiation, so the effective resolution of gridMET 
wind and radiation are the NLDAS-2 resolution, not their nominal ~2.5-
mi resolution (Abatzoglou 2013).  

2. Do data need to be internally physically consistent? In some cases, 
detailed process modeling may require suites of variables that are 
physically consistent. For example, some applications need data that 
can accurately reflect a drop in temperatures caused by evaporation or 
melting of precipitation in order to better forecast precipitation 
amount, intensity, and whether it will fall as rain, snow, or freezing 
precipitation (e.g.,  Barros and Lettenmaier 1994; Kain, Goss, and 
Baldwin 2000). The ARkStorm@Tahoe project—which simulated 
snowfall and flooding caused by a single significant storm event to 
evaluate environmental and socio-economic impacts and real-time 
response mechanisms—required such a complex data set in order to 
develop realistic and accurate timelines and spatial maps of flooding 
and related hazards in a topographically complex region (Albano et al. 
2016). Producing such data typically requires dynamical generation or 
downscaling (e.g., Gutmann et al. 2012). Most observationally based 
gridded data products probably cannot provide this level of internal 
consistency, but it is also not clear how many applications would 
require this. 

3. How might known data characteristics influence an application? Data 
intercomparisons, such as (Behnke et al. 2016; Henn et al. 2018; Walton 
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and Hall 2018) and many others evaluate whether certain datasets are 
relatively cool or warm, or wet or dry in certain locations, and data 
documentation often highlights known errors, strengths and 
weaknesses in data products. However, it can be difficult to determine 
which data are most correct, either because station data are lacking, 
and there is no real ground-truth, or because the available station data 
were used to produce the gridded data and do not provide an 
independent check (Daly 2006). More detailed studies might be 
required to understand which datasets are more accurate and why. 
There is also the question of how much errors or biases impact any 
given application. For example, Strachan and Daly (2017) found that cool 
biases in PRISM, related to the siting of available input stations, 
impacted growing-degree day calculations more than they influenced 
assessment of the length of the frost-free season or temperature-based 
estimates of the percent of precipitation falling as snow. In that case, 
users analyzing growing degree days might be particularly cautious 
about their subsequent interpretations and conclusions.  

4. Is it appropriate to use records with particular types of 
inhomogeneities? Data containing inhomogeneities that impact only 
how climate is recorded (e.g., inhomogeneities related to changes in 
instrumentation) are likely to be problematic in many applications and 
can lead to misleading conclusions (e.g., Oyler, Dobrowski, et al. 2015). 
But inhomogeneities related to land cover change, such as 
urbanization, (Karl, Diaz, and Kukla 1988) may be valuable components 
of data for some applications. Identifying and correctly quantifying 
trends related to large-scale forcing, such as global warming, requires 
removing both sudden and “creeping” inhomogeneities (Menne and 
Williams 2009). Understanding local-scale changes in evaporative 
demand, however, might require climate records that reflect the sum of 
all changes, including any local warming related to land-cover change 
due to urbanization, conversion to agriculture, etc. In such cases, 
homogenized data may, in fact, be inappropriate. 

In sum, both practical and scientific considerations should influence users’ 
choices about which data product to use. The effect that those choices 
might have on subsequent analyses is often not well characterized. There 
are a number of open questions about weather and climate in complex 
topography, how weather and climate variability across large basins 
influences hydrology, and about how best to use imperfect gridded climate 
data to better understand natural and managed hydrologic systems. 
Research efforts to address these questions are on-going. For the time 
being, users of these products should attempt to assess basic information 
about the gridded or station data they use and consider how the 
characteristics of those data might influence their analysis. 
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4.7 Challenges and opportunities 

Challenge 
While commonly used gridded climate datasets show very similar variability 
and trends in precipitation and temperature for the basin, disagreements 
between the datasets are larger for the sparsely instrumented high-
elevation areas in the Upper Basin—the areas that generate the vast 
majority of the basin’s runoff.  

Opportunities 
• Use other types of measurements, such as streamflow and radar, to 

constrain the gridded estimates of temperature and precipitation, and 
add novel observation techniques (e.g., Airborne Snow Observatory; see 
Chapter 5) to bolster ongoing observations. 

• Use numerical weather prediction models (Chapter 7) for 
spatiotemporal interpolation and validation of observation-based 
products.  

Challenge 
It is increasingly understood that the gridded climate datasets have 
inherent uncertainties and differ from each other, but how those 
uncertainties and differences manifest in the outputs of typical 
hydroclimate modeling and analysis tasks needs to be better explored and 
communicated to users.  

Opportunities 
• Conduct formal intercomparisons between gridded datasets in the 

context of specific applications and outputs (e.g., Alder and Hostetler 
2019 on the use of different gridded climate datasets for statistical 
downscaling of GCM data; Chapter 11). 

• Application projects can consider including a testing phase in which 
multiple gridded datasets are tested on a limited portion of the project’s 
domain or analyses. 

• Both researchers and users can acknowledge that all data are 
imperfect, and move away from trying to identify a single “best” 
product toward greater consideration of the data characteristics that 
are, and are not, important for their questions and analyses.  
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Key points 
• Robust real-time observations and long-term records of snowpack, 

streamflow, soil moisture, and other hydrologic variables are key inputs 
to basin streamflow forecasting and system modeling. 

• Point measurements of these variables are not dense enough to fully 
represent spatial variability across the basin, and not necessarily sited 
to optimally inform streamflow forecasts.  

• For snowpack observations, the in situ SNOTEL network has limitations 
but remains essential to monitoring and skillful streamflow forecasting. 

• Spatially distributed snowpack data from models and remote sensing 
are increasingly used to augment SNOTEL data, though most of these 
sources depend on SNOTEL data for calibration.  

• Accurate and useful streamflow inputs depend on both the robustness 
of the gage network and the procedures used to adjust and naturalize 
gaged streamflows to account for human activity. 

• Flow naturalization methods try to estimate what the streamflow at a 
gage would have been, or will be, without the impacts of upstream 
human activity; naturalization methods vary from agency to agency, 
depending on the time scale and application. 

• Evaporation and evapotranspiration estimates are central to flow 
naturalization, thus as more types of observations become available, 
models used to calculate these variables are being refined in both 
physical process modeling and input data used. 

• In situ measurements of soil moisture and evaporation-related 
variables are especially sparse, and spatially distributed data from 
models and remote sensing have a larger role to play in condition 
monitoring and streamflow forecasting. 

• Realizing the full value of spatially distributed hydrologic data will 
ultimately require streamflow-forecasting and system-modeling 
frameworks that are explicitly designed to use those data as inputs. 

5.1 Overview 

Robust real-time observations and long-term records of snowpack, 
streamflow, soil moisture, and other hydrologic variables are critical to 
multiple components of system modeling in the basin, at all timescales. 
Many of these observations are used as real-time inputs to the CBRFC 
streamflow forecast models (Chapter 8) and Reclamation system models 
(Chapter 3), while long-term records are used to calibrate the models. The 
long-term records are used to evaluate long-term hydrologic trends and 
their causes (Chapter 2), and also serve as the historical planning baseline 
(Chapter 9) for evaluating potential future risk. They are further used to 
calibrate and validate alternative planning hydrologies based on tree rings 
(Chapter 10) and climate model output (Chapter 11).  
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Ideally, all observations of hydrologic variables would have long periods of 
record, be consistent over time (temporally homogeneous), and be spatially 
dense enough across large basins that the observing sites were 
representative of all areas in between sites. All observed records fall short 
of one or more of these ideal characteristics, and it is important to 
understand the strengths and weaknesses of different datasets relative to 
the intended application. Often, there are inherent tradeoffs among these 
ideal characteristics. For example, many satellite-based observations have 
high spatial density (resolution of 1 km or less), but few of these datasets 
extend before 2000.  

5.2 Snowpack observations and monitoring 

The discussion of hydrology observations begins with snowpack 
observations because most of the annual water supply in the basin likewise 
begins as snowpack (Chapter 2). The snowpack is a key interface between 
meteorological processes (weather and climate) and hydrological 
processes. The physical characteristics of the snowpack are controlled by 
weather and climate through the accumulation of precipitation occurring 
as snowfall, redistribution by wind, sublimation losses, and melt driven by 
solar and longwave radiation, sensible heat (i.e., measured as temperature), 
and latent heat (from water phase-change). 

The interactions of all these processes with complex terrain and vegetation 
means that the snowpack is a highly dynamic entity in space and in time. 
Some characteristics of the spatial patterns and temporal patterns of the 
snowpack are fairly consistent from year to year; e.g., more snow 
accumulates earlier and throughout the season, and persists later in the 
spring, at higher elevations and on north-facing exposures. However, the 
details of these patterns can vary greatly from year to year and from basin 
to basin, influencing the magnitude and timing of snowmelt-driven runoff. 
Inadequate characterization of these details of the snowpack is a significant 
source of error in seasonal runoff forecasting, though a smaller source than 
the uncertainty in future precipitation and temperature (Chapter 8). 

The most important characteristic of the snowpack from the standpoint of 
monitoring and forecasting water supply is snow water equivalent (SWE). 
SWE can be measured directly through in situ observations, modeled from 
precipitation observations and other meteorological data, or derived from 
measurements of snow depth and estimates of snow density, since SWE is 
the product of those two terms. Snow depth is much more spatially variable 
than snow density, and so snow depth is by far the larger contributor to the 
spatial and temporal variation in SWE. 
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Table 5.1 summarizes key characteristics of the principal snowpack data 
networks and products that are used or consulted by water management 
entities in the Colorado River Basin; these sources are further described in 
the following text. This list is not intended to be comprehensive; other data 
and networks may also be used in the basin. 

Table 5.1 

Snowpack monitoring networks, data, and products available for some or all of the Colorado River Basin 
and used by water management agencies. See the text for further description of these networks/ 
products. 

Network or Product Method Variables 
Spatial 
Resolution or 
# Stations 

Spatial 
Coverage 

Temporal 
Resolution 

SNOTEL 

(NRCS)  
In situ 
measurement 

SWE, snow 
depth, 
precipitation, 
many other 
weather obs. 

>175 stations 
in basin; ~900 
West-wide 

West-wide 
Hourly or 
3-hourly 

Snow course 
(NRCS) 

In situ 
measurement 

SWE, snow 
depth, snow 
density 

82 courses in 
the basin 

West-wide 
Monthly 
or semi-
monthly 

Snow-17 snow 
model 

(CBRFC)  

Temperature-index 
snow accumulation 
and ablation 
model, which uses 
area-averaged 
precipitation data 
derived from point 
observations, plus 
freezing-level data 

SWE, snow 
covered area 

~600 
modeling 
units in the 
basin 

CBRFC 
domain 
(CRB + E. 
Great 
Basin) 

Daily 

MODSCAG  

(NASA JPL) 

MODIS satellite 
imagery used to 
derive snow extent 
and properties  

Fractional 
snow-covered 
area, snow 
grain size 

~500 km CONUS 
Daily, 2-4 
day lag 

MODDRFS 

(NASA JPL) 

MODIS satellite 
imagery used to 
derive snow 
properties 

Radiative melt 
forcing 

~500 km 
North and 
South 
America 

Daily, 2-4 
day lag 
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Network or Product Method Variables 
Spatial 
Resolution or 
# Stations 

Spatial 
Coverage 

Temporal 
Resolution 

ASO 

(NASA JPL) 

Airborne-LiDAR-
measured snow 
depth, combined 
with snow density 
(modeled or 
measured)  

SWE, snow 
depth (also 
snow albedo 
from separate 
sensor) 

50 m 

As flights 
are made 
on 
demand; 
currently 
mostly in 
CA, some 
in CO 

As flights 
are made 
on 
demand; 
typically 
1-6 per 
season 
per 
watershed 

SNODAS 

(NOAA NOHRSC) 

Process-based 
snow model which 
assimilates 
satellite, airborne, 
and in situ snow 
data and weather 
obs  

SWE, snow 
depth, 
snowmelt, 
sublimation, 
snow 
temperature 

1 km CONUS Daily 

MODIS-based 
spatial estimates 
(Univ. of Colorado) 

Statistical 
regression model 
based on in situ 
SWE, MODSCAG, 
physiographic 
variables, energy-
balance snow 
model 

SWE, snow 
cover 

500 m 

California; 
Southern 
Rockies 
inc. UCRB; 
Northern 
Rockies 

Typically 
biweekly, 
3-5 day 
lag 

SWANN/SnowView 

(Univ. of Arizona) 

Process-based 
snow model and 
neural network 
algorithm, uses 
SNOTEL SWE and 
MODIS SCA 

SWE, snow 
cover  

1 km CONUS Daily 

 

In situ snowpack observations: SNOTEL and snow courses 
For over 80 years, snowpack monitoring and water supply forecasting 
throughout the western U.S. has relied on a network of in situ ground-
based observations managed and maintained by the Natural Resources 
Conservation Service (NRCS) along with many state and local cooperators. 
From the mid-1930s until the late 1970s, these observations came solely 
from snow courses that were manually measured monthly or semi-monthly 
(Figure 5.1).  
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Starting in the late 1970s, the snow courses were increasingly augmented 
by, and at many sites replaced by, automated SNOTEL (SNOwpack 
TELelemetry) stations that report SWE, snow depth, precipitation, 
temperature, and other variables on an hourly or 3-hourly basis, greatly 
enhancing the timeliness and temporal resolution of snowpack data relative 
to manually measured snow courses. Currently, there are 196 SNOTEL sites 
that are within or near to (<10 km) the boundaries of the Upper Basin, and 
46 for the Lower Basin (Figure 5.2). Monthly manual SWE measurements 
are still taken at 104 snow courses in the Upper Basin, mainly in Colorado, 
and 36 snow courses in the Lower Basin (NRCS website). 

Several years ago, NRCS implemented an Interactive Map to provide real-
time map-based access to primary data from all SNOTEL and snow-course 
sites (SWE, snow depth, and precipitation) as well as many calculated 
parameters such as SWE % of median, change in SWE, and snow density. 
The map also shows soil moisture data from SNOTEL and SCAN sites, 
observed and forecasted streamflows, forecast verification statistics, and 
reservoir storage. The Interactive Map is routinely enhanced (now in 
Version 5.0) and has rapidly become a highly valuable tool for snowpack 
monitoring and other hydrologic monitoring.  

 

Figure 5.1 
Soil Conservation Service 
(SCS) snow surveyors 
measuring a snow course 
in the 1940s. The SCS is 
now the Natural Resources 
Conservation Service 
(NRCS). (Source: Helms, 
Phillips, and Reich 2008) 

NRCS Interactive Map 

 
Link:  
https://www.nrcs.usda.go
v/wps/portal/wcc/home/q
uicklinks/predefinedMaps
/ 

https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
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Figure 5.2 

Locations of active SNOTEL sites and snow courses in the Colorado River Basin. 
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The snow-course and SNOTEL network in the western U.S. has been 
developed by NRCS to support their seasonal water supply forecasts, as 
well as for general snow monitoring. Thus, the characteristics of the 
network have influenced the NRCS water-supply forecasting approach, and 
vice versa. In that approach, which has been used and refined for several 
decades, statistical modeling (currently, principal components regression) 
is used to relate several predictors—typically water-year-to-date 
precipitation and current SWE from SNOTEL sites—to the target predicted 
value: spring-summer streamflow at a given forecast point. The model is 
calibrated on historical data, and then for forecasting, the model equation 
is applied to real-time predictor data. Point-based in situ measurements 
are well suited for such an approach that uses a limited number of 
predictors to represent the basin snowpack above the stream gage being 
forecasted. Additional details of the NRCS statistical forecasting approach 
are provided in Chapter 8. 

 
Figure 5.3 

The NRCS Interactive Map (Version 5.0) provides real-time access to SNOTEL and snow-course data, 
as well as observed and forecasted streamflows. (Source: NRCS; 
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/ ) 

https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/
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The observations from the SNOTEL/snow-course network in most years 
and locations provide reliable indications of snowpack conditions in the 
Colorado River Basin and its sub-basins, as indicated by the high overall 
skill of April 1 water supply forecasts that are based solely on those 
observations. For example, at key Upper Basin forecast points such as 
Yampa near Maybell, Gunnison near Grand Junction, and Colorado near 
Cameo, the explained variance of NRCS April 1 forecasted April-July 
streamflow is R2 = 0.63–0.80 (G. Goodbody, NRCS, pers. comm.).  

SNOTEL sites provide very accurate point measurements that can, to a 
large degree, collectively represent the vast majority of a basin that is not 
being directly measured. However, there are general limitations in network 
coverage; due to siting constraints and considerations, SNOTEL sites are 
not located above treeline, on steeper slopes and southerly aspects, or at 
lower elevations where snowpack is generally low or intermittent. Thus in 
years with anomalous spatial patterns, such as much reduced wind scour 
and sublimation loss above treeline, or unusually high mid-winter melt on 
south-facing slopes, or unusually high accumulation at lower elevations 
relative to higher elevations, the SNOTELs and snow courses will not 
capture the actual basin-wide SWE conditions as well as in a more typical 
year. Also, some watersheds have relatively fewer SNOTEL and snow 
course sites, or lack in situ sites completely. According to the CBRFC, it is 
likely that there is greater forecast error related to snowpack conditions in 
these data-sparse areas, though no quantitative analysis has been done to 
confirm this (FROMUS report, Reclamation and Colorado Basin River 
Forecast Center in preparation).  

Every year, several new SNOTEL sites are added to the network in the 
basin, and the network is expanding, though slowly. A more concerted 
effort to add SNOTEL sites in relatively data-poor basins could eventually 
reduce snow-related uncertainty in runoff forecasts, though the return on 
investment would be slow, since 10–15 years of record are needed to 
adequately calibrate data from new SNOTEL sites in the CBRFC forecast 
model (Reclamation and Colorado Basin River Forecast Center in 
preparation), as well as the NRCS forecast model. 

Over time, the instrumentation at SNOTEL sites has been updated and 
additional sensors have been added, notably for soil moisture. Continued 
modernization and upgrading would ideally include more sensors, including 
image capture that could effectively extend the spatial reach of each site. 

Despite some limitations, the point SWE observations from SNOTEL and 
snow courses continue to serve as the basis for skillful statistical forecasts 
of seasonal streamflows for the Colorado River Basin. However, the physical 
models also used to forecast runoff (e.g., CBRFC’s primary forecast system) 
require additional modeling of the snowpack that directly addresses the 
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issue of spatial representativeness, as well as additional input data, as 
detailed below. The more spatially explicit depiction of snowpack that 
results can also add value for general snow monitoring.  

Other in situ snow observations 
While the SNOTEL and snow course SWE observations are the backbone of 
snowpack monitoring, there are additional in situ snow observations that 
help round out the picture of the snowpack, especially at lower elevations. 
Most stations in the COOP weather observer network (Chapter 4) report 
daily snowfall and snow depth on the ground, in addition to temperature 
and precipitation. For example, on a typical day in March 2019, 40 of 56 
COOP observers in western Colorado reported snowfall and snow depth. 
SWE on the ground can be estimated from snow depth using 
measurements of, or assumptions about, snow density.  

Since its initiation in 1997, the CoCoRaHS network has become an 
important supplemental source of precipitation data for weather and 
climate monitoring and other purposes (Reges et al. 2016). The volunteer 
observers who make up the CoCoRaHS network are encouraged to record 
snow measurements along with their daily precipitation observations, 
including snowfall, daily SWE accumulation, snow depth, and total SWE on 
the ground. Most CoCoRaHS observers do record snowfall and the daily 
SWE accumulation, and most of those also record snow depth, though far 
fewer of them measure and record total SWE. For example, on the same 
day in March 2019, roughly 100 CoCoRaHS observers across the Upper 
Basin (mainly in western Colorado) reported snow depth, and roughly 20 of 
them also reported total SWE. Both COOP and CoCoRaHS snow 
observations are now being incorporated into the NOAA SNODAS products, 
as described below, while CoCoRaHS data are incorporated into the 
MODIS-based spatial estimates of SWE from the University of Colorado, 
also described below.  

Remote sensing of snow 
Remote sensing from satellite or airborne platforms provides spatially 
continuous data that can usefully complement the point SWE data from 
SNOTEL or other in situ observations. In the Colorado River Basin, 
remotely sensed snow data is being increasingly deployed and integrated 
into snowpack monitoring and runoff forecasting systems. It is important 
to note that remote sensing products have inherent uncertainties not 
shared by in situ measurements. They infer the variable of interest (e.g., 
fractional snow cover), typically by translating a different variable being 
sensed (e.g., reflected light from the surface at certain wavelengths) by way 
of an algorithm. In general, airborne products are more reliable than 
satellite products, mainly due to the sensor being roughly 2-3 orders of 
magnitude closer to the land surface.  

CoCoRaHS Network 

 
Link: 
https://www.cocorahs.org 

https://www.cocorahs.org/


 

Chapter 5. Observations—Hydrology 163 
 

MODIS, MODSCAG and MODDRFS 
MODIS is a moderate-resolution (500 m for most products) multi-spectral 
sensor that is currently on two different satellites, Aqua and Terra, with 
daily near-global coverage, with data availability back to 2000. NASA JPL 
developed, and continues to refine, two snow-specific data products from 
MODIS that are made available in near real-time: one that depicts fractional 
snow-covered-area and snow-grain size (MODSCAG) and one that depict 
the radiative melt forcing from dust-on-snow (MODDRFS) (Painter et al. 
2009). While MODSCAG does not capture SWE, it can be integrated with in 
situ observations in a snow-modeling environment to better represent the 
distribution of SWE across a landscape. See Figure 8.4 (in Chapter 8) for 
examples of MODSCAG and MODDRFS applications in the Colorado River 
Basin. 

Data from MODIS have been used both qualitatively and quantitatively by 
the CBRFC to inform streamflow forecasting since 2013 (Bryant et al. 2013). 
The MODSCAG data on fractional snow-covered area is used qualitatively 
to manually adjust forecasts, though the CBRFC is working with NASA JPL 
to develop a dataset that would allow for quantitative information to be 
used in operational streamflow forecasting. The MODDRFS information 
regarding changes to snow albedo due to dust-on-snow is quantitatively 
used to assess the impact of dust on snow to snowmelt runoff, and adjust 
the CBRFC snow model to compensate. The snow model used by the CBRFC 
(as described below) is not able to directly use spatially distributed data as 
input so their hydrologists have had to work around this limitation. 

Airborne Snow Observatory (ASO) 
The Airborne Snow Observatory (ASO) is an airplane-based platform 
developed by NASA JPL in 2013 (Painter et al. 2016). It carries a very high-
resolution scanning LiDAR (Light Detection and Ranging) sensor that can 
very accurately measure snow depth as the difference between the current 
snow-surface height and the land-surface height measured earlier during 
snow-free conditions. Observed or modeled snow density, or both, is then 
used to translate the snow-depth data into SWE, resulting in a spatial SWE 
product with a 50-m resolution (Figure 5.4). A second sensor, an imaging 
spectrometer, measures snow albedo and thus the radiative melt forcing 
from dust-on-snow. ASO data are the closest to “truth” for spatial 
variability in SWE across large areas (10s of km) and can directly provide 
estimates of snow-water volume throughout a watershed, if all of the 
watershed is flown and scanned.  

ASO has been primarily deployed in several basins in California, most 
intensively the Tuolumne River Basin, and in the past few years ASO flights 
have covered the bulk of the southern Sierra Nevada range. In the Colorado 
River Basin, ASO has been flown as part of pilot projects in the 
Uncompahgre Basin (2013–2017), Gunnison Basin (2016, 2018–19), over 

What is LiDar? 
 
LiDAR, Light 
Detection and 
Ranging, is a remote 
sensing method that 
uses light in the form 
of a pulsed laser to 
measure variable 
distances to the 
Earth. These light 
pulses—combined 
with other data 
recorded by the 
airborne system— 
generate precise, 3-
D information about 
the Earth’s surface 
characteristics. 
 
From NOAA: 
https://oceanservice.
noaa.gov/facts/lidar.
html 

https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
https://oceanservice.noaa.gov/facts/lidar.html
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Grand Mesa (2013–2017), and in the Blue River Basin (2019; for Denver 
Water). Typically, 1–6 flights are carried out per basin per season.  

 
Figure 5.4 

ASO-estimated SWE conditions based on airborne LiDAR snow-depth observations for the East River 
Basin around Crested Butte, April 1, 2018. The very fine spatial detail within the snow-covered area 
(blue shades) results from snow depth and SWE being driven by terrain features at multiple scales. 
(Source: Jeff Deems, CU CIRES and NASA/JPL) 
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California water agencies that have used ASO SWE data to produce or 
adjust water supply forecasts have found reductions in forecast error 
versus forecasts based only on in situ SWE data, allowing better 
optimization of reservoirs (Friant Water Authority 2019). This is particularly 
true during the latter portion of the melt season, when the remaining snow 
is at high elevations where it is poorly captured by the in situ network. At 
those times, the ASO-estimated SWE volume can effectively provide a 
lower bound on runoff that has yet to come. Previously collected ASO data 
are not publicly accessible, but generally can be obtained from ASO 
investigators. 

The CBRFC and NASA JPL are working collaboratively to evaluate the ability 
to incorporate remotely sensed snowpack information from ASO into 
CBRFC models to improve water supply and streamflow forecasts. Although 
limited in frequency of data collections and spatial domain, ASO data is 
available over the Senator Beck region in the Uncompahgre River Basin, the 
East River, Ohio Creek, and Taylor Park regions in the Gunnison River 
Basin, and the Blue River. The CBRFC indicates they will continue to stay 
informed regarding the availability of ASO and other remotely sensed 
snowpack information, and its potential for incorporation into operational 
forecasting.  

Because users typically pay for data capture and processing on a per-
basin/per flight-basis, ASO appears to have higher costs compared with 
SNOTEL, satellite data, and the other spatially distributed snow products 
described below. However, the costs associated with these other platforms 
and methods, while often not as apparent to individual users, are still real 
and need to be considered within a broader context of regional priorities. 
Streamflow forecast errors associated with inadequate characterization of 
snowpack also incur real costs. For ASO and any other snow monitoring 
data, the value of the information and return on investment may be more 
relevant metrics than simply the cost of the product per unit area.  
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SPOTLIGHT 

 

Winter orographic cloud seeding involves introducing very small particles, typically silver iodide, into clouds 
that contain supercooled (<0°C) water droplets. The particles serve as nuclei for ice crystals that grow as the 
water droplets freeze onto them, until they are too heavy to remain aloft and fall out as snow. The small 
silver iodide particles are most often released into clouds from ground-based generators; aircraft-based 
seeding appears to be more effective but is much more expensive (Flossmann et al. 2019). Orographic cloud 
seeding is done on the windward side of mountain ranges in order to leverage the natural enhancements by 
precipitation and snowfall by mountain barriers. The concept of orographic cloud seeding is inherently 
attractive, as even a small enhancement in precipitation and snowpack will, in principle, produce additional 
runoff at a lower cost than other sources of new water (Rauber et al. 2019). 

In the 1960s and 1970s, several cloud-seeding programs were carried out in different parts of the Upper 
Basin on an experimental or operational-research basis. The largest of these, Reclamation’s Colorado River 
Basin Pilot Project (CRBPP), was focused on the San Juan Mountains and lasted from 1970 to 1974. 
Reclamation was prepared to use the findings of that pilot project to design and conduct a region-wide 
operational cloud-seeding program (Weisbecker 1974), but the final report was inconclusive regarding the 
effectiveness of the CRBPP, and called for further research and pilot efforts instead of an operational 
program.  

Over the next 40 years, there was a marked shift in the impetus and funding for cloud seeding research and 
operations in the western U.S., from federal agencies to state, local, and private entities (National Research 
Council 2003). During this period, two narratives about the efficacy of cloud seeding have emerged. The 
scientific community asserted, multiple times, that controlled experiments and other studies had been 
unable to demonstrate winter precipitation enhancements that were unambiguously attributable to cloud 
seeding in the Upper Basin or elsewhere (National Research Council 2003; Reynolds 2015). On the other 
hand, private firms carrying out operational winter cloud seeding programs, and their clients, have 
consistently claimed to see evidence of precipitation enhancement in seeded basins, typically a 5–15% 
increase on a seasonal basis.  

Across the Upper Basin, the state water agencies and many water districts and ski areas have clearly 
endorsed the cost-effectiveness of cloud seeding by sponsoring and conducting numerous cloud-seeding 
programs, the longest-running of which began in the mid-1970s. As of 2019, there were seven cloud-seeding 
programs operating in western Colorado, three programs in central and southern Utah; and two in 
Wyoming, including a long-term, ground-based program in the Wind River Range, and a newer, aerial-based 
program in the Medicine Bow and Sierra Madre Ranges. Since 2007, the Lower Basin states have funded 
some of these programs; in 2018, entities representing all seven basin states signed a new agreement to 
continue funding coordinated cloud-seeding programs in the Upper Basin through 2026.  
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It remains difficult to isolate and quantify the effect of cloud seeding on snowfall totals and SWE (i.e., 
signal), given the complicated physics, the range of factors that can affect precipitation formation, and 
the large spatial and temporal variability in snowfall (i.e., noise). Researchers have used both modeling 
and field programs to investigate the effectiveness of cloud seeding projects. Modeling studies rely on 
advances in the modeling of cloud microphysics and seeding processes. Field programs need to extend 
for a long period of time (multiple seasons) and cover a large spatial area to support statistically 
meaningful findings (Flossmann et al. 2019).  

Active from 2008–2013, the Wyoming Weather Modification Pilot Project (WWMPP) was explicitly 
designed to evaluate the effectiveness of cloud seeding in Wyoming’s Sierra Madre and Medicine Bow 
ranges (NCAR 2014; Rasmussen et al. 2018). In a companion study, researchers using aircraft-based 
radar found increases in boundary layer reflectivity, which implies an increase in the snowfall rate, 
following ground-based seeding activities as part of the WWMPP (Geerts et al. 2010; 2013). Preliminary 
analyses of the WWMPP results indicated an increase in snowfall with cloud seeding of 5–15% in 
“seedable” storms, although seedable conditions occurred in only about 30% of the season’s storms 
(NCAR et al. 2014). Thus, the corresponding increase in seasonal snowfall would be more on the order 
of 1.5–4.5%. The researchers later conducted a more systematic assessment of the WWMPP results 
using both statistical methods and high-resolution atmospheric modeling. The statistical analysis was 
unable to identify a statistically significant effect of ground-based cloud seeding, while the modeling 
study estimated that seeding enhanced annual precipitation by about 1.5% (Rasmussen et al. 2018). 

In 2018, researchers were finally able to observe the long-theorized microphysical process for seeding-
induced snow formation in action, during an operational cloud-seeding project in Idaho (French et al. 
2018; Tessendorf et al. 2019). This was a major breakthrough in the scientific understanding of cloud 
seeding, with the potential to lead to improved monitoring of cloud seeding programs and better 
quantification of its impacts (French et al. 2018). At this point, one can say that cloud-seeding “works,” 
in that it clearly enhances snowfall along the path of the seeded particles; there are still large 
uncertainties in how that enhancement scales up to a seasonal basin-wide effect in the context of a 
specific operational program. 

The prevalence of cloud-seeding programs in the Upper Basin also raises some issues for snowpack 
monitoring and its application. Measurements of SWE in locations with active cloud seeding programs 
may reflect greater values than natural processes alone would have produced (Julander and Bricco 
2006). Such influences could potentially affect both snowpack trend analyses and the calibration of 
streamflow forecast models. Similarly, seeding-enhanced runoff could influence the analyses of 
streamflow trends and climate-streamflow relationships. 
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Spatially distributed modeled snow products 
Spatially distributed snow modeling uses spatially variable meteorological 
conditions and modeled physical processes to produce snow state and 
snow flux estimates specific to each location or grid cell across a basin. For 
water supply purposes, the key output of such modeling is estimate of SWE 
for each pixel or other modeling unit across a basin, such that the total 
volume of basin-wide SWE can be tabulated directly from the smaller units. 
Thus they compensate for the key limitations (spatial density, 
representativeness, and elevational coverage) of the SNOTEL network. 
Equally critically, spatially distributed modeling also generates insights into 
processes, sensitivities, and patterns in time and space that are difficult or 
impossible to glean from point observations alone.  

It is important to note, though, that spatially distributed modeled snow 
products are not independent of SNOTEL. All of the products described 
below either calibrate/validate their respective models on SNOTEL data, or 
directly assimilate SNOTEL data, or both, to inform the SWE estimates. 
They use spatial SWE estimates from a process model, and (in most cases) 
remotely sensed snow data, to in effect “spread” the SNOTEL observations 
across the landscape, generating a snowpack that is consistent with the 
SNOTEL observations but fills in the spatial gaps and detail. Accordingly, 
the SWE estimates from any of these products will be more uncertain in the 
elevation bands below and above the bulk of the SNOTEL network. 

It is also difficult to independently validate (i.e., apart from SNOTEL) the 
accuracy of these spatial SWE products. Comparing them to each other can 
identify systematic differences, but not which product is “right.” ASO SWE 
data, however, can serve as a viable reference for those basins and dates for 
which ASO flights have been carried out (Oaida et al. 2019). 

CBRFC modeled snowpack 
For operational streamflow forecasting, the CBRFC pairs a snow model 
(SNOW-17) with a hydrology model (Sac-SMA; see Chapter 8). SNOW-17 is 
run in a spatially “lumped” or partially distributed framework, meaning that 
area averages are calculated for each modeling unit, with each unit typically 
representing an elevation zone, of which there are usually three in each 
watershed. The mean area precipitation for a modeling unit is calculated 
from the precipitation observations at one or more SNOTEL or COOP 
stations, using weightings determined by model calibration and the PRISM 
precipitation climatology (Bender et al. 2014). In the Upper Basin, 6-hourly 
precipitation data is used, while in the Lower Basin, hourly data is used. 
SNOW-17 then builds a simulated snowpack, using the temperatures 
observed at the SNOTEL sites and local freezing levels, to determine 
whether precipitation is falling as snow or rain, and whether the snowpack 
is accumulating or ablating. Historical precipitation observations are used 
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to calibrate the snow model. The model effectively estimates a snow-water 
volume for each modeling unit, and thus for each watershed, sub-basin, 
and basin, which is then used to model the forecasted spring-summer 
streamflow volume (Bender et al. 2014). The model allows snow to persist at 
the highest elevations even after most or all SNOTEL sites have melted out, 
consistent with real-world behavior of the snowpack. 

The operational estimates of snow-water volumes for each modeling unit 
are now available on the CBRFC website, accessible from the water supply 
forecast evolution plot for a given forecast point (Figure 5.5).  

The CBRFC also computes a % median SWE for each modeling unit, and 
generates maps with these values (Figure 5.6) that can be accessed under 
the Snow Conditions menu item on the CBRFC home page. The CBRFC is 
increasingly using additional snow information to supplement the modeled 
SWE from Snow-17 in their forecasting procedures; see below for more 
details.  

CBRFC Colorado Basin 
River Forecast Center 

 
Link: 
https://www.cbrfc.noaa.g
ov/ 

 
Figure 5.5 

CBRFC modeled area averaged SWE during Water Year 2019 for the three modeling units (“Basin 
Zones”) comprising the catchment above the Yampa at Steamboat Springs forecast point: upper-
elevation unit (>10,000’; blue line), mid-elevation unit (8500-10,000’; red line), and low-elevation unit 
(<8500’; green line). The three gray lines are observations from the three SNOTEL sites within the 
catchment, at elevations from 8400’ to 9400’. (Source: NOAA CBRFC; 
https://www.cbrfc.noaa.gov/dbdata/station/snowmodel/snowmodel_dg.html?id=STMC2) 

https://www.cbrfc.noaa.gov/
https://www.cbrfc.noaa.gov/
https://www.cbrfc.noaa.gov/
https://www.cbrfc.noaa.gov/dbdata/station/snowmodel/snowmodel_dg.html?id=STMC2
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SNODAS (NOAA NOHRSC) 
The Snow Data Assimilation System (SNODAS) was developed by NOAA’s 
National Operational Hydrologic Remote Sensing Center (NOHRSC) and 
been produced operationally for the U.S. since 2004. SNODAS estimates 
multiple snow characteristics on a daily basis by merging satellite, airborne, 
and in situ snow data with modeled depictions of snow cover (Barrett 
2003). The snow variables that are modeled and made available include 
SWE, snow depth, snowmelt, sublimation, and snowpack average 
temperature. Model calibration and validation are focused primarily on 
SWE because of its importance to water management.  

 

Figure 5.6 

CBRFC modeled snow conditions (% of median SWE) for March 1, 2018 (left) and March 1, 2019 
(right) showing both the broad contrast between an unusually dry and unusually wet winter, and the 
finer scale spatial differences. The CBRFC snow model is “lumped” or “partially distributed,” 
meaning that conditions are estimated for each model unit (multiple elevation bands in each 
watershed) but not on a gridded, pixel-by-pixel basis. (Source: NOAA CBRFC; 
https://www.cbrfc.noaa.gov/rmap/grid800/index.php?type=snow) 

https://www.cbrfc.noaa.gov/rmap/grid800/index.php?type=snow
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SNODAS is a physically based energy- and mass-balance snow model, 
driven by near real-time weather variables that can assimilate available 
snow data from remote sensing and in situ measurements. NOHRSC 
analysts decide on a daily basis whether to adjust model output in order to 
correct for discrepancies between measurements and model estimates 
(Hedrick et al. 2015). The final snow products have a spatial resolution of 
about 1 km over the conterminous United States (Figure 5.7). 

Three studies have assessed the accuracy of SWE or snow-depth estimates 
from SNODAS through comparison with high-density, in situ snow 
sampling in Colorado (Clow et al. 2012; Hedrick et al. 2015) and Idaho 
(Anderson 2011). These studies indicated that SNODAS snowpack estimates 
were reasonably accurate and useful at watershed scales (>10 km), more so 
than at the ~1 km (single pixel) to ~10 km scale, where there could be 
systematic errors in areas with substantial wind scouring and 
redistribution, such as above treeline, or on forested slopes with complex 
topography. While there have been a number of improvements to the 
SNODAS model and data assimilation scheme over time, including some 
that may have addressed the shortcomings identified in those studies, 
these changes are not well documented.  

 
Figure 5.7 

SNODAS modeled SWE for April 1, 2018 for a portion of the Colorado River headwaters and 
Gunnison Basin in western Colorado, showing the 1-km resolution of the SWE product. The SNODAS 
interactive map allows viewing of spatial data at multiple scales, and also time series for user-selected 
basins. (Source: NOAA NHRSC https://www.nohrsc.noaa.gov/interactive/html/map.html ) 

https://www.nohrsc.noaa.gov/interactive/html/map.html
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In 2016, the Colorado Water Conservation Board (CWCB) funded the 
development of a prototype map-based web tool by the Open Water 
Foundation to access and display SNODAS SWE data, including average 
SWE and total snow-water volume, for hundreds of basins covering 
Colorado. This tool is now operational on the CWCB website (Figure 5.8). 
The development of this tool by CWCB speaks to the interest in and 
demand for spatial snow data. 

 
Figure 5.8 

The CWCB-Open Water Foundation map tool for viewing SNODAS snow data by basin, showing 
basin-average SWE for April 1, 2018 for a portion of the Colorado River headwaters and Gunnison 
Basin in western Colorado. The map tool also allows viewing of multiple time series for a user-
selected basin. (Source: CWCB; http://snodas.cdss.state.co.us/app/index.html)  

http://snodas.cdss.state.co.us/app/index.html
http://snodas.cdss.state.co.us/app/index.html
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MODIS-based spatial estimates of SWE 
Researchers at the University of Colorado (INSTAAR and CWEST) have 
developed a method to obtain MODIS-based 500-m resolution spatial 
estimates of SWE. This is an experimental research product using a method 
that was originally developed for the Sierra Nevada (Guan et al. 2013). A 
near real-time product has been generated biweekly during a February-
June season for water managers in California since 2012. The methodology 
was later refined and extended to two additional domains: Southern 
Rockies, which includes all of the Upper Basin and the northern portion of 
the Lower Basin (Schneider and Molotch 2016), and Northern Rockies, 
which includes northern Wyoming, Montana, and eastern Idaho.  

 
Figure 5.9 

MODIS-based spatial estimates of SWE at 500-m resolution across the Colorado headwaters sub-
region. The SWE amounts for April 3, 2018 are shown in the left panel, and the % of average SWE for 
April 3, 2018 (relative to the 2001-2012 average) over the snow-covered area is shown in the right 
panel. (Source: CU INSTAAR/CWEST) 
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For the Southern Rockies domain, a linear regression model is used to 
effectively blend the data listed below. 

• Observed SWE at the approximately 300 SNOTEL sites and at 2,100 
CoCoRaHS observer sites in the domain, scaled by the fractional snow-
covered area from MODSCAG data from that day. 

• Physiographic variables that affect snow accumulation, melt, and 
redistribution, including elevation, latitude, upwind mountain barriers, 
and slope. 

• An analogous historical daily SWE pattern (2000–2012) that was 
retrospectively generated using historical MODSCAG data, and an 
energy-balance snow model that reconstructs peak SWE given the 
fractional Snow Covered Area (SCA) time series and meltout date for 
each pixel.   

The linear regression model generates estimated SWE values for each pixel, 
out to the edges of the snow covered area shown in the MODSCAG image. 
The method works best in the spring, near or after the peak SWE 
(February–May). The SWE data are distributed in a multi-page report that 
includes maps (e.g., Figure 5.9), a summary of current conditions, and 
summary statistics. 

In spring 2018 and 2019, this product was produced and distributed 4-5 
times per season with the support of Western Water Assessment, and it is 
being produced again in spring 2020.  

SWANN: The Snow Water Artificial Neural Network 
The SWANN modeling system is a research product, developed at the 
University of Arizona, that uses snow models, assimilated in situ SWE data, 
and artificial neural networks (ANNs), a type of machine learning algorithm, 
to generate gridded estimates of SWE and snow cover (Broxton et al. 2017). 
SWANN was prototyped for the Salt River Basin in Arizona, in collaboration 
with the Salt River Project (SRP). The SWANN SWE estimates, which are 
available back to the early 1980s, use ANNs to account for local variations in 
topography, forest cover, and solar radiation, while the snow cover 
estimates (generated on a limited basis), use ANNs that are applied to 
Landsat and MODIS satellite reflectance data. The models are trained with 
in situ SWE observations and aerial LiDAR SWE estimates from across the 
southwestern U.S. The SWANN SWE data are produced in near real-time, 
and delivered to SRP via a prototype decision support tool that provides 
daily-to-annual operational monitoring of spatial and temporal changes in 
SWE and snow cover conditions. The product also includes 35+ years of 
daily SWE estimates, allowing it to be used in modelling applications that 
require long-term SWE records. 
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The developers of SWANN have also created a beta map-based web tool 
(SnowView) to visualize and access SWANN SWE estimates for basins 
across the U.S., including the Colorado River Basin and individual sub-
basins (Figure 5.10). The SnowView tool can also display SNODAS SWE for 
comparison, as well as SNOTEL SWE and USGS streamflow data. While 
there has not yet been a published evaluation of the near real-time SWANN 
SWE estimates, an earlier version of the dataset was evaluated against ASO 
SWE estimates in California, and compared with a variety of remotely 
sensed SWE and snow cover products (Dawson, Broxton, and Zeng 2018). 

Challenges and opportunities in snow observations 
As noted above, the SNOTEL snow-monitoring system serves its central 
purpose well, as indicated by the generally high skill of seasonal water 
supply forecasts that rely on SNOTEL data. However, the assumption of 
spatial representativeness underpinning these monitoring and forecasting 
systems is less robust in years with unusual conditions, e.g., an overall 
average snowpack with above average low-elevation snow. The larger 

 

Figure 5.10 

The SnowView map tool showing SWANN SWE estimates for the Colorado River headwaters and 
portions of adjacent basins for April 1, 2018. The seasonal curves in the lower left show the 2018 
SWANN SWE for the river headwaters compared to the median for 2008-2019. (Source: SnowView, 
U. of Arizona; https://climate.arizona.edu/snowview/ ) 

https://climate.arizona.edu/snowview/
https://climate.arizona.edu/snowview/
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forecast errors that occur in these cases can potentially be reduced by 
better real-time characterization of those aspects of the snowpack’s spatial 
distribution that are not captured well by SNOTEL. In order to take full 
advantage of this enhanced spatial information, though, streamflow 
forecasting systems need to be able to efficiently take in these data—which 
is not the case for the current CBRFC or NRCS systems.  

The current snow monitoring and streamflow forecasting systems have also 
been built upon another assumption, that of stationarity: that temperature, 
precipitation, and SWE conditions at SNOTEL sites will maintain their 
statistical and model-calibrated relationships with seasonal and daily 
streamflow. This assumption is increasingly strained by non-stationarity in 
the hydroclimate system: warming temperatures and changing spatial and 
temporal patterns of snow accumulation and ablation. The current 
observation network and operational modeling capacities are not finely 
resolved enough—in space, time, or physical processes—to capture these 
changes, and therefore the usefulness of in situ measurements as robust 
indices of basin runoff production is at risk.  

Ongoing efforts seek to add physical process representation to operational 
models in order to increase the capacity of runoff forecasting systems to 
handle diverse and changing watershed conditions, including climate 
change and variable dust-on-snow loading. This increased realism in turn 
demands data at higher spatial and temporal resolution. Over the past 15 
years, new observing platforms, datasets, and modeling approaches have 
emerged, providing spatially distributed SWE information that builds on 
and complements the in situ point observations. New, remotely sensed data 
also capture additional snow characteristics, like albedo/dustiness, for 
which few in situ observations are available. As described above, some of 
these spatially distributed snowpack data are now used to inform 
operational streamflow forecasting by CBRFC, augmenting their partially 
distributed (“lumped”) modeled snowpack, for which precipitation 
observations from the SNOTEL network play a critical role. 

An ideal future snowpack-monitoring system for the Colorado River Basin 
that is more robust to both year-to-year variability and long-term climate 
change will still require observations from the SNOTEL network at its core. 
But it would be increasingly augmented by remotely sensed/spatially 
distributed snowpack products, and feed into a streamflow forecast system 
that is itself upgraded to better handle spatial information and represent 
the physical processes of snow accumulation and melt that are undergoing 
change. Uncertainties related to the spatial and temporal representation of 
the snowpack would inevitably remain, but they would be much reduced. 
Ideally, CBRFC would continue to act as a testbed and integrator of these 
new snow data and methods, in partnership with university, agency, and 
private-sector researchers. 
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SPOTLIGHT 

 

Water managers, water users, recreationists, and residents alike have become increasingly accustomed to 
seeing pinkish to brownish color on the surface of spring snowpacks in the mountain headwaters of the 
Upper Basin, especially in western Colorado, from widespread deposition of desert dust. The dust’s visual 
impact reflects physical changes that have already impacted the hydrology of the basin. Indeed, the 
emergence of accumulated dust at the top of the melting snowpack is increasingly recognized as the herald 
of the rapid end of the snow season. 

Soil surfaces in the Colorado Plateau and Great Basin are naturally resistant to wind erosion thanks to 
physical and biogenic soil crusts, but these crusts are easily disturbed by land uses such as grazing, oil and 
gas drilling, dryland agriculture, and off-road vehicle use (Duniway et al. 2019). Once disturbed, the fine soil 
particles can be picked up by strong winds and transported hundreds of miles from the source. Dust-
deposition events in the Upper Basin typically occur with large-scale storms that move in from the 
southwest, most frequently in the spring (Painter et al. 2007). The dust layers from each event are often 
buried by subsequent snows, but then reemerge and coalesce at the snow surface as the snowpack 
compacts and melts down in late spring. 

Sediment cores from alpine lakes in the San Juan Mountains of Colorado show a seven-fold increase in dust 
deposition in the mid-1800s over the late Holocene average, coinciding with increased settlement and 
grazing (Neff et al. 2008). The deposition decreased somewhat after the late 1800s, but leveled off in the late 
20th century at about five times the natural background levels, due to continued disturbance by an 
increasing array of agents. Dust deposition appears to have been on the increase again since the late 1990s, 
due to both increasing aridity in the dust source areas and increasing human disturbance of the soils 
(Brahney et al. 2013).  

Field studies starting in the mid-2000s have demonstrated that dust loading in the snowpack increases the 
radiative energy absorbed by snow, enhances snowmelt rates, and leads to earlier timing of spring runoff 
(Painter et al. 2007; 2012; Skiles et al. 2012). Using the VIC (Variable Infiltration Capacity) hydrologic model 
(Chapter 6), two studies have quantified the likely impact of recent dust loading on both the timing and 
amount of runoff across the Upper Basin (Painter et al. 2010; Deems et al. 2013). Moderately dusty years like 
2005 through 2008 are estimated to cause snowmelt and the peak of spring runoff to occur about three 
weeks earlier compared to the pre-1800s dust levels. The extreme dust loading—several times more than 
2005–2008—that occurred in 2009, 2010, and 2013 is estimated to cause melt and runoff to occur another 
three weeks earlier, or a total of six weeks earlier than in the pre-historic hydrology.  
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The largest impacts are occurring in southwestern Colorado; the impacts generally decrease with 
distance from the Colorado Plateau (Painter, Bryant, and Skiles 2012; Skiles et al. 2015). From 2014 to 
2018, there were no extreme dust years, but moderate to high dust years occurred in 2014 and 2016. 

More recent work has demonstrated that the steepness of the hydrograph’s rising limb on rivers in 
southwestern Colorado is tightly linked to the dust concentration—more dust means a steeper rise in 
flow—but is not correlated with spring air temperatures, indicating that dust is the far more important 
driver of melt (Painter et al. 2018). Changes to the slope and shape of the rising limb can impose 
constraints on water management, reducing the time window over which allocation decisions are 
made, or producing ‘false peaks’ which may trigger management decisions inadvertently. 

Hydrologic modeling with the VIC model has also indicated that moderate dust loading has reduced 
natural streamflows at Lees Ferry by about 5% annually, or 800,000 acre-feet, compared to pre-1800s 
conditions (Painter et al. 2010). In the model, as the snowpack melts out earlier, more 
evapotranspiration occurs from soils and vegetation, reducing runoff. The additional dust loading in 
extreme dust years like 2013 only increases that loss from 5% to 6%, because meltout occurs so early 
that the sun angle is too low to drive much additional evapotranspiration.  

 

View of the Senator Beck Study Plot at the Center for Snow and Avalanche Studies (CSAS), San Juan Mountains, 
Colorado, on May 5, 2013. The dark patches where that season’s extreme dust accumulation has emerged at the 
surface sit lower than the adjacent cleaner snow, indicating the enhanced melt rate due to the dust. (Photo: CSAS 
Colorado Dust-on-Snow program.) 
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This dust-caused shift and reduction in runoff has likely been present in many water years since the 
early 1900s, so a moderate dust impact is partly embedded in what we consider normal. The spatial and 
year-to-year variability in dust loading, and resulting impacts on the hydrograph, complicate the 
streamflow forecast, and therefore basin operations. The accuracy of the Colorado Basin River Forecast 
Center (CBRFC) streamflow forecasts in the dust-impacted watersheds has been found to be linearly 
related to the amount of dust influence on snowmelt, with both unusually high and unusually low 
loading being associated with larger forecast errors, indicating that their model has effectively been 
calibrated to moderate dust levels over time (Bryant et al. 2013). The CBRFC now uses satellite data 
(MODDRFS) showing dust loading to adjust the temperatures in their model to force the model to melt 
snow faster, as described elsewhere in this chapter, though dust-on-snow effects may still contribute 
to forecast error.  

Given the multiple snowmelt processes affected by dust, the modeled interaction of the projected 
future regional warming with the dust-on-snow effect is complex (Deems et al. 2013). Runoff timing is 
strongly affected by dust under all future warming scenarios, which means that dust reduction efforts 
could still have a beneficial impact on snowpack longevity even under a markedly warmer climate. 
However, there may be lower potential for recovery of annual runoff under high-warming scenarios. 
Because warming reduces snowpack amounts much more strongly than dust-induced evaporation 
losses, moving from moderate dust to extreme dust in a warmer future climate has no additional effect 
on runoff volume (Deems et al. 2013). A warmer future climate would also lead to drier soils in the dust 
source region, reducing vegetation cover and allowing for greater dust emission (Munson, Belnap, and 
Okin 2011). 

It may be possible to at least partly reverse dust-on-snow impacts in the Upper Basin with 
management and policy changes (Duniway et al. 2019). Researchers continue work to determine how 
improved land-use practices or restoration efforts might reduce the amount of dust that is mobilized 
and ultimately deposited in the snowpacks of Colorado and the West, with funding from water 
management agencies in the Colorado River Basin. It is now understood that impacts to snowpacks 
from dust and other aerosols are a global phenomenon, increasing in many other regions due to 
anthropogenic disturbances similar to those in the western U.S. (Skiles et al. 2018). 

The Colorado Dust-on-Snow (CODOS) dust monitoring program, conducted by the Center for Snow 
and Avalanche Studies, has been a critical source of information, providing dozens of updates 
throughout the snow season on their weather and dust observations, and integrated assessments of 
the seasonal impacts of dust on snowmelt and runoff. The CODOS program is funded by CWCB and the 
Basin Roundtables, Reclamation, Colorado River District, Denver Water, and several other water 
districts and utilities, indicating the relevance and utility of the CODOS data and assessments.  

 
 

 

 

 

 

http://www.codos.org/
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5.3 Streamflow observations and monitoring 

Streamflow observations in the Colorado River Basin have formed the basis 
for the agreements, decrees, treaties, and compacts that comprise the Law 
of the River. They are critical to ongoing management and operations of all 
aspects of Colorado River Basin water supply today.  

Observed (gaged) streamflow records are used directly in multiple ways, 
including real-time applications, streamflow forecasting, flood warning 
systems, reservoir operations, diversion scheduling, and ecological and 
recreational assessments. They are also commonly modified (e.g., to adjust 
for upstream activities), manipulated (e.g., to examine different sequences), 
or transformed (e.g., to fit a frequency distribution) for use in planning, 
research, and design. The gaged records are the starting point for all of 
these activities. 

Gaged streamflows 
The USGS is the primary entity that operates and maintains stream gages. 
Within the Colorado River Basin, Reclamation, the basin states, and dozens 
of other entities also maintain, operate and fund stream gages through 
their participation in the Cooperative Water Program (Interstate Council on 
Water Policy 2012). The USGS performs quality control and is the central 
clearing house for data collected through the Cooperative Water Program. 
Near real-time streamflow data as well as historical streamflow data are 
available for these stations through the National Water Information System 
(NWIS).  

Streamflow gage uncertainty 
As is true with all data input to water resources models, “you cannot 
forecast any better than you can gage” (R. Julander, as quoted in Lukas et al. 
2016). The USGS provides assessments of the gage quality of each 
streamflow gage, for each year. These annual accuracy assessments depend 
on the stability of the stage-discharge relationship (rating curve), which is 
used to convert the observed water elevation (stage) to streamflow 
(discharge). They also depend on the accuracy of the observations of stage, 
measurements of discharge, and interpretations of the records. The rated 
accuracy corresponds to 95% of the reported discharge data departing 
from the “true value” by the following percentages: excellent (<5%), good 
(<10%), fair (<15%), and poor (>15%) (US Geological Survey n.d.). USGS gage 
accuracy documentation can be found in the USGS Annual Water-Year 
Summaries for each gage, an example of which is provided in Figure 5.11. 

 

USGS National Water 
Information System 

 
Link: 
https://waterdata.usgs.gov
/nwis/ 

https://waterdata.usgs.gov/nwis/
https://waterdata.usgs.gov/nwis/
https://waterdata.usgs.gov/nwis/
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Uncertainties in streamflow data arise from multiple possible sources and 
those sources are often noted in the gage documentation. They include 
equipment limitations, errors in the rating curve, errors in stage 
observations (due to ice, for example), errors due to the averaging methods 
used to obtain mean gage height, and changes in stream channel or 
vegetation (Hamilton and Moore 2012). Opportunities to measure extreme 
high or low flows are rare and brief, making such events difficult to capture 
and represent in the rating curves, and therefore subject to additional 
uncertainty. Finally, conversions to more automated stream gaging means 
fewer field visits to gages to observe and address site conditions (Hamilton 
and Moore 2012).  

 
Figure 5.11 

Typical USGS annual water-year summary for a streamflow gage. (Source: US Geological Survey 
2018c) 
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The combined uncertainties found in streamflow estimates have been 
summarized as follows: 50-100% for low flows, 10-20% for medium or high 
in-bank flows, and 40% for out-of-bank flows (McMillan, Krueger, and 
Freer 2012; McMillan et al. 2017). Cohn, Kiang, and Mason (2013) have 
offered a method that uses statistical techniques and on-site 
measurements to try to get better estimates of discharge uncertainty, and 
Kiang et al. (2018) have reviewed current methods of estimating discharge 
uncertainty and found that estimates vary widely from method to method.  

Federal priority stream gages 
A subset of USGS streamflow gages are part of the “Federal Priority 
Streamgages” (FPS) network, a group of gages that are considered critical 
for federal support of forecasting, compact and border agreements, 
analysis of long-term trends, and other purposes (US Geological Survey 
2018a). The FPS network is considered the backbone of critical stream 
gages throughout the nation and was developed in order to give the USGS a 
systematic way to evaluate how and where funding and other support 
should be placed. The criteria used to determine which gages to consider 
priority gages are listed below.  

1. Meeting Legal and Treaty Obligations on Interstate and International 
Waters (to monitor legal requirements for deliveries of water at state 
and national borders; presently 515 gage sites according to 
http://water.usgs.gov/nsip/nsipmaps/federalgoals.html) 

2. Flow Forecasting (sites needed for validation and improvement of 
forecasts where the National Weather Service and other federal 
agencies carry out flood or water supply forecasts; 3,244 gage sites) 

3. Measuring River Basin Outflows (for calculating regional water 
balances over the nation; 450 gage sites) 

4. Monitoring Sentinel Watersheds (for determining long-term trends in 
streamflow across the country; 874 gage sites) 

5. Measuring Flow for Water Quality Needs (for characterizing the 
quality of surface waters; 210 gage sites) (National Research Council 
2004) 

These active FPS gages are supported through a combination of federal and 
partner funding—less than one-quarter are fully funded by the USGS. The 
agency uses the FPS designation to indicate those gages that USGS 
classifies as critical and thus eligible for FPS funding as available from 
federal appropriations. For example, preventing the loss of long-term data 
collection stations, because of their value in assessing trends, recurrence 
frequencies of floods and droughts, and other variables, is of particular 
concern. The value of long-term streamgaging has been expressed by the 
National Research Council (2004): 

USGS Federal Priority 
Stream Gage 
Network 
 
Link:  
https://www.usgs.go
v/mission-
areas/water-
resources/science/fe
deral-priority-
streamgages-fps 

https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
http://water.usgs.gov/nsip/nsipmaps/federalgoals.html
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
https://www.usgs.gov/mission-areas/water-resources/science/federal-priority-streamgages-fps
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Figure 5.12 

Map of active and proposed USGS federal priority stream gage locations. (Data: USGS; 
http://water.usgs.gov/networks/fps/) 
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Sixty percent of the FPS sites serve a forecast function. FPS streamflow 
gages in the Colorado River Basin for all purposes, both active and 
proposed, are shown in Figure 5.12. More detail about each station is 
available on the USGS’s FPS website by clicking on the individual gage and 
bringing up the station information. It is important to note that the FPS 
network streamflow gages shown on the map in Figure 5.12 are a subset of 
gages within the larger network of USGS streamflow gages that supply 
information for a diverse set of needs and therefore are not inclusive of all 
USGS streamflow gages.   

Streamflow data gaps in the Colorado River Basin 
In its 2016 report, “Looking Forward: Priorities for Managing Freshwater 
Resources in a Changing Climate,” the interagency Water Resources and 
Climate Change Workgroup (2016) recommended sustaining and expanding 
existing monitoring networks and data collection by identifying and 
addressing data gaps and needs for water resource management, and 
expanding adoption of regional monitoring networks to establish baseline 
conditions for evaluating impacts due to climate change. The first step in 
identifying streamflow data gaps is the national streamgage gap study by 
Kiang et al. (2013), which compiled information about each USGS gage and 
the basin areas contributing to it. For consistency, the authors focused 
exclusively on USGS gages and did not consider gages operated by other 
agencies or organizations. Within the Colorado River Basin, they list 619 
total USGS gages: 405 in the Upper Basin and 214 in the Lower Basin. For 
comparison with gage coverage in other basins nationally, Figure 5.13 
shows the location of smaller basins (<500 sq. mi.) for which streamflow is 
measured by at least one USGS gage. Of course, gage density will 
correspond, to some extent, to stream density, so arid regions will have 
lower gage density. In the Colorado River Basin, the smaller basins with 
gage coverage shown in Figure 5.13 are mainly located in higher-elevation 
areas that provide most of the basin’s runoff (Chapter 2). 

“The streamgaging network … has had to contend with unstable and 
discontinuous funding support. Gages have been inactivated when 
cooperators cut budgets, and these incremental losses have eroded the 
network. Many inactivated gages had long records that are valuable for 
trend analysis and forecasting. It is practically impossible to quantify the 
cost of losing an individual gage. Its value even for one goal—for 
example, flood or drought forecasting—is embedded in the operation 
and accuracy of the entire forecast system, the forecast delivery 
mechanisms, and the forecast response.” 

National Research Council (2004) 

 

http://water.usgs.gov/networks/fps/


 

Chapter 5. Observations—Hydrology 185 
 

 

Kiang et al. (2013) also looked at the density of reference-quality gages, that 
is, those with relatively little human activity upstream that might impact 
the measured flow and are therefore of particular interest for researchers 
and planners looking for unimpaired data. They list 104 reference quality 
gages with 20 or more years of record in the Colorado River Basin, 68 in the 
Upper Basin and 36 in the Lower Basin, a fairly low density compared to 
other, more humid, parts of the country. As mentioned above, in the 
Colorado River Basin, stream gages are more common in the higher 
elevation watersheds. The USGS is beginning a new national gap analysis 
for stream gages in 2020 (M. Landers, pers. comm.). 

Additional monitoring of Colorado River Basin streamflow has been 
suggested in the draft, joint Reclamation-CBRFC Forecast and Reservoir 
Operation Modeling Uncertainty Scoping (FROMUS) report to help reduce 
errors and uncertainty in 24MS forecasts and therefore in system condition 
projections. In particular, that report suggests that additional gaging at 
Upper Basin diversion sites and Lower Basin intervening flow locations 
could improve streamflow forecasts substantially (Reclamation and 
Colorado Basin River Forecast Center in preparation). The FROMUS report 
is discussed in more detail in Chapter 3. 

 
Figure 5.13 

Basins of 500 square miles or less for which streamflow is measured. (Source: Kiang et al. 2013) 
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Streamflow observations in the Colorado River Basin 
Records of streamflow observations in the Colorado River Basin date back 
to the late 19th century. The longest record that is used in planning studies 
in the basin is the “Green River at Green River, UT” gage that has a period 
of record extending back to October 1894 (US Geological Survey 2018b). 
Perhaps the most important 19th century record is the “Colorado River at 
Lees Ferry, Arizona” gage, for which records begin in January, 1895 (US 
Geological Survey 2018c). The Lees Ferry gage measures flow in the 
Colorado River mainstem and is located just upstream of the mouth of the 
Paria River, and about a mile upstream of the Colorado River Compact point 
dividing the Upper Basin and the Lower Basin at Lee Ferry, Arizona. 

A historical summary and analysis of the Lees Ferry gage describes the 
evolution of the gage from a staff gage that was read twice a day to a 
continuous recording strip chart gage to an instantaneous recording gage 
(Topping, Schmidt, and Vierra Jr. 2003). The Topping et al. report provides 
a wealth of information about measurement methods at Lees Ferry, 
hydrologic conditions prior to the closure of Glen Canyon Dam, 
characteristics of the channel at the gaging station, and analysis of the 
flood record prior to construction of the dam.  

 

Figure 5.14 
 
Lees Ferry Gage in 
1923. Photograph taken 
by G.C. Stevens of the 
U.S. Geological Survey 
just after sunset on 
September 22, 1923. 
(Source: Topping, 
Schmidt, and Vierra Jr. 
2003) 
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Within the Colorado River Basin, many individual gaging stations have 
documented idiosyncrasies, from station relocations (Colorado River near 
Glenwood Springs, CO), to missing seasons (Yampa River near Maybell, CO), 
to changes in equipment (Colorado River at Lees Ferry, AZ). For example, 
records from the Colorado River at Lees Ferry, AZ gage were rated “good” 
in 2006 through 2012, but were upgraded to “excellent” in 2013 through 
2018.  

The primary stream gaging stations used for planning and operations 
models in the Colorado River Basin are the 29 stations listed in Figure 5.15 
and shown in the map in Figure 5.16. The numbers on the map are keyed to 
the station names in Figure 5.15, which shows the record lengths for the 
gage locations. The 29 stations have varying record lengths and therefore 
have varying levels of overlap with each other.  

In 1983, Reclamation developed a “hydrology database” for its Colorado 
River modeling system; the record lengths shown in Figure 5.15 reflect the 
gage records in that database. The record lengths in Figure 5.15 don’t 
always correspond to the record lengths reported by the USGS for the 
gages—in some cases, the Reclamation record is longer. The gage locations 
shown on Figure 5.16 correspond to the inflow points for Reclamation’s 
CRSS model, described in Chapter 3, and therefore correspond to the 
locations where natural flows are calculated. 

 
Figure 5.15 

Gage names and record lengths for locations identified on the basin map in Figure 5.16, through 
2005. (Source: adapted from Lee and Salas 2006) 
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Figure 5.16 

Primary gage stations used for Reclamation’s planning and operations models. The names and record lengths for the 
numbered locations are provided in Figure 5.15 
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Naturalized and unregulated flows 
Streamflow data obtained directly from gages reflects contemporaneous 
upstream natural processes and human activities such as diversions, 
agricultural return flows, and reservoir operations. The time series reflects 
changes in those natural processes and human activities over time as 
climate, vegetation, and land use in the basin change. These homogeneities 
in the observed streamflow record, if quantifiable, may be reduced through 
“naturalization” of the record. That is, if quantitative information about 
upstream activities is available or can be developed, it can be used to adjust 
gage observations to calculate streamflows that are restored to natural, 
unimpaired levels. 

The USGS provides some documentation of upstream effects on 
observations at the gages. For example, the USGS 2019 annual water year 
summary for the “Gunnison River near Grand Junction, Colorado” gage 
describes its observations as affected by upstream activities thus: “Natural 
flow of river affected by diversions for irrigation of about 233,000 acres 
upstream from station, storage reservoirs, and return flow from irrigated 
lands.” However, the USGS documentation of upstream activities is both 
very coarse and only infrequently updated. For example, the 2019 
description of upstream activities for the Gunnison River near Grand 
Junction gage is almost identical to one published for water year 1975 (U.S. 
Geological Survey 1977). Streamflow naturalization requires finer temporal 
and spatial estimates of upstream impacts. 

The three Reclamation models described in Chapter 3 simulate the fate of 
runoff under existing or potential policies, and account for either current 
system development and demands or different projections of future 
development and demands. If the inflow datasets used by those models 
were simply gaged streamflows, the results would be confused by the 
inhomogeneities in the record. Therefore, prior to use in the Reclamation 
models, the gaged record needs to be adjusted, or naturalized, to 
approximate the flows that would have been observed in the absence of 
human activity. The level of adjustment depends on the model, the time 
step, and the availability of data quantifying upstream activities.  

The process of naturalizing the streamflow gage data differs somewhat 
among the entities that develop and maintain naturalized streamflow 
datasets. The State of Colorado, the Upper Colorado River Commission 
(UCRC), Reclamation, and the CBRFC each produce versions of adjusted 
gage flows at selected locations in the basin. A summary of these products 
is provided in Table 5.2 and described briefly below the table.  
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Table 5.2 

Adjusted flow records that are currently used in the Colorado River Basin. 

Entity 
Naturalized 
flow label 

Locations 
Time step 
and period 

Application Reference 

State of 
Colorado 

Baseflow  
214 points in 
Colorado 

Monthly 
1950–2005 

StateMod 
Colorado Water 
Conservation 
Board (2012) 

UCRC Virgin flow 
Lee Ferry (the 
Colorado River 
Compact point) 

Annual, 
1896–
present 

Reporting 
UCRC (2017, 
2018) 

Reclamation Natural flow 

29 points 
throughout the 
Colorado River 
Basin 

Monthly, 
1906–
present 

CRSS, and 
most long-
term basin 
research 
studies 

Prairie and 
Callejo (2005) 

CBRFC 
Unregulated 
flow 

159 sites 
throughout 
area of 
responsibility  

Monthly 
and 
seasonal 
1964–
present 

24MS and 
MTOM and 
stakeholders’ 
forecast needs  

See Table 3.1 in 
Chapter 3 

Reclamation 
Unregulated 
flow 

9–12 points in 
the Upper 
Basin 

Daily and 
monthly, 
1964–
present 

Contributes 
indirectly to 
24MS and 
MTOM 

See Table 3.1 in 
Chapter 3 

 

State of Colorado baseflows 
For its Colorado River Water Availability Study using StateMod, a water 
allocation and accounting model (Colorado Water Conservation Board 
2012), the State of Colorado developed historical monthly “baseflows” for 
hundreds of inflow points from the river’s headwaters in Colorado to the 
Colorado-Utah state line. StateMod’s baseflows represent flows that have 
been adjusted for upstream human effects, that is, historical gage 
observations are adjusted for diversions, reservoir operations, estimated 
consumptive uses, and return flows. Baseflows calculated at gage locations 
are distributed to upstream, ungaged reaches and locations. 

UCRC virgin flows 
The UCRC publishes current and historical total annual “virgin flows” at Lee 
Ferry, the Colorado River Compact point below the USGS Lees Ferry gage 
and below the Colorado River confluence with the Paria River, in its annual 
reports (UCRC 2017, 2018). The UCRC defines virgin flow as “the estimated 
flow of the stream if it were in its natural state and unaffected by the 
activities of man.”  
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Specifics of the UCRC calculation methods were not available, but 
presumably they are very similar to the methods used by Reclamation, 
described in the next section. Figure 5.17 shows a comparison of the UCRC 
and USBR virgin and natural flows at Lee Ferry and Lees Ferry, respectively. 
The agencies’ flows will differ slightly because of their different locations 
relative to the mouth of the Paria River (discharge of 20 kaf/yr on average). 
However, the difference between the two records is not consistently signed 
negative, as one would expect, and is frequently on the order of hundreds 
of thousands of acre-feet. For most of the historical record, there is 
insufficient documentation on the development of the two entities’ flows to 
understand the differences; however, data sources are available from 
Reclamation and the UCRC for the more recent 1988–2017 period if 
comparison were to be pursued. The lesson from the differences is that 
there may be uncertainties in the naturalization process that propagate to 
the naturalized streamflow values, above and beyond the uncertainties in 
the underlying gaged record.  

 
Figure 5.17 

Comparison of USBR and UCRC water-year annual naturalized flows at Lees Ferry and Lee Ferry, 
respectively, 1906–2016. (Data: UCRC 2017, 2018; Reclamation 2019d) 
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Reclamation natural flows 
As the key inputs to its CRSS model, Reclamation produces historical 
monthly “natural flows” at each of the 29 inflow points listed on Figure 5.16. 
The names and record lengths for the numbered locations are provided in 
Figure 5.15. The natural flow dataset, available on the Reclamation website, 
is actively maintained and updated with recent natural flow values once all 
of the components have been compiled and adjustments made (about 12 
months after the end of the year). In addition to adding to the natural flow 
record as each year’s data becomes available, Reclamation also frequently 
refines its natural flow calculations using new information and methods. 
These calculations and refinements are described in more detail in the next 
section. 

To develop the monthly natural flows that are input to CRSS, Reclamation 
adjusts gaged streamflow data at all 29 inflow points for reservoir 
operations and consumptive use. The specific adjustments made to 
calculate natural flow for Upper Basin locations differ from those of the 
Lower Basin. The following summary of Reclamation’s adjustments to the 
gage record draws primarily from Prairie and Callejo (2005). That document 
describes the natural flow calculation inputs, methods, and assumptions for 
what was then the 1971 to 1995 natural flow dataset. Figure 5.18, modified 
from that document, shows a simplified process diagram for the natural 
flow calculations. Natural flow calculations made prior to 1971 have not 
been revisited since 1983 for the Upper Basin, and 1985 and 1992 for the 
Lower Basin, with the exception of the record extension described later in 
this section.  

 

Figure 5.18 
 
Reclamation's 
natural flow 
calculation 
method, as 
applied to gaged 
data from 1971 
onward  
(Source: adapted 
from Prairie and 
Callejo 2005) 

USBR Colorado River 
Basin Natural Flow 
and Salt Data 
 
Link: 
https://www.usbr.go
v/lc/region/g4000/N
aturalFlow/ 

https://www.usbr.gov/lc/region/g4000/NaturalFlow/
https://www.usbr.gov/lc/region/g4000/NaturalFlow/
https://www.usbr.gov/lc/region/g4000/NaturalFlow/
https://www.usbr.gov/lc/region/g4000/NaturalFlow/
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Upper Basin flow naturalization. For Upper Basin natural flows, 
Reclamation adjusts the observed gage record to account for upstream 
changes in reservoir storage and consumptive uses and losses at the 20 
locations shown in Table 5.3. 

Table 5.3 

Upper Basin natural flow locations used in CRSS. (Source: USBR Colorado River Basin Natural Flow and 
Salt Data; J. Prairie pers. comm.) 

USGS gaging station number Station name 
CRSS inflow 

point 

Was 09072500 

Current 09085100-09085000 
Colorado River at Glenwood Springs, Colorado  1 

09095500 Colorado River near Cameo, Colorado  2 

09109000 Taylor River below Taylor Park Reservoir, Colorado 3 

09124700 Gunnison River above Blue Mesa Reservoir, Colorado 4 

09127800 Gunnison River at Crystal Reservoir 5 

09152500 Gunnison River near Grand Junction, Colorado  6 

09180000 Dolores River near Cisco, Utah  7 

09180500 Colorado River near Cisco, Utah  8 

09211200 Green River below Fontenelle Reservoir, Wyoming 9 

09217000 Green River near Green River, Wyoming  10 

09234500 Green River near Greendale, Utah  11 

09251000 Yampa River near Maybell, Colorado  12 

09260000 Little Snake River near Lily, Colorado 13 

09302000 Duchesne River near Randlett, Utah  14 

09306500 White River near Watson, Utah  15 

09315000 Green River at Green River, Utah  16 

09328500 San Rafael River near Green River, Utah  17 

09355500 San Juan River near Archuleta, New Mexico  18 

09379500 San Juan River near Bluff, Utah  19 

09380000 Colorado River at Lees Ferry, Arizona 20 



 

Chapter 5. Observations—Hydrology 194 
 

Reclamation considers two sets of reservoirs in its Upper Basin natural flow 
adjustments: the eight Upper Basin mainstem reservoirs explicitly 
represented in CRSS, and eighteen non-mainstem reservoirs not 
represented in CRSS. For the former, historical pool elevation data are used 
to determine changes in storage for adjustment of downstream natural 
flows. For the latter, historical monthly change in storage is used. Natural 
flows below Flaming Gorge Reservoir and Lake Powell include additional 
adjustments for changes in bank storage. 

Adjustments for consumptive uses and losses (CUL) include reservoir 
evaporation, stock pond and livestock uses, thermal power, minerals, M&I, 
exports and imports, and irrigated agriculture. Reservoir evaporation is 
calculated from historical surface area for 42 major reservoirs and from an 
estimated “fullness factor” for minor reservoirs, with net evaporation rates 
from NOAA “Annual FWS Evaporation Atlas.” Consumptive uses and losses 
from historical M&I, minerals, and measured imports and exports are taken 
from USGS reports and communications. Losses from sublimation and 
evapotranspiration (ET) from non-irrigated lands are not factored into 
natural flow calculations.  

Reclamation calculates historical Upper Basin irrigated agriculture 
consumptive use with the modified Blaney-Criddle ET estimation method, 
in combination with data on temperature, crop types, and acreage. 
However, because of better availability of a wider range of weather data 
(see Chapter 4), the modified Blaney-Criddle method may be phased out; 
the more fully physical Penman-Monteith method is now the preferred 
approach (Sammis, Wang, and Miller 2011; Technical Committee on 
Standardization of Reference Evapotranspiration 2005). In cooperation 
with, and pending approval from, the UCRC and the Upper Basin states, 
Reclamation may replace modified Blaney-Criddle-derived estimates of 
consumptive use with Penman-Monteith-derived estimates in its natural 
flow calculations (J. Prairie, pers. comm.). 

