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The Colorado River Basin currently faces unprecedented stresses. Persistent
dry conditions since 2000, along with the increasing recognition that
warming temperatures are impacting the hydrology of the basin, have led to
great concerns about the long-term reliability of basin water supplies. With
ever-higher stakes for water resource planning and decision making, an even
greater emphasis is placed on the tools that support those activities, notably
Reclamation’s operations and planning models and similar models used at
other agencies. The usefulness of these system models depends on many
types of datasets and forecasts that serve as inputs to them, as well as the
research and scientific understanding underpinning this complex chain of
data and models. The development and refinement of the different links of
the chain necessarily involves researchers, forecasters, and water managers.

New research efforts have advanced our understanding of the hydroclimate
of the basin and how key hydroclimate processes, variability, and changes
can be captured in data and models. This rapid expansion of the scientific
knowledge base, and the increasing complexity of the data and models used
to operationalize that knowledge, parallel the growing uncertainties about
the future climate and hydrology. Accordingly, basin stakeholders have
recognized the importance of reassessing the scientific and technical basis
for management and planning.

By synthesizing the state of the science in the Colorado River Basin
regarding climate and hydrology, this report seeks to establish a broadly
shared understanding that can guide the strategic integration of new
research into practice. The ultimate goal of that integration, and therefore
of this report, is to facilitate more accurate short- and mid-term forecasts,
and more meaningful long-term projections, of basin hydroclimate and
system conditions.

Past scientific advances have led to improvements in the various links in
the chain of data and models, and to more accurate and actionable
information for decision making. The ongoing efforts documented in the
report strongly suggest that this progress will continue. At the longer time
scales, however, research reveals and affirms large uncertainties that are
difficult to reduce given both natural variability and the imperfections in
our understanding, observations, and models, and our inability to fully test
our predictions.

Each chapter of the report focuses on one major link in the chain of data
and models, covering a broad array of activities to better observe, model,
forecast, and understand the climate and hydrology of the basin. Key points
from each chapter are presented below, as well as a summary of the
challenges identified in each chapter and the opportunities to address
those challenges. Readers are encouraged to explore the full report for the
context supporting these key points and challenges and opportunities.
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Chapter 2. Current Understanding of the
Colorado River Basin Climate and Hydrology

Key points

e On average, about 170 million acre-feet (maf) of precipitation falls over
the Colorado River Basin annually, but only about 10% (17 maf) becomes
natural streamflow available for use.

¢ The Upper Basin contributes the vast majority, about 92%, of the total
basin natural streamflow as measured at Imperial Dam.

o FElevation dramatically shapes the amount of precipitation and its
relative contribution to runoff, so that 85% of annual runoff comes from
the 15% of the basin’s area that is located in the mountain headwaters.

e The position and activity of the mid-latitude storm track from October
through May is the critical climatic driver of annual precipitation in the
basin’s headwaters.

¢ Snowmelt is the primary source of annual runoff from those mountain
headwaters, as reflected in the prominent late-spring peak in the
annual hydrograph.

e Year-to-year variability in runoff is high and is mainly driven by
variability in precipitation; decadal and multi-decadal variability in
precipitation and in runoff is also present but no consistent cycles have
been identified.

¢ The predictability that does exist at shorter time scales (up to 1 year)
comes mainly from the El Niflo-Southern Oscillation (ENSO); the ENSO
signal is generally weak in the Upper Basin but stronger in the Lower
Basin.

e Predictability at decadal and longer time scales using longer-lived
climate phenomena (e.g., Atlantic Multidecadal Oscillation, Pacific
Decadal Oscillation, etc.) has proven elusive.

e The period since 2000 has been unusually drought-prone, but even
more severe and sustained droughts occurred before 1900.

e There has been a substantial warming trend over the past 40 years; the
period since 2000 has been about 2°F warmer than the 20"-century
average, and likely warmer than at any time in the past 2000 years.

e Decreases in spring snowpack and shifts to earlier runoff timing in
many parts of the Upper Basin, as well as decreases in annual Colorado
River flows at Lees Ferry, Arizona, have occurred in recent decades.
These changes in hydrology can be linked, at least in part, to the
warming trend.

Executive Summary 4



Challenges and opportunities

Challenges

e There is still considerable uncertainty in the quantification of the
relative roles of temperature, precipitation, antecedent soil moisture,
dust-on-snow, and vegetation change in recent and ongoing variability
and change in Upper Basin snowpack and streamflow.

o These factors have substantial spatial variability, but most studies have
conducted analyses and presented findings only at the Upper Basin-
wide scale (e.g., at Lees Ferry).

Opportunities

e Conduct analyses of Upper Basin hydrologic change that are spatially
disaggregated at least to the eight major sub-basins (Upper Green,
Yampa-White, etc.), or focus only on the most productive headwaters
areas, or both.

e Pursue the various pathways to improve hydrologic modeling presented
in Chapter 6.

e Conduct intercomparisons of hydrologic models and statistical
methods for assessing the factors behind hydrologic changes.

Executive Summary



Chapter 3. Primary Planning Tools

Key points

¢ Three monthly Reclamation models, developed in RiverWare™, support
planning at three time scales: 1) 24-Month Study (24MS) for short-term
planning (up to 24 months), 2) Mid-Term Probabilistic Operations
Model (MTOM) for mid-term planning (up to 60 months), and the
Colorado River Simulation System (CRSS) for long-term planning
(multiple decades).

o The models use rules to incorporate operational policies set forth in
Records of Decisions and other operational agreements, and some
long-term studies also explore potential alternative policies.

e Hydrologic inputs to the short-term and mid-term models are either
flows forecast by the NOAA Colorado Basin River Forecast Center
(CBRFC) or statistical averages of observed flows.

e Hydrologic inputs to the long-term model may be based on historical
hydrology, paleohydrology, climate change-informed hydrology, or
hybrids.

e Measured Upper Basin water demands for the short-term and mid-
term models are accounted for in the CBRFC'’s forecast; Lower Basin
water demands are provided by Lower Basin water users and Mexico.
Both Upper and Lower Basin demands for the long-term model are
based on projections supplied by water users.

e Uncertainties, errors, and limitations arise from input data sources,
assumptions about the future, and necessary simplifications of a
complex water supply system.

Challenges and opportunities
Challenge

Each Reclamation model (24MS, MTOM and CRSS) has different ways that
uncertainty can be better quantified and either addressed or incorporated.
In particular, each model uses a more simplistic method for projecting
future inflows in the Lower Basin than in the Upper Basin (5-year averages
for 24MS and MTOM rather than a forecast, and gaged flow in CRSS rather
than natural flow). In the Upper Basin, demand projections may differ from
actual water use trends and the representation of complex operating
policies via rules deployed at the monthly time step may further contribute
to this deviation. Finally, more in-depth analyses are needed to verify how
well modeled operational policies reflect actual operations.

Executive Summary
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Opportunities

e Complete the Forecast and Reservoir Operation Modeling Uncertainty
Scoping (FROMUS) report and update its findings as models are refined.

o Work with the CBRFC to develop unregulated flow forecasts for the
Lower Basin.

e Continue to work toward commitments outlined in the Colorado River
Basin Study regarding the development of natural flows in the Lower
Basin.

o Work with Upper Basin states, water users, and tribes to refine long-
term demand projections.

¢ Complete hindcasting studies that can help identify how simplifications
in Reclamation’s models contribute to projection error.

Challenge

The coarse spatial resolution in CRSS has implications for studying
demands and tributary flows. In the Upper Basin, water demands are
represented in highly aggregated nodes and do not reflect water right
priorities, which limits the ability to accurately model shortages to specific
users under different scenarios. On the Lower Basin tributaries, because
gaged flow is used rather than natural flow, demands are not explicitly
modeled. CRSS uses a monthly time step that limits the ability to analyze
the impacts to certain resources, in particular, ecological resources.
Additionally, the exclusion of smaller tributaries limits the analyses that can
be performed with CRSS.

Opportunities

e Review the configuration, number of nodes, and rules in the Upper
Basin to explore implementing an allocation system that captures the
distribution of water supply by water rights priority.

e The quality, coverage, and resolution of data that is used to naturalize
inflows has improved and might support model disaggregation in both
time and space.

o Explore iterative sub-basin implementations that are solved at shorter
time scales or finer resolutions and that may be aggregated and fed into
existing nodes in CRSS.

Challenge

Reclamation models are complex and the projections they generate are the
product of combinations of many data sources and assumptions. It is
critical that stakeholders and the public understand the uncertainty and
how this uncertainty affects projections of risk in order to ensure the
appropriate use of the results for decision making. Reclamation continues
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to work toward improving such communication but there is room for
improvement. Additionally, the models are not comprehensively
documented, despite their critical importance in Colorado River Basin
management and planning.

Opportunities

¢ Continue to improve and refine communication of model assumptions
and uncertainty on Reclamation’s modeling website and in widely
distributed modeling results (e.g., the 24MS reports).

¢ Develop comprehensive, technical overviews of each of the models to
share how each model is configured, how the rules are implemented,
and how the inputs are derived.
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Chapter 4. Observations—Weather and Climate

Key points

o Weather and climate data are collected and interpolated for specific
reasons, so not all data and datasets are suitable for all uses. Users
should be cautious about “off-label” use of climate data and should
thoroughly investigate the suitability of data before it is applied outside
of its planned uses.

e Users of weather and climate datasets should be aware that the data
reflect average or summary conditions over their spatial and temporal
resolution and should not expect a gridded product to accurately
reflect conditions at any particular point on the landscape at any given
point in time. This is particularly true for high-relief landscapes like the
Colorado River Basin.

e Most of the existing high-resolution gridded datasets share some base
information or use similar processing, or both, so they are not strictly
independent.

e There is not now, and likely never will be, perfect weather and climate
data. Producers of climate information need to communicate, and users
should be cognizant of, the strengths and weaknesses of the data they
choose and how climate data choices influence their conclusions.

¢ Inthe Colorado River Basin, the highest elevations have the lowest
weather station densities and likely the least precise and accurate
weather information. This is especially problematic for water resource
questions, because such a large fraction of the runoff is generated at
high elevations.

Challenges and opportunities
Challenge

While commonly used gridded climate datasets show very similar variability
and trends in precipitation and temperature for the basin, disagreements
between the datasets are larger for the sparsely instrumented high-
elevation areas in the Upper Basin—the areas that generate the vast
majority of the basin’s runoff.

Opportunities

e Use other types of measurements, such as streamflow and radar, to
constrain the gridded estimates of temperature and precipitation, and
add novel observation techniques (e.g., Airborne Snow Observatory) to
bolster ongoing observations.

Executive Summary 9



¢ Use numerical weather prediction models for spatiotemporal
interpolation and validation of observation-based products.

Challenge

It is increasingly understood that the gridded climate datasets have
inherent uncertainties and differ from each other, but how those
uncertainties and differences manifest in the outputs of typical
hydroclimate modeling and analysis tasks needs to be better explored and
communicated to users.

Opportunities

e Conduct formal intercomparisons between gridded datasets in the
context of specific applications and outputs (e.g., Alder and Hostetler
2019 on the use of different gridded climate datasets for statistical
downscaling of GCM data).

e Application projects can consider including a testing phase in which
multiple gridded datasets are tested on a limited portion of the project’s
domain or analyses.

e Both researchers and users can acknowledge that all data are
imperfect, and move away from trying to identify a single “best”
product toward greater consideration of the data characteristics that
are, and are not, important for their questions and analyses.

Executive Summary
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Chapter 5. Observations—Hydrology

Key points

Robust real-time observations and long-term records of snowpack,
streamflow, soil moisture, and other hydrologic variables are key inputs
to basin streamflow forecasting and system modeling.

Point measurements of these variables are not dense enough to fully
represent spatial variability across the basin, and not necessarily sited
to optimally inform streamflow forecasts.

For snowpack observations, the in situ SNOTEL network has limitations
but remains essential to monitoring and skillful streamflow forecasting.

Spatially distributed snowpack data from models and remote sensing
are increasingly used to augment SNOTEL data, though most of these
sources depend on SNOTEL data for calibration.

Accurate and useful streamflow inputs depend on both the robustness
of the gage network and the procedures used to adjust and naturalize
gaged streamflows to account for human activity.

Flow naturalization methods try to estimate what the streamflow at a
gage would have been, or will be, without the impacts of upstream
human activity; naturalization methods vary from agency to agency,
depending on the time scale and application.

Evaporation and evapotranspiration estimates are central to flow
naturalization, thus as more types of observations become available,
models used to calculate these variables are being refined in both
physical process modeling and input data used.

In situ measurements of soil moisture and evaporation-related
variables are especially sparse, and spatially distributed data from
models and remote sensing have a larger role to play in condition
monitoring and streamflow forecasting.

Realizing the full value of spatially distributed hydrologic data will
ultimately require streamflow-forecasting and system-modeling
frameworks that are explicitly designed to use those data as inputs.

Challenges and opportunities

Challenges: Snow

Inadequate characterization of the snowpack is still a major source of
error in streamflow forecasts, especially in years with anomalous
patterns of snow distribution in space and time—a phenomenon which
appears to be more frequent in a changing climate
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The in situ (point) snow course and SNOTEL network was designed for
the statistical streamflow forecasting paradigm, which is no longer used
by CBRFC.

Many new spatially distributed SWE products are now available, but
there have been few rigorous evaluations of these datasets, in part
because it is difficult to validate spatial products with point
measurements.

The SNOTEL network will remain essential to any conceivable future
snow monitoring system in the basin, especially with additional sensor
capacity at SNOTEL sites, but the network has been inadequately
supported in recent years by USDA.

Opportunities

Building on recent smaller scale pilot efforts to conduct larger scale,
systematic intercomparisons of SWE datasets and products for the
basin, including SNOTEL, ASO, and SNODAS and other spatially
distributed modeled products.

Based on the results of such intercomparisons, pursuing “hybrid”
approaches where multiple methods and datasets are combined in a
way to best exploit their relative advantages.

Continuing and stepping up the modernization and expansion of the
SNOTEL network, with more and better sensors, more imagery, and
better data communication—all of which would necessitate more
resources for NRCS to support the network.

Challenges: Streamflow

Streamflow observations that could contribute to more accurate
naturalization calculations are not available at many key sites,
especially diversion and return flow locations.

Naturalizing the gage record requires adjustments that come with
potential errors and uncertainties, many of which are impossible to
address or resolve because of the dearth of early-period data and
documentation.

Fully characterizing the natural hydrology of the basin is problematic
with the exclusion of the Gila River from consideration.

A number of research activities use Reclamation’s natural flow record
for baseline or reference purposes. For example, synthetic streamflow
generation relies on the natural flow record for parameter estimation
or for nonparametric sampling, tree-ring reconstructions of
paleostreamflows are calibrated against the natural flows at Lees Ferry,
and hydrologic simulations from the Variable Infiltration Capacity
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model that are used to project future streamflows were bias-corrected
based on the natural flows at Lees Ferry and other gaging stations.

Opportunities

Regarding gaging, the biggest gains in information going forward would
be achieved by expanding the streamflow monitoring network to fill
gaps in coverage. This includes gages at diversion sites and in locations
to measure return flows or verify return flow and gain /loss
calculations.

Increasing the spatial resolution of Reclamation’s models might be a
useful avenue to pursue in order to simulate and analyze impacts from
climate change on sub-basin hydrology.

Major modifications to the natural flow record, to improve consumptive
use estimates for example, have implications for both the calibrations
and other applications listed above, and for the record extension back
to 1906 because the extended records were based on statistical
analyses of the natural flow record that was in place at the time of
extension. As more recent natural flow data becomes available, there is
an opportunity to revisit the characterizations, calibrations, bias-
corrections, and record extension that were based on earlier versions
of the natural flow record.

Challenges: Soil moisture and evaporation

Compared with snowpack (which is variable over space and time), soil
moisture is poorly monitored and understood, with frequent
discrepancies between in situ measurements and modeled estimates.

Real-time soil moisture data is collected from at least 6 different in situ
networks, with differing observing protocols (depth, etc.).

Reservoir evaporation estimates as used in basin system modeling have
been based on decades-old data that does not reflect current climate
conditions.

Estimates of evapotranspiration and crop water use have been
constrained by physically incomplete methods and input data that are
not spatially representative.

Opportunities

Support and expand ongoing efforts to comprehensively collate in situ
soil moisture measurements and merge these observations with
spatially distributed modeled estimates (e.g., National Soil Moisture
Network).

New satellite sensors and products (e.g., SMAP) that provide spatially
comprehensive and consistent soil moisture estimates can likewise be
compared and blended with other types of soil moisture data.
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When applicable, conduct testing of new soil moisture products to
determine if they add value to the CBRFC forecast process.

Ongoing efforts will provide updated reservoir evaporation estimates
for Lakes Mead and Powell; those efforts could be expanded to other
large reservoirs in the basin.

Expand the in situ monitoring of evaporation/ET /PET with enhanced
weather stations that capture all four variables needed for fully physical
estimates (e.g. the Penman-Monteith method), and new flux towers
needed for the Eddy Covariance method.

Better in situ data will also help in calibrating /validating remote
sensing-based spatial estimates of ET and crop water use; use of these
spatial estimates in the basin has been increasing, though it has been
limited by user confidence in the data.
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Chapter 6. Hydrologic Models

Key points

e With a range of hydrologic models readily available, it is important for
prospective applications of models to articulate the objectives of the
modeling as well as the requirements that the model must satisfy.

¢ Asingle model is likely designed for a specific application or context
and may not be optimal for a wider range of uses.

¢ In the Colorado River Basin, the NWS models (streamflow forecasting)
and the VIC model (sensitivity studies; climate change projection) have
been the most-consulted hydrologic models for those respective
applications. Each has varying capabilities and limitations.

¢ Increasing model complexity does not guarantee improved model
performance. Complexity should be increased subject to the
consideration of process needs, data sufficiency, computational
feasibility, and ultimately the model’s demonstrated performance.

e For some applications, such as streamflow forecasting at a river
location, simpler models may continue to offer valuable and even
superior performance for years to come.

e For other applications, such as understanding hydrologic sensitivity to
climate change or hydrologic response to watershed changes, more
complex process-oriented models are usually more appropriate.

e Calibration (parameter estimation) is almost always needed to achieve
high-quality simulations in all hydrologic models, and it is easier to
implement in simpler models than in computationally intensive
complex models.

Challenges and opportunities
Challenge

The conceptual modeling approach used in operational forecasting is not
well-suited to take full advantage of advances in process understanding and
modeling. The process-complexity of the models used for short-range to
seasonal forecasting could be increased, albeit in a careful manner. This
must be done within a strategy that acknowledges and provides for
commensurate changes in operational workflows, including the
development of data assimilation approaches.

Opportunity

¢ Implement a testbed framework for operational modeling that can
incrementally advance and benchmark modeling improvements for

Executive Summary 15



different objectives, evaluating and justifying increases in complexity
based on model performance.

Challenge

Distributed regional parameter estimation remains a vexing scientific
challenge, and there is a critical need for accessible, efficient model
calibration approaches to avoid the use of semi-calibrated land surface
models in water supply applications (e.g., climate-change impact
assessment). Without this capability, no model will perform well, and
watershed-tuned conceptual models will be hard to outperform.

Opportunity

e Multiscale Parameter Regionalization (MPR) offers promise but will
require more development to leverage both the strengths of the

attribute-based parameter development and the greater optimization

potential in individual basins. Improved understanding of parameter
sensitivities in models such as VIC, multi-objective calibration
(considering more variables than just streamflow), and broader use of
geophysical attributes, may offer near-term paths for improvement.

Challenge

The widespread use of VIC and similar land surface models for climate

change impact studies may have inadvertently limited the exploration and
quantification of projected hydrologic changes. There is a need to identify
processes that are not represented in models such as VIC and that lead to
hydrologic impacts that affect stakeholders (such as dust-on-snow), and to

require that models used in climate-change impact studies a) include
parameterizations to represent those processes, and b) demonstrate that
their process performance is realistic.

Opportunity

e New models and modeling frameworks such as SUMMA, Noah-MP,
WRF-Hydro, and CTSM may offer a more flexible foundation for
enhancing model process complexity in appropriate, and carefully
benchmarked ways. Process parameterizations in individual models
may be leveraged to expand the range of options in flexible model
frameworks. This activity will ideally be deliberate, pursuing targeted

model improvements and motivated by stakeholder needs assessments,

rather than top-down or wholesale adoption of an alternate off-the-
shelf model.
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Chapter 7. Weather and Climate Forecasting

Key points

Uncertainty about upcoming weather and climate conditions translates
into a major source of uncertainty in seasonal streamflow forecasts.

Weather forecasts out to 10 days have relatively high skill and are
progressively improving; they are incorporated into the CBRFC’s
operational streamflow forecasts.

Sub-seasonal (2 weeks to 12 weeks) and seasonal (3 months to 1 year+)
climate forecasts have much lower skill, especially in the Upper Basin,
and they are not incorporated in the CBRFC streamflow forecasts.

A major research effort has ramped up in the last decade to advance
sub-seasonal and seasonal forecasting.

Sub-seasonal and seasonal forecasts for temperature are generally
more skillful than forecasts for precipitation, and skill for both is
generally higher for the Lower Basin than for the Upper Basin.

For precipitation, the Climate Prediction Center’s seasonal forecast skill
in both basins has been positive for winter and spring, suggesting users
should focus their forecast use on those seasons.

There are other opportunities to better utilize the skill that does exist
in sub-seasonal and seasonal climate forecasts, such as using them to
“nudge” the streamflow forecast ensemble during post-processing.

Challenges and opportunities

Challenge

Limitations in our understanding of the connections between atmospheric
and oceanic circulation patterns and processes, and Colorado River Basin

precipitation variability in space and time, constrain the skill of climate
forecast models in forecasting conditions for the basin.

Opportunities

Support further research into these climate system dynamics to
identify key patterns and variables.

Support further research into better representing those key patterns
and variables in dynamical climate forecast models and statistical
forecast tools.
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Challenge

The CBRFC and other streamflow forecasting units may not be able to
capitalize on the skill that does exist in sub-seasonal and seasonal climate
forecasts for the basin.