Reclamation routinely refines the natural flow calculations. Updates to the 
natural flows are issued approximately annually and each update may 
reflect multiple refinements. The refinements fall into three categories 
corresponding to the data sets needed to compute natural flow: CUL data, 
reservoir regulation (change in storage) data, and USGS gage data. 
Reclamation provided several years of documented updates—three 
examples taken from the documentation are provided in Figure 5.19. 
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For nearly all gages, and for nearly all years, the sum of the adjustments 
made to naturalize the observed record are positive (i.e., adding flow back 
in), resulting in a natural flow record that exceeds the historical gage 
record. However, at the Lees Ferry gage, in extremely dry years like 1977 
and 2002 (Figure 5.20), the natural flow for the entire Upper Basin (5.4 and 
5.9 maf, respectively) can be less than the Lake Powell release (typically 
8.2 maf), revealing a net negative adjustment to the gaged value. 

 
Figure 5.19 

Three examples of Reclamation’s Upper Basin natural flow updates. Reclamation’s documentation of natural flow 
refinements summarizes the changes to each natural flow component and includes a figure with the total monthly 
change in natural flow at Lees Ferry since the previous update. (Source: Reclamation) 
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Lower Basin flow naturalization. The basin map in Figure 5.16 shows 9 
inflow points for CRSS in the Lower Basin. Five of these points are located 
in reaches along the mainstem, and are considered naturalized flows, and 
four represent tributaries. The methods for calculating CRSS inflows differ 
between these two types of Lower Basin inflow points. 

The five Lower Basin reaches and the USGS gages (natural flow calculation 
points) at the downstream ends of them are shown in Table 5.4. 
Reclamation’s Lower Basin natural flows contain adjustments for operations 
at Lakes Mead, Mohave, and Havasu, and include estimates of changes in 
bank storage for Lake Mead.  

 
Figure 5.20 

Comparison of naturalized and gaged water-year flows at Lees Ferry, 1922-2017 (Data: USGS and 
Reclamation)  
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Table 5.4 

Lower Basin natural flow locations (Source: Prairie and Callejo 2005) 

USGS gaging 
station number 

Station name 
CRSS inflow 

point 
Reach name 

09402500 
Colorado River near Grand Canyon, 
AZ  

23 Lees Ferry to Grand Canyon 

09421500 
Colorado River below Hoover Dam, 
AZ-NV 

25 
Grand Canyon to Hoover 
Dam  

09423000 
Colorado River below Davis Dam, 
AZ-NV  

26 Hoover Dam to Davis Dam  

09427520 
Colorado River below Parker Dam, 
AZ-CA 

28 Davis Dam to Parker Dam 

09429490 
Colorado River above Imperial Dam, 
AZ-CA 

29 Parker Dam to Imperial Dam 

 
The method for estimating consumptive uses and losses for these reaches 
is different from that in the Upper Basin. Rather than calculate historical 
consumptive use from acreage and ET estimates, Reclamation relies on 
water use records from Decree Accounting, recently renamed Water 
Accounting, reports (Reclamation 2016c) that are compiled in accordance 
with the court decree in Arizona v California. In total, consumptive uses 
from 52 diversions are accounted for in the Lower Basin natural flow 
calculations. However, according to Prairie and Callejo (2005), for some 
diversions, the consumptive use is modified by an “unmeasured returns” 
factor that reduces the depletion.  

Reservoir evaporation is estimated with monthly evaporation coefficients 
and surface areas for lakes Mead, Mohave, and Havasu. 

Lower Basin natural flows are also adjusted to reflect the impact of 
phreatophytes. Monthly average consumptive use by phreatophytes for two 
reaches, Davis to Parker and Parker to Imperial, which sum to over 500,000 
acre-feet per year, are applied. 

Natural flow is not calculated for the Lower Basin tributaries; instead, 
historical gage data are used for the 4 tributaries shown in Table 5.5, with 
the corresponding gaging station. As described in Chapter 3, the Gila River 
is not represented in CRSS. 
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Table 5.5 

Lower Basin tributaries represented in CRSS. (Source: Prairie and Callejo 2005) 

USGS gaging station Station name 
CRSS Inflow 

point 

09382000 Paria River At Lees Ferry, AZ 21 

09402000 Little Colorado River Near Cameron, AZ 22 

09415000 Virgin R At Littlefield, AZ 24 

09426000 Bill Williams River Below Alamo Dam, AZ 27 

 
There are hydroclimatic implications to using the historical gage data at the 
tributaries rather than naturalizing the inflows. Lower Basin tributary gage 
flows are heavily modified by upstream human activity and therefore do not 
reflect the natural hydrologic variability of those tributaries. Efforts to 
analyze trends or calibrate models based on these inflows will produce 
misleading results, and simulations that are imposed on this already-
impaired streamflow record cannot explore changes to the uses or 
operations on the tributaries. Reclamation is in the process of computing 
historical (1971-present) consumptive uses and losses for the tributaries and 
will ultimately compute natural flows at the four gage locations for use in 
CRSS (J. Prairie, pers. comm). 

Natural flow record extension 
The time series for observed streamflow records for the 29 key inflow 
points in the basin are only partially overlapping, as noted above and shown 
in Figure 5.15. Rather than attempt to extend the various gage records back 
to a common starting point and then estimate natural flows from the 
extended gage records, Reclamation has extended the natural flow records 
themselves. In 1983, Reclamation used multiple linear regression on the 
overlapping natural flows that had been calculated from gage records to 
derive equations to extend all the missing natural flows back to 1906. In 
2006, taking advantage of 20 additional years of common natural flow 
estimates, Lee and Salas used multiple linear regression and nearest-
neighbor methods to revise and update the 1983 extensions. They 
disaggregated the updated annual natural flows to monthly natural flows 
and incorporated a random error term to represent the uncertainty in the 
estimates (Lee and Salas 2006). Reclamation currently uses the Lee and 
Salas (2006) extended natural flow for all periods from 1906 until the start 
of the gage record at a given site. 
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CBRFC unregulated flows 
The CBRFC forecasts monthly “unregulated flows” for basin locations 
corresponding to Upper Basin inflow points in Reclamation’s 24MS 
(9 points) and MTOM (12 points) models (see Chapter 3 for the locations 
and details of these inflow points). The CBRFC’s unregulated flows are 
gaged flows that have been adjusted for some, but not all, upstream 
activities, and thus are not as fully naturalized as natural or virgin flows. 
The CBRFC takes observed flows and removes the effects of measured 
upstream diversions, exports, imports, and reservoir regulation. The 
formula for CBRFC’s unregulated flow calculation, in which all the terms are 
taken from measured data, is given below and illustrated in Figure 5.21. 

Besides having very different applications, the primary difference between 
the CBRFC’s unregulated flows and Reclamation’s natural flows is the 
treatment of upstream diversions and return flows. Upstream activities that 
are either not measured or for which data is unavailable in a routine and 
timely manner are not backed out of the observed gage flow in the CBRFC 
version.  

It should be noted that, for purposes besides 24MS or MTOM inputs, 
unmeasured depletions, such as localized irrigation, are modeled by the 
CBRFC to estimate how much water is applied to, consumed by, and 
returned from known irrigation areas, but these estimates are not used in 
the CBRFC’s unregulated flow calculations.  

 

Figure 5.21  
 
CBRFC's 
unregulated flow 
calculation method 
(Source: adapted 
from CBRFC 
formula) 
 

Unregulated flow = Observed flow + Diversions + Exports – Imports ± Change in Storage 
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Reclamation unregulated flows 
Reclamation also calculates unregulated flows, but only retrospectively (i.e., 
they are not used as the basis of forecasts like CBRFC’s). With the exception 
of the inflow to Navajo Reservoir, Reclamation’s unregulated flow 
calculations only account for the change in storage of any Reclamation 
reservoir directly upstream. Unregulated inflows to Navajo Reservoir are a 
special case because 24MS and MTOM both model projected diversions 
through the Azotea Tunnel, which is above the reservoir. Within 
Reclamation this Navajo Reservoir inflow is termed “modified unregulated” 
because Reclamation does add back in the diversions in its unregulated 
calculation.   

Though there are minimal differences between Reclamation's and CBRFC's 
unregulated streamflow values at all overlapping locations, three CBRFC 
forecasts are adjusted based on Reclamation’s calculations or needs: inflows 
to Powell, Flaming Gorge, and Navajo reservoirs. CBRFC’s Lake Powell 
unregulated inflow forecast is adjusted via a linear regression to more 
closely match Reclamation’s retrospective calculations, and this adjusted 
inflow becomes CBRFC’s official forecast. For the inflow to Flaming Gorge, 
CBRFC calculates a special forecast for use in Reclamation’s models that is a 
hybrid between regulated and unregulated: the impacts of regulation by 
non-Reclamation reservoirs between Fontenelle and Flaming Gorge are 
preserved (i.e., not backed out as in the standard unregulated calculation 
procedure). This is different from CBRFC’s official published forecast into 
Flaming Gorge, which is developed as described above. The last special case 
is for the inflow into Navajo Reservoir. As previously described, Reclamation 
adjusts its unregulated calculation for the impacts of Azotea Tunnel, so this 
aspect of inflow to Navajo matches the CBRFC procedure and does not 
require any special treatment. Because there is significant irrigation activity 
between Vallecito Reservoir and Navajo that Reclamation does not consider 
in its internal unregulated calculations, CBRFC provides a hybrid forecast 
that includes regulation between Vallecito and Navajo so that the resulting 
Navajo forecast value is closer to what Reclamation produces in its 
retrospective calculations. This hybrid product is different from CBRFC’s 
official, published, unregulated Navajo inflow forecast.  

A comparison of Reclamation’s natural flows and unregulated flows is 
shown in Figure 5.22. Comparison of Reclamation’s and CBRFC’s publicly 
reported April-July unregulated flows into Lake Powell over the 1964 to 
2016 period show that they are almost perfectly correlated and agree, on 
average, within 0.02%. If the CBRFC unregulated flows for Lake Powell were 
plotted in Figure 5.22 they would be indistinguishable from Reclamation’s 
unregulated inflows. 
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5.4 Soil moisture observations and monitoring 

Soil moisture, like snowpack, serves as a key interface between 
atmospheric and hydrologic processes. It links the energy budget and 
water budget of a watershed by controlling whether incoming energy goes 
into the evaporation of moisture, or the heating of the land surface. And 
like snowpack, soil moisture integrates precipitation and 
evapotranspiration over long time periods, imparting memory to the 
hydrologic system (Shelton 2009). 

Antecedent fall soil moisture is an important influence on runoff efficiency 
for the following spring, and thus a soil-moisture term is included in the 
CBRFC streamflow forecast model. Anomalously low antecedent soil 
moisture will reduce the forecasted seasonal streamflow, especially for the 
early season forecasts (December and January) because there is less 
information then about the snowpack; at those times, forecasted flows are 

 

Figure 5.22 

Comparison of Reclamation's water-year unregulated flows into Lake Powell with their naturalized 
flows at Lees Ferry, 1964–2017. (Data: Reclamation) 
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reduced by about 7–10% per 10% departure from normal soil moisture 
conditions (P. Miller, pers. comm.). Until 20 years ago, in situ observations 
of soil moisture in the Colorado River Basin were extremely sparse. The 
density of in situ soil moisture observations in the basin has increased in 
recent decades, but the spatial representativeness of the point 
observations is still problematic for basin-wide applications. Accordingly, 
CBRFC uses modeled soil moisture in their streamflow forecasting. CBRFC 
has found that only the deepest in situ soil moisture measurements, at 
about 1 m, correlate with their modeled soil moisture, and many in situ sites 
do not have sensors at that depth. New remotely sensed data on soil 
moisture from satellites have the potential to augment and better tie 
together in situ and modeled soil moisture data, though most remotely 
sensed data only extend through the top layer (roughly 10 cm) of soil (Table 
5.6).  

The modeling of soil moisture has a large conceptual and practical overlap 
with the modeling of evapotranspiration and evaporative demand (Section 
5.5) since they are all terms in balancing the energy budget and water 
budget at the land surface.  

In situ soil moisture measurements 
About 100 in situ soil moisture observing sites have been established in 
recent years in the basin, with most of them located in the Upper Basin 
(Figure 5.23). By far, the greatest number of these are at SNOTEL sites, with 
some of them having records going back to early 2000s. Other networks 
that host multiple soil-moisture sites in the basin include the Soil Climate 
Analysis Network (SCAN), U.S. Climate Reference Network (USCRN) and the 
Interactive Roaring Fork Observing Network (iRON) in central Colorado. 
Each site provides measurements of soil moisture at multiple depths from 5 
cm (2”) up to 1 m (39”), depending on the network. 

Outside of the SNOTEL network, which covers the high-elevation regions 
in the Upper Colorado River Basin, the in situ monitoring is still very sparse, 
and may not adequately assess the conditions (and water demand) from the 
lower-elevation, more arid part of the basin. Real-time data and historical 
data from all of these networks and stations can be accessed from the 
National Soil Moisture Network (NSMN) or the International Soil Moisture 
Network (Dorigo et al. 2011).  

International Soil 
Moisture Network 
 

 
Link: 
https://www.geo.tuwie
n.ac.at/insitu/data_view
er/ 

http://nationalsoilmoisture.com/
https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://www.geo.tuwien.ac.at/insitu/data_viewer/
https://www.geo.tuwien.ac.at/insitu/data_viewer/
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Table 5.6 

Summary of characteristics of in situ, remotely sensed, and modeled soil-moisture (SM) data available for 
the Colorado River Basin. See the text for further description of most of these networks/products. 

Network or 
Product Name 

Method 
Soil Moisture 

(SM) Variables 

Spatial 
Resolution or 
Number of 
Stations 

Spatial 
Coverage 

Temporal 
Resolution 

National Soil 
Moisture 
Network 

In situ 
Observations 

SM at multiple 
depths (5-100 cm) 

~1000 
stations from 
multiple 
networks 

CONUS daily 

NLDAS-2 
Land Surface 
Modeling 

SM at multiple 
depths (10-100 cm) 

12 km CONUS daily 

SMAP Remote Sensing 0-5 cm SM 36km Global 2-3 days 

SMOS Remote Sensing 0-5 cm SM 50km Global 3 days 

LIS (Noah 
Model + 
SMAP) 

Remote Sensing 
+ Land Surface 
Model 

0-10, 10-40, 40-
100 and 100-200 
cm SM 

3 km CONUS daily 

ESI 
Remote Sensing 
+ Energy 
Balance Model 

Root zone SM in 
percentiles 

4 km CONUS 
monthly 
composite 

LERI 
Remote Sensing 
+ Energy 
Balance Model 

Root zone SM in 
percentiles 

1 km CONUS 
monthly 
and 8-day 

GRACE-DA-
DM 

Remote Sensing 
+ Land Surface 
Model 

Groundwater, root 
zone SM and 
surface SM 
percentiles 

12 km 
North 
America 

weekly 
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Figure 5.23 

Locations of in situ soil moisture monitoring sites that are part of the National Soil Moisture Network (NSMN). 
(Source: NSMN; http://nationalsoilmoisture.com/) 

http://nationalsoilmoisture.com/
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Modeled soil moisture 
Because of the scarcity of both in situ and remotely sensed soil moisture 
data, real-time soil moisture conditions have generally been modeled, using 
observed meteorological inputs—primarily temperature and precipitation, 
but also humidity and solar radiation in some cases. 

Hydrologic models used to model soil moisture have been either simple 
bucket models, as in the case of NOAA’s Climate Prediction Center’s Soil 
Moisture product (Huang, Van den Dool, and Georgarakos 1995), or more 
complex land surface models as the NLDAS-2 Drought Monitor Soil 
Moisture online products (VIC, MOSAIC, Sac-SMA and NOAH models; 
Schaake et al. 2004) and UCLA’s Experimental Surface Water Monitor (VIC 
model; Wood 2008). Modeled estimates of soil moisture are typically made 
for the total moisture in the whole soil column and do not have explicit 
information on moisture conditions at particular depths. This poses a 
challenge to efforts to blend the modeled total-column estimates with the 
depth-specific in situ observations, such as the National Soil Moisture 
Network blends described below. 

The CBRFC models soil moisture as part of their streamflow forecast 
procedure using the Sac-SMA model (Sacramento-Soil Moisture 
Accounting, see Chapter 6). Sac-SMA divides the soil response into a fast-
responding upper zone (approximately the top 20-50 mm of soil) and a 
slower-responding lower zone (generally deeper than 50 mm). In the 
model, a basin's antecedent condition prior to snowmelt, i.e., the lower 
zone soil moisture, influences the forecasted volume of runoff during the 
spring and summer months. As with the Snow-17 model, the Sac-SMA 
model is run in a lumped framework, in which individual watersheds are 
divided into up to three elevation zones, depending on the amount of relief 
within the basin, vegetation patterns, and snowpack patterns. Sac-SMA 
model parameters, including those that govern soil moisture processes, are 
defined separately for each elevation zone within each watershed. The 
CBRFC has examined incorporating in situ observed soil moisture data into 
their model but has found that these data were not appropriate for the 
CBRFC’s modeling environment (P. Miller, pers. comm.). 

Modeled soil moisture provides much more spatially distributed 
information than point in situ observations; however, the modeled data also 
inherit the uncertainties in the underlying meteorological observations, 
particularly precipitation (Chapter 4), as well as uncertainties in the 
parameterization of soil and vegetation properties that influence the 
translation of precipitation into soil moisture.  

NOAA Soil Moisture 

 
Link: 
https://www.cpc.ncep.n
oaa.gov/products/Soil
mst_Monitoring/US/Soi
lmst/Soilmst.shtml 
 

NLDAS Soil Moisture 

 
Link: 
https://www.emc.ncep.
noaa.gov/mmb/nldas/d
rought/ 
 

UCLA Soil Moisture 

 
Link: 
http://www.hydro.ucla.
edu/SurfaceWaterGrou
p/forecast/monitor/ind
ex.shtml 

https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.emc.ncep.noaa.gov/mmb/nldas/drought/
http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/US/Soilmst/Soilmst.shtml
https://www.emc.ncep.noaa.gov/mmb/nldas/drought/
https://www.emc.ncep.noaa.gov/mmb/nldas/drought/
https://www.emc.ncep.noaa.gov/mmb/nldas/drought/
http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
http://www.hydro.ucla.edu/SurfaceWaterGroup/forecast/monitor/index.shtml
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Remotely sensed soil moisture  
Satellite-based data have become increasingly available in recent years to 
assess soil moisture, through retrieval of soil moisture’s signature in 
microwave-band radiation reflections and scatter, or by assimilating satellite 
observations of various surface properties in a land surface/hydrology model 
to model soil moisture. While satellite retrievals of soil moisture are generally 
restricted to the upper 10 cm of soil, as mentioned earlier, the assimilation of 
satellite data into modeled soil moisture can usefully inform estimates at 
much greater depths (>100 cm), since soil moisture anomalies tend to 
propagate downward in the soil column over time (Kumar et al. 2019). The 
CBRFC has not yet evaluated the potential to incorporate remotely sensed 
soil-moisture data in their forecast model. 

 
Figure 5.24 

CBRFC operational modeled soil-moisture conditions (% of average) for mid-November 2017 (left) 
and 2018 (right). The mid-November time frame is indicative of the antecedent soil moisture that 
influences the efficiency of the spring runoff. The CBRFC soil moisture model is “lumped” or 
“partially distributed,” meaning that conditions are estimated for each model unit (multiple elevation 
zones in each watershed), but not on a gridded, pixel-by-pixel basis. (Source: CBRFC; 
https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php) 

https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php
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NASA’s Soil Moisture Active Passive (SMAP) satellite was launched in 2015 to 
retrieve the soil moisture signal in microwave-band radiation. Because of 
the failure of the radar (the active sensor), only the radiometer (the passive 
sensor) data is available. The passive sensor provides an assessment of the 
near-surface soil moisture (upper 5 cm) and a spatial resolution of 36 km 
every 2-3 days and is available on a SMAP webpage. SMAP radiometer 
observations have also been combined with Sentinel-1 satellite radar (i.e., 
active) observations to estimate soil moisture at a much higher spatial 
resolution (3 km); a near real-time Beta-release version of this data is 
currently available online for monitoring applications with a 2-day lag time 
(Das et al. 2018). NASA's Short-term Prediction Research and Transition 
(SPoRT) Center provides real-time output of soil moisture variables every 
hour for CONUS at 3 km resolution by assimilating SMAP observations in 
the Noah land-surface/hydrology model (Blankenship et al. 2018).  

The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) 
mission was launched in 2009. Similar to SMAP, SMOS provides estimates 
of soil moisture in the top 5 cm at a spatial resolution of 50 km every 3 
days. One study has shown that both SMAP and SMOS products have a dry 
bias in a topographically complex mountain region in China (Zhang et al. 
2019), but it is not clear whether this is true for other mountain regions.   

Root zone soil moisture can also be assessed using other satellite derived 
products that use remotely sensed “land skin” temperature and an energy-
balance model to assess the evaporative response from land. The 
Evaporative Stress Index (ESI; Anderson et al. 2011) is a 4-km spatial 
resolution data product based on GOES satellite data, available as a 
monthly composite updated with 1-day latency between late March and 
early October. ESI has been shown to be a useful predictor of agricultural 
yield anomalies and other vegetation impacts caused by soil-moisture 
drought stress (Hobbins, McEvoy, and Hain 2017) 

A newer, similar product is the Landscape Evaporative Response Index 
(LERI; Rangwala et al. 2019), which is a 1-km spatial resolution dataset 
derived from Simplified Surface Energy Balance (SSEBop) 
evapotranspiration data that incorporates MODIS Terra observations and is 
available online at multiple timescales of integration with a lag time of 1-2 
weeks. 

National Soil Moisture Network 
The National Soil Moisture Network (NSMN) is an ongoing multi-agency 
and multi-university effort that aims to integrate soil moisture data from 
the several existing in situ monitoring networks throughout the United 
States, and also to merge these data with modeled and remotely sensed soil 
moisture products to generate near real-time, high-resolution, gridded 
national soil moisture maps and other products (Clayton et al. 2019). 

NASA SMAP Data 

 
Link: 
https://nsidc.org/data/s
map/smap-data.html 
 

SMAP Sentinel-1  

 
Link: 
https://nsidc.org/data/
SPL2SMAP_S/versions/
2 
 

NASA SPoRT Center 

 
Link: 
https://weather.msfc.na
sa.gov/sport/case_studi
es/lissmapda_CONUS.
html 

https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/SPL2SMAP_S/versions/2
https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
https://hrsl.ba.ars.usda.gov/drought/index.php
https://hrsl.ba.ars.usda.gov/drought/index.php
https://www.esrl.noaa.gov/psd/leri/
https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/SPL2SMAP_S/versions/2
https://nsidc.org/data/SPL2SMAP_S/versions/2
https://nsidc.org/data/SPL2SMAP_S/versions/2
https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
https://weather.msfc.nasa.gov/sport/case_studies/lissmapda_CONUS.html
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Currently, the NSMN website provides three types of soil moisture map 
products for the U.S.: 1) interpolated in situ observations of soil moisture, 
including an interpolation scheme (regression kriging) that uses PRISM 
precipitation; 2) a blend of the regression-kriging interpolated in situ map 
with NLDAS modeled soil moisture, and 3) a blend of 2) and a SMAP 
passive-radiometer remotely sensed soil moisture product. The NSMN also 
provides daily soil-moisture data from all in situ networks, but the data 
archive only extends back to August 2018.  

5.5 Evaporation, evapotranspiration, and evaporative 
demand 

To support a variety of water resource management decisions, estimates of 
open-water evaporation, evapotranspiration (ET), and evaporative demand 
are required at varying timescales: daily (reservoir operations), weekly 
(irrigation scheduling), and seasonally (demand and consumptive use 
estimation) (Hobbins and Huntington 2017). Estimates of watershed-scale 
evapotranspiration are also used to validate the simulated water budget in 
hydrologic models, including that used by the CBRFC for streamflow 
forecasting. Estimates of monthly reservoir evaporation and consumptive 
use by agriculture are also important terms in the Reclamation operations 
and planning models and in their flow naturalization calculations.  

Generally, evaporation-related variables are estimated using a model driven 
by meteorological observations, or are derived from remote sensing data. 
Direct in situ observations of these variables (e.g., pan evaporation) are very 
sparse and do not offer an adequate spatial representation at the 
watershed or basin scale. 

Monitoring of open-water evaporation 
Open water evaporation in a large reservoir setting is notoriously difficult 
to quantify; many different methods have been used to estimate open water 
evaporation, each with benefits and challenges for operational use, as 
summarized by Friedrich et al. (2018). Historically, pan evaporation has 
often been used by water managers as a proxy for reservoir evaporation, 
including at Lake Powell in the late 1950s, but this method can produce 
large errors in both the amount and seasonal timing of evaporation 
(Friedrich et al. 2018).  

The bulk aerodynamic, or mass transfer, method is arguably the most cost-
effective approach for near real-time operational monitoring. From 1955–
1994, the USGS calculated evaporation at Lake Mead using the mass 
transfer method, and from 1965–1979, Reclamation calculated evaporation 
at Lake Powell using the mass transfer method (Reclamation 1986). The 
average monthly evaporation from these deployments of the mass transfer 
method have been incorporated into the 24MS model as static coefficients 

USDA Evaporative 
Stress Index 

 
Link: 
https://hrsl.ba.ars.usda.
gov/drought/index.php 
 

Landscape Evaporative 
Response Index

 
Link: 
https://www.esrl.noaa.g
ov/psd/leri/ 
 

National Soil Moisture 
Network 

 
Link: 
http://nationalsoilmoist
ure.com/ 

http://nationalsoilmoisture.com/
https://hrsl.ba.ars.usda.gov/drought/index.php
https://hrsl.ba.ars.usda.gov/drought/index.php
https://www.esrl.noaa.gov/psd/leri/
https://www.esrl.noaa.gov/psd/leri/
http://nationalsoilmoisture.com/
http://nationalsoilmoisture.com/
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for modeling reservoir evaporation. However, comparison with newer 
techniques has shown that the mass transfer method likely has consistent 
biases (Moreo and Swancar 2013). 

The Eddy Covariance (EC) method is regarded as the most direct and 
accurate approach to quantifying open water evaporation, if properly 
instrumented and calibrated (Hobbins and Huntington 2017). This method 
has been shown to have high accuracy in estimating evaporation from Lake 
Mead, with estimated uncertainties of 5–7% or less (Moreo and Swancar 2013).  

A major advantage of the EC method is the ability to accurately quantify 
daily and sub-daily evaporation. However, this method has substantial 
instrumentation and data processing requirements that limit its application 
more widely (Friedrich et al. 2018). Another relatively accurate approach is 
the Bowen Ratio Energy Balance (BREB) method. But this method requires 
accurate estimates of the reservoir heat storage term, which varies 
considerably, and is therefore considered more appropriate for applications 
over longer timescales, i.e., weeks to months (Moreo and Swancar 2013; 
Friedrich et al. 2018).  

The Penman-Monteith method, which uses a suite of climate variables as 
input to estimate evapotranspiration, has been modified to estimate open 
water evaporation and can compute annual fluxes within 5% accuracy 
(Finch 2001; Jensen, Dotan, and Sanford 2005; Harwell 2012). The accuracy, 
however, is lower at finer temporal scales, e.g., the daily or monthly inputs 
needed for most water system modeling.  

Since 2010, the USGS and Reclamation have partnered to produce real-time 
evaporation estimates for Lake Mead and Lake Mojave using the EC and 
BREB methods (Moreo and Swancar 2013) with the goal of generating a 
continuous record from 2010–2019. A final report is expected in 2020. The 
results will be used to revise projections of future evaporation for use in 
system modeling. Also, as of 2019, Reclamation is partnering with the 
Desert Research Institute (DRI) to calculate and compare evaporation 
estimates for Lake Powell using the EC, BREB, and mass transfer methods 
at the same floating observation site (Figure 5.25). This effort will try to 
establish which method or methods have the greatest potential for long-
term operational monitoring, given accuracy, cost, and other considerations. 
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Monitoring of evapotranspiration 
Evapotranspiration (ET) refers to aggregate loss of water from the land 
surface: evaporation from soils, open water, and snow and ice, and 
transpiration from plants. Actual ET (AET) is the real loss of water from the 
land surface, while potential ET (PET) refers to the water loss that would 
occur if the water supply at the land surface were unlimited. In the 
following discussion, ET is used to mean AET. The robust estimation of ET 
losses from irrigated lands is central to consumptive use (CU) estimates 
used in system modeling and planning. Direct in situ measurements of ET, 
such as the Eddy Covariance method described above, are relatively sparse 
and do not provide an adequate spatial representation across a landscape 
or basin, though they are critical for validating estimates from other 
methods.  

More frequently, ET is estimated using one of several indirect methods 
described in more detail below, including 1) estimation of a reference crop 
evapotranspiration based on meteorological inputs and relevant crop 
coefficients, appropriate for irrigated land only, 2) using a land-surface/ 
hydrology model with meteorological inputs, and 3) using satellite 
observations of land-surface temperature in an energy balance model. The 
accurate estimation of ET losses at the landscape/basin scale remains a 
major challenge (Amatya et al. 2016). 

 

Figure 5.25 
Evaporation monitoring 
platform located in Padre 
Bay at Lake Powell, part 
of a joint study between 
Reclamation and the 
Desert Research Institute 
(DRI). Sensors measuring 
wind speed and other 
weather parameters 
along with water 
temperature will allow 
intercomparison of 
multiple methods for 
estimating reservoir 
evaporation. (Image: 
DRI.) 
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Table 5.7 

Summary of evapotranspiration and evaporative demand data available over some or all of the Colorado 
River Basin. See the text for further description of most of these networks and products. 

Network or 
Product 
Name 

Method Variables 
Spatial 

Resolution or 
# Stations 

Spatial 
Coverage 

Temporal 
Resolution 

CoAgMET 
(CO Climate 
Center) 

Reference ET formulation 
incorporating weather 
obs 

Reference 
ET 

> 100 stations Colorado daily 

NICE Net 

(DRI) 

Reference ET formulation 
incorporating weather 
obs 

Reference 
ET 

18 stations Nevada daily 

AZMET 

(U. of Arizona) 

Reference ET formulation 
incorporating weather 
obs 

Reference 
ET 

29 stations Arizona daily 

AgriMet 
(Reclamation 
and partners) 

Reference ET formulation 
incorporating weather 
obs 

Reference 
ET 

~ 300 stations 
(includes 

CoAgMet, 
NICE Net, 
Utah AgWx 

stations) 

Western US daily 

Utah AgWx 

(Utah Climate 
Center) 

Reference ET formulation 
incorporating weather 
obs 

Reference 
ET 

~ 40 stations 
Utah and 
western 

Wyoming 
daily 

Ameriflux 

(LBNL and 
partners) 

In situ measurement 
based on Eddy 
Covariance 

Actual ET 
> 400 stations 

(20 within 
CRB) 

North and 
South 

America 

30 min to 
daily 

NLDAS-2 Land Surface Modeling Actual ET 12 km CONUS daily 

SSEBop 
Remote Sensing + Energy 
Balance Model 

Actual ET 1 km CONUS 8-day 

ALEXI ET 
Remote Sensing + Energy 
Balance Model 

Actual ET 8 km CONUS daily 

EDDI 
Reference ET formulation 
incorporating gridded 
weather obs 

Evaporative 
Demand 

12 km CONUS daily 

 

https://cals.arizona.edu/azmet/index.html
https://cals.arizona.edu/azmet/index.html
https://earlywarning.usgs.gov/ssebop/modis
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Reference crop ET estimations 
Reference ET or reference crop ET (ET0) is an estimate of the upper bound 
of ET losses from irrigated croplands given a specific crop type, and 
thereby the water needed for irrigation, and not actual water fluxes from 
the land (i.e., AET). Traditionally, the Blaney-Criddle method has been used 
to estimate reference ET, but the tradeoff for its simple requirements for 
meteorological input—temperature only—is highly inaccurate estimates 
under many conditions (URS 2013). More physically based formulations of 
Reference ET, such as Hargreaves and Penman-Monteith, require more 
meteorological inputs—maximum and minimum temperatures, humidity, 
solar radiation, and wind speed—and, as with Blaney-Criddle, a specific 
crop ET coefficient (Allen et al. 1998). Real-time daily estimates of 
Reference ET for 10 different crop types are available from the CoAgMET 
network for more than 100 locations across Colorado. Several other 
networks—AZMET, NICE Net, Utah AgWx, Agrimet—also provide real-time 
daily estimates of Reference ET (Table 5.7). Spatially gridded data for 
reference ET (e.g., ASCE Grass or Alfalfa Reference ET) are also computed 
in near real-time using different gridded climate datasets and are 
accessible through Climate Engine. 

Land surface modeling 
Real-time and gridded ET (AET) estimates are also available from land 
surface/hydrology models that are driven by observed meteorological 
forcings. The North American Land Data Assimilation System Phase 2 
(NLDAS‐2) project provides ET data at hourly or daily timescales at 12 km (7 
mile) spatial resolution for CONUS from four different models: Mosaic, 
Noah-2.8, SAC, and VIC-4.0.3 (Xia et al. 2012). These models generally do 
not incorporate observations of irrigation water use. Uncertainties in soil 
and vegetation characteristics, and in climate at finer spatial scales, can 
also significantly influence the model output. Different models driven by 
identical climate inputs will result in different outputs. 

Remote sensing 
Optical and thermal imagery from satellites have become important 
datasets in recent years for estimating ET from field to landscape scales 
with a temporal resolution from days to weeks (Hobbins and Huntington 
2017). Near real-time ET (AET) datasets from remotely sensed data include: 

• SSEBop ET: This estimate of ET is based on a thermal index approach 
that integrates satellite observations (MODIS, Landsat) of land skin 
temperature (at about 5 cm depth) and gridded climatological 
observations of air temperature (e.g., PRISM) by using the SSEBop 
model (Senay et al. 2007). The MODIS-based ET product (1-km 
resolution) is available in near real-time (every 8 days) during the 
growing season (April-October). A monthly ET product is also available 
throughout the year. 

CoAgMET 

 
Link: 
https://coagmet.colost
ate.edu/ 
 

Climate Engine 

 
Link: 
https://app.climateengi
ne.org/climateEngine 

US SSEBop 
Evapotranspiration 

 
Link: 
https://earlywarning.us
gs.gov/ssebop/modis 

https://coagmet.colostate.edu/
https://app.climateengine.org/
https://earlywarning.usgs.gov/ssebop/modis
https://coagmet.colostate.edu/
https://coagmet.colostate.edu/
https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
https://earlywarning.usgs.gov/ssebop/modis
https://earlywarning.usgs.gov/ssebop/modis
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• METRIC: This method likewise uses satellite data (Landsat; 30-m 
resolution) in an energy balance model to compute and map ET (Allen, 
Tasumi, and Trezza 2007). METRIC calculates ET as a residual of the 
surface energy balance. METRIC is currently used by all four Upper 
Basin states and Reclamation for monitoring ET.  

• ALEXI ET: The Atmosphere-Land Exchange Inversion model also 
estimates ET using an energy-balance model (Anderson et al. 1997). It 
exploits the daily observations of land skin temperature from the NOAA 
GOES satellite to deduce land surface fluxes, including ET. These ET 
data are available daily at an 8-km spatial resolution. 

Efforts to improve ET estimation in the Colorado River Basin and the West 
The Upper Colorado River Commission, the four Upper Division states 
(Wyoming, Colorado, Utah, and New Mexico), and Reclamation have 
sponsored a multi-year study, currently in its third phase, to assess and 
improve determinations of consumptive use from agriculture. The study is 
reviewing the different methods used by the four states and Reclamation to 
estimate ET, including newer remote sensing-based methods (SSEBop and 
METRIC). The reports on the first two phases of the study provide 
important background on ET and CU estimation methods in the basin (URS 
2013; 2016). The overall recommendation from the reports is to support the 
ongoing shift to remote sensing-based methods with the installation of 
additional eddy covariance towers and enhanced weather stations that 
collect wind speed, humidity, and radiation, to improve validation and user 
confidence in the newer methods.  

A multi-institutional effort is underway to create an open-source digital 
platform called Open ET to bring together different satellite observations 
and ET estimation methodologies to provide low cost, automated, and 
widely accessible ET data at multiple spatial and temporal scales. 

Monitoring of evaporative demand 
Evaporative demand is a measure of the “thirst” of the atmosphere or 
atmospheric dryness. It is quantified as the maximum rate of 
evapotranspiration for given atmospheric conditions and an unlimited 
supply of water; thus, it is effectively the same as reference ET (Hobbins 
and Huntington 2017). When sufficient moisture is available at the land 
surface, evaporative demand dictates the magnitude of ET fluxes. When 
evaporative demand is abnormally high for a period of weeks to months, 
particularly during the growing season, water use for irrigation and other 
sectors typically increases. 

Open ET 

 
Link: 
https://etdata.org/ 

https://etdata.org/
https://etdata.org/
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In situ 
In situ measurement of evaporative demand is done through open-pan 
evaporation measurements. Real-time pan evaporation measurements are 
available from only a handful of stations within the Colorado River Basin, 
mainly in western Colorado, and therefore do not provide adequate spatial 
coverage of the region. 

Modeled 
Evaporative demand is usually computed using several different 
formulations that require meteorological inputs. The preferred formulation 
is Penman-Monteith, which is considered to be fully physical, incorporating 
temperature, humidity, wind speed and solar radiation, and is the same as 
reference ET. The Evaporative Demand Drought Index (EDDI) uses this 
formulation and the 12-km gridded meteorological input from NLDAS to 
quantify the relative evaporative demand over multiple user-defined 
timescales (weeks to months) for CONUS (Hobbins et al. 2016). EDDI data is 
updated daily, with a 5-day lag from real time. 

5.6 Other remotely sensed hydrologic data relevant 
to the basin 

Other remotely sensed hydrologic data types that do not fit neatly into the 
categories covered in previous sections of this chapter are summarized in 
Table 5.8, and discussed in the text below.  

Table 5.8 

Summary of other remotely sensed hydrologic data currently available (or to become available, in the 
case of SWOT). See the text for further description of these networks/products. 

Mission or 
Product Name 

Variables 
Spatial 

Resolution 
Spatial 

Coverage 
Temporal 
Resolution 

GRACE 
Surface water + groundwater 
mass change 

250–300 km Global Monthly 

NDVI (MODIS, 
Landsat, VIIRS, 
Sentinel-2) 

Vegetation greenness, 
differentiate between irrigated 
and non-irrigated lands 

30 m–1 km Global Daily to monthly 

EVI (MODIS, 
Landsat, VIIRS, 
Sentinel-2) 

Vegetation growth and 
productivity 

30 m–1 km Global Daily to monthly 

NDWI (MODIS, 
Landsat, VIIRS, 
Sentinel-2) 

Vegetation liquid water content 30 m–1 km Global Daily to monthly 

SWOT (planned 
future mission) 

River and lake water surface 
elevation 

50 m Global 
Approximately 

monthly 

 

CPC Evaporation 
Data 
Link: 
https://www.cpc.nce
p.noaa.gov/products
/GIS/GIS_DATA/JA
WF/ 
 

ESRL Evaporative 
Demand Drought 
Index 
Link: 
https://www.esrl.noa
a.gov/psd/eddi/ 

https://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF/
https://www.esrl.noaa.gov/psd/eddi/
https://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF/
https://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF/
https://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF/
https://www.cpc.ncep.noaa.gov/products/GIS/GIS_DATA/JAWF/
https://www.esrl.noaa.gov/psd/eddi/
https://www.esrl.noaa.gov/psd/eddi/
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Remote sensing of vegetation type/moisture content/irrigated 
area 

There are several derived indices from satellite observations that provide 
monitoring of vegetation type and its moisture content, and differentiation 
between irrigated areas and non-irrigated ones. These indices include 
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 
Index (EVI), and Normalized Difference Water Index (NDWI). Most of the 
basin states, as well as Reclamation, use satellite data to determine 
irrigated acreage and crop type.  

NDVI measures vegetation greenness, and because it can capture the 
differences in the spectral responses between irrigated and non-irrigated 
croplands, it is highly applicable to mapping of irrigated areas (Ozdogan et 
al. 2010). However, NDVI is susceptible to atmospheric scattering and 
background canopy effects. EVI has been developed to address this issue. 
Relative to NDVI, EVI has an improved sensitivity to photosynthetic activity 
(i.e., vegetation growth and productivity) and does not have a saturation 
problem (Waring et al. 2006). Finally, NDVI has been developed to more 
robustly assess the liquid water content of the vegetation (Gao 1996). Near 
real-time information on these three indices are available from multiple 
satellites, including MODIS, Landsat, VIIRS, and Sentinel-2. Much of these 
data can be accessed from data portals such as Climate Engine. 

GRACE: Terrestrial water storage change 
The NASA Gravity Recovery and Climate Experiment (GRACE) mission, 
which consists of a twin satellite configuration, was launched in 2002. By 
detecting gravitational anomalies, GRACE provides precise monthly 
measurements of change in terrestrial mass, albeit at a very coarse (250–
300 km) spatial resolution. Because these mass changes represent the 
change in combined surface water (including snow), soil moisture, and 
groundwater, the estimation of basin-scale total water storage over time is 
made feasible with GRACE data (Tapley et al. 2004). The partitioning of the 
different components of the water budget, however, requires land-surface 
modeling (Chapter 6).  

Several studies have reported on different aspects of the GRACE-derived 
water budget for the Colorado River Basin. The first study highlighted the 
apparent magnitude of groundwater depletion in the Upper and Lower 
Basins from 2005–2014 (Castle et al. 2014), although Alley and Konikow 
(2015) asserted that that interpretation of the GRACE data was flawed. 
Scanlon et al. (2015) further showed that most of the downward trend in 
total water storage identified by Castle et al. (2014) was due to declines in 
soil moisture and reservoir storage.  

More recent studies have compared the water budget for the basin derived 
from GRACE with water budgets from land-surface models and other 
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hydrology models, finding that GRACE shows larger annual fluxes of water 
than the models. These GRACE-model differences in the Colorado River 
Basin are not as large, however, as in many other basins around the world 
(Scanlon et al. 2018). 

GRACE data has also been assimilated in NLDAS land surface modeling of 
groundwater, root-zone, and surface soil moisture at 1/8-degree (12-km) 
spatial resolution (GRACE-DA-DM; Kumar et al. 2016). Given the issues 
raised by Alley and Konikow (2015), assimilation of GRACE data in a land 
surface model may be a better approach for capturing its added value, 
versus direct interpretation of the GRACE data. 

SWOT: Runoff and water elevation 
Surface Water and Ocean Topography (SWOT) is a future (2021) NASA 
satellite mission that will provide information on water-surface elevations 
of lakes and large rivers with high accuracy (about 10cm) at monthly to 
seasonal scales. There are also plans to assimilate SWOT data into 
hydrological models to improve runoff information at very fine spatial 
scales. 

5.7 Challenges and opportunities 

Hydrologic data—whether for snowpack, streamflow, soil moisture, or 
evaporation—have enormous importance for all aspects of Colorado River 
Basin research, operations, and planning. Additional efforts to identify the 
challenges, improve and expand the historical record and current 
monitoring, and reduce uncertainties serve all interests. While pursuing 
new methods and data however, it is critical to maintain attention to the 
core monitoring capacity (SNOTEL network, stream gage network) that 
provides the foundation for those efforts and is chronically under-
resourced. 

In November 2019, USGS announced that the second Next-Generation 
Water Observing System (NGWOS) would be located in the Upper Basin, 
specifically the Colorado Headwaters above Cisco, UT, plus the Gunnison 
Basin. The objective of NGWOS is to intensively monitor up to ten medium-
sized watersheds (10-20,000 sq. mi.) that are representative of larger 
regions. This advanced observing system will provide quantitative 
information on streamflow, ET, snowpack, soil moisture, a broad suite of 
water quality constituents, connections between groundwater and surface 
water, and water use. The new observations are intended to be used 
alongside those from existing monitoring networks in various operational 
and research applications, such as streamflow forecasting on multiple 
timescales. In the first year of the Colorado River NGWOS, the USGS will 
initiate planning and stakeholder engagement. This will be a valuable 
opportunity for stakeholders to shape and leverage a significant federal 
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effort to enhance the hydrologic observing capacity in key watersheds of 
the Upper Basin. 

Challenges: Snow 
• Inadequate characterization of the snowpack is still a major source of 

error in streamflow forecasts, especially in years with anomalous 
patterns of snow distribution in space and time—a phenomenon which 
appears to be more frequent in a changing climate. 

• The in situ (point) snow course and SNOTEL network was designed for 
the statistical streamflow forecasting paradigm, which is no longer used 
by CBRFC. 

• Many new spatially distributed SWE products are now available, but 
there have been few rigorous evaluations of these datasets, in part 
because it is difficult to validate spatial products with point 
measurements. 

• The SNOTEL network will remain essential to any conceivable future 
snow monitoring system in the basin, especially with additional sensor 
capacity at SNOTEL sites, but the network has been inadequately 
supported in recent years by USDA.  

Opportunities 
• Building on recent smaller scale pilot efforts to conduct larger scale, 

systematic intercomparisons of SWE datasets and products for the 
basin, including SNOTEL, ASO, and SNODAS and other spatially 
distributed modeled products. 

• Based on the results of such intercomparisons, pursuing “hybrid” 
approaches where multiple methods and datasets are combined in a 
way to best exploit their relative advantages. 

• Continuing and stepping up the modernization and expansion of the 
SNOTEL network, with more and better sensors, more imagery, and 
better data communication—all of which would necessitate more 
resources for NRCS to support the network.  

Challenges: Streamflow 
• Streamflow observations that could contribute to more accurate 

naturalization calculations are not available at many key sites, 
especially diversion and return flow locations. 

• Naturalizing the gage record requires adjustments that come with 
potential errors and uncertainties, many of which are impossible to 
address or resolve because of the dearth of early-period data and 
documentation.  

• Fully characterizing the natural hydrology of the basin is problematic 
with the exclusion of the Gila River from consideration.  

• A number of research activities use Reclamation’s natural flow record 
for baseline or reference purposes. For example, synthetic streamflow 
generation relies on the natural flow record for parameter estimation 
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or for nonparametric sampling (Chapter 9), tree-ring reconstructions of 
paleostreamflows (Chapter 10) are calibrated against the natural flows 
at Lees Ferry, and hydrologic simulations from the Variable Infiltration 
Capacity model that are used to project future streamflows were bias-
corrected based on the natural flows at Lees Ferry and other gaging 
stations (Reclamation 2012c).  

Opportunities 
• Regarding gaging, the biggest gains in information going forward would 

be achieved by expanding the streamflow monitoring network to fill 
gaps in coverage. This includes gages at diversion sites and in locations 
to measure return flows or verify return flow and gain/loss 
calculations.  

• Increasing the spatial resolution of Reclamation’s models might be a 
useful avenue to pursue in order to simulate and analyze impacts from 
climate change on sub-basin hydrology.  

• Major modifications to the natural flow record, to improve consumptive 
use estimates for example, have implications for both the calibrations 
and other applications listed above, and for the record extension back 
to 1906 because the extended records were based on statistical 
analyses of the natural flow record that was in place at the time of 
extension. As more recent natural flow data becomes available, there is 
an opportunity to revisit the characterizations, calibrations, bias-
corrections, and record extension that were based on earlier versions 
of the natural flow record. 

Challenges: Soil moisture and evaporation 
• Compared with snowpack (which is variable over space and time), soil 

moisture is poorly monitored and understood, with frequent 
discrepancies between in situ measurements and modeled estimates. 

• Real-time soil moisture data is collected from at least 6 different in situ 
networks, with differing observing protocols (depth, etc.).   

• Reservoir evaporation estimates as used in basin system modeling have 
been based on decades-old data that does not reflect current climate 
conditions. 

• Estimates of evapotranspiration and crop water use have been 
constrained by physically incomplete methods and input data that are 
not spatially representative. 

Opportunities 
• Support and expand ongoing efforts to comprehensively collate in situ 

soil moisture measurements and merge these observations with 
spatially distributed modeled estimates (e.g., National Soil Moisture 
Network). 
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• New satellite sensors and products (e.g., SMAP) that provide spatially 
comprehensive and consistent soil moisture estimates can likewise be 
compared and blended with other types of soil moisture data. 

• When applicable, conduct testing of new soil moisture products to 
determine if they add value to the CBRFC forecast process. 

• Ongoing efforts will provide updated reservoir evaporation estimates 
for Lakes Mead and Powell; those efforts could be expanded to other 
large reservoirs in the basin. 

• Expand the in situ monitoring of evaporation/ET/PET with enhanced 
weather stations that capture all four variables needed for fully physical 
estimates (e.g. the Penman-Monteith method), and new flux towers 
needed for the Eddy Covariance method. 

• Better in situ data will also help in calibrating/validating remote 
sensing-based spatial estimates of ET and crop water use; use of these 
spatial estimates in the basin has been increasing, though it has been 
limited by user confidence in the data. 
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Key points 
• With a range of hydrologic models readily available, it is important for 

prospective applications of models to articulate the objectives of the 
modeling as well as the requirements that the model must satisfy. 

• A single model is likely designed for a specific application or context 
and may not be optimal for a wider range of uses. 

• In the Colorado River Basin, the NWS models (streamflow forecasting) 
and the VIC model (sensitivity studies; climate change projection) have 
been the most-consulted hydrologic models for those respective 
applications. Each has varying capabilities and limitations. 

• Increasing model complexity does not guarantee improved model 
performance. Complexity should be increased subject to the 
consideration of process needs, data sufficiency, computational 
feasibility, and ultimately the model’s demonstrated performance. 

• For some applications, such as streamflow forecasting at a river 
location, simpler models may continue to offer valuable and even 
superior performance for years to come.  

• For other applications, such as understanding hydrologic sensitivity to 
climate change or hydrologic response to watershed changes, more 
complex process-oriented models are usually more appropriate.   

• Calibration (parameter estimation) is almost always needed to achieve 
high-quality simulations in all hydrologic models, and it is easier to 
implement in simpler models than in computationally intensive 
complex models.  

6.1 Overview 

Hydrologic models are the foundation of broad range of applications in the 
Colorado River Basin, ranging from streamflow forecasting to trend analysis 
to climate change projection. This chapter provides an overview of 
hydrologic modeling, including perspectives on both model development 
and applications. There is some overlap with Chapter 8 (Streamflow 
Forecasting), but the additional applications of hydrologic models in basin 
water management and planning merits more thorough treatment of the 
models beyond their use in streamflow forecasting. 

Hydrologic modeling refers to the use of simulations to characterize the 
likely behavior of real watershed features and systems (Allaby 2008). 
Hydrologic modeling can be applied to improve our understanding of 
hydrologic phenomena and how changes in, for example, pervious surfaces, 
vegetation, land use and weather and climate affect the hydrologic cycle. It 
is furthermore used to estimate runoff and water availability in the context 
of forecasts at timescales of hours to months, and projections over 
decades. The general components of a hydrologic model include 
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meteorological inputs (such as precipitation and temperature), governing 
equations enforcing physical laws (e.g., mass continuity), parameters, 
parameterizations (the algorithms specifying processes such as infiltration), 
and the model structure, including the arrangement and connectivity of 
watershed components (canopy, snowpack, subsurface) (e.g., Singh 1995; 
Clark et al. 2015). 

The hydrologic models currently applied in the Colorado River Basin and 
elsewhere arise from several distinct traditions. The use of hydrologic 
models in streamflow forecasting (Chapter 8) has deep and practical roots 
in civil engineering, where models were developed to support water 
systems design and management (Anderson and Burt 1985). The 
communities driving these forecasting models tend to be operational 
agencies. In contrast, hydrologic models used in the projection of future 
hydrology to support water supply assessment (e.g., Chapter 11), or in trend 
and variability analysis, are mostly driven by academic institutions and 
agency research laboratories. These latter models have a stronger heritage 
in earth system modeling and watershed process modeling.  

Despite their different origins, all models have watershed (or land) 
representations that involve terms for the common input and output fluxes 
and states, such as precipitation, temperature, soil moisture, snow water 
equivalent (SWE), runoff and evapotranspiration (ET). How these 
components are represented within the models, the way runoff is 
calculated, and the spatial interpretation of the model’s catchment area can 
vary significantly from one model to another.  

Model complexity and spatial framework 
Hydrologic models can be viewed along a general continuum of complexity. 
Complexity can refer to the number of processes represented in the model, 
the spatial resolution of the model, or the structure and configuration of 
the model. With the rise of supercomputing as a resource for hydrology, 
the range of complexity for regional (e.g., Colorado River Basin) model 
applications has become ever broader. The lower bound of complexity has 
been set by the lumped conceptual configuration of traditional operational 
models, while the advancing upper bound tracks the evolution of very high 
resolution watershed process modeling approaches that were previously 
applied only in small scale studies.  

This widening range of model complexity has prompted much debate in the 
research and operational communities (e.g., Grayson, Moore, and McMahon 
1992a; 1992b; Reggiani, Sivapalan, and Hassanizadeh 1998; Beven 2002; 
Sivapalan et al. 2003; Maxwell and Miller 2005; Beven and Cloke 2012; Wood 
et al. 2012), with differing perspectives on issues such as the adequacy of 
representations of physical processes, and the impact of real-world data 
limitations and uncertainty. What is clear, though, is that there is no one 
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level of model complexity that is optimal for all applications. The following 
sections describe several general modeling approaches that differ in 
complexity, including the models used for the CBRFC’s operational 
streamflow forecasting in the Colorado River Basin. (Streamflow forecasting 
itself is treated more thoroughly in Chapter 8.) 

Conceptual and physical models 
An initial distinction can be made between conceptual models and physical 
models—though models in each class may have elements of both, and these 
labels are inexact. Conceptual models have relatively simple 
representations of watershed attributes and processes, generally with no 
more than a dozen components. The relationships and linkages (fluxes of 
moisture or energy) between the components are typically controlled by 
adjustable parameters whose values may be only indirectly known from 
observations or otherwise deduced through calibration. The structure of 
the conceptual model is motivated by our understanding of the physics of 
the real world system (e.g., shallow and deep storage zones, percolation, 
radiation-driven snowmelt), but remains an extreme simplification of those 
physics. Conceptual models as well as physical models adhere to 
fundamental physical laws (such as mass and energy conservation) but 
conceptual models rely more much directly on external parameters to 
describe or specify hydrologic processes. 

Physical models, also called process-based or mechanistic models, are 
generally more complex. They also contain many conceptual elements, but 
nonetheless represent the watershed attributes and processes with a 
higher degree of detail, and in arrangements that attempt to more closely 
mimic the storages of water and energy in the watershed and the fluxes 
between them. In contrast to conceptual models, physical models attempt 
to provide a more explicit representation of the hydrologic processes and 
the resulting hydrologic dynamics. Rather than allow an external parameter 
to directly control a process, they specify a physically informed equation 
describing the process (called a parameterization), which in turn is 
controlled by external parameters.  

For example, in a conceptual model, the percolation rate from one storage 
zone to another may be determined by the storage amounts (states) and an 
external rate parameter specified in calibration. In contrast, the percolation 
in a physical model is determined by the storage states and an equation 
(and algorithm, a parameterization) that may calculate percolation also as a 
function of the soil properties assigned to the zones. These properties are 
often given by external parameters that may also be calibrated. As in 
conceptual models, the hydrologic responses in physical models are 
summations (i.e., an emergent behavior) of the hydrologic processes. 
Spatial and temporal variations in catchment characteristics are 
incorporated into physical models to a greater degree than conceptual 
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models, and consequently the structure and configuration of the physical 
models more closely reflect the real world watershed.  

Notwithstanding the above discussion, it is important to note that a 
physical model is almost always applied at a scale larger than that at which 
some processes occur (see Clark et al. 2017 for a discussion). For example, a 
hydrologic model implemented at 12-km grid resolution is much coarser 
than the real world scale at which processes such as percolation of 
meltwater through a snowpack, or infiltration through soil, take place 
(which may be on a scale of centimeters). Thus, even though the 
description of a process may be through a physical parameterization, the 
model does not explicitly resolve that process, and remains, in a sense, also 
conceptual, and usually requires some degree of calibration. 

Spatial framework 
A second important distinction between models refers to the spatial 
framework of the model. Spatial variability in topography, geology, soils, 
and vegetation affects the hydrologic responses within a watershed (Clark 
et al. 2017). The spatial framework in hydrologic models can be categorized 
as lumped, semi-distributed, or fully distributed (Figure 6.1).  

Lumped models average the spatial variability across a watershed unit; 
semi-distributed models reflect some spatial variability; and fully 
distributed models process spatial variability by many small spatial units 

 
Figure 6.1 

Schematic of the spatial frameworks in hydrologic models. A: Lumped model, B: Semi-distributed 
model by sub-catchment, C: Distributed model by grid cell. Runoff is calculated for each sub-
catchment at the confluence points represented by the black dots in B. Distributed models calculate 
runoff for each grid cell, while lumped models calculate one runoff value for the entire catchment at 
the river outlet point represented by the black dot in A. (Source: Sitterson et al. 2017)  
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(usually grid cells). The spatial framework of each of the classes of models is 
given in Table 6.1. The spatial framework is strongly associated with the 
model class: conceptual models generally have a lumped framework, while 
physical models generally have a more distributed framework. It should be 
noted that terms such as “distributed” and “lumped” are labels reflecting 
model intent, rather than definitive descriptions of the characteristics of a 
model, especially resolution. For example, a 12-km distributed model may 
have similar spatial resolution and degree of spatial averaging as a lumped 
model broken into three elevation zones for the same watershed. Also, 
physical models may incorporate sub-grid variability for selected 
watershed attributes, such as vegetation and elevation.  

Four general classes of hydrologic models 
The characteristics of four general classes of hydrologic models are 
summarized in Table 6.1 and described in greater detail in the text that 
follows. Note that the distinctions among the model types are not hard and 
fast, and some models may blend aspects of two or more classes. Table 6.1 
serves as an organizing reference for this chapter and is referred to 
throughout.  

Table 6.1 

Summary of characteristics of four general classes of hydrologic models. Terms are defined in the text. 

 
Bucket-style 
conceptual models 

Stand-alone land 
surface models 
and multi-model 
frameworks 

Land surface 
models in a 
coupled ESM 
system  

Explicit watershed 
process models  

Examples in 
the Colorado 
River Basin 

Sac-SMA, SNOW-
17, Monthly Water 
Balance Model 

VIC, SUMMA  
Community Land 
Model, Noah-MP, 
HTESSEL 

WRF-Hydro terrain-
routing, DHSVM, 
GSSHA 

Model 
structure 

Conceptual 

A mixture of 
physically explicit 
and conceptual 
components 

A mixture of 
physically explicit 
and conceptual 
components 

Physical, with fewer 
unresolved 
(conceptual) 
process 
components 

Spatial 
framework 

Lumped or semi-
distributed 

Distributed, but 
can have lumped 
components 

Distributed Distributed 

Typical 
Resolution 

3–30 km, or 10–
1000 km2 
hydrologic unit 

500 m–25 km 10–100 km 10–500 m 
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Bucket-style 
conceptual models 

Stand-alone land 
surface models 
and multi-model 
frameworks 

Land surface 
models in a 
coupled ESM 
system  

Explicit watershed 
process models  

Primary 
applications in 
the Colorado 
River Basin 

Operational 
streamflow 
forecasting, 
sensitivity analyses, 
coarse-scale 
climate-change 
impact analysis  

Climate sensitivity 
analyses, climate 
change and 
variability 
impacts, 
streamflow 
forecasting 

Weather and 
climate 
prediction, 
variability 
analysis, and 
climate projection 

Hydrologic process 
studies (e.g., 
surface-
groundwater 
interactions, ET 
modeling, snow 
hydrology), climate 
variability and 
change studies 

Advantages 

Computationally 
cheap, highly 
amenable to 
calibration 
(parameter 
estimation), agile 
for running 
ensembles and data 
assimilation, 
typically the 
highest- performing 
model for 
streamflow 
simulation and 
forecasting (within 
the calibration 
envelope) 

Computationally 
feasible for most 
applications but 
requires high-
performance 
computing for 
large domains, 
more process-
oriented, 
maintains water 
and energy 
balance, more 
trusted for 
analysis beyond 
the calibration 
envelope, 
designed for 
regional to global 
implementation 

Includes land-
atmosphere 
feedbacks and a 
greater variety of 
process 
representations 
(including carbon 
cycle and 
dynamic 
vegetation in 
some cases), 
albeit at a coarser 
scale due to 
coupling in 
continental and 
global scale 
applications 

Can represent 
hydrologic 
processes with 
more explicit detail 
and granularity, 
suitable for 
evaluation of high-
resolution 
observations, can 
better represent 
explicit terrain and 
vegetation influence 
on hydrologic 
phenomena 

Disadvantages 

Conceptual 
representation and 
simplification of 
physical processes 
and extensive 
calibration limit the 
ability to simulate 
multiple outputs 
and project 
significantly beyond 
the calibration 
envelope   

Computationally 
demanding 
relative to 
conceptual 
schemes, and 
structure, 
parameterization 
inflexibility can 
undermine 
performance and 
hamper 
calibration   

Application in the 
coupled context 
in which 
atmospheric 
variables are 
often most 
important means 
that hydrologic 
quantities such as 
runoff or 
snowpack are less 
scrutinized and 
less calibrated  

Computational 
demands restrict or 
degrade many 
applications, 
including long-
range or large-
domain simulation, 
comprehensive 
parameter 
estimation, and use 
of ensemble 
techniques 
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Bucket-style conceptual models 
Conceptual models can be viewed as being based on the assumption that 
we know (or once knew) relatively little about the real world structure and 
functioning of a watershed, therefore we use a minimal structure, and infer 
parameters to directly control processes from observations. This strategy 
has been shown to work well where there are sufficient data for calibration 
and inputs, despite concerns about the extent to which the resulting 
parameters are overly tuned to the data.  

At the time these models were initially developed in the 1960s and 1970s, 
the main motivation for the relatively simple representation of a watershed 
was to make the model supportable by the limited available weather and 
hydrology data at that time, which were almost entirely point-based 
(Chapters 4 & 5). But even today, these simple hydrologic models produce 
highly accurate simulations and forecasts that are difficult to outperform 
using physical models.  

Bucket style conceptual models remain relatively simple, with lumped 
modeling units of small watershed areas, on the order of 10–1000 km2. This 
lower complexity, with consequently lower computational demands, is 

 
Figure 6.2 

Conceptual flow diagram of the Sac-SMA model and a schematic representation of model output. 
(Source: adapted from NOAA NWS 2002) 
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advantageous because it enables manual calibration in the model 
development phase, and facilitates forecasters’ examining and iteratively 
updating their inputs, states, and outputs in real-time during the 
forecasting workflow. An example of a traditional lumped approach is 
provided in Figure 6.2. 

The conceptual hydrology model whose output is most familiar to Colorado 
River stakeholders is the Sacramento Soil Moisture Accounting Model (Sac-
SMA) used by the CBRFC and other National Weather Service (NWS) River 
Forecast Centers (RFCs) for operational streamflow forecasting (Figure 6.2). 
Sac-SMA has five soil storage types (“buckets”), each with an underlying 
physical rationale. For example, the upper zone tension water content 
bucket represents the portion of the soil column that experiences 
unsaturated flow and in which capillary pressure in soil pores resists 
drainage and lateral flow. Figure 6.3 shows an example of the output of Sac-

 

Figure 6.3 
Example of model output 
of Sac-SMA for the upper 
Colorado River Basin. Note 
the lumped nature of the 
model output. (Source: 
NOAA NWS CBRFC; 
https://www.cbrfc.noaa.gov
/wsup/sac_sm/sac_sm.php) 

https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php
https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php
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SMA, which is operationally paired with SNOW-17 (Anderson 1973), a 
temperature-index based conceptual snow accumulation and ablation 
model. See section 6.3 for a more detailed description of the NWS models. 

Stand-alone land surface models (LSMs)  
Stand-alone land surface models (LSMs) such as the Variable Infiltration 
Capacity (VIC) model are physical models and differ from conceptual 

 
Figure 6.4 

Schematic representation of the VIC model, showing land cover tiles, soil column, and major water 
and energy fluxes (Source: VIC Model Overview, 
https://vic.readthedocs.io/en/master/Overview/ModelOverview/) 

https://vic.readthedocs.io/en/master/Overview/ModelOverview/
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models in that the states, inputs, and outputs are designed to emulate 
physical processes more explicitly (Figure 6.4).  

LSMs use physical equations and other quantitative methods to simulate 
the exchange of water and energy fluxes at the Earth surface–atmosphere 
interface. For example, LSMs dynamically calculate potential ET (PET) and 
simulate evaporative fluxes through parametrizations of sub-processes 
such as vegetation transpiration and bare soil evaporation, while 
conceptual models may lack a representation of vegetation entirely, or take 
PET as an input or use PET as a parameter that is tuned in calibration.  

Since their advent in the 1990s, VIC and similar land surface models have 
demonstrated their utility for a broader range of hydrologic analyses, 
including the assessment of long-term trends in regional hydrology (Mote 
et al. 2005), drought (Andreadis et al. 2005), streamflow forecasting (Hamlet 
and Lettenmaier 1999; Wood et al. 2002), climate change detection and 
attribution studies (e.g., Barnett et al. 2008) and impact assessment. In the 
Colorado River Basin alone, as discussed in Chapter 11, VIC has been used 
for at least a half dozen studies and is the basis for the major climate 
change hydrology datasets developed by a Reclamation-led consortium and 
archived at the Lawrence Livermore National Laboratory website. See 
section 6.3 for a more detailed description of the VIC model. 

As alluded to earlier, VIC has parameters directly regulating the subsurface 
stores of water and the transfer (fluxes) of water from one storage layer to 
another. For soil drainage, where a conceptual model might apply a linear 
reservoir formulation in which the outflow from one bucket to the next is 
linearly related to the bucket’s current water storage, a land surface model 
such as VIC represents water storage and transfer in terms of process 
concepts and attempts to specify parameters using observed, or estimated, 
geophysical attributes.  

In a land surface model, soil drainage in the saturated zone may be 
described by a Darcy’s law representation in which drainage rate is 
dependent on the amount of water in the column and a hydraulic 
conductivity parameter that is estimated based on the soil texture. 
However, because soil textures are very sparsely observed, the relationship 
between soil textures and the conductivity parameter are uncertain, and 
soil drainage is simulated at a spatial scale (e.g., 12 km) that is much larger 
than the scale at which the drainage process acts, this physically based 
model parameterization may be almost as rough an approximation of the 
real-world process as found in the conceptual model formulation. The 
hydraulic conductivity, soil layer depths and other physical parameters may 
also be used as calibration parameters, meaning that the soil drainage 
process in a physically based land surface model application may effectively 
be as “tuned” as the water transfer in a conceptual model. The greater 

Downscaled CMIP3 and 
CMIP5 Climate and 
Hydrology Projections 

 
Link: 
https://gdo-
dcp.ucllnl.org/downscaled
_cmip_projections/dcpInt
erface.html 

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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process realism in the land surface model (or any physical model) and its 
distributed nature requires a far larger number of sensitive parameters—
many of which may be hidden in the code through hardwiring (Mendoza et 
al. 2015)—and more complex model structure. The result can often be a 
model that is less amenable to calibration, that is, less flexible for tuning to 
reproduce observed variability for an output such as streamflow.  

Table 6.1 provides a summary of the advantages, disadvantages and 
applications of stand-alone LSMs used in the Colorado River Basin. 
Figure 6.5 shows an example of VIC model output. 

 
Figure 6.5 

Example of output from an application of the VIC model in the Colorado River Basin. The red shading 
shows the mean difference per cell in the timing of snow depletion (ΔSD90%, i.e., the change in the 
date at which 10% of the peak snowpack remains) between ‘Before Dust Loading’ and ‘After Dust 
Loading scenarios’ for 1916–2003. (Source: Painter et al. 2010) 
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Land surface models (LSMs) in a coupled system 
Over the last few decades, the land surface has become an increasingly well 
represented component in climate models. A GCM (from “General 
Circulation Model” or “Global Climate Model”) is a modeling framework that 
couples a global atmospheric model, an ocean model, a sea ice model, and a 
land surface model (see Chapter 11). An Earth System Model (ESM) extends 
a GCM to include a suite of more detailed sub-models, including 
representations of the biogeochemistry of the ocean and land (e.g., carbon 
cycle, nutrient cycle, etc.), atmospheric chemistry, dynamic ice sheets 
(Lenaerts et al. 2019), dynamic vegetation, and water management. 

Recently, computing capabilities have advanced such that more complex 
land surface schemes are being included in coupled GCMs and ESMs. Land 
surface models such as the NCAR Community Land Model (CLM) now 
incorporate detailed physics to represent land surface moisture and energy 
fluxes (e.g., the impacts of surface albedo on longwave and shortwave 
radiation), including the influence of land cover changes and idealized 
hillslope-scale effects on moisture distribution (Figure 6.6). Although these 
models are still run at a relatively coarse resolution (e.g., >25 km), some 
have more detailed parameterizations than a typical hydrology model like 
VIC, and far more detailed process descriptions than are found in 
conceptual models. This additional detail allows representation of 
processes such as vegetation dynamics and carbon-cycle physics that are 
key feedbacks into the climate system.  

A long-sought objective for hydrologic science is to bring about a 
convergence in modeling so that local scale hydrology can be simulated by 
GCMs and ESMs, negating the need for calibrated stand-alone hydrology 
models like VIC (Fan et al. 2019). Lehner et al. (2019) provide a detailed 
perspective on the limitations of current (CMIP5) land surface models 
within GCMs to simulate runoff and runoff sensitivities in the Upper Basin 
(see Chapter 11). NCAR is currently developing a potential successor to the 
Community Land Model called the Community Terrestrial Systems Model 
(CTSM) that will ultimately be a more complete land model, including 
anthropogenic impairments (i.e., water management and irrigation at a 
coarse scale), and may soon have test case implementations that are usable 
for hydrologic applications related to water management.   

The Weather Research and Forecasting Hydrologic modeling system (WRF-
Hydro) used by the National Water Model (NWM; see section 6.3) is an 
outgrowth of both process-oriented watershed modeling and 
developments in the field of earth system modeling. In principle, WRF-
Hydro can couple a land-surface model (primarily Noah-MP), a weather 
research and forecast model (WRF), a terrain routing model, a groundwater 
bucket model, and channel routing. However, WRF-Hydro in the NWM 
implementation is not actually coupled with WRF.  
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The last decade has also seen the rise of operational global 
domain models that are used for hydrologic analysis and 
prediction. Two operational forecasting centers, the 
European Centre for Medium-Range Weather Forecasts 
(ECMWF) and the Swedish Meteorological and Hydrologic 
Institute (SMHI), are now producing naturalized seasonal 
hydrologic runoff forecasts for continental to global domains 
(Wetterhall and Di Giuseppe 2018; Emerton et al. 2018). 
Deltares, a research institute in the Netherlands, also runs a 
global, grid-based model for medium range ensemble 
forecasting in a system called the Global Flood Forecast 
Information System (GLOFFIS). It is now straightforward for 
large-scale modeling centers to link land surface and routing 
models to provide up-to-global scale hydrologic simulations. 
For instance, NCAR recently linked CLM runoff output with 
the MizuRoute channel routing model (Mizukami et al. 2016) 
to simulate streamflow for all of North America (Figure 6.7). 
NASA and other agency partners run the Famine Early 
Warning System (FEWS), which is based on global LSM 
applications, and universities such as Princeton and the 
University of Washington have run various LSM-based 
forecasting systems (e.g., with VIC) for over 15 years.  

These continental to global efforts are all still in the initial 
stages. Their skill remains relatively unexplored and is often 
quite poor, yet it is worth noting them as a possible 
harbinger of future information resources and development. 
It is also possible that their forecasted natural runoff 
anomalies (e.g., percent of average) may be informative; they 
are driven by good quality weather and climate forecasts and 
could in some cases provide useful information in spite of 
model bias. The poor forecast quality is likely to improve in 
the future given that these modeling efforts are often tied to 
sizeable research and development resources and bring to 
bear high quality datasets and techniques that may not have 
been adopted in local scale forecasting. Many of them also 
are linked to long, consistent hindcasts that enable users to 
gage their skill and even bias-correct them, something that 
is unavailable in NWS real-time streamflow forecasts. Their 
current potential is likely to lie more in medium-range and 
seasonal (mid-range) forecasting, with short-range 
predictions from tailored, more local systems being 
relatively more actionable. 

 
Figure 6.6 

Schematic of the structural and physical 
characteristics of the Community Land 
Model (Source: “Community Land Model” 
http://www.cesm.ucar.edu/models/clm/) 

http://www.cesm.ucar.edu/models/clm/
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Explicit watershed process models 
Models applied within the discipline of fine-scale watershed science, which 
are often linked with intensively instrumented watershed observing 
networks, attempt to resolve watershed and hillslope-scale processes—
interception, throughfall, myriad snow processes, infiltration, and vertical 
and lateral flow in saturated and unsaturated soils—in as much explicit 
detail as possible. Examples of such models include Gridded 
Surface/Subsurface Hydrologic Analysis (GSSHA), the Distributed 
Hydrology Soil Vegetation Model (DHSVM) (Figure 6.8), and the terrain-
routing model included in the WRF-Hydro system.  

A defining feature of the explicit watershed process model is the use of 
terrain gradients to drive lateral fluxes of water both overland and through 
the soil column, so that the runoff generation mechanism accounts not just 
for vertical fluxes of moisture but also the role of the landscape in 
distributing moisture horizontally, which is not represented in other types 
of models. In such models, groundwater can emerge at the surface at a 
break in grade, can flow downhill overland or within a fine-scale channel 
network, and then re-infiltrate the soil. In contrast, land surface models 
such as the VIC model, have simpler runoff-generation mechanisms, 
motivated by the assumption that the lateral fluxes of water between grid 
cells are much smaller than transport in channels (e.g., streamflow) and the 
vertical fluxes of ET and drainage. Table 6.1 provides a summary of the 
advantages, disadvantages and applications of explicit watershed process 
models used in the Colorado River Basin. Figure 6.9 shows an example of 
DHSVM model output. 

Some watershed process models have distributed snow algorithms that 
allow for blowing and drifting effects caused by terrain and forcing 
variations. Because the models resolve vegetation almost down to the scale 
of an individual tree (about 10 m), or at least at the scale of a forest stand 
(about 100 m), the role of local vegetation in the hydrologic cycle is often 
explicitly represented, and described by many parameters. In fact, the 
development of DHSVM was motivated by an interest in quantifying forest 
harvest effects on runoff, including the impacts of individual roads and 
culverts.  

The scale of such models is still far coarser than the scale at which 
processes such as soil infiltration occur (Clark et al. 2017; Seyfried and 
Wilcox 1995), thus like land surface models they are in some measure a 
conceptual representation, but their process orientation is still clearly 
greater than land surface models. 
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Figure 6.8 

DHSVM model representation. (Source: adapted from Wigmosta, Vail, and Lettenmaier 1994) 

 
Figure 6.7 

The convergence of continental-scale land surface modeling with streamflow simulation at watershed 
scales is illustrated by the coupling of a gridded CLM-based land model, illustrated by its SWE output 
(left), to a reach-based channel routing model (Mizuroute) implemented across North America to 
obtain streamflow (right). (Source: N. Mizukami and M. Clark, http://www.cesm.ucar.edu/events/wg-
meetings/2019/lmbwg.html) 

http://www.cesm.ucar.edu/events/wg-meetings/2019/lmbwg.html
http://www.cesm.ucar.edu/events/wg-meetings/2019/lmbwg.html
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Most applications of high-resolution explicit process models have been to 
support the investigation of geophysical questions in watershed science 
and ecology, including understanding the effects of beetle kill, juniper 
control strategies, forest thinning approaches, dust-on-snow phenomena, 
deglaciation, and groundwater-surface water interactions, among other 
topics. Until recently, it had been rare to find such models used in water 
resources applications such as streamflow forecasting or long-term climate 
change studies. In the U.S., Westrick, Storck, and Mass (2002) implemented 
a 150-m DHSVM model for streamflow prediction in the Pacific Northwest. 
More recently and notably, NOAA NWS launched the NWM for streamflow 
forecasting which coupled a 1-km resolution implementation of the Noah-
Multiparameterization Land Surface Model (Noah-MP; Niu et al. 2011) to a 
250-m terrain routing scheme (Gochis, Yu, and Yates 2015). See section 6.3 
for a more detailed description of the NWM. 

 
Figure 6.9 

Example model output of DHSVM, showing simulated SWE for May 15th at a 250-m resolution, given 
observed historical temperature and precipitation data. The modeled area includes drainages in and 
near Rocky Mountain National Park. (Source: Aaron Heldmyer, CIRES) 
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The use of such computationally intensive models for real-time forecasting 
as well as for geophysical process studies is enabled through advances in 
high-to-hyper resolution imagery, inexpensive supercomputing, broadband 
connectivity, and petabyte-scale data storage. Nonetheless, this 
technological progress is not quite adequate to make high-resolution (10–
500 m) process-oriented models attractive (or feasible) for large-scale 
regional applications and long-range predictions or projections. The need 
to estimate model parameters at such fine scales and over large domains 
remains a scientific challenge that is not alleviated by more explicit spatial 
resolution or more complex physical parametrizations. While some 
hydrometeorological dynamics can be better captured by such schemes 
(such as terrain impacts on snow deposition), the need to calibrate many 
other parameters in a more unwieldy model is a major obstacle to achieving 
improved simulations. 

New and emerging modeling approaches 
In addition to the aforementioned hydrologic model types already used in 
the Colorado River Basin, there are several new modeling efforts underway 
that are still in early stages of development. These efforts focus on 
providing streamflow simulations. One is an application of the current 
NWM long-range configuration on a HUC12 catchment basis, which could 
offer a less computationally intensive and more calibratable model for mid-
range (seasonal) Ensemble Streamflow Prediction (ESP). Another is the 
application of the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA; Clark et al. 2015a, 2015b), also on a watershed HUC12 basis, for the 
entire U.S. as well as the Reclamation western U.S. management domain. A 
third is a research effort to integrate an energy balance snow model into 
RFC operational use, coupled with an 800-m Hydrologic Laboratory-
Research Distributed Hydrologic Model (HL-RDHM) implementation. This 
effort was a NASA-funded collaboration between the CBRFC, Utah State 
University, and Riverside Technologies, Inc. (RTI, Fort Collins). 

A very rapidly emerging modeling approach is the use of machine learning 
methods (e.g., neural networks) to produce watershed model simulations 
trained only on observed datasets, without any explicit representation of 
physical processes within the model. Since the machine learning modeling 
approach has been primarily applied to forecasting, it is discussed in more 
detail in Chapter 8. 

Selecting appropriate models for different applications  
As is shown in Table 6.1, different model classes and individual models have 
different characteristics and inherent advantages and disadvantages. 
Therefore, it is important to carefully articulate the modeling objectives, as 
well as the requirements a model must satisfy, prior to selecting a certain 
type of model. The limitations of data availability, time, and budget need to 
be identified to narrow the choices and select the appropriate model for 
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the intended purpose (Sitterson et al. 2017). In practice, the need to identify 
all these different aspects is rarely met or even recognized. More often, a 
model is chosen for an attribute that may appear desirable for one 
objective, but greatly limits its potential to satisfy another objective. For 
example, the desire to implement, in the NWM, a model with a “street-
scale” resolution led to an implementation that is not well suited for 
seasonal forecasting. In the case of the monthly calibrated VIC model, a 
desire to understand and project climate sensitivities is pushing 
increasingly beyond the capacity of the VIC physics to provide the required 
physical fidelity.  

Despite recent interest in the idea of a “seamless” modeling approach that 
can, in principle, satisfy every use case, it is unclear that this is possible or 
desirable as a strategy for achieving multiple objectives optimally, let alone 
all possible objectives of interest to a water manager.  

6.2 Model applications in the Colorado River Basin 

Forecasting 
The most well-known hydrologic modeling activities in the Colorado River 
Basin, and the most critical to water management, are the use of NWS 
models (e.g., Sac-SMA) within the Community Hydrologic Prediction 
System (CHPS) operational platform. They are used to produce real-time, 
single-value flood forecasts (out to 10 days lead time in most cases) and 
seasonal (mid-range) ensemble forecasts via ESP techniques (explained in 
Chapter 8). In addition, the NWS HL-RHDM is now being used by the 
CBRFC in an effort to experiment with distributed modeling and snow data 
assimilation for forecasting in the Upper Basin.  

Although not originally designed for forecasting purposes, the VIC model 
has also been used in a number of research and quasi-operational forecast 
studies in the Colorado River Basin, run at 1/8th degree (12 km) and used to 
simulate streamflows at daily time steps at several dozen locations with 
medium-sized to large drainages (3,000–500,000 km2) upstream. The focus 
of the VIC-based forecast effort has always been on seasonal streamflows 
and addressing questions about the potential value of seasonal climate 
forecast information (Wood, Kumar, and Lettenmaier 2005). Models arising 
from research efforts at the University of Washington in the 2000s were 
typically calibrated, using either manual or automated objective methods, 
to the naturalized streamflow dataset from Reclamation, much of which is 
at a monthly time step (Chapter 5). More recently, researchers at Los 
Alamos National Lab have recalibrated VIC at 1/16th degree (6 km), but that 
model has not yet been applied to forecasting. 
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Climate change impact projection and assessment 
In the key locations used by Reclamation for management of the Colorado 
River Basin—i.e., larger headwater and tributary basins and mainstem 
locations—and at monthly scales, VIC’s performance has been adequate to 
support long-range climate change impact assessments as well as mid-
range ensemble streamflow prediction. The 1/8th degree VIC’s greater 
process orientation (compared to the NWS models) has made it more 
acceptable for climate change studies, but there are also many ways in 
which VIC’s physics are limited, and may not capture important dynamics 
that could alter projected hydrologic outcomes. These include surface 
water-groundwater interactions, dust-on-snow effects, dynamic 
vegetation influences, sub-grid variability in meteorological variables, and 
near-surface land-atmosphere feedbacks. Among the land surface models, 
VIC has dominated the usage for climate change impact assessment, 
becoming a de facto standard for the basin (see Table 11.4). 

The NWS models have also been used for climate change impact 
assessment in the basin (e.g., Miller et al. 2011; 2012; 2013; Woodbury et al. 
2012; Bardsley et al. 2013). However, because they lack an explicit energy 
balance, the NWS models are not as inherently suited as VIC for simulation 
of conditions beyond the envelope of weather and climate to which the 
models have been exposed in calibration and operational use. For example, 
for the studies cited above, the fixed monthly cycle of potential 
evapotranspiration (PET) had to be replaced with a dynamic PET 
representation based only on temperature change, lacking the other factors 
that influence PET such as solar radiation, humidity, and wind.  

Some climate change studies extend beyond the quantification of climate 
change impacts to focus also on the statistical detection of hydrologic 
impacts and attribution to anthropogenically forced climate change. The 
VIC model has been applied to such detection and attribution studies, 
including for the western U.S. and the Colorado River Basin (e.g., Barnett et 
al. 2008; Pierce et al. 2008). The VIC model developed for the Colorado 
River Basin and run at 1/8th degree has also provided good research-
quality naturalized flow simulations in various implementations for many 
analyses and studies over the past 15 years. Calibration to monthly 
naturalized flows has meant that their daily flow simulation, and simulation 
for basins for which they were not directly calibrated, is less optimized and 
substantially poorer than what is provided by NWS models like those used 
by the CBRFC. A gradual evolution of the VIC code, without accompanying 
recalibration, has also led to a degradation in model simulation quality.   

Sensitivity studies 
An increasingly active model application in the Colorado River Basin is 
sensitivity analysis—introduced in Chapter 2—which involves exploring 
observed trends and variability in basin hydrology and attempting to 
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quantify their sensitivity to temperature, precipitation, and other climate 
factors. Sensitivity studies are important because they can provide a 
shorthand strategy for gauging the potential impacts of climate change on 
a basin’s hydrology, and consequently water resources. Sensitivity analyses 
have been based on observations from the historical record as well as on 
paleo datasets, and on hydrologic models.  

While observations are seen as reliable because their measurement 
accuracy and uncertainties are relatively well understood, models are 
attractive because they enable a controlled testing of the sensitivities of 
natural processes such as runoff generation through strategies like 
perturbing input meteorology; e.g., assessing the impact of a 10% decline in 
precipitation. The major drawback of models in this context is that they 
rely on the assumption that the model faithfully represents key watershed 
processes and their linkages to the independent variables of interest. While 
an integrated model output variable such as streamflow can be easily 
validated against observations, and errors in inputs may be indirectly 
estimated, it is rare that the sensitivities of intermediate sub-processes, 
such as infiltration or sublimation, and their completeness (e.g., whether all 
controlling processes are incorporated in the model) are evaluated and 
confirmed as being realistic. Consequently, model-based sensitivity 
analyses are inevitably dependent on the partially assessed fidelity of the 
model. Currently, the CBRFC is working on an accuracy assessment and 
sensitivity analysis of hydroclimatic parameters within the CBRFC modeling 
framework. The goal of this work is to improve the accuracy of the CBRFC’s 
water supply forecast. 

The primary models that have been used in sensitivity studies for the basin 
are all LSMs, with the VIC model being the most frequently used (Vano, Das, 
and Lettenmaier 2012; Vano and Lettenmaier 2014; Vano et al. 2014; Xiao, 
Udall, and Lettenmaier 2018). Among these sensitivity studies, Vano, Das, 
and Lettenmaier (2012) and Vano et al. (2014) also examined the output of 
other LSMs—CLM, Catchment, and Noah—as well as Sac-SMA. The latter of 
these two studies also looked at another conceptual model, the Simple 
Water-Balance Model presented by McCabe and Markstrom (2007), which 
had previously been used to model Colorado River Basin water supply risk 
(McCabe and Wolock 2007). As the name suggests, this model has a much 
simpler formulation of watershed processes compared to the other models 
discussed in this chapter. For example, the occurrence of snow is 
determined by precipitation falling below a mean monthly temperature 
threshold, which is a calibrated parameter. The model’s ET is dependent on 
water availability and driven by Thornthwaite estimates of PET, which are 
sensitive to temperature but not radiation. It should be noted that the 
monthly time step of this model increases uncertainties considerably due 
to averaging of inputs and outputs that are often nonlinear.  
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6.3 Descriptions of key hydrologic models relevant to 
the basin 

In the Colorado River Basin, the most frequently consulted hydrologic 
models have been the NWS models (Sac-SMA and SNOW-17) for streamflow 
forecasting, and the VIC model for sensitivity studies and climate-change 
projections of hydrology. These models also exemplify their respective 
broader classes of models (conceptual models and land surface models) as 
summarized in Section 6.1. Below are extended descriptions of these two 
models, their setup and use, and calibration and inputs. The National Water 
Model (i.e., WRF-Hydro and other components) is also described, even 
though it is not (yet) in operational use in the basin, because it represents 
recent trends and new methods in hydrologic modeling, and because NOAA 
intends for it to become the operational model for the NWS RFCs, including 
the CBRFC, in the future. 

National Weather Service models  
In the 1970s, the National Weather Service began developing the River 
Forecast System (NWSRFS), a collection of interrelated software and data 
capable of performing a wide variety of hydrologic and hydraulic functions. 
The primary hydrology model deployed within NWSRFS was actually two 
models: Sac-SMA for modeling precipitation-runoff processes, and SNOW-
17 for modeling snow accumulation and ablation. Other models developed 
for use within NWSRFS accounted for agricultural water use, conversion of 
runoff volume into instantaneous discharge (i.e., unit hydrograph 
implementation), reservoir operations, and other hydrologic processes. In 
2012, most of the legacy hydrologic models and other software of NWSRFS, 
including Sac-SMA and SNOW-17, were migrated into a new software 
platform, the Community Hydrologic Prediction System (CHPS).  

CHPS is an interactive platform that specifies models and operations within 
a workflow to run both short-range streamflow and flood forecasts and 
seasonal (mid-range) ensemble streamflow prediction (ESP) forecasts. 
CHPS is the NWS implementation of the Delft-FEWS software platform. 
Since its deployment at the CBRFC and the other RFCs beginning in the 
early 2010s, CHPS has provided greatly increased interactivity and 
flexibility to the forecast centers in incorporating and visualizing data and 
constructing modeling and forecasting workflows.  

Sacramento-Soil Moisture Accounting Model (Sac-SMA) 
Sac-SMA is a lumped conceptual model that attempts to represent soil 
moisture characteristics to effectively simulate runoff that may be 
subsequently routed to become streamflow (Figure 6.2). Sac-SMA simulates 
six types of runoff, which can be further divided into fast- and slow-
responding processes. In fast-responding processes, surface runoff is 
routed to a channel within hours and is typically driven by rainfall or 
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snowmelt events. Runoff that is characterized as fast-responding includes 
intensity-dependent surface runoff (i.e., runoff or snowmelt that exceeds 
the infiltration rate of unsaturated soils), runoff from impervious areas, and 
direct runoff (i.e., runoff after soils reach saturation). Slow-responding 
processes occur over porous areas and account for interflow, supplemental 
baseflow (e.g., water that drains from soils up to two months after an 
event), and primary baseflow (e.g., water that drains from soils over the 
course of years and sustains perennial flow during dry periods). 

Within Sac-SMA, the soil is represented by two vertical zones to capture 
soil moisture processes near the surface as well as groundwater processes 
deeper within the soil column. Soil moisture within the upper zone is 
influenced by fast-response processes, and lower zone soil moisture is 
influenced by slow-response processes. Water can be stored and 
exchanged between the two soil zones; if the volume of water input to the 
model exceeds the modeled soil capacity, or if the rate of water input 
exceeds transport rates defined in the model, then water is available to the 
channel as runoff. 

Sac-SMA model parameters are determined through calibration (see below) 
and define several quantities of the Sac-SMA’s conceptual representation of 
physical soil processes. Among the parameters are the size and rate of soil 
moisture zones and transport, the percentage of water destined for deep 
aquifer storage, and land cover characteristics such as the impervious 
nature of an area, or amount of area covered by riparian vegetation. 

Simulated soil moisture within the model can be characterized by tension 
or free water, and can be present in both lower and upper soil zones. 
Tension water may only be removed through evapotranspiration. Free 
water may be removed through evapotranspiration, percolation, and 
interflow. Lower-zone free water can be further characterized as 
supplemental or primary. Primary water drains slowly and describes 
baseflow over long periods of times, on the order of months to years. 
Supplemental water is more readily available to runoff than primary water 
and typically drains in the weeks to months following an event, augmenting 
primary baseflow. Each type of modeled soil moisture (tension, 
supplemental, and free) have defined maximum capacity values dictating 
how much water can be held at any given point. 

Soil moisture transport rates are also defined through the model calibration 
process and determine how quickly water can move between zones and as 
interflow. Percolation is a function of lower zone dryness and upper zone 
free water content. The percolation rate influences how much water 
becomes surface runoff or interflow from the upper zone during a storm 
event and how much water is stored in the lower zone that can become 
available at a later time as baseflow. 
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SNOW-17 
Since Sac-SMA effectively assumes that all precipitation reaches the 
surface as liquid water, a separate model is needed to represent snow and 
snowmelt for regions like the Colorado River Basin, in which snowmelt is an 
important component of overall runoff. SNOW-17, like Sac-SMA, is a 
lumped conceptual model that requires only precipitation and temperature 
to model snowpack accumulation and ablation. The model characterizes 
precipitation as rain or snow based on temperature and freezing level 
information and builds or melts a snowpack in response to these forcings. 
While the SNOW-17 model is relatively simplistic compared to models that 
rely on an energy balance and significantly more forcing data, it 
consistently performs well and often better than more complex snow 
energy-balance models (e.g., Franz, Hogue, and Sorooshian 2008). 

Since temperature is used as a proxy for incoming solar radiation in 
SNOW-17, there are times when SNOW-17 may not melt snow at the rate 
observed. For instance, during cloudy warm days, the model may melt snow 
too quickly—in reality, cloud cover will inhibit incoming solar radiation, 
resulting in slower melting. When dust is covering snowpack (i.e., dust-on-
snow conditions), the rate of modeled snowmelt may be too slow—in 
reality, the lower snow albedo results in the increased absorption of solar 
energy and quicker melt. In operations, such model inaccuracies may be 
corrected through adjustments to model parameters such as the melt 
factor.  

Other snow-related products used by the CBRFC, and the snow simulation 
itself, are described further in Chapter 5.  

Model setup and general use 
The modeling units in CHPS consist of basins on the order of 10–1000 km2. 
This allows for efficient calibration during the model development phase, 
and for examining and iteratively updating model forcings (e.g., 
temperature and precipitation data), states, and outputs in real time during 
the forecasting process. An example of this lumped approach is provided in 
Figure 6.10.  

The primary models for an individual basin are SNOW-17 coupled to the 
Sac-SMA model, along with a routing function such as the Lag/K or unit 
hydrograph. The models embedded within CHPS provide a broad array of 
additional analytical and interactive functions, including model calibration, 
state updating, and post-processing, all accessible via an interactive 
interface.  

The modeled Colorado River Basin is divided into about 400 basins, each 
having 1–3 elevation zones, which are simulated in a workflow that 
proceeds each day from the headwaters to the basin outlet, correcting 
obvious deficiencies in meteorological inputs and model behavior, basin by 
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basin, and accounting for known and estimated impairments, including 
storage operations, diversions and consumptive uses. The Upper Basin and 
Lower Basin models are run at 6-hourly and 1-hourly time steps, 
respectively, with the latter reflecting the flashier hydrologic response 
times in the Lower Basin. 

CHPS is designed for interactive use by forecasters. During critical times, 
forecasters use a myriad of methods to obtain data to enhance their 
awareness of the evolving dynamics in the basin, even beyond automated 
data systems. Phone calls to reservoir operators or to stream gauge 
operators such as the USGS can clear up any questions about measured 
flows, while intake of satellite snow information can inform snow cover 
fraction, and even viewing webcams of certain road locations can add 
insight about whether precipitation is falling as snow or rain at different 
locations. RFC forecasters use a combination of manual and automated 

 

Figure 6.10 

Illustration of the NWS traditional lumped approach to watershed modeling for the Little Cottonwood 
River canyon outside of Salt Lake City, Utah (right). The effect of elevation on temperature over the 
6000+ foot terrain range is reflected in the mean areal 6-hour temperature forcings (left, top) that are 
developed for each of three elevation zones applied for the watershed of forecast point LCTU1 
(right). Precipitation forcings and model parameters are also distinct for each zone. The elevation 
zones are not necessarily contiguous. A 5-km resolution gridded temperature analysis revealing 
similar gradients is shown for comparison (left, bottom). (Source: A. Wood, NCAR) 
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techniques to correct input data, going beyond the scrutiny already given 
to that data by the source agencies.  

The SNOW-17 and Sac-SMA models as implemented by RFCs are well-
known for being highly calibrated, and they currently offer the best 
performance in simulating streamflow down to sub-daily time-scales. Their 
application in forecasting also contains the most comprehensive use of 
information about impairments to the natural hydrologic system, even 
while many uncertainties remain in those data (Chapter 5). The optimized, 
conceptual nature of the models, however, gives rise to concerns about 
their ability to represent both evolving climate and weather patterns, and 
to represent changes in land cover, such as from fires, dust-on-snow, 
beetle kill, or changes in the seasonality of vegetation due to warming. 
Depending on the scale of these landscape disturbances, changes to the 
model can be made to account for hydrologic impacts; for instance, after a 
large, severe, fire, the impervious area within a basin may be adjusted to 
simulate increased runoff due to the presence of hydrophobic soils. Their 
reliance on fixed PET (which is not required, but is the configuration in 
which they are implemented) argues against their use for long-term 
projection without modification to the PET scheme. 

Calibration 
A long-standing and critical part of the RFC implementation of SNOW-17 
and Sac-SMA has been model calibration. This includes extensive effort to 
develop or obtain records of impairments that affect streamflow, such as 
diversions and reservoir operations. Biases of no more than a few percent 
are common, and unlike other models used in the basin, calibrations are 
updated when forcings change (e.g., when the WMO climate normal period, 
currently 1981–2010, advances each decade), or more frequently. Some 
RFCs contract model calibration out to consulting companies such as RTI 
and more recently, Lynker, which have nationwide contracts with NWS 
that include this service.  

Model calibration in the Colorado River Basin has been performed manually 
at the RFCs and for research studies, with the objective of minimizing 
errors in streamflow simulation. For the NWS models, observational 
datasets providing a priori parameters are the starting point (Koren, Smith, 
and Duan 2003; Anderson, Koren, and Reed 2006; Schaake et al. 2006). 
Algorithms for automated, objective parameter estimation have also long 
existed in the NWS calibration software in the form of the Shuffled 
Complex Evolution (SCE) single-objective optimization method (Duan, 
Sorooshian, and Gupta 1994). SCE usage in RFCs is mixed, however, with 
the general view being that it can provide an improvement over a priori 
parameters but does not perform so well that further manual tuning is not 
required. In recent decades, numerous parameter optimization algorithms 
have been introduced and are accessible in multi-method software 
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packages such as Ostrich (Matott et al. 2013) but these are not yet used by 
the RFCs.  

Variable Infiltration Capacity (VIC) model 
VIC is a grid-based, macroscale, semi-distributed physical land surface 
model (LSM) that solves full water and energy balances. VIC was developed 
at the University of Washington (Liang et al. 1994), and in its various forms 
has been applied to most of the major river basins around the world. 
Development and maintenance of the current official version of the VIC 
model is led by the Computational Hydrology group in the Department of 
Civil and Environmental Engineering at the University of Washington. The 
VIC model is an open-source development project that is now in its 5th 
major version; every new application addresses new problems and 
conditions that the current model may not be able to handle, spurring 
further development and iteration. Further information on the VIC model is 
available on a website hosted by the University of Washington 
Computational Hydrology Group. 

Model setup 
The VIC model is run at nominal grid resolution (e.g., 12-km or 1/8th degree 
dimension grid cells) but attempts to represent sub-grid variability in 
vegetation and elevation. VIC is regarded as a column model, which means 
that water cannot flow laterally, and the soil column in most applications is 
divided into three to five soil layers (Figure 6.4). Physical equations are used 
to simulate water and energy flows throughout the model. For example, 
evapotranspiration is calculated based on the Penman-Monteith equation 
(Penman 1948; Monteith 1965), soil drainage in the saturated zone is 
described by Darcy’s law, and surface runoff in the upper soil layer is 
calculated based on the variable infiltration curve (Zhao et al. 1980). In 
addition to these processes, VIC simulates runoff in the upper surface layer 
and the release of baseflow from the lowest soil layer. Surface and base 
flow are subsequently routed by a separate routing model along the stream 
network to the basin outlet. Snow is represented in several forms: as a 
surface snow pack, as snow in the vegetation canopy, and as snow on top of 
lake ice when lakes are represented. More recently, VIC physics have been 
expanded to include ponded water, rudimentary glacier melt and 
migration, and frozen soils. 

The land surface in VIC is modeled as a grid. VIC represents sub-grid 
variability in vegetation and elevation by partitioning each grid cell into 
multiple land cover and elevation classes. Inputs are sub-daily 
meteorological time series of air temperature, precipitation, radiation, and 
wind speed. Land-atmosphere interactions and water and energy balances 
at the surface are simulated at a daily or sub-daily time step. Water can 
only enter a grid cell via the atmosphere, and once water reaches the 

Variable Infiltration 
Capacity (VIC) 
Macroscale Hydrologic 
Model 

 
Link: 
https://vic.readthedocs.io
/en/master/ 

https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/master/
https://vic.readthedocs.io/en/master/
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channel network, it is assumed to stay in the channel, i.e., it cannot flow 
back into the soil. 

Calibration 
Regional calibration remains a longstanding challenge in hydrologic 
modeling. The VIC models used in the Colorado River Basin are infrequently 
calibrated due to the expense. The last official calibration is believed to 
have occurred in 2004 (Christensen et al. 2004; J. Prairie, pers. comm.). In 
that study, VIC was calibrated on the Reclamation natural flows published 
at that time for three points in the basin: Green River at Green River, UT, 
Colorado River at Cisco, UT and Colorado River above Imperial, AZ.  

Originally, the VIC models were calibrated manually as part of efforts to 
develop both climate change impact assessments (Christensen et al. 2004) 
and mid-range (seasonal) ensemble streamflow forecasting (see Chapter 8). 
The most recent calibrations were made using an automated multi-
objective parameter estimation software package called MOCOM (Yapo, 
Gupta, and Sorooshian 1998).  

Since the calibrations were last completed in the mid-2000s, the VIC model 
source code has evolved. In particular, the internal forcings-related code 
derived from MTCLIM (Running and Thornton 1996) has been upgraded. 
This code translates input of daily temperature minima and maxima, 
precipitation, and wind speed into sub-daily forcings for different elevation 
zones. These changes altered the simulated flow, in some cases by 20-30%, 
which is documented for locations included in the BCSD5 technical memo 
(Reclamation 2014).  

The continued usage of VIC for water supply studies without sufficient 
effort to recalibrate and calibrate more extensively is a real concern, as a 
degraded calibration can significantly affect projected streamflow changes. 
Many of the basin studies conducted by Reclamation around the West have 
included new VIC calibration efforts, but not the Colorado River Basin 
Study (Reclamation 2012c). For the Colorado River Basin Study, a newer 
version of VIC was not recalibrated, though it was validated: it was run with 
historical climate to evaluate how well the new VIC version simulated the 
29 natural flow points used by Reclamation (J. Prairie, pers. comm.). The 
results of this effort are published in Reclamation (2012c), page B4-3.  

Model enhancements are typically developed by grant-funded projects in 
the small number of universities that have adopted VIC for hydrologic 
research. Like many models, VIC is not bug free and improves over time as 
bugs are found and fixed. As VIC versions change, and the forcings used to 
drive VIC are upgraded, the model itself is not always recalibrated to 
maintain streamflow simulation performance, which tends to degrade in 
the face of these changes. To support climate change work in the early 
2010s, such as the CMIP3 hydrology projections effort, Reclamation 
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assembled existing VIC model configurations and mosaicked them into a 
West-wide domain, but without significant recalibration (Reclamation 2011).  

More recently, after the CMIP5 hydrology projection effort, Reclamation 
and the U.S. Army Corps of Engineers have funded research into improving 
VIC model regional calibration (e.g., Mizukami et al. 2017). One of the 
problems of the CMIP5 VIC modeling involved spatially distributed VIC 
parameters: parameter tuning done by each region results in patchy spatial 
artifacts that cause spatial patterns in the simulations. Mizukami et al. 
(2017) focused on testing a new Multiscale Parameter Regionalization (MPR; 
Samaniego, Kumar, and Attinger 2010) approach that had been successfully 
demonstrated for a different land surface model. The VIC MPR results did 
achieve seamless parameter fields (by design) versus a patchwork of 
individual basin parameter fields, but results often did not equal or exceed 
the individual basin calibrations. The simulations from this study are 
available, but not for further practical application (N. Mizukami, pers. 
comm.). 

Simulation biases from models including, but not limited to, VIC has 
motivated new Reclamation projects to develop methods for bias 
correction of outputs—particularly streamflow—that may be required in 
order to provide a confident simulation under current and historical 
climate, against which future projections of streamflow can be evaluated. 
Because bias correction is often a prior step in climate downscaling, when 
applied to streamflow it is often referred to as secondary bias correction.   

National Water Model (NWM) 
The NOAA National Water Model, or NWM, is a next-generation hydrologic 
modeling and forecasting platform first launched in 2016. The NWM is 
notable because it represents a first attempt to implement very high 
resolution watershed process-oriented models for operational forecasting 
across the entire U.S., yielding forecast outputs on 2.7 million different 
stream and river reaches. The NWM is operated by the NOAA Office of 
Water Prediction at the National Water Center, with input and feedback 
from the RFCs regarding the skill and usability of forecast products. The 
NWM is the latest NWS-led foray into distributed modeling to supplant the 
Sac-SMA and Snow-17 models for operational streamflow forecasting, 
following the decade-long effort to introduce the coarser Hydrologic 
Laboratory-Research Distributed Hydrologic Model (HL-RDHM) in the 
RFCs.  

Model setup and use 
In the NWM, the water cycle is simulated with mathematical 
representations of the different processes in a river basin, and how these 
processes interact. The representation of these processes, such as 
infiltration, snowmelt and the flow of water through soil layers varies with 

National Water Model 

 
Link: 
https://water.noaa.gov/ab
out/nwm 
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changing soils, elevations, vegetation types and other variables. Simulations 
of the interactions and stream responses, which can change very quickly 
due to spatial and temporal variability in precipitation, must be run on a 
high-powered computer or super computer to support decision makers 
who need a fast turnaround when, for instance, flooding potential is high. 

The NWM runs four uncoupled simulations of current conditions with 
look-back periods ranging from 28 hours to 3 hours. The initial conditions 
for the model’s forecast runs are provided by these simulations or analyses. 
Short-range forecasts are executed hourly over the CONUS. The NWM 
produces hydrologic signaling at a very fine spatial and temporal scale. It 
complements official NWS river forecasts, which are at approximately 4000 
locations across the CONUS, and produces guidance at millions of other 
locations that do not have a traditional river forecast. The NCAR-supported 
WRF-Hydro system is the core of the NWM. The Noah-MP land surface 
model (LSM) is used by WRF-Hydro to simulate land surface processes.  

The NWM provides a number of forecast products, including products 
termed short-range (0–2 days), medium-range (0–10 days), and long-range 
(0–30 days). The short-range forecasts are deterministic single-value 
forecasts; the medium-range forecasts are from a 7-member ensemble; the 
long-range forecast is an ensemble updated daily, based on inputs from the 
NCEP CFSv2 climate forecast system (Chapter 7). The NWM relies on a 1-km 
resolution implementation of Noah-MP (Niu et al. 2011) coupled with a 250-
m terrain routing scheme (Gochis, Yu, and Yates 2015), and a bucket 
groundwater model. Thus, given the model classification scheme in 
Table 6.1, the NWM is a hybrid of a land surface model and an explicit 
watershed process model, in terms of the detail of its physics and its spatial 
resolution.  

The NWM contains orders of magnitude more complexity in its process 
description and spatial resolution than the NWS models, but has not been 
demonstrated to yield sufficient performance to be suitable for most 
applications of interest for water management in the Colorado River Basin, 
including short-range (1-10 day) and mid-range (seasonal) forecasts. Its 
heavy computational demands have also limited its ability to be directly 
calibrated, to provide seasonal water supply forecasts, especially in 
ensemble mode, and to be used for long-range projection. The NWM’s 
optimal use at present appears to be flash-flood prediction, which benefits 
greatly from its ability to route streamflow through a high-resolution 
(250 m, 2.7 million-reach) channel network. The flash flooding application is 
less compromised by the deficiencies of the hydrologic simulation, because 
the intense rainfall rates and saturated hydrologic conditions lead to more 
straightforward rainfall-runoff relationships. 
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NWM calibration 
The NWM was first implemented as an uncalibrated prediction system, but 
has since been subjected to several rounds of calibration effort. In contrast 
to the computationally cheaper VIC and RFS models, only parts of the NWM 
domain can be directly calibrated. Parameters are estimated using the 
Dynamically Dimensioned Search algorithm (Tolson and Shoemaker 2006) 
for small unimpaired basins and then distributed to the larger domain using 
concepts of ecological similarity. This approach has led to some 
improvement in NWM performance, but performance in basins not directly 
calibrated still lags considerably behind the NWS models. 

6.4 Challenges and opportunities 

Strong progress has been made over the last few decades in hydrologic 
modeling, including improved observations, scientific understanding, 
model process representations, and computing power and efficiency. In the 
Colorado River Basin, hydrologic modeling has primarily centered on the 
NWS models for operational short-range to mid-range (seasonal) 
forecasting, and the VIC land surface model for mid-range forecasting, 
trend and variability analysis, and climate change impact projection. These 
modeling capabilities under current practices have limits, and there are 
opportunities to advance beyond those limits, through improved 
meteorological inputs, better parameter estimation and calibration 
schemes, and development or adoption of new modeling platforms. These 
opportunities are summarized below.  

Challenge  
The conceptual modeling approach used in operational forecasting is not 
well-suited to take full advantage of advances in process understanding and 
modeling. The process-complexity of the models used for short-range to 
seasonal forecasting could be increased, albeit in a careful manner. This 
must be done within a strategy that acknowledges and provides for 
commensurate changes in operational workflows, including the 
development of data assimilation approaches. 

Opportunity  
• Implement a testbed framework for operational modeling that can 

incrementally advance and benchmark modeling improvements for 
different objectives, evaluating and justifying increases in complexity 
based on model performance.  

Challenge  
Distributed regional parameter estimation remains a vexing scientific 
challenge, and there is a critical need for accessible, efficient model 
calibration approaches to avoid the use of semi-calibrated land surface 
models in water supply applications (e.g., climate-change impact 
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assessment). Without this capability, no model will perform well, and 
watershed-tuned conceptual models will be hard to outperform.  

Opportunity 
• Multiscale Parameter Regionalization (MPR) offers promise but will 

require more development to leverage both the strengths of the 
attribute-based parameter development and the greater optimization 
potential in individual basins. Improved understanding of parameter 
sensitivities in models such as VIC, multi-objective calibration 
(considering more variables than just streamflow), and broader use of 
geophysical attributes, may offer near-term paths for improvement. 

Challenge 
The widespread use of VIC and similar land surface models for climate 
change impact studies may have inadvertently limited the exploration and 
quantification of projected hydrologic changes (Chapter 11). There is a need 
to identify processes that are not represented in models such as VIC and 
that lead to hydrologic impacts that affect stakeholders (such as dust-on-
snow, Chapter 5), and to require that models used in climate-change 
impact studies a) include parameterizations to represent those processes, 
and b) demonstrate that their process performance is realistic. 

Opportunity 
• New models and modeling frameworks such as SUMMA, Noah-MP, 

WRF-Hydro, and CTSM may offer a more flexible foundation for 
enhancing model process complexity in appropriate, and carefully 
benchmarked ways. Process parameterizations in individual models 
may be leveraged to expand the range of options in flexible model 
frameworks. This activity will ideally be deliberate, pursuing targeted 
model improvements and motivated by stakeholder needs assessments, 
rather than top-down or wholesale adoption of an alternate off-the-
shelf model.   



Volume III of the Colorado River Basin State of the Science report focuses on models and methods 
for forecasting weather, climate, and streamflow at the short- to mid-term time scale. Forecasts at 
this time scale are critical to water managers ensuring supply to their customers, farmers making 
planting decisions, ski areas planning staffing needs, utility operators making purchasing decisions, 
and retailers trying to plan inventory, among many others. 

The two chapters in Volume III offer comprehensive descriptions and assessments of the state of 
short-to-mid-term forecasting methods, their skill, the data they require, their applications, and 
their tradeoffs. Results from weather and climate forecasting models feed into streamflow 
forecasting models to generate forecasted inflows for Reclamation’s three primary models. 

Chapter 7 describes the methods used to forecast weather and climate. The chapter is organized 
around the three forecast time frames: weather, 1-14 days; sub-seasonal, 14 days to 3 months; and 
seasonal, 3 months to 1 year. Weather forecasts are the most skillful of the three, and demonstrate 
steady, if small, improvements. The most challenging of these time frames is the sub-seasonal time 
frame; this chapter describes why this is so, and addresses the constraints on future improvements 
to forecasts on this time frame. Seasonal forecasts perform in the middle—they currently lack skill, 
particularly for precipitation, but judicious use of these forecasts, at times and places of good 
predictability, could be beneficial. Accordingly, the bulk of the chapter provides background on the 
tools and techniques that are behind seasonal forecasts and provides a good reference on the 
operational seasonal forecast products. The chapter concludes by describing the implications of the 
current state of seasonal forecasting for the basin, particularly the Upper Basin, and describes 

Volume III 
Short-term and Mid-term—Informing the 1-Month to 5-Year Time Horizon 
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initiatives to improve seasonal forecasts. Finally, it surveys the challenges and opportunities for 
forecasting across all three time frames.    

Chapter 8 describes the concepts, approaches and tools used to forecast streamflow. This chapter 
focuses mainly on techniques and models that are relevant to Reclamation operations and planning 
activities—the monthly to seasonal ensemble forecasts that provide critical input to Reclamation’s 
24-Month Study (24MS) and Mid-term Operations Probabilistic Model (MTOM), which are used to 
generate system operations projections (monthly reservoir releases and storages) up to 5 years out 
(Chapter 3). The chapter explains the sources of predictability, in order to provide a basis for 
forming priorities for improvement of forecasts. It describes three types of forecast models, 
dynamical, statistical, and hybrid; two types of forecasts, single-value and ensemble; and two 
forecasting paradigms, in-the-loop and over-the-loop. It provides detailed descriptions of 
operational forecast systems and experimental products across three time frames: short-range 
(days), mid-range (months) and interannual to decadal (Year 2 and beyond). Then, the use of mid-
range streamflow forecasts—the only operational use of streamflow forecasts by Reclamation in the 
basin—in the 24MS and MTOM is described. Reclamation has considerable immediate interest in 
improving operational forecasts for Year 2, but decadal climate prediction currently exhibits poor 
skill, and NWS has not yet made investments toward improving Year 2 predictions. Chapter 8 
describes Reclamation’s own initiative toward improved Year 2 forecasts, the Colorado River Basin 
Streamflow Forecast Testbed, intended to provide an objective approach to compare current and 
experimental streamflow forecasting methods. Finally, Chapter 8 provides a comprehensive review 
of the benefits, limitations, and challenges of a broad array of potential scientific and technological 
improvements to the existing operational streamflow forecast systems.  
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Key points 
• Uncertainty about upcoming weather and climate conditions translates 

into a major source of uncertainty in seasonal streamflow forecasts. 
• Weather forecasts out to 10 days have relatively high skill and are 

progressively improving; they are incorporated into the CBRFC’s 
operational streamflow forecasts. 

• Sub-seasonal (2 weeks to 12 weeks) and seasonal (3 months to 1 year+) 
climate forecasts have much lower skill, especially in the Upper Basin, 
and they are not incorporated in the CBRFC streamflow forecasts. 

• A major research effort has ramped up in the last decade to advance 
sub-seasonal and seasonal forecasting. 

• Sub-seasonal and seasonal forecasts for temperature are generally 
more skillful than forecasts for precipitation, and skill for both is 
generally higher for the Lower Basin than for the Upper Basin. 

• For precipitation, the Climate Prediction Center’s seasonal forecast skill 
in both basins has been positive for winter and spring, suggesting users 
should focus their forecast use on those seasons.    

• There are other opportunities to better utilize the skill that does exist 
in sub-seasonal and seasonal climate forecasts, such as using them to 
“nudge” the streamflow forecast ensemble during post-processing. 

7.1 Overview 

Uncertainty about future weather and climate affects streamflow 
forecasting on multiple timescales. In particular, uncertainty about the 
future weather and climate is one of the largest sources of error in seasonal 
streamflow forecasting. Even if, on April 1, we had perfect knowledge of the 
snowpack, and knew exactly how much of that snow would be translated 
into runoff, we would still have considerable uncertainty in spring-summer 
streamflow forecasts, because the weather that occurs from April through 
July can have a substantial impact on the runoff over that period.  

When weather and climate forecasts have positive skill, i.e., predictive value 
above and beyond a null forecast (i.e., the climatological average 
conditions), there is an opportunity to inform and improve streamflow 
forecasts, and to guide other water resource decision-making. Weather 
forecasts out to roughly 10 days have relatively high skill for both 
temperature and precipitation (Figure 7.1), so CBRFC operational water 
supply forecasts incorporate them, as described in section 7.3. 
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At longer sub-seasonal and seasonal climate forecast periods (>14 days), the 
forecast is generally much lower than the skill for weather forecasts, 
constraining opportunities for improving streamflow forecasts (Figure 7.1). 
The CBRFC operational water supply forecasts do not currently incorporate 
sub-seasonal (2–12 weeks) or seasonal (3 months and longer) climate 
forecasts, due to their low skill.  

The CBRFC’s Hydrologic Ensemble Forecast Service (HEFS) system provides 
a pathway for incorporating additional weather and climate forecasts into 
their streamflow forecasts, if they have sufficient and consistent skill and 
an archive of historical hindcasts to allow validation. CBRFC forecasters 
have tested the incorporation of some sub-seasonal and seasonal climate 
forecasts, as described below and in Chapter 8. 

The overall gap in predictive skill between weather forecasts and longer-
term climate forecasts is reflected in fundamental differences in the way 
the forecasts are presented. First, weather forecasts are for specific daily 

 
Figure 7.1 

Schematic showing typical forecast skill relative to forecast range for three types of weather and 
climate forecasts: short-range weather forecasts; sub-seasonal climate forecasts, and seasonal climate 
forecasts, including potential sources of predictability. Relative skill is based on differing forecast 
averaging periods, shown inside the arrows. (Source: adapted from a figure by Elisabeth Gawthrop 
and Tony Barnston, International Research Institute for Climate and Society). 
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(or more frequent) outcomes, while sub-seasonal and seasonal climate 
forecasts are for outcomes as averaged across weekly, biweekly, monthly, 
or seasonal periods. Second, weather forecasts are usually presented as 
deterministic forecasts: a single temperature value or precipitation amount 
is forecasted. (The exception is the familiar “probability of precipitation” 
forecast, e.g., 40% chance of rain tomorrow.) Sub-seasonal and seasonal 
forecasts are typically presented in probabilistic terms, as a shift in 
likelihood compared to the historical distribution of outcomes, e.g., 60% 
chance of wetter than normal conditions over the winter season, compared 
to a 50% chance across the historical period (assuming a 2-category 
forecast). Sub-seasonal and seasonal forecasts can also be presented as 
deterministic forecasts (e.g., 2.3” of precipitation over the next 1-month 
period) but users should be aware that the specificity and precision of such 
forecasts is far greater than their accuracy and skill.  

Increasingly, “S2S” is used as a shorthand for “sub-seasonal to seasonal 
forecasts,” but the actual forecast periods being referred to can be 
inconsistent. In most technical literature, S2S refers to sub-seasonal 
forecasts; i.e., forecast periods up to one season (<3 months). But S2S has 
also been used to refer to sub-seasonal and seasonal forecasts, or, less 
frequently, sub-seasonal and season 1 (i.e., 3-month) forecasts. To avoid 
confusion, in this chapter we use the terms “sub-seasonal” and “seasonal” 
instead of S2S, except when the latter is part of the name of a project.  

7.2 What makes a weather or climate forecast useful? 

First, a distinction needs to be made between forecast quality, which is 
assessed independently of the use of the forecast, and forecast value, which 
is the utility of the forecast to the user.  

The assessment of forecast quality—verification—has several components. 
The measures of quality need to be evaluated across many (100s or 1000s) 
forecasts produced by the same forecast system in order for the measures 
to be taken as indicative of the quality of current or forthcoming forecasts 
that have not yet been verified (Hudson 2017), which is what the user really 
wants to know.   

• Accuracy is the overall level of agreement between the forecasted and 
predicted values. But accuracy by itself can be misleading, since a 
“naïve” forecast can be quite accurate. For example, since precipitation 
occurs on only 20-30% of all days in most locations in the Upper Basin, 
a consistent daily forecast of “no precipitation” will be accurate 70-80% 
of the time. 

• Skill is more meaningful than accuracy; it measures the accuracy of the 
forecast relative to a baseline “naïve” forecast: the climatological value, 
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a simple persistence forecast, or, if there are multiple forecast “bins,” 
the odds of forecasting the correct bin by chance alone. Positive skill 
(>0 for nearly all skill metrics) means that there is value beyond the 
naïve forecast. There are many different metrics of forecast skill; the 
metrics shown in the figures and tables below, and explained in the 
text, are the anomaly correlation (AC) and Heidke skill score (HSS). Both 
are fairly simplistic and cannot by themselves convey the multiple 
dimensions of forecast quality, or the forecast’s value to the user.  

• Reliability is a measure of forecast quality specific to probabilistic 
forecasts; it is the agreement between the forecast probability and 
observed frequency of outcomes. For example, across all of the days a 
weather forecast system called for a 30% chance of rain, for perfect 
reliability it would have rained on 30% of those days, and so on for 
other percentages. Reliability can likewise be measured for sub-
seasonal and seasonal forecasts; e.g., across all the 3-month seasons for 
which a climate forecast system called for a 60% chance of above-
normal precipitation (assuming only two categories, above and below), 
then for perfect reliability, 60% of those seasons should have observed 
above-average precipitation, and so on.  

• Additional measures of skill specific to probabilistic forecasts 
complement reliability. Resolution measures how well the forecasts can 
distinguish different categories; e.g., do the observed outcomes differ 
between periods with forecasts of 60% chance of above-normal 
precipitation and with forecasts of 70% chance of above-normal 
precipitation. Sharpness is the ability to forecast extreme values 
(probabilities near 0% or 100%) in at least some cases, rather than only 
values clustered around the observed mean probability.  

Broadly speaking, the higher the forecast quality, the more opportunity 
there is for the forecast to be useful, but forecast quality and value to the 
user are not necessarily linked (Hudson 2017). Usefulness also strongly 
depends on the decision context, including the risk tolerance of the user, 
and whether the forecast is used in a decision-support tool (e.g., a 
streamflow forecast model) or considered on its own.  

Deterministic weather forecasts out to 5–10 days have become skillful 
enough that the forecasted conditions can be treated as though they will 
occur, such as with the incorporation of weather forecasts into the CBRFC 
ESP water supply forecasts (see section 7.3). Water managers often use 
weather forecasts to make discrete, yes-or-no decisions with some 
confidence, e.g., releasing water from a nearly full reservoir now to avoid an 
uncontrolled spill a week from now, given the forecast of heavy rainfall over 
the next five days.  
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Sub-seasonal and seasonal climate forecasts will never have that level of 
skill or certainty; relatively low predictability at these time scales may be a 
fundamental property of the climate system (Albers and Newman 2019). But 
if climate forecasts have at least some positive skill or reliability for the 
basin and season of interest, they can potentially be useful. Since climate 
forecasts are typically presented in probabilistic terms, they are suited for 
modeling and decision support frameworks that are themselves 
probabilistic, such as ensemble streamflow prediction. In this case, the 
tendency shown in the climate forecast, if any (e.g., 60% chance of above-
normal precipitation), can be used to weight the historical years used to 
populate the streamflow ensemble.  

Climate forecasts can also be used to inform discrete, infrequent yes-or-no 
decisions, such as whether to generate hydropower during the fall and 
winter instead of maximizing water storage, but decision makers must 
accept the significant risk of the forecasted climate tendency not actually 
occurring (Garbrecht and Piechota 2005). Also, there may not be a large 
enough forecasted tendency in a given year or season to influence a 
decision. In many contexts, then, climate forecasts may provide more value 
when used selectively, rather than routinely.   

7.3 Weather forecasts (1 to 14 days out) 

The steady progress in weather forecasting over the last several decades 
has been called a “quiet revolution,” resulting from a steady accumulation 
of knowledge about the atmosphere and technical advances in modeling. 
Forecast skill for the mid-latitude regions in the Northern Hemisphere, 
such as over the Colorado River Basin, has been increasing by about 1 day 
per decade for forecast lead times of 3 to 10 days; today’s 5-day weather 
forecast is as skillful as the 4-day forecast was 10 years ago (Bauer, Thorpe, 
and Brunet 2015). 

The main source of predictability and skill for weather forecasts is the 
accurate description of the initial conditions of the atmosphere (Figure 7.1) 
by coordinated global networks of observations from sensors that are land, 
ocean, and satellite-based, and from airborne sensors. Once initialized with 
those observations, the weather forecast model simulates the evolution of 
the initial synoptic (large scale) weather patterns shown in the 
observations. The skill of weather forecasts, on average, systematically 
declines from day 1 to day 14 (Figure 7.1) as the information contained in the 
initial conditions is gradually lost to chaotic processes underlying the 
motions of the atmosphere. This information loss can be slowed by 
improved initialization of the models (i.e., better observations), and by 
improved modeling of the physical processes, but a marked drop-off in skill 
during weeks 1 and 2 will persist through any conceivable future 
improvements. Producing moderately skillful forecasts at longer lead times 

https://www.zotero.org/google-docs/?hWlLy1
https://www.zotero.org/google-docs/?hWlLy1
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(i.e., sub-seasonal) requires additional information beyond weather 
patterns and associated atmospheric motions, such as the correct 
prediction of changes in the stratosphere, persistence due to land surface 
conditions, and slowly varying ocean-atmosphere patterns (e.g., Madden-
Julian Oscillation, or MJO; and El Niño-Southern Oscillation, or ENSO).  

All operational weather forecasts are based on dynamical, physics-based 
simulation models that run on supercomputers; thus, weather forecasting 
is also referred to as numerical weather prediction (NWP). The domain of 
most weather models is global, though very-high-resolution weather 
models (e.g., Weather Research and Forecasting model, WRF), with regional 
domains such as the western U.S., are also used for short-term forecasts of 
48 hours or less.  

The domain of all weather and climate models is gridded in three 
dimensions, with the vertical dimension representing multiple layers of the 
atmosphere. The models solve the fundamental physical equations for fluid 
motion; conservation of mass, momentum, and energy; and the ideal gas 
law. Many relevant processes occur at scales smaller than the model grid, 
such as cumulus cloud formation, so parameterization schemes are needed 
to properly describe the impact of these sub-grid-scale mechanisms on the 
large-scale flow of the atmosphere (Bauer, Thorpe, and Brunet 2015). The 
initialization of the forecasts with observations is accomplished through 
data assimilation, which typically involves the statistical correction of a 
prior short-term gridded model forecast to the newly available 
observations, in order to provide the most accurate gridded depiction of 
the initial state. 

The primary global weather forecast models used in operational weather 
forecasts in the U.S. include the NOAA National Centers for Environmental 
Prediction (NCEP) Global Forecast System (GFS) model, the European 
Centre for Medium-Range Weather Forecasts (ECMWF) Integrated 
Forecast System (IFS) model (often referred to as the “European model”), 
and the Global Environmental Multiscale (GEM) model (the “Canadian 
model”).  

The evolution of weather patterns over time is highly sensitive to the initial 
state of the atmosphere, and we cannot observe and describe those initial 
conditions perfectly. Consequently, it has become common to run a set, or 
ensemble, of weather predictions from the same model using slightly 
different initial conditions. The spread of the forecasts in the ensemble 
thus captures the uncertainty due to our imperfect knowledge of initial 
conditions. The NOAA Global Ensemble Forecast System (GEFS) based on 
the NOAA GFS forecast model is made up of 21 separate forecasts 
(ensemble members), with output four times a day and forecasts going out 
to 16 days. The ECMWF Ensemble Prediction System comprises 51 forecasts 
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from the ECMWF forecast model using different initial conditions, like 
GEFS, and also with slightly different model equations to represent 
uncertainty due to model structure and parameters (see discussion of 
uncertainty in Chapter 1).  

Even with recent technical progress, these ensemble prediction systems for 
weather (and climate) forecasts inevitably have some bias (the forecasted 
mean is different from the observed mean) and unreliability (the forecasted 
distribution is different from the observed distribution). Thus, statistical 
post-processing of “raw” forecasts, to improve ensemble forecast guidance 
prior to its dissemination, is a critical element of the forecast process. The 
discrepancies between past forecasts and observations are used to adjust 
the raw real-time forecasts.  

Skill of forecasts over weather timescales 
Table 7.1 shows the skill of weeks 1 and 2 forecasts of precipitation and 
temperature for the Upper and Lower Basins from the NOAA NCEP CFSv2 
(Climate Forecast System) model. The skill metric (Anomaly Correlation 
Coefficient; ACC) compares the 14-day average forecasted precipitation and 
temperature with the observed 14-day averages. As noted earlier, and 
shown in Figure 7.1, the skill drops off rapidly within that 14-day period, and 
the skill would be substantially higher if the results were only for week 1.  

Table 7.1 

Skill (Anomaly Correlation; AC) for weeks 1–2 (1–14 days out) of deterministic forecasts from the CFSv2 
model for the calendar year (annual) and the climatological seasons, based on reforecasts for the 1999–
2010 period. A perfect forecast would have an AC skill of 1.0; the climatological average has a skill of 0. 
The skill scores for the eight HUC4 sub-basins each in the Upper Basin and Lower Basin were averaged 
to produce the scores shown here. The CFSv2 forecasts were bias-corrected using quantile mapping. 
(Data: S2S Outlooks for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Weeks 1-2 forecasts, CFSv2 model 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.59 0.70 0.56 0.51 0.57 

Lower 
Basin 

0.67 0.77 0.59 0.58 0.58 

Temperature 

Upper 
Basin 

0.77 0.74 0.78 0.77 0.79 

Lower 
Basin 

0.80 0.79 0.81 0.74 0.80 

 

http://hydro.rap.ucar.edu/s2s/
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The forecast skill is generally high (about 0.6–0.8), with overall higher skill 
for temperature forecasts than precipitation forecasts. This disparity in 
forecast skill between temperature and precipitation is seen across longer 
time scales as well, which reflects that temperature varies less than 
precipitation over both time and space, and is also more straightforward to 
simulate and predict. Table 7.1 also shows that Lower Basin precipitation 
forecasts are somewhat more skillful than those for the Upper Basin, and 
that precipitation forecast skill in both basins is higher in winter than in 
other seasons. Predictive skill for precipitation also has strong seasonal 
patterns; skill is highest in winter, reflecting that the primary mechanism of 
precipitation (mid-latitude cyclonic storms) is broader scale and better 
simulated than convective precipitation in the warmer seasons.   

CFSv2 is a fully coupled climate forecast model that incorporates the GFS 
weather forecast model (run at lower resolution than for weather 
forecasting) to represent atmospheric motions, an ocean model, and the 
Noah land surface model (Chapter 6). We show the skill of CFSv2 for 
weather timescales (weeks 1–2), instead of that of the GFS or another 
dedicated weather forecast model, to allow direct comparison with the skill 
(i.e., ACC) of the same CFSv2 model over sub-seasonal timescales (weeks 
3-4) later in this chapter (Table 7.2). The skill of the operational GFS model 
over this time period would be higher than CFSv2 due to its higher spatial 
resolution and more optimized capture of initial conditions. 

As mentioned above, the skill of weather forecasts has been increasing at a 
fairly constant rate over the past 20 years, as many improvements have 
been made in observing systems, assimilation schemes, and the models 
themselves. There may be an opportunity for CBRFC streamflow forecasts 
to incorporate weather forecasts, especially for precipitation, at longer lead 
times than is currently done. 

Current use of weather forecasts by the CBRFC 
Currently, the CBRFC ESP water supply forecasts that are key inputs to the 
24MS and MTOM models (Chapter 3) use two types of weather forecasts: 
the 10-day quantitative temperature forecast (QTF) and the 5-day 
quantitative precipitation forecast (QPF). The temperature forecasts come 
from the National Blend of Models (NBM), a nationally consistent suite of 
calibrated forecast guidance based on a blend of both NOAA and non-
NOAA weather model data. The precipitation forecasts are based on the 
NBM and additional guidance from the NOAA Weather Prediction Center. 
The forecast grids are modified by the CBRFC to allow for their 
incorporation into the CBRFC streamflow forecast model (Chapters 6 & 8).  

The QPF predicts a specific, most-probable amount of precipitation that 
will fall over the forecast period; i.e., it is presented as a deterministic 
forecast. Because these short-term forecasts of precipitation have high 
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skill, the CBRFC forecast model treats the QPF as though it represents 
precipitation that has already fallen. When a storm is forecasted to hit the 
basin within 1–5 days from the issuance of an ESP or official streamflow 
forecast, the forecasted storm as shown in the QPF will cause an increase 
in the forecasted seasonal streamflow volume, even though the storm has 
not yet arrived. Likewise, if the QTF shows an unusually warm period in 
mid-winter, the CBRFC model can reduce the modeled lower-elevation 
snowpack and thus decrease the forecasted streamflow volume. Thus, over 
the course of a season, a trace created by the most-probable ESP forecasts 
incorporating the QPF (and QTF) consistently leads, by up to 5 days, a trace 
created by ESP forecasts without the QPF, while having similar fluctuations 
reflecting storms and melt episodes (Figure 7.2). 

 
Figure 7.2 

CBRFC daily ESP forecasts for April–July Lake Powell inflows for the 2018–2019 season issued from 
mid-December through early June. The default forecasts (“With QPF”) that incorporate 5-day 
Quantitative Precipitation Forecasts (QPF) and 10-day Quantitative Temperature Forecasts (QTF) 
show increases in forecasted streamflow volumes about 2–5 days before forecasts with no QPF, 
reflecting the expected gains from forecasted storms that have not yet occurred. (Data: CBRFC) 
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7.4 Sub-seasonal forecasts (2 weeks to 12 weeks) 

Overview 
For the purposes of this section, “sub-seasonal” refers to forecasts of 
meteorological variables at lead times from 2 weeks to 12 weeks in the 
future. This period has been called the “weather-climate prediction gap” 
(Mariotti, Ruti, and Rixen 2018). Short-term weather forecasts depend 
crucially on the initial state of the atmosphere that is input to the forecast 
models, while longer-term seasonal climate forecasts leverage 
predictability that emerges from the slower-evolving components of the 
Earth system including the ocean state, soil moisture, sea-ice conditions 
and other so-called “boundary conditions” for the atmosphere (Figure 7.1). 
The sub-seasonal prediction gap—where both initial and boundary 
conditions can be important—is being closed, albeit slowly, from both sides. 
The first two months of seasonal climate forecasts provides information 
about this time frame, while medium-range weather prediction models 
such as NOAA’s GFS and the ECMWF’s IFS are being extended out to 30–45 
day forecasts and beyond.   

The dynamical models used for sub-seasonal (and seasonal) predictions are 
typically run at lower resolution than for weather forecasts. They simulate 
the interactions between the atmosphere, ocean, land surface, and 
sometimes sea ice components of the climate system. While it is common 
to differentiate “climate models” from “weather models,” these two 
categories overlap a great deal, especially for the models used at a sub-
seasonal time scale—some of which are also used for weather forecasts, 
while others are also used for multi-decadal climate projections (i.e., GCMs; 
Chapter 11). 

When current generation weather forecast models (e.g., GFS, ECMWF IFS) 
are extended beyond 14 days, they develop large systematic forecast errors, 
particularly in their representation of tropical convection and the 
positioning of the mid-latitude jet stream and storm track (World 
Meteorological Organization 2013). Similarly, climate forecast models such 
as NOAA’s CFSv2, which are better tuned to reduce bias in the 
climatological (long-term average) atmospheric circulation, tend to have 
lower performance for short lead times (0–7 days) than the weather 
models. This lower performance is due to many factors: coarser spatial 
resolution, biases that appear in the oceanic and land surface components, 
and the fact that the atmospheric and oceanic initial conditions are not 
optimized as they are for weather models. An active area of research is to 
better incorporate data from the atmosphere, land, ice, and oceans into the 
initial conditions of forecast models, referred to as “coupled data 
assimilation” (World Meteorological Organization 2017). 
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Sub-seasonal forecasting also faces a statistical disadvantage compared to 
seasonal forecasts. Because the forecast periods for the sub-seasonal 
forecasts are shorter than the 3-month season that is the typical period for 
seasonal forecasts, there is less time for the unpredictable component of 
the climate (“noise”) to be averaged out.  

Note, also, that sub-seasonal forecast skill quoted for periods such as 
“weeks 1–2” or “weeks 2–3” will be dominated by the weather forecast skill 
for the early part of that period (Figure 7.1). The same is true for the Climate 
Prediction Center (CPC) revised monthly forecasts that are issued with no 
lead time, i.e., on the last day of the month preceding the forecasted month, 
as opposed to the initial forecasts issued with 8–14 days lead time (See 
“NOAA CPC Outlooks” below).    

Sub-seasonal forecasts of temperature and precipitation are inherently 
suited for probabilistic interpretation and analysis. Accordingly, ensembles 
of numerical weather and climate prediction model forecasts are the tools 
of choice. Such ensembles may be generated by multiple runs of a single 
forecast model, which accounts for the uncertainty due to our imperfect 
knowledge of the initial state of the atmosphere. Ensembles can also be 
comprised of multiple runs from different models, such as with the North 
American Multi-Model Ensemble (NMME); in this case the ensemble also 
captures the uncertainty due to model structure and parameters, similar to 
the CMIP (Coupled Model Intercomparison Project) ensembles of multi-
decadal climate projections (Chapter 11). The NMME, which is used for both 
operational sub-seasonal and seasonal forecasting consists of seven models 
in total: CFSv2, two Canadian models (CanCM4 and GEM-NEMO), two 
NOAA GFDL models (CM2.1 and FLOR), NCAR’s CCSM4, and NASA’s GEOS 
S2S. Studies have shown that the ensemble-average forecasts from NMME 
are more skillful than those from any single model in the ensemble (Becker, 
Van den Dool, and Zhang 2014; Kirtman et al. 2014).  

An effort to generate and archive real-time and retrospective ensembles of 
sub-seasonal forecasts (SubX; Pegion et al. 2019), similar to NMME, is 
described below under “Other activities to improve sub-seasonal 
forecasts.” 

Sources of predictability 
The past decade has seen much progress in identifying and quantifying 
potential sources of sub-seasonal prediction skill (Vigaud, Robertson, and 
Tippett 2017), fueling a broad and active research program on sub-seasonal 
forecasting (e.g., National Academies 2016; World Meteorological 
Organization 2013). For the continental U.S., the potential sources of skill 
with the most promise are the tropical Madden-Julian Oscillation (MJO) 
(Stan et al. 2017), stratospheric variability, and land-atmosphere coupling, 
including the role of soil moisture. The identification of these phenomena is 

NMME Models and 
Variables Summary 

 
Link: 
https://www.ncdc.noaa.go
v/data-access/model-
data/model-
datasets/north-american-
multi-model-ensemble 

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-multi-model-ensemble
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important because improvement in their representation in climate models 
can lead to improvement of sub-seasonal temperature and precipitation 
forecasts. A technical overview of the current state of the science is found 
in the volume edited by Robertson and Vitart (2019).   

The MJO is a large area of enhanced convection (i.e., thunderstorms) in the 
tropical Indian and Pacific Ocean that generally moves from west to east 
(Zhang 2013 and references therein) and recurs with an irregular 40–70 day 
time period. Numerical models have limited success at forecasting the 
progression of convection associated with the MJO. Some of the strongest 
associations of the MJO with precipitation in the United States are seen in 
California and along the west coast of the U.S. during the wintertime (Zhou 
et al. 2012), including an effect on atmospheric rivers (Guan et al. 2012). 
While the impacts of the MJO in the interior West are less than those on 
the West Coast, the storms of early March 2019 demonstrated that 
atmospheric rivers can bring substantial precipitation to the Colorado River 
Basin.  

Certain stratospheric phenomena have also been identified as a potential 
source of skill for weather forecasting on sub-seasonal scales (Robertson 
and Vitart 2019). The stratosphere is the layer of the atmosphere that lies 
above the troposphere and is very stable, that is, resistant to vertical 
motions such as convection. In the mid-latitudes, the lower boundary of 
the stratosphere lies at about 10 km above the surface, but this boundary 
can be as high as 20 km in the tropics and as low as 7 km in the polar 
winter. There are two stratospheric phenomena of particular interest for 
sub-seasonal prediction: the quasi-biennial oscillation (QBO) in the tropics, 
where the winds above the tropical tropopause change direction in a 
roughly 26-month repeating cycle, and variations in the stratospheric polar 
vortex, including stratospheric sudden warming (SSW) events. See Waugh, 
Sobel, and Polvani (2017) for a primer on the “polar vortex.” 

It is hypothesized that the changing winds due to the QBO may modulate 
the ability of tropical convection to influence the mid-latitude storm track 
and hence precipitation over the western U.S. For example, there is some 
indication that the QBO along with the MJO (see above) may jointly provide 
increased skill in predicting atmospheric river activity (Mundhenk et al. 
2018). For the polar SSWs, the influence is more directly felt on the 
northern edge of the storm tracks and there is empirical evidence that in 
the days and weeks after a SSW there is a greater likelihood of extreme 
cold events (Kidston et al. 2015). However, the surface influence of the SSW 
appears to be primarily focused in Eurasia and the eastern United States, 
not in the Colorado River Basin.  

A better representation of the land surface and its interactions with the 
atmosphere is another potential source of forecast improvement on 

What is the Polar Vortex 
and How Does it 
Influence Weather? 
Waugh, Sobel, and 
Polvani (2017) 
 

 
Link: 
https://journals.ametsoc.o
rg/doi/10.1175/BAMS-D-
15-00212.1 

https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00212.1
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sub-seasonal time scales, and one particularly relevant to the Colorado 
River Basin. Most attention here is focused on the role of soil moisture—
both better estimation of the initial state of the soils, and better simulation 
of the evolution of soil moisture anomalies. For sub-seasonal forecasts, soil 
moisture has two primary effects: It can reduce surface temperature by 
directing more of the incoming solar energy to evaporation rather than 
heating, and it can serve as a source of moisture to the atmosphere (Koster 
et al. 2011; Dirmeyer and Halder 2016). The research has tended to focus on 
summer conditions as that is when the impacts of soil moisture are thought 
to be greatest. Indeed, the impacts of having accurate soil moisture 
conditions were shown to be primarily for temperature.  

In the Colorado River Basin and arid West, including initial soil-moisture 
states in the forecast model enhanced sub-seasonal temperature forecast 
skill, particularly when soils were wetter than average (Koster et al. 2011). 
For precipitation, increased forecast skill by including soil-moisture states 
was seen in the upper Great Plains, but not elsewhere. Correlations also 
have been found between soil moisture and the onset of the North 
American Monsoon; the hypothesized mechanism is that wet soils delay the 
seasonal heating of the land surface which is necessary to drive the land–
ocean temperature gradient that then initiates the monsoon (Grantz et al. 
2007). Accordingly, better treatment of soil moisture in forecast models 
may benefit summer precipitation forecasts in the Lower Basin. Simulation 
of the snowpack in forecast models could also result in improved sub-
seasonal to seasonal forecasts both due to the direct effect of snow on 
surface temperature, and to the delayed impact on soil moisture during and 
after the snowmelt season. 

Finally, ENSO’s influence is present on the sub-seasonal time scale, as well 
as on longer time scales (see Chapter 2). Convection in the tropical Indian 
and Pacific Oceans has a significant influence on precipitation and 
temperature in the western United States. Ocean temperature anomalies 
associated with ENSO also lead to tropical convection anomalies that in 
turn alter the position and activity of the storm track in the Pacific. While 
ENSO is usually associated with seasonal forecasts (see next section), it also 
influences the likelihood of temperature and precipitation anomalies on 
sub-seasonal scales. As detailed in Chapter 2, those influences are stronger 
in the Lower Basin than the Upper Basin.  

Operational sub-seasonal forecast products 

NOAA CPC outlooks 
There are relatively few operational forecasts from NOAA in the sub-
seasonal time frame, reflecting the less mature state of sub-seasonal 
climate forecasting relative to weather forecasting, and even relative to 
seasonal climate forecasting. They are described here. First, NOAA CPC 
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produces an operational, 2-category (above or below normal), probabilistic 
temperature outlook for weeks 3–4 (Figure 7.3, left). The outlook is based 
on a blend of dynamical forecast model output, including CFSv2, ECMWF, 
and the SubX model ensemble, as well as the statistical (or empirical) tools 
also used for the CPC seasonal outlooks (Table 7.3). Reforecasts may also be 
used to adjust model output.  

The quantity shown in these maps (Figure 7.3) is interpreted as the 
probability of the average temperature for days 15–30 being above or below 
the 1981–2010 observed average for that two-week period. For locations 
where it is impossible to assign any odds, “EC” or “equal chances” is 
indicated. In contrast, the 6–10 day and 8–14 day outlooks, as well as the 
seasonal outlooks, are 3-category, tercile forecasts (above normal, near 
normal, and below normal). NOAA CPC also produces a two-category 
precipitation outlook for weeks 3–4 (Figure 7.3, right), but this outlook is 
labeled “experimental” because little skill has yet been demonstrated.  

NOAA CPC also produces operational 30-day temperature and 
precipitation outlooks (Figure 7.4), likewise based on a blend of dynamical 
forecast models (NMME ensemble—see next section; CFSv2 and ECMWF) 
and statistical tools and trends. These are issued mid-month, with a “valid” 
period starting at the beginning of the next month (0.5 month lead). With 

 
Figure 7.3 

NOAA CPC operational 2-category (above or below normal) probabilistic temperature outlook for 
weeks 3-4 (left) and experimental 2-category (above or below normal) probabilistic precipitation 
outlook for weeks 3-4 (right). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/NMME/) 

https://www.cpc.ncep.noaa.gov/products/NMME/
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that 2-week lead time, weather forecast skill is not included in the outlooks. 
Updated 30-day outlooks are issued at the end of the month (0-month 
lead), which do incorporate weather forecast information for weeks 1-2, 
though updated NMME information is not available.   

Finally, a 90-day (3-month) average seasonal forecast is also made (as 
discussed in more detail in the next section), with a 2-week lead time (0.5 
month lead). For each of these forecast periods, CPC provides a discussion 
of the reasoning behind each forecast, including factors such as the MJO 
and soil moisture, as well as a discussion of the guidance from dynamical 
models, including those archived in SubX. 

Assessing forecast skill for sub-seasonal (and seasonal) forecasts 
A single probabilistic forecast cannot, in general, be verified or falsified. But 
we can evaluate the performance of the forecast system by comparing a set 
of many forecasts over a period of years with observations, and by deriving 
statistical metrics of skill. These skill estimates are based on the 
performance of the forecast system in the past, or of a set of hindcasts that 
have been produced as if the current system had been operating over that 
period. This information can guide users about the expected performance 
of the forecasts of the future, but past performance is no guarantee of the 
same skill continuing into the future (Weisheimer and Palmer 2014). 

 
Figure 7.4 

NOAA CPC operational 3-category (above or below normal) probabilistic outlooks for month 1 for 
temperature (left) and precipitation (right). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/predictions/30day/) 

https://www.cpc.ncep.noaa.gov/products/predictions/30day/
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In general, the skill of climate forecasts varies much more over space and 
time than does the skill of weather forecasts (Mariotti et al. 2020). 
Importantly, some seasons are more amenable to skillful forecasts than 
others, and this will be noted in the text and tables below. There has also 
been recent progress in identifying, in real-time, windows of opportunity 
during which climate forecasts are more likely to be skillful—i.e., times 
when there are particularly large events in the tropics (MJO, ENSO) or the 
stratosphere that are likely to have a large imprint in the weather of the 
extratropics, including the western U.S. (Albers and Newman 2019; Mariotti 
et al. 2020).  

Skill of CPC week 3–4 forecasts for CONUS 
Skill evaluation for the CPC weeks 3-4 operational outlooks is available only 
in aggregate for the conterminous United States (CONUS). In the Heidke 
skill score (HSS), 100 is a perfect forecast, -50 is a completely incorrect 
forecast, and a score above 0 indicates skill versus a random forecast. Over 
the 4-year period from September 2015 to May 2019, the Heidke skill scores 
for the CPC weeks 3-4 outlooks for CONUS averaged about 40 for 
temperature, and about 10 for precipitation. 

Skill of CPC 30-day forecasts for CONUS and the basin 
The skill of the CPC operational 30-day forecasts (at 0.5 month lead time) 
can be explored using CPC’s interactive Verification Web Tool. The skill 
(HSS) of the temperature forecasts CONUS-wide has averaged about 10 
since 2015, though higher, averaging about 20, since 2015. The precipitation 
forecasts have had no skill, on average, since 2005 (HSS = ~0), with no 
improvement in recent years. Across the Upper Basin states of Utah, 
Wyoming, and Colorado, the 30-day temperature forecasts have been more 
skillful than for CONUS (HSS = 24 since 2005; HSS = 28 since 2015).The 
precipitation forecasts for Utah, Wyoming, and Colorado have been more 
skillful than for CONUS (HSS = 7 since 2005), and skill has not increased 
over time.  

Skill of CFSv2 model forecasts for the Colorado River Basin   
As described above, the CFSv2 model forecasts are one of the tools used as 
guidance for the CPC sub-seasonal forecasts. We show the skill of CFSv2 
alone to allow comparison with the skill of the model over the weather 
forecast period (Table 7.1). In general, the AC skill of weeks 3-4 forecasts 
(i.e., for 15–28 days out) from the CFSv2 model is low (<0.2) for both 
precipitation and temperature in the Upper and Lower Basins (Table 7.2). 
Skill is generally lower in the Upper Basin, especially for precipitation (<0.1), 
perhaps reflecting the weaker ENSO signal there.  

CPC Verification Web 
Tool 

 
Link: 
https://vwt.ncep.noaa.
gov/ 

https://vwt.ncep.noaa.gov/
https://vwt.ncep.noaa.gov/
https://vwt.ncep.noaa.gov/
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Table 7.2 

Skill (Anomaly Correlation; AC) for week 3-4 (15-28 days out) forecasts from the CFSv2 model for the 
calendar year (annual) and the climatological seasons, based on reforecasts for the 1999-2010 period. 
The skill scores for the eight HUC4 sub-basins each in the Upper Basin and Lower Basin were averaged 
to the basin-wide scores shown here. The CFSv2 forecasts were bias-corrected using quantile mapping. 
(Data: S2S Outlooks for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Weeks 3-4 forecasts, CFSv2 model 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.09 0.09 0.07 0.11 0.10 

Lower 
Basin 

0.16 0.18 0.11 0.13 0.14 

Temperature 

Upper 
Basin 

0.16 0.22 0.03 0.22 0.18 

Lower 
Basin 

0.18 0.23 0.10 0.23 0.21 

 

S2S Climate Outlooks for Watersheds 
The “S2S Climate Outlook for Watersheds” effort is a collaboration between 
NCAR, CU Boulder, Reclamation, and NOAA CPC to improve the 
understanding and application of sub-seasonal climate forecast products in 
the hydrology and water management sector, and to test the capacity to 
generate new forecast products (Baker, Wood, and Rajagopalan 2019). The 
map-based web tool (Figure 7.5) shows real-time forecasts from CFSv2 with 
additional post-processing, and also real-time forecasts from the NMME 
ensemble. (Again, CFSv2 and NMME output are key elements of the 
operational CPC weeks 3–4, monthly, and seasonal outlooks, but the CPC 
outlooks incorporate additional guidance.) Reforecasts have been 
generated from both sets of models to allow for verification and skill 
assessment.  

The web tool displays deterministic (single-value) precipitation and 
temperature forecasts from CFSv2 for weeks 1–2, weeks 2–3, and weeks 
3-4, and from the NMME for forecasts of 1-month periods at 3 different 
lead times: 0, 1 month, and 2 months. The forecasted values are expressed 
in anomalies to allow users to more easily assess whether conditions are 
expected to be above or below normal. The interface allows users to select 
any HUC4 watersheds, including the 8 sub-basins of the Upper Basin and 
the 8 sub-basins of the Lower Basin, and see the forecast values (and skill 
scores) specific to that watershed. The tool allows users to view the 
ensemble average of the NMME, as well as the seven model outputs 

http://hydro.rap.ucar.edu/s2s/
http://hydro.rap.ucar.edu/s2s/
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individually; toggling between the outputs of the individual models provides 
some sense of the uncertainty in the forecasts.  

Other activities to improve sub-seasonal forecasts and their use  

SubX 
The NOAA-funded Subseasonal Experiment (SubX) is a coordinated set of 
sub-seasonal prediction efforts and data archiving intended to explore the 
value of a multi-model ensemble for sub-seasonal forecasting (Pegion et al. 
2019). This program was modeled after the NMME for seasonal forecasts 
(see next section). The SubX effort includes historical reforecasts (i.e., 
hindcasts) for 1999–2015 and real-time forecasts from seven modeling 
systems. Real-time forecast maps from the various models and from the 
multi-model ensemble are available on the SubX website.  

 
Figure 7.5 

The S2S Climate Outlooks for Watersheds tool, which allows users to access real-time and archived 
climate model deterministic forecasts for sub-seasonal and seasonal timescales, from CFSv2 and 
NMME, by HUC4 sub-basin (gray outlines in the map), as well as the skill scores for the forecasts. 
(Source: http://hydro.rap.ucar.edu/s2s/) 

Subseasonal 
Experiment—SubX 

 
Link: 
http://cola.gmu.edu/subx/ 

http://cola.gmu.edu/kpegion/subx/
http://hydro.rap.ucar.edu/s2s/
http://cola.gmu.edu/subx/
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Sub-Seasonal Forecast Rodeo 
To promote the development of novel S2S forecasting methodologies, the 
Reclamation R&D program, in collaboration with NOAA and the California 
Department of Water Resources, held a Sub-Seasonal Forecast Rodeo from 
spring 2017 to spring 2018. Six teams of forecasters responded to an open 
public call and competed to produce the most skillful forecasts of 
temperature and precipitation across CONUS for weeks 3–4 (15–28 days 
out) and weeks 5–6 (29–42 days out). The forecasts were issued every two 
weeks for one year, with forecasts from the CFSv2 model used as a 
benchmark. Between one and three teams produced forecasts better than 
CFSv2, depending on the variable and lead time, with the most notable 
improvements seen in precipitation, for which CFSv2 showed almost no 
skill during the year-long contest period. (Note that in any given 1-year-
period, CFSv2 and other forecast models and methods may significantly 
overperform or underperform relative to their longer-term skill, due to 
variability in the climate.) The methods of the winning teams will be made 
publicly available to potentially improve operational sub-seasonal forecasts. 
A second Sub-Seasonal Forecast Rodeo began in summer 2019.  