Opportunities

e Support ongoing CBRFC efforts to pilot the inclusion of sub-seasonal
and seasonal forecasts in their forecast system.

e Support further research into post-processing of CBRFC forecasts to
generate climate-forecast-informed, use-specific streamflow forecasts.

Challenge

The limited skill and probabilistic nature of climate forecasts may not mesh
well with decision frameworks so water managers are unable to extract
value from the forecast information.

Opportunities

¢ Continue to support engagement between water managers and CPC
and other climate forecasters to facilitate shared understanding of
decision needs and forecast capabilities.

e Study decision making by users and sectors that make better use of
climate forecasts (e.g., crop futures traders), to assess transferability of
tools and practices.

¢ Develop decision support tools that bridge climate forecasts to the
water resource decision space.

Challenge

The skill of climate forecasts is highly variable over both space and time,
complicating the consistent use of forecasts.

Opportunities

o Selectively consult forecasts during those seasons when they have
shown the most skill for the basin.

e Support research to identify “forecasts of opportunity” specific to the
basin, i.e., conditions of the ocean, atmosphere, and land surface during
which forecasts are more likely to have skill and impact.
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Chapter 8. Streamflow Forecasting

Key points

Streamflow forecasts from the CBRFC are widely used by water
managers in the basin and are critical inputs for Reclamation’s
operational models, including seasonal forecasts for use in 24MS and
MTOM.

Streamflow predictability at seasonal timescales in the Colorado River

Basin arises primarily from the initial watershed moisture conditions,
i.e., snowpack and soil moisture.

While using different methods, the CBRFC and NRCS operational
forecasts both effectively capitalize on this predictability, with
relatively high skill for forecasts issued in late winter and spring for the
coming runoff season.

To improve streamflow forecasts within the current frameworks there
are two main pathways: 1) improve estimates of initial watershed
moisture conditions, and 2) improve basin-scale weather and climate
forecasts and how they are used in streamflow forecasts.

Improvements in quantifying watershed conditions can come through
better meteorological analyses, more in situ observations of snowpack
and soil moisture, increased use of remotely sensed observations,
advances in calibration strategies, and advances in data assimilation
techniques.

Improvements in sub-seasonal and seasonal climate forecasts are being
actively pursued by national modeling centers and the broader research
community; targeted post-processing of climate forecasts can better
leverage their current skill to inform seasonal streamflow forecasts.

Skill in streamflow forecasts for year 2 and beyond is entirely
dependent on skill in decadal climate forecasts, which exists to some
degree for temperature but not for precipitation.

Alternative forecast frameworks in which tasks are fully automated
permit the use of a greater range of advanced methods and data. These
frameworks have not yet been shown, however, to outperform the
current operational forecasts.

Many potential forecast improvement elements have been
demonstrated in a research context; systematic testing to benchmark
and combine multiple elements could add up to significant overall
improvements in operational forecasts.
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Challenges and opportunities

Challenge

The modeling advances over the last three decades and their
demonstration in forecasting contexts have not altered the reliance of RFC
operational practices on the legacy models. There is a clear scientific
rationale for enhancing the physics of the legacy models in many forecast
cases, yet implementing modeling advances faces major hurdles for
operational flow prediction in both the current in-the-loop forecast
paradigm and the over-the-loop workflow.

Opportunities

o Effective approaches for regional parameter estimation (calibration) in
more complex watershed process models to enable model streamflow
simulations on a par with the performance of current legacy models.

o Effective approaches for automated hydrologic data assimilation, to
replace the many manual adjustments made by expert forecasters and
enable skillful over-the-loop systems.

¢ Automated interoperability of water management decisions and river
basin modeling systems, to replace the manual incorporation of
management effects like releases and diversions.

Challenge

There is little question that more extensive monitoring of watershed
conditions, either by direct or remote measurements, would benefit
hydrologic forecasting. The benefits can arise in two ways: 1) improving
real-time analyses that provide the initial conditions for forecasts, which
matter most when those conditions provide most of the forecast signal,
such as in late spring; and 2) improving model implementation by helping
constrain model parameters and guide structural implementation of those
parameters.

Opportunities

e Expansion of real time measurements of streamflow, snow water
equivalent (SWE), soil moisture, and ET.

e Methodological research into how observations that are sparse or
coarse (e.g., soil moisture) or collected as snapshots (e.g., ASO SWE)
may be incorporated into a forecast workflow.

e Development of both real-time and multi-year (retrospective) records

that provide a foundation for research and methodological verification.
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Challenge

To open the door for adoption of more complex models, multi-faceted
ensemble approaches, leveraging supercomputing, and other
advancements in streamflow forecasting, the research and operational
communities must develop effective automated hydrologic data
assimilation methods.

Opportunity

e Experimentation and refinement of automated hydrologic data
assimilation, particularly to enable over-the-loop prediction.

Challenge

It is clear that improved sub-seasonal (S2S) and seasonal climate
predictions would have substantial benefit for mid-range hydrologic
predictions, with a particular need for cool-season precipitation forecasts
in the runoff-generating regions of the western U.S. Yet, S2S climate
prediction has also long been a major scientific challenge, requiring large
scale investments by the Earth system research community in improved
global-scale observations, climate modeling, climate model data
assimilation systems, and predictability studies.

Opportunity

e Investin analysis and development of watershed-scale climate
forecasts via both empirical and dynamical methods and sources as
operational climate forecasting capabilities slowly evolve.

Challenge

The lack of a hydrologic forecasting testbed is a critical institutional gap.
Support is needed to transition new research to operations for both the
National Water Center and for the RFCs, and build the case for the viability
of over-the-loop approaches.

Opportunity

e Atestbed would support experimentation and systematic development
of real-time forecast approaches, including new models, data
assimilation techniques, post-processing approaches, model calibration
techniques, climate and weather downscaling methods, verification and
communication related to forecasts, and decision making.
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Chapter 9. Historical Hydrology

Key points

e The observed historical streamflow record is used to generate
ensembles of streamflow traces for input into system models for long-
range planning, as well as to validate and calibrate paleohydrology and
climate changed-informed hydrology.

e Multiple methods have been used to generate Colorado River Basin
streamflow traces for system analysis; each has advantages and

limitations and none is a clear best choice for all applications.

e The index sequential method (ISM), which has been the most common
method used in Reclamation system analyses for decades, has
advantages but also significant limitations, most of which center on the
fact that ISM traces do not deviate from the observed historical record.

e Stochastic alternatives to ISM have been used to produce ensembles of
traces that maintain many characteristics of the historical record while
offering novel ranges, durations, and frequencies of flows.

e Stochastic methods that are based on statistical summaries of the
historical data, known as parametric methods, have the advantage of
being able to generate values beyond the range of the observed record,
but require assumptions about the underlying form of the population of
streamflows.

e Stochastic methods that are based on sampling directly from the
historical data, known as nonparametric methods, do not require
assumptions about the underlying form of the population of
streamflows but are sensitive to the number of observations from
which to sample.

e Research trends are toward nonparametric methods of streamflow
generation and toward hybrid methods that use historical hydrology
with reconstructed tree-ring hydrology or climate change-informed
hydrology.

Challenges and opportunities

Challenge

Identifying the most appropriate method of incorporating historical
hydrology in long-term planning in the Colorado River Basin is a key
challenge. The full, observed historical record, especially when used with
ISM, likely does not represent future hydrologic risk, but it is challenging to
completely replace it because there is no clear best alternative. While
Reclamation’s use of a segment of the observed hydrology (the Stress Test)
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attempts to create a more realistic picture of risk, there is little guidance on
which segments are most appropriate, and a shorter record reduces the
range of hydrologic conditions available. Beyond ISM, there is much
research but little consensus on alternative approaches to generating
synthetic streamflow traces.

Opportunity

e One approach, informally suggested by Tarboton (pers. comm.), is that
new streamflow generation models be tested against a comprehensive
set of statistics. Extending that suggestion somewhat, a matrix could be
established by Reclamation and basin stakeholders that identifies the
most important features of synthetic traces and uses that matrix to
guide research into new methods or to assess existing methods.
Features in the matrix might include fidelity to particular historical
statistics, ability to generate particular time steps, ability to simulate
non-stationarity, ability to represent uncertainty, ease of
implementation, ease of understanding, and robustness of inferences.

Challenge

One of the primary challenges facing water resources researchers and
planners in applying the basin’s historical time series is how to use it to
generate streamflow traces that allow study of the non-stationary
hydroclimate.

Opportunities

e Explore performing diagnostics on the parameters used in parametric
stochastic streamflow studies in the Colorado River Basin to assess the
dependencies between and among parameters and to assess the
complexities involved in incorporating non-stationarity into them.

e Techniques for generating long-term streamflow sequences that blend
historical observed hydrology with paleohydrology or climate change-
informed hydrology (or both) offer substantial promise. The paleo
record offers extremes, durations, and frequencies not seen in the
observed record, and the climate change-informed hydrologies offer
potentially altered climate patterns and regional shifts that are absent
or undetectable from the observed and paleo records.

e A potentially useful effort might be to review approaches to other
variables, and even other disciplines, for techniques that could be
translated into streamflow synthesis techniques.
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Chapter 10. Paleohydrology

Key points

e Tree-ring reconstructions of Colorado River streamflow extend the
observed natural flow record up to 1200 years into the past and
document a broader range of hydrologic variability and extremes than
are contained in the observed records.

e Most critically, several paleodroughts prior to 1900 were more severe

and sustained than the worst-case droughts since 1900.

¢ These “megadroughts” could recur in the future due to natural climate
variability alone, but their recurrence risk is much increased by
anthropogenic warming.

e The century-scale mean and variability of Colorado River Basin
hydroclimate has not been stationary over time.

e The early 20th century high-flow years (1905-1930) may have been the
wettest multi-decadal period in 500-1000 years.

e Methodological choices in the handling of the tree-ring data can
influence the reconstructed flow values and metrics, such as the
duration of droughts.

e Planning hydrologies derived from tree-ring paleohydrology can
provide plausible stress tests that are more extreme than the observed
hydrology, and have been used for that purpose in several recent
planning studies in the basin.

Challenges and opportunities

Challenge

At present, only seven tree-ring site chronologies in the Upper Basin
extend beyond 2005, so current streamflow reconstructions do not have
the benefit of full calibration against the early 21 century dry period.
Additionally, Reclamation’s ongoing revisions of natural flow estimates may,
cumulatively, substantially revise the target hydrology for tree-ring flow
reconstructions.

Opportunities

¢ Develop new or updated tree-ring site chronologies that the can be
included in the calibration of any forthcoming streamflow
reconstructions.

¢ Consider recalibration of, as well as assessment of the sensitivity of, the
tree-ring flow reconstructions to the revised natural flows.
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e Generate new, targeted reconstructions for the key water supply
regions of the Upper Basin like the ongoing project funded by the USGS
Southwest Climate Adaptation Science Center, in collaboration with
basin water managers.

Challenge

Key to applications of paleohydrology to future climate scenarios is
understanding how modes of natural variability itself will change over the
coming decades. It is unclear which methods of blending paleohydrology
data and climate projections have the most robust physical foundation, and
more work is needed to examine the issue of persistence in streamflow
reconstructions and to determine its source.

Opportunity

¢ Develop plausible scenarios and characteristics of future basin drought
over the next several decades through integration of paleohydrology
data and climate projections. Some of this work is underway, as
described above.

Challenge

Existing tree-ring reconstructions of annual and growing-season
temperature for the basin are not nearly as skillful as reconstructions of
precipitation and streamflow, limiting our ability to tease apart the drivers
of past low-flow periods and place the recent warming trend in context.

Opportunity

e Renew efforts to develop a robust reconstruction of past basin
temperatures, building on current investigations using bristlecone pine,
plus updating and re-measuring other collections of trees that are
limited in growth by temperature.
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Chapter 11. Climate Change-Informed Hydrology

Key points

¢ Climate change-informed hydrology is increasingly used in basin
planning studies to complement other long-range hydrologic
information.

e Most approaches to developing this information begin with global

climate models (GCMs) driven by one of several emissions scenarios;
the approaches incorporate multiple processing steps, with
corresponding methodological choices that each have implications for
the final output and its uncertainty.

e GCMs are the best tools we have for exploring and quantifying
physically plausible future climate changes at global to sub-continental
scales. They have deficiencies in representing some key climate system
features relevant to basin-scale climate, as well as reproducing
historical basin-scale climate patterns themselves.

e Downscaling methods make GCM output more usable for finer-scale
hydrologic modeling, such as projections of future streamflows.
Downscaled projections are not necessarily more accurate than the
underlying GCM output in depicting future climate change.

e Further warming is projected by all GCMs to continue in the basin as a
consequence of continuing greenhouse gas emissions; basin
temperatures are projected to rise by 2.5°F-6.5°F by mid-century
relative to the late 20th century average.

e The direction of future precipitation change for the basin is much less
certain than temperature change. The GCMs show some overall
tendency toward increasing annual precipitation in the northern parts
of the Upper Basin, and toward decreasing precipitation from the San
Juan Basin south through the Lower Basin.

e The projected trends in precipitation are relatively small compared to
the high year-to-year natural, or internal, variability in precipitation.
Most GCMs project increased precipitation variability in the future.

e Mainly due to the pervasive effects of warming temperatures on the
water cycle, nearly all of the many datasets of climate change-informed
hydrology and related studies show a strong tendency toward lower
annual runoff volumes in the Upper Basin and the Lower Basin, as well
as reduced spring snowpack and earlier runoff.

e The overall spread of potential future hydroclimatic changes for the
basin, as depicted across the GCM-driven projections, has not been
reduced over the past decade and may not be appreciably reduced by
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forthcoming data and methods, not least because much of the spread is
due to unpredictable natural climate variability.

Challenges and opportunities

Challenge

GCM disagreements in changes of key climate variables: 1) GCMs do not
agree on the magnitude of warming to expect globally, or in the basin, for a
given emissions scenario-timeframe combination; 2) GCMs do not agree on
the direction and magnitude of annual precipitation change for the basin.
Based on past history, further improvements in GCMs (e.g., better
resolution of CMIP6 GCMs) will likely only slowly reduce these
disagreements.

Opportunities

e Pursue additional guidance beyond the GCM ensemble regarding
changes in these uncertain variables, e.g., recent observed trends,
climate theory, and expert opinion (e.g., surveys of researchers).

« Identify specific hydroclimate conditions, events, and sequences that
lead to vulnerability; there may be greater consensus among the GCMs
regarding these than in the changes in annual or seasonal average
precipitation, for example.

Challenge

Due to GCM uncertainty and other factors, the range of projected future
outcomes for basin hydrology (e.g., change in annual runoff volume at Lees
Ferry) from GCM-based ensembles is very broad, and most planning
decisions cannot address the full range of potential future conditions
without incurring regrets from under- or over-preparation.

Opportunities

e Methods are available (e.g., scenario development, hydrologic
storylines) to at least reduce the number of traces from the ensemble,
improving their tractability for planning, and potentially identifying
more physically plausible and likely outcomes.

e Alternative planning paradigms may be more appropriate for decision
making under deep uncertainty. In planning, emphasize those

outcomes associated with greater vulnerability and impacts, i.e., drier
projections.

Challenge

GCM resolution, while improving, is still coarser than that required for
realistic modeling of basin hydrology and system modeling, requiring the
application of downscaling methods.
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Opportunity

e The HighResMIP experiment within CMIP6 will soon make available an
ensemble of GCM projections at 25-50 km resolution. This is still
coarser than the resolution optimal for hydrologic modeling but will
provide a useful test of what added value can be expected from high-
resolution GCMs.

Challenge

Statistically downscaled projection datasets, which dominate applications
of regional climate data in water supply assessments, are perfectly
adequate as sequences to input in hydrology models, but they add little to
our physical understanding of future changes beyond what the GCMs can
tell us. The very high resolution of these datasets (1-12 km) can also mislead
users as to their accuracy and added value.

Opportunity

e For water supply assessments, look to dynamically downscaled or
hybrid methods and datasets (e.g., NA-CORDEX, ICAR, En-GARD) for
more physically oriented guidance that can provide context for
statistically downscaled datasets, or replace them.

Challenge

The sources of uncertainty and differences in climate change-informed
hydrology for the basin have been identified and explored to varying
degrees, but not fully examined, including the underlying methodological
choices. Thus, data users have incomplete information about uncertainty,
and may not be aware of the subjective choices underlying particular
results of hydrologic assessments.

Opportunities

e Support comprehensive evaluations of the differences stemming from
downscaling methods, bias-correction methods, and hydrologic
models.

e Provide visualization tools of future climate and hydrology that are not
limited to a single dataset and allow the users to toggle between
datasets to clearly see commonalities and differences.

Challenge

Any given ensemble of climate change-informed hydrology (e.g., CMIP5
BCSD) is a complex dataset that is challenging to obtain, analyze, and
interpret; the increasing proliferation of similar datasets and their
respective underlying methodological approaches can be bewildering to
even sophisticated users.
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Opportunities

e For both researchers and practitioners, support efforts to provide
guidance on the appropriate use of existing datasets, e.g., Vano et al.
(2018), and WUCA training workshops.

e Develop and disseminate new methods and datasets only when there is
a compelling use case and clear added value over existing datasets.
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Volume |
Background and Context

Chapter 1. Introduction
Chapter 2. Current Understanding of Colorado River Basin Climate and Hydrology
Chapter 3. Primary Planning Tools

Volume I of the Colorado River Basin State of the Science report provides important background and
context for considering the different datasets, models, and tools described in the subsequent volumes
and chapters. Chapter 1 succinctly lays out the need for the report as well as its objectives, intended
audience, approach, and organization. It also contains a primer on sources of uncertainty to help
readers navigate more focused discussions of uncertainty in later chapters.

Chapter 2 is a technical report unto itself; it describes what is known about the fundamental features of
the Colorado River Basin’s hydroclimate, their spatial and temporal variability, and the mechanisms
behind that variability. This knowledge base is dependent on the primary datasets and models
described in Volume II (Chapters 4, 5, and 6) while also informing the productive application of those
data and models, and similarly it underpins the application of the weather, climate, and streamflow
forecasting methods described in Volume III (Chapters 7 & 8). The chapter concludes with a detailed
discussion of recent trends in basin hydroclimate and their likely causes, which provides critical
context for the long-term planning datasets described in Volume IV (Chapters 9-11).

Chapter 3 provides a detailed overview of the three primary Reclamation operations and planning
models that support basin decision making. It describes the underlying configurations, assumptions,
and applications of the three models. The chapter details how these models use observational data,
streamflow forecasts, and planning hydrologies as a prelude to the discussion of those inputs in
subsequent chapters.
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1.1 Background and need

The Colorado River Basin is a vital source of water, ecosystem services,

hydropower, recreation, and other amenities for the seven basin states Law of the River
(Colorado, Wyoming, Utah, New Mexico, Arizona, Nevada, and California), See Reclamation’s
at least 22 federally recognized tribes, and the Republic of Mexico (Figure website for links to
1.1). The Colorado River system is managed and operated in accordance many of the relevant
with the Law of the River, which consists of compacts, treaties, federal cloguimenis

laws, regulations, contracts, and court decisions and decrees. L

https://www.usbr.gov/I
c/region/pao/lawofrvr.h
tml

There is an increasing imbalance between supply and demand in the basin.
Water use, including consumptive use, within the basin has steadily
increased over time and, when combined with deliveries to Mexico, is now
approaching the average historical water supply (Figure 1.2). The average
conditions, over time and across the basin, suggest a (barely) sufficient
supply and, by smoothing out the variability, mask existing and prospective
shortages.

Since 2000, the basin has experienced an extended dry period in which the
average annual water supply has been 18% lower than the historical
average. The enormous storage capacity of the system’s reservoirs (about
60 million acre-feet), nearly full at the beginning of the dry period,
combined with voluntary conservation has permitted full deliveries of
water to the Lower Basin states through this period, with only local
shortages to uses in Upper Basin states. But the cumulative streamflow
deficit of about 40 million acre-feet (maf) since 2000 has contributed to the
depletion of system storage to about 45% of capacity.

The depleted state of system reservoirs leaves the system vulnerable; the
water surface elevation of Lake Mead has hovered around the upper
thresholds (1075’ and 1090’) for imposing curtailments on Lower Basin
states under the 2007 Interim Guidelines and the 2019 Drought
Contingency Plan.

This recent drought, along with the increasing recognition that rising
temperatures impact the hydrology of the basin, has led to further
concerns about the long-term reliability of basin water supplies. Warming
temperatures observed across the basin in the last few decades have
discernibly impacted snowpacks, melt and runoff timing, runoff efficiency,
and total basin runoff. It is unclear whether the period of below-normal
precipitation since 2000 is indicative of future precipitation, but unless
average basin precipitation increases substantially, system runoff and water
supply are expected to decline over the next several decades due to
warming alone.
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Figure 1.1

Geographic setting of the Colorado River Basin. Upper Basin: portions of the basin that lie in Colorado,
Utah, Wyoming, New Mexico, and Arizona that are tributary to the river upstream of the Colorado River
Compact point at Lee Ferry, Arizona. Lower Basin: portions of the basin in Arizona, California, Nevada, and
New Mexico that are downstream of Lee Ferry.
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Water resource managers in the basin have long relied on short-term (1
month to 2 years) forecasts of system conditions to guide operations and
other decision making. Recently, the U.S. Bureau of Reclamation
(hereinafter “Reclamation”) has instituted mid-term probabilistic forecasts
(2 to 5 years) to bridge short-term forecasts with longer-term planning
projections. When the system is close to critical operational thresholds,
such as the 1075’ and 1090’ levels in Lake Mead, the need for accurate and
actionable short-to-mid-term forecasts of system conditions becomes
even more critical.