S2S workshops  
The Western States Water Council and the California Department of Water 
Resources have co-sponsored a series of workshops to further dialogue 
among western states’ water agencies and Reclamation, NOAA, and the 
research community on improving S2S precipitation forecasting to support 
water management decision making in the western U.S. The most recent 
workshop, in May 2018, included presentations on the operational and 
planning needs for seasonal climate forecasting in the Colorado River Basin, 
the mechanisms of cool-season precipitation in the Upper Basin, and 
climate forecasting challenges in the Upper Basin in the context of CBRFC 
streamflow forecasting.  

Implications for the Colorado River Basin 
While there is active research in all the areas of untapped sources of skill, it 
is hard to anticipate what the combined effect of many incremental 
improvements will be, including general improvements in weather and 
climate models and coupled (land-atmosphere-ocean) data assimilation, 
which are ongoing and will continue. The goal of much of this research is to 
push the boundaries of skillful and potentially useful probabilistic weather 
prediction into weeks 3 and 4, and this is where advances in skill are most 
likely to come, albeit from a relatively low baseline at present (e.g., 
Table 7.2).  

Likewise, it is unclear whether any of the proposed pathways to improve 
skill discussed above will result in improved sub-seasonal forecasts specific 
to the Colorado River Basin. Based on the current literature, there is an 
indication that the Lower Basin may benefit from forecast improvements 

Forecast Rodeo II 

Link: 
https://www.drought.g
ov/drought/forecast-
rodeo-ii-leaderboard 

https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
https://www.drought.gov/drought/forecast-rodeo-ii-leaderboard
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more than the Upper Basin. In particular, better representing combined 
effects of the MJO and QBO may improve precipitation forecast skill in the 
Lower Basin. The MJO is also known to modulate tropical cyclones in the 
eastern Pacific that occasionally cause heavy precipitation and flooding in 
the Lower Basin (Maloney and Hartmann 2000; Klotzbach 2014). It is 
plausible that the influence of the MJO on atmospheric rivers could, on 
occasion, affect the Upper Basin, but this has yet to be demonstrated. 
Improvement in treatment of the land surface and its influence on the 
atmosphere may lead to improvements in prediction of North American 
Monsoon precipitation that primarily affects the Lower Basin.  

But even without significant improvements in overall forecast skill, there is 
still plenty of room to improve how the current skill of existing forecast 
systems is deployed by users of forecasts. The recent progress toward 
identifying “forecasts of opportunity” (Albers and Newman 2019; Mariotti et 
al. 2020) is a promising step toward more strategic deployment of sub-
seasonal climate forecasts, i.e., consulting them in those locations, and 
during those seasons and specific times, when they are likely to have the 
most skill.  

7.5 Seasonal climate forecasting 

Overview and sources of predictability 
The interest in predicting the climate on seasonal time scales to prepare for 
anomalous conditions is longstanding. The earliest published scientific 
effort in seasonal climate prediction was motivated by back-to-back 
failures of the Indian monsoon in 1876 and 1877 that caused a catastrophic 
drought (Blanford 1884). Blanford’s investigation found that an abundant 
spring snowpack in the Himalayas was counterproductive for the Indian 
monsoon later that summer—an early insight into seasonal land surface 
feedbacks.   

The effort to understand and predict the Indian Monsoon also fostered 
research by Sir Gilbert Walker in the early 1900s into the “Southern 
Oscillation,” which is now understood as the El Niño-Southern Oscillation 
(ENSO) phenomenon (Chapter 2). A major breakthrough in the 
understanding of the functioning and influence of ENSO, and ultimately for 
seasonal climate forecasting, was the insight that ENSO was a coupled 
ocean-atmosphere phenomenon (Bjerknes 1966; 1969). It was later 
recognized that El Niño events resembled each other enough that it made 
sense to average them into a typical or canonical sequence (Rasmusson and 
Carpenter 1982). Such “compositing” became a key tool in unlocking the 
typical ENSO footprint of climate anomalies over North America 
(Ropelewski and Halpert 1987; 1989).  



 

Chapter 7. Weather and Climate Forecasting 275 
 

A general assumption in seasonal climate prediction is that the climate 
system displays preferred and recognizable patterns (footprints) that can 
be revealed through physical reasoning or statistical means. The search for 
analogues (Van den Dool 1994) is driven by the same notion that certain 
circulation patterns are more common than others, such as an enhanced 
southern winter storm track across the U.S. during El Niño. (CPC’s 
empirical climate prediction methods that use the concepts of footprints 
and analogues is discussed in the next section.) 

During the late 20th century, dynamical, fully physical climate models were 
increasingly run to simulate atmospheric conditions forced by (specified) 
anomalous sea surface temperature (SST) states to see whether the models 
could reproduce observed atmospheric behavior. As with short-term 
weather forecasts, the fast changing initial conditions in the atmosphere 
need to be captured to solve that portion of the forecast problem, while 
more slowly evolving conditions of the land and ocean were originally 
modeled as static boundary conditions (Gates et al. 1992).  

Once it became clear that the modeled atmospheric behavior was realistic, 
the next step was to develop coupled ocean-atmosphere models that could 
be used to explore climate changes (i.e., GCMs; Chapter 11). These models 
were tested and refined by predicting ENSO events as well as seasonal 
climate anomalies (e.g., Becker, Van den Dool, and Zhang 2014; Bellenger et 
al. 2014; Weisheimer and Palmer 2014). These coupled Earth system models 
explicitly include evolving, rather than fixed, SST and land surface 
conditions. There are now more than a dozen coupled models that predict 
the state of ENSO in an operational manner, with highly variable, though 
overall positive, forecast skill (Barnston et al. 2012; 2017; Tippett et al. 2017). 
A key development in seasonal forecasting beyond ENSO was the discovery 
that global drought footprints of the swings of the Pacific Decadal 
Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) could be 
reproduced in coupled climate models (Schubert et al. 2009), though this 
discovery has yet to pay dividends for the Colorado River Basin (Chapter 2).  

The current predictability and skill in seasonal forecasts still comes mainly 
from those sources identified during the long history of seasonal 
forecasting: the tendencies associated with key modes of ocean-
atmosphere variability, primarily ENSO, other slowly varying processes 
such as land surface feedbacks, and robust long-term trends (e.g., warming 
temperatures).  

Operational seasonal climate forecasts from NOAA CPC 
NOAA CPC and its predecessors have made a huge cumulative investment 
in developing and refining their seasonal forecasting methodology over 
several decades. While there are many other entities and individuals 
producing seasonal climate forecasts, ranging from the ECMWF to private 
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consulting firms, the CPC forecasts are the most widely used in the U.S., 
across a broad spectrum of users, including in water resources, and serve 
as a benchmark for other efforts.  

Starting in 1995, CPC settled on the current framework of seasonal (3-
month) forecasts (called “outlooks”) with multiple lead times out to 12.5 
months. The two key ingredients supporting this framework were 1) the 
increasing community efforts to monitor and predict ENSO, as synthesized 
in a monthly updated IRI ENSO “plume” (Barnston et al. 2012); and 2) the 
development of the “Optimal Climate Normals” (OCN) methodology that 
takes advantage of longer-term climate variability and trends, whether 
linked to climate change or not. The CPC seasonal forecasts are released 
monthly, on the third Thursday of each month.  

Figure 7.6 shows the January 2020 forecast for February–April 2020 (0.5 
month lead time). These tercile forecasts are made in reference to the 
upper/middle/lower thirds of the 1981-2010 climatology (10 cases each), 
and the color shading shows tilts in the odds of one of the terciles in the 
climatological distribution (33%/33%/33%). For example, the darker 
brown shading for “B(elow)” in the precipitation outlook in Figure 7.6 means 
there is a 40–49% probability of seasonal precipitation for February–April 
being in the lower third of the historical distribution, compared to the 

 
Figure 7.6 

CPC seasonal outlooks for February–April 2020 for temperature (left) and precipitation (right), 
released on January 16, 2020. Darker shading shows tilts in the odds relative to the climatological 
(1981–2010) distribution of outcomes; see the text for further explanation. (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/) 

IRI/CPC ENSO 
Predictions Plume 

 
Link: 
https://iri.columbia.edu
/our-
expertise/climate/forec
asts/enso/current/?ens
o_tab=enso-sst_table 

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://www.cpc.ncep.noaa.gov/products/predictions/90day/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table


 

Chapter 7. Weather and Climate Forecasting 277 
 

climatological probability of 33% for that outcome. If there is no 
appreciable tilt for any tercile, equal chances (“EC”) are assigned.  

CPC also produces a weekly ENSO status update, and an ENSO blog; both 
can be helpful in interpreting the physical mechanisms behind the seasonal 
forecasts.  

Forecast tools 
CPC uses a broad suite of forecast tools for seasonal forecasts, comprising 
both empirical (statistical) models and dynamical climate forecast models 
(Table 7.3). The two most important empirical tools are based on ENSO and 
Optimal Climate Normals (OCN), respectively. The other tools are 
Canonical Correlation Analysis (CCA), Ensemble CCA (ECCA), Constructed 
Analogues (CA), and Screening Multiple Linear Regression (SMLR). These 
empirical tools and their predecessors were the only quantitative guidance 
used in CPC forecasts prior to 2005; the dynamical tools were added to the 
suite of guidance around 2006. CPC provides a short introduction to all 
tools online.  

Table 7.3 

Forecast tools used by NOAA CPC to inform their seasonal climate forecasts. Type: E = empirical; D = 
dynamical. The empirical tools that use multiple predictors (CCA, ECCA, CA, SMLR) are typically based 
on these four classes of predictors: 200mb global velocity potential (upper air flow information), global 
sea surface temperatures (SST), sea-level pressure north of 40°N, and U.S. soil moisture. (Source: NOAA 
CPC; https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php) 

Forecast Tool Type 
Usual 
importance 
to forecasts 

Contribution to 
forecasts 

Comments Reference 

ENSO 
Composites 

E Higher 

Typical climate 
“footprint” of the 
current or forecasted 
ENSO state 

The mainstay of CPC 
seasonal forecasts 

Higgins, Kim, 
and Unger 
(2004) 

Optimal 
Climate 
Normals 
(OCN) 

E Higher 

Recent (15-year) 
trends in temperature 
and precipitation, if 
different from longer-
term (30-year) normal 

During clear-cut El 
Niño or La Niña 
events, ENSO 
composites include 
OCN information in 
a single tool  

Huang, Van 
den Dool, and 
Barnston 
(1996); Van 
den Dool 
(2007)  

CFSv2 model D Higher 
Physically based 
prediction of future 
climate conditions 

Also included in 
NMME 

Saha et al. 
(2014) 

ENSO: Recent 
Evolution, Current 
Status and Predictions 

 
Link: 
https://www.cpc.ncep.noa
a.gov/products/analysis_
monitoring/lanina/enso_e
volution-status-fcsts-
web.pdf 

ENSO Blog 
Link: 
https://www.climate.gov/
news-
features/department/enso
-blog 

https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.climate.gov/news-features/department/enso-blog
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools.php
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcsts-web.pdf
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
https://www.climate.gov/news-features/department/enso-blog
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Forecast Tool Type 
Usual 
importance 
to forecasts 

Contribution to 
forecasts 

Comments Reference 

NMME model 
ensemble 

D Higher 

Physically based 
prediction of future 
climate; ensemble 
shows uncertainty 
due to model 
structure; ensemble 
mean more skillful 
than any one model 

Ensemble of 7 
models: CFSv2 
(NOAA); CanCM4i 
and GEM-NEMO 
(Canada); FLOR and 
CM2.1 (NOAA 
GFDL); CCSM4 
(NCAR); GEOS S2S 
(NASA) 

Kirtman et al. 
(2014) 

Canonical 
Correlation 
Analysis (CCA) 

E Lower 

Influence of multiple 
predictors of future 
climate conditions as 
captured in linear 
relationships 

 
Barnston 
(1994) 

Ensemble 
CCA (ECCA) 

E Lower Same as above 
Only used for 
temperature 

Mo (2003) 

Constructed 
Analogues 
(CA) 

E Lower Same as above 
Most useful when 
analogues are based 
on soil moisture 

Van den Dool 
(1994; 2003) 

Screening 
Multiple 
Linear 
Regression 
(SMLR) 

E Lower Same as above 
Refined version of 
MLR tools used by 
early forecasters  

O’Lenic et al. 
(2008) 

 
As mentioned before, ENSO information and OCN have been the primary 
tools since the 1990s; as new forecast tools were added, each needed to 
have a skill assessment using reforecasts. The dynamical coupled forecast 
models (CFSv2 and the NMME ensemble) were evaluated even more 
critically; they had to reproduce empirical ENSO results before being 
included as guidance. When the consensus among the different tools is 
strong, that information is used to tweak the odds in the forecasts (e.g., 
moving from a 40% to 50% probability for the wettest tercile). Particularly 
strong ENSO signals, or regional trends, like the warming trend in the 
western U.S., will tend to yield high “tilts” in the odds.  

Operational skill of CPC seasonal forecasts 
CPC has archived all 0.5-month lead forecasts since 1995 and their national 
skill scores are online. The long-term (1995–2019) average Heidke skill score 
(HSS) for temperature has been 14, while the average HSS for precipitation 
has been 4, where 100 is perfect skill and 0 is no skill. As with sub-seasonal 
forecasts, seasonal forecasts in general are more skillful for temperature 

https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools/briefing/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/tools/briefing/
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/cca_index.php
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/soilmst/cas_lead.shtml
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/predictions/long_range/smt_index.php
https://www.cpc.ncep.noaa.gov/products/verification/summary/
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than for precipitation. This disparity has been seen across the globe by 
different forecasting groups; e.g., Weisheimer and Palmer (2014) 

(As described earlier in this chapter, Heidke skill is based on “hits”; if 20 of 
60 seasonal forecasts “hit” for the correct tercile—as would be expected by 
chance alone—the skill score is 0; if all 60 are correct, the skill score is 100, 
and if none of them are correct, the score is -50.) 

The skill of the CPC seasonal forecasts has been highly variable over time, 
with several periods during which the temperature forecasts had an HSS 
over 50 and precipitation forecasts had an HSS over 30. Conversely, there 
have been many periods of negative skill (<0), especially for precipitation. 
Most of the variation appears to correspond to the strength of ENSO 
events; when moderate to strong El Niño and La Niña events emerge, the 
ENSO forecast models generally perform better (Barnston et al. 2012), and 
the footprints of ENSO impacts on the western U.S. are more predictable. 
Livezey and Timofeyeva (2008) showed that most of the nationwide skill of 
the first decade (1995–2005) of seasonal CPC forecasts was due to the 
“Super El Niño” of 1997–98, the long-lived La Niña of 1998–2001, and other 
strong ENSO events. During periods when ENSO-neutral conditions 
prevail, seasonal forecasts in the U.S. are generally less skillful.   

Regional skill in the Colorado River Basin 

Skill of operational seasonal outlooks for the Colorado River Basin 
The Upper Basin was identified early on as an area of relatively weak to 
non-existent ENSO signals in precipitation, compared to the ends of the 
ENSO dipole: El Niño wetness in the Southwest and La Niña wetness in the 
Northwest (Redmond and Koch 1991; see Chapter 2). Thus, CPC’s early 
ENSO-related forecasts often left the Upper Basin blank, or EC, except for 
the 1997–98 super El Niño. Wolter et al. (1999) uncovered more nuance in 
the ENSO signal, finding distinct seasonality in the Upper Basin’s response 
to ENSO.   

Maps of skill for the CPC seasonal precipitation outlooks issued from 1995–
2019 are shown in Figure 7.7, for the four 3-month seasons of the water 
year. For the Upper Basin, skill has been highest in late winter (JFM) and 
spring (AMJ), hitting Heidke skill scores of up to 20 along the southern 
periphery of the Upper Basin. In contrast, late summer and fall forecasts 
have shown no overall skill across the 1995–2019 period. For the Lower 
Basin, skill has been highest in late winter (JFM), with skill scores up to 40 in 
western New Mexico and at least 30 in nearly all of the Lower Basin. This 
seasonal peak in skill mainly reflects the footprint of ENSO events being 
expressed most strongly in late winter. There has been less skill or no skill 
in the other three seasons, except for northwestern Arizona in spring.  

CPC Verification 
Summary 

 
Link: 
https://www.cpc.ncep.n
oaa.gov/products/verifi
cation/summary/ 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
https://www.cpc.ncep.noaa.gov/products/verification/summary/
https://www.cpc.ncep.noaa.gov/products/verification/summary/
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During the most recent decade (2010–2019) skill during late winter (JFM) 
over the Lower Basin has been higher than during the full period as shown 
in Figure 7.7. Also, during 2010–2019, skill during spring (AMJ) has been 
much higher in both the Upper and Lower Basins than during the full 
period. This recent performance may reflect improvements in the forecast 
system and thus might be expected to continue. Figure 7.8 shows maps of 
skill for the CPC seasonal temperature outlooks issued from 1995–2019, for 
the four, 3-month seasons of the water year. For both the Upper Basin and 
Lower Basin, positive skill is seen in all four seasons, with somewhat higher 
skill for the Lower Basin. The HSS is over 50 for large portions of the Lower 
Basin in all four seasons, and portions of the Upper Basin in spring and 
summer. Much of the skill in temperature outlooks in the western U.S. is 
due to the consistent increasing trends in seasonal and annual 
temperature, as captured in the OCN tool. 

 
Figure 7.7 

Maps of CPC seasonal precipitation forecast skill (Heidke Skill Score; HSS) from 1995–2019, using 
seasons that correspond to quarters of the water year: October-December (upper left); January-
March (upper right); April-June (lower right); and July-September (lower left). Positive skill (orange 
colors) in the Upper Basin is limited to winter-spring (JFM and AMJ; (HSS=10-20). In the Lower Basin, 
positive skill is seen mainly in winter (JFM) and is higher (30–40) than in the Upper Basin. (Source: 
NOAA CPC; https://www.cpc.ncep.noaa.gov/products/verification/summary/) 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
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Skill of NMME model forecasts for the Colorado River Basin   
As described above, the NMME dynamical model ensemble is one of the 
tools now used by CPC forecasters to inform operational seasonal forecasts 
for the Upper and Lower Basin. In Table 7.4, the skill scores for NMME 
forecasts for season 1 (1–90 days out) are shown for the Upper and Lower 
Basin. As with the sub-seasonal model forecasts from NMME and CFSv2, 
temperature is forecasted more skillfully than precipitation, and the Lower 
Basin seasonal climate is more skillfully forecasted than in the Upper Basin.  

 
Figure 7.8 

Maps of CPC seasonal temperature forecast skill (Heidke Skill Score; HSS) from 1995–2019, using 
seasons that correspond to quarters of the water year: October-December (upper left); January-
March (upper right); April-June (lower right); and July-September (lower left). Positive skill (orange 
and red colors) is seen in both the Upper Basin and Lower Basin in all seasons, with the highest 
overall skill in late summer (July-September). (Source: NOAA CPC; 
https://www.cpc.ncep.noaa.gov/products/verification/summary/) 

https://www.cpc.ncep.noaa.gov/products/verification/summary/
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Table 7.4 

Skill (Anomaly Correlation; AC) for Season 1 (1–90 days out) forecasts from the NMME forecast ensemble 
(7 models, including CFSv2) across the calendar year (annual) and for the climatological seasons, based 
on reforecasts for the 1981–2010 period. The skill scores for the eight HUC4 sub-basins each in the 
Upper Basin and Lower Basin were averaged to the basin-wide scores shown here. (Data: S2S Outlooks 
for Watersheds; http://hydro.rap.ucar.edu/s2s/) 

Skill (AC) for Season 1 forecasts, NMME ensemble 

Variable Basin Annual DJF MAM JJA SON 

Precipitation 

Upper 
Basin 

0.19 0.19 0.29 0.11 0.15 

Lower 
Basin 

0.27 0.41 0.28 0.09 0.20 

Temperature 

Upper 
Basin 

0.19 0.12 0.25 0.24 0.20 

Lower 
Basin 

0.31 0.28 0.31 0.30 0.36 

 
As with the operational CPC forecasts—which incorporate the NMME along 
with other guidance (Figure 7.7)—the NMME results in Table 7.4 indicate 
that predictability in seasonal precipitation is greater in the winter and 
spring than in the summer and fall, with a spring peak in the Upper Basin 
and winter peak in the Lower Basin—which is helpful, since the former two 
seasons best correspond to snowpack accumulation and water-year runoff. 
However, even in winter and spring, seasonal forecast skill is still relatively 
low.  

Activities to improve seasonal forecast skill in the Colorado River 
Basin 

SWcasts—precipitation outlooks for the interior Southwest 
Since ENSO only explains a fraction of seasonal climate variability in the 
interior Southwest (Utah, Colorado, New Mexico, Arizona), and since 
SNOTEL information was not incorporated into climate divisions (nor CPC 
forecasts), Wolter (2002) embarked on an effort in the late 1990s to create 
statistical seasonal forecasts (SWCasts) that increased the pool of 
predictors beyond ENSO, and improve the temperature and precipitation 
predictands by including SNOTEL data (Chapter 5). To create forecast 
zones within the 4-state region, SNOTEL and weather stations were 
grouped into core regions using statistical analyses to select the most 
similar ones, with one set of 6–10 regions each for four meteorological 
seasons.  

For potential predictors, previously established teleconnection indices (e.g., 
ENSO indices, North Atlantic Oscillation, etc.), as well as tropical Pacific or 

http://hydro.rap.ucar.edu/s2s/
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Indian Ocean, and Gulf of Mexico SSTs were considered. Some predictors 
had been discovered a century ago, such as key sea-level pressure regions 
in the Pacific and Indian oceans. Inspired by Knaff and Landsea (1997) and 
similar to O’Lenic et al. (2008), SWcasts employs Screening Multiple Linear 
Regression (SMLR) as a statistical forecast tool. Over the following 16 years 
of forecasts, the balance of “hits” versus “misses” was sufficiently positive to 
translate into positive skill scores. During this period, forecast skill for the 
Upper Basin (in CO and UT) was worst during fall and best during winter 
and summer. While there were pockets of exceptional skill during winter 
(southeast CO) and summer (central NM and northern UT), overall skill 
scores were not significantly higher than for the CPC operational seasonal 
forecasts (Figure 7.7).  

While the production and issuance of SWcasts ended in 2018, a renewed 
effort at regional statistical forecasts could capitalize on two decades of 
additional training data for both predictors and predictands, and improved 
forecast schemes.   

Seasonal forecasts of SWE using GCMs 
Kapnick et al. (2018) drew widespread attention with their claim of skillful 
prediction of regional snowpack (SWE) conditions up to 8 months in 
advance using a suite of coupled climate models (i.e., GCMs) developed by 
NOAA GFDL to generate hindcasts for the 1981–2015 period. While they 
show skill over the western U.S. overall (average correlation of 0.48) and in 
many sub-regions, the lowest skill (correlation of about 0.30) was found in 
their Colorado Rockies sub-region, which comprises western Colorado and 
is the source of about 70% of Upper Basin streamflow. So the relevance of 
their findings for the Colorado River Basin is more limited than for other 
regions. Overall, their spatial patterns of skill in predicting snowpack, 
temperature, precipitation, and storm tracks strongly suggest that they 
have largely rediscovered the well-known ENSO influence on western U.S. 
hydroclimate, rather than a truly novel capability of GCMs.  

Year 2 predictability during La Niña events 
Wolter and Timlin (2011) diagnosed that La Niña events have a much higher 
propensity for multi-year extension than El Niño events. More importantly, 
there is a strong tendency for a second-year La Niña to be significantly 
drier in the Upper Colorado River Basin than the first year. Two of the most 
severe multi-year droughts since 1950 (mid-1950s and early 2000s) were 
anchored by such long-lived La Niñas. This tendency was seen again in the 
two-year La Niña events of 2011–2013 and 2016–2018. Okumura, DiNezio, 
and Deser (2017) independently confirmed this observation of a drier 
second year during La Niña. However, this only covers a subset of years, 
and two-year La Niñas are not guaranteed once a La Niña event sets in. 
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Implications for the Colorado River Basin 
The fundamental challenge inhibiting skillful seasonal climate forecasting in 
the Upper Basin is the same as that at the start of CPC’s operational 
forecasts almost 25 years ago: Seasonal forecasting skill across the western 
U.S.—and in most of the world—is largely predicated on ENSO signals, 
especially for precipitation, but those ENSO signals are overall weak or 
cancel out on the scale of the entire Upper Basin, and across the fall–
winter-spring seasons when most of the water supply is generated. 
However, there appears to be enough skill for there to be a benefit using 
climate forecast model output to slightly tilt or weight the ensemble of 
CBRFC seasonal streamflow forecasts for the Upper Basin, as was done in 
work by Baker (2019) (Chapter 8.) For the Lower Basin, seasonal climate 
forecast skill is generally higher than in the Upper Basin, but still much 
lower than for weather forecasts.  

As with sub-seasonal forecasts, perhaps the shortest pathway to 
“improvement” is for forecast users to judiciously and selectively use 
seasonal climate forecasts, consulting them only during those seasons, and 
during those ENSO states (i.e., moderate to strong El Niño and La Niña 
events) in which more predictability and skill is seen (Figure 7.7 and 
Table 7.4). A potentially helpful information source in this regard is the 
NOAA PSD ENSO climate risk tool that shows which climate divisions have 
significantly increased or decreased risk of seasonal wet and dry extremes 
(>80th percentile) during moderate to strong ENSO events. During some 
strong ENSO events, the CBRFC has used ENSO information to adjust 
streamflow forecasts in the Lower Basin through trace-weighting (see 
Chapter 8). 

7.6 Challenges and opportunities 

While there are still many challenges being tackled by the weather 
forecasting research community to obtain greater understanding and 
predictive skill, the level of performance and skill is already relatively high, 
and progressing well. Thus, from the perspective of water supply 
forecasting and management, the most pressing challenges and most 
compelling opportunities are at sub-seasonal and seasonal timescales. In 
the Colorado River Basin, and the Upper Basin especially, the limited skill of 
sub-seasonal and seasonal forecasts for precipitation and even 
temperature constrains usability.  

There is no single pathway toward improvement in the skill and usability of 
climate forecasts for the basin. There are, though, broad families of ongoing 
activities that in combination can lead to such improvement. It is probably 
neither feasible nor desirable to coordinate all of these activities, since 
many of them connect with efforts at broader scales; what is important is 

Risk of Seasonal 
Climate Extremes in the 
U.S. Related to ENSO 

 
 
Link: 
https://www.esrl.noaa.g
ov/psd/enso/climateris
ks/ 

https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
https://www.esrl.noaa.gov/psd/enso/climaterisks/
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that researchers, funders, and stakeholders are at least made aware of the 
suite of activities, for example, through the Western States Water Council-
California Department of Water Resources workshop series. And, given the 
history and current state of climate forecasting, no one should expect easy 
wins producing large gains in skill or usability; incremental improvement is 
the likeliest outcome of any effort.  

Challenge  
Limitations in our understanding of the connections between atmospheric 
and oceanic circulation patterns and processes, and Colorado River Basin 
precipitation variability in space and time, constrain the skill of climate 
forecast models in forecasting conditions for the basin. 

Opportunities 
• Support further research into these climate system dynamics to 

identify key patterns and variables. 
• Support further research into better representing those key patterns 

and variables in dynamical climate forecast models and statistical 
forecast tools. 

Challenge 
The CBRFC and other streamflow forecasting units may not be able to 
capitalize on the skill that does exist in sub-seasonal and seasonal climate 
forecasts for the basin. 

Opportunities 
• Support ongoing CBRFC efforts to pilot the inclusion of sub-seasonal 

and seasonal forecasts in their forecast system (see Chapter 8). 
• Support further research into post-processing of CBRFC forecasts to 

generate climate-forecast-informed, use-specific streamflow forecasts 
(see Chapter 8). 

Challenge 
The limited skill and probabilistic nature of climate forecasts may not mesh 
well with decision frameworks so water managers are unable to extract 
value from the forecast information. 

Opportunities 
• Continue to support engagement between water managers and CPC 

and other climate forecasters to facilitate shared understanding of 
decision needs and forecast capabilities. 

• Study decision making by users and sectors that make better use of 
climate forecasts (e.g., crop futures traders), to assess transferability of 
tools and practices. 

• Develop decision support tools that bridge climate forecasts to the 
water resource decision space. 
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Challenge  
The skill of climate forecasts is highly variable over both space and time, 
complicating the consistent use of forecasts. 

Opportunities  
• Selectively consult forecasts during those seasons when they have 

shown the most skill for the basin. 
• Support research to identify “forecasts of opportunity” specific to the 

basin, i.e., conditions of the ocean, atmosphere, and land surface during 
which forecasts are more likely to have skill and impact. 
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Key points 
• Streamflow forecasts from the CBRFC are widely used by water 

managers in the basin and are critical inputs for Reclamation’s 
operational models, including seasonal forecasts for use in 24MS and 
MTOM. 

• Streamflow predictability at seasonal timescales in the Colorado River 
Basin arises primarily from the initial watershed moisture conditions, 
i.e., snowpack and soil moisture. 

• While using different methods, the CBRFC and NRCS operational 
forecasts both effectively capitalize on this predictability, with 
relatively high skill for forecasts issued in late winter and spring for the 
coming runoff season. 

• To improve streamflow forecasts within the current frameworks there 
are two main pathways: 1) improve estimates of initial watershed 
moisture conditions, and 2) improve basin-scale weather and climate 
forecasts and how they are used in streamflow forecasts. 

• Improvements in quantifying watershed conditions can come through 
better meteorological analyses, more in situ observations of snowpack 
and soil moisture, increased use of remotely sensed observations, 
advances in calibration strategies, and advances in data assimilation 
techniques.  

• Improvements in sub-seasonal and seasonal climate forecasts are being 
actively pursued by national modeling centers and the broader research 
community; targeted post-processing of climate forecasts can better 
leverage their current skill to inform seasonal streamflow forecasts.  

• Skill in streamflow forecasts for year 2 and beyond is entirely 
dependent on skill in decadal climate forecasts, which exists to some 
degree for temperature but not for precipitation. 

• Alternative forecast frameworks in which tasks are fully automated 
permit the use of a greater range of advanced methods and data. These 
frameworks have not yet been shown, however, to outperform the 
current operational forecasts. 

• Many potential forecast improvement elements have been 
demonstrated in a research context; systematic testing to benchmark 
and combine multiple elements could add up to significant overall 
improvements in operational forecasts. 

8.1 Introduction 

Operational streamflow forecasting provides invaluable information 
regarding the expected quantity and timing of streamflow throughout both 
managed and unmanaged river systems, supporting decision making for a 
myriad of stakeholder needs. In the western U.S., these include water 
allocation for agriculture and municipal and industrial supply, flood control, 
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hydropower, recreation, navigation, and instream environmental uses. The 
time scale of forecasts supporting operations and management decisions 
spans hours to years, depending on each managing entity’s system capacity 
and purposes, and the hydrometeorological variability of the streamflow 
source. In flashy, small catchments where intense convective rainfall can 
drive flash floods, operational hours-to-days forecasts are common, 
whereas for the largest reservoirs in the U.S., such as Lake Powell, forecasts 
extending to 2-5 years are routinely used.  

In the Colorado River Basin, the operational streamflow forecasts used by 
Reclamation and many other basin stakeholders are produced by the NOAA 
NWS Colorado Basin River Forecast Center (CBRFC). CBRFC forecasts 
support the flood watch and warning programs of the NWS Weather 
Forecast Offices (WFOs) and emergency and water management by local 
and state agencies, tribes, water districts, and Reclamation, which depends 
on the forecasts to manage the basin’s primary reservoirs to meet daily, 
seasonal, and long-range operating criteria.  

This chapter focuses mainly on forecast techniques and models that are 
relevant to Reclamation operations and planning activities at seasonal and 
longer time scales, although the same techniques and models are also used 
for short-range (0–10 day) prediction. Monthly to seasonal ensemble 
forecasts provide critical input to Reclamation’s 24-Month Study (24MS) 
and Mid-term Probabilistic Operations Model (MTOM), which are used to 
generate system operations projections up to 5 years out, informing 
decisions that affect water allocations for stakeholders throughout the 
seven basin states. As described in Chapter 3, major operational decisions 
such as the annual release from Lake Powell to Lake Mead depend on 
storage projections derived using the monthly-to-interannual (mid-range) 
CBRFC ensemble forecasts. This release, in turn, impacts the operational 
decisions of stakeholders who must ensure cost-effective and reliable 
water supplies for their own management domain, hence the forecast 
impacts cascade through multiple linked levels of decision making.  

The CBRFC produces peak-flow, short-range, seasonal, and longer forecast 
products. The short-range and peak-flow forecasts directly influence daily 
operations at Reclamation and other reservoir managers, particularly 
during high-impact weather events (e.g., flood risk) and during snowmelt 
periods in the spring. In some cases, the short-range forecast can directly 
determine a reservoir release, whereas in other cases, it may form one of 
multiple informational inputs that are used more qualitatively to determine 
a release schedule. The operational watershed models, described in 
Chapter 6, are initialized each day to generate deterministic, or single 
value, short-range forecasts for nearly 600 points across the basin. 
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In addition to the CBRFC, the Natural Resource Conservation Service 
(NRCS) National Water and Climate Center also produces seasonal water 
supply forecasts (WSFs) for stakeholders in the basin, but using different 
methods, as described later. The working relationship of the NRCS 
forecasts to the CBRFC forecasts has changed over the last few decades 
(Pagano et al. 2014) as the practice of ensemble forecasting has expanded, 
but the NRCS forecasts are still widely used to inform water management 
in the basin. Across the basin, stakeholders consult CBRFC seasonal 
forecasts, or NRCS seasonal forecasts, or both (Lukas et al. 2016). 

This chapter describes the state of the practice for the basin, and what is 
known about seasonal and spatial variations in predictability and the most 
promising opportunities for improvement. There is a great deal of literature 
that documents this topic, and a balance is drawn here between including 
relevant information about forecast use already documented in sources 
such as Raff et al. (2013), Mantua et al. (2008), or the recent draft 
interagency report of the Forecast and Reservoir Operation Modeling 
Uncertainty Scoping team (Reclamation and Colorado Basin River Forecast 
Center in preparation), and not re-stating available material. This report 
covers both short-range and mid-range (seasonal and longer) forecasting 
approaches because both are critical to the management of reservoirs and 
water resources in the basin, and the same models are used for both 
ranges.  

8.2 Overview of streamflow forecasting approaches 

To understand why different approaches to streamflow forecasting 
produce more skillful forecasts, and the rationale and suitability of 
potential pathways for improving forecasts, it is important to understand 
real-world sources of predictability. This can help gage whether and where 
potential improvements may have merit, and how much benefit to expect 
from them.  

Sources of predictability and predictability attribution studies 
Streamflow fluctuations are driven both by runoff discharging from water 
already stored within the watershed—soil moisture, groundwater, 
snowpack, and the channel network itself—and by meteorological 
processes (i.e., precipitation and evapotranspiration) in the watershed. 
Streamflow forecasts are thus ideally driven by two major inputs: 1) the 
watershed’s initial moisture conditions, and 2) forecasts of future weather 
and climate for the watershed. In practice, in snowmelt-dominated basins 
in the western U.S. such as the Colorado River Basin, seasonal streamflow 
prediction skill comes almost entirely from initial moisture conditions, with 
the level of skill varying by season, from low in the late summer and fall to 
very high in the spring. Additional skill attributable to weather and climate 
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forecasts is relatively low at present, and only weather forecasts out to 5–10 
days are currently incorporated into CBRFC forecasts (see Chapter 7 and 
Wood and Schaake 2008; Wood et al. 2016).  

The highest predictability at seasonal scales is associated with accumulated 
winter snow, and to a lesser extent, soil moisture anomalies. The processes 
through which snowmelt raises soil moisture, generates runoff, and routes 
runoff through a stream network to produce streamflow is relatively slow, 
providing useful forecast accuracy at lead times of up to six months 
(Harrison and Bales 2015; Wood, Kumar, and Lettenmaier 2005). The lowest 
seasonal streamflow predictability is for forecasts issued after the 
snowmelt period and preceding significant snowpack accumulations (i.e., 
from late summer into fall), such that the initial watershed moisture 
conditions provide little contribution to future flows relative to future 
weather and climate inputs.  

Why is predictability relevant? Operational centers are confronted with a 
broad variety of potential research and researchers describing upgrades to 
improve forecasts, yet these may have limited potential for improving any 
given forecast at important times of year or locations. Upgrading a snow 
analysis may be a more effective pathway to improved streamflow forecasts 
for some locations, rather than improving climate forecasts from two 
weeks to a year in the future, while the reverse may be true in other 
locations.  

Types of streamflow forecasting approaches 
Forecasting approaches can be distinguished by several characteristics. 
These characteristics are discussed below to help provide context on how 
the current operational forecasts for the Colorado River Basin fit into the 
overall forecasting landscape. The forecasts to which basin stakeholders 
have been exposed in recent decades are largely of one type and tradition, 
yet across the operational centers of the globe there is significant variation 
in how the same challenges are addressed and in the datasets that are 
available. It is possible that the range of techniques worth considering may 
be broader than the perspective available in any one part of the U.S. alone.  

Dynamical, statistical, and hybrid methods 
Seasonal streamflow forecasting methods are often categorized as 
dynamical, statistical, hybrid, or a combination. Such approaches span 
different degrees of complexity and information requirements.  

Dynamical methods for seasonal hydrologic forecasting use hydrologic 
models, ranging from more conceptual models to more physically explicit 
and process-oriented models to represent hydrologic processes and states 
in the past, near-term, and into the future (Chapter 6). Model-based 
seasonal forecasts take a current estimate of watershed conditions and 
evolve it into the future using either historical observed weather conditions 



 

Chapter 8. Streamflow Forecasting 292 
 

as proxies for the (unknown) future weather and climate conditions, or 
inputs derived from seasonal climate forecasts (Wood, Kumar, and 
Lettenmaier 2005; Beckers et al. 2016). Dynamical methods permit 
ensemble streamflow prediction, or ESP (Day 1985), as described below. 

In contrast, statistical methods rely on statistical relationships (e.g., linear 
regression) between previous years’ observations of seasonal streamflow 
volumes and several predictors. These predictors include in situ watershed 
observations, such as NRCS’s snow telemetry (SNOTEL) snow water 
equivalent (SWE) data, and in some cases indicators of large-scale climate 
patterns such as ENSO. Several statistical approaches can be found in the 
literature, encompassing different degrees of complexity (Garen 1992; 
Piechota et al. 1998; Grantz et al. 2005; Tootle et al. 2007; Pagano et al. 
2009; Wang, Robertson, and Chiew 2009; Moradkhani and Meier 2010). 

Hybrid methods strive to combine the strengths from both dynamical and 
statistical techniques. For instance, uncertainties in dynamical predictions 
indicate that dynamical forecasts can benefit from statistical post-
processing (Wood and Schaake 2008; Wood, Arumugam, and Mendoza 
2018). One line of research has examined the potential benefits of using 
simulated watershed state variables—either from hydrologic or land surface 
models—as predictors for statistical models (Rosenberg, Wood, and 
Steinemann 2011; Robertson, Pokhrel, and Wang 2013). Another popular 
technique consists of incorporating climate information within ensemble 
streamflow prediction frameworks (Werner et al. 2005; Wood and 
Lettenmaier 2006; Luo and Wood 2008; Gobena and Gan 2010; Yuan et al. 
2013). Finally, the combination of outputs from different models has also 
been shown to benefit seasonal hydroclimatic forecasting (Hagedorn, 
Doblas‐Reyes, and Palmer 2005; Najafi and Moradkhani 2015; Mendoza et 
al. 2017). 

Statistical streamflow forecasting has been, for most of the last century, the 
standard approach, but the use of dynamical methods and ESP has been on 
the rise (Cloke and Pappenberger 2009; Pagano et al. 2014). Dynamical and 
ESP-based methods are motivated in part by concerns that regression-
based approaches may be unsuitable in the face of non-stationarities 
associated with climate change and variability (Cayan et al. 2001; Pagano 
and Garen 2005; Hamlet et al. 2005; Mote et al. 2005; Beckers et al. 2016). 
Incorporating physically consistent relationships may help better assess 
hydrologic responses in novel climate situations, as opposed to the fixed, 
historically trained relationships of statistical methods.  

A rapidly emerging perspective is that inaccurate representation of model 
bounds (i.e., physics) in hydrological models is unavoidable, and machine-
learning models have the potential to identify and represent hydroclimate 
relationships with more fidelity than some process-oriented models (Best 
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et al. 2015; Nearing et al. 2018). Like traditional statistical models, machine-
learning models are trained on observed datasets, and do not include any 
explicit representation of physical processes such as infiltration, soil 
moisture storage, evaporation, etc. But machine-learning algorithms (e.g., 
neural networks) have much greater flexibility to capture non-linearities in 
the input data and identify relationships in the data that impart predictive 
skill (Yaseen et al. 2015; Shen 2018). NRCS is actively pursuing the 
incorporation of machine-learning methods into their seasonal streamflow 
forecasting approach; Fleming and Goodbody (2019) showed that a multi-
model machine-learning ensemble outperformed the current NRCS 
statistical forecasting approach in three test watersheds, including the Gila 
River. 

Deterministic (single-value) and ensemble (probabilistic) methods 
For many applications, dynamical or statistical approaches for streamflow 
prediction are used to generate deterministic (also called single-value) 
forecasts. The forecasts are deterministic in the sense that the 
meteorological inputs and the model’s configuration and parameter 
specification entirely determine the forecast. The forecasts contain a single 
value at each time-step of the forecast horizon, and if the forecast model 
were re-run, the outcome would not change—there is no random or 
stochastic element in the process that would cause a different outcome.  

Ensemble streamflow forecasts (e.g., ESP) involve running the model with a 
collection of variations in one of the factors influencing the forecasts. 
Typically, this factor is the meteorological forecast input, in which case a 
number of variations on this input are sampled from the recent historical 
record, or taken from a weather or climate forecast model that has been 
run in an ensemble mode, or some combination. Other potential sources of 
variation to generate a streamflow forecast ensemble include multiple 
parameter variations, multiple models, multiple configurations of a single 
model, or multiple meteorological forcing inputs, which lead to multiple 
initial states for the forecast. A combination of these could be used, with 
each set of variations attempting to quantify or estimate a source of 
uncertainty impacting the forecast—e.g., initial condition uncertainty, 
future weather and climate uncertainty, or model parameter uncertainty. 
The resulting ensemble forecasts provide a depiction of the uncertainty as 
represented by the spread of the forecast ensemble values.  

The spread of ensemble values can be used to estimate the probabilities of 
different outcomes; hence an ensemble forecast is also a probabilistic 
forecast. Yet the reverse is not necessarily true: Probabilistic predictions 
generated by statistical techniques that yield only a probability distribution 
must be subjected to an additional procedure (such as sampling) to 
generate a matching streamflow ensemble. Example forecasts from the two 
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approaches, deterministic, single value forecasting and probabilistic, 
ensemble-based forecasting are shown in Figure 8.1. 

In the context of seasonal forecasting, including in the Colorado River 
Basin, deterministic single-value forecasts are rare because it has long been 
recognized that futures at seasonal and longer timescales are uncertain. 
Specialized, single-value forecasts can be found for applications requiring a 
single trace input (e.g., reservoir models that cannot process an ensemble 
easily).  

Uncoupled vs. coupled forecast systems 
Most dynamical forecasting systems are uncoupled, that is, the land surface 
or hydrology model is not run as part of a more comprehensive coupled 
Earth system or numerical weather prediction model. However, a coupled 
system can be used for seasonal and longer prediction of a hydrologic 
variable. A recent example is described in Kapnick et al. (2018), in which 
winter SWE predictions in the southwestern U.S., using a coupled climate 
model forecast initialized in the prior July, were assessed (see Chapter 7).  

 
Figure 8.1 

Deterministic single-value forecast (left) and probabilistic ensemble forecast (right) for the same 
stream gage (Little Wabash River, IL) and same 5-day period (March 12th–17th, 2020). The probabilistic 
forecast is based on an ensemble of streamflow forecasts that use different weather-forecast inputs. 
(Source: left: NOAA NWS AHPS; right: NOAA NWS OHRFC) 

https://water.weather.gov/ahps2/hydrograph.php?wfo=ilx&gage=clai2
https://www.weather.gov/erh/mmefs_ohrfc?id=CLAI2&model=HEFS
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Forecasting paradigms 
Another important characteristic of forecast approaches that is separate 
from the types of data and model elements applied is the forecasting 
paradigm. The forecasting paradigm determines what strategies for 
advancement may be possible. For decades, a traditional in-the-loop 
paradigm for flood forecasting and seasonal model-based streamflow 
forecasting has been the norm in the U.S. and internationally, but this is 
changing as a variety of over-the-loop systems are being deployed. In-the-
loop systems are those in which the system operation depends on the 
intervention of human forecasters to adjust components, make inputs or 
trigger workflows. Over-the-loop systems are those in which the system is 
fully automated, running without need for intervention from a human 
forecaster, though the forecasters monitor and interpret output. The 
forecaster can be considered a critical part of the overall system, enabling 
it to run through its operational loop.   

To understand what these paradigms mean in practice, it is helpful to 
review the elements of a forecast system (Figure 8.2). Meteorological 
forcings are model input sequences that support model implementation 
and calibration, and that are updated in real-time and used to initialize (to 
“warm up”) model states for forecasting. Weather and climate forecasts are 
meteorological input sequences derived from numerical weather 
predictions and other sources, typically extending 3 to 15 days for flood 
forecasting systems and out to 9 months to a year for seasonal forecasting 
systems (Chapter 7). Hydrologic, hydraulic, and water resources models are 
the core of the system. But there are other essential supporting elements, 
the meteorological forcings and forecast processors and the hydrologic post-
processor, as well as the land data assimilator, that make critical 
adjustments to data as it flows into and out of the model, and to the model 
states, in real-time. These methods almost always must be applied in some 
fashion to produce high-quality forecasts, and they are handled differently 
in in-the-loop versus over-the-loop systems.  

In-the-loop forecasting 
Traditional in-the-loop flood and seasonal forecasting typically involves a 
semi-manual process of updating calibrated, conceptual, hydrological 
models that are run on local computing resources. These efforts generate 
streamflow predictions at river locations—typically gaged—where forecasts 
are needed by stakeholders and emergency managers. This forecast 
paradigm, which is the primary source of short-range forecasts and 
supports mid-range forecasts at the NWS River Forecast Centers (RFCs) 
such as the CBRFC, requires expert forecasters to make real-time 
adjustments to elements of the forecast system described above.  
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Through this effort, they address the numerous technical and scientific 
challenges of forecasting, essentially performing pre- and post-processing 
and data assimilation. Forecaster interventions include the real-time 
adjustment of hydrologic model inputs, parameters, states, and outputs. 
This in-the-loop workflow is motivated by the need to overcome—in real 
time and at times under significant pressure—longstanding challenges in 
hydrologic forecasting, including ever-present inadequacies in data 
streams, modeling, system reliability, and interactions with water 
management systems. It empowers expert forecasters to fix discrepancies 
between model simulations and forecasts and observed or expected 
behavior for watersheds with which they may have long experience. 

 

Figure 8.2 

Schematic of a model-based streamflow forecasting system. (Source: adapted from NWS online 
materials: https://www.nws.noaa.gov/oh/hrl/hsmb/hydrologic_ensembles/index.html) 
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Although this operational practice has changed over time, the semi-manual 
integration of elements has not. Major changes include upgrading the 
software for running a forecast, or switching to a new version of a weather 
forecast model for forecast input, or accessing satellite-based imagery 
operationally, yet these changes leave the traditional in-the-loop forecast 
paradigm intact. Notably, in the U.S., including the Colorado River Basin, 
the in-the-loop paradigm has not yet been outperformed by a different 
paradigm, and still produces forecasts that inform the management of 
billions of dollars’ worth of water across multiple sectors. 

Over-the-loop forecasting 
Remarkable scientific and technical advances have been made during the 
last two decades in many areas supporting hydrologic prediction. 
Technological upgrades in super-computing, data storage, connectivity, 
and standardization of data protocols and other forecast system elements 
provide a foundation for transforming the computational aspects of 
streamflow prediction. High potential reward research can now be found in 
several key areas: remote sensing; physically oriented, distributed 
watershed process modeling and Earth system process modeling; 
parameter estimation; data assimilation; verification; statistical post-
processing; multi-model synthesis; and uncertainty estimation. Numerical 
weather forecasting in particular has seen steady advances in the skill and 
abundance of accessible, operational forecasts as well as hindcasts—i.e., 
datasets of consistent retrospective forecasts (Chapter 7). These advances 
have spurred the implementation of centralized, automated, forecaster 
over-the-loop (i.e., no human intervention) systems for short-range and 
mid-range forecasting in the U.S. and abroad. These over-the-loop 
systems, such as the National Water Model (NWM; Chapter 6) are now 
mostly run in parallel to in-the-loop systems and have not replaced them in 
traditional forecasting for water management.  

Over-the-loop systems have made greater inroads in the area of 
emergency management, such as regional flooding. Forecaster effort is 
then focused on editing and interpreting automated model output to create 
products that support decisions in hazard and resource management, and 
to developing the forecast system.  

There are two types of over-the-loop systems—coupled and uncoupled. As 
described earlier in this chapter, in the uncoupled systems, a land surface 
or hydrology model is run with meteorological inputs derived from a 
forcing analysis and weather or climate forecasts, whereas in the coupled 
systems, runoff from the land surface component of a weather or climate 
forecast model is routed through a channel routing model to generate 
streamflow.  
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Pros and cons of the paradigms  
The traditional in-the-loop paradigm results in a highly labor-intensive 
workflow that limits the ability to use high-resolution datasets and models, 
apply ensemble techniques, conduct verification and benchmarking for 
development, and use automated data assimilation approaches that employ 
reproducible and consistent modeling operations. Changing the forecast 
paradigm from in-the-loop to over-the-loop therefore sounds attractive, 
but would require major changes in what a forecaster does and what skill 
sets they might need to do their jobs. In addition, few effective, fully 
automated (i.e., over-the-loop) alternatives have been successfully 
demonstrated in operational contexts for critical parts of the current in-
the-loop forecast process, including hydrologic data assimilation, post-
processing, and meteorological forecast pre-processing. Furthermore, the 
traditional approach involves forecasters working hand-in-hand with water 
system operators to incorporate management operations that affect 
streamflows. There is as yet no universal solution for doing this in a fully 
automated way, especially in extreme situations where the managers’ and 
forecasters’ decision making may depart from routine practice.  

As a result, the forecast outputs of over-the-loop systems such as the 
NWM, which is relatively uncalibrated, are generally found to be far inferior 
to in-the-loop systems; where traditional alternatives exist, such as the 
CBRFC’s current models, they are preferred. Some other systems like the 
uncoupled European Flood Awareness System (EFAS), which has been 
calibrated, have been more successful and adopted more widely for specific 
products such as short-range (out to 15-day) forecasts. Another key factor 
in EFAS’s success is that human forecasters oversee and approve EFAS 
alerts, which are qualitative—providing for operational review of over-the-
loop system outputs.  

8.3 Short-range (1-10-day) streamflow forecasts 

NWS official short-range forecasts  
The CBRFC official short-range streamflow forecasts (1-10 days) are single-
value predictions for gaged locations, generated each morning, or more 
frequently during a rapidly evolving flood situation. Forecast locations are 
coordinated with weather forecast offices, emergency management, or 
water management agencies to assess risk and inform decisions and 
actions to mitigate the dangers posed by floods and droughts. Forecasts are 
made available in a variety of ways, including from the NWS Advanced 
Hydrologic Prediction Services (AHPS) web page and directly from the 
CBRFC website.  

The Community Hydrologic Prediction System, or CHPS, is an interactive 
software platform that specifies models and workflows to run traditional 
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flood forecasts and long-range ESP forecasts. See Chapter 6 for a more 
detailed description of the CHPS platform and the forecast models used 
within CHPS, most importantly the Sacramento-Soil Moisture Accounting 
(Sac-SMA) rainfall-runoff model, and the SNOW-17 snow model. 

In the Upper Basin, the forecast models in CHPS typically have a 6-hour 
time step, while in the Lower Basin, a 1-hour time step is used because of 
the generally more rapid response of watersheds to precipitation events 
there. Throughout the basin, the forecasts have a 10-day outlook, with 
some 15-day forecasts available. Short-range forecasts incorporate 
forecasted precipitation amounts (QPF) and forecasted temperature (QTF), 
which is used for precipitation typing and snow modeling (see Chapter 7).  

Inputs for the SNOW-17, Sac-SMA, and other forecast models in CHPS, 
which estimate real-time current watershed conditions, are derived from in 
situ observations for temperature and precipitation, atmospheric model 
outputs for freezing level, and remotely sensed estimations (both radar and 
satellite) for precipitation. Snow-water equivalent, reservoir releases, flow 
diversions (where known), and streamflow observations are also obtained, 
and all measured observations are quality-controlled at the beginning of 
the forecast cycle.  

Using workflows specified in CHPS, the models are run beginning with an 
initial model state (called a warm state) 10 days prior to the forecast date 
(the date a forecast applies to). A warm state is a model state created 
during a prior operational cycle in which the model moisture contents have 
been “spun-up” by simulation over a long enough period (e.g., at least a 
year) for the states to accurately reflect observed conditions. A cold state, 
in contrast, has prescribed or default moisture settings that may not match 
current conditions. Adjustments are then made to model inputs, 
parameters, and states to obtain streamflow and snow simulations that are 
consistent with observations over the 10 days leading up to the forecast 
date. Typically, the most recent day or two is of the most interest to avoid 
overwriting modifications applied on prior days. 

Meteorological forcings 
As described in Chapters 5 and 6, the CBRFC forecast model system 
requires values for temperature and precipitation that are area-averaged 
for each forecast zone (an elevation band within a catchment) represented 
in the model. The real-time meteorological forcings are generally produced 
daily to match the typical forecast production frequency (Figure 8.3), but 
may be updated more often during a rapidly evolving flood situation.  

For the Upper Basin watersheds, which are generally snowmelt-dominated, 
real-time temperature and precipitation observations—the vast majority 
from SNOTEL stations—are used to directly produce the areal averages for 
forecast zones using station weightings determined through model 
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calibration. The stations that are used have been pre-screened and vetted 
during the calibration process. Automated procedures identify potentially 
erroneous station values, which can be then manually corrected by 
forecasters; manual quality control is also done. Freezing-level data from 
Rapid Refresh, NOAA’s hourly operational weather reanalysis, is used to run 
the SNOW-17 model which types the precipitation as rain or snow.  

For the Lower Basin watersheds, which are generally rainfall-dominated, a 
denser station coverage is employed, with temperature and precipitation 
observations from multiple station networks, and then augmented by 
radar-based precipitation estimates to generate the real-time data 
(Figure 8.3). The radar data are most useful during the warm season when 
there is a larger radius of accurate information from the radar, due to radar 
reflection differences between rain and snow.  

 
Figure 8.3 

A recent CBRFC forecast model sequence illustrating how daily precipitation observations (center) 
are used in the daily updates of the modeled snow conditions. In the 24 hours ending on the 
morning of March 19, 2020, there was widespread and often intense precipitation across the Lower 
Basin, as captured by station observations and radar-based estimates that were integrated into 4-km 
gridded precipitation values using the Multi-sensor Precipitation Estimate software (MPE; center). The 
gridded precipitation was used to compute area-averaged precipitation for each forecast zone, which 
then was used to update the SWE in each forecast zone in the CBRFC snow model (the precipitation 
was also classified into snow vs. rain using other meteorological data in the snow model). After 
updating on March 19th, the modeled snow across the Lower Basin (right) showed much higher SWE 
as a % of average than the previous day (left). (Maps: NOAA CBRFC; precipitation 
(https://www.cbrfc.noaa.gov/gmap/gridgeo/gridmap/obgrids.php); modeled snow 
(https://www.cbrfc.noaa.gov/rmap/grid800/index.php) 

https://www.cbrfc.noaa.gov/gmap/gridgeo/gridmap/obgrids.php
https://www.cbrfc.noaa.gov/rmap/grid800/index.php
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The observations from all available stations are used, with no prior 
screening of stations, to create the highest possible station density. But the 
station temperature and precipitation values themselves are quality-
controlled as in the Upper Basin. As in the Upper Basin, freezing-level data 
and SNOW-17 are used to type the precipitation into rain and snow. The 
real-time precipitation observations and radar precipitation estimates are 
transferred to a 4-km grid using an interpolation algorithm in the Multi-
sensor Precipitation Estimate (MPE) software (Figure 8.3), the temperature 
observations are likewise transferred to a 4-km grid, and then the grid cells 
within each forecast zone are then averaged to create the MAT and MAP 
data.  

In recent years, the CBRFC has collaborated with NASA to leverage their 
Moderate Resolution Imaging Spectroradiometer (MODIS) observations to 
use remotely sensed fractional snow covered area (MODIS Snow Covered 
Area and Grain, or MODSCAG product) and dust radiative forcing (MODIS 
Dust Radiative Forcing in Snow, or MODDRFS product; Figure 8.4 and 
Chapter 5). These estimates provide qualitative corroboration of the model-
simulated snow covered area and insight into the potential rapidity of 
snowmelt due to dust-enhancement, which can then be used to inform 
real-time forecaster adjustments to the snow model melt factor parameter 
(Bryant et al. 2013). The watershed moisture conditions resulting from 
these changes are then used to initialize both the flood forecasts and 
seasonal water supply forecasts.  

 
Figure 8.4 

NASA JPL remote sensing of snow. Left: MODIS Snow Covered Area and Grain size (MODSCAG), 
right: MODIS Dust Radiative Forcing in Snow (MODDRFS). (Source: 
https://arset.gsfc.nasa.gov/sites/default/files/water/Snow/JPL_SnowTraining_w1.pdf) 

https://arset.gsfc.nasa.gov/sites/default/files/water/Snow/JPL_SnowTraining_w1.pdf
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Hydrologic Ensemble Forecast Service-based forecasts and alternatives 
Recent initiatives in the RFCs to roll out ensemble forecasts at the short-
range led to development of the Hydrologic Ensemble Forecast Service, or 
HEFS (Demargne et al. 2014), spearheaded by what is now the NOAA Office 
of Water Prediction. HEFS was a response to sustained interest in 
probabilistic river forecasts for short-range flood forecasting and water 
resources. HEFS uses the models and workflows already used in the 
traditional forecasting process in CHPS, but adds meteorological ensemble 
inputs in place of the single-value precipitation and temperature forecasts 
(QPF and QTF, see Chapter 7), as well as an automated form of streamflow 
post-processing. It is still largely an in-the-loop workflow that uses the 
states generated by the official forecast workflow, but the ensemble 
forecast inputs and post-processing are automated. 

Over the last five or six years, HEFS has been steadily deployed for river 
basins across the U.S., after being run experimentally since 2012 at a few of 
the RFCs. The goal of HEFS is to produce ensemble short-range streamflow 
forecasts that seamlessly span lead times from an hour up to several years 
and that are spatially and temporally consistent, probabilistically calibrated 
(i.e., unbiased with an accurate spread), and verified. A few forecast centers, 
such as the California-Nevada River Forecast Center (CNRFC), now present 
the ensemble forecasts on their web pages in parallel with their official 
forecasts.  

The components of HEFS are shown in Figure 8.5. The most important part 
of HEFS is the meteorological ensemble forecasts, which are derived via a 
statistical technique from up to four meteorological forecast inputs. The 
statistical technique, termed Meteorological Ensemble Forecast Processor, 
or MEFP, can generate ensembles that seamlessly blend these inputs, with 
their impact depending on their skill (Wu et al. 2011).  

Each RFC uses different models and routines, but almost all of their 
operations center on the lumped implementation of the Sac-SMA and 
SNOW-17 models. Like the forecast data from the official forecast process, 
graphical outputs are also typically available from the forecast centers, so 
that users can use the data directly in local decision support models. 

Around the same period that HEFS was developed, an RFC-led effort 
created the Met-Model Ensemble Forecast System, or MMEFS (Adams III 
and Dymond 2018). MMEFS provides short-range (out to 15-day) ensemble 
forecasts. It differs notably from HEFS in the use of gridded numerical 
weather prediction ensembles, rather than those generated statistically 
from NWP ensemble mean forecasts. Both approaches make use of the initial 
states generated by the in-the-loop official forecast workflow, however.  
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Figure 8.5 

Components of the U.S. Hydrologic Ensemble Forecast System. (Source: adapted from Emerton et al. 
2016) 
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8.4 Mid-range (seasonal and longer) streamflow forecasts 
and water supply forecasts 

In the Colorado River Basin and elsewhere, the major methods for 
operational, seasonal-to-interannual forecasts have been statistical water 
supply forecasting and dynamical ESP forecasting. Both of these methods 
are designed to exploit predictability arising from initial watershed 
moisture conditions (i.e., SWE and soil moisture). The most widely used 
output derived from these methods is the probabilistic runoff inflow 
volume forecast (the water supply forecast) for several standard multi-
month periods, e.g., April-July or April-September, depending on location. 
Water supply forecasts have long been expressed in terms of at least three 
quantiles—10th, 50th (most probable), and 90th—although other quantiles 
such as the 30th and 70th are also produced for some locations.  

Statistical water supply forecasts are generated operationally by the NRCS 
National Water and Climate Center (NWCC) using principal components 
regression. The NRCS provides statistical water supply forecasts for 
approximately 1000 points across the West, overlapping in many locations 
with RFC forecast points. The CBRFC also develops statistical water supply 
forecasts (which it calls SWS forecasts) by essentially the same method, but 
these are only used for internal guidance comparisons with the dynamical 
ESP forecasts and are not publicly released. Statistical forecasts are 
described in detail later in this chapter.  

Operational dynamical water supply forecasts are produced only by the 
CBRFC, using ESP methods. For decades, the CBRFC and NRCS coordinated 
their water supply forecasts for their overlapping forecast points (e.g., Lake 
Powell inflows) to provide a single official water supply forecast once a 
month, a process that focused first on reconciling the median forecast and 
then the 10th and 90th percentile forecasts, so that the two agencies 
released identical forecasts for those points. In the Colorado River Basin, 
that explicit coordination ended in 2012, when the CBRFC began providing 
daily water supply forecast updates using ESP methods. The respective 
official forecast values from the CBRFC and NRCS for their overlapping 
forecast points now often differ by up to 10-15% at some locations, 
particularly for early-season forecasts.  

The sub-sections that follow describe in more detail the current practices 
for developing the CBRFC ESP and official water supply forecasts in the 
Colorado River Basin, as well as new developments, including a testbed for 
evaluating mid-range forecasts and their use in reservoir management, and 
relevant efforts by external groups. The NRCS forecasts are also described 
in some detail due to their widespread use. 
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CBRFC operational seasonal forecasts  

Ensemble streamflow prediction (ESP) forecasts (daily, mid-December–July) 
The ESP approach first simulates the hydrologic state of the watershed 
during a model spin-up period ending on the forecast start date (Figure 6). 
The meteorological forcing data for the spin-up period are produced daily 
by the same procedures as described in the section on short-range 
forecasts. The initial hydrologic state forms the starting point of an 
ensemble of forecast simulations that are driven by historical sequences of 
temperature and precipitation as model inputs (Figure 8.6).  

The start and end dates for historical input sequences for the CBRFC have 
generally followed the most recent 30-year World Meteorological 
Organization climate normal period, which is updated every 10 years, hence 
the most recent normal is 1981–2010. So that their forecast inputs would 
incorporate the latest information, including recent dry years, in 2016 the 
CBRFC extended the period of their historical input sequences to 2015, or 
35 years (1981–2015). Although the CBRFC uses a 35-year period of record 
for forecasting, statistics such as percent of average are calculated using 
the 1981–2010 period. The 30-year climate normal period will be updated 
after 2020 to the 1991–2020 period; the CBRFC plans to continue adding 

 
Figure 8.6 

Illustration of an ESP forecast with embedded short-range meteorological forecast, and extension 
into a water supply forecast period for which the runoff volume percentiles are calculated. IHC=initial 
hydrologic conditions, WSF=water supply forecast, QPF and QTF=quantitative precipitation and 
temperature forecasts, respectively. (Source: A. Wood) 



 

Chapter 8. Streamflow Forecasting 306 
 

years used to generate the ensemble, and will likely use a 40-year period of 
record (1981–2020) after the climate normal period is updated. 

For mid-range forecasts at the CBRFC and other RFCs, the general ESP 
strategy of using a suite of historical sequences to represent the 
uncertainty in future climate over the next several months is slightly 
modified by inserting single-value precipitation and temperature forecasts 
for the first 5–10 days for QPF and 10 days for QTF (Figure 8.6). This imparts 
the high skill of short-range weather forecasts to the streamflow forecast, 
but leaves intact the assumption that the weather beyond 5–10 days is best 
defined by the historical climatology. Historically, the QPF and QTF were 
developed by forecasters by merging national gridded predictions from a 
number of sources, including the Weather Prediction Center and the 
Weather Forecast Offices, and CHPS then maps these to the watershed 
model zones. 

The CBRFC QPF input source for the first 24 hours of the forecast period is 
the QPF from the National Blend of Models, and for days 2 through 7 of the 
forecast period, it is the QPF from the NWS Weather Prediction Center. 
The forecasters still have the ability to make changes to QPF and QTF 
before that data gets fed into CHPS, but this should only happen on rare 
occasions. In such cases, QPF and QTF may be further modified on a model 
zone-by-zone basis (e.g., the lower, middle, and upper zones of each 
watershed, see Chapter 6). ESP forecasts both with and without QPF and 
QTF are produced. 

Currently, the ESP workflow is run every day, after the short-range 
forecast is completed. At key times during the water supply forecasting 
period, senior forecasters and the forecasters who are assigned to specific 
river basins (e.g., the Colorado headwaters, the Green River Basin, the San 
Juan River Basin) review and may adjust model parameters when physically 
justified to better simulate streamflow. The soil moisture states are 
adjusted in fall before the snow accumulation season begins, during which 
soil moisture conditions tend to remain in quasi-stasis until the snowmelt 
period begins. As the snow melts in the spring, soil moisture conditions 
that have persisted from the previous fall influence the runoff efficiency, an 
effect that is thought to make up to a 10% difference in expected runoff 
volumes (P. Miller, pers. comm.).   

The CBRFC produces daily ESP forecasts of both unregulated and regulated 
streamflows (Chapter 5). Unregulated ESPs represent natural flow in the 
sense that measured upstream activities (e.g., reservoir operations or 
measured diversions) are estimated and their impacts on flow are reversed 
or backed out. In the regulated ESPs, the effects of reservoir operations 
that are modeled within CHPS as well as known or estimated consumptive 
uses and water transfers are included in the ESP. CHPS models reservoirs 

NOAA National Blend 
of Models QPFs 

 
Link: 
https://sats.nws.noaa.g
ov/~nbm/nbm_graphic
s 
 
 
NOAA Weather 
Prediction Center QPFs 

 
Link: 
https://www.wpc.ncep.
noaa.gov/qpf/day1-
7.shtml 

https://sats.nws.noaa.gov/%7Enbm/nbm_graphics
https://sats.nws.noaa.gov/%7Enbm/nbm_graphics
https://sats.nws.noaa.gov/%7Enbm/nbm_graphics
https://www.wpc.ncep.noaa.gov/qpf/day1-7.shtml
https://www.wpc.ncep.noaa.gov/qpf/day1-7.shtml
https://www.wpc.ncep.noaa.gov/qpf/day1-7.shtml
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with a routine that allows for prescribed releases and fill and spill 
operations following reservoir rule curves and downstream release 
constraints and targets. The regulated ESP forecasts are coordinated by 
forecasters with Reclamation, who provide release guidance for CRSP 
reservoirs, which also informs the official, regulated water supply forecasts.  

The CBRFC produces a range of products from the ESP beyond the 
summary percentile forecast values (10th, 50th, 90th, etc.). Most notably, the 
forecast evolution plot tracks the current ESP forecast from early 
December, once the appropriate adjustments to soil moisture parameters 
have been completed, along with accumulated forecast period runoff, 
annotated with thresholds for climatological means and medians 
(Figure 8.7).  

Another product is a comparative cumulative distribution function (CDF) 
plot, which compares the climatological CDF to the conditional CDF, the 
conditional CDF being the expected range of water supply forecast 
outcomes given current watershed conditions.  

 
Figure 8.7 

A forecast evolution plot showing the changing values of the April-July water supply forecast for 
inflow to Lake Powell in 2017. Daily updating ESP volume forecasts (blue line shows the median 
forecast) and the monthly official forecasts (pink squares) are shown, along with the accumulated 
observed inflow beginning in April and the climatological mean and median inflows for the period. 
(Source: CBRFC. Water Supply Forecast, 
https://www.cbrfc.noaa.gov/wsup/graph/front/espplot_dg.html?year=2020&id=GLDA3) 

https://www.cbrfc.noaa.gov/wsup/graph/front/espplot_dg.html?year=2020&id=GLDA3
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CBRFC official water supply forecasts (monthly, January–July) 
During the water supply forecast season from January through July, the 
CBRFC produces monthly official seasonal water supply forecasts. While 
these are current for the 1st of the month, they are not released until several 
days later, with that lag reflecting the forecasters’ consideration of multiple 
guidance sources for the official forecasts. As noted above, the CBRFC 
increasingly relies on the daily ESP to set the official forecasts, as can be 
seen in the very close correspondence between the median ESP and 
Official 50th percentile forecasts in Figure 8.7. Another source of guidance 
in the development of the official forecast is statistical water supply 
forecasts, both the SWS that the CBRFC still produces in-house and the 
NRCS monthly forecasts described below.  

Historically, the skill of the CBRFC ESP and SWS forecasts had been 
comparable, but more recently the ESP forecasts have shown greater skill 
at most forecast points. The CBRFC provides a verification page on their 
website. An example of the Green River at Green River, UT forecast 
verification, provided in Figure 8.8, shows the ESP forecast is generally 
more skillful than the SWS forecast. The greater skill of ESP forecasts 
shown in Figure 8.8 is generally representative of the vast majority of the 
CBRFC forecast points (P. Miller, pers. comm.).  

 

The statistical forecasts are trained to be statistically reliable, meaning that 
they have uncertainty bounds that verify against the observed error, 
whereas the bounds of the ESP forecasts become increasingly unreliable 
(“underdispersive”) as the water year progresses toward the annual snow 

 
 

Historical Water Supply 
Verification 

 
Link: 
https://www.cbrfc.noaa
.gov/arc/verif/verif.php 

Figure 8.8 

Comparison of seasonal (April–July) 
forecast skill between CBRFC ESP 
(dynamical) and SWS (statistical) methods 
at various lead times as indicated on the 
x-axis for the Green River at Green River, 
UT forecast point (GRVU1). Skill scores 
were calculated from reforecasts for the 
1981-2010 period. (Source: CBRFC; 
https://www.cbrfc.noaa.gov/rmap/wsup/p
oint.php?rfc=cbrfc&id=GRVU1&wyear=20
17&mode=reverif&qpf=0&showesp=1&s
howunapp=0&showoff=1&showobs=1&s
howmm=1&showhvol=0&mode=reverif) 

https://www.cbrfc.noaa.gov/arc/verif/verif.php
https://www.cbrfc.noaa.gov/arc/verif/verif.php
https://www.cbrfc.noaa.gov/arc/verif/verif.php
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
https://www.cbrfc.noaa.gov/rmap/wsup/point.php?rfc=cbrfc&id=GRVU1&wyear=2017&mode=reverif&qpf=0&showesp=1&showunapp=0&showoff=1&showobs=1&showmm=1&showhvol=0&mode=reverif
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peak. This is because the single initial condition used in ESP does not 
reflect the model uncertainty, which has its greatest impact when the 
contributions to spring runoff are strongly contained within the model 
snow and soil moisture storages rather than in the future climate, as is the 
case early in the season. This issue was detailed in Wood and Schaake 
(2008) along with a post-processing approach to correct for it. The CBRFC 
evolution plot (Figure 8.7) shows both a daily updated ESP and a periodically 
updated official forecast. Although the raw SWS is not shown on the plot, a 
merging between ESP and SWS may be apparent later in the season, as the 
more statistically reliable and wider SWS bounds extend the official 
forecast range beyond the narrower ESP bounds.   

Applications of CBRFC forecasts in the basin 
The daily ESP forecasts serve many water management clients. Utilities 
such as Denver Water and the Metropolitan Water District of Southern 
California use them as input for reservoir system models. Most notably, the 
ESP median trace makes up the most skillful part of the 24-Month Study 
(24MS) for Reclamation’s management of Lakes Mead and Powell. The 
specific forecast products that are used as inputs into 24MS, depending on 
lead time and season, are shown in Figure 8.9 and explained in detail in 
Chapter 3. As noted in the following section describing the Upper Colorado 
Forecast Testbed, alternatives for various inputs to 24MS are being 
evaluated. The full ESP ensemble is used in MTOM, which provides an 
alternative projection (out to 5 years) of Lakes Mead and Powell 
management.  

Conditional ESP input generation approaches  
As noted earlier, the primary operational methods for seasonal forecasting 
do not generally incorporate climate information specific to the forecast 
period, and instead rely on the initial hydrologic condition signal. For this 
reason, throughout most of the history of seasonal forecasting, operational 
predictions were only issued after the start of the snow accumulation 
period (e.g., starting January 1) due to the initial hydrologic conditions 
signal provided by SWE and similar information. Yet, a number of studies 
have shown a benefit from using climate information (Wood and 
Lettenmaier 2006; Mendoza et al. 2017; Wetterhall and Di Giuseppe 2018). 
Climate information can come in the form of an expected tendency (e.g., 
wet and cool) based on historical relationships with the observed climate 
system state (e.g., El Niño), or from a model-based climate forecast 
(Chapter 7). As noted previously, the HEFS that is part of CHPS is an 
important effort toward providing a mechanism for including climate 
forecasts in seasonal and longer ensembles, which would fill a long-
recognized potential gap.  
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ESP post-processing and trace weighting 
Ensemble trace weighting is one of the most common approaches for post-
processing ESP forecasts to incorporate a climate signal. Hamlet and 
Lettenmaier (1999) used the current ENSO index to select ESP traces from 
ensemble members from years with similar ENSO conditions, while 
discarding other traces, which improved seasonal streamflow prediction 
skill for rivers in the Pacific Northwest.  

A simple category selection technique was generalized by Werner et al. 
(2004) to allow a local weighting of ESP members based on similarity to 
current climate conditions. For instance, in an El Niño year, historical input 
sequences from El Niño years in the past would have high weight, while 
those from La Niña years would still be included but with a very low weight. 
Similarity can be defined by any hydroclimate factor deemed relevant or 
likely to add skill, though Werner et al. (2004) used climate indices. More 
recently, Bradley, Habib, and Schwartz (2015) further demonstrated that 
ESP trace-weighting can improve forecast skill, assuming that informative 
covariates (i.e., predictors like ENSO state in the Pacific Northwest), are 
available for the basin of interest (Beckers et al. 2016).   

The trace-weighting technique is more straightforward to implement than 
methods that require the pre-generation of conditional forcings (Wood and 
Lettenmaier 2006; Verdin et al. 2018; or the MEFP approach). It is important 

 
Figure 8.9 

The specific forecast products that go into Reclamation’s 24-Month Study. Greater detail and 
explanation for this figure is provided in Chapter 3. (Source: Reclamation) 
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to recognize, however, that trace-weighting can only reshape the 
distribution of an ESP forecast within its original distributional bounds 
(Mendoza et al. 2017). This potentially limits the impact of trace-weighting 
if the ESP forecasts are biased, in contrast to techniques that are 
unconstrained in harnessing climate-based predictability.  

Several forecast centers have experimented with trace-weighting or post-
weighting in the past, in particular using the NOAA Climate Prediction 
Center’s official climate forecasts (Chapter 7) as a conditioning factor, or 
using popular climate indices, such as Niño 3.4 for ENSO. During several 
past strong ENSO events, the CBRFC has weighted the historical years for 
their ensemble streamflow forecasts for Lower Basin forecast points to 
account for historical ENSO influences on Lower Basin winter and spring 
precipitation: during an El Niño event, the historical La Niña years (based 
on Niño 3.4) were removed from the ensemble, with the reverse for La Niña 
events. The CBRFC would also “nudge” the official forecasts according to 
this “ENSO ESP” output. However, there has been no formal verification 
showing that the ENSO ESP is more skillful than the normal ESP that 
includes all years; the Lower Basin forecast errors in spring 2016 were 
especially large because the expected influence from the very strong El 
Niño event that year was not realized (P. Miller, pers. comm.) The CBRFC 
plans to develop more rigorous verification and a revised method for 
incorporating ENSO influences into Lower Basin water supply forecasts. 

Independent of whether or not trace-weighting is incorporated into official 
NWS forecast products, users can apply trace-weighting to the ESP 
forecasts generated by the RFCs. Reclamation is currently investigating 
whether new climate forecast products from the National Multi-model 
Ensemble (NMME) may be useful for enhancing the skill of statistical and 
ESP based forecasts. In the Upper Colorado River Basin, Baker (2019) used 
an ESP trace weighting scheme—the K-nearest neighbors (K-NN; 
Gangopadhyay et al. 2009) analog identification technique—to weight 
traces based on NMME 1-month and 3-month temperature and 
precipitation forecasts, and also the preceding 3-month average observed 
streamflow. This analysis was conducted to guide further analyses and 
modeling within the Colorado River Basin Streamflow Forecast Testbed 
(see section 8.6). Each predictor used in analog selection were prescribed 
an importance weight. Weights were calculated separately for four sub-
basins (the Gunnison, the Green, the San Juan, and the Colorado mainstem, 
including the headwaters), and the flows from each were recombined into a 
new, larger ensemble of Lake Powell unregulated inflow forecasts. Analysis 
of the runoff season unregulated Lake Powell inflow showed that the 4-
basin K-NN method is more accurate, as measured by the root mean 
squared error (RMSE), than basin-wide K-NN or the standard ESP through 
all leads (Figure 8.10).  

Niño 3.4 Region 
Equatorial Pacific Sea 
Surface Temperatures 

 
 
Link: 
https://www.ncdc.noaa.
gov/teleconnections/en
so/indicators/sst/ 

https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/
https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/
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A probabilistic skill score, the Continuous Ranked Probability Skill Score 
(CRPSS) shows median improvements in December–February but a broader 
spread, with some forecasts ending up worse than ESP. The CRPSS 
accounts for both mean and spread errors, thus the fact that the K-NN-
weighted ESPs tend to be under-dispersive may suffer when assessed by 
this score. In any case, this work is exploratory and other variations on this 
approach will need to be investigated. In particular, the use of more skillful, 
shorter-range weather and climate predictions (1-3 week) and data-driven 
approaches to predictor selection could be worthwhile.   

NRCS operational (statistical) water supply forecasts  
As described above, statistical methods are used to produce operational 
seasonal water supply forecasts (Garen 1992; Pagano, Garen, and 
Sorooshian 2004; Pagano et al. 2014), and have a history extending at least 
to the 1940s (Helms, Phillips, and Reich 2008). Based originally on manual 
snow course observations taken near the first day of each month, these 
regression-based water supply forecasts were the main motivation for the 
deployment of the automated SNOTEL network, which currently supplies 
the SWE and precipitation inputs for the NRCS statistical forecasts. In the 
early 1990s, NRCS switched to principal components regression (PCR) 
models from stepwise multiple linear regression to avoid the multi-
collinearity problem of interrelated predictors, an issue because SNOTEL 

 
Figure 8.10 

Skill scores averaged over a multi-year hindcast for Apr-July Lake Powell unregulated inflow. The 
streamflow forecasts generated by “standard” ESP, a basin-wide K-NN trace-weighted ESP, and 4-
basin K-NN trace-weighted ESP are compared at leads of 12 months (left side of each plot) to 1 
month (right side of each plot). The plot on the left shows the Continuous Ranked Probability Skill 
Score (CRPSS), in which a higher value is better; the plot on the right shows the Root Mean Squared 
Error (RMSE), in which a lower value is better. (Source: Baker 2019). 
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stations in the same basin will depict similar precipitation and SWE 
anomalies. For daily updating automated (but not official) water supply 
forecasts, the NRCS also uses a variant on the statistical forecast method 
called Z-score regression (Pagano et al. 2009). 

The most typical streamflow predictors for forecasts in the Colorado River 
Basin are point-based observations at the SNOTEL stations: water-year-to-
date accumulated precipitation, and current snow-water equivalent. In 
other basins, antecedent streamflow may be used as predictors, as well as 
ENSO indices. For downstream locations, forecasted flow volumes for the 
upstream locations are routed downstream, and become key predictors in 
the regression equations. Recent research by Harpold et al. (2017), funded 
by NRCS, explored the value of including soil moisture (from in situ 
observations) as predictors in NRCS equations, finding that they have 
potential to improve skill. Earlier, Rosenberg, Wood, and Steinemann (2011) 
showed that the inclusion of modeled estimates of basin SWE and soil 
moisture in the PCR framework could outperform the use of in situ 
observations alone. Lehner et al. (2017) showed gains of up to 5% in forecast 
skill by including temperature predictions from the Climate Prediction 
Center’s North American Multi-Model Ensemble, or NMME, as predictors in 
the NRCS water supply forecast, a strategy that was then evaluated 
internally by NRCS. These experimental findings illustrate that the 
statistical framework provides flexibility to incorporate new types of 
predictors, whether from observations or models, should they be found to 
provide increases in forecast skill.   

To facilitate forecast equation development, NRCS uses a Microsoft Excel-
based tool called VIPER (Garen and Pagano 2007). This tool allows the NRCS 
to quickly evaluate different predictor combinations with diagnostics on 
performance and predictor coverage.  

Seasonal hydrologic prediction from global forecasting initiatives  
Two international operational forecasting centers, the ECMWF and SMHI, 
are now producing naturalized seasonal hydrologic runoff forecasts for the 
entire globe (Figure 8.11). Although these efforts are in the initial stages, it is 
worth mentioning them as possible harbingers of future development. Both 
systems are based on the ECMWF System 5 seasonal meteorological/ 
climate ensemble forecasts, which are widely regarded as the most skillful 
in the world. However, to date, their skill has not been specifically 
evaluated over the Colorado River Basin.  
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Forecast verification 
Verification is the practice of assessing the multi-faceted quality of 
forecasts in terms of commonly understood metrics of accuracy, reliability 
and skill. Verification is widely recognized as a critical aspect of the 
forecast process—essential for identifying and diagnosing weaknesses in 
the forecast approach, objectively benchmarking new developments against 
an existing system, and communicating forecast usability to stakeholders 
(Welles et al. 2007; Demargne et al. 2009; Welles and Sorooshian 2009). It 
has long been a standard practice in meteorological forecasting centers, 
which track year-over-year progress on “headline scores” such as the 
anomaly correlation (AC) of the 500-millibar height field.  

In contrast, hydrologic forecasts undergo verification less systematically, 
and the verification that is performed is rarely made public or published in 
an organized fashion, with one notable exception described below. There 
are no comparable, widely used headline scores for hydrologic predictions, 
either short-range or seasonal. For developers, it can be difficult or 
impossible to gage whether a new forecasting approach is better than the 
existing, official forecasting approach because no consistent (i.e., 

 
Figure 8.11 

GLOFAS based seasonal predictions over western South America. (a) forecast map showing points 
and anomalies; (b) predicted flow over 4 months with uncertainty bounds; (c-d) probabilities of being 
significantly below and above normal in future forecast months. (Source: Emerton et al. 2018. © 
Authors 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Link to 
license: https://creativecommons.org/licenses/by/4.0/legalcode. Link to work: https://www.geosci-
model-dev.net/11/3327/2018) 

https://creativecommons.org/licenses/by/4.0/legalcode
https://www.geosci-model-dev.net/11/3327/2018
https://www.geosci-model-dev.net/11/3327/2018
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reproducible) operational forecast dataset exists, and metrics for the 
forecast track record are not readily available. Real-time operations tend to 
upgrade and evolve steadily, thus the track record of real-time forecasts 
over time is not consistent with the current system in operations. 

Both the NWS RFCs and NRCS have made greater efforts recently to 
produce and make public verification metrics. Notably, the CBRFC offers 
more online verification than nearly all other RFCs. For short-range 
forecasts, the CBRFC shows visual displays of recent forecasts and also of 
past years’ forecasts versus observations, together with a number of 
statistics for the year. However, long-term verification metrics such as bias, 
error, correlation, and various indices of reliability are not calculated. For 
mid-range forecasts, the CBRFC website offers extensive verification plots 
for each forecast point, accessed via the forecast evolution plot for that 
point. These verification plots show the skill and error of the actual official 
seasonal forecasts vs. observations over the past 30 years or so, and also of 
the retrospective hindcasts (i.e., reforecasts) that are produced using the 
current forecast procedures. Also available are maps that show the % error 
of the official seasonal forecasts, by month of issuance, for the years from 
2014 to present, as well as a map of the average absolute % error across a 
longer record of official forecasts (Figure 8.12).  

The latest version of the NRCS Interactive Map (5.0) allows users to 
generate similar maps of forecast errors for the NRCS monthly official 
seasonal streamflow forecasts, by month of issuance, for any year back to 
the 1940s, though most forecast points have been active since the 1970s. 

8.5 Interannual to decadal hydrologic prediction (year 2 
and beyond) 

Most operational mid-range predictions focus on lead times of up to one 
year, but the large storage capacity on the Colorado River drives the need 
for even longer lead forecasting to support management, as exemplified by 
Reclamation’s 24MS operations model, which requires inflow forecasts 
extending to two years (Chapter 3). The predictive value of the initial 
watershed moisture conditions (snowpack and soil moisture)—which is so 
critical to seasonal streamflow forecasting (i.e., year 1)—is essentially non-
existent by the beginning of year 2, let alone further out. Thus, predictive 
skill for streamflow forecasting at year 2 and beyond can only come from 
skillful prediction of climate conditions that far out—which falls into the 
realm of decadal climate prediction (years 2–10).    
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Decadal climate prediction is a rapidly evolving field that has recently been 
boosted by the increasing availability of initialized climate model runs that 
have been performed to assess whether climate predictability exists at 
decadal time scales. These decadal predictions use the same climate 
models (i.e., global climate models; GCMs) and prescribed greenhouse gas 
forcings as their better-known counterparts, the multi-decadal climate 
change projections (Chapter 11). However, the decadal predictions have one 
key difference, which is that the climate model runs are initialized with 
observed or reanalyzed current conditions, at least to the limited extent 
that they can be comprehensively estimated, in a manner similar to the 
initialization of weather forecast models (Chapter 7). For instance, deep 
ocean variables (which are not included in weather models) cannot be 
directly observed, although they are known, based on model simulations, to 

 
Figure 8.12  

Water supply forecast verification map showing the average % error (difference between forecasted 
and observed streamflow) of the April 1st official forecasts of April-July streamflow for forecast points 
in the Upper Basin and adjacent portions of the CBRFC forecast domain. Most forecast points have 
had a forecast error between 10-25%. The period for most gages is 1991-2019. Note that the 
forecast process has evolved over time, and the historic skill may differ from the current forecast skill. 
(Source: CBRFC Water Supply Verification 2019); explanation available at 
https://www.cbrfc.noaa.gov/arc/verif/verify.year.web.pdf) 
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strongly influence decadal climate. Although experimental, these decadal 
predictions are being investigated for their potential to provide skillful 
forecasts for sectoral applications, such as water resources management. 

Because of the high computational cost of running the decadal predictions, 
most performed thus far use only small (10-member) ensembles, which is 
likely too small to extract a reliable forecast signal given the noise of 
natural variability that is present at interannual to decadal time scales. An 
initialized, large ensemble of decadal predictions using NCAR’s Community 
Earth System Model (CESM) was released in 2018 (Yeager et al. 2018). This 
ensemble includes 40 members. NCAR also has a corresponding un-
initialized 40-member large climate projection ensemble from CESM that 
uses the exact same model configuration and forcings and can be used for 
an “apples-to-apples” comparison of model performance over the historical 
period (Kay et al. 2015).  

Decadal predictions have shown modest skill for temperature (Yeager et al. 
2018), but decadal precipitation forecasts have not been skillful. To a large 
degree, the skill of decadal predictions of temperature results from 
warming trends that can be prominent at regional scales (Chapter 2). There 
is some evidence that low frequency (i.e., decadal and longer) ocean 
temperature variability, in the form of climate indices such as the PDO and 
AMO can be linked to southwestern U.S. drought (Chapter 2), but skillful 
precipitation-related predictions for specific regions and individual years 
beyond year 1 have not yet been conclusively demonstrated.  

Towler, PaiMazumder, and Done (2018) evaluated the use of decadal 
temperature predictions from the Community Climate System Model, 
version 4 (CCSM4) for watershed-scale applications. Raw predictions were 
translated to the local scale by several methods that have been used 
previously in the seasonal forecasting context. In one, the decadal forecast 
median temperature anomaly (i.e., the difference from climatology) was 
added to an observed climate variable, e.g., a time series or climatology of 
daily temperature observations. In another, the climate forecast was 
translated into tercile probabilities relative to the model climatology (e.g., 
below normal, normal, and above normal) and the observed watershed 
climatology was resampled according to the tercile probabilities or weights. 
A third method was a hybrid of the first two, in which the resampled 
forecast is shifted so that its median matched the anomaly forecasts. The 
study evaluated one decadal forecast (for 2011–2015) in two watersheds, 
one of which is the South Platte River drainage in Colorado, and found that 
all of the methods improved the temperature forecast at the local scale 
(which was for much warmer temperatures than the 1981–2010 
climatology), with the anomaly and hybrid methods performing best. 
Because the study did not evaluate multiple forecasts (e.g., to build a 
sample of performance statistics), as is typical in forecast method 
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evaluation studies, the results are not statistically robust. They do, 
however, align with the general expectations for a temperature forecast, 
which is that due to the strong observed warming trend, more recent years 
in the record are warmer than any longer-term climatology, and most 
initialized climate models capture this trend in sign if not always in 
magnitude. The same cannot be said to be true of decadal precipitation 
forecasts, unfortunately. 

It may be worthwhile to evaluate not only decadal forecasts from other 
models, and across a larger forecast events sample, but also against more 
direct benchmarks such as persistence (i.e., taking the distribution of the 
most recent 5-10 years as a forecast) or extrapolation of the temperature 
trend, to assess whether climate model decadal forecasts add marginal skill. 
If they can capture some of the drivers of decadal variability (such as multi-
year ENSO), this additional marginal skill may be possible. In general, 
decadal climate forecast analyses have not shown significant multi-year 
skill except in certain windows of opportunity, such as the start of the 
double El Niño in 1990. The coming years may yield greater opportunities 
to explore their potential for informing hydrology and water management 
at regional scales, e.g., as the DecadalMIP runs that are part of the CMIP6 
effort become available (Chapter 11).  

In addition to the model-based decadal prediction activity described above, 
there is a small body of literature focused on “year 2” climate and 
hydrology. Some of this work has been sponsored by Reclamation and has 
used empirical approaches—i.e., statistically linking observations of climate 
system variables such as sea surface temperatures or other 
integrative/lagged observations to regional climate. One example is Lamb 
(2010), in which sea-surface variability in a region off the east coast of Japan 
was linked to year 2 hydroclimate in the Colorado River Basin. More 
recently, Wang et al. (2018) characterized a lagged relationship between 
Great Salt Lake levels, which integrate climate influences over multiple 
years, and Upper Basin streamflow. Relationships of this type need to be 
scrutinized carefully and treated with some skepticism, because it is well 
known that spurious correlations can arise from the analysis of small 
samples, and analyzing seasonal variability from the relatively short 
historical record provides only a small sample. DelSole and Shukla (2009) 
provide an excellent description of the artificial skill that appears if such 
analyses are not performed with proper cross-validation, showing that 
patterns that appear informative can result from random noise. Recent 
interest in a New Zealand Index that appears to have more mid-range 
predictability for southwestern U.S. rainfall than the long-used ENSO 
indices may be another example of such a study in which inadequate 
predictor screening and cross-validation has been applied, and 
predictability is overstated. See Chapter 2 for more information about 
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sources of multi-year hydroclimatic variability and efforts to deploy this 
information for prediction. 

In the context of the 24MS, the lack of convincing predictability for year 2 
climate and hydrology in the Upper Basin means that the specification of 
year 2 inflows (as shown in Figure 8.9) is simply the climatology—i.e., the 
average of historical inflows. As interest has grown in improving the 
accuracy of the 24MS projected system conditions, Reclamation has 
constructed a testbed for evaluating two-year inflow projections, and this 
testbed is described in the following section.  

8.6 The Colorado River Basin Streamflow Forecast Testbed 

The generation and advancement of seasonal and longer forecasts, out to 
lead times of one year, is generally viewed as the operational responsibility 
of the NWS and the RFCs because any advancement in capability that will 
serve Reclamation water management must be operationalized within a 
forecast center or other NOAA office. Although experimental research 
efforts may provide usable products (e.g., the Westwide Hydrologic 
Forecast System of Wood and Lettenmaier 2006), water managers are often 
mandated to use official products from government agency sources. As 
noted in Chapter 7, NWS has invested in development of improved sub-
seasonal and seasonal ensemble climate forecasts, but not in advancing the 
predictions of year 2 climate. Due to the importance of year 2 conditions 
for the Colorado River Basin, Reclamation launched an effort in 2016 to 
assess and compare year 1 and 2 inflow predictions for the basin using the 
Mid-term Probabilistic Operations Model (MTOM). MTOM simulates 
operational conditions such as reservoir operations and operating tiers 
(Chapter 3). 

This effort created a testbed, a platform for running MTOM with either the 
existing operational streamflow forecasts or experimental forecasts, to 
analyze the impacts on system management. The testbed provides a 
protocol for evaluating streamflow forecasts and the skill of the resulting 
hydrologic and operational projections over a 2-year period. Figure 8.13 
shows the framework for the Colorado River Basin Streamflow Forecast 
Testbed. Streamflow forecasts are input and run through MTOM to output 
operational projections for the basin reservoirs, using a monthly time step 
to the end of the second water year. Streamflow forecasts are evaluated 
with metrics that compute the error, skill, spread, and reliability of the Lake 
Powell annual unregulated inflow. Operational projection metrics assess 
the errors of MTOM projected pool elevation, storage, outflow, and 
operating tiers at Lakes Powell and Mead.  
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The testbed framework utilizes the RiverWare Study Manager and Research 
Tool (RiverSMART). RiverSMART facilitates the execution of RiverWare 
models such as MTOM, allowing for easy repetition to explore alternatives, 
e.g., different hydrology scenarios, demand scenarios, and operating 
policies. The setup of the testbed in RiverSMART is illustrated in Figure 8.14. 
A combination of Run Range, DMI (Data Management Interface), and MRM 
(Multiple Run Management) options allow RiverSMART to simulate 
forecasts with different run lengths, number of traces, and input format. 
The scenarios use one model, MTOM, and one ruleset, to simulate reservoir 
operation according to the 2007 Interim Guidelines. The basin-wide 
conditions and reservoir operations from each simulation are output to 
CSV files that are read into R scripts to analyze the streamflow forecasts 
and operational projections for hydrologic and operational skill. 

The testbed has been used to evaluate both deterministic and probabilistic 
streamflow forecasts. The deterministic “most probable” forecast, which is 
used in the 24MS, was compared to the median ESP trace for the years 
2001–2016. In year 2, both forecasts have large errors, with the Median ESP 
trace performing slightly better at forecasting Powell unregulated inflow 
during this time. Three ensemble streamflow forecasts—Climatology, ESP, 
and 4-Basin K-NN—were compared from 1982–2016. (Figure 8.10 shows a 
related analysis: the skill of the ESP, 4-basin K-NN, and Basin-wide K-NN 
ensemble streamflow forecasts over year 1.) To support the testbed 
analyses, the CBRFC provided 30 years of hindcasted ESPs.  

 
Figure 8.13 

Colorado Basin Streamflow Forecast Testbed framework. (Source: adapted from Baker 2019) 
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In year 2, all forecasts have good resolution and reliability, but they lack 
skill (See Chapter 7 for explanations of these terms). The skill of both the 
ESP and 4-Basin K-NN forecasts increases above climatology in the fall of 
the out-year, likely due to the knowledge of antecedent basin conditions 
such as soil moisture. At shorter leads during the runoff season, ESP and 4-
Basin K-NN have poor resolution and reliability. The resulting modeled 
reservoir operations showed that all forecasts produced large errors in 
projected pool elevation at Lakes Powell and Mead in year 2. These errors 
in projected pool elevation decrease with shorter leads, especially by April. 
These findings are detailed in Baker (2019). 

The testbed analyses performed so far have already led to changes in how 
Reclamation produces operational mid-term projections. Reclamation 
regularly produces, using MTOM, a 5-year table of future basin conditions 
and reservoir operations in the Colorado River system. This table was 
originally produced using the natural flow record (1906–2017) run through 
CRSS to simulate reservoir operations for the full 5-year table. Based on the 
results of the testbed analyses, Reclamation now uses the ESP streamflow 
forecast run through MTOM to project reservoir operations for year 1, and 
then uses CRSS projections for the subsequent 4 years of the table. See 
Reclamation’s webpage for more information on this table. 

 
Figure 8.14 

Testbed application within RiverSMART. Arrows depict the direction of data flow and process. 
(Source: Baker 2019) 

Colorado River System 
5-Year Projected Future 
Conditions 
 
Link: 
https://www.usbr.gov/l
c/region/g4000/riverop
s/crss-5year-
projections.html 

https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
https://www.usbr.gov/lc/region/g4000/riverops/crss-5year-projections.html
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8.7 Challenges and opportunities  

Seasonal and longer streamflow forecasts will always contain uncertainty, 
thus the multi-faceted challenge facing scientists, forecasters and water 
managers is to identify operationally robust strategies to enhance the skill 
and reduce the forecast uncertainty, while facilitating further research into 
improving forecasts. There are three primary pathways toward improving 
streamflow forecasts. The first is improving predictability arising from 
initial watershed conditions. The second is improving predictability arising 
from future climate states. The third is improving the forecasting paradigm 
to allow for reproducibility, benchmarking, and steady capability and 
workforce development as the datasets, models and methods evolve. The 
sub-sections below discuss opportunities in each area.  

Meteorological inputs 
Model meteorological inputs are critical to model performance. There is 
currently no high-quality, high-resolution, real-time meteorological 
analysis that uses all available (and useful) multi-sensor information, and 
provides 1) consistency to the extent possible between real-time and 
retrospective forcings; and 2) uncertainty information in the form of 
ensembles or statistical metrics. Potential opportunities for improvement 
include continued development of high-resolution datasets of near-surface 
weather; enhancement of ensemble forcing procedures to incorporate 
numerical weather prediction and radar and satellite information; and 
statistical adjustments to improve real-time to retrospective consistency. 

Harnessing watershed predictability 

Modeling  
It is often noted that the current operational model suite for the forecast 
centers are legacy NWS river forecast system models that were introduced 
in the 1970s, and that hydrologic modeling has advanced since then in 
various contexts: process-oriented watershed modeling (e.g., the 
Distributed Hydrology Soil Vegetation Model), land-surface models (e.g., 
VIC model), and more recently coupled land surface models that 
incorporate increasingly complex representations of water and energy 
balance physics (e.g., Community Land Model). Not surprisingly, there has 
long been the view that better streamflow forecasts can be obtained by 
upgrading from legacy models to more complex and physically oriented 
models.   

The National Water Model is the latest NWS-led effort in this direction, 
following the decade-long effort to introduce the coarser Hydrologic 
Laboratory-Research Distributed Hydrologic Model in the RFCs for 
streamflow forecasting. A more recent example is the recently completed 
partnership between the CBRFC, RTI, and Utah State University under 
NASA funding to implement an 800m version of HL-RDHM over the Upper 
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Colorado River Basin for forecasting, and to assimilate MODIS-based snow 
cover imagery.  

Outside of the NWS, there have been, or are, multiple forecasting activities 
based on different modeling implementations. Notable research efforts 
have included the aforementioned NOAA-funded, VIC-based, Experimental 
West-Wide Seasonal Hydrologic Forecasting System at the University of 
Washington, which ran in real-time over five years, producing ESP and 
enhanced ESP forecasts and allowing for automated data assimilation. 
Where calibrated, the VIC-based water supply forecast predictions 
appeared to have comparable skill to the RFC water supply forecasts. 
Private-sector efforts also exist, providing short- and mid-range forecasts 
to reservoir management clients, though these are not well documented.  

The modeling advances over the last three decades and their 
demonstration in forecasting contexts have not altered the reliance of RFC 
operational practices on the legacy models. There is a clear scientific 
rationale for enhancing the physics of the legacy models in many forecast 
cases: for instance, where key runoff generation processes are missing 
from the models, or where the spatially lumped models cannot represent 
watershed process heterogeneity sufficiently to represent streamflow 
dynamics adequately. Examples of the former are when parts of watersheds 
have burned, which would require different forest cover depictions; or 
where soil cracking, surface ponding or frozen-ground effects are 
important. An example of the latter is where the differential timing of snow 
accumulation and melt in a watershed needs to account for myriad spatially 
variable factors including elevation, aspect and canopy coverage.  

Yet implementing modeling advances faces major hurdles for operational 
flow prediction in both the current in-the-loop forecast paradigm and a 
potential over-the-loop workflow. The manual forecaster practice requires 
relatively low-dimensional (i.e., simpler) models in which model states can 
be interactively adjusted, which limits the complexity of the modeling 
structure and physics. It would be impossible for a forecast expert to adjust 
model states in a high-dimensional model, especially in real-time. And 
some of the manual adjustments, especially in real-time flooding situations, 
are critical for incorporating timely updates of management effects such as 
spillway releases. The models also must run relatively fast to be supportable 
on current forecast center computational infrastructure—which does not 
include supercomputing. Also, significantly, the models must be amenable 
to calibration, yielding high-quality streamflow simulations, which means 
both that they must be fast, since calibration requires 100s to 1000s of 
repetitive simulations, and that forecasters have a comprehensive 
understanding of parameter sensitivities.  
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The inability, thus far, of agencies and research groups to adequately 
calibrate more complex models (e.g., the National Water Model) for 
streamflow simulation has been a major factor blocking their adoption. 
Complexity that raises the computational demand of forecasting to the 
extent that various techniques such as data assimilation, hindcasting or 
mid-range ensemble prediction are infeasible is also a detriment. At 
present, for instance, the National Water Model runs 30-day lagged-
ensemble forecasts, which are not sufficient for many water management 
applications. In contrast, coarser-resolution systems such as the 
WorldWideHype system run full-ensemble forecasts for multiple seasons 
ahead. 

In summary, modeling advances hold potential to improve operational 
forecasting, but their potential uptake requires several major, challenging 
scientific and technological upgrades. Simply investing in a new model 
implementation alone without supporting science and methods (as 
discussed in Chapter 6) is unlikely to yield improved predictions in the near 
term. Therefore, the most promising research opportunities include:  

• Effective approaches for regional parameter estimation (calibration) in 
more complex watershed process models to enable model streamflow 
simulations on a par with the performance of current legacy models. 
RTI is currently working with the CBRFC on a modeling effort to 
improve the CBRFC’s estimation of consumptive use. 

• Effective approaches for automated hydrologic data assimilation, to 
replace the many manual adjustments made by expert forecasters and 
enable skillful over-the-loop systems.   

• Automated interoperability of water management decisions and river 
basin modeling systems, to replace the manual incorporation of 
management effects like releases and diversions.  

Some funding toward these aims has been made available in recent years 
through the NOAA Office of Weather and Air Quality program, but it is 
almost entirely focused on the high-resolution National Water Model and 
National Water Center-based forecasting, rather than being more generally 
targeted toward advancing hydrologic prediction science, regardless of the 
specific modeling platform.  

In addition, research is needed to identify clearly, from a process and 
information standpoint, where and why additional complexity should be 
expected to improve a particular streamflow forecast product, whether 
short- or mid-range. Experience has overwhelmingly shown that the 
greater complexity in resolution or in process representation does not 
guarantee improved streamflow simulation and prediction. Often, the 
reverse is true, thus evidence-based arguments for such advances must be 
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sharpened, identifying particular forecast applications in particular 
hydroclimatic settings, to avoid prolonging unproductive model 
development initiatives.  

Improving watershed observations 
There is little question that more extensive monitoring of watershed 
conditions, either by direct or remote measurements, would benefit 
hydrologic forecasting. The benefits can arise in two ways: 1) improving 
real-time analyses that provide the initial conditions for forecasts, which 
matter most when those conditions provide most of the forecast signal, 
such as in late spring; and 2) improving model implementation by helping 
constrain model parameters and guide structural implementation of those 
parameters.  

In the first case, increased density of real-time measurements of SWE and 
streamflow can reduce uncertainty about forecast model states in real-
time, reducing errors in the forecasts. Increased accuracy in watershed 
precipitation and temperature analyses that drive forecast models will also 
improve real-time states and lessen the need for forecaster manual 
adjustments. Satellite remote sensing of distributed snow cover and dust-
related radiative forcing is currently used by the CBRFC as an ancillary 
source of information to adjust model states, in a semi-quantitative but not 
automated process. The relatively newer high-resolution Airborne Snow 
Observatory (ASO) imagery and other fully spatially distributed snow 
information (Chapter 5) have potential to improve snowmelt runoff 
forecasts by providing more detailed and comprehensive characterization 
of the snowpack. This potential is still being explored.  

Soil moisture observations are also potentially beneficial, though both in 
situ and remotely sensed soil moisture observations (Chapter 5) have not 
been able to supplement, let alone displace, the use of modeled soil 
moisture by the CBRFC and other operational forecasters. In situ stations 
are sparse, insufficiently deep, and typically lack long periods of record, and 
satellite soil moisture imagery is coarse (typically 25-km resolution) and 
lacks information for more than the top 5 cm of the soil. To date, remotely 
sensed soil moisture has not been shown to benefit operational streamflow 
prediction. A number of studies have shown, nonetheless, that the use of 
soil moisture observations or estimates, where available, can increase 
forecast skill. For example, Harpold et al. (2017) achieved a 10-20% 
improvement in statistical water supply forecast prediction using in situ 
NRCS Soil Climate Analysis Network soil moisture measurements to 
supplement SWE and precipitation observations, while Rosenberg, Wood, 
and Steinemann (2011) similarly demonstrated improved statistical water 
supply forecast predictions using a combination of VIC-based modeled soil 
moisture and SWE as predictors. As noted earlier, the current RFC practice 
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of adjusting modeled soil moistures in fall, ahead of the forecasting season, 
recognizes the influence of soil moisture on spring-summer runoff.  

Many of these hydrologic observations (other than soil moisture, due to its 
limited availability) can be used to help evaluate and improve watershed 
models, particularly by extending their assessment beyond a focus on 
streamflow to include more process-specific, distributed variables. Doing 
so increases the chance that when the model is simulating streamflow, it 
achieves good results for the right reasons, i.e., because it simulates 
watershed sub-processes correctly. Evapotranspiration (ET) estimates from 
satellites, models, and hybrid satellite/model approaches (Chapter 5) can 
be used to bracket watershed model ET fluxes and improve the calibration 
of watershed models. It is unclear, however, whether real-time ET 
estimates would benefit real-time streamflow predictions significantly, 
since calibrated models typically can estimate ET relatively well from other 
meteorological forcings.  

There are a number of challenges to effectively using watershed 
observations to improve forecasts, however, and it is common for the 
immediate benefit of new or expanded observations to be overstated by 
groups that have a vested interest in their support, development or 
adoption. One of the primary challenges is that new observations lack a 
long enough record to incorporate into operational forecast practice. 
Watershed models are calibrated over multiple years to their 
meteorological inputs, so, for example, placing a new radar site for 
measuring precipitation yields a new input analysis that the model is not 
trained to handle, and cannot be used immediately in prediction. A number 
of years of operation may be needed before the radar analysis can be 
merged with longer-term observational analyses to provide a multi-sensor 
record that a watershed model can be trained to use. Statistical models 
have similar training requirements; ideally, they are trained on at least 30 
years of predictor observations.  

The new high-resolution ASO snow data (Chapter 5) appears to be a high-
potential-benefit dataset for seasonal streamflow forecasting, although as 
noted earlier a comprehensive analysis to determine its optimal application 
and real marginal value has not yet been performed. For example, it is 
unknown whether ASO SWE estimates early in the season offer more value 
than the use of modeled snow water equivalent, either in physically based 
forecast frameworks or in statistical ones. ASO’s distributed snapshots of 
SWE could possibly be combined with long-term, in situ SNOTEL SWE to 
reconstruct SWE volumes from long-term index stations, achieving better 
predictions and possibly avoiding the need for additional or frequent ASO 
flights. To better understand how much predictive skill ASO snowpack 
information adds relative to conventional seasonal (water supply) 
streamflow forecasts, and to test whether a limited number of targeted 
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ASO flights can be used to improve future forecasts in other basins, 
Reclamation has an ongoing project that focuses on merging high 
resolution airborne snowpack data with existing long-term 
hydrometeorological observations to improve water supply forecasting. In 
another project led by NASA Jet Propulsion Lab and the CBRFC, ASO SWE 
observations are being compared with modeled SWE data to determine 
correlations between the two data sets and assess whether the ASO data 
could have improved past streamflow forecasts for selected basins. 

A number of studies over the last 15 years have tried to show the benefits of 
assimilating snow covered area data from the satellite sensors MODIS and 
Visible Infrared Imaging Radiometer Suite (VIIRS) into hydrology models to 
the benefit of forecasting. These studies have generally suggested minor or 
negligible gains. McGuire et al. (2006) assimilated MODIS snow parameters 
into VIC and found moderate improvements in ESP forecasts for a number 
of locations in Idaho, but in general, relatively few studies exist to assess 
snow covered area assimilation in a mid-range forecasting context. The 
CBRFC has operationalized the input of MODSCAG data from MODIS to 
provide real-time information that can aid the forecasters in adjusting 
model snow covered area (Chapter 5), but has not quantified the impacts of 
these adjustments on seasonal forecast skill. MODIS imagery is often cloud-
obscured in key regions of the West, including the Upper Basin, during 
times when it would be useful, thus its operational utility can be limited.  

By better characterizing watershed conditions and enhancing our ability to 
model watersheds, new or improved watershed observations will generally 
provide a positive return on investment. At certain times of year, when 
initial hydrologic conditions dominate the mid-range forecast signal, 
improved initial condition estimates will directly translate into improved 
mid-range predictions. There is always a need to consider the potential 
benefits of particular siting locations for new in situ observations such as 
SNOTEL sites, to avoid redundant measurements and to optimally fill 
measurement gaps. Rosenberg, Wood, and Steinemann (2013) describe the 
use of VIC modeling to identify optimal placements for new SNOTEL sites 
in the mid-range water supply forecasting context—locations where SWE is 
not highly correlated with existing stations. There are still many forecast 
locations across the western U.S., including the Colorado River Basin, for 
which additional in situ SWE, precipitation, temperature, soil moisture, and 
streamflow measurements could reduce uncertainty in mid-range 
forecasts.  

Spatial observation-based analyses of SWE and soil moisture also have 
great potential to improve the initial conditions for mid-range forecasts, 
but it is critical to recognize that their optimal value will be difficult to 
harness without 1) methodological research into how they may be 
incorporated into a forecast workflow, at the lowest potential cost, and 2) 
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the development of both real-time and multi-year (retrospective) records 
that provide a foundation for research and methodological verification.  

Hydrologic data assimilation 
The current mid-range forecast paradigm relies on forecaster effort to 
adjust model states to be consistent with streamflow observations. To open 
the door for adoption of more complex models, multi-faceted ensemble 
approaches, leveraging supercomputing, and other advancements in 
streamflow forecasting, the research and operational communities must 
develop effective automated hydrologic data assimilation methods that can 
be applied across regional domains. This transition from in-the-loop to 
over-the-loop paradigms took place in the meteorological forecasting 
community several decades ago, but is only beginning to take root in the 
hydrologic forecasting community today.  

The literature is full of small-scale, limited period, case study examples in 
which hydrologic data assimilation has been shown to be beneficial. Liu et 
al. (2012) provide a review of hydrologic data assimilation theory and 
applications, noting that “Despite the overwhelming research into 
hydrologic data assimilation, only a few studies…formulated data 
assimilation in an operational setting and attempted to evaluate the 
performance gain from data assimilation in a forecast mode” and observed 
that “the application of advanced DA techniques for improving hydrologic 
forecasts by operational agencies is even rarer…”. Indeed, despite some 
examples of operational assimilation for short-range prediction, there are 
almost no enterprise-scale hydrologic data assimilation systems in 
existence today. The implementation of a proposed hydrologic data 
assimilation component of HEFS was deferred beyond the current version 
of HEFS. The National Water Model employs a routing-model data 
assimilation approach that adjusts streamflow, but does not attempt true 
hydrologic data assimilation. The Northwest RFC runs a principal-
components based sub-system within CHPS to propose SWE updates for 
their operational models, but forecasters oversee any modifications to 
model states.  

A sample of operational-context hydrologic data assimilation studies 
includes Seo, Koren, and Cajina (2003); Seo et al. (2009); Thirel, Martin, 
Mahfouf, Massart, Ricci, and Habets (2010); Thirel, Martin, Mahfouf, 
Massart, Ricci, Regimbeau, et al. (2010); Weerts et al. (2010); and DeChant 
and Moradkhani (2011a, 2011b). Many of these hydrologic data assimilation 
studies relate to short-range forecasting, but there have also been 
persuasive demonstrations showing skill improvements in SWE assimilation 
for seasonal forecasting. Huang et al. (2017) provided one of the more 
comprehensive illustrations for ESP forecasting in 12 western U.S. basins 
that an ensemble-based hydrologic data assimilation approach with NWS 
forecast models improved the accuracy of seasonal runoff volume 
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forecasts. Bergeron, Trudel, and Leconte (2016) assessed the assimilation of 
streamflow, SWE and snow covered area for distributed model forecasts of 
a watershed in Canada, finding that streamflow assimilation had a general 
benefit throughout the year, assimilation of point SWE observations 
benefitted seasonal forecasts, while assimilation of snow covered area data 
had little benefit.  

It is clear that hydrologic data assimilation would provide a step forward 
for operational flow forecasting, and high-potential techniques exist that 
could be implemented. A particular benefit of automated hydrologic data 
assimilation would be to enable hindcasting that has more consistency with 
real-time forecasting, which would allow for more robust benchmarking 
and evaluation of different forecasting techniques. It thus seems prudent to 
invest in efforts to develop and deploy hydrologic data assimilation, 
particularly for seasonal forecasting (where it is more tractable than daily 
flood forecasting). Due to the nascent nature of the technique’s 
applications in operational settings, it appears likely that the benefits of 
such development will not be immediate, and that experimentation and 
refinement of the implementation will be needed. The long-range potential 
benefit, and particularly the possibility of transforming mid-range forecast 
practice by enabling over-the-loop prediction, could be highly valuable.  

Harnessing climate predictability 
The hydrology research community has been investigating the potential for 
advancing mid-range forecasting through the use of climate information—
either climate system states such as El Niño, or explicit climate forecasts—
for several decades. Hamlet and Lettenmaier (1999) showed benefits of 
trace-weighting using ENSO and PDO indices for mid-range flow 
prediction in the Columbia River Basin, and Wood, Kumar, and Lettenmaier 
(2005) showed the benefits of using climate model forecasts from NCEP to 
enhance ESP prediction skill (though finding a benefit only in strong ENSO 
anomaly years). Other research efforts have confirmed the benefit of using 
climate forecasts from the NMME for in the generation of runoff and soil 
moisture predictions, both in the U.S., e.g., Mo and Lettenmaier (2014) and 
in Europe, e.g., Thober et al. (2015). A recent collection of over 40 papers on 
seasonal streamflow forecasting in the journal Hydrology and Earth System 
Sciences (Wetterhall and Di Giuseppe 2018) included a number of studies 
assessing the value of other climate forecast systems, such as the ECWMF 
System 4 and System 5, to boost the skill of mid-range climate predictions. 
In the U.S., as described earlier, the major pathway to use operational 
climate forecasts in RFC streamflow prediction is embedded in HEFS, but 
this pathway has been little used.  

It is clear that improved sub-seasonal and seasonal climate forecasts would 
have substantial benefit for seasonal and longer hydrologic forecasts, with a 
particular need for forecasts of cool-season precipitation in the main 
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runoff generating regions of the western U.S such as the Upper Basin. Sub-
seasonal and seasonal climate prediction has also long been a major 
scientific challenge, requiring large-scale investments by the Earth system 
research community in improved global-scale observations, climate 
modeling, climate model data assimilation systems, and predictability 
studies. Such work is underway, supported via the research and climate-
services programs of agencies including NASA, NOAA, DOE, DOD, and NSF, 
as well as internationally by multifaceted, multinational initiatives 
(Chapter 7). A major community advance in recent years has been the 
generation of hindcasts to complement real-time forecasts, which allows 
for skill assessment and the training of downscaling techniques for the 
forecasts. Another is the development of multi-model forecast products, 
such as the NMME and SubX.  

There is currently no shortage of techniques for incorporating climate 
information into mid-range hydrologic predictions (e.g., pre- and post-
weighting methods), but the value of doing so is dependent on the skill of 
the input climate information. In locations where sub-seasonal and 
seasonal predictability is stronger, such as the Pacific Northwest and parts 
of California, the application of climate information can provide a moderate 
increase in mid-range hydrologic skill, on the order of 10-20%, depending 
on the forecast location, lead time, and initialization date.  

The Upper Basin is well known as a region of limited skill for sub-seasonal 
and seasonal precipitation forecasts (Chapter 7), but there is hope that 
more regionally tailored, circulation-based analyses of climate variability, 
and climate predictability in steadily evolving climate forecast models, 
could lead to minor to moderate skill improvements in streamflow 
forecasts. Because of the sizable potential value of improved climate 
prediction for seasonal and longer streamflow forecasting, it is advisable to 
continue to monitor progress and invest in analysis and development of 
watershed-scale climate forecasts via both empirical and dynamical 
methods and sources as operational climate forecasting capabilities slowly 
evolve. The current state of the science and practice, and ongoing efforts to 
improve climate forecasts, are described more fully in Chapter 7. 

Developing testbeds to investigate over-the-loop forecast approaches 
NOAA currently has twelve Testbeds and Proving Grounds to facilitate the 
orderly transition of research capabilities to operational implementation 
for such phenomena as severe weather and hurricanes, but lacks a testbed 
devoted to hydrologic prediction. The most relevant testbed is the 
Hydromet Testbed hosted jointly by NOAA's Earth System Research 
Laboratory (ESRL) Physical Sciences Division and the Weather Prediction 
Center, but the focus of that testbed has long been more meteorological 
than hydrological. A major advance over the last decade from that testbed, 
for instance, was the identification and development of predictive 

NOAA Testbeds 

 
Link: 
https://www.testbed
s.noaa.gov/ 
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capabilities related to atmospheric rivers (Chapter 2). The lack of a 
hydrologic forecasting testbed is a critical institutional gap, in that such a 
testbed that would support experimentation and systematic development 
of real-time forecast approaches, including new models, data assimilation 
techniques, post-processing approaches, model calibration techniques, 
climate and weather downscaling methods, verification, and 
communication related to forecasts and decision making. Such a testbed 
could support the transition of new research to operations for both the 
National Water Center and for the RFCs, and build the case for the viability 
of over-the-loop approaches.   

In a piecemeal fashion, advancing individual strategies for better 
harnessing watershed and climate predictability will incrementally produce 
better forecasts, but the more fundamental challenge—and opportunity—is 
to build the institutional capacity in NOAA and other agencies to support 
steady, rational development activities over multiple years. For the most 
part, these will be over-the-loop approaches in which an automated system 
is run with various components, generating hindcasts and real-time 
forecasts, and can be verified and benchmarked against research variations 
that could potentially provide upgrades to the system. The Colorado River 
Basin Streamflow Testbed described earlier shows an example of what can 
be gained from the objective comparison of forecast variations (through 
post-processing) for water management outcomes, though the hydrologic 
forecasts themselves lie outside of the testbed. Reclamation and USACE 
have supported work with NCAR and partners in recent years to develop a 
small-scale example of such a testbed, but much larger scale, more formal, 
multi-agency investment is required, employing or virtually harnessing 
multiple full-time staff, and with strong links to operational forecast 
centers and stakeholder groups. 

A summary of these challenges and opportunities for streamflow 
forecasting is provided below. 

Challenge 
The modeling advances over the last three decades and their 
demonstration in forecasting contexts have not altered the reliance of RFC 
operational practices on the legacy models. There is a clear scientific 
rationale for enhancing the physics of the legacy models in many forecast 
cases, yet implementing modeling advances faces major hurdles for 
operational flow prediction in both the current in-the-loop forecast 
paradigm and the over-the-loop workflow. 

Opportunities 
• Effective approaches for regional parameter estimation (calibration) in 

more complex watershed process models to enable model streamflow 
simulations on a par with the performance of current legacy models. 



 

Chapter 8. Streamflow Forecasting 332 
 

• Effective approaches for automated hydrologic data assimilation, to 
replace the many manual adjustments made by expert forecasters and 
enable skillful over-the-loop systems.   

• Automated interoperability of water management decisions and river 
basin modeling systems, to replace the manual incorporation of 
management effects like releases and diversions.  

Challenge 
There is little question that more extensive monitoring of watershed 
conditions, either by direct or remote measurements, would benefit 
hydrologic forecasting. The benefits can arise in two ways: 1) improving 
real-time analyses that provide the initial conditions for forecasts, which 
matter most when those conditions provide most of the forecast signal, 
such as in late spring; and 2) improving model implementation by helping 
constrain model parameters and guide structural implementation of those 
parameters.  

Opportunities 
• Expansion of real time measurements of streamflow, snow water 

equivalent (SWE), soil moisture, and ET. 
• Methodological research into how observations that are sparse or 

coarse (e.g., soil moisture) or collected as snapshots (e.g., ASO SWE) 
may be incorporated into a forecast workflow. 

• Development of both real-time and multi-year (retrospective) records 
that provide a foundation for research and methodological verification. 

Challenge  
To open the door for adoption of more complex models, multi-faceted 
ensemble approaches, leveraging supercomputing, and other 
advancements in streamflow forecasting, the research and operational 
communities must develop effective automated hydrologic data 
assimilation methods. 

Opportunity 
• Experimentation and refinement of automated hydrologic data 

assimilation, particularly to enable over-the-loop prediction. 

Challenge  
It is clear that improved sub-seasonal (S2S) and seasonal climate 
predictions would have substantial benefit for mid-range hydrologic 
predictions, with a particular need for cool-season precipitation forecasts 
in the runoff-generating regions of the western U.S. Yet, S2S climate 
prediction has also long been a major scientific challenge, requiring large 
scale investments by the Earth system research community in improved 
global-scale observations, climate modeling, climate model data 
assimilation systems, and predictability studies. 
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Opportunity 
• Invest in analysis and development of watershed-scale climate 

forecasts via both empirical and dynamical methods and sources as 
operational climate forecasting capabilities slowly evolve. 

Challenge 
The lack of a hydrologic forecasting testbed is a critical institutional gap. 
Support is needed to transition new research to operations for both the 
National Water Center and for the RFCs, and build the case for the viability 
of over-the-loop approaches.   

Opportunity 
• A testbed would support experimentation and systematic development 

of real-time forecast approaches, including new models, data 
assimilation techniques, post-processing approaches, model calibration 
techniques, climate and weather downscaling methods, verification and 
communication related to forecasts, and decision making.  



Volume IV of the Colorado River Basin State of the Science report focuses on models and methods 
for developing hydrologic traces that represent plausible hydrologic futures and can be run through 
system or planning models to evaluate the potential for outcomes and impacts of interest over the 
next 5 to 50 years. The three main approaches for developing such traces are Historical Hydrology 
(Chapter 9), Paleohydrology (Chapter 10), and Climate Change-informed Hydrology (Chapter 11). 
Long-term hydrologies generated using one or more of these approaches are used as driving inputs 
for Reclamation’s CRSS planning model, as well as similar planning and system models used by other 
organizations. The three chapters in Volume IV provide comprehensive descriptions and 
assessments of the respective approaches and their variants, the data they require, their 
applications, and their tradeoffs. It is important to examine and understand these choices in order 
to select appropriate hydrologic traces for system modeling and risk, and also to interpret the 
output of system modeling that has already been performed.  

Traditional long-term planning methods are based on the assumption that future hydrology will 
have characteristics (average, variance, extremes) similar to the historical observed hydrology. The 
extreme hydrologic drought of 2000–2004, unprecedented in the observed record, highlighted the 
downside of basing expectations for future hydrology only on the observed record (i.e. historical 
hydrology). Clearly, hydrologic behavior outside the range of the past 100 years was, and is, possible. 
Accordingly, the system analyses performed by Reclamation to support the 2007 Interim Guidelines 
included, for the first time, ensembles of hydrologic traces based on tree-ring reconstructions of 
basin paleohydrology. These traces show a broader range of natural variability, including more 
severe and sustained droughts, than those based only on the past century’s observed hydrology 
(Chapter 2).  

Volume IV 
Long-term—Informing the 5-Year to 50-Year Time Horizon 

 
Chapter  9. Historical Hydrology 

Chapter 10. Paleohydrology 

Chapter 11. Climate Change-Informed Hydrology 
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As the dry period that began in 2000 persisted, studies modeling the future impacts of human-
caused climate change on basin hydrology consistently indicated that the 21st century was likely to 
see systematic shifts in hydrologic conditions: earlier snowmelt and runoff, lower runoff efficiency, 
and (with less certainty) a decline in annual streamflow. Because Reclamation and other basin 
stakeholders saw the need to explicitly represent this additional climate change risk in planning 
studies, Appendix U in the 2007 Interim Guidelines laid out a pathway for developing and using 
climate change-informed hydrologic traces. In 2012, the Basin Study formally incorporated a climate 
change-informed ensemble along with traces based on historical hydrology and paleohydrology, 
using Robust Decision Making techniques to assess risks from all scenarios on an equal footing. 

As with the historical hydrology and paleohydrology, a typical analysis of climate change-informed 
hydrology will outline an ensemble of potential future trajectories for basin hydrology. Over longer 
planning horizons (30 years or more), the range depicted by this ensemble is even broader than 
those depicted by historical hydrology and paleohydrology, most notably on the dry side of the 
distribution.  

Several planning studies for the basin have used hydrologic traces that effectively blend information 
from two or more types of hydrology; these are described in greater detail within the listed 
chapters: 

• “Paleo-conditioned” hydrology takes state-transition (wet-dry) information and resamples the 
historical hydrology to create new sequences that reflect paleo-variability (Chapter 10) 

• Delta-method statistical downscaling takes future change factors in temperature and 
precipitation from climate-model ensembles and perturbs the historical climate sequence to 
simulate the historical hydrologic variability recurring under future climate (Chapter 11) 

• Temperature-perturbed hydrology is similar to the above, but uses several prescribed 
temperature change factors to simulate the historical hydrologic variability recurring under a 
warmer climate, assuming no precipitation changes (Chapter 11) 

While the sequence of the three chapters may suggest an evolution or transition, it would be 
incorrect to conclude that climate change-informed hydrology is now the preferred or optimal 
source of long-term traces to drive system models for planning studies. All three main sources of 
hydrologic ensembles (historical, paleohydrology, climate change-informed) have inherent 
advantages and limitations, summarized in the table below. These attributes may be more or less 
relevant depending on the time horizon of a risk assessment. For example, assessing risk five years 
into the future would not need to account for the sources of future uncertainty that longer-term 
studies must grapple with. For long-term risk assessments, it is more helpful to base analyses on at 
least two, and ideally all three types of hydrology, than any single type; more specifically, it is 
inappropriate to assume the historical hydrology will repeat itself. To further reduce the impacts of 
the assumptions inherent to any ensemble, it may be beneficial to use advanced analytical and 
decision-support frameworks that deemphasize probabilistic risk.  
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Key characteristics of the main types of hydrology, observed, paleohydrology, and climate change-
informed. (Source: adapted from Lukas et al. 2014) 

 Historical hydrology 
(Chapter 9) 

Paleohydrology 
(Chapter 10) 

Climate change-informed 
hydrology 

(Chapter 11) 

Most useful 
information to 
extract from this 
type of hydrology 

Variability 
(interannual to 
decadal); recent 
trends  

Variability (interannual 
to multi-decadal); shifts 
in mean and variability 

Potential long-term future 
changes 

Embedded 
assumption in using 
this to inform 
planning 

Historical mean and 
variability is stable 
over time and is 
representative of 
future risk 

Pre-1900 hydrology, 
including severe 
droughts and shifts in 
mean and variability, 
can recur in the future 

Climate models can 
provide reliable 
information about future 
changes in the basin 

Key data and models 

Gaged observations 
of streamflow and 
major diversions; 
water-balance model 
to naturalize 
streamflow (except at 
headwaters gages)  

Tree-ring chronologies 
(site time-series); 
statistical models 
relating ring-width to 
climate and hydrology 

Global climate models, 
statistical downscaling 
and bias-correction 
methods; gridded climate 
data; regional climate 
models; hydrology 
models 

Advantages  

Provides baseline 
information about 
risk; relates other 
sources of 
information to our 
experience of system 
impacts; readily 
available, trusted, 
and well-vetted 

Shows broader range of 
natural variability than 
seen in the observed 
records; places 
observed variability in 
longer context; provides 
many sequences of wet 
and dry years 

Best source of information 
about potential effects of 
future climate change on 
hydrology 

Limitations 

Does not capture the 
full range of natural 
variability; does not 
reflect risk from future 
climate change; likely 
to underestimate 
future system stresses  

Uncertainty in the proxy 
information; does not 
reflect risk from future 
climate change, though 
the broader range of 
variability may 
approximate that risk 

Larger uncertainties in 
future changes, requiring 
consideration of many 
traces; complex datasets 
that are difficult to obtain, 
analyze and interpret 

Primary sources of 
uncertainty affecting 
the output 

Imperfect record of 
streamflows; 
inadequate 
characterization of 
depletions when 
naturalizing gage 
records 

Tree rings imperfectly 
reflect hydroclimatic 
conditions; choices in 
handling of the tree-ring 
data and the model that 
relates tree-ring data to 
observed streamflows 

Future emissions of 
greenhouse gases; 
differing climate models; 
choice of downscaling 
and bias-correction 
methods; differing 
hydrologic models 
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Key points 
• The observed historical streamflow record is used to generate 

ensembles of streamflow traces for input into system models for long-
range planning, as well as to validate and calibrate paleohydrology and 
climate changed-informed hydrology. 

• Multiple methods have been used to generate Colorado River Basin 
streamflow traces for system analysis; each has advantages and 
limitations and none is a clear best choice for all applications.  

• The index sequential method (ISM), which has been the most common 
method used in Reclamation system analyses for decades, has 
advantages but also significant limitations, most of which center on the 
fact that ISM traces do not deviate from the observed historical record. 

• Stochastic alternatives to ISM have been used to produce ensembles of 
traces that maintain many characteristics of the historical record while 
offering novel ranges, durations, and frequencies of flows.  

• Stochastic methods that are based on statistical summaries of the 
historical data, known as parametric methods, have the advantage of 
being able to generate values beyond the range of the observed record, 
but require assumptions about the underlying form of the population of 
streamflows. 

• Stochastic methods that are based on sampling directly from the 
historical data, known as nonparametric methods, do not require 
assumptions about the underlying form of the population of 
streamflows but are sensitive to the number of observations from 
which to sample.  

• Research trends are toward nonparametric methods of streamflow 
generation and toward hybrid methods that use historical hydrology 
with reconstructed tree-ring hydrology or climate change-informed 
hydrology.  

9.1 Introduction 

All long-term system planning studies in the Colorado River Basin use the 
observed historical streamflow record, naturalized as described in 
Chapter 5, in one way or another. For several decades, the historical record 
has been used directly to generate streamflow traces for input to 
Reclamation’s long-term planning models. The evolution of methods that 
use the historical record directly and the current state of long-term 
synthetic streamflow based on historical hydrology are described in this 
chapter. Methods that use the historical record to calibrate, validate, and 
synthesize paleohydrologic and climate change-informed streamflow 
traces are described in Chapters 10 and 11, respectively. 
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Concerns have been raised for decades that the historical record may not 
adequately represent long-term future hydrologic risk (Tipton and 
Kalmbach 1965). The full record of naturalized streamflows, which currently 
spans 1906 to 2018, is considered particularly problematic because it 
includes an extraordinary period of high flows in the early 20th century 
(Chapters 2 and 5). The full record also has limited representation of 
prolonged droughts, which research indicate have been more common in 
the distant past and could become more common in light of climate change 
(Chapter 10).  

Historical hydrology is useful as a baseline to provide context for future 
risk; however, as conditions increasingly deviate from the observed past, 
there is less confidence in studies that use historical hydrology alone 
(Naghettini 2016). According to Vogel (2017),  

These concerns carry through to any system model streamflow inputs 
generated purely from the full observed record, but as this chapter will 
describe, some methods are more constrained by characteristics of the 
observed hydrology than others. 

This chapter uses terminology that may be unfamiliar to some readers. 
Four terms in particular, parametric, nonparametric, stochastic, and 
deterministic, warrant definition up front. Figure 9.1 helps illustrate the 
explanations provided here. It contains a histogram with bins of annual 
natural flows at Lees Ferry from 1906–2016 along the x-axis and the 
frequency of occurrence of the flows in each bin on the y-axis. The curves 
on the figure are continuous theoretical probability density functions 
(PDFs) fit to the empirical data. Each function, or equation, provides the 
probable frequency of any value of annual streamflow, and is made 
particular to this set of observations by parameters, such as mean and 
standard deviation, which identify the location and scale of the distribution, 
respectively.  

The green line on Figure 9.1 is the “normal” PDF. Normal PDFs are also 
known as bell curves because they are symmetrical on either side of the 
mean of the data. The normal curve is estimated from two parameters, 
mean and standard deviation, calculated from the observed data. Another 
distribution, the Johnson SB distribution, shown in blue on the figure, uses 
two additional parameters, skew (symmetry) and kurtosis (how quickly the 
tails approach zero), also calculated from the observations, to further refine 

“Due to the now widespread acceptance that hydrologic systems often 
have and will undergo significant change, it is no longer reasonable to plan 
our future water resource systems by assuming that future conditions will 
replicate past hydrologic experience.”  
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the distribution. Of 50 theoretical distributions tested on this set of annual 
flows at Lees Ferry, the Johnson SB distribution has the best fit to the 
observed data, but it is not a distribution typically used in streamflow 
synthesis. The lognormal distribution, which can use either 2 or 3 
parameters (mean and standard deviation, plus or minus skew), is shown on 
the figure to illustrate the discussion about parametric stochastic methods 
later in this chapter. The lognormal distribution, though it may not always 
be the best fit distribution, is often used in hydrologic studies.  

Approaches to synthetic streamflow generation that use the PDF as their 
basis, and therefore rely on parameters derived from the observed data, are 
called parametric approaches. These approaches are considered 
parsimonious because they rely on a summary of the observations, rather 
than the set of observations themselves (Scott 2015). Approaches that use 
the observed data directly, without relying on an estimated, parametric 
PDF, are called nonparametric approaches.  

Parametric approaches have the advantage that they can be used when 
only a short record is available, or when observations at the extremes are 
few or non-existent, whereas nonparametric methods use the data at hand 
and are thus limited by the range of observations, though this limitation has 
been addressed in some nonparametric methods (Loucks and van Beek 

 
Figure 9.1 

Probability density function of annual natural flows at Lees Ferry (1906–2016), in million acre-feet. 
(Data: Reclamation. Figure generated with EasyFit by MathWave.) 

http://www.mathwave.com/
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2017). Nonparametric methods have the advantage of not requiring any 
information or assumptions or about the underlying probability 
distribution, and therefore are able to reflect processes that might not be 
represented by an assumed distribution.  

Stochastic approaches to synthetic streamflow generation explicitly include 
uncertainty by incorporating a random component in the generation 
process. In stochastic approaches, the same set of inputs will result in 
different outputs. Deterministic approaches do not have a random 
component—the outputs are fully determined by the inputs. Stochastic 
approaches have the advantage of producing novel combinations of 
streamflow events and durations. Deterministic approaches, on the other 
hand, are useful when including streamflow uncertainty would be 
detrimental to an analysis, for example, while other, non-hydrologic 
variables are being tested. 

9.2 Index Sequential Method 

The Index Sequential Method (ISM) is a nonparametric, deterministic 
approach used to generate multiple streamflow time series directly from 
the historical, natural flow record. It was first applied by Reclamation 50 
years ago to add variability to the observed hydrologic record, though the 
label “Index Sequential Method” was attached to the method sometime 
later (Reclamation 1969; Cowan, Cheney, and Addiego 1981). ISM is the 
method most often used in Reclamation’s risk analyses. 

Typically, ISM traces are sampled blocks of data from the full, historical 
natural flow record. The 1906-2017 record is used in examples in this 
chapter, but Reclamation has updated the record to 2018. The trace lengths 
correspond to the planning horizon under study. For example, a modeling 
study for years 2020 to 2060 would use traces that were 41 years long. The 
number of unique traces that can be generated from the record with ISM 
equals the number of years in the record (112 traces from the 1906-2017 
record). The steps in generating ISM traces are described in the next 
paragraph and illustrated in Figure 9.2. 

Using ISM, the first generated trace (Trace 1 in Figure 9.2) is equivalent to 
the historical record, beginning at the record’s first year (usually 1906 but 
can be other years depending on the study goals) and ending with the year 
corresponding to the desired trace length. For each additional trace, the 
start year is advanced by one year and one year of historical data is picked 
up at the end of the trace (Traces 2–72). Each additional trace steps forward 
and eventually reaches the end of the full natural flow record (Trace 72).  

When the end of the natural flow record is reached before the end of the 
planning horizon, the start year of the natural flow record is repeated by 
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appending it to the end (Trace 73). This wrapping is repeated for each 
additional trace, with the start year advanced by one year and another year 
from the beginning of the natural flow record wrapped back to the end, 
until the desired number of sequences is obtained or the original, historical 
ordering reoccurs.  

With ISM, the historical, year-to-year streamflow sequence is preserved in 
each trace except when wrapping occurs. Following the steps described 
above for traces that contain wrapping (Traces 73–112), a junction between 
the original end year and the original start year is introduced, as in Trace 
73, creating an ordering of flows not seen in the historical record. Traces 
generated by ISM are therefore sensitive to the chosen start year—
wrapping that year’s natural flow to the end of a trace can impact whether 
hydrologic conditions rebound, stay about the same, or fall deeper into 
drought.  

Because each ISM trace is shifted by one year relative to the previous trace, 
it is possible to study how starting with different inflow values impacts the 
system. The ensemble of streamflow traces generated with the ISM 
example provided in Figure 9.2 is shown below in Figure 9.3. The figure 
illustrates the repetitive sequencing and bounds of traces generated with 
ISM.  

 

 
Figure 9.2 

Index Sequential Method (ISM) example that uses the natural flow record (1906-2017) and modeling 
horizon of 41 years (2020-2060). The method is desribed in the text. (Source: adapted from 
Reclamation) 

Model 
year

Natural 
flow 

record 
year Trace 1 Trace 2 Trace 3 Trace 72 Trace 73 Trace 74 Trace 111 Trace 112

2020 1906 1906 1907 1908 1977 1978 1979 2016 2017
2021 1907 1907 1908 1909 1978 1979 1980 2017 1906
2022 1908 1908 1909 1910 1979 1980 1981 1906 1907

2058 1944 1944 1945 1946 2015 2016 2017 1942 1943
2059 1945 1945 1946 1947 2016 2017 1906 1943 1944
2060 1946 1946 1947 1948 2017 1906 1907 1944 1945

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .
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Advantages and limitations of ISM 
Like the other methods described in this report that are used to develop 
hydrologic inputs to Reclamation’s operations and planning models, ISM 
has advantages and limitations; a summary is given in Table 9.1 and 
discussed in the text below. 

The primary advantage of ISM is that, by using the naturalized historical 
hydrology directly, it reflects the physical processes, climatological 
conditions, and watershed characteristics that were in place when the 
streamflow observations were made. There is little concern that traces 
sampled directly from the historical time series might misrepresent the 
processes, conditions, or characteristics that combined to produce the 
those streamflows. From that primary advantage follow some of the 
additional benefits listed in Table 9.1: ISM preserves the characteristics of 
the historical time series, i.e., it preserves the cross-correlations among 
basin locations, serial correlations from year to year, persistence from 
month to month, and the mean, variability, and other statistics of the 
historical record.  

 
Figure 9.3 

Example ensemble of 112, 41-year natural flow traces for the Colorado River at Lees Ferry generated 
with ISM as described above. The blue line shows Trace #1 in Figure 9.2: the natural flows from 1906-
1946. (Data: Reclamation) 
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Table 9.1 

Summary of advantages and limitations of using the index sequential method 

Advantages Limitations 

Retains credibility because it is based on 
observed values 

Full record includes the unusually wet years of the 
early 20th century—though sub-periods from the 
full record are often used 

Preserves the historical frequency distribution and 
summary statistics 

Cannot generate event magnitudes, durations, or 
frequencies outside of the observed record 

Nonparametric, so not subject to errors in 
distribution fitting 

Does not provide enough variety of “statistically 
plausible” potential sequences for planning 
analyses (Prairie et al. 2006) 

Preserves historical persistence and spatial 
relationships, i.e., autocorrelations and cross-
correlations 

Cannot represent changes to relationships and 
dependencies that may arise from future climate 
change 

Allows systems analysis under alternative initial 
inflows  

Statistical interpretations of results are 
complicated due to lack of independence or 
randomness of traces 

Traces are reproducible  Limited representation of uncertainty 

 
The primary limitation of ISM is the converse of its advantage: it limits 
analyses to the streamflow ranges, durations, and frequencies seen in the 
historical record. ISM is not a stochastic method and therefore novel 
streamflows are not produced. As Kendall and Dracup (1991) explain,  

Nor are the sequences independent (Labadie et al. 1987; Ouarda, Labadie, 
and Fontane 1997). Ouarda et al. warn that, “An additional concern with ISM 
has been the statistical dependency of the extracted sequences because of 
the overlapping structure of synthetic data records generated.” One 
hundred twelve ISM traces generated from a single, 112-year sample are not 
the same as 112 independent streamflow traces. In statistical terms, the 
traces are very highly correlated with each other—a phenomenon one 
would not encounter outside of the ISM technique (Staschus and Kelman 
1989). According to Salas (1992), “A major drawback with this procedure 
[ISM] is that the resulting set of N input series yields N outputs which are 
not independent and, as a consequence, the outputs have less precision.” 

“Streamflow is a random process. The historic hydrologic record is one 
realization of this random process. Wrapped hydrologic sequences of the 
historic record are not other realizations of a random process in a strict 
sense even though they are treated that way when probability curves are 
developed.”  
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The lack of randomness and independence, two basic premises for 
statistical analysis of hydrological time series (Naghettini 2016), can be 
illustrated with a graph of the low-flow sequences found in the example 
traces used in Figure 9.2 and Figure 9.3. In Figure 9.4, the minimum 5-year 
annual average streamflow at Lees Ferry for each trace is shown as a single 
bar. The lowest 5-year minimum, 9.55 maf, which corresponds to the 
calendar year 2000–2004 annual average, reoccurs in 37 of the 112 traces. 

The chart shows that there are a handful of unique 5-year minima, not 
dozens of different 5-year minima as might be expected from an ensemble 
of independent traces of a continuous random variable like streamflow.  

Consideration should be given to how ISM results are interpreted. ISM 
provides the odds of a particular outcome only if history repeats itself. ISM 
does offer multiple, different streamflow traces. The hazard is that tests of 
the system against an ensemble of ISM traces might be interpreted as tests 
of a random distribution of future events, reflecting the uncertainties 
inherent in natural variability. Srinivas and Srinivasan (2005) consider ISM 
to be a simple technique that may not model the data adequately, 
motivating the development of new multi-site methods.  

 
Figure 9.4 

Minimum 5-year average annual flow at Lees Ferry in each of 112 ISM traces generated from the full 
natural flow hydrology (1906–2017) and the 2020–2060 planning horizon. (Data: Reclamation) 
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Even so, the value of ISM’s preservation of streamflow correlations in both 
time and space in the Colorado River Basin should not be underestimated. 
Reproducing the significant correlations throughout the basin using 
parametric methods is not a trivial exercise. See Lee and Salas (2006) for a 
breakdown of all the month-by-month and site-to-site cross-correlations 
among the 29 inflow points in Reclamation’s Colorado River Simulation 
System (CRSS) model and a description of their efforts to extend the 
natural flow record while maintaining those correlations. Nowak et al. 
(2010) also discuss the drawbacks of taking a parametric approach to 
disaggregating synthetic sequences in time and space.  

ISM applications 
The conception of ISM and its application in the Colorado River Basin 
coincided with advances in computing power. The first documented ISM-
type application is found in Reclamation’s 1969 “Report of the Committee 
on Probabilities and Test Studies to the Task Force on Operating Criteria 
for the Colorado River,” in which test streamflow sequences were described 
that were created by wrapping the beginning of the historical record to the 
end. Multiple test sequences, including ones selected to stress the system, 
were used in 146 computer runs to study various demand and operations 
scenarios (Reclamation 1969). 

Since then, ISM-generated inflow sequences have been used as inputs to 
the Colorado River Simulation Model (CRSM) and its successor, CRSS, and 
have provided the primary basis for Colorado River Basin planning for 
several decades (see Chapter 3 for descriptions of these models). Most of 
the studies have involved sampling blocks from the full natural flow record 
that starts in 1906. The assumption implicit in the use of the full record is 
that the observed long-term mean and variance of natural flows in the 
Colorado River Basin are stationary and representative of the future. 
However, ISM traces that are sampled from the full record contain the wet 
period of the early part of the 20th century, which, in the context of the 
paleohydrologic record (see Chapter 10), is one of the wettest sequences in 
the past 1200 years. The mean annual flow from 1906 to 1925 is about 17.9 
maf, well above the full record mean of 14.8 maf and over 30% above the 
most recent 30-year mean of 13.3 maf.  

To address the issue of repeating the unusually wet years of the early 20th 
century in simulations, Reclamation has explored applying ISM to other 
segments of the hydrologic record (Table 9.2). Most recently, in response to 
an extended drought and the need to support drought contingency 
planning efforts, Reclamation and stakeholders in the basin identified 1988 
to 2016 as a period that could provide more perspective on system risks 
(see Table 9.2). This sequence of years is referred to as the “Stress Test” 
hydrology. It is compared to the full record in Figure 9.5.  
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Figure 9.5 

Full-record and stress-test period annual natural flows at Lees Ferry (1906-2017). 
(Data: Reclamation) 

 

Figure 9.6 

Minimum 5-year average annual flow at Lees Ferry in each of 30 ISM traces 
generated from the stress test natural flow hydrology (1988–2017). (Data: 
Reclamation) 
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The stress test trace length (2020–2049) contains the same number of years 
as those in the stress test hydrologic record (1988–2017, 30 years), so each 
of the 30 ISM traces contains the same streamflow values and has identical 
means, variances, maxima and minima. The minimum 5-year flow sequence 
in the stress test hydrology is shown in Figure 9.6. Again, the drought of 
2000–2004 is repeated, in this case, in 26 out of the 30 traces. However, 
because the stress test period does not include the high flow years of earlier 
parts of the record, the stress test traces do not offer the same storage 
recovery opportunities as ISM traces generated from the full record.  

An example of results from CRSS runs made in August 2018 with these two 
ISM inflow datasets (full hydrology and stress test hydrology) is shown in 
Figure 9.7. The system projections in the figure include assumptions about 
demands. The figure shows projected Lake Mead elevations for water years 
2018 to 2026, when the Interim Guidelines will be reviewed (U.S. Secretary 
of the Interior 2007).  

Recent Reclamation studies and reports that have relied at least partially on 
ISM-generated inflows are summarized in Table 9.2. 

Reclamation and others have recognized the need to test Colorado River 
Basin operations under novel hydrologic scenarios (Prairie et al. 2006). The 
concern has been that the observed historical record, with or without ISM, 
does not adequately represent the river’s natural variability and therefore 
the vulnerability of the system to severe, low-frequency events. To address 

 
Figure 9.7 

Lake Mead end-of-December elevation results from CRSS runs made in August 2018 that use the full 
record hydrology and the stress test hydrology (system projections include assumptions about 
demands). (Source: Reclamation) 
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this concern, other methods that use the historical hydrology, specifically 
stochastic methods, have been pursued. Those methods are described in 
the next section. Methods that use paleohydrology or climate change-
informed hydrology are described in Chapters 10 and 11, respectively. 

Table 9.2 

Summary of recent reports and analyses that have used ISM on the observed natural flow record. 
(Source: Reclamation) 

Report or Analysis Scenario Name 
Years 

Included 
in ISM 

Mean, 
maf 

Planning 
Horizon 

Number 
of Traces 

Trace 
Lengths 
(years)5 

Final EIS: Colorado 
River Interim Guidelines 
for Lower Basin 
Shortages and 
Coordinated 
Operations for Lakes 
Powell and Mead1, 
2007  

Direct Natural 
Flow Record 

1906–
2005 

15.0 
2008-
2026 

100 53 

Colorado River Basin 
Water Supply and 
Demand Study2, 2012 

Observed 
Resampled 

1906–
2007 

14.9 
2012-
2060 

102 49 

Minute 323 Binational 
Negotiations 

Pluvial 
Removed 

1931-
2012 

14.0 
2017-
2026 

82 44 

Ten Tribes Partnership 
Tribal Water Study3, 
2018  

Observed 
Natural Flow 

Record 

1906-
2015 

14.8 
2017-
2060 

110 44 

Drought Contingency 
Planning4, 2019 

Full Hydrology 
1906-
2016 

14.8 
2020-
2026 

111 41 

Stress Test 
Hydrology 

1988–
2017 

13.2 
2020-
2026 

30 30 

1The Final EIS also applied ISM to the 1244 year long paleo record. 

2The Basin Study used multiple hydrology scenarios including ISM applied to the paleo record, a hybrid 
approach combining the paleo and observed records, and climate change based hydrology. 

3The Tribal Water Study also used climate change based hydrology. 

4The Drought Contingency Planning process took six years. The years that ISM was applied to and the planning 
horizon reflect those used at the end of the process (Spring 2019). 

5In some cases, the length of the traces extend beyond the planning horizon so that continued effects of a policy 
can be understood, even if they extend beyond the years the policy is in effect. 



 

Chapter 9. Historical Hydrology 350 
 

9.3 Stochastic methods 

The concept that natural streamflow is the result of random processes is 
fundamental to stochastic hydrology methods. The historical record is a 
single realization of those random processes, and though we can be fairly 
certain that the historical streamflow time series will not recur, it contains 
information that can be extracted and applied in the generation of novel 
streamflow traces. Stochastic hydrology methods use that extracted 
information to generate new streamflow traces, simulating the random 
nature of streamflow time series while maintaining fidelity to many 
characteristics of the historical record. By generating multiple unique, 
equally likely traces, these methods address the uncertainty inherent in the 
natural processes that result in streamflow (Bras and Rodríguez-Iturbe 
1985). Generally speaking, parametric stochastic methods attempt to 
reproduce the statistical properties, particularly mean and variance, of the 
historical data. Nonparametric stochastic methods use the data at hand, 
and thereby also maintain fidelity to the historical data without requiring 
assumptions about the underlying probability distribution. Both categories 
offer the opportunity to look at longer and more intense sequences of low 
(or high) flows. See Loucks and van Beek (2017) and (Vogel 2017) for recent 
overviews of stochastic streamflow generation methods.  

Reclamation has been exploring the use of stochastic hydrology for input to 
its long-term planning models since the 1970s, including supporting 
development of LAST (Lane’s Applied Stochastic Techniques), a computer 
package for generating stochastic streamflow traces (Reclamation 1985; 
Lane and Frevert 1988; Frevert and Cheney 1988), and SAMS (Stochastic 
Analysis Modeling and Simulation; Salas et al. 2001; Sveinsson et al. 2007). 
Another stochastic streamflow generation package, SPIGOT, was developed 
at Cornell (Grygier and Stedinger 1990) and applied to the Colorado River 
by Kendall and Dracup (1991), and by Tarboton (1994) in the Severe 
Sustained Drought studies (Powell Consortium 1995). See Table 9.3 for 
more information about applications of these packages in the Colorado 
River Basin. All of these packages use parametric methods.   