Until recently, long-term water planning (5 to 50 years) in the basin was
based on the historical hydrologic record under the assumption of
hydroclimatic stationarity, that is, that the historical average and variability
would remain stable. That assumption was first challenged several decades
ago by tree-ring records showing the instability of century-scale
hydroclimate in the basin, and has become even less tenable due to climate
change (Milly et al. 2008; 2015). When developing the 2007 Interim
Guidelines, Reclamation, recognizing the limitations of the conventional
assumption of stationarity, used tree-ring reconstructed, pre-historic flows
to provide a broader view of flow variability (Reclamation 2007b), and also
surveyed the state of knowledge regarding the potential impact of climate
change on water resources in the basin (Reclamation 2007c). Since that
time, climate model projections have played larger roles in informing the
hydrologic traces in Reclamation planning studies (Reclamation 2012e).
Reclamation’s experience, and that of other water agencies working with
climate model data, has revealed considerable challenges in both
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translating global climate projections to changes in the hydrology of the
Colorado River Basin and in interpreting the system impacts associated
with those changes given the uncertainties in the data and models.

The past decade has seen dozens of new research efforts aimed at better
understanding the climate and hydrology of the Colorado River Basin, and
at refining the data and models used to guide basin management and
planning. There have been parallel efforts to explore new approaches to
planning and decision making under uncertainty. Many of these efforts
have been conducted by, or with funding from, Reclamation and other
basin water agencies. Many other research studies, while not explicitly
guided by the needs of basin water managers, can still provide relevant
information and insight. Given this rapidly expanding scientific knowledge
base, the increasing complexity of the data and models used to
operationalize that knowledge, and the growing uncertainties about the
hydroclimatic future, basin stakeholders have recognized the importance of
reassessing the scientific and technical basis for management and planning.
The impending formal review of the 2007 Interim Guidelines, which must
begin in 2020 (U.S. Secretary of the Interior 2007), and the potential
renegotiation of those guidelines, has created additional impetus for such a
reassessment.

. 2017(;Irad Rivel; Hydrology
In May, 2017, the Southern Nevada Water Authority hosted a conference, Research Symposium

the Colorado River Hydrology Research Symposium (Cawthorne 2017), to
give water resource practitioners and researchers an opportunity to
exchange information about operational practices and research initiatives,
with a focus on opportunities to improve inputs to existing basin planning
tools and to enhance the utility of those tools. One outcome of that
symposium was recognition that a document that synthesized the current
research and assessed it in the context of the primary planning processes ,M_,&;;,;

Springs Preserve, La: , Nevada
i

was necessary.

1.2 Objectives and approach

The intention of this report is to assess scientific knowledge and technical
practice in a systematic way, across the multiple timescales and the diverse
data and models used to inform management and planning in the basin. It
describes the concepts, methods, models, and datasets that currently
contribute to Reclamation’s and other stakeholders’ operations and
planning, as well as knowledge gaps, uncertainties, and future challenges
and opportunities. No new research or quantitative analyses were
performed for this report beyond the basic characterization of existing
datasets.
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By synthesizing the state of the science in the Colorado River Basin
regarding climate and hydrology, the report seeks to establish a broadly
shared understanding that can guide the strategic integration of new
research into practice. The ultimate goal of that integration, and therefore
of this report, is to facilitate more accurate short- and mid-term forecasts,
and more meaningful long-term projections, of basin hydroclimate and
system conditions.

The specific objectives of this report include the following:

¢ Synthesize recent findings that can inform forecasts (short-term and
mid-term) and projections (long-term) of hydroclimate and system
conditions.

e Convey the knowledge gaps and uncertainties associated with each
area of the science and technical practice, as well as with key datasets
and models.

e Prompt research ideas and inform research priorities by describing
opportunities for closing knowledge gaps.

¢ Inform the scientific community about Reclamation models, how they
support operations and planning, and related research needs.

e Provide a broadly accepted foundation of scientific and technical issues
on which to enter the formal review and potential renegotiation of the
Interim Guidelines.

This report draws from over 700 primary sources, mainly peer-reviewed
research articles published in academic journals, as well as agency studies,
reports, analyses, and other sources. It builds on prior planning studies,
research syntheses, and information needs assessments that have focused
on the Colorado River Basin and water resources management that are
listed in Table 1.1.

This report was written to be a clear and useful reference for readers who
come to it with a moderate level of scientific and technical understanding
of hydrology, though much of the text is fully accessible to any reader. The
audience for the report includes water resource engineers and analysts
who routinely work with inputs to, or outputs from, Reclamation models or
who otherwise engage with water operations and planning in the basin;
decision makers who will prescribe changes to operations, plans, and
policies, and could benefit from better understanding of the science that
informs these activities; research program managers seeking insights on
high impact priorities to promote; and researchers who could benefit from
better understanding of the planning and decision context in the basin. The
report is also intended to inform the funding and production of research
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that effectively supports basin water management activities, and is
therefore also aimed at the broader community of water interests in the

basin.

Table 1.1

Planning studies, research syntheses, and information needs assessments referenced in this report.

Document

Year

Geographic scope

Reference

Planning studies conducted by Reclamation or basin stakeholders

Final EIS—Colorado River Interim
Guidelines for Lower Basin Shortages and

Coordinated Operations for Lake Powell 2007
and Lake Mead, Appendices N and U
Colorado River Basin Supply and Demand

2012
Study
Colorado River Water Availability Study 2012
SECURE Water Act report 2016
Colorado River Basin Ten Tribes Partnership 2018

Tribal Water Study

Colorado River Basin

Colorado River Basin

Major Colorado River
tributary basins within
the state of Colorado

Western U.S.

Colorado River Basin

Reclamation (2007b;
2007c¢)

Reclamation (2012¢)

Colorado Water
Conservation Board
(2012)

Reclamation (2016)

Reclamation (2018)

Climate change assessments that cover part or all of the Colorado River Basin

Climate Change in Colorado 2008
Joint Front Range Climate Change

" 2012
Vulnerability Study
Assessment of Climate Change in the 2013
Southwest United States
Climate Change in Colorado 2014
Fourth National Climate Assessment, 2017
Volume |
Fourth National Climate Assessment, 2018

Volume I, Chapter 25

Stakeholder needs assessments for climate information

Options for Improving Climate Modeling to
Assist Water Utility Planning for Climate
Change

2009

Addressing Climate Change in Long-Term
Water Resources Planning and
Management: User Needs for Improving
Tools and Information

2011

Short-Term Water Management Decisions:
User Needs for Improved Climate, Weather,
and Hydrologic Information

2013
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Colorado

Colorado

Southwestern U.S.

Colorado

u.s.

Southwestern U.S.

u.s.

u.s.

u.s.

Ray et al. (2008)

Woodbury et al.
(2012)

Garfin et al. (2013)

Lukas et al. (2014)

US Global Change
Research Program
(2017)

Gonzalez et al.
(2018)

Barsugli et al. (2009)

Brekke (2011)

Raff et al. (2013)
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1.3 Organization

The organization of the report centers on the three main Reclamation
operations and planning models for the basin and the respective timescales
those models are designed to inform. The models are:

e 24-Month Study Model (24MS)—short term (current month to 24 to 36
months in the future)

e Mid-Term Probabilistic Operations Model (MTOM)—mid-term (current
month to 2 to 5 years in the future)

e Colorado River Simulation System (CRSS)—long term (5 to 50 years)

In general, operational and planning decisions by Reclamation or basin
stakeholders use information from the four categories of models or data
listed below.

I. System Models. The three primary Reclamation models listed above,
and equivalent models built and used by other organizations. They use
as inputs the data from categories III and IV, and are also calibrated
with data from category II.

II. Primary data and models. Observations, estimates, or simulations of
climate and hydrologic conditions that are relevant across all time
scales. They are used to calibrate, provide inputs to, and validate
models and analyses in categories I, III, and IV.

III. Short- and mid-term forecast tools. Models and methods for
forecasting weather, climate, and streamflow as the basis for short-to-
mid-term operations.

IV. Long-term planning hydrology. Data and models (historically-based,
paleo-reconstructed, and climate change-informed) used to represent
past and current variability, and to project long-term future conditions
for planning purposes.

This report is organized into four volumes (I-IV) corresponding to these

categories, reflecting the flow of information through the chain of models
and data. While that flow actually culminates with the Reclamation system
models, those models are described early in the report (Volume I, Chapter

3) to set the stage for consideration of the manifold inputs to those models.
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In Chapters 3 through 11, the text describes the following for each type of
model or data:

e Importance to the chain of models and data, and thus to basin
operations and planning

e The specific data and methods currently used in the Reclamation
models, and how they compare with other data and methods

e Recent or ongoing efforts at improvement in this area

e Key challenges, knowledge gaps, and uncertainties that remain

e Opportunities for further progress

1.4 Topics beyond the scope of this report

This report does not evaluate current basin operations and policy or
provide recommendations. It also does not address ecosystem processes

except as they affect water supply, nor does it cover water quality concerns

in any detail.

Water use is obviously a critical component of the system water balance in
the Colorado River Basin. Specific aspects of water use are briefly
addressed in this report: the representation of consumptive water uses and
losses in the Reclamation system models (Chapter 3); methods for
measuring and monitoring water uses and losses (Chapter 5); and the
effects of climate change on consumptive use (Chapter 11). Other sections
may include discussions of data, tools, and concepts that, while oriented
toward water supply, are relevant to the quantification of current
consumptive uses and losses and the forecasting of future water demand.
But a comprehensive treatment of the scientific and technical issues
surrounding water use in the basin is beyond the scope of this report. The
state of monitoring and forecasting water use in the basin for planning
purposes is described in Technical Report C of the Colorado River Basin
Water Supply and Demand Study (Reclamation 2012d).
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SPOTLIGHT

Sources of uncertainty in modeling natural
C systems

The uncertainties in hydroclimate forecasts and projections, and therefore in water supply expectations,
present tantalizing research questions for scientists but are a source of frustration for water resource
practitioners charged with providing a reliable water supply. Given the stakes involved, it is reasonable that
Colorado River Basin planners and managers desire greater certainty in water supply forecasts and long-
term projections; they need some sense of the likelihood of hydrologic shifts, especially shifts to the dry side.

Uncertainty stems from either randomness in the behavior of the system being modeled (aleatory
uncertainty) or incomplete knowledge of the system (epistemic uncertainty). The aleatory uncertainty in
hydroclimate processes is effectively synonymous with natural variability and, as such, can’t be reduced by
more research or computing power or data collection. Just as we cannot buy down the uncertainty in a coin
flip, we cannot buy down aleatory uncertainty in hydroclimate processes. However, aleatory uncertainty as
manifested in variability is an intrinsic element of hydrologic systems, so its conceptual and practical nature
is well understood by water resource managers and stakeholders.

Epistemic uncertainty, on the other hand, can be chipped away at by improving our understanding, compu-
ting power, and data collection. There is epistemic uncertainty about aleatory uncertainty (variability) which
frequently will be reduced simply by making more observations. For example, the exceptional nature of the
wet period at the beginning of the 20th century was revealed over time as the observed records of precipita-
tion and streamflow became longer. There are several general types of epistemic uncertainty in modeling
natural systems, illustrated in Figure 1.3 and described below:

e Conceptual. Uncertainty that comes from incomplete understanding of the system to be modeled, so
that relevant variables and processes are not represented in the model or the underlying dependencies
between and among processes and variables is poorly understood.

e Structural. Uncertainty that comes from inadequate specification of the underlying physics and other
physical relationships in the model, or the imperfect fit of a statistical model. Approximation or
simplification of processes over time and space is another source of structural uncertainty.

e Parameter. Uncertainty that comes from errors in specifying model parameters—usually these are fixed
coefficients or terms based on observations. Aggregation or simplification of inputs over time and space
is another source of parameter uncertainty.

e Data. Uncertainty that arises from limitations in observing systems and measurement techniques. Data
uncertainty is fundamental because it confounds our conceptual and quantitative understanding of
natural systems. Calibration of model parameters against imperfect data contributes to parameter
uncertainty.

o Initial conditions. Uncertainty that comes from imperfectly capturing the state of the system that
begins a model simulation; it includes measurement error, and even more so, uncertainties related to the
spatial and temporal interpolation between observations.
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Uncertainties accumulate such that the combined uncertainty in the ultimate planning model output is
much larger than the uncertainty at any intermediate step; however, because of interdependencies, the
combined uncertainty isn't a simple addition. Ultimately, depending on the variable and time scale of
interest, the combined epistemic uncertainties may be matched or exceeded by that stemming from the
natural variability of the Colorado River Basin.

This report summarizes the current understanding in the research community about the uncertainties in
hydroclimate analyses. However, the full range of uncertainty in future system outcomes, as it applies to the
Colorado River Basin, also includes future land use, future water demand, and the future state of
institutions, economies, technologies, and policies that influence and constrain water demand and
allocation. Water resource practitioners in the basin are trying to make the best decisions possible about
infrastructure, operations, and demand management given the uncertainty in future water supply. Studies
to support decision making in this new environment are beginning to explore alternative analytical
approaches that address the lack of information about the future by first evaluating system sensitivities,
vulnerabilities, or failure modes. This emerging paradigm is reflected in the “decision making under deep
uncertainty” (DMDU) movement. DMDU often uses computationally intensive methods, testing a system’s
vulnerability to a range of possible futures under multiple policy options, to formulate robust decisions. It is
possible that approaches to decision making such as these may be more likely to benefit management and
planning than efforts to reduce some of the epistemic uncertainties, but discussion and evaluation of the
approaches and the trade-offs is beyond the scope of this report.

Conceptual
uncertainty

Structural

uncertainty
l Figure 1.3

| Sources of uncertainty in modeling natural

systems. The figure shows hypothetical
Parameter Hvarslogyios probability density functions combining to
pncertainty climate model e

—_— representing the overall uncertainty in

model output.
Initial conditions Natural hydroclimate
uncertainty variability (if modeled)

Uncertainty
in output

Data uncertainty
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Key points

e On average, about 170 million acre-feet (maf) of precipitation falls over
the Colorado River Basin annually, but only about 10% (17 maf) becomes
natural streamflow available for use.

e The Upper Basin contributes the vast majority, about 92%, of the total
basin natural streamflow as measured at Imperial Dam.

o FElevation dramatically shapes the amount of precipitation and its
relative contribution to runoff, so that 85% of annual runoff comes from
the 15% of the basin’s area that is located in the mountain headwaters.

e The position and activity of the mid-latitude storm track from October
through May is the critical climatic driver of annual precipitation in the
basin’s headwaters.

e Snowmelt is the primary source of annual runoff from those mountain
headwaters, as reflected in the prominent late-spring peak in the
annual hydrograph.

e Year-to-year variability in runoff is high and is mainly driven by
variability in precipitation; decadal and multi-decadal variability in
precipitation and in runoff is also present but no consistent cycles have
been identified.

¢ The predictability that does exist at shorter time scales (up to 1 year)
comes mainly from the El Nifo-Southern Oscillation (ENSO); the ENSO
signal is generally weak in the Upper Basin but stronger in the Lower
Basin.

e Predictability at decadal and longer time scales using longer-lived
climate phenomena (e.g., Atlantic Multidecadal Oscillation, Pacific
Decadal Oscillation, etc.) has proven elusive.

e The period since 2000 has been unusually drought-prone, but even
more severe and sustained droughts occurred before 1900.

e There has been a substantial warming trend over the past 40 years; the
period since 2000 has been about 2°F warmer than the 20"-century
average, and likely warmer than at any time in the past 2000 years.

e Decreases in spring snowpack and shifts to earlier runoff timing in
many parts of the Upper Basin, as well as decreases in annual Colorado
River flows at Lees Ferry, Arizona, have occurred in recent decades.
These changes in hydrology can be linked, at least in part, to the
warming trend.

2.1 Introduction

Describing the spatial and temporal variability of the Colorado River Basin’s
hydroclimate, and recent trends in hydroclimate, can help frame
expectations of future basin hydrology even before consulting the tools
explicitly designed for forecasting and projection. It also provides context
for the different datasets and modeling platforms that are considered in
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much greater detail in later chapters. Understanding the physical
mechanisms that drive basin climate and hydrology, and their links with the
global climate system, can also help identify and understand issues with the
output of both hydrology models (Chapter 6) and global climate models
(Chapter 11).

2.2 Overview of the basin

Within its 240,000 square miles, the Colorado River Basin hosts an
extraordinary diversity of hydroclimatic environments across an elevation
range from sea level to over 14,000’ (4300 m). Some of the mountain
headwaters receive over 60” of precipitation per year and have annual
average temperatures well below freezing, while the driest desert valleys
see 4” of precipitation per year and maximum daily temperatures over 120°F
(Figure 2.1). Due to the rugged topography, abrupt climatic gradients are
common, with annual precipitation increasing by a factor of up to 5 over
less than 20 miles from base to summit of mountain ranges and high
plateaus.

The large majority of the basin has an arid or semi-arid climate—that is,
under 20” of annual precipitation—and produces little or no runoff. The
precipitation returns to the atmosphere as water vapor before reaching a
stream by evaporating from soil and open water, sublimating from the
snowpack, or transpiring from natural vegetation and crops—processes
collectively known as evapotranspiration, or ET. The relatively spatially
restricted mountain areas at high elevations, that are wet and cold enough
to allow a seasonal snowpack to accumulate, produce a highly
disproportionate amount of total basin runoff; about 85% of the average
annual runoff is contributed by 15% of the surface area of the basin
(Christensen and Lettenmaier 2007). The vast majority of these highly
productive headwaters are located in the Upper Basin, primarily in western
Colorado, and also in southwestern Wyoming and northeastern Utah.
Accordingly, the Upper Basin accounts for, on average, 92% of the total
natural streamflow as measured at Imperial Dam (Table 2.1).

Runoff efficiency is highest in the mountainous northern and eastern sub-
basins of the Upper Basin (Figure 2.1), averaging 25-30% averaged across
those basins. The highest elevation catchments within those sub-basins
may see runoff efficiencies of 40-60%. Averaged across the Upper Basin,
runoff efficiency is about 16%, and for the entire basin, it is only around 10%
(Table 2.1). Both values are comparable to the runoff efficiency estimated
for the Upper Missouri basin (about 12%; McCabe and Wolock 2019), but far
lower than the runoff efficiency for the Columbia River Basin and the river
basins that head in California’s Sierra Nevada (40-50%,; Das et al. 2011).
Significantly, basins with relatively low runoff efficiency have higher

Colorado River at
Lees Ferry

The USGS gage at
Lees Ferry, Arizona,
number 09380000,
records Colorado
River streamflows
immediately above
the mouth of the
Paria River, 16 miles
downstream from
Glen Canyon Dam,
and 1 mile above the
Colorado River
Compact point at
Lee Ferry, Arizona.
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sensitivity of runoff to variability and changes in both temperature and
precipitation (Das et al. 2011).

Runoff
Efficiency
v

%

50
40

30

Figure 2.1

Colorado River Basin observed average annual temperature (upper left), observed average annual
precipitation (upper right), modeled average annual runoff (lower right) and modeled annual
average runoff efficiency, over the 1981-2010 period. (Data: Livneh et al. 2013; the average
temperature and precipitation patterns shown are nearly identical to those seen in the PRISM and
gridMet datasets. See Chapter 4 for discussion of these and other gridded climate datasets.)
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Table 2.1

Long-term (1906-2017) average water-year natural runoff, average water-year precipitation, and
calculated runoff efficiency for sub-basins of the Colorado River. (Data: Runoff from Reclamation, after
Prairie and Callejo (2005) except for Gila River; Gila River from Lukas, Wade, and Rajagopalan (2013);
Precipitation from NOAA NCEI).

Proportion of

Basi Natural
asin or' amire Colorado River at Precipitation Runoff
Sub-basin Streamflow . -
Imperial Runoff (maf) Efficiency (%)

(gage) (maf) )

(%)
Green River (nr o
Green River, UT) >4 34%
C'olorado River (nr 6.8 429%
Cisco, UT) 92 maf

Upper Basin 16%
San Juan River (nr 21 13% Total
Bluff, UT) ' °
Total Upper Basin
(Colorado River at 14.8 92%
Lees Ferry)
Inflows between o
Powell and Mead 08 >%
Inflows between
Mead and 0.4 3%
Imperial Dam 78 maf
Total inflows Lower Basin
Total

between Powell 1.3 8% 3%

and Imperial Dam
(includes Gila

Total Colorado River Basin)
River above 16.1 100%

Imperial Dam

Gila River (nr
Dome, AZ at 1.1
mouth)

Total Colorado

O,
River at Yuma, AZ 17.2 170 maf 10%
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Because the vast majority of basin-wide runoff comes from mountain
headwaters that are mainly restricted to the periphery of the Upper Basin,
the assessment of past variability and likely future changes in Colorado
River hydrology will be more meaningful if focused on these headwaters
areas. However, these critical mountain areas have fewer and shorter
observational records, and are more difficult to represent in models than
the more extensive low- and mid-elevation regions of the basin.

2.3 Moisture sources, storm tracks, and seasonality of
precipitation

The broad spatial patterns of annual precipitation and runoff in the
Colorado River Basin described above, while largely driven by topography,
also result from the dynamic motions of the atmosphere over the basin,
including upper-level winds, storm tracks, and convergence of air masses.
These atmospheric dynamics, while very chaotic on shorter time scales (i.e.,
weather), have some regularity on seasonal time scales. Accordingly, they
help create distinct patterns of seasonality in precipitation across the basin
(Figure 2.2), as well as some of the broad gradients in average annual
precipitation (Sheppard et al. 2002).

During the cool season, the primary moisture source for precipitation over
the basin is the Pacific Ocean. In summer, the Gulf of California is the main
source of moisture for the Lower Basin (Jana et al. 2018). In spring and
summer, the Gulf of Mexico becomes a secondary moisture source for the
far eastern portions of the basin. Also during spring and summer, a
considerable fraction of precipitation across the basin is “recycled’—
derived from moisture that has evaporated from the land surface (Jana et al.
2018).