Parametric stochastic methods 
As explained at the beginning of this chapter, parametric approaches 
require mathematical approximation of the form of the underlying 
distribution; i.e., a particular PDF that fits the observed streamflows and is 
therefore assumed to represent the larger population of streamflows of 
which the observed record is a sample. If the observations were normally 
distributed, stochastic traces could be generated by simply applying 
normally distributed random noise to the PDF equation. However, 
hydrologic data are rarely normally distributed (e.g., they are typically non-
negative), so they must be normalized or transformed prior to application 
of a normal random term. The PDF that fits the observations indicates the 
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transformation method. For example, observations that are lognormally 
distributed (i.e., the PDF is lognormal, Figure 9.1) are transformed by taking 
the log of the observations. The parameters of the transformed 
observations are determined and used, with a stochastic component (i.e., 
the random noise), to generate intermediate stochastic values that are then 
back-transformed to yield a final, stochastic streamflow trace. In the 
lognormal example, the final stochastic streamflow values are obtained by 
taking the antilog of intermediate stochastic values (US Army Corps of 
Engineers 1971). The back-transformation step may not faithfully preserve 
the historical statistics, however, because the procedure reproduces the 
statistics of the transformed observations rather than those of the actual 
(un-transformed) observations (Tarboton 1994).  

These are the basic steps of parametric stochastic streamflow generation. 
Refinements to better approximate real-world streamflows include 
incorporating persistence, or serial correlations, especially for shorter time 
steps, and spatial correlations for multi-site applications. The stochastic 
streamflow trace may simulate multiple inflows to a larger system, or it may 
simulate a large streamflow downstream of one or more confluences. In 
these cases, aggregation or disaggregation of generated traces may be 
required. Further refinements to incorporate parameter uncertainty have 
also been made. Background on the evolution and application of parametric 
stochastic streamflow methods can be found in Marco, Harboe, and Salas 
(1993) and Vogel (2017). 

One of the primary challenges facing water resources researchers and 
planners in applying the basin’s historical time series is how to use it to 
generate streamflow traces that allow study of the non-stationary 
hydroclimate. Parametric stochastic approaches to addressing non-
stationarity that rely exclusively on historical hydrology focus on modifying 
the parameters of the PDF derived from historical observations. This 
approach, in a highly simplified example, entails representing the non-
stationarity with a new estimate of mean annual flow, which shifts the 
historical, observed PDF to the right or left along the x-axis (Figure 9.1). 
Stochastic flows are then generated using that relocated PDF. However, 
this assumes that both the choice of PDF (lognormal, gamma, etc.) remains 
the correct one, and that the other parameters that describe that PDF stay 
the same. In other words, it assumes that only the average is affected by 
the changed conditions, and that the scale and shape of the distribution, 
i.e., the variance and symmetry, are stationary. If the stochastic model 
includes temporal or spatial correlation terms, consideration must be given 
to the stationarity of those components as well. Serinaldi and Kilsby (2015) 
summarize these considerations and additional uncertainties associated 
with this approach to non-stationarity. Bender, Wahl, and Jensen (2014), 
who looked at Rhine River flows, demonstrated a method to diagnose the 
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dependencies among distribution parameters. Khaliq et al. (2006) offers an 
extensive review of parametric approaches to non-stationarity. 

Limitations 
The advantages of parametric methods were identified at the beginning of 
this chapter. The limitations of parametric stochastic approaches include: 1) 
there is at least some loss of fidelity to the original data’s characteristics 
through the transformation steps; 2) the observations may not clearly fit 
any of the common probability distributions or are multimodal; 3) disag-
gregation in time or space may require very large numbers of parameters; 
4) potentially unrealistic, even negative, values may be generated; 5) 
nonlinear relationships are not represented, e.g., temporal and spatial 
correlations may vary in wet or dry episodes; 6) large samples cannot repair 
the bias in an incorrectly specified PDF; and 7) the implicit assumption of 
stationarity may be inappropriate (Salas et al. 1980; Tarboton 1994; Lall 
1995; Sharma, Tarboton, and Lall 1997; Prairie et al. 2006; Milly et al. 2008; 
Scott 2015; Naghettini 2016; Vogel 2017). 

Comparisons to ISM 
Labadie et al. (1987), Frevert and Cheney (1988), Staschus and Kelman (1988), 
Kendall and Dracup (1991), and Ouarda, Labadie, and Fontane (1997) each 
compared the use of ISM with parametric stochastic methods. Most of the 
studies came to the conclusion that ISM is a reasonable technique for the 
purposes to which they were applied (primarily for analysis of hydropower 
and reservoir operations) and yielded similar results to stochastic 
techniques. Frevert and Cheney (1988) did not offer an overall assessment 
but cautioned that practitioners should understand that the variability in 
the ISM traces could be too low, citing streamflow records that are 
frequently broken. Ouarda, Labadie, and Fontane (1997) concluded that ISM 
is a valid procedure. Staschus and Kelman (1989) and Kendall and Dracup 
(1991), who used SPIGOT to generate stochastic traces and compared them 
to ISM traces, point out that, though their studies demonstrated that ISM 
was adequate or superior for the applications they examined, for studies 
looking at the extremes, or tails, of a distribution, other approaches may 
provide a more accurate representation. Finally, because parametrically 
derived streamflow traces are generated from probability distributions, 
probabilistic interpretations are straightforward and results lend 
themselves to estimates of confidence limits (Naghettini 2016) while this is 
not true of ISM-generated traces.  

The studies that have used parametric stochastic methods on Colorado 
River Basin historical flows are summarized in Table 9.3. In the past twenty 
years, the number of such studies has fallen off; most of the research since 
the late 1990s that uses stochastic approaches to streamflow generation in 
the basin has focused on nonparametric methods.  
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Nonparametric stochastic methods 
As mentioned above, nonparametric methods rely on empirical data, i.e., 
the observed hydrology, more directly, rather than fitting the observations 
to a theoretical PDF and then generating stochastic flows from that PDF. All 
of the nonparametric methods described here rely on resampling the 
historical record in some way. Research efforts have shifted to 
nonparametric approaches for a number of reasons, but primarily because 
the true form of the distribution of the population of streamflows is 
unknown, and it is therefore possible that the probability distribution that 
best fits the observations (i.e., a sample from the population) is not the 
correct one for the population. Lall (1995) explains the issue:  

At least two nonparametric methods, kernel density estimation and nearest 
neighbor density estimation, have been used in studies that have generated 
stochastic Colorado River streamflows. The two methods are briefly 
described here.  

Unlike parametric methods, kernel methods estimate the overall form of 
the observations by analyzing smaller intervals, or bandwidths, of the data. 
The bandwidths are analogous to the bins in a histogram, but instead of 
estimating a uniform frequency for all values within a bandwidth, the 
frequency, or density, at each observation point is weighted based on its 
distance from the center of the bandwidth. In parametric methods, the 
overall density estimate is made based on the parameters of the entire set 
of observations. In the kernel method, observations outside each 
bandwidth have no influence on the density estimate for observations 
within the bandwidth. The bandwidths are advanced, like a moving average, 
through all of the observations. The resulting set of local density estimates 
are aggregated to produce an overall, empirical density function for the 
entire observational dataset. The empirical density function looks like a 
smoothed histogram—the larger the bandwidth, the smoother the overall 
density function, and vice versa. Figure 9.8 illustrates an example 
application of kernel density estimation to July monthly flows on the Beaver 

Usually, the hydrologist has little physical or theoretical guidance as to 
the specific form of the target function. The traditional exercises amount 
to choosing between a small set of prescribed curves to fit the data at 
hand. What is one to do when the naked eye discerns structure in the 
data, and yet none of the usual candidates fit well? How does one 
choose between two models that fit equally well in terms of a global 
measure (e.g., likelihood, or sum of squared residuals), are 
parsimonious, and yet differ markedly in the details of the 
fit?...Questions like these invariably steer an investigator into the realm 
of nonparametric function estimation or "smoothing." 
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River in Utah. It offers a graphic comparison of the parametric fits of 
normal (Gaussian), lognormal and 3-parameter lognormal PDFs to the 
nonparametric, empirical, kernel density estimate. Only the empirical 
density estimate captures the bimodal nature of the observations. In the 
kernel method, the empirical density function becomes the basis for 
generating stochastic streamflow traces (Lall 1995; Sharma, Tarboton, and 
Lall 1997; Breheny 2012).  

Tarboton, Sharma, and Lall (1998) used kernel density estimation methods 
in their study of streamflow disaggregation. They observed that the 
technique is better than parametric techniques at capturing the wet-year 
vs. dry-year effects on seasonal variability. The primary shortcoming of the 
method is that it is computationally intensive, with the computational load 
driven by the size of the matrix resulting from the bandwidth length and 
the number of parameters used to define the local density estimates. 
Sharma, Tarboton, and Lall (1997) identify the potential for the method to 
produce negative flow values.  

 
Figure 9.8  

Example application of kernel density estimation to streamflows. (Source: Sharma, Tarboton, and Lall 
1997) 
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Prairie et al. (2007) and Nowak et al. (2010) also took nonparametric 
approaches to disaggregating streamflow. Prairie et al. (2007) disaggregated 
annual streamflows to monthly flows and Nowak et al. (2010) disaggregated 
annual streamflows into daily flows and further disaggregated those daily 
flows spatially to three locations. The methods these authors used for both 
stochastic streamflow generation and disaggregation were K-NN, or 
nearest neighbor, methods.  

Nearest neighbor methods, pioneered by Lall and Sharma (1996) for 
application to hydrologic time series, also calculate local density estimates 
rather than relying on an assumed PDF for the entire set of observations. 
The term “nearest neighbors” refers to observations that are closest in 
Euclidean space, i.e., the closest points on a graph of observations vs. 
frequency or vs. other observations. The local density estimates are based 
on weighted averages of the K (number of) nearest neighbors to the 
individual observed flow values, with nearer neighbors being given a 
greater weight than more distant neighbors. The original K-NN approach 
resulted in generated values that were sampled from the historical data 
directly and thus did not introduce new streamflow values, though it did 
produce new sequences (Prairie et al. 2006). The K-NN method offered by 
Lall and Sharma (1996) was modified by Prairie et al. (2006) to resample the 
residuals from local regressions on sets of nearest neighbors and add those 
residuals to the local means, thereby producing potentially novel 
streamfow values. 

Sharifazari and Araghinejad (2015) extended the modified K-NN model of 
Prairie et al. (2006) to capture the temporal and spatial streamflow 
dependence in the Sirwan River Basin in Iran. They also demonstrated a 
method to shift the generated flows lower or higher by biasing the residuals 
sampled in the method. According to the authors, this shift could be 
applicable to generating climate change-informed traces. 

Applying paleohydrology, Prairie et al. (2008) took advantage of the most 
salient features of the reconstructed tree-ring record, i.e., the hydrologic 
state (wet or dry) and duration, to guide K-NN resampling from the 
historical, observed record. This effort generated streamflow traces that 
both preserved the range of flow magnitudes seen in the historical record 
and provided novel streamflow sequences. This study is described in more 
detail in Chapter 10. 

More recently, and also taking advantage of the tree-ring record, Erkyihun 
et al. (2016) applied K-NN methods in a study using low-frequency climate 
signals to generate annual flows at Lees Ferry. The authors discerned 
climate signals in the reconstructed tree-ring streamflow record that are 
attributed to the Pacific Decadal Oscillation and Atlantic Multi-decadal 
Oscillation climate indices. They used K-NN methods to generate annual 
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flows at Lees Ferry conditioned on those signals. An advantage of using the 
climate signal is that autocorrelations do not have to be explicitly specified 
in the annual streamflow generation model—they are implicit in the climate 
signals.  

Parametric approaches to hydroclimatic non-stationarity were described 
above. Nonparametric approaches have focused primarily on climatic data 
time series rather than streamflow (Vogel 2017). 

Limitations 
Nonparametric methods, because they resample from the historical record, 
are heavily dependent on the length of that record and the variability and 
range of values therein. The K-NN method depends on a sample size large 
enough to contain sufficient nearest neighbors to produce a meaningful 
analysis (Lall and Sharma 1996; Prairie et al. 2006). Prairie et al. (2006) also 
commented that K-NN did not capture interannual variability well. 
Nonparametric methods applied to monthly time steps have difficulty with 
continuity in the transitions from the last month of one year to the first 
month of the following year (Prairie et al. 2007). Finally, kernel-based 
methods require disaggregation techniques that are “inefficient and 
cumbersome” (Prairie et al. 2007; see also Tarboton, Sharma, and Lall 1998, 
and Nowak et al. 2010).  

Comparisons to ISM 
Few formal comparisons have been made between ISM and nonparametric 
methods. Prairie et al. (2006) found that the modified K-NN method 
performed better than ISM at capturing features of the monthly flows, 
though the comparison was somewhat hampered by the relatively short 
traces produced by ISM. Also, nonparametric stochastic methods, like 
parametric methods, generate streamflows probabilistically, and therefore 
are more amenable to probabilistic interpretation.  

Hybrid stochastic methods 
There have been some efforts to combine parametric and nonparametric 
approaches to address the limitations of both types of methods in 
stochastic streamflow generation. These hybrid, or semi-parametric, 
methods usually apply the parametric and nonparametric methods during 
different steps of trace generation. Srinivas and Srinivasan (2005) and 
Herman et al. (2016) both used parametric methods to pre-standardize 
observations and then used nonparametric resampling methods to 
generate streamflow traces. 
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Other stochastic methods 
More recent research on stochastic streamflow generation has applied 
“copulas” or multivariate PDFs that capture the dependencies between 
variables. Copula methods can be either parametric or nonparametric (Lee 
and Salas 2011; Hao and Singh 2012; Gold 2017). Hao and Singh (2012) used a 
copula method to develop a joint probability distribution for monthly 
Colorado River flows at Lees Ferry. They generated stochastic streamflow 
traces that simulate the temporal dependence between adjoining months 
with joint distribution functions for each pair of months.  

Another recently developed approach is the multi-site multi-season 
maximum entropy bootstrap (M3EB) method (Srivastav and Simonovic 
2014). The authors present a case study using four sites in the Upper 
Colorado River Basin: Colorado River near Cisco, Utah; Green River at 
Green River, Utah; San Juan River near Bluff, Utah; and Colorado River at 
Lees Ferry, Arizona. The method preserves the statistical characteristics 
and the temporal and spatial dependence structure of the historical data. 
The authors state that this method is capable of modeling both non-
stationarity and seasonality. 

A selected list of published applications of stochastic methods to generate 
streamflow traces from the historical hydrology in the Colorado River Basin 
is provided in Table 9.3. The list includes both parametric and 
nonparametric approaches. It does not include the many studies of 
stochastic approaches that have been applied to meteorological variables in 
the basin, or studies that do not use the historical hydrology directly, such 
as paleohydrology studies and climate change-informed hydrology studies. 
Those studies are described in Chapters 10 and 11, respectively. 

  



 

Chapter 9. Historical Hydrology 358 
 

Table 9.3 

Selected studies in which stochastic methods were used to generate hydrologic traces from Colorado 
River Basin historical hydrology.  

Type 
Method or 
model name 

Application Reference 

Parametric LAST 
Generated monthly streamflow traces for the 
Colorado River at Lees Ferry, with each 
month having a unique PDF transformation  

Frevert and 

Cheney 1988 

Parametric SPIGOT 
Generated annual, autoregressive, lag-one 
(AR-1) lognormal streamflow traces for the 
Colorado River at Lees Ferry 

Kendall and 
Dracup 1991* 

Parametric SPIGOT 

Used SPIGOT to disaggregate annual flows 
from tree ring reconstructions of the 
Colorado River at Lees Ferry in order to 
generate monthly streamflow traces for 29 
locations in the Colorado River Basin 

Tarboton 1994, 

1995 

Parametric LAST 
Generated monthly streamflow traces for 23 
locations in the Colorado River Basin  

Ouarda, Labadie, 
and Fontane 
1997* 

Nonparametric 
Kernel-based 
technique 

Compared SPIGOT vs kernel-based 
disaggregation methods for stochastic flows 
on the San Juan River 

Tarboton, Sharma, 

and Lall 1998 

Nonparametric 
Modified K-
NN 

Compared monthly generated flows using 
modified K-NN to ISM flows and to 
parametrically generated (SAMS) flows at 
Lees Ferry 

Prairie et al. 2006* 

Parametric 
LAST, SAMS 
and SPIGOT 

Generated monthly streamflow traces for 29 
locations in the Colorado River Basin from 
both spatial and temporal disaggregation of 
annual flows 

Lee et al. 2007 

Nonparametric 
Modified K-
NN 

Disaggregated annual stochastic flows into 
monthly flows at four sites in the Upper 
Colorado Basin: Colorado River near Cisco, 
Utah; Green River at Green River, Utah; San 
Juan  River near Bluff, Utah; and Colorado 
River at Lees  Ferry, Arizona 

Prairie et al. 2007 

Nonparametric K-NN 

Generated annual streamflow traces at Lees 
Ferry by using the streamflow states from the 
tree-ring record to guide K-NN resampling 
from the historical record 

Prairie et al. 2008 
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Type 
Method or 
model name 

Application Reference 

Nonparametric K-NN 

Generated daily streamflow traces for 3 
locations on the San Juan River by using K-
NN methods to disaggregate annual flows in 
both space and time 

Nowak et al. 2010 

Parametric Copula 
Generated monthly flows at Lees Ferry from 
joint probability distributions for each pair of 
months 

Hao and Singh 

2012 

Nonparametric M3EB 

Generated monthly flows at Colorado River 
near Cisco, Utah; Green River at Green River, 
Utah; San Juan River near Bluff, Utah; and 
Colorado River at Lees Ferry, Arizona 

Srivastav and 

Simonovic 2014 

Nonparametric WKNN 

Derived low frequency climate signals from 
tree-ring flows and used K-NN to resample 
the historic observations to generate annual 
flows at Lees Ferry 

Erkyihun et al. 

2016 

*Performed comparisons to ISM 

9.4 Challenges and opportunities 

This chapter has focused on the state of the science of applications of the 
observed, historical time series for long-term planning studies in the 
Colorado River Basin. All of the studies cited in this chapter use the 
historical time series, or characteristics of it, as inputs to, or benchmarks 
for, the various methods to generate synthetic streamflow traces. However, 
as described throughout the chapter, there are challenges to synthesizing 
streamflow traces from the historical record. Some of the higher level 
challenges, and opportunities to address them, are discussed below.  

Challenge 
Identifying the most appropriate method of incorporating historical 
hydrology in long-term planning in the Colorado River Basin is a key 
challenge. The full, observed historical record, especially when used with 
ISM, likely does not represent future hydrologic risk, but it is challenging to 
completely replace it because there is no clear best alternative. While 
Reclamation’s use of a segment of the observed hydrology (the Stress Test) 
attempts to create a more realistic picture of risk, there is little guidance on 
which segments are most appropriate, and a shorter record reduces the 
range of hydrologic conditions available. Beyond ISM, there is much 
research but little consensus on alternative approaches to generating 
synthetic streamflow traces. 
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Opportunity 
• One approach, informally suggested by Tarboton (pers. comm.), is that 

new streamflow generation models be tested against a comprehensive 
set of statistics. Extending that suggestion somewhat, a matrix could be 
established by Reclamation and basin stakeholders that identifies the 
most important features of synthetic traces and uses that matrix to 
guide research into new methods or to assess existing methods. 
Features in the matrix might include fidelity to particular historical 
statistics, ability to generate particular time steps, ability to simulate 
non-stationarity, ability to represent uncertainty, ease of 
implementation, ease of understanding, and robustness of inferences.  

Challenge 
One of the primary challenges facing water resources researchers and 
planners in applying the basin’s historical time series is how to use it to 
generate streamflow traces that allow study of the non-stationary 
hydroclimate. 

Opportunities 
• Explore performing diagnostics on the parameters used in parametric 

stochastic streamflow studies in the Colorado River Basin to assess the 
dependencies between and among parameters and to assess the 
complexities involved in incorporating non-stationarity into them. 

• Techniques for generating long-term streamflow sequences that blend 
historical observed hydrology with paleohydrology or climate change-
informed hydrology (or both) offer substantial promise. The paleo 
record offers extremes, durations, and frequencies not seen in the 
observed record, and the climate change-informed hydrologies offer 
potentially altered climate patterns and regional shifts that are absent 
or undetectable from the observed and paleo records. For more 
information about these opportunities, see Chapters 10 
(Paleohydrology) and 11 (Climate change-informed Hydrology). 

• This chapter has focused on research into streamflow synthesis but 
there is a wealth of information about methods applied to synthesize 
time series for other hydrometeorological variables. A potentially useful 
effort might be to review approaches to other variables, and even other 
disciplines, for techniques that could be translated into streamflow 
synthesis techniques. 
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Key points 
• Tree-ring reconstructions of Colorado River streamflow extend the 

observed natural flow record up to 1200 years into the past and 
document a broader range of hydrologic variability and extremes than 
are contained in the observed records. 

• Most critically, several paleodroughts prior to 1900 were more severe 
and sustained than the worst-case droughts since 1900. 

• These “megadroughts” could recur in the future due to natural climate 
variability alone, but their recurrence risk is much increased by 
anthropogenic warming. 

• The century-scale mean and variability of Colorado River Basin 
hydroclimate has not been stationary over time. 

• The early 20th century high-flow years (1905–1930) may have been the 
wettest multi-decadal period in 500–1000 years. 

• Methodological choices in the handling of the tree-ring data can 
influence the reconstructed flow values and metrics, such as the 
duration of droughts. 

• Planning hydrologies derived from tree-ring paleohydrology can 
provide plausible stress tests that are more extreme than the observed 
hydrology, and have been used for that purpose in several recent 
planning studies in the basin.  

10.1 Introduction to tree-ring reconstructions of streamflow 

As outlined in the Volume IV introduction, water resources planning has 
traditionally been based on observed records of climate and hydrology, 
which extend up to 120 years into the past, at best. Through the 20th 
century, the assumption that future Colorado River Basin supply could be 
represented in planning by the observed hydrology alone went largely 
untested. However, by the mid-2000s, with the demands for basin water 
approaching or exceeding supply, rapid declines in reservoir levels due to 
severe drought, and the growing realization that climate change could 
result in reduced flows, water agencies increasingly looked to tree-ring 
reconstructions of paleohydrology for additional perspective on water 
supply risk. 

Tree-ring reconstructions of streamflow are based on moisture-limited 
trees that provide a proxy record of hydroclimatic variability. The annual 
ring widths in these trees correspond primarily to variations in moisture, 
particularly if they are growing on open, south-facing slopes with thin soils, 
where competition from other trees is limited and site conditions are 
particularly stressful. In these sites, tree-ring widths reflect a high degree 
of year-to-year moisture variability (Fritts 1976). While reconstructions of 
precipitation rely on a direct relationship between moisture and tree 
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growth, the relationship between tree growth and streamflow is less direct 
(Meko, Stockton, and Boggess 1995). In the case of the upper Colorado River 
Basin, water year streamflow and annual ring widths are both the result of 
the cumulative influence of hydroclimate conditions over the course of the 
water year. In both cases, cool season precipitation is the most important 
factor, leading to the snowpack that runs off into the river while 
conditioning spring soil moisture that is critical for tree growth 
(Woodhouse and Pederson 2018). Because of this relationship, trees most 
useful for streamflow reconstruction are not found in the floodplain, but 
instead are growing on uplands in the same “climate-shed” that produces 
the runoff for annual flow. 

In the Colorado River Basin region, the low- to mid-elevation conifers 
(pinyon pine, ponderosa pine, and Douglas fir) are the species most 
sensitive to hydroclimate (Schulman 1956) and are targeted for collection. 
Once a site with the appropriate characteristics, tree species, and evidence 
of long-lived trees is located, approximately 20 living trees are sampled 
with an increment borer. Cross sections from dead trees, which can be 
preserved on the landscape for hundreds of years, may be cut with a 
chainsaw.   

Back at the laboratory, each sample is dated to the exact calendar year 
using a pattern-matching technique called crossdating (Fritts 1976), which 
also enables wood from dead trees to be dated if it overlaps in time with the 
living trees. Once all samples are dated, they are measured using a sliding-
stage micrometer to the precision of 0.001 mm. The time series of 
measurements typically show a declining trend over time in ring-width due 
to age and tree geometry, so the series are detrended to remove this effect, 
which is unrelated, for the most part, to climate (Cook and Kairiūkštis 
1990). Two different “flavors” of detrended series are generated: one in 
which the low-order persistence in growth that is largely attributable to 
tree biology (year-to-year carbohydrate storage) is removed, resulting in 
so-called “residual” chronologies; and one in which that persistence is 
retained, resulting in “standard” chronologies. Measurements from all 
samples at a site are robustly averaged into a site tree-ring chronology, or 
time series, which is the basic unit used in the reconstruction process 
(Woodhouse et al. 2016). 

Reconstructions of climate are developed by calibrating the annual tree-
ring chronologies with a record of observed climate or hydrology over a 
common period of years. The calibration process usually employs some 
type of multiple linear regression, with tree-ring chronologies as the 
predictors and the observed climate or streamflow record as the 
predictand. There are many statistical approaches that may be taken for 
model calibration, but the two most common approaches are stepwise 
regression using individual chronologies as predictors, and principal 
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components regression, which reduces a set of chronologies to a smaller 
set of time series uncorrelated with each other that expresses the 
underlying principal modes of tree-growth variability, which are then used 
as the predictors.   

Model validation is a key step in the reconstruction process. Validation 
involves withholding some subset of data, refitting the model on the 
remaining data, and assessing the model fit to the withheld data. This can 
be accomplished through cross-validation in which values from one or 
more years are iteratively removed and replaced until a complete validation 
time series has been generated (Michaelsen 1987; Woodhouse and Pederson 
2018). Alternatively, a split-sample validation approach is used in which a 
portion of the calibration time series (typically at least 20 years) not 
included in the model calibration is used solely for model validation (Fritts, 
Guiot, and Gordon 1990). 

The skill of the calibration model in estimating the observed values is 
assessed with statistics that include the explained variance (R2) and 
standard error (SE). These statistics are compared to those generated from 
the validation data and include the reduction-of-error (RE) statistic (Fritts, 
Guiot, and Gordon 1990), which measures the ability of the reconstruction 
model to outperform a null model (e.g., the mean of the observed 
streamflows during the calibration period) and yields the root mean 
squared error (RMSE) of the validation data. Other visual and statistical 
comparisons are often performed as well. 

10.2 Upper Colorado River Basin flow reconstructions 

History of Upper Basin streamflow reconstructions 
Edmund Schulman, one of the pioneers of tree-ring science, was the first to 
investigate the use of moisture-sensitive conifer tree rings to document 
past precipitation and streamflow in the Colorado River Basin (Figure 10.1). 
While Schulman’s work in the 1940s was based on relatively few tree-ring 
samples and predated the availability of computer-aided statistical 
modeling, his proxy record of streamflow captured the main features of 
later reconstructions that used far more tree-ring data and modern 
statistical calibration approaches (Schulman 1945). Schulman’s work 
included a report to the Los Angeles Department of Power and Light (“A 
Tree-Ring History of the Runoff of the Colorado River 1366–1941”), which 
indicates the interest of water-management agencies in tree-ring 
paleohydrology from its earliest days.  
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The first modern calibrated streamflow reconstructions for the Colorado 
River were developed by Stockton and Jacoby (1976), building on the 
preliminary work of Stockton (1975). Stockton and Jacoby developed 
multiple reconstruction models using two subsets of tree-ring chronologies 
and several different naturalized flow records for model calibration. Their 
final, published, Lees Ferry reconstruction was an average of the two 
models they deemed most reliable and extended from 1520–1961, with a 
long-term mean flow of 13.4 maf, explaining 87% of the variance in the 
1914–1961 observed flow record (Stockton and Jacoby 1976).  

Two additional Lees Ferry reconstructions were generated in the 1980s and 
1990s based on the same or similar sets of tree-ring chronologies as 
Stockton and Jacoby, with models that used different types of multiple 
linear regression (Table 10.1): Michaelsen et al. (1990), in research 
undertaken for the California Department of Water Resources, and Hidalgo 
et al. (2000). The Hidalgo et al. long-term reconstructed mean flow of 13.0 
maf is lower than any other reconstruction, likely as a result of their 
particular methodology, as discussed below. 

 

Figure 10.1 

Edmund Schulman 
developed the first tree-
ring proxy record for 
Colorado River streamflow 
in the early 1940s. That 
record, which extended 
back to the 1300s, 
captured many of the 
major droughts and wet 
periods seen in more 
recent Colorado River 
streamflow reconstruct-
tions. (Source: Laboratory 
of Tree-Ring Research, 
University of Arizona) 
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Table 10.1 

Summary of statistical characteristics of published Colorado River at Lees Ferry reconstructions, updating 
Table U-6 in Reclamation (2007) 

Reconstruction 
Calibration 

years 

Source of 
Observed 
Natural 

Flow Data 

Chronology 
Type 

Regression 
approach 

Variance 
explained 

(R2) 

Reconstruction 
years 

1568–
1961 
mean 
(maf) 

Stockton and 
Jacoby (1976) 

a. 1899-1961 Hely, 1969 standard 
PCA with lagged 

predictors 
0.75 1512-1961 14.2 

b. 1914–1961 Hely, 1969 standard “ 0.78 1512–1961 13.9 

c. 1914–1961 
UCRSFIG, 

1971 
standard “ 0.87 1511–1961 13.0 

Average of b 
and c 

    1520–1961 13.4 

Michaelsen et 
al. (1990) 

1906–1962 
Simulated 

flows 
residual Best subsets 0.83 1568–1962 13.8 

Hidalgo et al. 
(2000) 

1914–1962 
USBR (see 

ref) 
standard 

Alternative  
PCA with lagged 

predictors 
0.82 1493–1962 13.0 

Woodhouse et 
al. (2006) 
 

(Lees–A) 1906–1995 USBR residual Stepwise 0.81 1490–1997 14.7 

(Lees–B) 1906–1995 “ standard Stepwise 0.84 1490–1997 14.5 

(Lees-C) 1906–1995 “ residual PCA 0.72 1490–1997 14.6 

(Lees-D) 1906–1995 “ standard PCA 0.77 1490–1997 14.1 

Meko et al. 
(2007) 
(nested model) 

1906–2004 USBR residual 
2-step regression 
with PCA, nested 

models 
0.76 762–2005 14.7 

Meko et al. 
(2017) 
 

(most skillful) 1906–2015 USBR standard 

Interpolation from 
regression 

scatterplot, nested 
models 0.81 1416–2015 14.2 

(longest) 1906–2014 USBR standard 
Same as above 
but no nesting 

0.58 1116–2014 14.2 

Gangopadhyay 
et al. (2009) 

1922–1997 USBR standard 
K-Nearest 

Neighbor (K-NN) 
0.76 1400–1905 ‡ 

Gangopadhyay 
et al. (2015)* 

1910–1997 
Simulated 

flows 
standard 

K-Nearest 
Neighbor (K-NN) 

r = 0.63 
(med) 

1404–1905 ‡ 
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Reconstruction 
Calibration 

years 

Source of 
Observed 
Natural 

Flow Data 

Chronology 
Type 

Regression 
approach 

Variance 
explained 

(R2) 

Reconstruction 
years 

1568–
1961 
mean 
(maf) 

Bracken et al. 
(2016)† 

1952–1997 USBR residual 
Nonhomogeneous 

Hidden Markov 
Chains (NHMC) 

r = 0.91 1473–1906 ‡ 

*Includes additional reconstructions for 5 tributary gages  
†Includes additional reconstructions for 19 main stem and tributary gages 
‡The non-parametric models do not produce reconstructed flows for the post-1905 period, so comparisons over this full 

period are not possible 

 
In the late 1990s and early 2000s, major efforts were undertaken to update 
and expand the tree-ring chronologies collected in the upper Colorado 
River Basin and adjacent areas. These new chronologies enabled the next 
generation of Colorado River reconstructions, which took advantage of the 
longer calibration period. Because the calibration period was extended to 
include an additional 33 to 53 years (the latter nearly doubling the 
calibration period of pre-2006 reconstructions), these reconstructions are 
considered more robust. This additional credibility is due to both the 
extended length of the calibration period and the broader range of 
variability for model calibration. The first of these new chronologies 
expanded the Lees Ferry streamflow reconstruction start and end dates to 
1490–1997/1998 (Woodhouse, Gray, and Meko 2006). Under that effort, four 
different reconstruction models were developed to test the sensitivity of 
reconstruction results to 1) autocorrelation in the tree-ring data and 2) the 
multiple linear regression approach used.  

On the heels of that work, Meko et al. (2007) developed a subset of tree-
ring chronologies that incorporated remnant material from dead trees to 
extend the tree-ring records back even further in time, along with updated 
chronologies, to generate a reconstruction of streamflow from 762–2005. 
This extended reconstruction revealed a much larger range of variability, 
including a much longer period of sustained drought in the 12th century, 
than had been documented in the shorter reconstructions. This 
reconstruction was largely based on the same set of chronologies as used in 
Woodhouse et al. (2006) back to the 1400s: To deploy the largest set of 
available chronologies back in time, Meko et al. (2007) used four nested 
sub-period reconstruction models. While the explained variance for the 
model that covers the longest sub-period (1365–2002) is very similar to 
explained variance in the models for Woodhouse et al. (2006), the model 
covering the earliest period, extending back to 762, is less skillful 
(Table 10.1).   

Figure 10.2 shows the locations of streamflow reconstructions in the 
Colorado River Basin.  
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Figure 10.2 

Locations for which naturalized annual streamflows have been reconstructed using tree-ring records, with the 
reconstruction data available from the TreeFlow website. The lengths of the reconstructions range from 385 years to 
1244 years. Three different reconstructions of the Colorado River at Lees Ferry are available from TreeFlow; see the 
text for more information about these and other Lees Ferry reconstructions. (Source: TreeFlow; 
https://www.treeflow.info) 

 

https://www.treeflow.info/
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Most recently, the California Department of Water Resources funded Meko 
and Woodhouse to update a subset of the Upper Basin tree-ring 
chronologies in order to include the most recent drought years in the 
streamflow calibration series (Meko, Woodhouse, and Bigio 2017). Under 
that effort, two Lees Ferry reconstructions were generated: a shorter, more 
skillful reconstruction (1416–2015; R2 =0.81) and a longer but less skillful 
reconstruction (1116–2015; R2 = 0.58).  

A comparison of all of the Lees Ferry reconstructions described above is 
shown in Figure 10.3 for the years they have in common, 1568–1961. 
Reconstructions have been smoothed with a 20-year moving average 
(plotted on the last year) to facilitate visual comparison. In general, the 
reconstructions are very similar in their depictions of the timing of shifts 
between high and low flow periods. The period in which reconstructions 
are perhaps most different is the wet period in the early 1600s, with the 
Michaelsen et al. (1990) reconstruction showing flows barely above their 
long-term average, while the more recent reconstructions show the 
highest values (Meko et al. 2007; Meko, Woodhouse, and Bigio 2017; 
Woodhouse, Gray, and Meko 2006). This suggests the influence of the 
larger set of tree-ring chronologies in the Upper Basin starting with the 
2006–07 reconstructions.  

 
Figure 10.3 

Comparison of eight tree-ring reconstructions of the Colorado River at Lees Ferry, showing the 
similarities in the timing of decadal-scale dry and wet periods. The most recent reconstructions 
(published after 2005) are emphasized with darker colors due to their more robust tree-ring datasets 
and longer calibration periods than earlier reconstructions. All series are smoothed with a 20-year 
moving average and plotted on the last year of the 20-year period. (Data: Treeflow 
(https://treeflow.info and C. Woodhouse) 

https://treeflow.info/
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The Hidalgo et al. (2000) reconstruction clearly differs the most from the 
others, showing much lower flows during drought periods than the other 
reconstructions. That reconstruction used a set of tree-ring chronologies 
similar to Stockton and Jacoby, but with a different PCA regression 
approach that apparently enhances the year-to-year persistence of flow 
anomalies, and thus the magnitudes of extended low-flow periods. An 
independent estimate of gaged flows during the late 1800s drought 
suggests that the Hidalgo et al. reconstructed flows during that period—and 
by extension, previous drought periods—are implausibly low. In the 1920s, a 
USGS hydrologist used observed stage height of the Colorado at Yuma to 
estimate annual flows at Yuma back to 1878; converting these to natural 
flows at Lees Ferry gives an average of 13.5 maf for the period 1886-1905 
(Kuhn and Fleck 2019). The Hidalgo et al. reconstruction indicates only 10.4 
maf for this same period, while the other seven reconstructions are in the 
range of 12.1–13.4 maf.  

In addition to these regression-based (i.e., parametric) reconstructions of 
the Colorado River at Lees Ferry, reconstructions have been generated 
using non-parametric statistical approaches. The non-parametric 
approaches do not assume that the data are normally distributed, and can 
produce ensembles of reconstructed flow values for each year, expressing 
the uncertainty in the reconstruction. These non-parametric 
reconstructions have generally used the same set of tree-ring chronologies 
developed for Woodhouse et al. (2006) and Meko et al. (2007), along with a 
few updated chronologies. Gangopadhyay et al. (2009) employed K-nearest 
neighbor (K-NN) techniques to develop an ensemble of Lees Ferry annual 
streamflow traces. Bracken et al. (2016) used a hierarchical Bayesian 
nonhomogeneous hidden Markov model (NHMM) to develop 
reconstructions for a network of 20 Upper Basin gages, including Lees 
Ferry. Both sets of reconstructions extend back to the 15th century, with 
mean explained variance of R2 = 0.76 (Gangopadhyay et al. 2009) and R2 = 
0.83 (Bracken, Rajagopalan, and Woodhouse 2016), respectively, indicating 
overall skill similar to regression-based reconstructions. 

The main strength of these approaches over linear regression is their 
explicit representation of uncertainty with more realistic confidence 
intervals, and in the case of Bayesian NHMM, the replication of observed 
spatial relationships among tributary gages. The resulting reconstructions 
themselves are similar in skill to those produced by regression approaches, 
and also show similar magnitudes for the extended dry and wet periods, 
clearly demonstrating the robustness of the overall hydroclimatic signal 
that emerges from the current set of tree-ring chronologies in this region 
(Table 10.1). 

Most recently, Gangopadhyay et al. (2015) used a water balance model and 
the set of chronologies that had been used in Gangopadhyay et al. (2009) in 
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a K-NN approach to generate a suite of hydroclimatic reconstructions, 
including the Colorado River at Lees Ferry, back to 1404. In that case, the 
median correlation between the water year streamflow reconstructions 
(1906–1997) and the observed flow record was r = 0.63.  

In addition to these reconstructions of the Colorado River at Lees Ferry, 
water year streamflow has been reconstructed for 30 other main stem and 
tributary gages throughout the Upper Basin, as well as 4 tributary gages in 
the Lower Basin, all in the Gila River basin. These reconstructions are listed 
in the TreeFlow web resource (CLIMAS and WWA n.d.), with links to the 
data and metadata. 

Comparison of recent Lees Ferry reconstructions  
The Lees Ferry streamflow reconstructions generated since 2006 
(Woodhouse, Gray, and Meko 2006; Meko et al. 2007; Meko, Woodhouse, 
and Bigio 2017) have used the same or very similar sets of tree-ring 
chronologies as potential predictors of streamflow. Consequently, these 
regression-based reconstructions are quite similar (average correlation 
between reconstructions over common years: r = 0.88, ranging from r = 
0.76 to r = 0.96) but with some key differences that highlight the impact of 
choices made when reconstruction models were developed. These 
differences are mostly due to treatment of the autocorrelation that is found 
in the ‘raw’ tree-ring data and type of multiple linear regression modeling 
used.   

Most obvious are the differences in explained variance (Table 10.1). The 
reconstructions, or portions of reconstructions, that extend farthest back 
in time have the lowest skill, as they are based on a much-reduced subset 
of the tree-ring chronologies—for example, the Meko et al. (2007) model 
that starts in 762, and the Meko et al. (2017) longest reconstruction. Putting 
these two aside, the explained variance of the other reconstructions ranges 
from R2 = 0.77 to R2 = 0.84.   

Since the reconstructions listed in Table 10.1 used different calibration 
periods and different natural flow records for calibration, a more uniform 
comparison of the reconstructions can be made based on their correlations 
with the latest version of the Lees Ferry estimated natural flows (as of 
September 2018) over a common interval of time (1906–1997). In this 
comparison, the reconstructions with the highest correlations with flow 
are non-PCA regression reconstructions from Woodhouse et al. (2006) 
(Lees B, standard chronologies, r = 0.916) and Meko et al. (2017) (shorter 
more skillful version, r = 0.914), followed by the Lees A (residual 
chronologies, r = 0.895). The two that are most skillful are generated from 
standard chronologies, i.e., those with biological persistence retained, so 
that the series contain statistically significant lag-1 autocorrelations. 

Treeflow 
 

 
 
Link: 
https://www.treeflow
.info/ 

https://www.treeflow.info/
https://www.treeflow.info/
https://www.treeflow.info/
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Going beyond the strength of the relationships between reconstructed and 
estimated natural flows, an examination of basic statistical characteristics 
such as the minimum, maximum, and range coincides with what might be 
expected, given differences in explained variance. In other cases, the 
results provide some insights into modeling choices. Perhaps the most 
revealing comparison is with the lag-1 autocorrelation values, i.e., year-to-
year persistence. In the observed flow record, this value is r = 0.235 
(significant at p = 0.02). The reconstructions based on residual 
chronologies, in which biological persistence was removed (Lees A and Lees 
C), as expected show autocorrelation values over the calibration period of r 
≈ 0. The two Meko et al. (2017) reconstructions have somewhat higher 
persistence (r = 0.338 and r = 0.379) than the observed natural flows, while 
Lees B (r = 0.221) and Lees 2007 (r = 0.243) appear to be the closest match 
to the persistence in the observed natural flows. Higher autocorrelation 
values will result in longer periods of drought being seen in the 
reconstructed flows. For example, the Meko et al. (2017) most-skillful 
reconstruction contains two 10-year, one 11-year, and one-15 year drought 
over the years 1416–2005, while the longest drought shown in Lees 2007 
during this same period lasted only 8 years. (Drought is defined here as 
consecutive years below the observed average.)  

There is no perfect reconstruction and trade-offs are unavoidable, the most 
obvious being between skill and length. But this comparison does suggest 
that the use of standard chronologies preserves important autocorrelation 
in the system, though more work is needed to determine what modeling 
choices beyond the type of chronology may better replicate the 
autocorrelation in the observed hydrology. Given this, any of the following 
recent reconstructions of Lees Ferry flow would be appropriate for water 
supply analysis and as inputs to system modeling; the fact that they show 
differences between them is reflective of the uncertainties inherent in any 
one reconstruction, as outlined in the next section.  

• Lees B (Connie A. Woodhouse, Gray, and Meko 2006) 
• Lees 2007 (Meko et al. 2007) 
• Lees 2017, either model (Meko, Woodhouse, and Bigio 2017) 
• Gangopadhyay et al. K-NN (Gangopadhyay et al. 2009) 
• Bracken et al. NHMM (Bracken, Rajagopalan, and Woodhouse 2016) 

Of these reconstructions, Lees 2007 has seen the most use in recent water-
supply analyses for the basin, including those supporting the 2007 Interim 
Guidelines (Appendix N; Reclamation 2007b) and in the Basin Study 
(Reclamation 2012b). Lees-B was used in the initial analyses performed for 
the Draft EIS for the 2007 Interim Guidelines. 
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SPOTLIGHT 

 

The term megadrought was first used by Woodhouse and Overpeck (1998) to refer to droughts, as 
documented by paleoclimatic data, that lasted longer than any that occurred in the period of instrumental 
data across the central and western U.S. The term was then highlighted in Stahle et al.’s paper, “Tree-Ring 
Data Document 16th Century Megadrought of North America” (Stahle et al. 2000), and has been widely used 
since.   

A megadrought is most often defined as a drought over a given area or for a spatial extent that is as severe 
as, but longer than, any in the 20th century (e.g., Cook 2004; Ault and St. George 2018). The definition may 
include a more specific interval, such as 20–40 years (Herweijer et al. 2007), longer than 35 years (Ault and 
St. George 2018), or include any droughts that exceed both the duration and severity of 20th century 
droughts (Stahle et al. 2007). While many droughts during the pre-instrumental (pre-1900) period have been 
identified as megadroughts, the most well-known are those of the medieval period (~850–1300), which 
extended across western North America, including the Colorado River Basin (Cook 2004; Meko et al. 2007). 
In the Upper Basin, the most notable megadrought occurred during the mid-1100s, with 13 consecutive years 
of below-average reconstructed flow at Lees Ferry, and the driest 25-year period (1130–1154), averaging less 
than 84% of the observed period average flow for 1906–2004 (Meko et al. 2007). Figure 10.4 shows the mid-
1100s megadrought and three others that occurred between 800 and 1600.  

Tropical Pacific sea surface temperature (SST) variability, and specifically, persistent cool anomalies, similar 
to La Niña events, has been suggested as the primary causal mechanism for the medieval-era megadroughts, 
with a possible role for SSTs in the Atlantic (Seager et al. 2008). Studies using GCMs that show megadrought 
behavior in pre-20th century simulations strongly suggest that internal climate variability alone has been 
responsible for these droughts (Coats et al. 2015). The medieval period of more frequent and persistent 
droughts does not appear to have been accompanied by similarly persistently cool tropical Pacific SSTs, 
suggesting a mean shift did not occur over this period, and that other modes of climate variability also 
played a role (Coats et al. 2016).   

What we know about the causes of megadroughts suggests that events like the persistent droughts of the 
medieval period could occur in the future due to natural climate variability alone. Recurrences of such 
droughts would produce even lower flows than shown in the reconstructions due to the additional impact of 
warmer conditions (Woodhouse et al. 2010). For example, Udall and Overpeck (2017) concluded that a 
recurrence of the lowest 25-year period in the Lees 2007 Colorado River flow reconstruction, which had 
flows of 84% of average, would, in a warmer future, have flows of 78% of average under a 1°C (1.8°F) warming 
and 65% of average under a 3°C (5.4°F) warming, assuming a mid-range temperature sensitivity of basin 
runoff. 
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A number of studies have employed both paleoclimatic reconstructions of drought and output from 
multiple global climate models to estimate the risk of drought across the southwestern U.S., including 
the basin, over the next century. Cook et al. (2015) found that drought risk across the U.S. Southwest 
and Central Plains is likely to surpass even the driest centuries of the medieval period, under both 
moderate-emissions (RCP4.5) and high-emissions scenarios (RCP8.5). In the Southwest, the risk of 
decadal-scale megadrought is estimated to be at least 80%, the risk of a 35-year megadrought from 20-
50%, and the risk of a 50-year megadrought under the highest emissions scenario is 5-10% (Ault et al. 
2014). The importance of warming temperatures in this region is highlighted by Ault et al. (2016), who 
found that megadrought risk increased to above 90% by the end of the 21st century, even without 
changes in precipitation. This importance of warming temperatures with regard to reduction in flow 
was underscored by the findings of Udall and Overpeck (2017) for the Colorado River.  

 

Figure 10.4 

Comparison of the reconstructed annual flows, with a 20-year running average, for the Colorado River at Lees Ferry from 
Meko et al. (2007) (‘Lees 2007’) and Meko et al. (2017) (‘Lees Long 2017’; long version). Four megadroughts are 
highlighted in yellow, the first three of which occurred during the medieval period: 1) one in the 9th century, 2) one in 
the 12th century, 3) one in the late 13th and early 14th century, and 4) one in the late 16th century. Other paleoclimate 
reconstructions indicate that the impacts of these four megadroughts extended throughout much of western North 
America. 

 

 

 

 

 

 

 

 

 



 

Chapter 10. Paleohydrology 375 
 

10.3 Sources of uncertainty in tree-ring reconstructions 

Because tree rings are imperfect proxies for streamflow, there are 
inevitable uncertainties in the reconstructions. Additional uncertainties 
arise from the choices made during the handling of the tree-ring data and 
the reconstruction model. A more detailed overview of the sources of 
reconstruction uncertainty can be found in Meko and Woodhouse (2011). 
The factors that lead to differences and uncertainty include: 

• Noise in the trees’ recording of hydroclimatic conditions (signal) 
• The selection of the tree-ring chronologies to use in the pool of 

candidate predictors 
• The processing of those chronologies (detrending method; residual vs. 

standard chronology) 
• The selection of the naturalized streamflow record used in the 

calibration 
• The length of the calibration period 
• The choice of statistical model used for calibration 
• The choice of calibration/validation scheme 

Metrics of error such as RMSE quantify the uncertainty for an individual 
reconstruction related to the imperfect calibration fit between the modeled 
flow and the observed flow, and allow one to construct confidence intervals 
around the reconstruction. But RMSE and resulting confidence intervals do 
not capture the uncertainties related to the data handling and modeling 
choices above. The overall effect of these uncertainties is better illustrated 
by the differences between the various Lees Ferry reconstructions (Table 
10.1, Figure 10.3). 

While the Colorado River streamflow reconstructions have some of the 
most robust calibration/verification statistics of any tree-ring 
reconstructions of hydroclimate, 20% or more of the variance in the gage 
record remains unexplained. Linear regression modeling, used for most of 
the reconstructions in Table 10.1, tends to compress the range of the input 
data, so that extreme low-flow values are typically overestimated by the 
model, and extreme high-flow values are typically underestimated. 
Consequently, the reconstructed values for drought years can be 
interpreted as conservative estimates of actual streamflows in most cases. 

10.4 Value and application of paleohydrology in water 
supply analyses 

Reconstructions of Colorado River streamflow extend the gaged record up 
to 1200 years into the past and document a broader range of hydrologic 
variability and extremes than are contained in the relatively short observed 
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records. They indicate, for example, that drought events far more 
persistent than any observed over the instrumental period have occurred 
under natural climate variability alone; that is, without significant human 
influence on the climate (Meko et al. 2007). The reconstructions also clearly 
document that the hydroclimate of the basin has been non-stationary; the 
mean and variability are not constant from one century to the next. While 
climate change will be a major driver of non-stationarity in hydrology in the 
future (Milly et al. 2008), the reconstructions provide abundant evidence of 
time periods with statistical characteristics quite different from those of 
the 20th century.  

One example is the 12th century, which was characterized by multiple runs 
of below-average flow for the Colorado River at Lees Ferry, including a 
nearly 60-year period (1110–1170) with only 12 years of above-average flow 
(Meko et al. 2007). The reconstructed flows for the 12th century had lower 
mean flow, a smaller range of flow values, and a much higher persistence (r 
= 0.55 vs. r = 0.26; see Chapter 2) compared to the reconstructed flows for 
the 20th century. This type of non-stationarity is also seen in wavelet 
spectra that show changes in the multidecadal variability in reconstructed 
streamflow over the past six centuries (Woodhouse, Gray, and Meko 2006). 

Because of their multi-century to millennial length, reconstructions of 
streamflow also document variability at time scales longer than what can be 
discerned from the instrumental record. Time-series analysis reveals a 
multidecadal peak signal in Colorado River flow at about 50–60 years, 
suggesting a phasing of wet and dry periods at this interval, although the 
strength of this phasing varies over time, and it is not clearly associated 
with a defined climate oscillation such as the AMO or PDO (Woodhouse, 
Gray, and Meko 2006; Meko, Woodhouse, and Bigio 2017). Such expressions 
of multi-decadal variability cannot be detected using observed records, 
given their limited length.  

Also due to their extended length, reconstructions contain extremes that 
may not be represented in the shorter instrumental period, and allow an 
assessment of events experienced in the observed record in a centuries-
long context. Upper Basin reconstructions have documented the 
unusualness of the high-flow period of the early 20th century as well as 
droughts more severe than any that occurred in the 20th century. While the 
ongoing 21st century drought may eventually match the persistence of the 
longest droughts of the past eight centuries, the medieval period (~850–
1300) stands out as an interval of frequent persistent droughts, with 
multiple runs of eight to ten years of consecutively below average flows. 
Persistent drought in the 12th century is especially notable, as mentioned 
above. Statistical analysis suggests that the worst 25-year period of drought 
in the 12th century—with a mean flow of 84% of the 1906–2004 observed 
average or less (Meko et al. 2007)—has a probability of occurring once every 
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six centuries (p≈0.17, based on 1906–2009 flows) (Meko, Woodhouse, and 
Morino 2012). On the other extreme, the early 20th century pluvial (1905–
1930) has been found to be one of the wettest, if not the wettest 
multidecadal period in the last 500 years (Woodhouse et al. 2005; Cook, 
Seager, and Miller 2011) to 1000 years (Cook 2004) across the western U.S., 
including the upper Colorado River Basin.  

The information from the reconstructions of past flow has been useful for 
providing context for the assessment of observed and GCM-based 
hydrology (Reclamation 2007c; 2012e). While the record of the past is 
unlikely to be replicated in the future, the paleohydrology records contain 
important information about the range of natural variability that has 
occurred in the past, and thus could occur again. This perspective is 
especially critical since GCMs do not appear to simulate the full magnitude 
of decadal to century-scale variability as reflected in long proxy records, 
including the Colorado River reconstructions (Ault et al. 2013; Woodhouse, 
Gray, and Meko 2006). The GCMs also appear to underestimate the risk of 
persistent severe droughts, such as those of the 12th century (Ault et al. 
2014). The reconstructions of past streamflow can be particularly valuable 
in cases where climate models are not very informative or well accepted by 
practitioners.   

Applications in Reclamation-led planning studies 
Reclamation first used tree-ring based reconstructions of Colorado River 
flow in analyses to support the 2007 Interim Guidelines; the analyses based 
on reconstructed flows were included in Appendix N of the Final EIS 
(Reclamation 2007b). The reconstructed flow values were used to test the 
sensitivity of the modeled system in Reclamation’s Colorado River 
Simulation System (CRSS) to a broader range of hydrologic conditions than 
allowed by the observed hydrology alone. CRSS runs on monthly time steps 
and requires input for 29 inflow points in the basin (see Chapter 3), while 
the tree-ring reconstruction that was chosen (Lees 2007), like all such 
reconstructions, has annual values for a single river location (Lees Ferry). 
This is a common challenge in using tree-ring reconstructions in water 
resources planning: system models usually require spatial and temporal 
inputs at finer resolutions than provided by the annual flow reconstruction. 
Thus, spatial and temporal disaggregation was a key part of the two 
methods used by Reclamation to develop CRSS-ingestible hydrologic traces 
from the (Meko et al. 2007) reconstruction.  

The first method, called Direct Paleo or Paleo Resampled, uses the 
sequences of flow magnitudes directly from Lees 2007. A K-NN approach is 
used to first disaggregate the annual reconstruction series for Lees Ferry 
into monthly data by effectively replacing each reconstructed flow value at 
Lees Ferry (e.g., 1258) with a year and associated monthly values from the 
observed natural flow record (e.g., 1954) that is sampled from a small set of 
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“nearest neighbors” to that reconstructed flow value. Then the resulting 
simulated Lees Ferry monthly flows are disaggregated spatially to all 20 
inflow points in the Upper Basin, with the monthly flows at the 9 inflow 
points in the Lower Basin being taken from the analog year’s observed 
values (Prairie et al. 2006; 2007). These disaggregated flows (1244 years of 
monthly flows at 29 sites) are then resampled using the Index Sequential 
Method (ISM; Chapter 9), generating 1244 unique traces of 53 years in 
length. Since ISM sequentially block-bootstraps the streamflow data, the 
generated traces at Lees Ferry consist of the same annual flow magnitudes 
and sequences as seen in the Lees 2007 reconstruction, with the exception 
of the 4% of the traces that “wrap” the beginning around to the end of the 
reconstruction. 

The second method, Non-Parametric Paleo Conditioning, reflects the rich 
variety of flow sequences in the reconstructed flow record (Lees 2007) but 
constrains the annual values to the range of annual flow magnitudes seen in 
the observed flow record. The state-transition probabilities—the likelihood 
that a high-flow year will be followed by a low-flow year, and vice-versa—
are extracted from the streamflow reconstruction and then are used to 
conditionally resample the Lees Ferry observed flows, repeatedly, 
generating 125 unique traces of 53 years (Reclamation 2007b; 2012e; Prairie 
et al. 2008; Rajagopalan et al. 2009). The resulting paleo-conditioned Lees 
Ferry flows are then spatially and temporally disaggregated to monthly 
inflows at all 29 CRSS inflow points as described above.  

Both sets of paleohydrology-informed flow traces, when run through CRSS, 
showed a higher risk of undesirable system outcomes by the end of the 
planning period than the flow traces using the observed hydrology 
(Reclamation 2007b). For example, under the Direct Paleo traces that 
included the severe and sustained drought in the 1100s, the levels of Lake 
Powell and Lake Mead declined to levels below their hydropower pools, and 
in the case of Lake Mead, to dead pool (Figure 10.5). This finding illustrates 
the value of tree-ring paleohydrology in developing water-supply scenarios 
that are more stressful than the observed hydrology, and are physically 
plausible because they are anchored in past hydroclimatic behavior. 

In the Basin Study, the same two sets of paleohydrology-informed flow 
traces were again used as water supply scenarios in CRSS, along with 
multiple demand and management scenarios, to evaluate system 
vulnerability and resilience (Reclamation 2012e). A key difference between 
the Interim Guidelines EIS analyses in 2007 and the Basin Study analyses in 
2012 was that the paleohydrologic traces were integral to the main analyses 
and findings of the Basin Study, rather than being offered as supplementary 
material in an appendix. Another difference was that, in the Basin Study, 
the system outcomes under the paleohydrologic traces were compared to 
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outcomes under traces informed by global climate models (Chapter 11), as 
well as by the observed hydrology. 

Other applications by basin water agencies 
Tree-ring reconstructions of streamflow for Lees Ferry and other gages in 
the basin have been used by several water agencies in diverse applications 
over the last few decades. These include, most notably, the California 
Department of Water Resources, Denver Water, and the Salt River Project, 
who have all funded the development of new tree-ring chronologies, 

 
Figure 10.5 

Example of the use of paleohydrology-informed flow traces to evaluate Colorado River system 
vulnerability under plausible hydroclimate futures. Here, Lake Powell elevations for a 53-year period 
are modeled using synthetic “Paleo Conditioned” flow traces run through the CRSS model under two 
management scenarios: the No-action Alternative (NA), and the Preferred Alternative (PA), from the 
2007 Interim Guidelines Final EIS. The flow traces are based on wet-dry transition information from 
the Meko et al. (2007) tree-ring reconstruction of Lees Ferry. The drought that occurs in these two 
scenarios from roughly 2020–2030 does not correspond to a particular reconstructed paleodrought, 
but is consistent with the statistical characteristics of paleodroughts. (Source: Reclamation 2007b).  
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including new field collections, in addition to new streamflow 
reconstructions for gages critical to water supplies. Some of these 
applications, as in the Reclamation analyses, have used reconstructed flows 
as inputs to water system models to assess system response and sensitivity 
to extreme events and sequences of flow years that are not represented in 
the instrumental data records (Rice, Woodhouse, and Lukas 2009). Other 
agencies have conducted analyses outside of system models to place recent 
drought events in a long-term context, assess risk of recurrence, and 
evaluate worst-case scenarios for planning (Woodhouse and Lukas 2006; 
Meko and Woodhouse 2011; Meko, Woodhouse, and Morino 2012). The 
reconstructions have also been used to provide a general awareness of the 
range of hydroclimatic conditions possible, including the frequency and 
duration of droughts, in communications with boards, elected officials, 
customers, and the general public (Rice, Woodhouse, and Lukas 2009). 

10.5 Tree-ring reconstructions of other hydroclimate 
variables 

Besides annual streamflow, several other hydroclimate variables have been 
reconstructed for the upper Colorado River Basin. The moisture-limited 
tree-ring chronologies in and near the basin are largely sensitive to 
precipitation that falls between the autumn prior to the growing season 
and the early part of the growing season. The specific window of months to 
which tree growth is most sensitive varies with species and to some extent, 
site characteristics (Woodhouse and Pederson 2018). Consequently, it is 
feasible to reconstruct seasonal moisture variables such as cool-season 
precipitation and April 1 SWE, for specific regions or sub-basins, as well as 
for the entire basin (Woodhouse 2003; Gray et al. 2004; MacDonald and 
Tingstad 2007; Pederson et al. 2011; Woodhouse and Pederson 2018).  

The network of existing tree-ring chronologies has also been used for:  

• Reconstructing climate and climate-related indices that, like 
streamflow, reflect an integrative response to hydroclimate, such as 
annual soil moisture (Anderson, Tootle, and Grissino-Mayer 2012) and 
the summer Palmer Drought Severity Index (Cook et al. 2004, 2007, 
2010)  

• Reconstructing a full suite of water-balance variables (e.g., potential 
evapotranspiration, actual evapotranspiration, SWE, soil moisture 
storage, and runoff), though with varying degrees of robustness 
(Gangopadhyay, McCabe, and Woodhouse 2015) 

• Developing independent (with respect to chronologies) reconstructions 
of water-year streamflow and cool-season precipitation to estimate 
runoff efficiency in the Upper Basin (Woodhouse and Pederson 2018) 
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Tree-ring reconstructions have also been used to explore the variation in 
large-scale influences on basin climate and hydrology over past centuries, 
including El Niño-Southern Oscillation (ENSO; Chapter 2). With several 
reconstructions of ENSO variability available from tree rings and other 
proxy data (e.g., Braganza et al. 2009; Gergis et al. 2006), it is tempting to 
investigate long-term relationships between basin hydroclimate and ENSO. 
However, as described in Chapter 2, the ENSO influence on Upper Basin 
streamflow is generally weak. More problematically, there are large 
differences between the reconstructions of ENSO themselves, adding an 
additional layer of uncertainty to this type of analysis (Wilson et al. 2010). 
Similarly, a number of paleo-reconstructions of Pacific Decadal Oscillation 
(PDO) have been generated (Biondi, Gershunov, and Cayan 2001; D’Arrigo, 
Villalba, and Wiles 2001; Gedalof, Mantua, and Peterson 2002; MacDonald 
and Case 2005). While these reconstructions show a great deal of 
consistency during the post-1900 calibration period, they greatly diverge 
prior to the 20th century, suggesting that the PDO itself may be unstable 
over space and time (Wise 2015), or that the teleconnected influences on 
western North America climate are unstable. 

10.6 Blending paleohydrology and climate change 
information 

The record of past hydroclimatic variability will not be exactly replicated in 
the future because of the large random component of natural variability, as 
well as the unprecedented impacts of human activities on climate. While 
the modes and expressions of natural variability as documented in the 
reconstructions may be significantly altered by future human-caused 
climate forcing, there has been very little research to examine such 
potential changes. Thus, in the absence of evidence to the contrary, it is 
safer to assume that these modes and expressions of variability will 
continue. As far as we know, there is no reason that an event such as the 
severe and sustained drought of the mid-1100s could not occur in the 
future. 

As noted above, the main value of the tree-ring reconstructions is in their 
broader and richer sequences of wet and dry years, compared to the 
instrumental record. This information can be combined with the most 
robust aspects of climate projections from GCMs (i.e., future warming) to 
develop plausible scenarios for future hydrology. There have been several 
past and ongoing efforts to blend paleohydrology and climate-change 
information. 

Brekke et al. (2009) explored ways to represent information in both climate 
projections and paleoclimate data (in this case, runoff statistics) to inform 
water supply planning assumptions, using the Gunnison River as one of two 



 

Chapter 10. Paleohydrology 382 
 

test cases. Gray and McCabe (2010) demonstrated an approach that used a 
water-balance model to blend long-term precipitation variability with 
warming temperatures to produce projections of streamflow and drought 
for the upper Yellowstone River in Montana. In the Colorado River Water 
Availability Study (CWCB 2012), projected temperature changes and 
precipitation changes from GCMs were used in a hydrologic model (VIC; 
Chapter 6) to alter historical flow values, which were then re-sequenced 
into synthetic flow traces using information from the Meko et al. (2007) 
Lees Ferry reconstruction and Reclamation’s “paleo-conditioning” method 
as described earlier. An ongoing project funded by the DOI Southwest 
Climate Adaptation Science Center includes the development of an 
approach that blends tree-ring reconstructed basin cool-season 
precipitation with warmer temperatures consistent with GCM projections. 
The approach uses synthetic temperature series elevated by 2° to 4°C, or 
incorporating a warming trend, to generate streamflow using the McCabe 
and Wolock (2011) water-balance model.   

10.7 Challenges and opportunities  

Tree-ring paleohydrology is a relatively mature science, with a 75-year 
history, and the recent reconstructions of Colorado River (Lees Ferry) 
streamflow collectively provide a very robust view of pre-1900 hydrologic 
variability from interannual to century time scales. There are unlikely to be 
significant future improvements in the already high skill of these 
reconstructions. But there is more work to be done to refine the 
application of the reconstructions in water-supply planning, including 
establishing a stronger conceptual and practical basis for merging the 
reconstructions with future projections of streamflow. 

Challenge: Updating chronologies and reconstructions  
At present, only seven tree-ring site chronologies in the Upper Basin 
extend beyond 2005, so current streamflow reconstructions do not have 
the benefit of full calibration against the early 21st century dry period. 
Additionally, Reclamation’s ongoing revisions of natural flow estimates 
(Chapter 5) may, cumulatively, substantially revise the target hydrology for 
tree-ring flow reconstructions. 

Opportunities 
• Develop new or updated tree-ring site chronologies that the can be 

included in the calibration of any forthcoming streamflow 
reconstructions.  

• Consider recalibration of, as well as assessment of the sensitivity of, the 
tree-ring flow reconstructions to the revised natural flows. 
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• Generate new, targeted reconstructions for the key water supply 
regions of the Upper Basin like the ongoing project funded by the USGS 
Southwest Climate Adaptation Science Center, in collaboration with 
basin water managers.  

Challenge: Blending paleo with climate projections 
Key to applications of paleohydrology to future climate scenarios is 
understanding how modes of natural variability itself will change over the 
coming decades. It is unclear which methods of blending paleohydrology 
data and climate projections have the most robust physical foundation, and 
more work is needed to examine the issue of persistence in streamflow 
reconstructions and to determine its source. 

Opportunity 
• Develop plausible scenarios and characteristics of future basin drought 

over the next several decades through integration of paleohydrology 
data and climate projections. Some of this work is underway, as 
described above. 

Challenge: Reconstructions of temperature 
Existing tree-ring reconstructions of annual and growing-season 
temperature for the basin are not nearly as skillful as reconstructions of 
precipitation and streamflow, limiting our ability to tease apart the drivers 
of past low-flow periods and place the recent warming trend in context. 

Opportunity 
• Renew efforts to develop a robust reconstruction of past basin 

temperatures, building on current investigations using bristlecone pine, 
plus updating and re-measuring other collections of trees that are 
limited in growth by temperature.  
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Key points 
• Climate change-informed hydrology is increasingly used in basin 

planning studies to complement other long-range hydrologic 
information. 

• Most approaches to developing this information begin with global 
climate models (GCMs) driven by one of several emissions scenarios; 
the approaches incorporate multiple processing steps, with 
corresponding methodological choices that each have implications for 
the final output and its uncertainty.  

• GCMs are the best tools we have for exploring and quantifying 
physically plausible future climate changes at global to sub-continental 
scales. They have deficiencies in representing some key climate system 
features relevant to basin-scale climate, as well as reproducing 
historical basin-scale climate patterns themselves. 

• Downscaling methods make GCM output more usable for finer-scale 
hydrologic modeling, such as projections of future streamflows. 
Downscaled projections are not necessarily more accurate than the 
underlying GCM output in depicting future climate change. 

• Further warming is projected by all GCMs to continue in the basin as a 
consequence of continuing greenhouse gas emissions; basin 
temperatures are projected to rise by 2.5°F–6.5°F by mid-century 
relative to the late 20th century average. 

• The direction of future precipitation change for the basin is much less 
certain than temperature change. The GCMs show some overall 
tendency toward increasing annual precipitation in the northern parts 
of the Upper Basin, and toward decreasing precipitation from the San 
Juan Basin south through the Lower Basin.  

• The projected trends in precipitation are relatively small compared to 
the high year-to-year natural, or internal, variability in precipitation. 
Most GCMs project increased precipitation variability in the future. 

• Mainly due to the pervasive effects of warming temperatures on the 
water cycle, nearly all of the many datasets of climate change-informed 
hydrology and related studies show a strong tendency toward lower 
annual runoff volumes in the Upper Basin and the Lower Basin, as well 
as reduced spring snowpack and earlier runoff.  

• The overall spread of potential future hydroclimatic changes for the 
basin, as depicted across the GCM-driven projections, has not been 
reduced over the past decade and may not be appreciably reduced by 
forthcoming data and methods, not least because much of the spread is 
due to unpredictable natural climate variability.  
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11.1 Overview 

The last decade has seen basin water planning activities increasingly 
informed by expected future climate change and its effects on hydrology. 
The development and use of climate change-informed hydrology was 
largely confined to the research community prior to 2010, with few 
applications in real-world water planning activities in the western U.S. 
Appendix U of the Final EIS for the Interim Guidelines (Reclamation 2007c) 
set a pathway for consideration of climate change projections and their 
incorporation in water planning for the basin. Since then, there has been a 
broad shift toward greater use of these data by water agencies at the 
federal, state, and local level in the Colorado River Basin and elsewhere in 
the West, although with substantial variation in the pace and extent of  
adoption by different agencies and stakeholders. There has also been rapid 
growth in methodologies and available datasets, with agencies such as 
Reclamation and U.S. Army Corps of Engineers (USACE) becoming directly 
involved with data development, and leading interagency efforts to advance 
both the science and practice in this area (Brekke et al. 2009; Brekke 2011; 
Raff et al. 2013). The Water Utility Climate Alliance (WUCA), a self-organized 
consortium of major municipal water utilities, and its partners have also 
been instrumental in facilitating the development of climate change 
guidance for water managers (e.g., Barsugli et al. 2009; Vogel 2015).  

Climate change-informed hydrologic traces have been used as an adjunct 
to traces based on observed hydrology and paleohydrology in basin-scale 
planning studies, and also on their own to drive climate change impact 
assessments (see the Volume IV introduction). Virtually all approaches to 
developing climate change-informed hydrology, whether in the Colorado 
River Basin or elsewhere, begin with the output of GCMs—an acronym that 
originally referred to “general circulation models” but has come to also 
represent the more inclusive category “global climate models.” The GCMs 
translate the expected climate “forcings” (greenhouse gases, aerosols, and 
land use changes) on the Earth’s energy balance into future climate 
changes at global and regional scales, but they run at too coarse a 
resolution (typically 100 km or greater) to directly produce robust basin-
scale hydrology outputs that are usable for water planning in the basin. 
Several different methods, involving varying intermediate steps and 
methodological choices, may be used to derive basin-scale climate change-
informed hydrology from GCM output (Figure 11.1).  

In the method that has been most often used, including in recent basin 
planning studies (e.g., Reclamation 2012e, 2018), emissions scenarios are 
used to drive GCMs, and the climate output of the GCMs is bias-corrected 
and downscaled, then run through a separate (off-line) hydrologic model 
(Figure 11.1; the pink arrows show this pathway). At each step, described in 
Table 11.1, there are subjective decisions that a modeler or data analyst must 
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make, which partially indicates the uncertainties associated with that 
model or data type. The uncertainties collectively carry forward into the 
final result (simulated future hydrology), although not necessarily in a 
straightforward, additive manner. 

 
Figure 11.1 

Schematic showing five different approaches (colored arrows) for developing climate change-
informed hydrology from global climate model (GCM) output that have been tested or implemented 
for the Colorado River Basin. The pathway shown with the pink arrows has been the most frequently 
used in recent basin planning studies. Blue boxes show data inputs/outputs, while orange boxes 
show modeling steps. See also similar schematics in Ray et al. (2008) and Vano et al. (2014). 
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Table 11.1 

Key steps in the typical pathway for producing climate change-informed projections of future hydrology, 
objective of that step, and challenges related to that step.  

Step in modeling chain Objective of this step Caveats 

Emissions scenarios 

Provide multiple trajectories of 
future levels of global climate 
forcing (mainly from greenhouse 
gases) so that GCMs can project the 
future climate changes associated 
with an integrated storyline of 
future population growth, energy 
use, and policy. 

Scenarios often have been lumped 
together in hydrologic impact 
studies, but this should be avoided. 
 
Probabilities have not been 
assigned to the scenarios. 

Global Climate Models 
(GCMs) 

Provide estimates of future changes 
in atmospheric circulation and in 
key climate variables, at global to 
continental scales.  

The simulated natural (internal) 
variability in GCM projections 
means that large ensembles of 
simulations are required to robustly 
estimate mean changes. 

Bias-correction  

Shifts the values of GCM-simulated 
climate variables to better match 
historical observations of those 
variables (both mean and 
variability). 

Some GCM biases cannot be 
meaningfully corrected. 
 
Bias-corrected data can mislead 
users about the ability of the 
underlying GCMs to simulate 
historical climate. 

Downscaling  

Translates coarse-scale GCM 
climate output statistically or 
dynamically into finer-scale climate 
output suitable for regional climate 
analysis and impacts modeling. 

Most downscaling methods 
implicitly assume that spatial 
relationships or other 
characteristics of observed climate 
are maintained in the future (i.e., 
stationarity).   
 
Can mislead users about the 
reliability of the spatial and 
temporal details of the regional 
output. 

Hydrologic modeling 

Translates finer-scale climate output 
into future trajectories of hydrologic 
variables (e.g., runoff) at basin and 
watershed scale. 

Hydrology models are calibrated to 
historical climate and may have 
stationarity assumptions 
embedded in their parameters. 
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Methods that develop basin-scale hydrologic simulations from GCMs in 
order to drive a water system model are aligned with “top-down” 
approaches to climate change impact assessment, where one starts with 
global-scale climate projections, ultimately arriving at local changes and 
impacts that are determined by those top-level inputs in combination with 
the intervening data and models. In comparison, “bottom-up” approaches 
typically begin with local system vulnerabilities to determine thresholds of 
undesirable impacts, then query higher-level climate information to assess 
the future changes in exceedances of system thresholds. In practice, 
climate impact or vulnerability assessments often end up as hybrids of top-
down and bottom-up approaches. When one begins an assessment process 
with a large set (ensemble) of global climate projections, as is typically 
done, there is usually an equally large ensemble of local or basin-scale 
simulations at the end, with each of those simulations retaining important 
characteristics of the respective climate projection that drove it. The 
handling and interpretation of these simulations strongly influence how the 
data ultimately inform planning decisions. 

The organization and content of this chapter acknowledges that the top-
down, large-ensemble approach is strongly embedded in current practice, 
including recent and forthcoming hydrologic analyses and planning studies 
for the basin (e.g., Reclamation 2012e; 2018; 2020). Thus, this chapter 
follows the typical processing steps from GCMs to basin-scale hydrology, 
providing information on models and methods as used to generate 
ensembles of climate change-informed hydrology, and summaries and 
evaluations of the output of those ensembles. However, there are 
alternative approaches to using climate change information to understand 
potential future hydrology—those alternatives will be described toward the 
end of this chapter.  

Those readers with greater familiarity with the processing steps and 
models (GCMs, emissions scenarios, downscaling) and who are most 
interested in the results—projected future climate and hydrology for the 
Colorado River Basin—are encouraged to jump ahead to sections 11.6 and 
11.7. 

11.2 Understanding GCMs and climate projections  

As noted above, GCMs are the usual starting point for methods for 
producing climate change-informed hydrology, such as can be run in a 
water system model like CRSS. GCMs are designed to simulate the 
dynamics of the atmosphere, oceans, land surface and vegetation, sea ice, 
land ice, and the energy balance and water balance that integrate these 
components of the climate system. Overall, they provide realistic 
simulations of the key physical phenomena such as the planetary energy 
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balance, large-scale atmospheric and oceanic circulation, broad-scale 
patterns of temperature and precipitation, and statistical characteristics of 
the historical and current climate, at global scales. At the scale of regions 
the size of the Upper Basin, the simulations are not as realistic, especially 
for precipitation, as detailed below. 

The typical structure of a GCM divides the globe—the atmosphere and 
oceans—into a grid in both the horizontal and vertical dimensions, creating 
grid boxes (Figure 11.2). In GCMs, as in weather and climate forecast models 
(Chapter 7), fundamental physical laws of thermodynamics, motion, and 
fluid dynamics are used to simulate many of the processes, such as the 
transfer of mass, energy, and momentum between the grid boxes. Other 
processes, such as the formation of clouds and thunderstorms, take place 
at spatial scales smaller than a model grid box (typically 100-250 km 
across). Climate models simulate these sub-grid-scale processes by using 
numerical factors (parameters) that have been generalized from 
observations to the grid box scale, a procedure called parameterization. 
Higher resolution (i.e., smaller grid boxes) allows for more physically 
explicit representation of processes, as well as more realistic depiction of 
topography, both of which tend to improve model performance. But higher 

 
Figure 11.2 

Schematic showing the 3-dimensional grid of a typical GCM, with a horizontal 
resolution of about 100 km, and multiple vertical levels extending up into the 
atmosphere and down into the oceans. (Source: University Corporation for 
Atmospheric Research.) 
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resolution comes with much greater computational costs; increasing model 
resolution both horizontally and vertically by a factor of two requires eight 
times as many calculations. 

From a handful of models at a few modeling centers in the 1980s, the GCM 
community has grown to over 30 modeling centers in 10 countries. These 
centers have developed and now maintain at least 60 GCMs. It is important 
to emphasize that these have not been wholly independent efforts; the 
modeling centers share model code and parameters for many processes, 
and several centers maintain multiple GCMs that are variants of each other. 

Climate projections 
For a given climate simulation, a GCM is initialized with a long period to 
“spin up” the ocean and other slowly evolving model components from 
specific starting observations of the atmosphere and oceans, and then the 
GCM is allowed to run freely in time to simulate the past climate or to make 
long-term projections of future climate. Climate models are marched 
forward from the initial state at time steps ranging from a few minutes to 
an hour. This high temporal resolution means that GCMs actually simulate 
sequences of hourly and daily weather, which integrate over time into 
modeled climate variability and change at longer timescales. After the initial 
state is specified, the only inputs to the GCM are so-called “external 
forcings,” such as solar variations, aerosols from historical volcanic 
eruptions, and the changes in greenhouse gas concentrations, ozone, and 
anthropogenic aerosols collectively specified in an emissions scenario. 
Recently, historical observations and future scenarios of land cover change, 
which can exert regional influences on climate, have been included in many 
models.  

A simulation of future climate from a GCM is called a projection, rather 
than a prediction or forecast, because it is conditional on a particular set of 
assumptions about future greenhouse gases and other climate forcings. 
The assumptions reflect an integrated storyline of future population 
growth, energy use, and policy (emissions scenarios; section 11.4). For any 
given climate variable, the GCM projection will show a combination of 1) 
simulated natural (“internal” or “unforced”) variability and 2) a forced 
change over time, if that variable is affected by changes in external forcing 
(most prominently, rising greenhouse gases). 

A critical difference among GCMs is how each one simulates the feedback 
mechanisms that are expected to amplify the direct forcing of the climate 
from greenhouse gases, mainly involving clouds and water vapor. The 
strength of these feedback mechanisms is uncertain, and thus the models 
show a range of global temperature responses to given increments of 
greenhouse gases, which then translates into similarly broad ranges for 
projected temperatures at regional scales.  
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GCM performance and credibility 
Unlike short-term forecasts from weather models, which can be readily 
validated by frequent comparison with observations of the actual weather 
over the forecast period, the multidecadal future projections from climate 
models cannot be validated directly. Thus, the main way that the credibility 
of GCMs is established is by comparing their simulations of the historical 
period, over different spatial scales, with the observed climate over that 
period. Such comparisons examine both the models’ reproduction of the 
statistics of climate—averages, ranges, and extremes—and the models’ 
fidelity to the dynamical features of key climate processes. These 
comparisons can also be used to evaluate the relative performance of the 
GCMs, with the important caveat that performance over the historical 
period may not be reflective of a model’s skill in accurately predicting the 
future changes in climate.  

Assessing the ability of GCMs to reproduce the dynamical features and 
statistics of the historical climate, one can make the generalizations listed 
below (Barsugli et al. 2009; Lukas et al. 2014; USGCRP 2017; Reclamation 
2020). 

Performance at global to continental scales (1,000 km to 10,000 km) 

What GCMs reproduce well in their raw output: 
• Temperature: Spatial and seasonal patterns (i.e., monthly and annual 

averages), and recent warming trends 

• Precipitation: Spatial and seasonal patterns (i.e., monthly and annual 

averages), but not as well as for temperature 

• The dominant seasonal patterns of high and low pressure  

• The jet stream and its seasonal north-south movement  

What GCMs do not reproduce as well in their raw output: 
• Precipitation: Daily amounts—too little variability (“GCM drizzle”) 

• ENSO: the pattern and cycle is present in nearly all models, but the 

spatial features are unrealistic in some important respects  

Performance at the scale of the Colorado River Basin (<1,000 km) 

What GCMs reproduce well in their raw output: 
• Temperature: Seasonal cycle and recent warming trends  

What GCMs do not reproduce as well in their raw output: 
• Temperature: Spatial patterns—these are largely driven by 

topography which is smoothed out in GCMs 

• Temperature: Regional annual average—can differ from observed by 

+/- 6°F 

• Temperature: At mountain-top level—too warm because GCM-

modeled mountains are too low 



 

Chapter 11. Climate Change-Informed Hydrology 393 
 

• Precipitation: Annual amounts—nearly all GCMs overestimate by 50-

150% 

• Precipitation: Seasonal cycle (monthly averages)—few GCMs replicate 

the observed pattern 

• Precipitation: Spatial patterns—these are largely driven by topography 

which is smoothed out in GCMs  

• Precipitation: Daily amounts—insufficient variability; heavy and 

extreme events are too small/infrequent 

• ENSO signal in the region’s precipitation—generally weaker than 

actual   

Many of the deficiencies listed above stem from the relatively coarse 
spatial resolution (>100 km) of most GCMs and their inadequate 
representation of the complex topography of the western U.S. These 
deficiencies can be addressed to varying degrees using regional 
downscaling methods (section 11.5), which also include a bias-correction 
step that corrects for the systematic errors in GCM-simulated 
temperature and precipitation described above. 

11.3 The CMIPs: Standardized collections of GCM 
projections 

In the 1990s, the global community of climate modelers recognized the 
need for standardized sets of climate model runs, with consistent inputs, 
time periods to simulate, and historical and future greenhouse gas 
scenarios; i.e., emissions scenarios (section 11.4). This would facilitate 
systematic evaluation of model outputs to improve understanding of 
climate dynamics and to improve the models themselves. These efforts 
evolved into the World Climate Research Programme’s (WCRP’s) Coupled 
Model Intercomparison Project (CMIP). The third phase, called CMIP3, was 
carried out to support the IPCC’s Fourth Assessment Report (AR4), while 
the most recent phase, CMIP5 (there was no CMIP4), supports the IPCC 
Fifth Assessment Report (AR5). The next phase, CMIP6, is in progress and 
will support the IPCC Sixth Assessment Report, which is expected in 2021. A 
list of the modeling centers and the GCMs for which CMIP5 projections are 
available can be found on this NOAA webpage.  

Each CMIP can be thought of as an organized roundup of the output of the 
latest (at the time) generation of GCMs. Nearly all GCM output used in 
regional and national climate assessments and in basin-scale water 
resource planning studies since 2008 have come from CMIP3 or CMIP5 or 
both. Compared to CMIP3, CMIP5 included more participating modeling 
centers and GCMs, generally higher-resolution models, more complete 
physical parameterizations of key climate processes and more individual 

Models Represented in 
NOAA's Climate 
Change Web Portal 

 
Link: 
https://esrl.noaa.gov/p
sd/ipcc/cmip5/help.ht
ml 

https://esrl.noaa.gov/psd/ipcc/cmip5/help.html
https://esrl.noaa.gov/psd/ipcc/cmip5/help.html
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projections of future climate. It appears that CMIP6 will see the 
continuation of all of these trends. The differences between CMIP3, CMIP5, 
and CMIP6 are summarized in Table 11.2. 

Table 11.2 

Key characteristics of the Coupled Model Intercomparison Project (CMIP) and participating GCMs in Phase 
3 (CMIP3), Phase 5 (CMIP5), and the forthcoming Phase 6 (CMIP6) and applications of GCM data from 
CMIP3 and CMIP5. (Source: updated from Lukas et al. 2014; CMIP6 information from Hausfather 2019) 

 CMIP3 CMIP5 CMIP6 

Initial data availability 2006 2012 2019-2020 

Main Emissions Scenarios 
(count) 
 
See section 11.4 for 
explanation and acronyms 

(3) SRES: B1, A1B, 
A2 

(4) RCP: 2.6, 4.5, 6.0, 
8.5 

(9) SSP-RCP: SSP1-1.9, 
SSP1-2.6, SSP2-4.5, 

SSP3-7.0, SSP3-
LowNTCF [6.3], SSP4-
3.4, SSP4-6.0, SSP5-

3.4-OS, SSP5-8.5 

Historical climate period 1880–2000 1850–2005 1850-2014 

Projection period 2001–2100 2006–2100+ 2015-2100+ 

Number of modeling 
centers 

16 30 49 

Number of models 22 55 100 

Number of model 
simulations (projections) for 
core future scenario runs 

120 250 >300? 

Range of horizontal 
resolutions (average grid 
cell size) 

100-500 km (median: 
250 km) 

60–250 km (median: 
150 km) 

25–250 km 

Timestep of archived data Monthly 
Daily and monthly; 

some sub-daily 
Daily and monthly; 

some sub-daily 

Decadal Prediction? No Yes, 2010–2035 Yes 

Selected climate 
assessments using these 
projections 

IPCC AR4 (2007) 
Climate Assessment 

of the Southwest 
(2013) 

Climate Change in 
Colorado (2008) 

IPCC AR5 (2013) 
National Climate 

Assessment (NCA3, 
2014; NCA4, 2018) 
Climate Change in 
Colorado (2014) 

IPCC AR6 (2021) 

Selected Colorado River 
Basin hydrology studies 
using these projections 

Colorado River 
Water Availability 

Study–Phase 1 (2012) 
Colorado River Basin 
Supply and Demand 

Study (2012) 

Colorado River Water 
Availability Study–

Phase 2 (2014) 
Draft CMIP5 Report 
(Reclamation 2020) 
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Participation in CMIP is open to all modeling centers, limited only by their 
ability to use the standardized inputs for a given CMIP “experiment” and 
produce runs in the specified output format. There are no formal criteria 
for model quality, reliability, or skill. However, any model that was 
unusually poor at reproducing the historical climate, or produced future 
projections whose results were well outside the bounds of the other 
models, would be unlikely to be put forward for participation in CMIP by 
the modeling center that developed it (Knutti 2010; Knutti, Masson, and 
Gettelman 2013; Sanderson, Wehner, and Knutti 2017; Eyring et al. 2019).   

As noted earlier, climate models are not independent of each other: they 
share assumptions, simulation methods, and even code and parameter sets, 
and during development they are compared to the same set of historical 
observations. Collaboration among modeling centers also means that 
models that have high skill tend to be the ones that perform similarly to 
other models (Sanderson, Wehner, and Knutti 2017). Consequently, the 
effective number of models (i.e., sample size) in the CMIP ensembles is 
smaller than the nominal number of models (Tebaldi and Knutti 2007; 
Knutti, Masson, and Gettelman 2013; Sanderson, Wehner, and Knutti 2017). 
Because the resulting ensembles of model projections are neither a random 
nor systematic sample of potential future climate, the distribution of future 
projected changes should not be treated probabilistically. This issue is 
explored at greater length in the last section of this chapter.    

Is CMIP5 better than CMIP3? Will CMIP6 be better than CMIP5? 
While GCMs have continued to improve from one generation to the next, in 
the recent update cycles this progress has been more incremental than 
fundamental. The projections archived in CMIP5 are generally better than 
those in CMIP3, according to various performance metrics, but not so 
much better as to invalidate the results of analyses done with CMIP3 
(Knutti et al. 2010; Lukas et al. 2014; Reclamation 2020). The CMIP3 and 
CMIP5 model ensembles show very similar average projections for 
temperature and precipitation changes over much of the globe, including 
most of North America, and a similar range of uncertainty across the 
models. For the Colorado River Basin, there was very little difference in the 
temperature projections between the CMIP3 and CMIP5 ensembles, after 
accounting for the differences in the emissions scenarios, but for 
precipitation, the CMIP5 projections were slightly shifted toward wetter 
outcomes than CMIP3, and this difference is accentuated by certain 
downscaling methods, as described later.  

Similarly, the forthcoming CMIP6 models and their projections will be 
improved from CMIP5 in some technical respects (e.g., model resolution), 
and will probably have overall better performance in reproducing features 
of the observed climate. But judging from the previous CMIPs, CMIP6 
should be expected to show similar spatial patterns of future change as 
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CMIP5 and CMIP3, and similarly broad ranges of future change, as CMIP5 
and CMIP3. In other words, the overall CMIP6 ensemble seems unlikely to 
reduce uncertainties related to model structure (Table 1.4).  

Enough of the CMIP6 model results have been released for analysts to 
discern that the CMIP6 models are showing, on average, warmer future 
global temperatures than CMIP5 given equivalent emissions scenarios 
(Hausfather 2019). This indicates that, compared to their CMIP5 
counterparts, many of the CMIP6 models are simulating even stronger 
positive feedbacks (e.g., from clouds, water vapor, and surface reflectivity) 
that enhance the direct warming from the additional greenhouse gases. 
However, Tokarska et al. (2020) found that the CMIP6 models with higher 
future warming also tend to overestimate the observed global warming 
trend from 1981–2017; adjusting the CMIP6 projections to account for this 
tendency brings the overall CMIP6-projected warming into line with that 
depicted by CMIP5. It is too soon to know whether the adjustment to the 
CMIP6 ensemble proposed by Tokarska et al. (2020) will be more broadly 
accepted, e.g., to be implemented in downscaled CMIP6 datasets developed 
for application purposes. 

In addition to the main set of 21st century climate projections from CMIP6 
intended for use in climate change assessment (“ScenarioMIP”; O’Neill et al. 
2016), there will be a separate set of projections run using high-resolution 
climate models (“HighResMIP”; Haarsma et al. 2016). At least 20 GCMs that 
run at 50-km horizontal resolution or better are participating in 
HighResMIP; this resolution is comparable to the regional climate models in 
NARCCAP and NA-CORDEX (see section 11.5). HighResMIP may be able to 
provide additional insights into potential changes in atmospheric and ocean 
dynamics influencing the western U.S. 
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SPOTLIGHT 

 

The large size of the CMIP3 and CMIP5 ensembles (20–35+ GCMs, 100–200+ projections) and the broad 
range of projected future changes across the ensembles, make it challenging to analyze and interpret 
future climate projections. It would seem logical to try to reduce the size or otherwise refine the CMIP 
ensembles by evaluating the performance of the GCMs and then culling models that perform poorly or 
weighting the model projections according to their performance. For the most recent National Climate 
Assessment (USGCRP 2017), the GCM projections were weighted, but not screened to reduce the 
ensemble.  

Over the past decade, researchers have tested different approaches for evaluation, screening, and weighting 
for projections of future climate for the western U.S. (Brekke et al. 2008; Pierce et al. 2009; Mote et al. 2011; 
Reclamation 2020; Rupp et al. 2013; Rupp, Abatzoglou, and Mote 2017). Nearly all of these efforts have found 
that weighting or screening the GCM ensemble has little or no effect on the distribution of future climate 
changes, assuming at least 10 of the models (i.e., 30-50% of the original ensemble) are retained. Also, looking 
across those efforts, one can see that performance rankings of models can vary with different performance 
metrics. In all cases, as mentioned earlier, those metrics are based on the model’s ability to reproduce 
average statistics and spatial patterns of the observed climate, with the implicit but untestable assumption 
that models that better simulate the observed climate will perform better in predicting future climate 
changes. 

For performance-based screening and weighting to have a significant and meaningful effect on the 
ensemble, there must be a clear relationship between model performance and the sign/magnitude of the 
model’s projected future change. This condition, however, is rarely met in evaluations of GCM performance, 
including the case discussed in more detail below. One exception was from Rupp, Abatzoglou, and Mote 
(2017), who found that the GCMs that better reproduce the historical climate of the Columbia River Basin 
tend to project greater warming and larger precipitation increases than the other GCMs, though these 
results depended on the method of evaluating the GCMs. 

If a screening procedure does reduce the original ensemble to fewer than 10 models (i.e., eliminating more 
than 70% of the 30+ CMIP5 models) any theoretical beneficial effect of screening out low-performing GCMs 
may be outweighed by the risk of under-sampling model uncertainty. In other words, the screened ensemble 
distribution may become too narrow, and exclude outlying but still plausible climate outcomes that one 
would want to consider in risk assessment and planning (Mote et al. 2011).  
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Comprehensive and basin-specific screening and weighting procedures were performed for the 
forthcoming report, ‘”Exploring Climate and Hydrology Projections from the CMIP5 Archive” 
(Reclamation 2020). A set of 52 CMIP3 and CMIP5 GCMs were first screened against global 
performance metrics (Gleckler, Taylor, and Doutriaux 2008; Flato et al. 2013), removing 13 of the 
models. The remaining 39 models (12 from CMIP3, 27 from CMIP5) were then assessed against a set 
of 48 region-specific metrics that address the ability of the GCM to reproduce 1) the basic statistics 
of Colorado River Basin temperature and precipitation; 2) the amplitude and phase of seasonal 
cycles of temperature and precipitation; and 3) ENSO and PDO mean Sea Surface Temperature 
(SST) pattern and signal spectrum, and the teleconnected temperature and precipitation response 
over the western United States. The output of the retained 39 GCMs was then weighted according 
to overall performance on the set of region-specific metrics, with the best-performing GCM being 
given roughly 2.5 times the weight of the worst-performing GCM.  

The projections of hydrologic changes shown by the different ensembles—“Full” (all GCMs), 
“Retained” (after screening against the global metrics), and “Retained and Weighted” (after 
evaluation against the regional metrics)—are shown in Figure 11.3. There are only slight differences 
in the distribution of streamflow changes after the initial screening, and even smaller differences 
imparted by the weighting procedure (column on far right). 

 

Figure 11.3 

Projected changes in VIC-modeled streamflows at Colorado River at Lees Ferry for the end-of-century period (2066–
2095) relative to the historical period (1971–2000), from the Full, Retained, and Retained and Weighted CMIP3 and 
CMIP5 GCM ensembles. Triangles are ensemble means, bars show the 10th and 90th percentiles range, and 
horizontal lines are minimum and maximum projections. (Source: Reclamation 2020) 
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Given the apparent lack of impact on the distribution of projected changes in climate and hydrology, 
the main value to screening and weighting procedures may be in imparting greater credibility to the 
results. Since screening and weighting of CMIP3 and CMIP5 GCMs specific to the Colorado River Basin 
has already been performed (Reclamation 2020), it makes sense for those refined ensembles to be used 
in future analyses for the basin. Potentially, the same analyses could be performed for the CMIP6 
models when those data become available, though the value of doing so would likely be more in 
identifying performance differences between CMIP6 and CMIP5, than in refining the CMIP6 ensemble 
itself. 
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11.4 Emissions scenarios used to drive GCMs  

Since anthropogenic greenhouse gas emissions have been identified as the 
primary cause of recent global warming and other climate changes 
(USGCRP 2017), it is necessary for future climate simulations from GCMs to 
have inputs that describe how greenhouse gas emissions and 
concentrations will unfold over the next century and longer. A single “best” 
forecast of future emissions would be fraught with very large uncertainties, 
so the modeling community has adopted a set of multiple standardized 
trajectories whose range is intended to capture those uncertainties. 

The CMIP5 standardized greenhouse gas trajectories are called 
Representative Concentration Pathways (RCPs), which replaced the SRES 
(Special Report on Emissions Scenarios) emissions scenarios (e.g., B1, A1B, 
A2) that were used in the GCM projections for CMIP3. Both the RCPs and 
the SRES scenarios provide plausible trajectories of GHG emissions and 
concentrations that are each linked to future trends in demographic, 
socioeconomic, technological, and political factors. Since those underlying 
trends cannot be predicted with any confidence, there have been no 
probabilities assigned to any one of these RCPs being the actual future 
path.  

Each CMIP5 GCM simulation or projection uses one of the four RCPs: RCP 
2.6, RCP 4.5, RCP 6.0, or RCP 8.5 (Figure 11.4). The numbers refer to the 
strength of the global radiative forcing by year 2100, in watts per square 
meter (W/m2)—the extra energy trapped in the climate system by added 
greenhouse gases and other human-caused changes—compared to pre-
industrial levels. As with the SRES scenarios, the divergence among the 
RCPs at mid-century is much smaller than later in the century. The 
projected increase in global average temperature by 2100 for any given 
GCM closely corresponds to the radiative forcing of each RCP.  

• RCP 2.6 (low) assumes immediate and very large (about 70%) reductions 
in GHG emissions from today’s levels, and its climate forcing peaks by 
2050 with CO2 levels at about 435 parts per million (ppm), about 20 ppm 
above today’s (2019) level. After 2050, the forcing trajectory of RCP 2.6 
is well below the other RCPs.  

• RCP 4.5 (medium-low) assumes large reductions in GHG emissions that 
are less drastic and take effect later than in RCP 2.6, with CO2 at about 
475 ppm at 2050 and rising. At 2050 the forcing of RCP 4.5 is slightly 
above RCP 6.0, but after 2070 it levels out so that it is below RCP 6.0.  

• RCP 6.0 (medium-high) assumes moderate reductions in emissions, and 
its forcing is very similar to RCP 4.5 at 2050 and continues to climb 
throughout the 21st century.  
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• RCP 8.5 has greater forcing than the other RCPs at 2050, with CO2 at 
about 530 ppm, and the gap increases over the second half of the 21st 
century. By 2100 RCP 8.5 has CO2 levels around 950 ppm, over double 
the 2019 level. RCP 8.5 assumes essentially no reduction in emissions. 

For CMIP6, in the core future projections (“ScenarioMIP”), the RCPs have 
been retained, and each will be cross-referenced with an SSP (Societally 
Significant Pathway). For the CMIP6 projections, the climate forcing 
trajectories from 2020–2100 of these four RCPs are slightly different than in 
CMIP5 (Figure 11.3), so precise comparisons between CMIP5 and CMIP6 
projections at mid-century are not quite apples to apples, although the 
climate forcings at end of the century will be the same. The 4 RCP-SSP 
scenarios are augmented by 5 additional SSP-based emission concentration 
scenarios which, like the current RCPs, have a specified century-end 
climate forcing level. These 5 scenarios will fill in the gaps between the 4 
current RCPs, with forcings of 1.9, 3.4 (two scenarios), 6.3, and 7.0 W/m2, 
respectively. It is not yet known how many individual GCM projections will 
be made available from each of the CMIP6 RCP-SSP scenarios. 

 
Figure 11.4 

Global radiative forcing, 2000–2100, of the four Representative Concentration Pathways (RCPs) used 
to drive the current-generation (CMIP5) climate models and the three main SRES emissions scenarios 
used to drive the previous-generation (CMIP3) climate models. The CMIP6 model projections are 
being driven by slight variants on the four CMIP5 RCPs, along with five other emissions scenarios. 
(Source: Lukas et al. 2014; Data: SRES: IPCC 2000; RCP: IIASA RCP Database; 
http://tntcat.iiasa.ac.at:8787/RcpDb/) 

http://tntcat.iiasa.ac.at:8787/RcpDb/
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While the RCPs were intended by their developers to be treated as though 
they were equally likely to occur, many impact assessments based on 
CMIP5 GCM output have excluded projections based on RCP2.6, including 
the forthcoming ‘”Exploring Climate and Hydrology Projections from the 
CMIP5 Archive” report (Reclamation 2020). The draft report noted that 
RCP2.6 represents an aggressive global emissions mitigation effort and has 
no analog among the SRES scenarios. The RCP2.6 trajectory requires the 
implementation of direct CO2 capture and removal by the end of the 
century (van Vuuren et al. 2011). 

On the other end of the scale, RCP 8.5 is often called the “business-as-
usual” scenario, but it was derived from a larger family of “business-as-
usual” scenarios (i.e., policies toward global carbon mitigation are not 
pursued), and RCP 8.5 tracks higher than most of them. Some researchers 
argue that a return to coal’s dominance of primary energy supply as 
assumed in RCP 8.5 is increasingly unlikely (Ritchie and Dowlatabadi 2017). 
It is more appropriate to call RCP 8.5 a “high-end” business-as-usual 
scenario. Hausfather and Peters (2020) argue that the RCP8.5 trajectory has 
become highly unlikely due to recent trends in energy use and emissions, 
and it should be de-emphasized in impacts assessment.  

Regardless of whether GCM data from all RCPs is used for analysis, keeping 
the GCM data driven by each RCP separate throughout the analysis chain 
allows one to more clearly identify the differences and uncertainty in the 
final hydrology output that is due only to the RCP. While there is 
substantial overlap in the ensembles of Colorado River Basin future 
streamflow generated using RCP 4.5 and RCP 8.5 projections (Figures 11.12 
and 11.13), there are also systematic differences associated with the RCP. 

11.5 Downscaling and regional climate projections 

Overview of downscaling 
The “raw” output from GCMs provides our best estimates of future changes 
in global circulation patterns and can paint a useful broad-brush picture of 
changes at the global to sub-continental scales (e.g., Figures 11.8 and 11.9 
later in this chapter). But the coarse spatial resolution of GCMs makes the 
raw output less appropriate for analysis of watershed-scale changes, 
particularly for precipitation. This is especially true in areas of high 
topographic relief, such as the western U.S. Because the topography of 
mountain ranges is highly smoothed in the coarse representation of surface 
features in GCMs, with too-low elevations at the range crests, GCMs poorly 
simulate orographic precipitation and snow accumulation, and thus runoff 
from snowmelt—a critical deficiency in the snowmelt-driven Colorado 
River Basin. Other processes that control local precipitation and 
temperature in the basin (Chapter 2), such as land-atmosphere feedbacks, 
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local slope circulations, convective processes, and regional monsoon 
circulations, are either poorly simulated by the GCMs or occur at spatial 
scales smaller than the typical GCM grid box. 

To address these and other deficiencies in the GCMs, researchers have 
developed a number of methods to project regional-scale and local-scale 
changes in climate, using the raw GCM output as a starting point. These 
regional climate or downscaling methods have two primary purposes: first, 
to produce realistic daily or monthly sequences of weather and climate 
over regions such as the Colorado River Basin that can be used to run 
hydrology models and other impacts models, and second, to understand 
the regional changes that are likely to take place and the mechanisms 
behind them. The first is a relatively easy technical problem, for which most 
downscaling methods are sufficient. The second is a much harder and 
perhaps more important problem, and it is also difficult to quantify how 
well the different methods meet this goal.  

Regional climate or downscaling methods are typically classified into one of 
two distinct categories: dynamical or statistical (Wilby and Wigley 1997). 
The dynamical approach requires running a higher-resolution regional 
climate model (RCM) over the domain of interest. This has the benefit of 
producing future projections that are more firmly grounded in our physical 
understanding of the processes involved, but at a cost of much higher 
computational resources. In contrast, statistical downscaling approaches 
typically require little in the way of total computing time, but they are 
based purely on statistical relationships among observed climate variables, 
and may not represent future changes in those variables correctly. The 
calibration of RCMs requires comparison with observed climate variables, 
so dynamical downscaling is not entirely free from this issue either. 

 
Figure 11.5 

Historical average annual precipitation over the Upper Colorado River Basin and adjacent High Plains 
as simulated by the CESM GCM (100-km grid, left), as estimated by the PRISM observational gridded 
product (4-km grid, middle), and as simulated by the WRF high-resolution regional weather/climate 
model (4-km grid, right) which was used to dynamically downscale the CESM GCM simulation on the 
left.  
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For the Colorado River Basin, biases in GCMs make raw GCM output data 
problematic to use directly in hydrology models. Figure 11.5 shows that the 
mean annual precipitation coming from the Community Earth System 
Model (CESM; Hurrell et al. 2013), one of the higher-resolution GCMs, is not 
only of much coarser resolution than the spatial scales represented in the 
observed climate, it is also heavily biased (i.e., much too wet in the wrong 
places) and the spatial patterns would not match the spatial patterns of a 
coarsened observation dataset. In contrast, a very high resolution (4-km) 
regional climate model simulation using the Weather Research and 
Forecasting model (WRF; Skamarock and Klemp 2008) reproduces the 
annual precipitation field of the observations with much better spatial 
fidelity, and smaller biases. Most statistical downscaling methods also 
reproduce the observed spatial pattern, but only because they are forced to 
do so by design, not as a result of accurately simulating the underlying 
physical processes.  

These biases in the GCMs are of critical importance for hydrologic 
applications. Most obviously, the fact that the GCMs do not properly 
represent the correct distributions of precipitation and temperature means 
that a hydrology model run directly with the output of that GCM will not 
develop a realistic snowpack, and so will not depict the correct magnitude 
or timing of spring runoff. In essence, such a hydrologic simulation would 
not be simulating the Colorado River Basin as we know it. That the 
mountains in a GCM are too low also means that the GCM will not simulate 
most precipitation in mountainous regions by orographic processes, as it 
should, but instead is more heavily reliant on simulated convection (i.e., 
thunderstorms) to generate precipitation. As such, it is possible that the 
global model would not predict the correct change in precipitation for this 
region, even if it is predicting the correct change in global circulation (e.g., 
shift in storm tracks) governing that precipitation. Also, local temperature 
change signals in the Colorado River Basin are strongly influenced by land 
surface feedbacks, such as the snow-albedo feedback, that are not present 
in the GCMs simply because the GCM mountains are not tall enough to 
maintain a seasonal snowpack in the first place.  

Downscaled output variables 
The most commonly provided variables from both statistical and dynamical 
downscaling models are daily precipitation and minimum and maximum 
temperatures. These variables have been the core of climate projections, in 
part because observations are available to train statistical methods to 
predict these variables. In addition, dynamical and quasi-dynamical 
methods, and some statistical methods, can provide downscaled humidity, 
shortwave and longwave radiation, and winds, though the lack of widely 
available observations of these variables means that there has not been as 
much verification and adjustment to correctly represent these variables.   
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Requirements for hydrologic modeling 
Again, the first task of regional climate projection methods is to produce 
realistic sequences of weather and climate over regions such as the 
Colorado River Basin that can be used to run hydrology and other impact 
models. To be useful for hydrologic modeling, regional climate projections 
must first provide a high enough spatial and temporal resolution to resolve 
the hydrologically relevant phenomena. Statistical downscaling methods 
typically strive for a grid spacing less than or equal to 12 km, and a daily 
time sequence. A daily weather sequence is often further downscaled 
temporally to a 1- to 3-hourly sequence based on an idealized diurnal cycle 
for temperature and radiation, though precipitation often remains at the 
daily average time scale. This is sufficient to resolve large-scale storm 
systems, though not the more extreme convective processes (i.e., 
thunderstorms). The spatial and temporal resolution of a downscaled 
dataset is also driven by the gridded historical climate data available to 
train the statistical methods (Chapter 4). 

An additional element required for robust hydrologic projections is that the 
daily to seasonal statistics of the historical regional climate as output from 
the downscaling method should be consistent with the historical climate 
data that were used to calibrate the hydrologic model. This can be 
approached by calibrating the hydrologic model using a dataset that is 
consistent with the downscaling method, or tuning the downscaling 
method to be consistent with the dataset that was used to calibrate the 
hydrologic model. For example, the continental-domain VIC parameters 
used in many climate projections are semi-calibrated using the Maurer 
gridded observation product (Maurer et al. 2002) as inputs, and the BCSD 
downscaled projections described below were trained on the Maurer 
gridded observations as well (Reclamation 2014).  

All hydrologic models require, at a minimum, daily or monthly precipitation 
and temperature. More sophisticated hydrology and land surface models 
(Chapter 6) typically require shortwave and longwave radiation, humidity, 
and wind speed, preferably on an hourly time step. If only daily 
precipitation and temperature are available, then these additional variables 
are estimated. This estimation is commonly performed using a set of 
empirical equations as part of the MT-CLIM algorithm (Running and 
Thornton 1996); for example, MT-CLIM is embedded in the VIC hydrologic 
model. MT-CLIM uses a set of calibrated relationships to derive these 
variables from precipitation and minimum and maximum temperature; 
however, the viability of these relationships in a future climate has not been 
thoroughly evaluated. Wind is not estimated by MT-CLIM and is often 
simply given a climatological average value. 
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Widely used regional climate downscaling methods and datasets  
Many different methods for regional downscaling of GCM output have been 
developed. The focus below is on those that have been most widely used in 
impact assessments for water resources and similar applications in the U.S. 
Publicly available datasets of downscaled projections produced using these 
methods are summarized in Table 11.3. 

Statistical methods 
The development of statistical downscaling methods is closely linked with 
applications in hydrology and water management (Wilby, Hassan, and 
Hanaki 1998; Wood et al. 2004). Interestingly, these two early works took 
very different approaches. The Statistical DownScaling Model (SDSM; 
Wilby, Dawson, and Barrow 2002) uses atmospheric variables that are more 
robustly simulated by the GCMs, such as humidity and upper-level winds, 
to predict precipitation.  

In contrast, the Bias-Corrected Spatial Disaggregation method (BCSD; 
Wood et al. 2004) makes use of the GCM precipitation fields, in part 
because precipitation provides the most direct relationship with hydrologic 
variables of interest such as runoff (Clark and Hay 2004). More recently 
constructed analog approaches, including the Locally Constructed Analog 
method (LOCA; Pierce, Cayan, and Thrasher 2014), have been developed to 
make use of the spatial patterns of precipitation and temperature simulated 
by the GCMs to predict changes in regional climate. The focus here is on 
the two most commonly used statistical methods for water resource 
applications in the western U.S.: BCSD and LOCA, and also describe key 
differences between LOCA and two related techniques, BCCA and MACA. In 
considering any downscaling or regional climate method it is critical to 
understand the assumptions that the method makes about what 
information can be used from a GCM.  

The statistical downscaling methods used in the United States have mainly 
been developed through short-term grant-based projects by researchers 
based at universities, and also at government agencies, often for specific 
regional applications. Their initial downscaled projection datasets, 
therefore, may only have regional coverage. An agency-university 
consortium led by Reclamation later employed the BCSD, BCCA, and LOCA 
methods to generate new datasets covering the contiguous U.S., facilitating 
broader use in water resources management and planning. 
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Table 11.3 

Selected widely used and publicly available datasets of downscaled climate projections covering the 
conterminous U.S. or larger domains that are based on the downscaling methods discussed in this 
chapter. See the text for references to technical literature describing these methods and datasets. Note 
that there may be other available datasets produced using the same methods or variants of them. Time 
step M=monthly, D=daily 

Dataset 
name 

Downscaling 
Method 

GCM 
data 

Observed 
climate data 
for bias-
correction 

# 
Runs 

Spatial 
Resolu-

tion 

Time 
step 

Associated 
hydrology-

model 
output 

available? 

Visualiza-
tion tool 

that shows 
these data? 

Statistically downscaled datasets 

Reclamation 
et al. CMIP5 
BCSD  

Bias-
Corrected 
Spatial 
Disaggrega-
tion 

CMIP5; 
37 
GCMs 

Maurer et al. 
(2002) 

231 12 km M Yes No 

NASA NEX- 
DCP30 (in 
USGS Nat’l 
Climate 
Change 
Viewer) 

Bias-
Corrected 
Spatial 
Disaggrega-
-tion 
(variant) 

CMIP5; 
33 
GCMs 

PRISM >100 0.8 km M Yes Yes – USGS 
National 
Climate 
Change 
Viewer 

Reclamation 
et al. CMIP5 
LOCA 

Locally 
Constructed 
Analogs 

CMIP5; 
32 
GCMs 

Livneh et al. 
(2015) 

64 6 km D Yes Yes – 
NOAA 
Climate 

Explorer v2 

Reclamation 
et al. CMIP5 
BCCA 

Bias-
Correction 
Constructed 
Analogs   

CMIP5; 
32 
GCMs 

Maurer et al. 
(2002) 

134 12 km D Yes 
 

No 

MACAv2, U. 
of Idaho (2 
variants) 

Multivariate 
Adaptive 
Constructed 
Analogs  

CMIP5; 
20 
GCMs 

METDATA; 
Abotzoglou 
(2013), or 
Livneh et al. 
(2013) 

40 4 km, or 
6 km 

 

D No 
 

Yes; 
Climate 
Toolbox 
Climate 
Mapper 

Dynamically downscaled datasets 

NARCCAP Dynamical; 
6 RCMs  

CMIP3; 
4 
GCMs 

Maurer et al. 
(2002) 

12 50 km 
 

D No No 

NA-
CORDEX 

Dynamical; 
6 RCMs 

CMIP5; 
6 
GCMs 

METDATA; 
Abatzoglou 
(2013) 

35 25 km 
or 50 
km 

D No No 

 

https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
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Bias-Corrected Spatial Disaggregation (BCSD). The Bias-Corrected Spatial 
Disaggregation method (BCSD) has been the most widely used statistical 
downscaling method in water management in the U.S., including in the 
Colorado River Basin, due to its longevity and its early adoption (in 2007) by 
the Reclamation-led consortium. BCSD was developed in the early 2000s to 
produce regional climate data that are consistent with the observed 
historical weather and climate, and the long-term, large-scale climate 
change signal predicted by GCMs. The standard implementation of BCSD 
uses quantile mapping (Panofsky and Brier 1968) to bias-correct the GCM 
monthly precipitation and temperature outputs to match an observed 
gridded climate dataset (e.g., Maurer at 1/8°; see Chapter 4). This bias-
corrected dataset is then spatially disaggregated (i.e., downscaled) using 
historical climatological factors statistically relating each high-resolution 
(12-km) grid point to the encompassing coarse-resolution value from the 
GCMs, resulting in monthly downscaled projection values. 

A further set of steps is used to generate daily downscaled output, if 
desired. A projected monthly value as generated in the steps above is used 
to select a similar month of historical weather from the observed gridded 
climate dataset, and that sequence of daily weather is rescaled for 
precipitation, or offset for temperature, to match the monthly values of the 
downscaled projection dataset. Effectively, this implies that the sequences 
of monthly precipitation and temperature predicted by the GCM are 
reasonable and can be relied on, but that the sequences of daily weather 
from the GCM are not reliable. However, it means that the projected 
weather sequences under a future climate will not substantially change, 
even if the underlying GCMs indicate such changes. A variant of BCSD using 
daily, rather than monthly, GCM data as inputs to produce daily projection 
data was subsequently applied by Abatzoglou and Brown (2012). This variant 
method implicitly assumes that the sequences of daily weather from the 
GCM are in fact reliable. 

There have been numerous modifications and variants to the basic BCSD 
method over time to improve the representation of specific features, 
including a monthly dataset (NEX-DCP30) produced at 800-m resolution 
(Thrasher et al. 2013). The details of the most recent implementations of the 
BCSD by the Reclamation-led consortium can be found in Reclamation 
(2014). 

Users of BCSD are cautioned that in the standard implementations of the 
method, such as those used by the Reclamation-led consortium, the 
quantile mapping procedure used for bias correction can alter the GCM-
projected future change in precipitation, in a manner that does not appear 
to be physically meaningful. This issue is described in greater detail below.  

National Climate 
Change Viewer 

 
 
Link:  
https://www2.usgs.gov/
landresources/lcs/nccv/
viewer.asp 

https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
https://www2.usgs.gov/landresources/lcs/nccv/viewer.asp
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Locally Constructed Analog method (LOCA). The Locally Constructed 
Analog method (LOCA; Pierce et al. 2015) is a much newer statistical 
downscaling method that has gained widespread use in the western U.S. in 
the past several years. LOCA was developed to improve on previous 
“constructed analog” techniques that all make use of the coarse spatial 
pattern of the daily weather sequences from GCMs to generate a high-
resolution spatial pattern. LOCA uses a very different initial bias-correction 
step from BCSD, with a frequency-dependent delta-quantile bias 
correction, similar to that described by Li, Sheffield, and Wood (2010), that 
corrects not only the statistical distribution, but also the representation on 
multiple time scales.  

Once the bias correction is performed on the coarse scale, LOCA 
downscales the dataset by finding observed historical analog days with 
spatial patterns of precipitation or temperature that match the GCM’s 
coarse resolution spatial patterns. It does this in two steps, and 
independently for each location; first it selects a collection of, for example, 
30 days that match the larger regional pattern (within ~1000 km) around 
the location to be downscaled, and from those days, LOCA selects the 
single analog that best matches the more local precipitation or temperature 
pattern (within ~100 km). The available LOCA dataset used the Livneh et al. 
(2015) observational dataset on a 1/16° spatial grid to provide a higher 
spatial resolution dataset than common BCSD products. Unlike BCSD, 
LOCA assumes that the daily weather sequencing from the GCM is 
reasonable to begin with. So LOCA permits the daily "weather" to change, 
and as a result it can change, for example, the average number of storms in 
a year more than BCSD is likely to.  

As with BCSD, more comprehensive overviews of LOCA are available to the 
reader seeking additional detail on the method (Pierce, Cayan, and 
Thrasher 2014; Pierce et al. 2015; Reclamation 2016a).  

Bias-Corrected Constructed Analog (BCCA) and Multivariate Adaptive 
Constructed Analog (MACA). BCCA (e.g., Hidalgo, Dettinger, and Cayan 
2008) and MACA (Abatzoglou and Brown 2012) are both constructed-analog 
methods that are conceptually similar to LOCA. In both methods, the 
selection of the closest analog days is carried out with respect to the entire 
domain, rather than the LOCA method of selecting analogs at regional-
then-local scales. The analog days are then combined by computing 
weights such that the weighted sum of the analog days best reproduces the 
GCM-modeled day’s pattern being downscaled, rather than selecting a 
single best analog day as with LOCA. These same weights are then applied 
to the original fine-resolution observations from the analog days, 
producing the final spatially downscaled field. One drawback of BCCA and 
MACA is that as the domain size increases (e.g., to the contiguous U.S.), it 
becomes increasingly difficult to find close analog days for the entire 

The Climate Explorer 

 
 
Link: 
https://crt-climate-
explorer.nemac.org/ 

Climate Mapper 

 
 
Link: 
https://climatetoolbox.
org/tool/climate-
mapper 

https://crt-climate-explorer.nemac.org/
https://crt-climate-explorer.nemac.org/
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
https://climatetoolbox.org/tool/climate-mapper
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domain. Also, when downscaling precipitation, it becomes more likely that 
some of the analog days will have precipitation where the GCM model day 
has none, which will result in spurious rainfall for that day in the 
downscaled dataset. Finally, combining multiple analog days over a large 
domain tends to miss localized extreme precipitation events that occur on 
a single day, which can influence analyses of the impacts of projected 
extremes. 

Delta method. The simplest statistical downscaling approach is the delta, or 
period change, method. The delta method starts with time series of 
historical daily or monthly climate data from gridded observations or from 
individual stations. The change in the monthly climatological average of 
temperature between a GCM simulated historical period and GCM 
projected future period is calculated across the GCM grid. These changes 
(deltas) are interpolated from the GCM grid down to the observation 
locations, and then added to the historical observations to produce the 
downscaled projections. Similarly, the monthly percent change in 
precipitation from the GCMs is applied to the precipitation observations. 
The delta method incorporates the coarse-scale patterns of climate change 
seen in the GCMs while preserving the fine-scale spatial detail and time 
sequences of weather events from the historical data.  

The delta method can also be applied to data that has already been 
downscaled with another statistical or dynamical method, instead of raw 
GCM output. This downscaling-and-delta approach was used to generate 
the climate inputs to the hydrologic models used in the Colorado River 
Water Availability Study (CWCB 2012) and the Front Range Climate Change 
Vulnerability Study (Woodbury et al. 2012). The choice of the delta method 
in these studies indicated a preference for the already observed climate 
sequences (offset by the GCM-derived deltas) over the future climate 
sequences that are simulated by the GCMs. The historical sequences are 
certainly more familiar to stakeholders but cannot capture future changes 
in climate variability. 

Dynamical methods 
As with statistical methods, dynamical approaches to regional climate 
projection have been evolving for over 20 years (Giorgi and Mearns 1991; 
Leung, Kuo, and Tribbia 2006; Mearns et al. 2013). The general class of 
models primarily used in dynamical downscaling is referred to as Regional 
Climate Models (RCMs). RCMs are atmospheric models that run at higher 
resolutions than GCMs (typically 20–50 km), over a limited domain (i.e., not 
global). An RCM uses the 3-dimensional atmospheric output from a GCM to 
supply the conditions at the boundary of the RCM’s domain. The RCM then 
simulates the interior of its domain using fluid dynamics and other 
equations and physical parameterizations, much like a GCM. One benefit of 
dynamical downscaling methods is that they involve fewer assumptions 
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that may become inappropriate in a future climate, such as the assumption, 
inherent in statistical downscaling, that the historical spatial relationships 
in climate will not change. But there are still assumptions of climate 
stationarity embedded in the parameterizations and calibration of RCMs. 

Large Regional Domain (NARCCAP and NA-CORDEX). The traditional use 
of RCMs centers on the idea that an RCM should cover a sufficiently large 
domain that regional-scale circulation changes are represented, e.g., the 
North American Monsoon, and that such models should be driven directly 
with the circulation fields from a GCM to permit changes to regional 
circulation and weather patterns to be directly represented. This approach 
was used in the North American Regional Climate Change Assessment 
Program (NARCCAP; Mearns et al. 2013) and the North American 
Coordinated Regional Downscaling Experiment (NA-CORDEX; Mearns et al. 
2017).  

Both NARCCAP and NA-CORDEX employed multiple RCMs to downscale 
multiple GCMs, with the objective of better understanding the uncertainty 
in regional climate stemming from both GCMs and RCMs. The NARCCAP 
RCMs used a grid spacing of approximately 50 km, while the NA-CORDEX 
RCMs used grid spacings of 50 km and 25 km. While these models provide a 
better representation of the large-scale regional climate patterns than 
GCMs, they are not at a sufficient resolution for hydrologic impact 
assessments in the Colorado River Basin and would require additional 
statistical bias correction and downscaling. In addition, due to the 
computational cost of RCMs, these simulations have been performed for 
many fewer GCMs than in the primary statistical downscaling datasets. NA-
CORDEX has downscaled only six GCMs, primarily for the RCP 8.5 scenario. 
Only three GCMs have been downscaled for RCP 4.5 and only one of those 
RCM simulations was performed with the higher resolution 25 km grid.  

High-resolution convection-permitting and pseudo-global warming 
(PGW). In addition to the large-domain simulations, very high resolution 
simulations have been performed for shorter time periods. When 
atmospheric models use a grid spacing less than about 6 km, they can 
explicitly model convective processes, without the use of a simplified 
parameterization. In addition, they represent topography much better. 
Consequently, these high-resolution models better match observed 
precipitation and temperature patterns over the Upper Basin (Ikeda et al. 
2010; Mahoney et al. 2013; Rasmussen et al. 2014) and over larger domains 
(Prein et al. 2015; Liu et al. 2017). However, since the computational cost of a 
model increases with the cube of the decrease in grid spacing, these high-
resolution models have an enormous computational cost. Simulations over 
the contiguous United States using a 4-km grid spacing have been 
performed, but only over relatively short time periods: 13 years for the 
historical period and 13 years for the future period (Liu et al. 2017).  

North American 
Regional Climate 
Change Assessment 
Program (NARCCAP) 

 
Link: 
https://www.narccap.uc
ar.edu/ 
 

North American 
CORDEX Program (NA-
CORDEX) 

 
Link: 
https://na-cordex.org/ 

https://www.narccap.ucar.edu/
https://www.narccap.ucar.edu/
https://na-cordex.org/
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Because climate variability’s short (decadal) time scales make it hard to 
discern the forced anthropogenic climate signal, these high-resolution 
simulations use a different method to evaluate the impacts of climate 
change, referred to as the Pseudo-Global Warming (PGW) method. The 
PGW method keeps the weather at the boundaries of the model consistent 
in current and future climate, but it perturbs those weather patterns with a 
mean climate change signal in the future climate. This means that these 
simulations have a warmer, moister background state, and they project 
what would happen to today’s weather in a future climate. As a result, one 
can look at the differences between two 13-year simulations (current and 
future) to understand a climate change signal that would otherwise be 
obtained by comparing two 30-year periods from multiple GCMs, as is 
typically done. These simulations provide important guidance about the 
likely mean future climate changes driven by thermodynamic changes to 
the atmosphere, but they cannot depict climate changes caused by major 
shifts in weather patterns, such as the location of the storm track over the 
basin or the frequency of major storms.   

Other regional climate downscaling approaches 
Alternative approaches have been developed to investigate regional 
changes that fall somewhere in between the two main categories of 
downscaling methods, blending aspects of both. These include statistical 
downscaling methods based on atmospheric drivers and quasi-dynamical 
methods based on physical understanding.   

Statistical methods based on atmospheric circulation indices (Wilby, 
Dawson, and Barrow 2002; Langousis and Kaleris 2014; Timm, Giambelluca, 
and Diaz 2015) have the advantage of being both developed to match 
regional observations (as with other statistical methods), and using output 
fields from a GCM that might reasonably be expected to be simulated well, 
such as upper air wind speed, temperature, and humidity. However, the 
relationships between these upper atmosphere parameters and 
hydrologically relevant meteorology, e.g., precipitation, are often highly 
non-linear and not well represented by purely statistical models. In 
addition, the atmospheric fields used do not have significant spatial 
variability, and as a result the predicted spatial variability in precipitation, 
in particular, is often too small and this results in unrealistic hydrologic 
behavior (Gutmann et al. 2014; Mizukami et al. 2016). Ensemble Generalized 
Analog Regression Downscaling (En-GARD) is a new statistical method, 
based on a combination of concepts and techniques (Wilby, Dawson, and 
Barrow 2002; Clark et al. 2004; Clark and Slater 2006), that aims to provide 
both realistic spatial patterns of precipitation and linkages to atmospheric 
variables that are better simulated in the GCM than precipitation.  

Quasi-dynamical methods (Georgakakos et al. 2012; Gutmann et al. 2016) 
solve many of the same equations as full dynamical methods, but make 
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various simplifications to permit them to run hundreds of times faster than 
traditional RCMs. For example, the development of the Intermediate 
Complexity Atmospheric Research model (ICAR; Gutmann et al. 2016) 
makes use of an analytical approximation to represent the wind field over 
mountain ranges, and then performs the same physical advection of heat 
and moisture in a high-resolution domain while using physical 
parameterizations from the Weather Research and Forecasting model 
(WRF; Skamarock and Klemp 2008) to model precipitation and the near-
surface air temperature. These quasi-dynamical methods are likely to be 
useful for predicting changes in orographic precipitation and even land 
surface feedbacks in the Colorado River Basin. Large ensembles of climate 
projections from these methods are only just now being produced.  

Currently, Gutmann and collaborators at NCAR are conducting a study in 
which they are applying En-GARD and ICAR to CMIP5 projections to 
produce GCM-informed Colorado River Basin streamflow ensembles, in 
order to evaluate the results and understand the implications of using these 
downscaling methods. This work is being funded by Reclamation and the 
other sponsors of this report. 

Uncertainties and knowledge gaps in regional climate downscaling 
Regional climate downscaling has many uncertainties associated with it. In 
particular, any regional climate method is reliant on information from the 
GCM, to varying degrees, and a regional climate projection can only 
compensate for some aspects of GCM performance deficiencies (Maraun et 
al. 2017). In addition, a large number of physical processes known to 
operate on smaller scales, such as the snow-albedo feedback effect 
(Letcher and Minder 2015) are not represented in statistical methods and 
can be clearly demonstrated to alter the climate change signal (Lanzante et 
al. 2018). Similarly, orographic precipitation is not well represented in 
GCMs, and it is not clear that statistical methods can meaningfully quantify 
a precipitation change signal when the underlying GCM simulation is 
improperly specifying how precipitation is being produced.  

In general, dynamical and quasi-dynamical methods are better able to 
explicitly represent features such as the changing distribution of 
precipitation over a mountain range as snow changes to rain. However, 
these physically explicit models require numerous parameters within them, 
which are themselves uncertain. How fast does a snowflake melt as it falls? 
How does sub-grid variability in the land surface influence local air 
temperature?  

Other GCM deficiencies may lead to poor regional climate signals, 
regardless of the downscaling method. In particular, no regional climate 
method is able to fully correct for GCM errors in the location of the 
primary mid-latitude storm track, such as over the western U.S., and the 
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resulting errors in the frequency of storm systems for the region. While 
some large-domain RCMs may be able to shift the storm track location 
internally, they are somewhat constrained at the domain boundaries by the 
GCM conditions that drive the RCM. Of greater concern, if the GCM storm 
track is in the wrong location, statistical methods can correct the effect of 
this shift with respect to the historical climate record, but they are not 
addressing the root cause. If the GCM then predicts a future shift in this 
incorrectly positioned storm track, then a statistical method may inherit 
from the GCM a change in precipitation of a different sign than if the 
actual, correctly located, storm track had shifted in the same way (Maraun 
et al. 2017). As a result, GCMs should first be evaluated for the large-scale 
circulation that matters to a given region and application before attempting 
further regional climate refinements.  

Opportunities for improvement 
There are three overlapping areas for improving our regional 
understanding and quantification of the future climate change signal in the 
Colorado River Basin. The first would be further development and 
deployment of physically oriented methods for studying and projecting 
regional climate, whether dynamical, statistical, or hybrid (e.g., ICAR, En-
GARD, NA-CORDEX, WRF). Most statistical downscaling methods are 
perfectly adequate at producing fine-scale climate projections to use as 
inputs to hydrology models, but they can’t add to our understanding of 
physical processes. Second, clear metrics are needed to evaluate the 
validity of the future climate change signal predicted by different methods. 
While multi-decadal future projections cannot be validated against 
observations in the same manner as weather forecasts, there are ways to 
assess whether one method produces more physically realistic and 
plausible climate changes than another. Third, better understanding of 
what is required for a GCM projection or downscaled regional projection to 
be meaningful in the basin is needed; if the GCM-simulated historic storm 
track is shifted far from its actual location, it is likely that neither the GCM 
simulation nor a downscaled regional projection based on it can be trusted 
to provide changes in cool-season precipitation for the basin. We also need 
to identify which aspects of future regional climate changes are more or 
less predictable, and emphasize the former in vulnerability assessment and 
planning, and conversely, deemphasize the latter.  

11.6 Projected future climate changes for the basin  

As noted previously, most of the pertinent spatial and temporal information 
seen in downscaled GCM output is inherited from the “parent” GCM and is 
not the result of the downscaling method. While GCMs do struggle with 
many regional to local-scale details, they do a reasonable job in capturing 
the important physical phenomena of the climate system that play out 
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between global and regional scales. By looking at the direct-from-GCM 
projections first, one can also better discern in what ways the regional 
projections from different downscaling methods may differ from the 
underlying GCM simulations.  

The sections below look at projected climate changes, referring to the 
differences in the GCM’s projections of a variable (temperature or 
precipitation) between a historical period and a future period.  

Projected temperature change (direct from GCMs) 
All of the CMIP3 and CMIP5 climate models, under all emissions scenarios, 
project that the climate of the Colorado River Basin will continue to rapidly 
warm relative to historical variability. Projected changes in temperature for 
the western U.S. by the mid-21st century (2041–2070) from CMIP5 climate 
models under two emissions scenarios (RCP 4.5 and RCP 8.5) are shown in 
Figure 11.6.  

Model ensembles under RCP 8.5 (high emissions scenario) show generally 
warmer outcomes than under RCP 4.5 (medium-low emissions scenario) 
due to the higher levels of greenhouse gases and the associated climate 
forcing. However, within each emissions scenario, the 30+ projections (one 
from each GCM) differ in the projected magnitude of future warming, and 
so the respective ranges of the projected warming under the two scenarios 
overlap considerably. Under RCP 4.5, the basin’s annual temperatures are 
projected to warm by +2.5°F to +5°F by mid-century compared to the late 
20th century average. Under RCP 8.5, the basin’s annual temperatures are 
projected to warm by +3.5°F to +6.5°F by mid-century. The projected 
warming in the warmest 20% of the projections under RCP 4.5 is similar to 
the median projection under RCP 8.5. Most of the projections under RCP 
4.5, and nearly all of the projections under RCP 8.5, show a mid-century 
climate that is, on average, at least 3°F warmer than the 1971–2000 baseline 
and thus as warm as or warmer than the warmest individual years in the 
historical record.  

The differences in warming shown by the various projections under each 
RCP have two primary sources; the first and more important is that the 
GCMs have different simulated responses to each increment of greenhouse 
gases (i.e., forced change), and the second is the “noise” of simulated multi-
decadal natural (internal) variability in temperature—which, while relatively 
smaller than the forced change, is still present.  
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Figure 11.6 

Projected annual and seasonal temperature changes by 2041–2070 over the western U.S. from an 
ensemble of GCMs under RCP 4.5 (left) and RCP 8.5 (right). The large maps show the average 
change across all of the projections for that RCP (n=37; one projection per GCM), and the smaller 
maps show the averages of the coolest 20% (n=8) and warmest 20% (n=8) of the projections. (Source: 
adapted from Lukas et al. 2014. Data: CMIP5 projections re-gridded to 1-degree grid (not 
downscaled); http://gdo-dcp.ucllnl.org/)  

http://gdo-dcp.ucllnl.org/


 

Chapter 11. Climate Change-Informed Hydrology 417 
 

Additional features of the projected temperature changes are seen in 
Figure 11.6. Warming is expected to be slightly greater in summer than the 
other seasons due to land surface feedbacks; once soils dry out in summer, 
the energy that had been evaporating soil moisture can instead warm the 
land surface and the air. The warming is expected to be slightly greater in 
the Upper Basin compared with the Lower Basin, due to the Upper Basin’s 
greater distance from the oceans’ moderation of temperature changes; in 
fact, the Upper Basin is partly within the “bullseye” of the largest projected 
warming in the contiguous U.S., which is centered on the northern Great 
Basin. 

Projected precipitation change (direct from GCMs) 
The GCMs are in general agreement in projecting a north-south gradient in 
precipitation change across the western U.S., in which the northern tier of 
states is expected to see an increase in annual precipitation, and the 
Southwest is expected to see a decrease in annual precipitation. The Upper 
Basin sits in the transition area between these two regions, and while the 
uncertainty about the magnitude of precipitation change is no larger than 
for other parts of the U.S., there is more uncertainty about the direction of 
change, since the average of the models sits closer to the zero-change line.  

Projections of annual and seasonal precipitation change from CMIP5 
models under RCP 4.5 and RCP 8.5 are shown in Figure 11.7. On average, the 
GCMs indicate slight overall tendencies toward higher annual precipitation 
in the Upper Basin and toward lower annual precipitation in the Lower 
Basin under both RCP 4.5 and RCP 8.5. Those tendencies are enhanced for 
the northern half of the Upper Basin (wetter) and the southern half of the 
Lower Basin (drier). For the Upper Basin, the “wetter” projections call for 
around 5–10% more annual precipitation, while the “drier” projections call 
for 5–10% less precipitation. For the Lower Basin, the wetter projections 
call for 0–5% more annual precipitation, while the drier projections call for 
10–15% less precipitation. 

The north-south pattern in projected precipitation change across the basin 
and the West mainly arises because of two mechanisms: the first, 
thermodynamic (i.e., changes in energy states and flows) causes a general 
global increase in water vapor because the warmer atmosphere is able to 
hold more moisture (Seager, Naik, and Vecchi 2010). The second, dynamic 
(i.e., changes in atmospheric motions) is a northward shift in the average 
cool-season storm track across western North America as global 
atmospheric circulation changes in response to warming, resulting in an 
expansion of the relatively dry subtropical high-pressure zone that 
dominates Lower Basin climate (McAfee, Russell, and Goodman 2011; 
Seager, Naik, and Vecchi 2010).  
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In the northern tier of the western U.S., where the number of storm 
systems is projected to remain the same or increase, the increased water 
vapor leads to greater precipitation; in the far Southwest, the number of 
such systems is projected to decrease, canceling out the water vapor 
increase and leading to reduced annual precipitation (USGCRP 2017; 
McAfee, Russell, and Goodman 2011). The climate models disagree 
regarding the extent of the northward shift in storm tracks; this 
disagreement in part leads to their different depictions of future annual 
precipitation change for the basin, especially the Upper Basin, and other 
parts of the interior West. 

Much of the uncertainty regarding whether annual precipitation will 
increase or decrease in the Upper Basin reflects inadequate scientific 
understanding of the expansion of the subtropical dry zone and the net 
effect of its interaction with the overall wetting of the atmosphere. There is 
also uncertainty about how ENSO may change in a dramatically warmed 
climate; greater future tendencies toward El Niño or La Niña would impart 
additional nudges to the average storm tracks and precipitation patterns. 

The GCMs show more pronounced tendencies for change in seasonal 
precipitation for the basin than annual precipitation (Figure 11.7). In winter 
(DJF), most models show increased precipitation over the Upper Basin. In 
spring (MAM), most models show decreased precipitation for the Lower 
Basin. In summer, while the average change for precipitation for both the 
Upper and Lower Basins is not large, the “dry” projections show especially 
large decreases in summer precipitation. However, since the North 
American Monsoon is not represented well in the GCMs, and the 
convective storms that dominate summer precipitation cannot be directly 
simulated by the GCMs, the confidence in the projected changes in summer 
precipitation is lower than for the other seasons.  

The differences in the precipitation change shown by the various 
projections under each RCP have two primary sources; the first and more 
important is that the GCMs have different simulated responses to each 
increment of greenhouse gases (i.e., forced change), and the second is the 
“noise” of simulated multi-decadal natural (internal) variability in 
precipitation.  

Also important to hydrology and water management is that most of the 
GCMs project that the variability in precipitation will increase at all time 
scales over the western U.S., including greater interannual variability (Lukas 
et al. 2014; Pendergrass et al. 2017). This would mean more frequent 
occurrence of both very dry and very wet years, and more frequent 
oscillations from very dry to very wet conditions, such as in 2018–2019, or 
the reverse, such as in 2011–2012.  



 

Chapter 11. Climate Change-Informed Hydrology 419 
 

 

 
Figure 11.7 

Projected annual and seasonal precipitation changes by 2041–2070 over the western U.S. from an 
ensemble of GCMs under RCP 4.5 (left) and RCP 8.5 (right). The large maps show the average 
change across all of the projections under that RCP (n=35; one projection per GCM), and the smaller 
maps show the averages of the driest 20% (n=8) and wettest 20% (n=8) of the model simulations. 
(Source: adapted from Lukas et al. 2014; Data: CMIP5 projections re-gridded to 1-degree (not 
downscaled); http://gdo-dcp.ucllnl.org/)  
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The influence of downscaling methods on GCM climate projections 
The GCM output is known to have deficiencies that downscaling is 
intended to correct. As a downscaling method bias-corrects the GCM 
output and spatially distributes that signal to finer scale, it may alter the 
GCM’s climate change signal, as expressed in future trends. However, the 
influence of common downscaling methods on the projections of climate 
change has seldom been systematically examined or quantified. In a review 
of bias-correction methods, Maraun (2016) asserts that current bias-
correction approaches cannot correct GCM-projected trends in a 
physically plausible manner, and so bias-correction approaches that 
deliberately preserve the GCM signal should be deployed.  

For the Colorado River Basin and the western U.S., a clear example of GCM-
signal alteration arose with the monthly BCSD projections based on CMIP3 
(e.g., Reclamation 2011; 2012e). The BCSD procedure effectively imparted a 
“wettening,” so that the bias-corrected and downscaled BCSD data 
projected larger increases in precipitation than did the underlying GCM 
projections. When BCSD was later used to downscale the CMIP5 GCM 
output, this wettening effect was even larger and had a significant influence 
on the corresponding ensemble of projected hydrologic changes for the 
Upper Basin (Reclamation 2014; Lukas et al. 2014), as noted in Table 11.3 and 
in the accompanying text. Maurer and Pierce (2014) found that the BCSD 
wettening as shown in CMIP5 was in fact due to the quantile mapping (QM) 
bias-correction procedure within BCSD, and that QM tends to reduce the 
future trend when the projection has more variability than the observed 
data, and increase the trend when the model has less variability than the 
observed data—in other words, the trend alteration appears to be a 
statistical artifact of the QM procedure. Subsequent analyses of QM in 
Reclamation (2020) have affirmed the observation that the QM procedure 
alters projected trends in a manner that is not consistent with physical 
mechanisms. 

Figure 11.8 shows the ensemble mean change in annual precipitation of 10 
CMIP5 GCMs that have been downscaled by BCSD as in Reclamation (2014), 
and by LOCA—which by design does not alter the GCM change signal 
during bias correction, though it may do so during the spatial downscaling. 
BCSD shows wetter outcomes (darker blues) in the Upper Basin headwaters 
and less-dry outcomes (fainter red) in the Lower Basin headwaters than 
LOCA. 

In one of the first comprehensive evaluations of its kind, Alder and 
Hostetler (2019) compared downscaled projections of temperature and 
precipitation for the western U.S. generated using 6 different statistical 
methods, including BCSD (two variants), BCCA, MACA (two variants), and 
LOCA. The downscaled projections were compared with each other and 
with the projections from the 14 parent CMIP5 GCMs. They found, first, the 
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GCM change signals—especially in precipitation—were altered by all of the 
downscaling methods, with the degree of alteration differing according to 
region, downscaling method, and the parent GCMs. They found that most 
of these alterations stemmed from the specific gridded climate dataset (see 
Chapter 4) used to bias-correct and spatially distribute the GCM output for 
a particular method (Table 11.3).  

Figure 11.9, from Alder and Hostetler (2019), shows the projected changes in 
cold-season (October-April) temperature and precipitation for the Upper 
Basin from the individual 14 GCMs and ensemble of those GCMs, and from 
the 6 downscaling methods (by individual GCM and the ensemble). The 
alteration of the GCM cold-season temperature signal by the downscaling 
method is very small overall except in the case of BCCA, which imparts a 
clear cooling to the GCM change signal. For precipitation, all 6 downscaling 
methods impart some wettening to the GCM change signal; the wettening 
is smallest in MACA-L (MACAv2-Livneh) and in LOCA, while the wettening 
is largest in the two variants of BCSD. 

 
Figure 11.8 

Projected percentage change in precipitation for the late 21st century (2070–2099 as averaged across 
the same set of 10 CMIP5 GCMs under RCP 8.5, using BCSD (left) and LOCA (right) procedures for 
bias-correction and spatial downscaling. Note that precipitation increases over the Upper Basin 
headwaters are larger (darker blues) for the BCSD projections. (Source: E. Gutmann, NCAR; Data: 
http://gdo-dcp.ucllnl.org/)  

http://gdo-dcp.ucllnl.org/
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One should keep in mind that these signal alterations and differences 
between methods are still substantially smaller than the overall range of the 
GCM-projected changes without downscaling (the black boxplots in Figure 
11.9). But they do add another uncertainty to the projections of climate 
change and hydrologic change for the basin. In most cases, we lack criteria 
to determine which method(s) and accompanying alterations are the most 
reliable. For now, users should be cognizant of the uncertainties related to 
downscaling methods, and researchers will continue to look for better ways 
to evaluate them, including whether some methods are better suited for 
some types of applications and their associated impact metrics (e.g., 

 

Figure 11.9 

Future change (2075–2099 vs. 1950–1999) in average cold season (October–April) temperature 
(upper) and total precipitation (lower) for the Upper Colorado River Basin under RCP 8.5 shown by 14 
“raw” GCM projections (gray) and the corresponding downscaled projections from six statistical 
downscaling methods (colors). BCSD-C = Reclamation variant of BCSD (Reclamation 2014); BCSD-F = 
NASA/USGS variant of BCSD (Thrasher et al. 2013); MACA-L = MACAv2-Livneh; MACA-M = 
MACAv2-METDATA. (Source: adapted from Figure 2 in Alder and Hostetler 2019) 
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hydrologic, ecological) or for certain regions. Some of this applications 
knowledge has been gleaned by the research community, but it has not 
been systematically documented. 

Projected Upper Basin temperature and precipitation change from 
a downscaled dataset 

Given the discussion above, and recognizing the relative merits of the 
different available datasets of downscaled GCM data, selecting a 
representative dataset to examine in greater detail does not imply that it is 
the best dataset, either in general or for informing water management in 
the Colorado River Basin. Here the CMIP5-LOCA downscaled projection 
dataset has been chosen because it contains a broad sample of the full 
CMIP dataset (32 models, one projection each, under two emissions 
scenarios, RCP 4.5 and RCP 8.5), it lacks the precipitation ‘wettening’ effect 
seen in the BCSD datasets, and it is used as the basis for hydrology 
projections in the forthcoming CMIP5 report (Reclamation 2020) alongside 
CMIP5-BCSD data. The features of the temperature and precipitation 
projections that are highlighted below are held in common with nearly all of 
the statistically downscaled GCM datasets, and are not specific to LOCA. 

Figure 11.10 shows the projected Upper Basin temperature change, 
compared to a 1971–2000 baseline, from CMIP5-LOCA dataset (32 models, 
one projection each) driven by the RCP 4.5 (top) and RCP 8.5 (bottom) 
emissions scenarios. A 30-year running average has been applied to the 
traces to match the typical 30-year analysis period for evaluating future 
change. To further place the projections in the context of the recent past, 
the average observed temperature anomaly over the 30-year period 1988–
2017 (i.e., the ‘Stress Test’; Chapter 9) is shown; the Upper Basin climate for 
that period was already 1.1°F warmer than the 1971–2000 baseline. 

Just as in the raw GCM output shown earlier, all of the traces show a much 
warmer future climate, with the magnitude of warming depending on the 
emissions scenario (the RCP 4.5 and RCP 8.5 ensembles overlap but are 
clearly different overall), each model’s climate sensitivity (as seen in the 
spread of the traces under each scenario), and how far out into the future 
one looks. In general, the projected warming shows a fairly linear response 
to the respective climate forcing in the emissions scenarios as shown in 
Figure 11.4; e.g., the RCP4.5 traces tend to flatten out after 2050, just as the 
forcing in the RCP 4.5 scenario does. Note that while there is some 
variability (e.g., “bumpiness”) present in the traces, the traces by and large 
maintain their relative positions over time, indicating that the 
anthropogenic forced change in temperature is dominant compared to 
internal (natural) variability at a 30-year timescale.  
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Figure 11.10 

Projected future temperature change for the Upper Basin compared to a 1971–2000 baseline, from 
two ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: 
RCP8.5) downscaled with LOCA. The lighter traces on both time series plots are the 30-year running 
averages, plotted on the middle (15th) year, of the projected annual temperature anomaly, with the 
median trace shown as the dark dashed line. The 30-year average of the observed temperature 
(“obs”) anomaly over the 1988–2017 ‘Stress Test” period is shown as a black square. The box-
whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the outer 
boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th percentiles, 
and the max/min are shown at the ends of the whiskers. (Data: D. Pierce, Scripps Institution; 
http://loca.ucsd.edu; Pierce, Cayan, and Thrasher 2014) 

http://loca.ucsd.edu/
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Figure 11.11 

Projected future precipitation change for the Upper Basin compared to a 1971–2000 baseline, from 
two ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: 
RCP8.5) downscaled with LOCA. The lighter traces on both time-series plots are the 30-year running 
averages, plotted on the middle (15th) year, of the projected annual precipitation anomaly, with the 
median trace shown as the dark dashed line. The 30-year average of the observed precipitation 
(“obs”) anomaly over the 1988–2017 ‘Stress Test” period is shown as a black square. The box-
whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the outer 
boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th percentiles, 
and the max/min are shown at the ends of the whiskers. (Data: D. Pierce, Scripps Institution; 
http://loca.ucsd.edu; Pierce, Cayan, and Thrasher 2014) 

http://loca.ucsd.edu/
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The magnitudes of projected warming for the 2041–2070 period centered 
on 2055 are essentially the same as those seen in the raw GCM data and 
depicted in Figure 11.6. As seen in the box-whiskers plots in Figure 11.10, 
under RCP 4.5, the vast majority of the projections show warming of +3.0° 
to +6.5°F by mid-century compared to the late 20th century average, and 
under RCP 8.5, the vast majority show warming of +4°F to +8°F. As 
discussed earlier, some climate analysts have suggested that the RCP 8.5 
scenario should be de-emphasized due to unrealistic assumptions about 
future energy supply sources. But note that several of the higher-warming 
RCP 4.5 traces exceed the median RCP 8.5 level at 2055, and if traces from 
RCP 6.0 were available from the LOCA dataset, many of them would track 
at that level too. So even if the RCP 8.5 scenario itself is in fact “very 
unlikely,” as Hausfather and Peters (2020) asserted, many of the warming 
outcomes associated with that scenario are also attainable under other 
RCPs for the same time period.  

As discussed earlier in the context of the maps of the raw GCM 
precipitation output (Figure 11.7), the Upper Basin is located in the 
transition zone between areas of expected drying (lower annual 
precipitation) to its south, and expected wettening (higher annual 
precipitation) to its north. Figure 11.11 shows the projected Upper Basin 
precipitation change over the 21st century. The average observed 
precipitation anomaly (-3.5%) during the 30-year ‘Stress Test’ period (1988–
2017) is also shown. 

The LOCA downscaling procedure by design tries to preserve the GCM-
projected trends, and as seen in Figure 11.9 it preserves the GCM’s 
precipitation trends better than other downscaling methods. So the overall 
message of the CMIP5-LOCA projections in Figure 11.11 is very consistent 
with the raw GCM output from CMIP5: there are slight overall tendencies 
toward higher annual precipitation in the Upper Basin under both RCP 4.5 
and RCP 8.5.  

But also evident in the time-series plots of Figure 11.11 is a feature that was 
hidden in the change maps of Figure 11.7, but noted in the text: Multi-
decadal internal (natural) variability strongly influences the precipitation 
traces, manifesting as frequent excursions in the 30-year averages, up and 
down by 5% or more. These excursions make it hard to discern the long-
term trends that might be attributable to forced changes, e.g., changes in 
atmospheric circulation (ENSO, prevailing storm tracks) or the global 
moistening of the atmosphere in a warmer climate. To the extent those 
forced changes are present, they are not leading to significantly different 
overall changes under RCP 8.5 (which has greater climate forcing) than 
under RCP 4.5. The ensemble medians throughout the 21st century are very 
similar, though from 2050 onward the RCP 8.5 has greater spread across 
the ensemble, perhaps indicating that at least the outlying precipitation 
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projections are showing greater influence of simulated changes in 
atmospheric circulation.  

Toward the end of the next section, these same LOCA-downscaled 
projected temperature and precipitation changes will be shown again, after 
they have been integrated into simulations of future hydrology for the 
Upper Basin.  

11.7 Projections of future Colorado River hydrology 
under climate change 

The future warming projected by all climate models for the Colorado River 
Basin (Figures 11.6 and 11.10) by itself will have clear impacts on the 
hydrologic cycle. Most significantly, warming will tend to reduce annual 
runoff, given the same amount of precipitation. As detailed in previous 
sections, the magnitude of the warming for any given future period is 
uncertain, although the progressive nature of the warming means that a 
slower warming projection will, over more time, still reach thresholds that a 
faster warming projection reaches earlier. Precipitation, which is the 
primary determinant of the variability in annual runoff (see Chapter 2), has 
uncertainty regarding both the direction and magnitude of future change.    

The sensitivity of basin runoff to a given temperature change, and to a 
lesser extent the sensitivity of runoff to a given precipitation change, are 
also uncertain (Vano, Das, and Lettenmaier 2012; Vano and Lettenmaier 
2014; Vano et al. 2014). Together, these uncertainties regarding the 
magnitude of future temperature and precipitation change, and regarding 
the true sensitivity of basin hydrology to specific temperature and 
precipitation changes, have led to a broad range of potential future 
hydrologic outcomes. However, across the many studies and assessments 
of future basin hydrology, this range of outcomes is strongly tipped toward 
reduced runoff, reflecting the pervasive impact of the projected warming.   

Methodologies used in past and recent studies 
The earliest studies for the basin used empirical statistical relationships to 
translate basic climate change scenarios (e.g., + 2°C warming; -10% 
precipitation) into basin-scale hydrologic changes, and highlighted the 
importance of quantifying the sensitivity of runoff to both temperature and 
precipitation (Stockton and Boggess 1979; Revelle and Waggoner 1983). 
Later, Nash and Gleick (1991) set what has become a standard for most 
subsequent studies by deriving specific climate change factors directly 
from two GCMs and then using a hydrology model (Sac-SMA; 
Chapters 6 & 8) to translate those climate scenarios into runoff changes for 
select Upper Basin watersheds. 
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The modern era of runoff-modeling studies began with Christensen et al. 
(2004), who pioneered what has become the most prevalent approach (see 
Figure 11.1 and Table 11.1): a set of GCM projections is statistically 
downscaled, and the downscaled temperature and precipitation projections 
are run through a hydrologic model (in their case, and in most later cases, 
the VIC model; Chapter 6) to obtain future basin streamflows. This same 
general approach has been followed by many later studies (Table 11.4), with 
increasingly larger ensembles of GCM projections.  