Starting off the water year, October is usually a transitional month as the
atmospheric patterns characteristic of winter emerge. Rapid cooling in the
Arctic drives increasingly large north-south contrasts in temperature
between the tropics and the polar regions. This temperature contrast both
strengthens the prevailing westerly winds and promotes the development
of mid-latitude cyclonic storms and other disturbances. The core of the
upper-level westerly winds, the polar jet stream, also shifts southward at
this time. Storms preferentially form along the jet stream’s path, and then
tend to follow that path eastward, so the “storm track” or preferred
pathway for storms is largely determined by the jet stream’s location
throughout the cool season.
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Figure 2.2

Average monthly precipitation (1981-2010) for the Upper Basin and headwaters of the Lower Basin.
See text for description of the seasonally varying processes that contribute to these patterns. (Source:
PRISM 800-m gridded data http://prism.oregonstate.edu; maps were generated by the Western

Regional Climate Center https://wrcc.dri.edu/Climate/prism precip maps.php).
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The position and activity of the storm track from October through May is
the critical climatic driver of annual precipitation in the basin’s headwaters,
and thus of annual runoff. A single winter storm may bring 5-10% of annual
precipitation to portions of the Upper Basin headwaters, so the occurrence
of a handful of strong storms can make the difference between a drought
year and a normal runoff year for the basin, or between a normal year and a
wet year (Bolinger, Kummerow, and Doesken 2014). While individual storms
move across the basin in 1-2 days, the storm track that they follow may
persist in one location for several days to a few weeks.

In midwinter (December-February), as the north-south temperature
gradients reach their maximum, the mid-latitude storm track can split, and
storms that follow the southern track will impact Lower Basin headwaters
such as the Mogollon Plateau. These storms are less frequent than those
affecting the Upper Basin but usually carry more moisture, drawing from
more southerly and thus warmer Pacific moisture sources. Some of the
storms reaching the West Coast along either pathway may entrain very
long and concentrated plumes of low-level (<5,000’) moisture, known as
atmospheric rivers, or AR, originating in the tropical Pacific. AR events have
been recognized as the primary mechanism of extreme wintertime
precipitation and flooding along the West Coast (Cayan et al. 2016). While
the moisture transport in AR events is much reduced by interaction with
the Coast Range and Sierra Nevada in California as the storm supporting
the AR moves inland, of the 30-60 AR events that reach the West Coast
annually, roughly 5-10 events bring substantial precipitation to at least
some of the Lower Basin, and 3-6 to the Upper Basin (Ralph et al. 2019).

In April and May, storms affecting the Upper Basin become less frequent as
the westerly winds begin to weaken and shift northward, but tend to carry
more moisture per storm because of the warmer springtime temperatures.
In the Lower Basin, the southern storm track can still be active but the
individual storms dry out (Lareau and Horel 2012), initiating a spring dry
period of 2-3 months between winter and summer peaks in precipitation.
Throughout the entire basin, especially in the Lower Basin, June is a
relatively dry month, with infrequent large-scale storm systems and
scattered convective storms (i.e., thunderstorms).

In mid to late summer (July-September), intense heating of the land surface
of northern Mexico and the Southwest induces a shift in the prevailing
winds to southerly, drawing moist subtropical air northward. This pattern
is known as the North American Monsoon or NAM (Adams and Comrie 1997;
Sheppard et al. 2002). The often-daily convective storms associated with
the NAM primarily affect the Lower Basin, with nearly all locations in
Arizona and western New Mexico receiving 35-50% of the annual
precipitation during the July-September period (Sheppard et al. 2002). As
the intrusion of the NAM moisture plume advances northward in late
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summer, the southern half of the Upper Basin sees increasing convective
activity and precipitation as well (Jana et al. 2018). During the late summer
and fall, landfalling Pacific tropical cyclones bring additional substantial
moisture to the Lower Basin in some years (Hereford and Webb 1992). The
net effect of these typical seasonal spatial patterns (Figure 2.2) is that
different parts of the basin have characteristic precipitation seasonality,
reflecting both north-south and elevational gradients (Sheppard et al. 2002;
Lukas et al. 2014).

The high-elevation headwaters of the Upper Basin have consistently high
monthly precipitation from November through April, with generally lower
precipitation in the other months. The low and mid-elevations of the Upper
Basin have a more even distribution, with a May peak from northern
Colorado northward, and a fall peak to the south. Locations in the Lower
Basin at all elevations have a pronounced peak in July-September
associated with the NAM, and a secondary peak in December-March.

2.4 Influence of topography and elevation

As described above, there are general differences between Upper Basin and
Lower Basin precipitation and its seasonality that reflect latitudinal (north-
south) differences in key atmospheric dynamics. But the land itself—
topography and elevation—is even more important in driving the sharp
local and regional gradients in precipitation and temperature, with
profound implications for water supply.

The key mechanism is orographic lift: Moist air masses are forced upslope
by the terrain, cooling as they rise above the condensation level, where
precipitation can occur (Barry and Chorley 2010). For a given parcel of
moist air, the more rapid the vertical uplift, the greater the precipitation
rate. Most mountain ranges in the Upper Basin are oriented north-south,
creating abrupt barriers to the prevailing westerly moisture flow and
enhancing orographic lift. Precipitation rates in a given storm event
generally increase with increasing elevation on the windward (usually west-
facing) mountainside. This is mirrored on the leeward (usually east-facing)
side of the range; the upper elevations of the leeward side generally receive
‘spillover’ precipitation, but further downslope the air mass becomes
progressively drier during its descent, creating a rain shadow effect. These
orographic effects on precipitation are most pronounced in the winter
when winds are the strongest (Redmond 2003). In the summer, although
winds are weaker and tend to be more southerly or easterly, upslope
forcing of moist air masses still occurs and can initiate convective storms
over high terrain, such as the Mogollon Rim in Arizona.

The aggregate of these orographic effects accounts for nearly all of the
local-scale variability in annual and monthly precipitation shown in Figures

orographic lift

A process in which
air is forced to rise
and subsequently
cool due to physical
barriers such as hills
or mountains. This
mechanism leads to
increased
condensation and
precipitation in
higher terrain.
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2.1and 2.2. Typically, range and plateau crests receive 2-5 times more
precipitation than the adjacent basins or valley bottoms (Redmond 2003).
The familiar gradient in temperature with increasing elevation also has a
predictable physical basis; temperatures cool by about 3.5°F per 1000’ of
elevation gain due to falling atmospheric pressures with elevation
(Sospedra-Alfonso, Melton, and Merryfield 2015). In winter, this relationship
weakens at lower elevations due to the propensity for denser cold air to
pool in basins and valley bottoms, leading to localized temperature
inversions, especially when snow is on the ground. But on an annual basis,
the observed gradient in temperature mirrors the gradient in precipitation
in that both very closely reflect the topography (Figure 2.1). Gridded climate
data products (see Chapter 4) must emulate these gradients in order to
realistically interpolate temperature and precipitation values between
weather stations.

From the standpoint of water balance and runoff, the elevation-related
precipitation and temperature gradients operate in the same direction:
compared to lower elevations, higher elevations see both greater moisture
inputs (i.e., precipitation) and lower ET losses, due to cooler temperatures
and increased cloudiness reducing incoming solar radiation. Also, at higher
elevations, a greater fraction of precipitation falls as snow, which is less
susceptible to atmospheric re-uptake than rain. As an example, elevations
near treeline (about 11,500’) in western Colorado typically receive about 40”
of precipitation annually, mostly as snow, and hydrologic modeling
(Chapter 6) suggests that roughly 50% (20”) of that is lost to ET, leaving 20”
of runoff (Figure 2.1). A nearby mid-elevation site at 8000’ may receive
about 20” of precipitation annually, about half as snow, but roughly 80% of
the precipitation (16”) is lost to ET, leaving 4” of runoff—80% less runoff
than the high-elevation case.

2.5 The basin’s snowmelt-dominated hydrology

As indicated in the previous discussion, a disproportionate share of basin-
wide precipitation falls in the high-elevation headwaters, where it also falls
primarily as snow (Figure 2.3). These cooler mountain areas see lower
fractional ET losses in all seasons, and precipitation falling as snow is less
prone to ET losses than rain, particularly when falling on a snowpack
surface and insulated from ground warmth. Accordingly, like most other
basins in the western U.S., the primary component of runoff in the
Colorado River Basin is snowmelt. Multiple studies have estimated the
contribution of snowmelt to annual streamflow for portions, or all, of the
mountainous West ranging from 60% to 85%, as compiled in Li et al. (2017).
The most recent West-wide modeling analysis estimated that the
contribution of snowmelt to total Upper Basin runoff is 71%, with a higher
fraction (>80%) in the high-elevation headwaters sub-basins (Li et al. 2017).
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For comparison, just about 50% of the total Upper Basin precipitation falls
as snow (Rumsey et al. 2015); thus, the snow fraction of basin-wide annual
precipitation has over twice the runoff efficiency of the rain fraction.

Figure 2.3

Colorado River Basin modeled average April 1 snow water equivalent (SWE; left), and modeled

average annual runoff (right). Note that the areas producing >1" of runoff in the Upper Basin closely

coincide with the areas in which a seasonal snowpack builds. In the Lower Basin, much of the
snowpack has already melted out by April 1; the snowpack is more extensive on March 1. (Data:

Livneh et al. 2013)

The peak value of seasonal snow water equivalent (SWE), which usually
occurs within 3-4 weeks of April 1 for most of the Upper Basin’s headwaters
(see Figure 2.4), is an excellent predictor of April-July runoff and thus is
closely monitored (Chapter 5) for runoff forecasting and water-supply
planning (Chapter 8). The snowpack of the basin is effectively an enormous
seasonal reservoir that fills and empties every year. This reservoir has
average seasonal peak volume of 17-18 maf in the Upper Basin, equivalent to
70% of the capacity of Lake Powell, according to spatial SWE estimates
(Schneider and Molotch 2016; see Chapter 5).

The basin’s snowpack accumulates over a 4- to 7-month period, with
accumulation typically beginning in October at higher elevations in the
Upper Basin, and beginning increasingly later in the fall or winter as one
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moves downslope and southward in the basin. The winter climate
(November—March) in the Upper Basin is colder than in the other mountain
regions of the western U.S. (Lute, Abatzoglou, and Hegewisch 2015) and so
the snowpack is less prone to melt loss prior to the spring peak. The peak
SWE value in wind-sheltered locations at high elevations (e.g., SNOTEL
sites, Chapter 5) typically averages 15"-50" in the Upper Basin, and 3"-10” in
the Lower Basin (Figures 2.3 and 2.4).

2011

25

SWE, inches

Nov 1 Jan 1 Mar 1 May 1 Jul 1

Figure 2.4

Historical snowpack accumulation and melt curves for the Colorado River headwaters above Cameo
(average of ~30 SNOTEL sites), shown in inches of snow water equivalent (SWE). The colored shaded
bands are bounded by the following percentiles (1981-2010): 1st (minimum), 10th, 30th, 70th, 90th,
and 100th (maximum). Selected years are shown to illustrate a much-above-normal snowpack (2011),
a near-normal snowpack (2016), and a much-below-normal snowpack (2002). Note that larger
snowpacks tend to peak later, and that smaller snowpacks have slower daily melt rates, i.e., the
declining limb is not as steep. (Source: adapted from NRCS Colorado Snow Survey)

Field studies and modeling suggest that the equivalent of 10-20% of peak
SWE over the basin is lost to sublimation—the transition of water from solid
phase directly to gaseous phase—during the course of the season (Hood,
Williams, and Cline 1999; Phillips 2013; Hultstrand and Fassnacht 2018). The
highest losses occur during the spring months (March-May) when air
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temperatures and shortwave (solar) radiation are higher. The meltout of the
snowpack occurs over 1-2 months, much faster than accumulation.
Snowmelt typically begins in earnest in February or March in the Lower
Basin, and in April or May in the Upper Basin. Snowmelt is driven primarily
by greater shortwave radiation due to higher sun angles and longer days,
though warmer air temperatures, especially above-freezing air
temperatures at night, prime the snowpack for faster melt.

The snowmelt rate is enhanced when the snow surface is dusty; typically,
3-10 dust-on-snow events affect parts of the Upper Basin each spring,
particularly the San Juan Basin, with the aggregate dust loading and thus
impact on melt rates varying substantially from year to year (Deems et al.
2013; Clow, Williams, and Schuster 2016; Painter et al. 2018). See the sidebar
in Chapter 5 for further description of the dust-on-snow phenomenon and
its effect on basin hydrology.
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Figure 2.5

Average annual hydrograph (monthly natural flows) for the Colorado River at Lees Ferry for the 1906~
2017 period, compared with the annual hydrographs for the lowest-flow year (1977) and the highest-
flow year (1984) on record. All three traces show low flows in winter and early spring, the rise to a
May/June peak, and declining limb in summer and early fall. (Data: Reclamation, after Prairie and
Callejo 2005)

The dominance of snowmelt in driving annual runoff is clearly expressed in
the shape of the annual hydrograph for all streams and rivers in the Upper
Basin, and for many streams and rivers in the Lower Basin as well. Figure
2.5 shows the long-term average hydrograph for natural flows at Lees
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Ferry, with the characteristic rapid rise in spring with snowmelt, a peak
typically in May or June, and an equally steep declining limb back to
baseflows by late summer. About 70% of the annual flow, on average,
occurs during the April-July period typically used for seasonal water supply
forecasting, while over 80% of the annual flow occurs during a longer
period (March-August) that is more inclusive of snowmelt processes.

While snowmelt contributes the large majority of total runoff in the basin,
cool-season (October—-April) rainfall at lower elevations can make
substantial contributions to runoff in some years, particularly in the Lower
Basin. Warm-season (May-September) rain generally makes very little
contribution to the basin runoff, because ET rates are much higher during
those months, especially during June, July, and August (Julander and
Clayton 2018). However, rain during the growing season does play an
important role in moderating water demand for agriculture and urban
outdoor use.

2.6 Groundwater and surface water

In the Colorado River Basin, as elsewhere, groundwater resources are not
quantified or understood nearly as well as surface water resources (Rumsey
et al. 2015)—and are not well integrated into basinwide modeling,
management, and planning. Groundwater is difficult to observe and
manifests in extremely diverse forms, frustrating clear conceptualization
and effective management. On one end of the spectrum, a groundwater
body (i.e., aquifer) may have very high connectivity with surface waters
(streams, rivers, lakes), a residence time of the water measured in weeks or
months, and high temporal variability; on the other end, an aquifer may
have little connectivity with surface waters, a residence time of thousands
of years, and little variability over time apart from withdrawals for human
use (Maxwell et al. 2016). In the latter case, the stored water represents
recharge accumulated over millennia, including under different climate
regimes than at present. Both of these extremes are present in the
Colorado River Basin and other basins around the West.

Given the scope of this report, a central question regarding groundwater in
the basin is its role in the availability, variability, and predictability of
surface water. Using geochemical tracers in stream water that provide
evidence of subsurface contact, Miller et al. (2016) estimated that on
average about 50% of the (surface) streamflow of the Upper Basin derives
from groundwater. In just the high-elevation catchments producing most
of the Upper Basin’s runoff, the groundwater fraction of streamflow is
lower, around 30% (Miller et al. 2016; Carroll et al. 2018).

These may seem like unexpectedly high fractions for a basin with a
snowmelt-dominated hydrologic regime, in which the annual streamflow
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volume is very strongly correlated with that year’s snowpack volume.
Groundwater contributions to streamflow in mountain catchments were
long believed to be minimal because of low aquifer storage potential and
steep hydraulic gradients (Carroll et al. 2018). The resolution of this
apparent conundrum is that only a portion of each spring’s snowmelt runs
off on the surface directly to streams and rivers that same season; instead,
much of the snowmelt enters the subsurface and becomes new
groundwater. Stored groundwater in high-elevation catchments is
displaced by this new snowmelt recharge and discharged to the stream
channel as groundwater (Williams et al. 2015). In other words, the new
snowmelt volume enters aquifers that have relatively high connectivity, and
pushes out a proportional volume of older groundwater to streams.

Miller et al. (2016) also show, as would be expected, that the high-elevation
catchments have the highest groundwater discharge to surface water per
unit area. In these catchments, the surface drainage network is denser than
at lower elevations, and thus subsurface flow paths are generally shorter
and shallower, with shorter residence times, mainly on the order of months
to several years (Williams et al. 2015; Maxwell et al. 2016). In the lower-
elevation catchments of the Upper Basin, which collectively contribute
much less to overall basin streamflow, the percentage of surface flow
deriving from groundwater is greater, reflecting longer and deeper
subsurface flow paths of groundwater to streams, with longer residence
times (Miller et al. 2016; Maxwell et al. 2016).

These findings collectively indicate that groundwater is tightly coupled to
surface water in the most hydrologically productive catchments in the
basin. It also appears that groundwater residence does not significantly
modify the climate-driven signal of interannual variability as manifested in
snowmelt-runoff volumes. Rosenberg et al. (2013) found that hydrologic
model simulations of historical streamflows in the Upper Basin yielded
similar skill regardless of whether a representation of groundwater was
included in the model. They concluded that the absence of explicit
groundwater information in the seasonal streamflow forecast models
currently used by the Colorado Basin River Forecast Center (CBRFC) and
Natural Resource Conservation Service (NRCS) was probably not
detrimental to those forecasts, at least in the Upper Basin (Chapter 8). The
CBRFC does model the initial (fall) soil moisture state in their streamflow
forecast model (Chapter 5), which may capture variations in shallow
groundwater storage as well. Groundwater is closely tied to soil moisture,
since most groundwater comes from the fraction of soil moisture that
escapes evapotranspiration and percolates down through the unsaturated
vadose zone to the water table, recharging the fully saturated groundwater
aquifer (Shelton et al. 2009).
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2.7 Hydroclimatic variability of the basin

A critical feature of the natural river system has been the large variability in
hydroclimate conditions. Looking first at interannual variability (Figure 2.6),
annual precipitation in the Upper Basin has varied by over a factor of 2.1
from the driest water year in the historical record (1977; 11.4”) to the wettest
water year (1997; 24.4”). Because the fraction of precipitation lost to ET is
large (on average, 80% across the Upper Basin) and this fraction is greater
in dry years and lower in wet years, the natural streamflow of the Upper
Basin is even more variable than precipitation, varying by a factor of about
4.5 from the lowest-flow water year (1977; 5.4 maf) to the highest-flow
water year (1984; 24.4 maf).

This difference in the respective extremes of variability implies that the
precipitation sensitivity (or elasticity) of streamflow is roughly 2, since a 2-
fold change in precipitation is associated with about a 4-fold change in
streamflow (Figure 2.6). More explicit assessments using empirical analyses
or hydrologic models across the full range of variability suggest that the
precipitation sensitivity of streamflow in the Upper Basin is likely between
2.0 and 3.0; i.e., a 10% change in precipitation is associated with a 20-30%
change in streamflow (Vano, Das, and Lettenmaier 2012; Hoerling et al.
2019).

The very close similarity between the variability in Upper Basin
precipitation and Upper Basin (Lees Ferry) natural streamflow is apparent
in Figure 2.6. Statistically, the precipitation record explains 61% of the
variance in streamflow over the full period of overlap (1906-2019), and an
even higher proportion (74%) over the 1980-2019 period. It is not clear if
this apparent increase in the strength of the relationship between
precipitation and streamflow in recent decades is a function of increasing
robustness of the data underlying the basin-wide precipitation record (see
Chapter 4) and the natural streamflow record, or actual changes in the
physical relationship.

Temperature does covary with precipitation during the warm season (i.e.,
dry April-September periods tend to also be warmer than normal, and wet
April-September periods tend to also be cooler than normal). Also,
temperature has an independent influence on streamflow, as will be
detailed later in this chapter. Even so, precipitation is the most important
driver of interannual streamflow variability in the basin, by a wide margin
(Nowak et al. 2012; Woodhouse et al. 2016; McCabe et al. 2017), which makes
it challenging to accurately assess the role of other factors, such as
temperature or antecedent (previous fall) soil moisture.
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Figure 2.6

Upper Basin water-year precipitation compared with Colorado River at Lees Ferry water-year natural
streamflow, 1906-2019. The correlation between the two time-series is 0.77 (R? = 0.61) over the

entire record, with higher correlations over more recent periods. (Data: precipitation, NOAA NCEI;

streamflow, Reclamation)

A common measure of the magnitude of interannual variability in a time-
series is the coefficient of variation (CV), which is the ratio of the standard
deviation to the mean. A higher CV indicates greater variability. The CV of
annual precipitation is 0.16 in the Upper Basin, and slightly higher in the
Lower Basin (Table 2.2). As noted above, the variability of annual streamflow
is higher than that of precipitation; the CV of Upper Basin (Lees Ferry)
annual natural streamflow (1906-2016) is 0.29. This is greater than for
annual streamflow of the Columbia River (CV: 0.18; Vano, Das, and
Lettenmaier 2012) but similar to the median CV (0.31) of the annual
streamflow of 1,221 rivers in a global database (McMahon et al. 2007).
Variability in annual streamflow is much higher in the Lower Basin
compared to the Upper Basin, because the warmer climate and greater
fractional ET losses further accentuate the variability in precipitation. For
example, Little Colorado River annual gaged streamflow has a CV of 0.73
(1906-2016), comparable to the CV for the relatively unimpaired
headwaters of the Salt River, which share a watershed divide with the Little
Colorado. The interannual variability in streamflow itself varies in
magnitude over time (Pagano and Garen 2005).
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Table 2.2

Variability and persistence in basin precipitation and streamflow over the 1906-2016 period. See text for
explanation of indices. (Data: runoff from Reclamation, after Prairie and Callejo (2005); precipitation from
NOAA NCEI)

Region/gage and variable Coefficient of Variation (CV) Lag-1 Persistence
Upper Basin annual precipitation 0.16 -0.10
Lees Ferry annual natural streamflow 0.29 0.23
Lower Basin annual precipitation 0.21 -0.01
Little Colorado annual gaged streamflow 0.73 0.05

Another important dimension of variability is persistence: the degree to
which one year’s value is similar to the previous year’s value. Greater
persistence indicates a tendency toward longer runs of wet years and dry
years, with implications for storage needs and reservoir management. In
both the Upper and Lower Basins, this year-on-year persistence (lag-1
autocorrelation) of Upper Basin annual precipitation over the 1906-2016
period is not statistically significant (Table 2.2); in other words, there is no
meaningful relationship between current-year precipitation and the next
year’s precipitation.