The first analyses of climate change-informed hydrologic simulations for 
the Colorado River Basin or its headwaters to be formally sponsored by 
water agencies and to be specific to their long-term water planning 
appeared in the early 2010s:  

• Joint Front Range Climate Change Vulnerability Study (Woodbury et al. 
2012)  

• Colorado River Water Availability Study, Phase 1 (CWCB 2012) 
• West-Wide Climate Risk Assessment (WWCRA; Reclamation 2011) 
• Colorado River Basin Water Supply and Demand Study (‘Basin Study;’ 

Reclamation 2012e) 

These studies exemplified the top-down approach to climate change 
impact assessment, in which an ensemble of hydrologic simulations is 
developed from GCMs in order to drive a water system model. All were 
based on the same set of downscaled GCM climate projections (CMIP3-
BCSD), a dataset developed by a consortium including Reclamation and 
USACE, although the projections were processed differently in each study. 
The Basin Study (Reclamation 2012e) marked the first basin-scale planning 
study involving Reclamation that based analyses of future water 
vulnerability on climate change-informed hydrology. The process of 
conducting these four studies shed light on several of the key 
methodological considerations and uncertainties described below and their 
implications for projecting future changes in basin water supplies. The 
latter two studies used a larger ensemble of simulations (112 in both cases) 
that more completely captured the full range of future climatic and 
hydrologic conditions depicted across the CMIP3 GCMs. 

Subsequent assessments have largely focused on updating and refining the 
ensemble of simulations, by using the next generation of climate models, 
culling lower-performing climate models, using newer downscaling 
approaches to assess regional changes, or using different hydrologic 
models. The update to WWCRA (Reclamation 2016b) used the same 
approach as the original, but with newer climate models (CMIP5) and a later 
version of the VIC hydrologic model. Similarly, the forthcoming report, 
“Exploring Climate and Hydrology Projections from the CMIP5 Archive” 
(Reclamation 2020) uses CMIP5 climate models, then screening of the 
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models for performance, a primary downscaling method (BCSD), and also 
an alternate downscaling method (LOCA). 

Results—future changes in annual Upper Basin runoff 
Table 11.4 summarizes the results from about 20 studies and assessments 
since 2005 that have provided estimates of future changes in annual 
naturalized Upper Basin runoff and streamflow, in nearly all cases as 
measured at Lees Ferry. For a given methodology, the results from different 
studies have been similar, and thus the results across the studies are 
generalized in the “Synthesis of results” column. Looking across the 
different methodologies, there is broad consistency in two overall findings: 
1) most individual simulations within a given study show reduced runoff for 
the mid-21st century, and 2) the mid-range of the simulations accordingly 
suggests a reduction in runoff of about 10% to 20%, i.e., down to an average 
of about 12.0–13.5 maf/year, compared to the historical hydrology of 
14.8 maf/year. (There is one exception to these generalizations, as noted 
below.) Again, the overall tendency toward reduced runoff reflects the 
pervasive drying effect of the near-certain projected warming, which is 
either ameliorated by increased precipitation or exacerbated by decreased 
precipitation, depending on the particular simulation. 

Table 11.4 

Summary of results from studies since 2005 that have provided estimates of future changes in naturalized 
Upper Basin runoff. The studies are grouped according to methodology/primary GCM data. Previous 
summaries of the studies projecting future hydrology for the Upper Basin can be found in Ray et al. (2008); 
Lukas et al. (2014); and Vano et al. (2014) 

Methodology  
Studies or 
assessments using 
these simulations 

Synthesis of results of 
these studies for Upper 
Basin runoff in mid-21st 
century 

Comments 

CMIP3 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model 

Christensen and 
Lettenmaier (2007); 
Reclamation (2011); 
Woodbury et al. 
(2012); CWCB (2012); 
Reclamation (2012e); 
Harding, Wood, and 
Prairie (2012); Ficklin, 
Stewart, and Maurer 
(2013) 

Most (60–80%) 
simulations show 
reduced runoff; median 
change -10%  
(-25% to +10%) 

All studies used the 
VIC model except 
Woodbury et al. 
(Sac-SMA and 
WEAP) 

CMIP3 GCM projections + 
delta method downscaling 
+ hydrologic model 

Deems et al. (2013) 
Median change -10% to 
-20%  

Individual 
simulations not 
reported; study also 
examined effects of 
dust on snow 
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Methodology  
Studies or 
assessments using 
these simulations 

Synthesis of results of 
these studies for Upper 
Basin runoff in mid-21st 
century 

Comments 

CMIP3 GCM projections + 
dynamical downscaling 
with RCMs; runoff directly 
from the RCMs 

Gao et al. (2011) 

Most (2 of 3) 
simulations show 
reduced runoff; 
changes -16% to +5% 

Very small projection 
ensemble; study 
domain includes 
Lower Basin 
headwaters  

CMIP3 GCM projections; 
runoff directly from the 
GCMs 

Milly, Dunne, and 
Vecchia (2005);  
Seager et al. (2007) 

Nearly all (~95%) 
simulations show 
reduced runoff; median 
change -10% to -20% 

This method is less 
reliable for basin-
scale runoff than 
other methods  

CMIP5 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model 

Reclamation (2016b; 
2020) 

About half of 
simulations show 
reduced runoff; median 
change 0%  
(-25% to +20%) 

Outcomes are 
shifted wetter than 
other methods due 
to the BCSD bias-
correction 
procedure’s effects 
on precipitation  

CMIP5 GCM projections + 
other statistical 
downscaling + hydrologic 
model 

Alder and Hostetler 
(2015); Reclamation 
(2020) 

Most (~70%) of 
simulations show 
reduced runoff; median 
change -5 to -10%  
(-25% to +10%)  

Alder and Hostetler 
(2015) used a variant 
of BCSD lacking the 
procedure that leads 
to wettening; 
Reclamation (2020) 
used LOCA 

CMIP5 GCM projections + 
observed runoff 
sensitivities to temperature 
and precipitation 

Lehner et al. (2019) 

All simulations show 
reduced runoff; median 
change -17%  
(-31% to -3%) 

Future time period 
varies by GCM and 
corresponds to 
temperature increase 
of 2°C vs. 1950-2008 

CMIP5 GCM projections; 
runoff changes directly 
from the GCMs 

Seager et al. (2013) 

Most (~80%) of 
simulations show 
reduced runoff; median 
change -10% 
(-30% to +10%) 

Results are for the 
2021-2040 period; 
for mid-century, the 
reductions would be 
more prevalent and 
larger 

Generalized temperature 
change from GCMs + 
hydrologic models (or 
runoff sensitivity to 
temperature derived from 
hydrologic models) 

McCabe and Wolock 
(2007); Udall and 
Overpeck (2017); 
Milly and Dunne 
(2020); Reclamation 
(2020) 

All simulations show 
reduced runoff; median 
change -20%  
(-40% to -5%) 

Results only reflect 
future changes in 
temperature, not 
changes in 
precipitation 
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There are some appreciable differences in the results among the respective 
methodologies. The most prominent is that the CMIP5 + BCSD downscaling 
+ hydrologic model ensemble reported in recent Reclamation-funded 
studies (Reclamation 2014; 2016b; 2020) showed wetter (i.e., less dry) 
outcomes than earlier CMIP3-based hydrologies and CMIP5-based 
hydrologies produced using different bias-correction and downscaling 
methods (Alder and Hostetler 2019; Reclamation 2020).  

Also, the studies that have analyzed Upper Basin runoff output directly from 
GCMs, whether based on CMIP3 or CMIP5, have found the future runoff 
reductions to be more prevalent and larger than studies using downscaled 
climate and hydrology. This shift toward drier outcomes is in part a 
consequence of the simplified topography in the GCM leading to a smaller 
or non-existent mountain snowpack.  

The last methodology listed (Generalized temperature change from GCMs + 
hydrologic model) shows drier outcomes than other methods, because it 
only reflects the projected temperature change, and not the precipitation 
change. Udall and Overpeck (2017), like McCabe and Wolock (2007) a 
decade previously, argue for separating the impacts on runoff of 
temperature projections, in which we have very high confidence, from 
those associated with the much lower-confidence projections of future 
precipitation.  

Finally, the Lehner et al. (2019) study used a novel methodology in which 
the temperature and precipitation changes from CMIP5 GCMs were 
combined with the respective sensitivities of runoff to temperature and 
precipitation as statistically derived from observations, creating 
“observationally constrained” projections of future runoff. All of the 
individual projections in Lehner et al. (2019) show reductions in streamflow, 
with magnitudes similar to the temperature-change-only runoff 
projections in Udall and Overpeck (2017) and similar studies. 

Those studies that also include analyses at the sub-basin level consistently 
indicate a stronger tendency toward decreased runoff for the southern 
parts of the Upper Basin, including the San Juan River, and less so in the 
northern parts, including the upper Green River and the Yampa River 
(Reclamation 2012e; CWCB 2012; Alder and Hostetler 2015; Reclamation 
2016a; 2020). This north-south gradient in streamflow outcomes is mainly 
driven by the corresponding north-south gradient in projected annual 
precipitation, since the projected magnitudes of warming for the different 
sub-basins are comparable. 

As with the downscaled climate datasets, it is difficult to select one 
representative dataset from the many different analyses of future Upper 
Basin streamflows to examine in greater detail. Here, a CMIP5-LOCA-VIC 
dataset of projected streamflows is shown because it matches the CMIP5-
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LOCA projections of Upper Basin temperature and precipitation discussed 
in the previous section, and because a very similar dataset was used in 
analyses in the forthcoming CMIP5 report (Reclamation 2020). (Note: The 
LOCA-based projected streamflows shown here in Figures 11.12 and 11.13 are 
not the same as the LOCA-based projected streamflows that will be 
available later this year on the collaborative downscaled climate and 
hydrology projection archive hosted on Lawrence Livermore National 
Laboratory’s Green Data Oasis; the latter dataset was processed using a 
different streamflow routing scheme and will have more individual 
projections.) 

Figure 11.12 shows the projected streamflow change at Lees Ferry from 
CMIP5-LOCA dataset (32 models, one projection each) driven by the RCP4.5 
(top) and RCP8.5 (bottom) emissions scenarios. A 30-year running average 
has been applied to the traces to match the typical 30-year analysis period 
for evaluating future change. Note that even with this 30-year smoothing, 
the individual traces show substantial variability, depicting swings in the 
apparent future change over the course of the 21st century. Nearly all of this 
variability is driven by the internal (i.e., natural) variability in precipitation, 
as shown in Figure 11.11. (See also the sidebar on natural variability below.) 
This means that the precise features of the distribution of the ensemble at 
any slice in time, e.g., the box-whiskers plots for 2055, are somewhat 
arbitrary in that they reflect a snapshot of ever-shifting multi-decadal 
variability as well as the forced anthropogenic change. 

Also note that while the median change is negative (i.e. decreasing 
streamflow) throughout the 21st century under both RCP4.5 and RCP8.5, and 
many of the individual traces show streamflow decreasing by 10% or more, 
the ensemble medians remain relatively constant after about 2050 despite 
increasing projected basin temperatures. This is because the precipitation 
increases projected by most of the CMIP5 projections, while relatively small 
in percentage terms, are still large enough to compensate for the 
progressive effects of warming in about one-third of the streamflow traces. 
Even so, about 30% of the traces under both RCP4.5 and RCP8.5 show 30-
year average flows at 2055 that are less than the average observed 
streamflow of 13.3 maf (13% below the 1971-2000 average) during the 1988-
2017 period used as the “Stress Test” hydrology (Chapter 9). 

 

Downscaled CMIP3 and 
CMIP5 

Climate and Hydrology 
Projections 

 
Link: 
https://gdo-
dcp.ucllnl.org/ 

https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
https://gdo-dcp.ucllnl.org/
https://gdo-dcp.ucllnl.org/
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Figure 11.12 

Projected future streamflow change at Lees Ferry compared to the 1971–2000 baseline, from two 
ensembles of 32 CMIP5 projections under two emissions scenarios (top: RCP4.5; bottom: RCP8.5) 
downscaled with LOCA and run through the VIC model to simulate hydrology. The lighter traces on 
both time-series plots are the 30-year running averages, plotted on the middle (15th) year, of the 
projected annual streamflows, with the median trace shown as the dark dashed line. The 30-year 
average of the 1988–2017 ‘Stress Test” observed natural streamflow is shown as a black square. The 
box-whiskers plots show the distribution of the 30-year average values at 2055 (2041–2070); the 
outer boxes show the 10th and 90th percentiles; the inner boxes show the 25th, 50th, and 75th 
percentiles, and the max/min are shown at the ends of the whiskers. (Data: N. Mizukami, NCAR) 
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Figure 11.13 shows the same projected streamflow changes for the 2055-
centered period as in the box-whiskers plots in Figure 11.12, but as a 
function of the projected annual temperature changes (as in Figure 11.10) 
and the projected annual precipitation changes (as in Figure 11.11). Each 
circle is an individual CMIP5-LOCA projection (32 under RCP 4.5; 32 under 
RCP 8.5); filled circles indicate a projected increase in streamflow, while 
open circles indicate a decrease in streamflow. The size of the circle 
indicates the magnitude of the change. The position of each circle in the 
scatterplot shows the projected temperature and precipitation changes 
associated with that same projection’s streamflow change. Across both 
RCPs, about two-thirds of the projections (42 of 64) show decreasing 
streamflows, in many cases despite increasing annual precipitation. The 
largest decreases in streamflow (-20% or more) are associated with 
moderate or high increases in temperature (>4°F), and decreases in 
precipitation of 5-15%. Conversely, projected increases in streamflow are 
only associated with increases in precipitation of 5% or more. 

 
Figure 11.13 

Projected future streamflow changes at Lees Ferry for 2041-2070 (2055) relative to the 1971-2000 
baseline, and the projected temperature and precipitation changes associated with each projection 
of streamflow change. About two-thirds of the 64 projections show future decreases in streamflow, 
many of them despite increases in annual precipitation. These CMIP5-LOCA data are the same as 
those shown in Figures 11.10-11.12. (Streamflow projection data: N. Mizukami, NCAR; Temperature 
and precipitation projection data: D. Pierce, Scripps Institution; http://loca.ucsd.edu; Pierce, Cayan, 
and Thrasher 2014) 

http://loca.ucsd.edu/
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SPOTLIGHT 

 

As mentioned earlier in this chapter, GCMs simulate fundamental physical processes within and between 
thousands of grid cells arrayed across the face of the Earth and vertically up into the atmosphere and down 
into the oceans. Natural (or “internal”) variability is not “programmed into” these models—it emerges as a 
consequence of the simulation of physical processes at very short time scales, accumulating into physically 
realistic behavior of the atmosphere and oceans at longer time scales, including the familiar modes of 
climate variability such as ENSO. 

Each historical simulation or future projection from a GCM contains an expression of internal variability that 
is unique to that one simulation. GCM simulations over the historical period do not attempt to replicate the 
actual events and sequences of the observed climate, such as historical wet and dry years as observed in 
particular regions; however, the events and sequences that are simulated by the GCM over the historical 
period should be consistent with the statistical characteristics of the historical natural variability. GCM 
projections of future conditions can and often do show changes in variability relative to the historical period, 
such as greater interannual variability in precipitation over most regions (Pendergrass et al. 2017).  

The simulated internal variability in any one GCM projection—whether over the historical period or a future 
period—will not be synchronized with the variability seen in projections from other GCMs. If the initial 
conditions of the atmosphere and ocean at the start of the simulation are varied, even minutely, then 
projections from the same GCM will develop different variability, due to the sensitivity of the modeled 
variability on the initial conditions.  

As explained in Chapter 2, the observed variability in annual precipitation is much greater than the variability 
in temperature, relative to long-term observed trends in the two variables. The same is true in future 
projections: the projected internal variability in precipitation is much greater than that in temperature, 
relative to the expected anthropogenically forced trends. 

This simulated internal variability strongly influences the projections of future hydrologic change in the 
Colorado River Basin and the way they are interpreted. Harding, Wood, and Prairie (2012) analyzed the large 
ensemble of 112 CMIP3-based hydrology projections and separately visualized multiple runs that came from a 
single GCM, which clearly highlights the large role of simulated multidecadal natural variability in the spread 
of projected streamflow changes for the Upper Basin. 
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Figure 11.14 shows 17 downscaled projections of Upper Basin annual temperature and precipitation from 
a single GCM, and 17 traces of VIC-modeled streamflows based on those climate projections. Note that 
for precipitation, the spread due to internal variability alone is relatively large, and this spread in 
precipitation is then carried forward into the streamflow traces. The forced trends in precipitation are 
hard to discern given the internal variability. Temperature, in contrast, has a much clearer forced 
trend: the traces follow the respective forcing of the emissions scenarios and the forced trend is much 
larger than the natural variability in temperature. That said, the spread of the temperature traces under 
each scenario at 2050 is not trivial (roughly 0.5°F–1.5°F). 

Analyses of a larger ensemble of projections (n = 40) driven by a single emissions scenario from the 
same GCM (NCAR CCSM3), likewise found that regional changes and trends in temperature and 
precipitation around the globe are strongly influenced by GCM-simulated natural variability (Deser, 
Knutti, et al. 2012; Deser, Phillips, et al. 2012). That work and that of Harding, Wood, and Prairie (2012) 
also indicate that apparent disagreement between different GCMs regarding future regional change 
can stem from these unaligned and essentially random expressions of multidecadal variability, rather 
than from different predictions of the future forced change. For example, a “dry” projection of a region 
of interest from one GCM could be an outlier relative to an overall wet tendency of that GCM if one 
evaluated a larger set of projections for that region. These large ensembles can also help assess 
whether the internal variability simulated by the GCMs is similar to the observed variability (McKinnon 
et al. 2017). 

 

Figure 11.14 

Single-GCM (NCAR CCM3) downscaled projections of (left) Upper Basin average annual temperature; (center) Upper 
Basin average annual precipitation; and (right) annual Colorado River streamflow at Lees Ferry, shown as running 30-year 
averages plotted on the last year. All 17 projections came from the same GCM, the NCAR CCM3 model, as generated 
for CMIP3. Projections are color-coded by emissions scenario. Within each emissions scenario (red, green, or blue), the 
differences among the traces are entirely due to the varying expressions of simulated internal (natural) variability over 
time. (Source: adapted from Harding, Wood, and Prairie 2012) 
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Results—future changes in annual Lower Basin runoff 
Fewer studies have assessed potential future changes in Lower Basin 
runoff, that is, tributary flows to the Colorado mainstem. Also, the basin-
wide assessments of future hydrology (e.g., Reclamation 2012e) have not 
reported on projected streamflows for the Lower Basin in the same level of 
detail as those for Lees Ferry. Studies that have assessed Lower Basin 
runoff changes, and other datasets that can be readily queried, generally 
show ranges of future hydrologic projections shifted strongly toward lower 
streamflows, as in the Upper Basin, but with drier overall outcomes 
(Table 11.5).  

Table 11.5 

Summary of results from studies since 2005 that have provided estimates of future changes in Lower Basin 
runoff. The studies are grouped according to primary GCM data and the methodology.  

Methodology  
Studies/assessments 
using these 
simulations 

Results of these studies 
for Lower Basin runoff in 
mid-21st century 

Comments 

CMIP3 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model (VIC) 

Reclamation (2012e) 

Mean change for Virgin 
River, +3%; mean 
change for Bill Williams 
River, -4% 

 

CMIP3 GCM projections; 
runoff directly from the 
GCMs 

Milly, Dunne, and 
Vecchia (2005) 

Most (~87%) 
simulations show 
reduced runoff; median 
change -20% to -25% 

 

CMIP5 GCM projections + 
BCSD statistical 
downscaling + hydrologic 
model (VIC) 

Reclamation (2020) 

Median runoff change 
for grid boxes in Little 
Colorado and Salt-
Verde headwaters: -
10% to -25% 

Runoff outcomes for 
Lower Basin not 
explicitly given; 
values here 
estimated from map 
of changes 

CMIP5 GCM projections + 
other statistical 
downscaling + hydrologic 
model (simple water-
balance model) 

Alder and Hostetler 
(2015) 
 

Most (~80%) 
simulations show 
reduced runoff; median 
change -15%  
(-25% to +10%) 

Downscaled data 
used a variant of 
BCSD lacking the 
procedure that leads 
to ‘wettening’ 

 

Results—future changes in other hydrologic variables and outcomes 
Besides changes in annual runoff volumes, most studies based on datasets 
of hydrology projections for the basin as cited in Tables 11.4 and 11.5 have 
also reported future projections of other hydrologic variables, including 
snowpack, the timing of snowmelt and runoff, and soil moisture. Additional 
modeling studies have focused on one or more those variables. Below are 
summaries that generalize the findings of those datasets and studies. In 
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general, the systematic changes to the hydrology of the basin that have 
been observed in recent decades, and at least partly driven by the warming 
trend (Chapter 2), are expected to continue, if not proceed more rapidly 
than in the past. 

Snowpack 
As with runoff, the various studies of hydrologic projections for the Upper 
Basin all show a strong tendency toward future basin-wide declines in 
April 1 SWE across the individual simulations (Christensen and Lettenmaier 
2007; Reclamation 2011; 2012e, 2016b, 2020; Alder and Hostetler 2015), 
despite projected increases in winter and early spring precipitation in most 
GCM projections. Additional, snow-focused modeling studies that 
considered parts or all of the Upper Basin likewise strongly indicate future 
declines in spring snowpack (Battaglin, Hay, and Markstrom 2011; Lute, 
Abatzoglou, and Hegewisch 2015). Synthesizing across these studies, the 
general mid-range of the projected change in April 1 SWE by mid-century is 
roughly -10% to -20%. As with precipitation and runoff, the southern sub-
basins are projected to more likely have declines in April 1 SWE, and larger 
declines than the northern sub-basins.  

This strong tendency seen toward decreased April 1 SWE reflects multiple 
effects of the projected warming: a shift toward precipitation falling as rain 
instead of snow, greater sublimation and melt of the snowpack throughout 
the season, and a shift toward earlier snowmelt in the spring. These 
warming-related effects are strongly modulated by elevation, with 
snowpack at higher elevations seeing less impact from warming, as a 
percentage of current snowpack, than at lower elevations. Analysis of the 
CMIP5-BCSD hydrology projections also shows a tendency toward 
decreases in February 1 SWE and March 1 SWE in the Upper Basin, but not 
as strongly as for April 1 SWE (Lukas et al. 2014). May 1 and June 1 SWE, 
however, show sharp declines in nearly all of those projections, reflecting a 
broad shift toward earlier snowmelt.  

The future persistence of the snowpack in the Lower Basin headwaters is at 
much greater risk than in the Upper Basin headwaters, facing larger 
projected declines in seasonal snowfall or peak SWE or both (Lute, 
Abatzoglou, and Hegewisch 2015; Christensen and Lettenmaier 2007). This 
is due to both the greater tendency toward projected declines in cool-
season precipitation for the Lower Basin, and also because the current 
“snow climate” of the headwaters of the Lower Basin is substantially 
warmer and closer to the critical 0°C (32°F) threshold than in the Upper 
Basin (Lute, Abatzoglou, and Hegewisch 2015). 

These snowpack projections also indicate that in the future, springtime 
SWE may become a less useful predictor of April–July streamflow and 
annual streamflow than it is currently (Livneh, Badger, and Lukas 2017). 
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Regardless of the future change in precipitation, the projected warming 
means that less of the annual precipitation in the headwaters would fall as 
snow, and that more of the snowpack would melt and run off prior to 
April 1, or other benchmark dates, than in the past. 

Timing of snowmelt and runoff 
The projections of future hydrology for the Upper Basin show much greater 
agreement regarding future change in the timing of snowmelt and peak 
runoff timing, and related changes in the annual hydrograph, than future 
change in annual runoff. Runoff timing is especially sensitive to warming, 
and nearly all projections, even ones with increased precipitation, show the 
peak of runoff shifting earlier, with the extent of that warming-driven shift 
ranging from 1–4 weeks by 2050, depending mainly on the GCM and 
emissions scenario.  

 
Figure 11.15 

Projected monthly runoff change for the Colorado River headwaters for ~2050 (2035–2064) under 
RCP 4.5, from the CMIP5-BCSD dataset. Top: projected average monthly flows for the 31 projections 
(light blue lines) and the ensemble median (dark blue dotted line) compared to the 1971–2000 
baseline (gray dashed line). Bottom: the corresponding ranges of the monthly runoff changes from 
that ensemble; the dark blue bars show the range from the 10th to 90th percentile and the light blue 
boxes show the 25th to 75th percentile. As the hydrograph shifts earlier, March–May runoff increases 
while June tends to decrease, and July–September runoff sharply decreases in all projections. 
(Source: Lukas et al. 2014; Data: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/) 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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Figure 11.15 is illustrative of the shift in the annual hydrograph seen in all of 
the GCM-based future hydrologies for the Upper Basin; here, CMIP5-BCSD 
projections of monthly runoff for the Colorado headwaters (i.e., at 
Glenwood Springs) for mid-century under RCP 4.5. That this shift is clearly 
seen in the CMIP5-BCSD hydrology, which has no overall tendency toward 
lower streamflow (Table 11.4), indicates how strongly earlier runoff timing is 
driven by warming temperatures. The shift toward earlier timing manifests 
as increases in monthly runoff in the spring months (March–May) in nearly 
all projections, while runoff decreases in summer and early fall (June–
September) in nearly all projections, with the largest percentage decline in 
July. This general seasonal pattern of change is also seen in projections for 
the other sub-basins of the Upper Basin, as well as for snowmelt-
dominated catchments in the Lower Basin. 

As discussed in Chapter 2, some portion of the recent observed trend 
toward earlier runoff in the Upper Basin is due to the effect of dust-on-
snow deposition—an effect that has not been explicitly included in the 
GCM-based studies, with the exception of Deems et al. (2013). If dust-on-
snow deposition in the region continues to increase in the future, as it has 
recently (Clow, Williams, and Schuster 2016), the shift toward earlier runoff 
in the Upper Basin will occur faster than indicated by the GCM-based 
hydrology projections (Deems et al. 2013). 

Changes in water demand 
As stated in the Introduction, this report does not attempt a 
comprehensive treatment of estimates of water use and projections of 
future demand. But it is important to note here the projected effects of 
climate change on water demand, since they may be as significant as future 
changes in supply in tipping the water balance of the basin toward 
undesirable outcomes. 

In a warmer climate, evaporative demand (i.e., potential evapotranspiration; 
PET) increases, which would increase the consumption of water by plants—
whether in the context of agricultural crops, outdoor municipal vegetation, 
or phreatophytes—and would also increase evaporation from reservoirs. 
Estimating the magnitude of the future changes in water use first requires 
quantifying the PET change given changes in temperature, and then 
adjusting the temperature-driven changes in PET with changes in 
precipitation, if any.  

The Colorado River Basin Water Supply and Demand Study (Reclamation 
2012d) represented PET using the Penman-Monteith method (Chapter 5), 
both as that method is incorporated within the VIC model, and in separate 
adjustments for high-elevation areas. That analysis projected that for a 
2060-centered period across an ensemble of CMIP3 projections, the  
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agricultural demand adjustment factor would increase, on average, by 4-
10% in 34 VIC grid cells representing important agricultural production 
areas in all seven basin states. An outdoor municipal demand factor for key 
urban areas in the basin increased by 4-10%, while reservoir evaporation 
increased by 3-5%. Nearly all of the changes in the demand factors were 
driven by temperature, with relatively small adjustments due to projected 
precipitation change. Basin-wide, the average projected total change in 
water demand for 2060, driven by climate alone, was an increase of 0.5 maf, 
with individual projections ranging from no change to an increase in water 
demand of over 1.0 maf.  

The ‘”Exploring Climate and Hydrology Projections from the CMIP5 
Archive” study (Reclamation 2020) repeated these analyses across large 
ensembles of both CMIP3 and CMIP5 projections, for a 2070-centered 
period. All demand factors were higher under CMIP5 than CMIP3, generally 
showing an increase of 6-15% for agricultural demand and outdoor 
municipal demand, over the 1971-2000 baseline. That study did not 
calculate a basin-wide change in total demand.  

The Colorado River Water Availability Study (CRWAS; CWCB 2012), using 
CMIP3 projections of future temperature and precipitation, calculated 
changes in agricultural demand (Crop Irrigation Requirement; CIR) for a 
dozen areas in the Upper Basin in western Colorado. That analysis 
projected that the average annual CIR would increase by 18–37% for a 2070-
centered period. The large discrepancy between the CRWAS results and 
those summarized above from Reclamation (2012d; 2020) can be attributed 
to the use of the Blaney-Criddle empirical PET method in the CRWAS 
analyses, which produces unrealistically large sensitivities of PET to 
increasing temperature for the higher-elevation sites in the basin 
(Reclamation 2012d; see also Chapter 5).  

11.8 Interpreting climate change-informed hydrology 
in light of multiple uncertainties 

Sources of uncertainty 
Reviewing the history of studies of future basin hydrology in Table 11.4, it 
can be seen that the overall spread of potential future hydroclimatic 
changes in the Colorado River Basin has not been reduced by the 
development of new methods and the refinement of climate models—which 
is also true for global-scale projections of climate and hydrology. In fact, in 
the last several years, additional sources of uncertainty and error have been 
identified and more fully appreciated, if not quantified (Clark et al. 2016).  

Table 11.6 summarizes the general sources of uncertainty in climate 
change-informed projections of future hydrology. Until recently, the 



 

Chapter 11. Climate Change-Informed Hydrology 442 
 

construction of the various ensembles of downscaled CMIP3 and CMIP5 
projections used in Colorado River Basin planning only reflected the first 
three sources of uncertainty: emissions scenarios, GCM model structure, 
and internal (i.e., natural) variability. The magnitude of natural climate 
variability simulated by the models and its effects on estimates of future 
change is larger than was understood in the late 2000s (Deser, Phillips, et 
al. 2012; Harding, Wood, and Prairie 2012), which complicates efforts to 
identify and tease apart the uncertainties from other sources. The 
remaining sources of uncertainty in Table 11.6 have not been adequately 
characterized: the choice of downscaling method and bias-correction 
method, the choice of observed climate dataset used for bias-correction, 
and the choice of hydrology model, all of which are key steps in the 
conventional top-down approach.  

The quantifiable contributions of the first three sources to the uncertainty 
in projections of temperature, precipitation, and runoff for the Upper Basin, 
from the CMIP5-BCSD ensemble, are depicted in Figure 11.16. In the bottom 
row, of the total uncertainty in the 30-year average Upper Basin runoff in 
about 2050, the largest source is the differences among the GCMs (“model”) 
in simulating the forced change in temperature and precipitation given the 
same emissions scenario. The second largest source is internal variability 
manifesting at the 30-year timescale, as also shown in the right-hand panel 
of Figure 11.14. The smallest source of uncertainty in runoff at 2050 is the 
choice of emissions scenario. 

Interpreting the range of future potential outcomes 
The potential future climate and hydrology outcomes for the Colorado 
River Basin depicted by the large CMIP-based ensembles have created 
frustration for planners and practitioners, mainly for two related factors. 
First, the range of projected future outcomes is very broad, with some 
future hydrologic traces showing significant increases in streamflow, and 
others showing significant decreases in streamflow. But this range needs to 
be kept in perspective: even if climate change were not occurring, water 
managers in the basin would still face large uncertainties about the 
trajectory of basin hydrology over the next several decades due to natural 
(internal) variability of the climate system alone, as indicated by the 
historical hydrology (Chapter 9), paleohydrology (Chapter 10), and 
ensembles of projections from a single climate model that highlight the 
magnitude of internal variability (Figure 11.14). Second, the sheer number of 
traces—often 100 or more—makes data handling, analysis, and 
interpretation unwieldy.  
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Table 11.6 

Summary of sources of uncertainty in future hydrologic projection based on CMIP GCM runs. The sources 
in the first three rows are reasonably quantified; see Figure 11.15. T and P refer to temperature and 
precipitation, respectively.  

Source of 
uncertainty 

How this 
uncertainty can 
be discerned if 
not fully 
characterized 

Is this feasible within 
a typical dataset of 
CMIP-based 
hydrologic 
projections? 

Contribution to 
total uncertainty in 
projected Upper 
Basin climate 
changes  

Contribution to 
total uncertainty in 
projected Upper 
Basin runoff 
changes 

Emissions 
scenario 

Look at the 
differences in 
the GCM 
ensemble 
under different 
RCPs 

Partially— simulated 
natural variability 
can confound unless 
large ensembles 
from multiple 
models are available 

T: Large  
P: Small 

Small; increases 
to moderate by 
2100 

GCM structure 
and parameters, 
i.e., 
representation of 
key climate 
processes 

Look at results 
from different 
GCMs under 
same RCP 

Partially— simulated 
natural variability 
can confound unless 
large ensembles 
from multiple 
models are available 

T: Large, but 
decreases by 
2100 

P: Large 

Large 

Decadal and 
multi-decadal 
natural (internal) 
variability  

Look across 
multiple runs 
from a single 
GCM under the 
same RCP 

Partially—  
most CMIP GCMs 
have only 1 run per 
RCP, but some have 
multiple runs 

T: Small 
P: Moderate; 

confounds 
interpretation 
of T and P 
changes 

Moderate; 
decreases toward 
late 21st century 

Downscaling 
method (including 
bias-correction) 

Compare 
results from at 
least two 
methods  

No—  
most existing 
datasets use one or 
a few very similar 
methods  

Unclear; locally 
can be large, 
especially for 
precipitation 

Unclear; locally 
can be large 

Gridded climate 
data used for 
statistical 
downscaling and 
calibrating RCMs 

Compare 
results using 
different 
gridded 
climate 
datasets, with 
all else equal 

No—  
existing datasets use 
one gridded 
observational 
dataset 

Unclear Unclear 

Hydrologic model 
structure and 
parameters 

Compare 
results using 
different 
hydrologic 
models, with all 
else equal 

No—  
most datasets use 
one hydrologic 
model with one set 
of parameters 

N/A 
Unclear; locally 
can be large 
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Figure 11.16 

Quantification of three key sources of uncertainty (i.e., ensemble spread) in CMIP5 BCSD projections 
of Upper Basin temperature (upper), precipitation (middle), and runoff (lower): Internal (or natural) 
variability; Emissions scenario, and Model (GCM) structure and parameters. The left-right pairs of 
plots show the same data in different ways: (left) the uncertainty associated with each source relative 
to the observed mean of that variable, and (right) as a fraction of the total uncertainty at that time 
period. (Source: F. Lehner, NCAR, based on plots by Hawkins and Sutton 2009; Data: http://gdo-
dcp.ucllnl.org/) 

http://gdo-dcp.ucllnl.org/
http://gdo-dcp.ucllnl.org/
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In response to both of these factors, it can be tempting for users to 
interpret a CMIP-based ensemble of hydroclimate projections in 
probabilistic terms, e.g., assuming that the mid-point of the ensemble 
range is more likely than the projections nearer the ends of the range, and 
focusing on that number. Some judgment of the likelihood of future 
outcomes is needed in order to allocate resources in most planning 
paradigms (Schneider 2002). But as noted earlier, the ensembles of GCM 
projections may be biased by similarity between GCMs stemming from 
shared development environments and model code. Furthermore, it is 
believed that even a large ensemble will under-sample the multi-variate 
space potentially occupied by the future climate; the actual climate may 
end up outside of the range of the CMIP projections (Stainforth et al. 2007; 
Shepherd et al. 2018). Accordingly, it should not be automatically assumed 
that the mean or median of the ensemble is the most likely outcome—or 
that the 90th percentile of the ensemble actually has a 10% likelihood of 
being exceeded, and so on. Climate researchers have attempted to correct 
the distributions of regional projected climate change to account for this 
cross-GCM similarity, though the corrected distributions were even 
broader, with heavier tails, and the centers of the distributions were often 
shifted (Steinschneider et al. 2015). Thus, taking the distribution of 
projected changes (e.g., the box-whiskers plots in Figures 11.10-11.12) at face 
value as a quantitative measure of future risk is not advisable.  

However, this does not mean the distribution of the CMIP ensembles tell us 
nothing. There is very strong confidence in future warming in general, and 
that higher emissions scenarios lead to greater warming. The overall shifts 
in hydroclimate seen in the CMIP-based ensembles—toward lower spring 
snowpacks, earlier melt and runoff, lower annual runoff volumes, and 
increasing water demand—are driven largely or almost entirely by the 
warming. In other words, there are compelling physical mechanisms behind 
the most relevant hydrologic changes depicted in the ensembles. It is 
reasonable, then, to take the ensembles as a starting point for exploration 
of the system consequences.  

One way to do this, while also reducing the number of individual traces to 
deal with when evaluating impacts, is a scenario approach in which several 
discrete hydroclimate scenarios are created, each based on a carefully 
selected subset of GCM projections, which cover most of the range or 
uncertainty across the projections. With only four or five future 
hydroclimate scenarios, more attention can be given to each pathway. 
Clark et al. (2016) laid out what they call a “hydrologic storylines” approach 
in which each storyline is a scenario derived from the traditional top-down 
methodology, with the collection of storylines representing a sampling of 
the range of future projections. Reclamation (in an Oklahoma case) and 
AMEC (CRWAS-II for Colorado; Harding 2015) have also proposed empirical 
approaches that create a small number of scenarios representing the 
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spread of the ensemble. A storyline approach, with four future climate 
scenarios, was also adopted for the 4th California State Climate Assessment 
(Pierce, Kalansky, and Cayan 2018). An alternative storyline approach 
proposed by Shepherd et al. (2018) calls for evaluating the changes shown 
by the different combinations of GCMs, downscaling methods, and 
hydrology models according to the physical plausibility of the underlying 
causal mechanisms of these changes. The emphasis is on identifying those 
modeled future trajectories and changes, such as a northward shift in the 
typical storm track over the basin, that are linked to the most compelling 
physics-based and observationally validated explanations. In some cases, 
this may suggest physically plausible conditions beyond the ensemble 
range.  

Other water system analysts have preferred approaches that keep the 
CMIP ensemble intact, in all of its diversity and breadth, but begin with the 
known system vulnerabilities. These bottom-up sensitivity analyses may, 
for example, create multi-dimensional climate response functions specific 
to a system outcome, and then plot how the ensemble of climate or 
hydrologic changes falls across that response surface or response space 
(e.g., Brown and Wilby 2012). 

For now and the foreseeable future, the most reasonable conclusion is that 
there is no one best approach for addressing uncertainty in projections of 
future climate. The range and distribution of conditions across the 
ensemble are biased to an unknown degree, so likelihood should not be 
directly taken from the distribution—but the ensemble nevertheless 
contains useful information that should not be ignored. 

For further reading and additional guidance on interpreting and applying 
climate change information in the context of water system planning, Vano 
et al. (2018) provide a concise and practical primer that also includes a table 
of additional reading with embedded links.  

11.9 Challenges and opportunities  

About a decade ago, multiple assessments conducted by, or on behalf of, 
Reclamation and other water agencies identified research needs and 
knowledge gaps related to climate change information used in water 
planning in the Colorado River Basin and the U.S. (Reclamation 2007a; 
Barsugli et al. 2009; Brekke et al. 2011). Reviewing the findings of these 
assessments, one is struck by how many of the needs and gaps have 
persisted over the intervening decade, despite the cumulative investment 
by the research and practitioner communities.   

This is not to say that scientific understanding and technical capacity have 
not progressed. In particular, there is now much improved availability of 
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regional climate projection datasets from statistically and dynamically 
downscaled methods (Table 11.3), and many of these datasets provide daily 
data that are suitable for analyzing changes in climate extremes. There is 
also much greater understanding and appreciation, and even quantification, 
of the different sources of uncertainty in climate change-informed 
hydrology for the basin. This has included evaluations of different datasets 
and models (though often not comprehensive enough) for the different 
steps of the top-down chain.   

The list below summarizes several remaining challenges in the 
development and usability of climate change-informed hydrology, and the 
opportunities for further improvement in this area. Note that few of these 
are directed at the research community alone, which indicates that in many 
cases, the path to greater actionability is not necessarily found in the 
refinement of models, quantitative methods, or datasets.    

Challenge 
GCM disagreements in changes of key climate variables: 1) GCMs do not 
agree on the magnitude of warming to expect globally, or in the basin, for a 
given emissions scenario-timeframe combination, and 2) GCMs do not 
agree on the direction and magnitude of annual precipitation change for 
the basin. Based on past history, further improvements in GCMs (e.g., 
better resolution of CMIP6 GCMs) will likely only slowly reduce these 
disagreements. 

Opportunities 
• Pursue additional guidance beyond the GCM ensemble regarding 

changes in these uncertain variables, e.g., recent observed trends, 
climate theory, and expert opinion (e.g., surveys of researchers). 

• Identify specific hydroclimate conditions, events, and sequences that 
lead to vulnerability; there may be greater consensus among the GCMs 
regarding these than in the changes in annual or seasonal average 
precipitation, for example. 

Challenge 
Due to GCM uncertainty and other factors, the range of projected future 
outcomes for basin hydrology (e.g., change in annual runoff volume at Lees 
Ferry) from GCM-based ensembles is very broad, and most planning 
decisions cannot address the full range of potential future conditions 
without incurring regrets from under- or over-preparation. 

Opportunities 
• Methods are available (e.g., scenario development, hydrologic 

storylines) to at least reduce the number of traces from the ensemble, 
improving their tractability for planning, and potentially identifying 
more physically plausible and likely outcomes. 
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• Alternative planning paradigms may be more appropriate for decision 
making under deep uncertainty. In planning, emphasize those 
outcomes associated with greater vulnerability and impacts, i.e., drier 
projections. 

Challenge 
GCM resolution, while improving, is still coarser than that required for 
realistic modeling of basin hydrology and system modeling, requiring the 
application of downscaling methods. 

Opportunity 
• The HighResMIP experiment within CMIP6 will soon make available an 

ensemble of GCM projections at 25–50 km resolution. This is still 
coarser than the resolution optimal for hydrologic modeling but will 
provide a useful test of what added value can be expected from high-
resolution GCMs. 

Challenge 
Statistically downscaled projection datasets, which dominate applications 
of regional climate data in water supply assessments, are perfectly 
adequate as sequences to input in hydrology models, but they add little to 
our physical understanding of future changes beyond what the GCMs can 
tell us. The very high resolution of these datasets (1–12 km) can also mislead 
users as to their accuracy and added value. 

Opportunity 
• For water supply assessments, look to dynamically downscaled or 

hybrid methods and datasets (e.g., NA-CORDEX, ICAR, En-GARD) for 
more physically oriented guidance that can provide context for 
statistically downscaled datasets, or replace them. 

Challenge 
The sources of uncertainty and differences in climate change-informed 
hydrology for the basin have been identified and explored to varying 
degrees, but not fully examined, including the underlying methodological 
choices. Thus, data users have incomplete information about uncertainty, 
and may not be aware of the subjective choices underlying particular 
results of hydrologic assessments. 

Opportunities 
• Support comprehensive evaluations of the differences stemming from 

downscaling methods, bias-correction methods, and hydrologic 
models. 

• Provide visualization tools of future climate and hydrology that are not 
limited to a single dataset and allow the users to toggle between 
datasets to clearly see commonalities and differences. 
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Challenge 
Any given ensemble of climate change-informed hydrology (e.g., CMIP5 
BCSD) is a complex dataset that is challenging to obtain, analyze, and 
interpret; the increasing proliferation of similar datasets and their 
respective underlying methodological approaches can be bewildering to 
even sophisticated users. 

Opportunities 
• For both researchers and practitioners, support efforts to provide 

guidance on the appropriate use of existing datasets, e.g., Vano et al. 
(2018), and WUCA training workshops. 

• Develop and disseminate new methods and datasets only when there is 
a compelling use case and clear added value over existing datasets. 
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Glossary 
ablation 
The loss of snow from the snowpack due to melting, evaporation, or wind. 

absolute error 
The difference between the measured and actual values of x. 

albedo 
The percentage of incoming light that is reflected off of a surface. 

aleatory uncertainty 
Uncertainty due to randomness in the behavior of a system (i.e., natural variability) 

anomaly 
A deviation from the expected or normal value. 

atmospheric river (AR) 
A long and concentrated plume of low-level (<5,000’) moisture originating in the tropical Pacific. 

autocorrelation 
Correlation between consecutive values of the same time series, typically due to time-dependencies in 

the dataset. 

bank storage 
Water that seeps into and out of the bed and banks of a stream, lake, or reservoir depending on relative 

water levels. 

bias correction 
Adjustments to raw model output (e.g., from a climate model, or streamflow forecast model) using 

observations in a reference period. 

boundary conditions 
Conditions that govern the evolution of climate for a given area (e.g., ocean heat flux, soil moisture, sea-

ice and snowpack conditions) and can help forecast the future climate state when included in a model. 

calibration 
The process of comparing a model with the real system, followed by multiple revisions and comparisons 

so that the model outputs more closely resemble outcomes in the real system. 

climate forcing 
A factor causing a difference between the incoming and outgoing energy of the Earth’s climate system, 

e.g., increases in greenhouse-gas concentrations. 

climatology 
In forecasting and modeling, refers to the historical average climate used as a baseline (e.g., “compared 

to climatology”). Synonymous with climate normal. 
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coefficient of variation (CV) 
A common measure of variability in a dataset; the standard deviation divided by the mean. 

consumptive use 
The amount of diverted water that is lost during usage via evapotranspiration, evaporation, or seepage 

and is thus unavailable for subsequent use. 

convection 
The vertical transport of heat and moisture in the atmosphere, typically due to an air parcel rising if it is 

warmer than the surrounding atmosphere. 

covariate 
A variable (e.g., temperature) whose value changes when the variable under study changes (e.g., 

precipitation).  

cross-correlation 
A method for estimating to what degree two variables or datasets are correlated. 

cumulative distribution function (CDF) 
A function describing the probability that a random variable, such as streamflow, is less than or equal to 
a specified value. CDF-based probabilities are often expressed in terms of percent exceedance or non-

exceedance. 

Darcy’s Law 
The mathematical expression that describes fluid flow through a porous medium (e.g., soil). 

datum 
The base, or 0.0-foot gage-height (stage), for a stream gage. 

dead pool 
The point at which the water level of a lake or reservoir is so low, water can no longer be discharged or 

released downstream. 

deterministic 
Referring to a system or model in which a given input always produces the same output; the input strictly 

determines the output. 

dewpoint 
The local temperature that the air would need to be cooled to (assuming atmospheric pressure and 

moisture content are constant) in order to achieve a relative humidity (RH) of 100%. 

dipole 
A pair of two equal and opposing centers of action, usually separated by a distance. 

discharge 
Volume of water flowing past a given point in the stream in a given period of time; synonymous with 

streamflow. 
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distributed 
In hydrologic modeling, a distributed model explicitly accounts for spatial variability by dividing basins 

into grid cells. Contrast with lumped model. 

downscaling 
Method to take data at coarse scales, e.g., from a GCM, and translate those data to more local scales.  

dynamical 
In modeling, refers to the use of a physical model, i.e., basic physical equations represent some or most 

of the relevant processes. 

environmental flow 
Water that is left in or released into a river to manage the quantity, quality, and timing of flow in order to 

sustain the river’s ecosystem. 

epistemic uncertainty 
Uncertainty due to incomplete knowledge of the behavior of a system. 

evapotranspiration 
A combination of evaporation from the land surface and water bodies, and transpiration of water from 

plant surfaces to the atmosphere. Generally includes sublimation from the snow surface as well. 

fixed lapse rate 
A constant rate of change of an atmospheric variable, usually temperature, with elevation. 

flow routing 
The process of determining the flow hydrograph at sequential points along a stream based on a known 

hydrograph upstream. 

forcing  - see climate forcing or weather forcing 
 
forecast 
A prediction of future hydrologic or climate conditions based on the initial (current) conditions and 

factors known to influence the evolution of the physical system. 

Gaussian filter 
A mathematical filter used to remove noise and emphasize a specific frequency of a signal; uses a bell-

shaped statistical distribution. 

gridded data 
Data that is represented in a two-dimensional gridded matrix of graphical contours, interpolated or 

otherwise derived from a set of point observations. 

heat flux 
The rate of heat energy transfer from one surface or layer of the atmosphere to the next. 

hindcast 
A forecast run for a past date or period, using the same model version as for real-time forecasts; used for 

model calibration and to “spin up” forecast models. Same as reforecast. 
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hydraulic conductivity 
A measure of the ease with which water flows through a medium, such as soil or sediment. 

hydroclimate 
The aggregate of climatic and hydrologic processes and characteristics, and linkages between them, for 

a watershed or region. 

hydrograph 
A graph of the volume of water flowing past a location per unit time. 

hydrometeorology 
A branch of meteorology and hydrology that studies the transfer of water and energy between the land 

surface and the lower atmosphere. 

imaging spectrometer 
An instrument used for measuring wavelengths of light spectra in order to create a spectrally-resolved 

image of an object or area. 

in situ 
Referring to a ground-based measurement site that is fixed in place. 

inhomogeneity 
A change in the mean or variance of a time-series of data (such as weather observations) that is caused 

by changes in the observing station or network, not in the climate itself. 

Interim Guidelines  
The Colorado River Interim Guidelines for Lower Basin Shortages and Coordinated Operations for Lake 

Powell and Lake Mead, signed by the Secretary of the Interior in December 2007. The guidelines expire 

in 2026. https://www.usbr.gov/lc/region/programs/strategies.html 

internal variability 
Variability in climate that comes from chaotic and unpredictable fluctuations of the Earth’s oceans and 

atmosphere. 

interpolation 
The process of calculating the value of a function or set of data between two known values. 

isothermal 
A dynamic in which temperature remains constant while other aspects of the system change. 

jet stream 
A narrow band of very strong winds in the upper atmosphere that follows the boundary between warmer 

and colder air masses. 

kriging 
A smoothing technique that calculates minimum error-variance estimates for unsampled values. 

kurtosis 
A measure of the sharpness of the peak of a probability distribution. 

https://www.usbr.gov/lc/region/programs/strategies.html
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lag-1 autocorrelation 
Serial correlation between data values at adjacent time steps. 

lapse rate 
The rate of change of an atmospheric variable, such as temperature, with elevation. A lapse rate is 

adiabatic when no heat exchange occurs between the given air parcel and its surroundings. 

latency 
The lag, relative to real-time, for producing and releasing a dataset that represents real-time conditions. 

latent heat flux 
The flow of heat from the Earth’s surface to the atmosphere that involves evaporation and condensation 

of water; the energy absorbed/released during a phase change of a substance. 

Law of the River 
A collection of compacts, federal laws, court decisions and decrees, contracts, and regulatory guidelines 

that apportions the water and regulates the use and management of the Colorado River among the 

seven basin states and Mexico. 

LiDAR (or lidar) 
Light detection and ranging; a remote sensing method which uses pulsed lasers of light to measure the 

variable distances from the sensor to the land surface. 

longwave radiation 
Infrared energy emitted by the Earth and its atmosphere at wavelengths between about 5 and 25 

micrometers. 

Lower Basin 
The portions of the Colorado River Basin in Arizona, California, Nevada, New Mexico and Utah that are 
downstream of the Colorado River Compact point at Lee Ferry, Arizona. 

lumped model 
In hydrologic modeling, a lumped model represents individual sub-basins or elevation zones as a single 

unit, averaging spatial characteristics across that unit. Contrast with distributed model. 

Markov chain 
A mathematical system in which transitions from one state to another are dependent on the current state 

and time elapsed. 

megadrought 
A sustained and widespread drought that lasts at least 10-15 years, though definitions in the literature 
have varied. 

metadata 
Data that gives information about other data or describes its own dataset. 
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mid-latitude cyclone 
A large (~500-2000 km) storm system that has a low-pressure center, cyclonic (counter-clockwise) flow, 

and a cold front. Over the western U.S., mid-latitude cyclones almost always move from west to east 

and are effective at producing precipitation over broad areas.   

Minute 319 
The binding agreement signed in 2012 by the International Boundary and Water Commission, United 

States and Mexico, to advance the 1944 Water Treaty between both countries and establish better basin 

operations and water allocation, and humanitarian measures. 

Modoki 
An El Niño event that has its warmest SST anomalies located in the central equatorial Pacific; same as 

“CP” El Niño. 

multicollinearity 
A condition in which multiple explanatory variables that predict variation in a response variable are 

themselves correlated with each other. 

multiple linear regression 
A form of regression in which a model is created by fitting a linear equation over the observed data, 

typically for two or more explanatory (independent) variables and a response (dependent) variable. 

multivariate  
Referring to statistical methods in which there are multiple response (dependent) variables being 

examined. 

natural flow 
Gaged flow that has been adjusted to remove the effects of upstream human activity such as storage or 

diversion. Equivalent to naturalized flow, virgin flow, and undepleted flow. 

naturalized flow – see natural flow 

nearest neighbor method 
A nonparametric method that examines the distances between a data point (e.g., a sampled value) and 

the closest data points to it in x-y space (“nearest neighbors,” e.g., historical values) and thereby 
obtains either a classification for the data point (such as wet, dry, or normal) or a set of nearest 

neighbors (i.e., K-NN). 

nonparametric 
A statistical method that assumes no underlying mathematical function for a sample of observations. 

orographic lift 
A process in which air is forced to rise and subsequently cool due to physical barriers such as hills or 

mountains. This mechanism leads to increased condensation and precipitation over higher terrain. 

p 
A statistical hypothesis test; the probability of obtaining a particular result purely by chance; a test 
of statistical significance. 
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paleohydrology 
The study of hydrologic events and processes prior to the instrumental (gaged) record, typically using 

environmental proxies such as tree rings. 

parameterized 
Referring to a key variable or factor that is represented in a model by an estimated value (parameter) 

based on observations, rather than being explicitly modeled through physical equations. 

parametric 
A statistical method that assumes an underlying mathematical function, specified by a set of 

characteristics, or parameters (e.g., mean and standard deviation) for a sample of observations. 

persistence 
In hydrology, the tendency of high flows to follow high flows, and low flows to follow low flows. 

Hydrologic time series with persistence are autocorrelated. 

phreatophytes 
Plants with deep root systems that are dependent on water from the water table or adjacent soil 

moisture reserves. 

pluvial 
An extended period, typically 5 years or longer, of abnormally wet conditions; the opposite of drought. 

principal components regression (PCR) 
A statistical technique for analyzing and developing multiple regressions from data with multiple 

potential explanatory variables. 

prior appropriation 
“First in time, first in right.” The prevailing doctrine of water rights for the western United States; a legal 

system that determines water rights by the earliest date of diversion or storage for beneficial use. 

probability density function (PDF) 
A function, or curve, that defines the shape of a probability distribution for a continuous random 

variable. 

projection 
A long-term (typically 10-100 years) forecast of future hydroclimatic conditions that is contingent on 

specified other conditions occurring during the forecast period, typically a particular scenario of 

greenhouse gas emissions.  

quantiles 
Divisions of the range of observations of a variable into equal-sized groups. 

r  
Correlation coefficient. The strength and direction of a linear relationship between two variables. 
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R2  
Coefficient of determination. The proportion of variance in a dependent variable that's explained by 
the independent variables in a regression model. 

radiometer 
An instrument used to detect and measure the intensity of radiant energy, i.e., shortwave energy 

emitted from the sun and reflected by clouds, and longwave energy emitted from the earth’s surface. 

raster 
A digital image or computer mapping format consisting of rows of colored pixels. 

reanalysis 
An analysis of historical climate or hydrologic conditions that assimilates observed data into a modeling 

environment to produce consistent fields of variables over the entire period of analysis. 

reference evapotranspiration  
An estimate of the upper bound of evapotranspiration losses from irrigated croplands, and thereby the 

water need for irrigation. 

regression 
A statistical technique used for modeling the linear relationship between two or more variables, e.g., 

snowpack and seasonal streamflow. 

relative humidity (RH) 
The amount of moisture in the atmosphere relative to the amount that would be present if the air were 

saturated. RH is expressed in percent, and is a function of both moisture content and air temperature. 

remote sensing 
The science and techniques for obtaining information from sensors placed on satellites, aircraft, or other 

platforms distant from the object(s) being sensed. 

residual  
The difference between the observed value and the estimated value of the quantity of interest. 

resolution 
The level of detail in model output; the ability to distinguish two points in space (or time) as separate.  

spatial resolution - Resolution across space, i.e., the ability to separate small details in a spatial 

representation such as in an image or model. 

temporal resolution - Resolution in time, i.e., hourly, daily, monthly, or annual. Equivalent to time 

step. 

return flow 
The water diverted from a river or stream that returns to a water source and is available for consumptive 

use by others downstream. 
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runoff 
Precipitation that flows toward streams on the surface of the ground or within the ground. Runoff as it is 

routed and measured within channels is streamflow. 

runoff efficiency 
The fraction of annual precipitation in a basin or other area that becomes runoff, i.e., not lost through 

evapotranspiration. 

sensible heat flux 
The flow of heat from the Earth’s surface to the atmosphere without phase changes in the water, or the 

energy directly absorbed/released by an object without a phase change occurring. 

shortwave radiation 
Incoming solar radiation consisting of visible, near-ultraviolet, and near-infrared spectra. The wavelength 

spectrum is between 0.2 and 3.0 micrometers. 

skew 
The degree of asymmetry in a given probability distribution from a Gaussian or normal (i.e., bell-shaped) 

distribution. 

skill 
The accuracy of the forecast relative to a baseline “naïve” forecast, such as the climatological average 

for that day. A forecast that performs better than the baseline forecast is said to have positive skill.    

smoothing filter 
A mathematical filter designed to enhance the signal-to-noise ratio in a dataset over certain frequencies. 

Common signal smoothing techniques include moving average and Gaussian algorithms. 

snow water equivalent (SWE) 
The depth, often expressed in inches, of liquid water contained within the snowpack that would 

theoretically result if you melted the snowpack instantaneously. 

snow course 
A linear site used from which manual measurements are taken periodically, to represent snowpack 

conditions for larger area. Courses are typically about 1,000’ long and are situated in areas protected 

from wind in order to get the most accurate snowpack measurements. 

snow pillow 
A device (e.g., at SNOTEL sites) that provides a value of the average water equivalent of snow that has 

accumulated on it; typically the pillow contains antifreeze and has a pressure sensor that measures the 

weight pressing down on the pillow. 

stationarity 
The condition in which the statistical properties of the sample data, including their probability 

distribution and related parameters, are stable over time. 

statistically significant 
Unlikely to occur by chance alone, as indicated by one of several statistical tests. 
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stepwise regression 
The process of building a regression model from a set of values by entering and removing predictor 

variables in a step-by-step manner. 

stochastic method 
A statistical method in which randomness is considered and included in the model used to generate 

output; the same input may produce different outputs in successive model runs.  

stratosphere 
The region of the upper atmosphere extending from the top of the troposphere to the base of the 

mesosphere; it begins about 11–15 km above the surface in the mid-latitudes. 

streamflow 
Water flow within a river channel, typically expressed in cubic feet per second for flow rate, or in acre-

feet for flow volume. Synonymous with discharge. 

sublimation 
When water (i.e., snow and ice) or another substance transitions from the solid phase to the vapor phase 

without going through the intermediate liquid phase; a major source of snowpack loss over the course of 

the season. 

surface energy balance 
The net balance of the exchange of energy between the Earth’s surface and the atmosphere. 

teleconnection 
A physical linkage between a change in atmospheric/oceanic circulation in one region (e.g., ENSO; the 

tropical Pacific) and a shift in weather or climate in a distant region (e.g., the Colorado River Basin). 

temperature inversion 
When temperature increases with height in a layer of the atmosphere, as opposed to the typical gradient 

of temperature decreasing with height. 

tercile 
Any of the two points that divide an ordered distribution into three parts, each containing a third of the 

population. 

tilt 
A shift in probabilities toward a certain outcome. 

transpiration 
Water discharged into the atmosphere from plant surfaces. 

troposphere 
The layer of the atmosphere from the Earth's surface up to the tropopause (~11–15 km) below the 

stratosphere; characterized by decreasing temperature with height, vertical wind motion, water vapor 

content, and sensible weather (clouds, rain, etc.). 
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undercatch 
When less precipitation is captured by a precipitation gage than actually falls; more likely to occur with 

snow, especially under windy conditions. 

unregulated flow 
Observed streamflow adjusted for some, but not all upstream activities, depending on the location and 

application. 

Upper Basin 
The parts of the Colorado River Basin in Colorado, Utah, Wyoming, Arizona, and New Mexico that are 

upstream of the Colorado River Compact point at Lee Ferry, Arizona.  

validation 
The process of comparing a model and its behavior and outputs to the real system, after calibration.  

variance 
An instance of difference in the data set. In regard to statistics, variance is the square of the standard 

deviation of a variable from its mean in the data set. 

wavelet analysis 
A method for determining the dominant frequencies constituting the overall time-varying signal in a 

dataset.
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Acronyms & Abbreviations 
24MS 
24-Month Study Model 

AET 
actual evapotranspiration 

AgriMET 
Cooperative Agricultural Weather Network 

AgWxNet  
Agricultural Weather Network 

AHPS  
Advanced Hydrologic Prediction Service 

ALEXI  
Atmosphere-Land Exchange Inversion 

AMJ 
April-May-June 

AMO  
Atlantic Multidecadal Oscillation 

ANN  
artificial neural network 

AOP  
Annual Operating Plan 

AR 
atmospheric river 

AR-1  
first-order autoregression 

ARkStorm  
Atmospheric River 1,000-year Storm 

ASCE  
American Society of Civil Engineers 

ASO  
Airborne Snow Observatory 

ASOS  
Automated Surface Observing System 

AVHRR  
Advanced Very High-Resolution 

Radiometer 

AWOS  
Automated Weather Observing System 

BCCA 
Bias-Corrected Constructed Analog 

BCSD 
Bias-Corrected Spatial Disaggregation 

(downscaling method) 

BCSD5 
BCSD applied to CMIP5 

BOR  
United States Bureau of Reclamation 

BREB  
Bowen Ratio Energy Balance method 

C3S  
Copernicus Climate Change Service 

CA  
Constructed Analogues 

CADSWES 
Center for Advanced Decision Support for 

Water and Environmental Systems 

CADWR 
California Department of Water Resources 

CanCM4i 
Canadian Coupled Model, 4th generation 

(global climate model) 

CBRFC  
Colorado Basin River Forecast Center 
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CCA  
Canonical Correlation Analysis 

CCSM4  
Community Climate System Model, version 

4 (global climate model) 

CDEC  
California Data Exchange Center 

CDF  
cumulative distribution function 

CESM  
Community Earth System Model (global 

climate model) 

CFS  
Climate/Coupled Forecast System 

CFSv2  
Coupled Forecast System version 2 (NOAA 

climate forecast model) 

CHPS  
Community Hydrologic Prediction System 

CIMIS  
California Irrigation Management 

Information System 

CIR 
crop irrigation requirement 

CIRES 
Cooperative Institute for Research in 

Environmental Sciences 

CLIMAS 
Climate Assessment for the Southwest 

CLM  
Community Land Model 

CM2.1 
Coupled Physical Model, version 2.1 (global 

climate model) 

CMIP  
Coupled Model Intercomparison Project 

(coordinated archive of global climate 

model output) 

CNRFC 
California-Nevada River Forecast Center 

CoAgMET  
Colorado Agricultural Meteorological 

Network 

CoCoRaHS  
Community Collaborative Rain, Hail and 

Snow Network 

CODOS 
Colorado Dust-on-Snow 

CONUS  
contiguous United States (the lower 48 

states) 

COOP  
Cooperative Observer Program 

CP  
Central Pacific 

CPC  
Climate Prediction Center 

CRB  
Colorado River Basin 

CRBPP 
Colorado River Basin Pilot Project 

CRPSS 
Continuous Ranked Probability Skill Score 

CRSM  
Colorado River Simulation Model 

CRSP 
Colorado River Storage Project 
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CRSS  
Colorado River Simulation System 

CRWAS  
Colorado River Water Availability Study 

CSAS 

CRWAS  
Center for Snow and Avalanche Studies 

CTSM  
Community Terrestrial Systems Model 

CU 
consumptive use 

CUL  
consumptive uses and losses 

CV  
coefficient of variation 

CVP/SWP  
Central Valley Project/State Water Project 

CWCB  
Colorado Water Conservation Board 

CWEST  
Center for Water, Earth Science and 

Technology 

DA  
data assimilation 

Daymet v.3  
daily gridded surface meteorological data 

DCP 
Drought Contingency Plan 

DEM  
digital elevation model 

DEOS  
Delaware Environmental Observing System 

DHSVM  
Distributed Hydrology Soil Vegetation 

Model 

DJF  
December-January-February 

DMDU  
Decision Making Under Deep Uncertainty 

DMI  
Data Management Interface 

DOD  
Department of Defense 

DOE  
Department of Energy 

DOW  
Doppler [radar] on Wheels 

DRI  
Desert Research Institute 

DTR  
diurnal temperature range 

EC  
eddy-covariance method 

EC 
Environment Canada 

ECCA  
ensemble canonical correlation analysis 

ECMWF  
European Centre for Medium-Range 

Weather Forecasts 

EDDI  
Evaporative Demand Drought Index 

EFAS  
European Flood Awareness System 



Acronyms and Abbreviations 512 
 

EIS  
Environmental Impact Statement 

En-GARD  
Ensemble Generalized Analog Regression 

Downscaling 

ENSO  
El Niño-Southern Oscillation 

EOF  
empirical orthogonal function 

EP  
Eastern Pacific 

ERC 
energy release component 

ESI  
Evaporative Stress Index 

ESM  
coupled Earth system model 

ESP  
ensemble streamflow prediction 

ESRL  
Earth System Research Laboratory 

ET  
evapotranspiration 

ET0  
Reference (crop) evapotranspiration 

EVI  
Enhanced Vegetation Index 

FAA  
Federal Aviation Administration 

FAWN  
Florida Automated Weather Network 

FEWS  
Famine Early Warning System 

FEWS 
Flood Early Warning System 

FIRO  
forecast-informed reservoir operations 

FLOR 
Forecast-oriented Low Ocean Resolution 

(global climate model) 

FORTRAN  
Formula Translation programming 

language 

FPS  
Federal Priority Streamgages 

FROMUS  
Forecast and Reservoir Operation Modeling 

Uncertainty Scoping 

fSCA  
fractional snow covered area 

FWS 
U.S. Fish and Wildlife Service 

GCM  
global climate model, or general circulation 

model 

GEFS  
Global Ensemble Forecast System 

GEM  
Global Environmental Multiscale model 

GEOS 
Goddard Earth Observing System (global 

climate model) 

GeoTiff  
Georeferenced Tagged Image File Format 

GFDL  
Geophysical Fluid Dynamics Laboratory 
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GFS  
Global Forecast System model 

GHCN  
Global Historical Climatology Network 

GHCN-D  
Global Historical Climate Network-Daily 

GHG  
greenhouse gas 

GIS  
geographic information system 

GLOFAS  
Global Flood Awareness System 

GLOFFIS 
Global Flood Forecast Information System 

GOES  
Geostationary Operational Environmental 

Satellite 

GRACE  
Gravity Recovery and Climate Experiment 

GRIB  
gridded binary or general regularly-

distributed information in binary form 

gridMET  
Gridded Surface Meteorological dataset 

GSSHA  
Gridded Surface/Subsurface Hydrologic 

Analysis 

GW  
groundwater 

HCCD  
Historical Canadian Climate Data 

HCN  
Historical Climatology Network 

HDA  
hydrologic data assimilation 

HDSC  
Hydrometeorological Design Studies 

Center 

HEFS  
Hydrologic Ensemble Forecast Service 

HESP  
Hierarchical Ensemble Streamflow 

Prediction 

HL-RDHM  
Hydrologic Laboratory-Research Distributed 

Hydrologic Model 

HMT  
Hydromet Testbed 

HP  
hydrological processor 

HRRR  
High Resolution Rapid Refresh (weather 

model) 

HSS  
Heidke Skill Score 

HTESSEL  
Land-surface Hydrology Tiled ECMWF 

Scheme for Surface Exchanges over Land 

HUC  
Hydrologic Unit Code 

HUC4  
A 4-digit Hydrologic Unit Code, referring to 

large sub-basins (e.g., Gunnison River) 

HUC12  
A 12-digit Hydrologic Unit Code, referring 

to small watersheds 
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ICAR  
Intermediate Complexity Atmospheric 

Research model 

ICS  
intentionally created surplus 

IDW  
inverse distance weighting 

IFS  
integrated forecast system 

IHC  
initial hydrologic conditions 

INSTAAR  
Institute of Arctic and Alpine Research 

IPCC  
Intergovernmental Panel on Climate 

Change 

IPO  
Interdecadal Pacific Oscillation 

IRI  
International Research Institute 

iRON  
Interactive Roaring Fork Observing Network 

ISM  
Index Sequential Method 

JFM 
January-February-March 

JJA  
June-July-August 

K-NN  
K-Nearest Neighbor 

Landsat  
Land Remote-Sensing Satellite (System) 

LAST  
Lane’s Applied Stochastic Techniques 

LERI  
Landscape Evaporative Response Index 

lidar  
light detection and ranging  

LOCA  
Localized Constructed Analog 

LSM  
land surface model 

M&I  
municipal and industrial (water use 

category) 

MACA 
Multivariate Adaptive Constructed Analog 

maf  
million acre-feet 

MAM  
March-April-May 

MEFP  
Meteorological Ensemble Forecast 

Processor 

METRIC  
Mapping Evapotranspiration at high 

Resolution with Internalized Calibration 

MJO  
Madden-Julian Oscillation 

MMEFS  
Met-Model Ensemble Forecast System 

MOCOM 
Multi-Objective Complex evolution 

MODDRFS  
MODIS Dust Radiative Forcing in Snow 
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MODIS  
Moderate Resolution Imaging 

Spectroradiometer 

MODIS LST (MYD11A2)  
Moderate Resolution Imaging 

Spectroradiometer Land Surface 

Temperature (MYD11A2) 

MODSCAG  
MODIS Snow Covered Area and Grain-size 

MPR 
Multiscale Parameter Regionalization 

MRM  
Multiple Run Management 

MT-CLIM (or MTCLIM) 
Mountain Climate simulator 

MTOM  
Mid-Term Probabilistic Operations Model 

NA-CORDEX  
North American Coordinated Regional 

Downscaling Experiment 

NAM  
North American Monsoon 

NAO  
North Atlantic Oscillation 

NARCCAP  
North American Regional Climate Change 

Assessment Program 

NARR  
North American Regional Reanalysis 

NASA  
National Aeronautics and Space 

Administration 

NASA JPL  
NASA Jet Propulsion Laboratory 

NCAR  
National Center for Atmospheric Research 

NCCASC 
North Central Climate Adaptation Science 

Center 

NCECONET  
North Carolina Environment and Climate 

Observing Network 

NCEI  
National Centers for Environmental 

Information 

NCEP  
National Centers for Environmental 

Prediction  

nClimDiv  
new Climate Divisional (NOAA climate 

dataset) 

NDBC  
National Data Buoy Center 

NDVI  
Normalized Difference Vegetation Index 

NDWI  
Normalized Difference Water Index 

NEMO 
Nucleus for European Modelling of the 

Ocean (global ocean model) 

NevCan  
Nevada Climate-ecohydrological 

Assessment Network 

NGWOS 
Next-Generation Water Observing System 

NHMM  
Bayesian Nonhomogenous Hidden Markov 

Model 
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NICENET  
Nevada Integrated Climate and 

Evapotranspiration Network 

NIDIS  
National Integrated Drought Information 

System 

NLDAS  
North American Land Data Assimilation 

System 

NMME  
North American Multi-Model Ensemble 

NN R1  
NCEP/NCAR Reanalysis 

NOAA  
National Oceanic and Atmospheric 

Administration 

NOAH  
Neural Optimization Applied Hydrology  

Noah-MP 
Noah-Multi-parameterization Model 

NOHRSC  
National Operational Hydrologic Remote 

Sensing Center 

NPP  
Nonparametric paleohydrologic method 

NRCS  
Natural Resource Conservation Service 

NSF  
National Science Foundation 

NSIDC 
National Snow and Ice Data Center 

NSMN  
National Soil Moisture Network 

NVDWR  
Nevada Department of Water Resources 

NWCC 
National Water and Climate Center 

NWIS  
National Water Information System 

NWM  
National Water Model 

NWP  
numerical weather prediction 

NWS  
National Weather Service 

NWSRFS 
National Weather Service River Forecast 

System 

NZI  
New Zealand Index 

OCN  
Optimal Climate Normals 

OHD  
Office of Hydrologic Development  

OK Mesonet  
Oklahoma Mesoscale Network 

ONI  
Oceanic Niño Index 

OWAQ  
Office of Weather and Air Quality 

OWP  
Office of Water Prediction 

PC  
principal components 

PCA  
principal components analysis 
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PCR  
principal components regression 

PDO  
Pacific Decadal Oscillation 

PDSI  
Palmer Drought Severity Index 

PET  
potential evapotranspiration 

PGW  
pseudo-global warming 

PRISM  
Parameter-elevation Relationships on 

Independent Slopes Model 

PSD  
Physical Sciences Division 

QBO  
Quasi-Biennial Oscillation 

QDO  
Quasi-Decadal Oscillation 

QM 
quantile mapping 

QPE  
Quantitative Precipitation Estimate 

QPF  
Quantitative Precipitation Forecast 

QTE  
Quantitative Temperature Estimate 

QTF  
Quantitative Temperature Forecast 

radar 
radio detection and ranging 

RAP  
Rapid Refresh (weather model) 

RAWS  
Remote Automated Weather Station 

Network 

RCM  
Regional Climate Model 

RCP 
Representative Concentration Pathway 

RE 
reduction-of-error 

RFC 
River Forecast Center 

RFS  
River Forecasting System 

RH  
relative humidity 

RiverSMART  
RiverWare Study Manager and Research 

Tool 

RMSE  
root mean squared error 

S/I 
seasonal to interannual 

S2S 
subseasonal to seasonal 

Sac-SMA 
Sacramento Soil Moisture Accounting 

Model 

SAMS 
Stochastic Analysis Modeling and 

Simulation 

SCA  
snow-covered area 
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SCAN  
Soil Climate Analysis Network 

SCE  
Shuffled Complex Evolution 

SCF  
seasonal climate forecast 

SE  
standard error 

SECURE  
Science and Engineering to 

Comprehensively Understand and 

Responsibly Enhance Water 

SFWMD 
South Florida Water Management District 

SM  
soil moisture 

SMA  
Soil Moisture Accounting 

SMAP 
Soil Moisture Active Passive 

SMHI 
Swedish Meteorological and Hydrological 

Institute 

SMLR  
Screening Multiple Linear Regression 

SMOS 
Soil Moisture and Ocean Salinity 

SNODAS 
Snow Data Assimilation System 

SNOTEL  
Snow Telemetry 

SOI  
Southern Oscillation Index 

SON  
September-October-November 

SPoRT  
Short-term Prediction Research Transition 

SRES  
Special Report on Emissions Scenarios 

SRP  
Salt River Project 

SSEBOP  
Simplified Surface Energy Balance 

SSEBOP ET 
Simplified Surface Energy Balance 

Evapotranspiration 

SSP  
Societally Significant Pathway 

SST  
sea surface temperatures 

SSW  
stratospheric sudden warming 

SubX  
Subseasonal Experiment 

SUMMA  
Structure for Unifying Multiple Modeling 

Alternatives 

SVD  
singular value decomposition 

SW  
surface water 

SWANN  
Snow-Water Artificial Neural Network 

Modeling System 

SWcasts 
Southwest Forecasts 
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SWE 
snow water equivalent 

SWOT 
Surface Water and Ocean Topography 

SWS  
Statistical Water Supply 

Tair  
air temperature 

Tdew  
dew point temperature 

TopoWx  
Topography Weather (climate dataset) 

TVA  
Tennessee Valley Authority 

UC  
Upper Colorado Region (Reclamation) 

UCAR 
University Corporation for Atmospheric 

Research 

UCBOR 
Upper Colorado Bureau of Reclamation 

UCRB 
Upper Colorado River Basin 

UCRC  
Upper Colorado River Commission 

UCRSFIG 
Upper Colorado Region State-Federal 

Interagency Group 

USACE  
U.S. Army Corps of Engineers 

USBR 
U.S. Bureau of Reclamation 

USCRN  
U.S. Climate Reference Network 

USDA 
U.S. Department of Agriculture 

USGCRP 
U.S. Global Change Research Program 

USGS 
U.S. Geological Survey 

USHCN 
United States Historical Climatology 

Network 

VIC 
Variable Infiltration Capacity (model) 

VIIRS  
Visible Infrared Imaging Radiometer Suite 

VPD 
vapor pressure deficit 

WBAN  
Weather Bureau Army Navy 

WCRP  
World Climate Research Program 

WFO  
Weather Forecast Office 

WPC  
Weather Prediction Center 

WRCC  
Western Regional Climate Center 

WRF  
Weather Research and Forecasting 

WRF-Hydro 
WRF coupled with additional models to 

represent hydrologic processes 
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WSF  
water supply forecast 

WSWC  
Western States Water Council 

WUCA 
Water Utility Climate Alliance 

WWA 
Western Water Assessment 

WWCRA  
West-Wide Climate Risk Assessments 

WWMPP 
Wyoming Weather Modification Pilot 

Project 
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