Persistence in streamflow is often greater than that for precipitation, since
soil moisture and groundwater storage anomalies generally produce a
carry-over effect after wet years, as well as after dry years. Upper Basin
(Lees Ferry) annual natural streamflow does have significant persistence
over the 1906-2016 period, with a lag-1 autocorrelation of 0.23. Lower Basin
gaged annual streamflows show less short-term persistence, with lag-1
autocorrelations ranging from 0.05 to 0.10 over the 1906-2016 period for
the Little Colorado, Bill Williams, and Virgin Rivers.

While the large storage capacity of Colorado River Basin reservoirs buffers
the system from many impacts of extreme annual variability (e.g., the
record low flow year of 1977), departures from average conditions over
several years and longer can accumulate into deficits of 20 to 40 maf that
heavily deplete system storage, as with the most recent period. Thus, it is
important to consider decadal-scale variability in basin precipitation and
streamflow, which can be very simply depicted by a 10-year running
average on the annual values, as in Figure 2.7 for Upper Basin streamflow.
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Over the observed Lees Ferry record, the 10-year running average has
varied by about +/-20% of the long-term average streamflow, with peaks
above 18 maf in the 1920s and 1980s, and low points of 12.0-12.5 maf in the
1960s and 2000s. The longest excursions away from the long-term average
have been on the order of 20-30 years, and occurred roughly around 1906~
1930 (above), 1955-1980 (below), and 2000-2019 (below). With so few of
these excursions to examine, it is difficult to say from the observed record
alone if the 25-year period of 17-18 maf at the beginning of the record is
unusual behavior for the system; however, as described below, tree-ring
data suggests that it is unusual.

Another way of examining decadal-scale variability is to use a weighted
smoothing filter that emphasizes the values occurring in the middle of the
smoothing period. This will make apparent any cyclical behavior that has a
wavelength similar to the smoothing period. Figure 2.7 shows a 9-year
weighted filter applied to the Lees Ferry streamflow record. While the
filtered record stays close to the running average for most of the record,
after 1980 the filtered record departs from the running average and shows
stronger peaks and troughs up through the late 2000s. This quasi-decadal
oscillation after 1980 was also seen in a wavelet analysis performed by
Nowak et al. (2012). They found this oscillation to be the strongest periodic
variability at any wavelength in the observed Lees Ferry streamflow
record—but it was only active over the most recent three decades of the
record.
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Figure 2.7

Colorado River at Lees Ferry water-year natural streamflow (light blue), with a 10-year running
average plotted on the 6th year (dark blue), and a 9-year Gaussian weighted filter (dotted), 1906—

2019. (Data: Reclamation)
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A much longer perspective on decadal-scale variability in the Upper Basin
can be seen in the 10-year running mean of a tree-ring reconstruction of
Lees Ferry natural streamflow that spans from the years 762 to 2005
(Figure 2.8; Meko et al. 2007). With this much longer context—about 10
times longer than the observed record—the extended high-flow period
from 1906-1930 appears to be quite unusual, with only two prior periods
(late 1100s and early 1600s) that appear to be comparable. On the opposite
extreme, there appear to be many extended low-flow periods with greater
cumulative deficits than the 1955-1980 period, or the current 2000-2018
period. Most notable among these are the low-flow periods of roughly
1865-1905 and 1130-1160. Nowak et al. (2012) also performed a wavelet
analysis on a shorter tree-ring reconstruction of Lees Ferry flows (back to
1490) and found that a quasi-decadal oscillation was present only
intermittently, for no more than 30-40 years at a time, most prominently in
the early 1500s, early 1700s, and mid-1800s.

Multi-decadal oscillations (about 20-80 years) were present during most of
the 500-year record, but with different characteristic wavelengths. The 30-
year running mean of the Meko et al. (2007) Lees Ferry reconstruction
(Figure 2.9) shows that oscillations with a wavelength close to 30 years
were prominent around 1200, around 1600, and over the historical period
from the late 1800s to present. It also indicates that the 30-year average—a
period often used in climatology to describe the average climate—is itself
subject to substantial variability.

The key message of the reconstructed tree-ring record is that the
variability of Colorado River hydroclimate is greater than one would infer
from the observed record alone. A diverse array of decadal, multi-decadal,
and century-scale flow sequences are present in the tree-ring record. As
detailed in Chapter 10, the safest assumption is that any of these sequences
could recur in the future due to natural variability alone.
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Figure 2.8

The 10-year running average of reconstructed Colorado River at Lees Ferry natural flow 762-2005
(blue) and the 10-year running average of observed natural flow 1906-2005 (gray). The long-term

reconstructed mean of 14.7 maf is shown by the dashed line. (Data: Meko et al. 2007; treeflow.info)

R Y Y — N LS ]
A~ o~ 0 O

W

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Flow, maf
— —
o N

Figure 2.9

The 30-year running average of reconstructed Colorado River at Lees Ferry naturalized flow 762—
2005 (blue) and the 30-year running average of observed flow (gray). The long-term reconstructed
mean of 14.7 maf is shown by the dashed line. (Data: Meko et al. 2007; treeflow.info)

2.8 Mechanisms of hydroclimate variability and their
predictive value

In general, the climate variability described in the previous section is the
net effect of chaotic fluid motions in the Earth’s atmosphere and oceans as
they act to maintain global equilibrium in energy and moisture, or what is
called “internal variability.” The enormous heat storage capacity and slower
movement of the oceans leads to patterns or modes of climate variability
that play out over months to years, producing persistent and to some
degree predictable influences on weather and climate over vast regions.
This last point is especially important given the absence of consistent,
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regular hydroclimatic cycles at interannual and longer time scales in the
basin.

The El Niflo-Southern Oscillation, or “ENSO,” is the most important pattern
of interannual global climate variability, and much of the skill in seasonal
climate forecasting around the world is derived from it. The vast tropical
Pacific Ocean absorbs tremendous amounts of solar energy that is
redistributed northward and southward toward the poles. The key features
of ENSO are changes in the sea-surface temperatures (SSTs) of the eastern
tropical Pacific Ocean, the atmospheric pressure difference between
eastern Pacific high pressure and western Pacific low pressure (the
Southern Oscillation), and changes in the location of persistent bands of
tropical thunderstorms. The Oceanic Nifio Index (ONI) shows the irregular
2- to 7-year time scale of the oscillation between the two phases of ENSO:
the El Nifio (warm phase) events and La Nina (cold phase) events

(Figure 2.10).

teleconnection

A physical linkage
between a change in
atmospheric/oceanic
circulation in one
region (e.g., ENSO)
and a shift in weather
or climate in a
distant region (e.g.,
the Colorado River
Basin).
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Figure 2.10

The monthly Oceanic Nifio Index (ONI), 1955-October 2018. The ONI is a 3-month running average
of sea-surface temperatures in the central tropical Pacific (Nifio 3.4 region). Values greater than 0.5

(red dashed line) indicate El Nifio conditions; values below -0.5 (blue dashed |
conditions. (Source: NOAA Northwest Fisheries Science Center,
https://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/cb-mei.cfm)

Once an El Nino or La Nifia event is established, often during summer, it
tends to persist into the following calendar year. Thus, ENSO events impart
some memory and seasonal predictability to the global climate system.

The massive transfers of energy accompanying ENSO influence the
atmospheric circulation well beyond the tropics, including the position of

ine) indicate La Nina
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the jet stream and storm tracks over western North America (Figure 2.11).
These “teleconnection” effects on the West were first described in the
1980s (Redmond and Koch 1991; Bradley et al. 1987). During El Nifio events,
the position of the cool-season storm track tends to shift southward, or
split in two, such that the Southwest (i.e., the Lower Basin) receives higher
than normal precipitation, while the Pacific Northwest is drier than normal.
La Nifa events see a strengthening of the normal winter pattern in which
storm tracks are more northerly, and so the case is reversed: The
Southwest tends to be drier than normal during La Nifia, while the Pacific
Northwest is wetter than normal (Cayan, Redmond, and Riddle 1999).

low pressure EI Niﬁo

extended
Pacific Jet Stream,
amplified storm
S track

variable
Polar Jet Stream
H La Nina
blocking
high pressure

Figure 2.11

Typical changes in atmospheric circulation over North America associated with El Nifio and La Nifia
events, and the corresponding regional climate anomalies that are likely to occur. (Source: adapted
from NOAA, https://www.climate.gov/news-features/featured-images/how-el-ni%C3%B10-and-la-
ni%C3%B1a-affect-winter-jet-stream-and-us-climate)
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In the past decade, a second “flavor” of El Nifio event has been identified,
with the maximum SST anomalies located in the Central Pacific (CP) in
contrast with the Eastern Pacific (EP). In a CP El Nifo, compared to
traditional EP El Nifio events, the winter drying influence on the Pacific
Northwest is enhanced, but the winter wetting influence on the Southwest
is similar (Yu and Zou 2013). It appears that CP El Nifio events have become
more common in recent decades (Freund et al. 2019).

For the Lower Basin, the ENSO influence on hydroclimate is strongest in
the winter season, and ENSO state (observed or forecasted) is a better
predictor of Lower Basin cool season (October-March) precipitation than
of Upper Basin cool season precipitation (Figure 2.12). Note that while the
correlations shown for the Lower Basin (r = 0.4 to 0.6) are statistically
significant, they also indicate that most of the variability in cool-season
precipitation is not statistically associated with ENSO. Also, the reliability of
the ENSO signal in the Lower Basin is asymmetric: La Nifla events are more
likely to be dry than El Nifno events are likely to be wet.

The Upper Basin lies across the transition region of the Southwest-Pacific
Northwest ENSO dipole (Wise 2010), and so ENSO has less overall influence
on Upper Basin cool-season precipitation and water-year streamflow than
it does in the Lower Basin. Even so, there is some signal that can potentially
be exploited for hydroclimate forecasting, especially in the northern and
southern sub-basins of the Upper Basin (Figure 2.12).

The Upper Green River basin, and to a lesser extent the headwaters of the
Yampa-White and Colorado rivers, tend to mirror the Pacific Northwest;
i.e., wetter outcomes in La Nifia. This mainly reflects a midwinter
(December-February) tendency for the polar jet stream and storm track to
be enhanced during La Nifla, resulting in wetter conditions over the high
elevations of southern Wyoming and northern Colorado, and conversely,
more frequent blocking of westerly flow and storms in those areas during
El Niflo, resulting in drier conditions (Wolter, Dole, and Smith 1999).
Further south in the Upper Basin, the San Juan River basin tends to mirror
the Southwest and Lower Basin; i.e., wet in El Nino.

For Upper Basin-wide precipitation and streamflows (i.e., Lees Ferry), these
opposing tendencies mostly cancel out, and it is hard to discern a clear
tendency toward higher Lees Ferry flows in El Nifio years and lower flows
in La Nina years, even during strong events.
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Figure 2.12

Correlation between October-March precipitation and August-January Nifio 3.4 index from 1949-
2014. Yellow and orange colors indicate areas that tend to be wetter during El Nifio events and drier
during La Nifia events; blue and purple colors indicate areas that tend to be wetter during La Nifia
events and drier during El Nifio events. (Source: NOAA ESRL Physical Sciences Division)

Figure 2.13 shows Lees Ferry water-year natural streamflows
corresponding to El Nifo (n = 12) and La Nina (n = 12) conditions in the
beginning of the water year (i.e., fall) from 1980-2018. There are no
meaningful differences in average or median flow between El Nifio and La
Nifa cases, or between those and the ENSO-neutral cases (n = 14). The
behavior at the lower tails of the distributions, however, appears more
distinct: While there are no annual flows below 10 maf among the EIl Nifio
cases (0 of 12), 3 of 12 La Nifa cases have flows below 10 maf, as do 4 of 14
ENSO-neutral cases.
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Figure 2.13

Upper Basin (Lees Ferry) water-year natural flows from 1980-2018, split into three ENSO categories:
12 fall El Nifo cases, 12 fall La Nifa cases, and 14 fall ENSO-neutral cases. El Nifio conditions have

" n

been associated with higher average flow (“x” markers) than La Nifia, but this difference is not
statistically significant, nor are the differences from the average flow during ENSO-neutral years.

(Data: Multivariate ENSO Index, K. Wolter; natural flows, Reclamation)

Pacific Decadal Oscillation (PDO)

In the north Pacific, to the north of the ENSO source region in the tropical
Pacific, is the home of the Pacific Decadal Oscillation (PDO). The PDO was
identified in the mid-1990s as the principal mode of sea-surface
temperature variability in the northern Pacific. The PDO’s warm phase has
positive (warmer-than-normal, El Nifio-like) anomalies in the eastern North
Pacific and negative (cooler-than-normal, La Nifia-like) anomalies in the
central and western North Pacific (Mantua et al. 1997). The main oscillation
from warm to cool and back is irregular but usually has a period of 10-40
years, with occasional shorter excursions. The PDO is not a single well-
defined physical phenomenon like ENSO, and much of the variation in the
PDO may actually be ENSO variability translating to the northern Pacific
over longer time scales (Newman, Compo, and Alexander 2003; Newman et
al. 2016; Chen and Wallace 2016). The ENSO dipole does appear to be
strengthened when PDO is in the same phase as ENSO, so that the
Southwest and the Lower Basin have had a stronger wet tendency during
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warm PDO + warm ENSO (i.e., El Nifo), and a stronger dry tendency during
cold PDO + cold ENSO (La Nifia) (Gershunov and Barnett 1998; Brown and
Comrie 2004; Wise 2010). However, these climate influences of PDO do not
appear to be stable over time, which argues against their use in
hydroclimate forecasting (McAfee 2014; Wise 2015).

Quasi-Decadal Oscillation (QDO)

The Quasi-Decadal Oscillation (QDO), another Pacific atmosphere-ocean
oscillation with similarities to ENSO and PDO, but at an intermediate
frequency (9-12 years) and greater regularity, was identified in the early
2000s (Tourre et al. 2001). Like the PDO, it appears to modulate the activity
of ENSO. A previously identified quasi-decadal periodicity in levels of the
Great Salt Lake since the mid-1800s was found to be coherent with the
QDO when a lag time representing hydrologic processes was included
(Wang et al. 2011), enabling multi-year forecasts of Great Salt Lake levels,
which have since been validated through one-half of a decadal cycle (Gillies
et al. 2011; 2015). More recently, Wang et al. (2018), noting that the Upper
Basin is adjacent to and atmospherically “downstream” of the watershed of
the Great Salt Lake, and that the Upper Basin streamflow also has quasi-
decadal periodicity, asserted that there is potential for decadal-scale Upper
Basin prediction based on the QDO. However, as noted earlier and shown
in Figure 2.7, the quasi-decadal periodicity in Upper Basin (Lees Ferry)
streamflow is strongest over the 1980-2015 period, and relatively weak
prior to 1980, and it is not clear whether there is a solid basis for using the
quasi-decadal oscillation in basin hydroclimate forecasts.

Atlantic Multidecadal Oscillation (AMO)

The Atlantic Multidecadal Oscillation (AMO) (Schlesinger and Ramankutty
1994) is a slowly varying sea-surface temperature and pressure oscillation
in the north Atlantic Ocean with an irregular 30-80-year cycle. A series of
studies in the early 2000s (Gray et al. 2004; Hidalgo 2004; McCabe, Palecki,
and Betancourt 2004) found that the positive (warm) phase of the AMO was
statistically associated with increased risk of drought in the Upper Basin. A
study using climate models found that the combination of negative PDO
phase and positive AMO phase is the least favorable for moisture in the
interior U.S. (Schubert et al. 2009).

The trouble with multi-decadal oscillations

Studies in the 2000s on the AMO, PDO and other oscillations raised hopes
that observations and predictions of the AMO state, as well as PDO, could
lead to better seasonal and longer hydroclimate forecasts for the basin
(Reclamation 2007c). However, the physical mechanism by which the AMO
actually affects conditions in the interior West is unclear, unlike with ENSO
(Nowak et al. 2012). Like the PDO, the stability of the AMO’s climate
teleconnections over time is questionable. Also as with the PDO, there have
been very few cycles of warm and cold phases during the observational
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period (since about 1900) to compare with basin hydroclimate indices.
Statistical relationships that have been found during the past century may
not be representative of future relationships, given the limited number of
cases to draw from (Switanek and Troch 2011).

The identification of ENSO and PDO influence on western U.S.
hydroclimate has spurred additional studies to identify other potential
teleconnections, mainly between gridded Pacific Ocean SSTs and pressure
fields and various hydroclimatic indices. By examining statistical
relationships among hundreds of variables, these exploratory analyses are
at high risk of finding relationships (i.e., teleconnections) that are
statistically significant over the period of analysis, but are not rooted in a
robust physical mechanism and therefore fail to show predictive skill
beyond the period of analysis.

Recently, a new teleconnection was identified between sea-surface
temperature and atmospheric pressure anomalies in the southwest Pacific
Ocean near New Zealand in the late summer and fall, and winter
(November—March) precipitation in the southwestern U.S., including the
Lower Basin (Mamalakis et al. 2018). The authors’ proposed New Zealand
Index (NZI) had generally higher correlations with Southwest winter
precipitation than did typical ENSO indicators over the 1950-2015 period.
They also noted the strength of the NZI relationship has increased over the
entire analysis period, almost doubling. This latter finding indicates
volatility in the NZI-Southwest climate relationship and the potential for it
to return to statistical non-significance in the future. Also, it is not clear
that the NZI has a physical mechanism distinct from ENSO. It is possible
that the NZI could be an adjunct to ENSO indicators in statistical forecasts
of Southwest winter precipitation, but much more thorough exploration of
the teleconnection, including its behavior prior to 1950 and its linkage with
ENSO, is needed.

While the search for new teleconnections will undoubtedly continue in the
research community, the inconvenient truth appears to be that most of the
variability in basin hydroclimate is not associated with oscillations or
discrete patterns that would potentially provide predictability on one or
more time scales. This does not mean that the skill in seasonal precipitation
forecasts cannot be improved (see Chapter 7), but that the skill may have a
lower ceiling than both researchers and water managers would like.

2.9 A closer look at basin drought

Having described the overall hydroclimatic variability in the basin, and the
key climatic mechanisms associated with that variability, it is important to
take a closer look at the lower tail of the distribution of annual
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hydroclimatic conditions (i.e., drought), which is the principal recurrent
management challenge for water suppliers.

Hydrologic droughts in the basin are generally initiated by below-normal
precipitation in the cool season (October-April) due to weather patterns
that suppress storm tracks over the headwaters of the Upper Basin. The
resulting reduced snowpack produces below normal spring-summer
runoff, with an earlier peak. Due to early meltout and the low precipitation
leading to below normal soil moisture, the land surface can dry out earlier
in the warm season than usual, increasing evaporative demand and creating
a feedback toward further warming and drying of the surface. Depletion of
soil moisture in a dry year can lead to below normal runoff in the following
year even if the precipitation in the second year is near normal (Das et al.
2011).

Analyses of hydrologic drought are complicated by the need to identify
meaningful measures and thresholds for what constitutes drought
conditions, and thus when droughts begin and end, and their severity over
space and time. Which measures and thresholds are meaningful depends
on the specific application context. This is especially true for the Colorado
River system, in which total consumptive use plus other depletions typically
exceeds supply, such that under even average hydrologic conditions the
levels of Lake Mead and Lake Powell will tend to decline. The recent
declines in mainstem reservoir storage reflect both direct drought impacts
and the system imbalance between supply and depletions, and it is difficult
to disentangle the two factors. To assess the nature of recent drought
conditions, it may be more meaningful to look at natural inflows to the
system, such as those estimated at the Lees Ferry gage, than at reservoir
levels.

In the water supply analysis in Reclamation (2020) a “streamflow deficit”
(i.e., drought) was defined as a two-year average flow less than 15 maf at
Lees Ferry. The 2-year averaging acknowledges the buffering capacity of
system reservoir storage. By this measure, the most severe drought in the
observed record was from 2000-2005 (6 years), with a cumulative deficit of
24 maf, exceeding the 7-year droughts in the 1930s and 1960s, in which the
deficits were about 18 maf. There was another 6-year drought from 2012~
2017, with a cumulative deficit of 13 maf (Figure 2.14). Multi-year streamflow
deficits of greater than 10 maf are clearly a recurrent feature of the basin’s
hydroclimate, but the period since 2000 appears highly unusual in that it
includes two such droughts: the most severe (2000-2005) and the 5" most
severe (2012-2017).
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Cumulative Streamflow Deficits in Observed Natural Flow Records
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Figure 2.14

Cumulative streamflow deficits (defined as 2-year running mean below 15 maf) for the Colorado River
at Lees Ferry, Arizona, with the five longest and most severe droughts (2000-2005, 2012-2017,
1988-1992, 1959-1965, 1931-1937) highlighted. (Source: Reclamation 2020)

Woodhouse (2012) analyzed the atmospheric and oceanic features
associated with six multi-year Upper Basin droughts from the 1930s to the
2000s, using a different drought definition than shown in Figure 2.14. Her
analysis showed that each extended drought evolves in a unique way. The
onset and persistence of some droughts is linked to La Nifia events, while in
other cases, drought years coincide with El Nifio events. Most critically,
past multi-year droughts have persisted through a variety of modes of
natural variability. A key feature for drought years not associated with La
Nifa events has been a high-pressure anomaly centered over the Pacific
Northwest, which tends to deflect storm tracks away from the Upper Basin.
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The water supply analysis in the “Colorado River Basin Water Supply and
Demand Study” (hereinafter “Basin Study”; Reclamation 2012e) examined
the streamflow reconstruction by Meko et al. (2007) and compared the
distribution of the reconstructed streamflow deficits during the historical
period (1906-2005) with the distribution of reconstructed streamflow
deficits (droughts) over the entire reconstruction (762-2005). That analysis
showed that most droughts are 3 years or shorter (Figure 2.15). The
distribution of deficits over the 20™ century is similar to the distribution
over the entire >1200-year period, except at the tails; i.e., events of very
long duration or high severity, or both. Over the full reconstruction period,
droughts with estimated durations of greater than 5 years and estimated
cumulative deficits of greater than 15 maf were much more frequent than in
the 1906-2005 period.
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Figure 2.15

Drought characteristics over the most recent century (dashed gray line) from the Meko et al. (2007)
tree-ring reconstruction of Lees Ferry natural flows, compared with the full reconstructed period

(762-2005; solid black line). The full reconstruction contains extreme droughts with longer durations
and larger cumulative deficits, as indicated by increasing divergences at lower exceedance

probabilities (<10%). (Source: adapted from Reclamation 2012b)
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2.10 Recent hydroclimate trends and likely causes

The most prominent hydroclimatic change in the basin over the past 40
years has been a substantial warming trend. Trends in precipitation are
more difficult to discern. Changes in snowpack, runoff volume, and runoff
timing have been observed and these can be linked, at least in part, to the
warming trend. The recent trends in these and other variables for the
Upper Basin specifically are summarized in Table 2.3.

Table 2.3

Summary of recent hydroclimate trends in the Upper Basin and the likely causes of those trends. See text
in the sections below for references.

Variable Trend since 1980s  Likely causes, in order of importance

Anthropogenic climate change, natural

Temperature Increasing* e
P 9 variability

Natural variability, anthropogenic climate

Precipitation Decreasin
P J change

Snowpack water volume Decreasing precipitation, warming

Decreasing*

(April 1 SWE) temperatures
Timing of snowmelt and Earlior* Warming temperatures, dust-on-snow,
| . .. .
runoff decreasing precipitation
. Decreasing precipitation, warmin
Annual streamflow Decreasing g precip 9

temperatures

* Trend has been found to be statistically significant for part or all of the Upper Basin by one or more studies

The most conspicuous feature of the observed record of annual
temperatures for the basin is the warming trend in recent decades (Figure
2.16), as highlighted in many previous reports and studies (National
Research Council 2007; Reclamation 2012e; Nowak et al. 2012). Since 1980,
there has been a persistent and statistically significant warming trend of
about +0.5°F per decade in both the Upper and Lower Basins, with a total of
2.0°F of warming during the 40-year period of 1980-2019. In the Upper and
Lower Basins, and over the entire basin (Figure 2.16), 2009-2018 was the
warmest 10-year period in the record, and 2017 was the warmest single
year. Of the 20 warmest years on record, 17 have occurred since 1994. While
the upward trend has included both warmer and cooler years, every year
since 1994—including relatively cool 2019—has been warmer than the 1970-
1999 average. The average temperature since 2000 has been 2.0°F warmer
than the 20™"-century average.
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Figure 2.16

Annually averaged temperature for the Colorado River Basin, 1895-2019, shown as departures from

a 1970-1999 average. The gray line is a 10-year running average plotted on the 6" year. A 40-year
linear trend (dashed yellow line) shows 2.4°F of warming from 1980-2019. (Data: NOAA NCEI)

This warming has been observed in all seasons, with seasonal trends (+0.4°F
to +0.7°F per decade) similar to those for annual temperatures. Daily
maximum temperatures have warmed more (+0.65°F per decade) than the
average temperatures (+0.5°F per decade) or the daily minimum
temperatures (+0.4°F per decade). It is not clear whether the magnitude of
warming has differed between lower and higher elevations within the basin
(Lukas et al. 2014).

Paleoclimatic reconstructions of temperature for locations within, or
regions that include, the Colorado River Basin all indicate that the period
since 1950 has been warmer than any time in the past 600 years, and that
more recent temperatures, since 2000, are warmer than at any time in the
past 2000 years (Hoerling et al. 2013).

The warming trend for the basin since 1980 (+2.0°F) mirrors persistent
warming trends seen over the same time period over the 11 western states
(+1.7°F), the conterminous U.S. (+1.7°F), and the entire globe (+1.2°F). At the
global scale, strong indications from multiple lines of evidence have led to
the conclusion that it is extremely likely (>95% probability) that human
influence through greenhouse gas emissions and other sources has been
the dominant cause of the observed warming over the late 20" century and
the 21 century (USGCRP 2017). Similarly, human influence has been
detected in the observed warming trends for North America as a whole, and
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for the northern and western regions of the U.S., including the Colorado
River Basin (USGCRP 2017).

As shown previously (Figure 2.6), observed annual (water year) precipitation
for the basin is far more variable on interannual time scales than
temperature. For multi-decadal trends to statistically emerge from the
background noise of this high variability, they would need to be large. While
a straight-line fit to the 1980-2019 period for the Upper Basin does indicate
lower average annual precipitation in more recent years, this declining
trend is not statistically significant. The unusually high precipitation values
in the 1980s means that any trend that starts in the vicinity of 1980 will tend
downward. Importantly, the average annual precipitation over the past 20
years (2000-2019) does not stand out relative to periods of the same length
earlier in the observed record. A declining but non-significant trend is also
seen in Lower Basin annual precipitation over the 1980-2019 period.
Looking at only cold-season (Oct-Mar) precipitation, the percentage
declines over the 1980-2019 period in both the Upper and Lower Basins are
greater than the declines for annual precipitation. But as with annual
precipitation, the overall, below-average, cold-season precipitation from
2000-2019 is not an outlier in the context of the full observed record.

Detection and attribution analyses for recent multidecadal periods indicate
that the generally lower precipitation seen in the southwestern U.S,,
including the Colorado River Basin, in recent decades was likely caused by
natural variability, and not human-caused climate change (Barnett et al.
2008; Hoerling, Eischeid, and Perlwitz 2010; Lehner et al. 2018). New
analyses using global climate models suggest that human-caused climate
change is exerting a long-term tendency toward reduced precipitation in
the region that includes the Colorado River Basin, though this tendency is
small enough to be overwhelmed by natural variability, and is undetectable
from the observed record of precipitation alone (Guo et al. 2019; Hoerling
et al. 2019).

The peak water volume of the basin snowpack (e.g., April 1 SWE) is mainly
determined by the amount of cold-season precipitation, but it can also
reflect weather factors that lead to more or less snow loss (sublimation and
melt) than usual during the cold season. Observations of SWE are available
for portions of the basin since the 1930s and with much greater coverage
over the basin starting in the late 1970s. These SWE records show
interannual and decadal-scale variations in the regional snowpack that
closely match the fluctuations in cold-season precipitation.

In the mid-2000s, several studies reported declining trends in April 1 SWE
at most SNOTEL and snow course measurement sites throughout the
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western U.S. (Hamlet et al. 2005; Mote et al. 2005; Regonda et al. 2005).
These studies linked the declining SWE trends with warming spring
temperatures throughout the West, with a key mechanism being an
increasing fraction of cold-season precipitation falling as rain instead of
snow as temperatures have increased (Knowles, Dettinger, and Cayan
2006). In the Colorado River Basin, declining SWE trends were generally
weaker, or mixed with increasing trends, compared to other regions of the
western U.S because winter temperatures are well below freezing, reducing
the impact of this broader snow-to-rain shift (Hamlet et al. 2005; Knowles,
Dettinger, and Cayan 2006). Later analyses specific to western Colorado
also found declining trends in April 1 SWE, over the 1978-2007 period (Clow
2010), and over 30-, 50-, and 70-year periods ending in 2012 (Lukas et al.
2014). Clow (2010) partially attributed the decline in April 1 SWE to
decreasing winter precipitation observed over the same period, also
identifying a role for increasing spring temperatures.

Newer analyses have reinforced that the observed declining trends in

April 1 SWE in the western U.S. are substantial and pervasive (Mote et al.
2018; Zeng, Broxton, and Dawson 2018; Fyfe et al. 2017). These analyses also
report somewhat greater changes to snowpacks in the Colorado River Basin
over the last several decades than was reported in the older studies. All of
these studies indicate a role for warming temperatures in explaining the
declining SWE, though they also suggest that recent precipitation trends
have played an important role. A study that assessed the trends in April 1
SWE across the West from 1984-2018 assigned greater importance to
warming, finding that the declining SWE trends in the Upper Basin over
that period were of roughly the same magnitude that would be expected
from warming alone (Siler, Proistosescu, and Po-Chedley 2019). Two studies
that analyzed gridded spatially explicit SWE datasets (see Chapter 5) found
larger SWE declines than one would infer from SNOTEL sites alone,
indicating that lower-elevation snow below most of the SNOTEL network
has experienced greater changes than higher-elevation snow (Fyfe et al.
2017; Zeng, Broxton, and Dawson 2018). Another recent study shows that
these reductions in peak (April 1) SWE are one element of systemic changes
to the seasonal snowpack accumulation and melt curves (e.g., Figure 2.4);
across the western U.S,, these curves are becoming significantly narrower
and less skewed over time, indicating later onset of accumulation, earlier
onset of melt, consequently slower melt, and shorter duration of snow
cover (Evan 2018).

To summarize the studies of snowpack in the western U.S. and
corresponding conclusions for the Colorado River Basin: (a) April 1 SWE has
declined over the past 35-60 years across most of the basin headwaters,
and some of these declining trends are statistically significant; (b) at least a
portion of the April 1 SWE decline in the basin is attributable to warming
temperatures since the late 1970s, with a contribution from the decline in
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cool-season precipitation during the most recent decades, which itself is
likely due to natural variability; (c) because of the relatively cold winter
climate of the Upper Basin’s headwaters, the snowpack is more resistant to
warming-related impacts than most other regions of the West, and (d)
within each sub-basin, lower elevations have generally seen larger
reductions in April 1 SWE than higher elevations.

While the timing of peak spring runoff is not as important as the runoff
quantity to overall basin water system outcomes due to the large system
storage capacity, particular water uses can be sensitive to runoff timing,
especially direct diversion for irrigation, and the variation and trends in the
shape of the annual hydrograph can have implications for reservoir
operations. The timing of snowmelt in the basin headwaters and peak
runoff naturally varies from year to year, depending mainly on the size of
the snowpack and the particular trajectory of the weather during the
spring. Smaller snowpacks tend to become isothermal (i.e., reach 32°F
throughout the snow column)—a precondition for rapid melt—earlier, and
melt out earlier, than larger snowpacks. Persistent dry, sunny, spring
weather—which is more likely to occur in low-snow years—will accelerate
meltout, while frequent spring storms—more likely to occur in high snow
years—will delay meltout. Snowpack size (e.g., April 1 SWE) and snowmelt
and runoff timing are thus physically linked as well as observationally
linked; a consistent shift in the timing of peak SWE and melt onset to dates
earlier than April 1 will also register as a decline in April 1 SWE, even if peak
seasonal SWE (SWEnax) does not decline.

Given the findings of widespread declines in April 1 SWE as described
above, it is unsurprising that multiple studies since the early 2000s that
have specifically examined the timing of snowmelt and runoff in parts or all
of the western U.S. have found widespread trends toward earlier snowmelt
and runoff over the past 3-6 decades (Stewart, Cayan, and Dettinger 2005;
Regonda et al. 2005; Clow 2010; Fritze, Stewart, and Pebesma 2011; Hoerling
et al. 2013; Pederson, Betancourt, and McCabe 2013). The Evan (2018) study
described above also confirms the general shift toward earlier snowmelt.
For the Upper Basin in particular, the more recent of these studies have
detected progressively larger and more pervasive shifts toward earlier
spring runoff onset and peak runoff. Clow (2010) found shifts toward earlier
snowmelt and runoff timing in western Colorado of 1-4 weeks from 1978 to
2007. Similarly, Hoerling et al. (2013) found that for 13 of 17 gages in the
Upper Basin, average runoff timing for 2001-2010 was earlier, by 1-3 weeks,
than the average runoff timing for 1950-2000.

As with the trends in April 1 SWE, it is difficult to separate the likely causes
of the shift toward earlier snowmelt and runoff. Warming winter-spring
temperatures almost certainly have a role, but the decline in cold-season
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precipitation since 2000 appears to be an important driver as well. Episodic
dust-on-snow deposition also causes earlier snowmelt and runoff (Chapter
5; Painter et al. 2007; 2010; Deems et al. 2013). Snowpacks in the Upper
Basin have become generally dustier in recent decades, with especially
large effects on snowmelt and runoff timing in the San Juan Basin (Clow,
Williams, and Schuster 2016; Painter et al. 2018).

Among the indicators of hydroclimatic variability and change, annual
streamflow volumes are the most directly relevant to basin water
management and water use. Annual streamflow also integrates multiple
processes and effects that play out over different temporal and spatial
scales, complicating evaluation of the sources of variability and change.

As basin water managers and water users are well aware, the period since
2000 has seen overall below-average Upper Basin (Lees Ferry) flow
volumes, with an average naturalized flow of 12.6 maf/year from 2000-
2019, which is 15% below the long-term average of 14.8 maf (1906-2019).
(Average flow from 1999-2018 was marginally lower than from 2000-2019.)
The next lowest 20-year period of flow is 1950-1969, which averaged 13.0
maf/year. The cumulative streamflow deficit of roughly 47 maf since 2000
relative to the long-term average accounts for a large portion of the
current drawdown of Lakes Powell and Mead. The declining trend in Lees
Ferry natural flows from 1980-2019 is almost statistically significant (p =
0.06), and this trend is larger, compared to interannual variability, than the
trend in Upper Basin water-year precipitation over the same period.
However, even larger declining trends in Lees Ferry flows were observed
over 40-year periods beginning in the 1910s and ending in the 1950s, so this
recent decline is not unprecedented.

Unlike Upper Basin natural flows, the available flow data for the Lower
Basin is primarily gaged flows, or the net gain in flow between gages (see
Chapter 5), so the following trends may reflect impacts from human
activities. The total inflows between Lees Ferry and Lake Mead show a
downward trend similar to that for the Upper Basin, with an average of
1.02 maf /year from 2000-2016, 20% less than the long-term average of
1.23 maf /year (1906-2016). Within that overall number, the gaged inflows
from the four tributaries show the following departures for 2000-2016
relative to the long-term mean: Paria River, -15%,; Little Colorado

River, -40%; Virgin River, -10%; and the Bill Williams River, -41%.

As discussed previously in this chapter, the variability in water-year
precipitation is the most important driver of variability in annual
streamflow. The period of reduced Upper Basin flow since the 2000s and
the overall declining trend in flow since the late 1970s has coincided with a
decline in water-year precipitation as described earlier. The consensus of
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recent studies is that roughly half or more of the recent low-streamflow
anomaly (since 2000) is due to variability and trends in precipitation
(Nowak et al. 2012; Udall and Overpeck 2017; C. A. Woodhouse et al. 2016;
McCabe et al. 2017; Barsugli and Livneh 2018; Xiao, Udall, and Lettenmaier
2018; Hoerling et al. 2019).

But it is also clear that warming temperatures can lead to long-term
reductions in streamflow. Hydrologic modeling has been used to put a
range of values to the general expectation that runoff in the Colorado River
Basin decreases with increasing temperatures. An analysis by McCabe and
Wolock (2007) using their relatively simple water-balance model for the
Upper Basin indicated a 5% decline in Upper Basin runoff per 1°F of
warming. Intercomparisons using more sophisticated hydrologic models
(see Chapter 6) calibrated for the basin hydrology indicate a 1.5% to 6%
decrease (model average: 3.5% decrease) in Upper Basin runoff per 1°F of
regional warming (Vano, Das, and Lettenmaier 2012; Vano and Lettenmaier
2014). Based on this range of modeled temperature sensitivities of runoff,
Udall and Overpeck (2017) concluded that approximately one-third (range:
17-50%) of the Lees Ferry streamflow departure from 2000-2014, relative to
the 20"-century average, was due to the effects of the warming alone, with
the remainder due to decreased precipitation during the 2000-2014 period.

Three more recent model-based studies, using different methodologies,
came to conclusions at opposite ends of the range outlined by Udall and
Overpeck (2017). Xiao, Udall, and Lettenmaier (2018), based on simulations
of historical hydroclimate with the Variable Infiltration Capacity hydrologic
model (see Chapter 6), concluded that a little more than one-half (54%) of
the Lees Ferry streamflow departure from 2000-2014 was due to warming
alone. Milly and Dunne (2020), using a different hydrologic model, also
estimated that just over half of the 2000-2017 Lees Ferry streamflow
departure was due to warming alone, and that the temperature sensitivity
of runoff was about 5% per 1°F of regional warming. But based on
simulations from three global climate models (GCMs) with embedded
hydrology (or land surface) models, Hoerling et al. (2019) estimated that the
temperature sensitivity of runoff was about 1.5% per 1°F of regional
warming, and that about 20% of the Lees Ferry streamflow departure since
2000 was due to warming.

The warming effect on Upper Basin runoff has also been detected and
quantified directly from the observational record, while taking into account
the potentially confounding relationship between precipitation and
temperature. Regression analysis by Nowak et al. (2012) indicated a 7.5%
reduction in annual Upper Basin runoff for every 1°F warming, a larger
reduction than shown by any of the hydrologic models. McCabe et al. (2017),
using a similar regression analysis, concluded that the impact of warming
temperatures on Upper Basin runoff was -7% for the period from the late
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1980s through 2012, which implies a 4-5% reduction in annual runoff per
1°F warming, within the range found with the hydrologic models.
Woodhouse et al. (2016) inferred an impact of warm-season temperatures
on Upper Basin runoff in recent decades from the increasing differences
between the precipitation anomaly and the runoff anomaly, but did not
quantify the impact.

To summarize, compared with a decade ago, there is now substantial
evidence from both hydrologic model experiments and analyses of the
observed record that recent warming temperatures have already had a role
in reducing Colorado River flows. Those studies also indicate that the
magnitude of the incremental impact of climate warming on streamflow
remains uncertain. This mirrors the consensus of participants at a recent
workshop on understanding the causes of the historical changes in flow of
the Colorado River (Barsugli and Livneh 2018). The workshop report also
underscored that a key challenge in quantifying the role of temperature is
the uncertainty in the observed records of temperature and especially
precipitation, which is much more spatially and temporally variable than
temperature. The most runoff-productive mountain areas have relatively
sparse observations, and the different gridded climate datasets used to
calibrate hydrologic models and in other analyses can have substantial
differences over these mountain areas (see Chapter 4; Barsugli and Livheh
2018). For that matter, the record of naturalized runoff for the Upper Basin
(Lees Ferry) used for many of these analyses has uncertainties that are not
well quantified or broadly appreciated within the research and application
communities (see Chapter 5).

Other recent studies, using both hydrologic models and field observations,
have focused on the mechanisms by which warming acts to reduce
Colorado River streamflows, including those mechanisms described earlier
as impacting the snowpack. Following the seasonal sequence of events,
these mechanisms include:

e Fall (and spring) precipitation increasingly comes as rain instead of
snow, which reduces runoff efficiency (Berghuijs, Woods, and
Hrachowitz 2014).

e Sublimation losses from snowpacks during the winter and spring are
higher due to the warmer, “thirstier” atmosphere (Foster et al. 2016).

e Snowmelt initiates earlier in the spring, which leads to slower average
melt rates (see Figure 2.4), which reduces runoff efficiency (Barnhart et
al. 2016).

o The earlier meltout exposes soils earlier in the warm season, increasing
the absorption of solar radiation at the land surface and leading to

increased seasonal evaporation (Deems et al. 2013, Milly and Dunne 2020).
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¢ The growing season for natural vegetation and crops starts earlier and
lasts longer, leading to increased seasonal transpiration (Deems et al.
2013).

o Evapotranspiration rates generally increase with warmer temperatures
(Foster et al. 2016; Milly and Dunne 2020).

The energy budget changes (i.e., increase in sublimation and
evapotranspiration) appear to be a more important contributor to the
overall temperature effect on runoff in the basin than the phase change in
precipitation from snow to rain (Foster et al. 2016). This is consistent with
other modeling analyses that have examined the seasonal dimension of
temperature’s effects; those studies have indicated that warming during the
warm season (April-September) is much more effective at reducing runoff
than warming of the same magnitude during the cold season (October—
March) (Das et al. 2011; McCabe et al. 2017).

2.11 Challenges and opportunities

The most pressing challenges in our understanding of the historical and
recent hydroclimate of the Colorado River Basin regard the recent changes
in the key variables described in the previous section. Better quantification
of these trends (how much things have changed), and more confident
attributions of them to the respective causal factors (why things have
changed), would facilitate greater inclusion of these changes in short-term
and mid-term forecasting (Chapter 8) and long-term planning (Chapters
9-11).

e There is still considerable uncertainty in the quantification of the
relative roles of temperature, precipitation, antecedent soil moisture,
dust-on-snow, and vegetation change in recent and ongoing variability
and change in Upper Basin snowpack and streamflow.

o These factors have substantial spatial variability, but most studies have
conducted analyses and presented findings only at the Upper Basin-
wide scale (e.g. Lees Ferry).

Opportunities

¢ Conduct analyses of Upper Basin hydrologic change that are spatially
disaggregated at least to the eight major sub-basins (Upper Green,
Yampa-White, etc.), or focus only on the most productive headwaters
areas, or both.

e Pursue the various pathways to improve hydrologic modeling presented
in Chapter 6.

¢ Conduct intercomparisons of hydrologic models and statistical
methods for assessing the factors behind hydrologic changes.
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Key points

o Three monthly Reclamation models, developed in RiverWare™, support
planning at three time scales: short-term (up to 24 months), mid-term
(up to 60 months), and long-term (multiple decades).

¢ The models use rules to incorporate operational policies set forth in
Records of Decisions and other operational agreements, and some
long-term studies also explore potential alternative policies.

e Hydrologic inputs to the short-term and mid-term models are either
flows forecast by the NOAA Colorado Basin River Forecast Center
(CBRFC) or statistical averages of observed flows.

e Hydrologic inputs to the long-term model may be based on historical
hydrology, paleohydrology, climate change-informed hydrology, or
hybrids.

¢ Measured Upper Basin water demands for the short-term and mid-
term models are accounted for in the CBRFC's forecast; Lower Basin
water demands are provided by Lower Basin water users and Mexico.
Both Upper and Lower Basin demands for the long-term model are
based on projections supplied by water users.

e Uncertainties, errors, and limitations arise from input data sources,
assumptions about the future, and necessary simplifications of a
complex water supply system.

3.1 Introduction

Planning and operations models support decision making by providing
computer-based representations of water supply systems that allow
analysis of a variety of hydrologic, operational, administrative, and
infrastructure scenarios. They are designed to represent systems with
networks of inflows, uses, and storage that serve multiple objectives, and
they are built to generate or accept large databases of streamflow data.
These models track the movement and storage of water through river
reaches, reservoirs, canals, and other infrastructure, and account for
withdrawals and gains and losses. They usually simulate operations and the
administrative rules that govern water allocation.

World-wide, a number of generalized modeling tools have been used to
simulate large scale river basin systems. There are differences and
similarities among the tools in core solver type and the kinds of processes
simulated, but most of them are flexible as to time step, spatial extent,
resolution, and operations. They have advantages and limitations that make
them more or less suitable for particular analyses. For more information
about generalized, river basin system modeling tools, and some in-depth
comparisons, see Wurbs (1994; 2012); Stratus Consulting (2005); Zagona
(2010); US Army Corps of Engineers (2012); Johnson (2014); California Dept.
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of Water Resources (2016; 2019); Colorado State University (2017); DHI
(2019); Lynker (2019); SEI (2019); Texas A&M University (2019a; 2019b).

3.2 Reclamation’s models

Reclamation manages the system reservoirs on the Colorado River within
the legal and political framework captured in a body of documents known
as “the Law of the River” (Nathanson 1978; Reclamation 2007e; 2015b). The
Law of the River specifies Colorado River entitlements and priorities and
comprises numerous operating criteria, regulations, and administrative
decisions included in federal and state statutes, interstate compacts, court
decisions and decrees, an international treaty, and contracts with the
Secretary of Interior. As such, modeling undertaken by Reclamation to
support basin management must be able to represent both the challenging
institutional setting and the complex physical system. The results of
modeling studies are a familiar, standardized foundation for Reclamation’s
stakeholder outreach and in some instances are the basis for determining
official operations. The core of this modeling is a mass balance calculation
that accounts for water entering the system, water leaving the system (e.g.,
from consumptive use of water, trans-basin diversions, evaporation), and
water moving through the system (i.e., either stored in reservoirs or flowing
in river reaches).

Since the 1990s, Reclamation has developed system models using
RiverWare™, an object-oriented, generalized river basin modeling platform
developed in partnership with the University of Colorado’s Center for
Advanced Decision Support for Water and Environmental Systems
(CADSWES) and the Tennessee Valley Authority (Biddle 2001; Zagona et al.
2001).

Reclamation’s three basin-wide planning and operations models are the 24
Month Study (24MS), the Mid-Term Probabilistic Operations Model
(MTOM), and the Colorado River Simulation System (CRSS). The three
models and their applications are summarized in Figure 3.1.
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RiverWare Operations

Model Time Horizon Primary Use
o 4 4
Annual Operating Plan
24-Month Study Model 12 tier determinations and
(24MS) Pl projections of current
conditions
4 4 o’

Mid-term Probabilistic . .
Operations Model 1-5 years R|7k-b?sed ogeratllorlal
(MTOM) planning and analysis

Long-term planning
studies, criteria
development, and risk
analysis

Colorado River
Simulation System Decades

(CRSS)

The core elements that characterize the three models are listed below.

e Purpose
e Time step and simulation horizon
e Structure and resolution
e Physical processes (evaporation and bank storage)
e Inputs
o Initial reservoir conditions
o Operational policies
o Future water use /demand
o Future inflows
e Outputs (variables, deterministic vs. probabilistic)

All three models run on a monthly time step, use the same methods to
estimate reservoir evaporation and bank storage (monthly coefficients
applied to surface area and single coefficients applied to total reservoir
storage, respectively), and represent the same operating policies, but are
otherwise different in multiple respects.

RiverWare supports “rule-based” simulation (Zagona 2010), in which logic
statements, rather than hard-coded values, are used to represent
operational policy. This capability makes RiverWare well suited to simulate
the requirements stipulated by the Law of the River. A simple rule might
take the form of “If Reservoir A elevation is x, and forecast inflow is y, then
make release z.” An example of a RiverWare rule that might be executed in a
Colorado River simulation is provided in Figure 3.2.
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The “objects” in RiverWare’s object-oriented modeling system may be
reservoirs, river reaches, stream confluences, diversions, inflows, canals,
pipelines, gages, or other water resources features (CADSWES 2018). Each
object is assigned attributes ranging from its capacity to its representation
of physical processes. Water flows between objects via links, but mass
balance is calculated at the object level.

Each model is described in detail in the sections that follow, organized from
shortest to longest time scale.

Set Shortage Tier &3

Bl B |setshortage Tier | |RPL Set Loaded

L

v

SystemConditions.LBShortageTier [ @"24:00:00 December Max DayOfiMonth, Current Year™ |
= IF [Mead.Pool Elevation [ @"24:00:00 December 31, Previous Year" | )TI-EN
< 1025.00000000 "ft"
3.00000000
ELSE
IF [ Mead.Pool Elevation [ @"24:00:00 December 31, Previous Year™ ] THEN
< 1050.00000000 “ft"
AND Mead.Pool Elevation [ @"24:00:00 December 31, Previous Year" ]
>= Shortage.Step Shortage Mead Tier [u ; ]

0
2.00000000
ELSE
IF [Mead.Pool Elevation [ @"24:00:00 December 31, Previous Year" ] THEN

<= 1075.00000000 “ft"
AND Mead.Pool Elevation [ @"24:00:00 December 31, Previous Year" |
»= Shortage.Step Shortage Mead Tier [ 1; ]
0

1.00000000
ELSE
0.00000000
END IF
END IF
END IF

Show: [] Execution Constraint [ ] Description [ Motes [+] Comments
Execute Rule Only When

@"t" == @"24:00:00 January 31, Current Year"

AND NOT HasRuleFiredSuccessfully ( “ThisRule™ )

AND NOT IsInput (SVStemCunditions.LElShurtageﬁu = )
@"24:00:00 December Max DayOQfMonth, Current Year®

Figure 3.2

Sample rule from CRSS as implemented in RiverWare (Source: Reclamation)
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The 24-Month Study model (24MS) is an operations model developed by
Reclamation to support planning for the upcoming 24 months. 24MS began
as a FORTRAN program, was re-implemented in RiverWare in 1997, and
continues to be refined to better represent the physical system and
evolving operational policies.

The model is run every month to provide basin-wide operational updates as
hydrology and demand projections evolve. The August modeling results are
used to determine the annual operating conditions for Lake Powell and
Lake Mead for the upcoming year as reported in Reclamation’s Annual
Operating Plan for Colorado River Reservoirs (AOP). Under certain
conditions, the April modeling results may prompt adjustments to Powell
operations. The operating tiers for Lake Powell and Lake Mead determine
release volumes from Lake Powell, and also whether and by how much
deliveries from Lake Mead to Lower Basin water users and Mexico will be
reduced (under shortage conditions) or supplemented (under surplus
conditions). Operational tiers, release volumes, and water delivery
conditions were set forth in the 2007 Interim Guidelines (U.S. Secretary of
the Interior 2007) and Minute 319 (International Boundary and Water
Commission 2012), and were more recently augmented and extended by the
Drought Contingency Plan (DCP; Reclamation 2019c¢) and Minute 323
(International Boundary and Water Commission 2017). Per the Interim
Guidelines, the August 24MS projections of January 1 reservoir elevations
determine the operating tiers for Lakes Powell and Mead for the upcoming
calendar year. Subsequent April 24MS projections of September 30
elevations of Lakes Powell and Mead may result in an adjustment to the
annual release volume from Lake Powell.

The structure of 24MS is driven by its core purpose, which is to simulate
operations at 12 Reclamation reservoirs. Each 24MS simulation is initialized
with current reservoir elevations (conditions from the last day of the
previous month). Every time 24MS is run, Reclamation employees in the
Upper and Lower Colorado regional reservoir operations offices input
projected reservoir operations by hand. This manual approach takes
advantage of the expertise of reservoir operators and obviates the need for
reservoir operations logic in the model but limits the ability to incorporate
operational and hydrologic uncertainty (discussed below and in
Reclamation 2015a). The model is not exclusively manual input—in years 2
and 3 of the 24MS simulation, Lower Basin operations are automated and
driven by rules that reflect projected operating conditions for Lake Mead.
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MTOM and 24MS forecast points @1
MTOM:-only forecast points 9 O)
Upper Basin diversions Quup

NEVADA

CALIFORNIA NEW
MEXICO

MEXICO

Elevation map: The National Map (USGS)
Rivers: CAP, USGS, National Hydrography Dataset, Arizona State Land Department
Lakes in the Colorado River Basin: ESRI, USGS, EPA

Figure 3.3
Map of sub-basins and forecast points for 24MS and MTOM. The basins in the map are color-coded to match the
sub-basins shown in Table 3.1. (Source: Reclamation)
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Table 3.1

Sources of inflows used in 24MS and MTOM. The cells in the table are color-coded to match the sub-
basins shown in Figure 3.3. (See additional explanation below; Source: Reclamation)

CRSS
natural USGS Relevant 24MS/MTOM Relevant MTOM/24MS
USGS Gage Name ) .
flow Gage # forecast sub-basin forecast point
point
Colorado River At
1 Glenwood Springs, 09072500
CcO Lake Powell 12
Colorado River Near
2 09095500
Cameo, CO
Taylor River Below )
3 09109000 Taylor Park Reservoir 8
Taylor Park, CO
Gunnison River
4 Below Blue Mesa, 09124700 Blue Mesa Reservoir 7
CO
Gunnison River At Crystal Reservoir 5
5 09128000
Crystal , CO Morrow Point Reservoir
Gunnison River Near Gunnison R. gains Crystal to
6 i 09152500 ) 4%
Grand Junction, CO Grand Junction*
Dolores River Near
7 i 09180000
Cisco, UT
Lake Powell 12
Colorado River Near
8 ) 09180500
Cisco, UT
Green R Bel .
9 09211200 Fontenelle Reservoir 1
Fontenelle Res, WY
Green R. Nr Green
10 ; 09217000
River, WY
- Flaming Gorge Reservoir 2
Green River Near
11 09234500
Greendale, UT
Yampa River Near
12 09251000 )
Maybell, CO Yampa River at Deerlodge 3
Little Snake River Park*
13 ] 09260000
Near Lily, CO
Duchesne River Near
14 09302000
Randlett, UT
White River Near
15 09306500 Lake Powell 12
Watson, UT
Green River At Green
16 09315000

River, UT
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CRSS
natural
flow

point

17

18

19

20

21

22

23

24

25

26

27

28

29

NA

USGS Gage Name

San Rafael River Near
Green River, UT
San Juan River Near
Archuleta, NM
San Juan River Near
Bluff, UT

Colorado R At Lees
Ferry, AZ

Paria River at Lees
Ferry, AZ
Little Colorado River
near Cameron, AZ
Colorado River near
Grand Canyon, AZ
Virgin River at
Littlefield, AZ
Colorado River below
Hoover Dam, AZ-NV
Colorado River below
Davis Dam, AZ-NV
Bill Williams below
Alamo Dam, AZ
Colorado River below
Parker Dam, AZ-CA
Colorado River above
Imperial Dam, AZ
(CRSS only extends

to Imperial)

USGS
Gage #

09328500

09355500

09379500

09380000

09382000

09402000

09402500

09415000

09421500

09423000

09426000

09427520

09429490

Relevant 24MS/MTOM
forecast sub-basin

Vallecito Reservoir
Navajo Reservoir
Animas R. at Durango*
Lake Powell
Lake Powell
Gains Powell to Lees Ferry

Gage (not visible on map)

Gains above Grand Canyon

Gains above Hoover
(Lake Mead)

Gains above Davis
(Lake Mohave)

Gains above Parker

(Lake Havasu)

Gains Parker to Imperial

Gains Imperial to Northerly

International Border

Table 3.1 summarizes how water is aggregated in CRSS via natural flow

points versus how it is aggregated in 24MS and MTOM via forecast points.
The colors in the two right-most columns correspond to the colors of the
MTOM /24MS sub-basins in Figure 3.1. In general, the table conveys spatial
relationships and does not imply that natural flows are used directly to
derive 24MS /MTOM forecasts (which are generated by the CBRFC).
Forecast sub-basins /points with an asterisk (*) only exist in MTOM,; the

RiverWare rules used by MTOM need these sub-basins to approximate how
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10
11
9*
12
12

13

14

15

16

17

18

19
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the reservoir operators use gage information when running the 24MS
manually.

Inflows

Streamflow “forecasts” used in 24MS runs are actually flow sequences
constructed by piecing together flows from some or all of the sources listed
in Table 3.1.

ESP flow sequences are created by initializing the CBRFC models with
current basin conditions (e.g., soil moisture, antecedent streamflow,
snowpack). Then, historical 1981 to 2015 temperature and precipitation data
are used to drive the CBRFC streamflow forecast modeling workflow,
generating 35 equally likely 60-month forecasts from those initial
conditions (Powell 2015). “Official” CBRFC forecasts combine near-term
temperature and precipitation forecasts, ESP modeling, and expert
forecaster analysis, the latter of which sometimes refines the forecast
based on anticipated upcoming storms. The ESP and official forecasting
procedures used by the CBRFC are described in more detail in Chapter 8.

24MS is run every month to generate “most probable” projections of
reservoir levels. The inflow sequences used in these runs are constructed
differently depending on the month. Figure 3.4 shows how construction of
the Upper Basin most probable deterministic flow sequence varies over the
course of a water year. To aid understanding of Figure 3.4, the October,
January, and June sequences are described below.

In October, median flow values for the first three months are taken from
the official forecasts provided by the CBRFC; for the rest of Year 1 (always
defined as the span from the current month through the upcoming
September), the monthly running median of the ESP forecast is used; Year 2
(always defined as the span from the upcoming October through following
September) uses 30-year climatology except for October and November
where a linear interpolation between the median ESP forecast value for
September and climatology for January is used to smooth the sequence.
This method uses actual forecasted values in the first three months only, it
does not use or reflect actual forecasted values in the other months.

For January runs of the 24MS most probable run, flows for the first three months
are again taken from median CBRFC official forecasts. April through July flow
values are the median monthly values from the CBRFC’s April-through-July runoff
forecasts. Starting with the August flow value, the flow sequences then revert to
the same procedure used for the October flow sequences: median ESP through
September followed by interpolation to climatology in Year 2 and beyond.

For the June most probable 24MS run, the first three months’ flows are
median CBRFC official forecasts followed by median ESP values for
September through Year 2.
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RFC values are issued by the Colorado Basin River Forecast Center (RFC) as the official forecast values for the next three-month period of time.
The values are calculated using Ensemble Streamflow Predictions (ESP) modeling and/or Statistical Water Supply (SWS) maodeling.

Official A-J values are official forecast values issued by the RFC for the April-July runoff period using SWS and ESP. Apr-Jul water supply
forecast volume is disaggregated by the RFC.

30-yr Avg values are the monthly average inflow values from the most recent 30 water years which is rolled forward every 10 years on the X3(X1
year of each decade. For example, the 30-year average for 2014 would be 1981-2010. This data is calculated using a database maintained by the
Bureau of Reclamation Upper Colorado Region (UCBOR). A water year begins October 1 and ends September 30.

Interpolated values are calculated by UCBOR and are based on percent of the 81-10 average. The method takes the percent of average of the
previous month's forecast value and interpolates over two months to the percent of average for the month following the interpolation period. This

is done to smoothly transition between the end of the current water year and the next water year.

ESP monthly values are generated using the RFC ESP forecasted volume for the water year using the current month's initial hydrological
conditions. The RFC provides monthly volumes consistent with the 3-month forecast and the water year ESP volume.

Figure 3.4

24MS Most Probable Forecast construction methods for Upper Colorado unregulated inflows.
(Source: Reclamation)

Lower Basin flow sequences for the most probable 24MS run are based on
historical intervening flows. These are flows that have been calculated
using mass balance between upstream and downstream gages. For each
Lower Basin inflow, a trace is constructed by stringing together each
month’s 5-year average flow from the preceding five years. For example,
the May inflow used in this run would be the average of the previous five
May intervening flows and the June inflow would be the average of the
previous five June intervening flows, etc. This is true for Years 1 and 2 and
beyond.

In January, April, August, and October, two additional 24MS simulations are
performed to characterize the uncertainty associated with the forecast;
these are the “maximum probable” and “minimum probable.” The flow
sequences for these runs use the same data sources but in most places use

Chapter 3. Primary Planning Tools

92



percentiles instead of averages. For the Upper Basin, the maximum
probable traces are constructed using the 90t percentile of the CBRFC's
official forecasts, April-through-July forecasts, and ESP forecasts in Year 1,
then linear interpolation is used to match up with the 75" percentiles of
monthly values from the 1981-2010 record. Year 3 (when modeled) reverts
back to the 30-year average. The minimum probable traces are constructed
the same way as the maximum probable traces except that they start with
10t percentile flows in Year 1, go to 25" percentile flows in Year 2, and then
revert back to 30-year average flows. The percentiles used for maximum
and minimum traces step back toward the mean because it is assumed that
multiple years of extreme conditions in a row will not occur.

In January, April, and October, the maximum probable Lower Basin flows
are constructed by stringing together flows corresponding to the 90th and
75th percentiles of the monthly flows from the preceding five years for
Years 1and 2, respectively, then reverting back to the average for Year 3
(i.e., the procedure for the most probable traces is used in Year 3). In a
similar fashion, the 10th and 25th percentile flows are used to construct the
flow sequence for the minimum probable trace. For August runs, the
months of August and September use 5-year averages even for the
maximum and minimum probable, and then Years 2 and 3 use 90th and
75th or 10th and 25th percentiles, respectively. Only the runs using the
most probable flows are used for setting operational tiers.

Demands

Reclamation does not explicitly model Upper Basin water use in 24MS, but
the unregulated inflow forecasts provided by the CBRFC have the impacts
of some upstream uses in them (any “unmeasured” depletions and return
flows are still represented in the inflows; the CBRFC’s unregulated
streamflow development is discussed in more detail in Chapters 5 and 8).
There are three exceptions: the 24MS model’s projections of monthly
diversions from the Gunnison Tunnel, the Azotea Tunnel, and the Navajo
Indian Irrigation Project (NIIP); the unregulated inflows provided by the
CBRFC have not been depleted by those diversions. Lower Basin demands 24MS output
are modeled based on monthly schedules provided by water users. Water

users provide updated schedules throughout the year. Look for links under

the heading “2-Year

Output Projected
Output from 24MS consists primarily of monthly projected reservoir Operations” at
elevations, releases, and power generation. These results are posted in https://www.usbr.go

v/Ic/riverops.html for
monthly tabulated
24MS output.

tabular form to the Reclamation website each month and provide decision
support for basin stakeholders. Example 24MS output showing projected
elevations in Lakes Powell and Mead from January, 2020 runs are provided
in Figure 3.5 and Figure 3.6, respectively.
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Example 24MS output for Lake Powell
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Figure 3.6

Example 24MS output for Lake Mead. (Source: Reclamation)
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MTOM was developed in 2015 to enable Reclamation to simulate reservoir
operations under a wider range of potential future streamflow than is used
in 24MS (Bracken 2011; Reclamation 2015). The 24MS model is limited in its
ability to incorporate hydrologic and operational uncertainty because it is a
deterministic model that uses a single hydrologic trace and reservoir
operations must be input manually. MTOM addresses this by using an
ensemble of hydrologic traces and rules that execute reservoir operations
throughout the basin in accordance with the Law of the River. The rules
and their relationships are designed to mimic the process used to run the
24MS model (Reclamation 2015a). The current operational use of MTOM is
to inform CRSS when generating 5-year projections (Reclamation provides
the output of MTOM modeling upon request). Though the ability to use
ensembles is advantageous for some purposes, MTOM cannot replace 24MS
because current policy explicitly states that the most probable projections
from 24MS will be used to set operations at Lakes Powell and Mead (U.S.
Secretary of the Interior 2007; International Boundary and Water
Commission 2017; Reclamation 2019¢). Reclamation is currently working
toward making MTOM projections more prominent and readily available.

Inflows

Like 24MS, MTOM runs are initialized with current reservoir conditions and
the model takes unregulated streamflow forecasts as Upper Basin inflows.
However, MTOM can use any number of hydrologic traces of 1to 5 years in
length instead of just one. MTOM’s structure is almost identical to that of
24MS; it includes the same 12 reservoirs and inflow locations but has three
additional forecast points in the Upper Basin: Yampa River at Deerlodge,
Gunnison River gains between Crystal Reservoir and Grand Junction
(including the North Fork of the Gunnison), and Animas River at Durango.
These points were added to the model’s structure and rule logic to
automate a process that had been done manually in 24MS. Table 3.1 and the
map in Figure 3.3 show these additional forecast points.

Demands

Water use and demands used in MTOM are also similar to those used in
24MS—only three Upper Basin diversions are projected in the model.
However, the impacts of some use are represented in the unregulated flow
forecasts provided by the CBRFC (see Chapters 5 and 8). Lower Basin
demands are equal to the demand schedules provided by the Lower Basin
states (Reclamation 2015a) in the current year of operations, and may be
adjusted in the out years for different operating conditions.
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MTOM is most commonly run using the 35 traces that make up the CBRFC's
ESP forecasts but has more recently also been run with experimental
forecasts (Baker 2019).

Output

MTOM output includes inflows, releases, reservoir contents, deliveries to
water users, and indicators of operational conditions that are key to
implementing the Interim Guidelines (Powell 2015). Currently, the most
common use of MTOM is to initialize CRSS to produce 5-year projections of
system conditions. See the “Development of five-year projections” section
of this chapter for further information and an example of MTOM-CRSS
output.

Reclamation’s first effort at computer simulation of the Colorado River
system was in 1969, as part of studies to support the Long Range Operating
Criteria negotiations (Reclamation 1969). That work was followed by
Reclamation’s development of the Colorado River Simulation Model in the
1970s, written in FORTRAN. A database of model inflows and demands was
developed in the 1980s and the combined modeling tool—basin model plus
database plus output utility—was called the Colorado River Simulation
System, or CRSS (Reclamation 1983). CRSS was implemented in RiverWare
in 1996 with essentially the same spatial and temporal resolution as the
original FORTRAN model (Reclamation 2010). Over the years, features have
been added to CRSS that have improved its user interface, analysis
capabilities, database management system, and output summarization
capabilities. CRSS is also updated to represent new or refined information
about the system, e.g., physical relationships and new operational policies.
Note that water salinity is also simulated in CRSS, but that capability is not
discussed in this report.

CRSS enables Reclamation to explore impacts to the basin under different
supply, demand, and policy configurations for years to decades into the
future. It has been used for policy analyses in dozens of studies, including
the Interim Guidelines EIS (Reclamation 2007f), the Basin Study
(Reclamation 2012e), Minutes 319 and 323 (International Boundary and
Water Commission 2012; 2017), and the Colorado River Basin Ten Tribes
Partnership Tribal Water Study (Reclamation 2018). Most recently, it was
used to provide guidance for basin-wide drought contingency planning
(Reclamation 2019c). CRSS is currently being used in studies of how climate
change hydrology derived from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) affects future projections (Chapter 11). It is also
currently used in conjunction with 24MS or MTOM, or both, to generate
official 5-year projections.
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The Upper Basin reservoirs in CRSS are slightly different from those
represented in 24MS and MTOM: Fontenelle, Flaming Gorge, Starvation
(which is a lumped representation of multiple smaller reservoirs), Taylor
Park, Blue Mesa, Morrow Point, Crystal, Navajo, and Powell (Vallecito is only
in 24MS and MTOM while Starvation is only in CRSS). The Lower Basin
reservoirs are the same: Mead, Mohave, and Havasu.

CRSS simulations always start in January. When running the model in any
month other than January it is initialized using projections from the 24MS
or MTOM of December 31 of the current year, and the CRSS simulations
start in January of the following year. Reservoir operations are simulated
via rulesets reflecting either current Law of the River or potential future
alterations to operations.

Inflows

Of the 29 inflow points in CRSS, 14 are upstream of Reclamation’s
headwaters reservoirs and 15 are intervening flows along reaches within the
model (Reclamation 2007a). The map in Figure 3.7 shows the inflow points
represented in CRSS. The inflow points on the map correspond to the USGS
gages listed in Table 3.1. Table 3.1 also describes the relationships between
CRSS inflow points and the forecast points used in 24MS and MTOM.

Unlike the inflows to 24MS and MTOM, which are based on unregulated
inflow forecasts from the CBRFC, CRSS uses natural flow as streamflow
inputs. The terms “unregulated” and “natural” describe the level of
upstream human activity remaining in the inflow datasets after
naturalization calculations are made. The CBRFC unregulated inflows,
described in detail in Chapters 5 and 8, are forecasted streamflows that are
adjusted for upstream measured diversions, imports, and reservoir
regulation. They do not account for upstream unmeasured uses or
unmeasured return flows. In contrast, in the CRSS natural flow dataset,
observed streamflows are naturalized by backing out both measured and
unmeasured impacts, including consumptive uses, imports, and reservoir
operations (see Chapter 5 for details about naturalization).

The CRSS streamflow paradigm allows Reclamation to simulate reservoir
operations under long-term projections of both supply and demand.
Hundreds of historical and theoretical inflow time-series or traces have
been analyzed in CRSS to evaluate system impacts under different
hydrologic assumptions. These assumptions generally fall into three
categories: observed hydrology, paleohydrology, and climate change-
informed hydrology. Development and use of data in each of these
categories is described in detail in Chapters 5, 9, 10, and 11 of this report.
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Elevation map: The National Map (USGS)
Rivers: CAP, USGS, National Hydrography Dataset, Arizona State Land Department
Lakes in the Colorado River Basin: ESRI, USGS, EPA

Figure 3.7
Map of CRSS inflow points. See Table 3.1 for details about each inflow location. (Source: Reclamation)

Chapter 3. Primary Planning Tools 98



Demands

The 115 delivery points in CRSS represent about 500 water users
throughout the basin across all sectors. In the Lower Basin, each mainstem
user is individually represented. In the Upper Basin, nodes often represent
spatial aggregations of many water users. To understand representation of
water use in CRSS it is necessary to distinguish between demand (volume
of water needed to meet identified uses), diversion (volume of water
withdrawn from the river system), and depletion (volume of water that is
diverted and not returned to the river after use). In the Upper Basin, long-
term demand projections that increase over time are provided to
Reclamation by the Upper Colorado River Commission (UCRC). The official
projections currently used were developed in 2007. These demands are
modeled in CRSS via diversion and depletion schedules provided by the
states (Reclamation 2007d). The Upper Basin states produced updated
depletion schedules in 2016 for eventual incorporation into Reclamation
models (see callout box; S. McGettigan, pers. comm.). In exploratory
studies, a variety of future demand scenarios are tested in CRSS to
understand system response to climatic and social impacts on demands
(Reclamation 2012b).

In CRSS, when there is not enough water, users in the Upper Basin
experience shortage. Because CRSS does not model water allocation based
on water rights, the Upper Basin shortages occur to the aggregated
demands, irrespective of seniority, and therefore are not reported as
shortages to individual demands.

For the Lower Basin states and Mexico, there are multiple diversion and
depletion schedules that allow CRSS to model water use under surplus
conditions, normal conditions, and the prescribed reductions under
specific shortage conditions. Per the Interim Guidelines (U.S. Secretary of
the Interior 2007), all Powell and Mead operating conditions are
determined based on August projections of January 1 elevations. For long-
term studies, CRSS does not replicate an August projection, it sets the
upcoming year’s operating conditions using its “actual” modeled January 1

reservoir contents. Additionally, the Lower Basin states and Mexico provide

Intentionally Created Surplus (ICS) and Intentionally Created Mexican
Allocation (ICMA) schedules and assumptions, respectively, that may
increase or decrease deliveries in any given year.

Output

Typical CRSS simulations yield time series of reservoir releases, water
surface elevations, hydropower generation, consumptive uses, and
streamflows at select locations. The results of ensembles of runs are often
summarized statistically to give a sense of the distribution of potential
future conditions, as shown in Figure 3.8.
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Figure 3.8
Example CRSS results. (Reclamation 2018)

For studies that look beyond Year 1, 24MS or MTOM is combined with CRSS
to take advantage of the capabilities of all three models. A key example of
this is the generation of official 5-year projections. The combined modeling
approach for those studies is shown in Figure 3.9.

Because MTOM has demonstrated skill at 1- to 2-year lead times (Baker
2019), Reclamation uses it, with ESP forecasts, to simulate the first year,
yielding 35 projections of end-of-year reservoir elevations. Those
projections are then used to initialize CRSS. Each initialized CRSS run uses
multiple, long-term naturalized flow traces generated by the index
sequential method. (The index sequential method, or ISM, is described in
Chapter 9.) Besides its demonstrated skill, an additional advantage to
simulating the first year in MTOM is that it incorporates uncertainty during
that year that, when combined with the ISM traces, represents a broader
range of potential future conditions.
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Forecast Center

Future Hydrology
Future Hydrology

Figure 3.9

Schematic showing how MTOM and CRSS can be coupled to perform five-year projections.
December 31 projections from 24MS are used instead of MTOM projections toward the end of the
calendar year when there is little uncertainty. (Source: Reclamation website page “Colorado River
System 5-Year Projected Future Conditions, https://www.usbr.gov/Ic/region/g4000/riverops/crss-
Syear-projections.html, 2019)

Example output from combined MTOM-CRSS runs made in August, 2019 is
provided in Figure 3.10 below. In this example, 35 unregulated inflow
forecast traces from the CBRFC were used in MTOM to simulate 35 sets of
potential December 31, 2019 reservoir elevations. These 35 sets provided a
distribution of potential December 31, 2019 reservoir elevations and became
the initial reservoir conditions used in CRSS, with ISM sequences, to
simulate years 2020 through 2024. This modeling workflow generates a
distribution of different operational conditions through 2024.
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Percent of Traces with Event or System Condition. Results from August 2019 CRSS (Updated December
2019) using the Full Hydrology (resampling of the full natural flow record 1906-2017).

Event or System Condition 2020 2021 2022 2023 2024

Upper Basin - Lake Powell

Equalization Tier {Powell >= Equalization [EQ] Elevation) 13 268 24 30 27
Eguslization - annual relesse = §.23 maf 13 28 24 25 28
Equalization - annual release = 8.23 maf L] 1] 1] <1 <1

Upper Elevation Balancing Tier (Fowell < EQ Elevation and == 3,575 ft) a7 T2 59 53 55
Upper Elevation Balancing - annual release > 8. 23 maf = 39 35 34 32
Upper Elevation Balancing - annual release = 8.23 maf g4 33 24 18 23
Upper Elevation Balancing - annual release < 8.23 maf Li] Li] Li] <1 a

Mid-Elevation Release Tier (Fowell < 3,575 and == 2,525 ft) 2 2 17 16 18
Mid-Elevation Release - annusal release = 8.22 maf L] L] L] 0 2
Mid-Elevstion Release - annual release = 7.48 maf L] 2 17 16 14

Lower Elevation Balancing Tier (Powell < 3,525 ft) L] L] L] <1 2

Below Minimum Power Pool (Powell < 3,430 ft) a a L] a a

Lower Basin - Lake Mead

Surplus Condition - any amount (Mead »= 1,145 ft) Li] Li] T 12 19
Surplus - Flood Control L] L] <1 3 3
Mormal Year or ICS Surplus Condition (Mead < 1,145 and = 1,075 ft) 100 95 69 54 45
Recovery of DCP ICS / Mexico's Water Savings (Mead === 1,110 ft) L] 9 19 27 32

DCP Contribution / Mexioco's Water Savings (Mead <= 1,080 and > 1,075 ft) 100 Ta 44 | 25
Shortage Condition - any amount {Mead <= 1,075 ft) 1] 4 24 33 a7
Shortage / Reduction - 1st Level (Mead <= 1,075 and »= 1,050 ft} L] 4 24 26 23
DCP Contribution / Mexico's Water Savings (Mead <= 1,075 and == 1,050 ft) L] 4 24 26 23
Shortage / Reduction - 2Znd Level (Mead < 1,050 and >= 1,025 ft) 0 0 0 7 1
DCP Contribution / Mexico's Water Savings (Mead < 1,050 and = 1,045 ft} 1] 1] 1] 3 a8

DCP Contribution / Mexico's Water Savings (Mead <= 1,045 and = 1,040 ft) L] L] L] 2 =1

DCP Contribution / Mexico's Water Savings (Mead <= 1,040 and = 1,035 ft) L] L] L] <1 2

DCP Contribution / Mexico's Water Savings (Mead <= 1,035 and = 1,030 ft) L] L] L] 2 =1

DCP Confribution / Mexico's Water Savings (Mead <= 1,030 and === 1,025 ft) 0 0 0 0 <1
Shortage / Reduction - 2rd Level (Mead =< 1,025 i) L] L] L] 0 3
DCP Contribution / Mexico's Water Savings (Mead </<= 1,025 ft} L] L] L] 0 3

Figure 3.10

MTOM-CRSS output example. The figure shows the percent of traces with event or system condition.
Results from August 2019 MTOM/CRSS using the full natural flow record. (1906-2017) (Source:
Reclamation webpage “Colorado River System 5-Year Projected Future Conditions”
https://www.usbr.gov/lc/region/g4000/riverops/crss-Syear-projections.html
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3.3 Uncertainty and error

The purpose of Reclamation modeling is to project future system
conditions given varying inputs and operations. In the short-term, e.g.,
when running 24MS, the inputs are forecasts that incorporate some skillful
knowledge of upcoming hydrology, water use, etc. For mid- and long-term
modeling, inputs are based on ranges of possible futures. Any projection of
the future is inherently uncertain, but uncertainty increases as projections
go further out. Simplifications and assumptions required to model the
system also introduce uncertainty into projections. Since both the input
data and the representation of the system are imperfect, there are
uncertainties at each step. Though each of the Reclamation models handles
uncertainty differently, they are all impacted by four primary sources:
streamflow, initial conditions, water use and demand, and reservoir
operations.

Of the four sources, uncertainty in future streamflow has the largest
impact on system projections. The three Reclamation models take inflows
that have been developed through multiple methods applied to many
different data types. Each inflow dataset has a provenance that reflects the
availability of primary data, intermediate analytical techniques and models,
and the goals of the application of the dataset. The inflow datasets are
discussed in detail in Chapters 5, 8, 9, 10, and 11.

24MS and MTOM both currently use unregulated streamflow generated by
the CBRFC. The observations, historical relationships, and assumptions
built into their forecasting framework all aggregate into the streamflow
Reclamation uses in its models. Reclamation contributes additional
uncertainty to streamflow inputs to 24MS and MTOM by, for example,
using historical averages for Lower Basin flows, calculating intervening flow
through a mass balance calculation, and interpolating between CBRFC
products. For studies using 24MS, uncertainty is acknowledged four times
per year by simulating probable minimum and maximum hydrology (in
January, April, August, and October). Annual Year 1 streamflow uncertainty
decreases throughout the year as snowpack and temperature conditions
develop. The case is the same with MTOM, although it is always run with
ensemble hydrology and results are presented as probabilistic views of a
range of possible outcomes rather than as a single outcome.

Historical natural flow used in CRSS has different sources of uncertainty
than unregulated flow. It is a purely derived product; Reclamation uses data
collected from USGS and other operators’ gage sites, consumptive use
records, records of reservoir storage and releases, and other data to
compute the natural flow. Simplifications in all of these data sources
propagate through the computation. Intervening natural flows have
additional uncertainty because they are calculated via mass balance

Chapter 3. Primary Planning Tools

103



between measured flows and become catchalls for residual errors in
groundwater interactions and non-natural components of the upstream
inflows, such as reservoir evaporation and bank storage, rather than
reflecting natural gains and losses exclusively. Reclamation is aware of
these issues; their work plan includes additions or refinements to estimates
of Upper Basin irrigated acreage and evapotranspiration, Lower Basin
consumptive use, and both Lake Powell and Lake Mead evaporation.

Although the historical natural flow uncertainties described above do exist,
CRSS is also often driven by synthetic hydrologic inputs that attempt to
capture long-term changes. To the extent that the synthetic hydrology is
independent of the natural flows, uncertainties in generating natural flows
become less relevant, though synthetic flows also carry some level of
uncertainty depending on how they were developed.

24MS and MTOM are always initiated with current reservoir conditions so
initial conditions are not a source of uncertainty for these models. CRSS is
initialized with December 31 projections of the current year from either
24MS or MTOM. Specifically, for the August CRSS run only one set of initial
conditions from the 24MS model are used because there is little
uncertainty in the end-of-calendar-year reservoir elevations and because
the coordinated reservoir operations for the upcoming year are determined
by that 24MS run. In any other month, the CRSS initial conditions are taken
from a set of 35 MTOM projections. This uncertainty is intentional and
enables Reclamation to present a broader range of potential future
conditions.

In 24MS and MTOM, the only representations of Upper Basin water use are
the implicit unmeasured depletions and return flows left in CBRFC’s
unregulated flow forecasts and the three diversions described in previous
sections. As such, the uncertainty about water use is a function of Upper
Basin unmeasured depletions and return flows and Reclamation’s or water
users’ projections of the three diversions. In the Lower Basin, water users
provide monthly water use schedules. The uncertainty in Year 1 Lower
Basin water use can be significant early in the year but decreases as the
year progresses. Sources of water use and demand uncertainty are similar
in MTOM, but most projections are based on historical schedules and
embedded model logic so the uncertainty does not decrease over time.

Water demand assumptions for CRSS are provided by the Upper and Lower
Basin states and key water users throughout the basin. Significant
uncertainty exists when projecting future demand, but this uncertainty is
greater in the Upper Basin than in the Lower Basin because Lower Basin
water users have reached their full apportionments. Incomplete records of
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historical demand in the Upper Basin (as opposed to consumptive use,
which is computed) further confound this issue because it is difficult to
know how much projected demand deviates from historical demand. To
address this uncertainty, the 2012 Basin Study (Reclamation 2012e) adopted
a scenario planning approach to project future basin-wide water demand.
The application of such an approach represents a new paradigm in the
basin and a significant advancement in basin long-term planning.
Reclamation and the basin states recognize the importance of continued
refinement of scenario planning as part of a robust long-term planning
framework for the basin.

Reclamation’s models must represent complex operating policies, some of
which are at sub-monthly timescales, through rules, which introduce
uncertainty into projections. Some sources of uncertainty can be reduced
with sufficient information and some cannot (e.g., adaptive management
provisions for reservoirs or futures where no operational detail is
provided). Reclamation has begun using hindcasts to identify sources of
uncertainty that can be addressed. Hindcasts are performed by initializing a
model to a historical state and using perfect knowledge of “future”
conditions as inputs. This allows Reclamation to differentiate model
uncertainty from input uncertainty.

One approach to understanding uncertainty in Reclamation projections is
to compare the results of 24MS most probable runs to what actually
occurred. This is the equivalent of quantifying error in the projections due
to all uncertainties combined. Figure 3.11 shows the evolution of error in
reservoir elevation projections for 24MS runs performed each month for
the years 2008 to 2014 (Reclamation 2019b). The outlook length is longest
on the left hand side of the plot (i.e., the January projection of the
December 31* elevation 24 months in the future) and the lead time
decreases going toward the right hand side of the plot. Error is highest at
longer lead times and decreases over the course of the monthly projections.
The projected year, e.g., 2013, is used as the symbol indicating how accurate
each projection of that year was from 24 months in advance to the
simulation performed in December 2013. For example, because 2013 was a
dry year, the projection of Lake Powell’s elevation 24 months in advance
(i.e., the projection made in January 2011) was far higher than the eventual
elevation.

In general, 24MS projections are more accurate at shorter lead times,
though there are exceptions. The largest errors occurred in extreme years:
2011 was very wet while 2012 and 2013 were very dry. The year 2011 also
demonstrates how, when the forecasted Lake Powell inflow results in a
change of projected operating tiers, there can be significant implications
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for the skill of Lake Mead projections. August end of calendar year
projections, highlighted in green, averaged less than 2 feet of error for the

2008 to 2014 period.
Lake Powell 24-Month Study Projected end of December Elevations, 2008-2014
=
E 40- 20 2013
g 2012 942 sy 212 212 2012 2012 2012 2z 2 2 D12 202 12 2012
B 2013 20 2008 309
% 209 0 88 BE B 2% 88 2000 290 o 00 20 34 :
g ° I TR R
1 i_zm, 2011 2011 2011 2011 2011
& 3 2011 2011 2011 011 2004 201 38§ 29l
w
2 0
£
o
I % 8 5 B 2 2 -~ 2 2 ¥ 2 8 r 2 o @ o~ o b v o N o=
= B = = = 2 = = = T = = = z z 2 z % B I B B
§ § £ 3 § &8 & E ¥ F 2R : § § B 2 2 5 R B £ &2 &£ =
§ g 3 3 & £ 8§ £ € 8 8 2 §
g = : & B § 2 < E 3 B %
5’ i < g =] & 88 E’, fo: § o 3 2
0 z
Study Month / Outlook Length (Months)
- Lake Mead 24-Month Study Projected end of December Elevations, 2008-2014
2 Example [nterpretation
.‘é March 2009 24-Month
o 2012 2012 Study projection of
30-8 2012

2012
2010 20%0 3878 2010 2010 2010 2818 2010 2010 010 B3 2010

2009 ongg 9 2000

=

£

-

@

>

2

o

(@]

® 3 20

g 389 2014 2014 2014 2009 2009 2009 2008 2009 2000

= g 2014 ocas 2014 2013 2013 4 3 2008

s i 2014 2014 20

= -

z 2011 2011 2011 2011 Algustinigiected

2011

5—30—32011 =i 2011 2011 2011 2011 21 2l December elevation

o E- is used in

o operational decisions

8 § 2011 2011 2011

6‘ =

& 60="=, i 1 1 1 [ 1 I i 1 i 1 1 i I 1 i i 1 1 1 | 1 I
g 8 &8 s § 2 2 = £ £ 5 8 o ‘=2 S o0 b3 N 8 o
S oy gy 2 U8 & I i & O E O3 B & R & & 5B, g fE = SE o am Bh @
= = £ = = @ = g = = . = i e 5 @ E 5 E] g r Bz 2
§ § & 53 & 5§ 3 8 B & 8 B § § ¢ &£ = 3 5 B £ 8§ £ ¢
3 3 §8 2 = 3 5 ® £ ¢ & £ 3 83 =& Z &8 8 § B
5 ks = Z g ] @ 7} s 5 = 2 0O > s}
=R & 0O 5 § > @2 2 2 4

] =z 0 L2
Study Month / Outlook Length (Months)
Figure 3.11

Projections of Lakes Powell and Mead EOCY elevation compared with observed values from various

outlook lengths (each point represents a projection of December of the year shown) for the period
2008-2014. (Source: Reclamation 2019b).
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It is important to understand these errors and reduce uncertainty where
possible because of the decision-making context of 24MS. Reservoir
projections used in tier determinations can be sensitive to fairly small
errors in inputs to 24MS, particularly when Lake Powell or Lake Mead
elevations are hovering near tier thresholds. For example, 24MS currently
uses 5-year running average values for intervening flows between Lake
Powell and Lake Mead. Observed intervening flows can deviate from those
averages enough to change Mead’s elevation by a few feet, potentially
moving it from normal to shortage operations or vice versa (FROMUS;
Reclamation and Colorado Basin River Forecast Center in preparation).

As discussed above, the importance of the uncertainty underlying MTOM
and CRSS projections is conceptually different from how it impacts 24MS
because they were developed to assess risk under uncertainty. Additionally,
CRSS is often used to compare risks under different future supply, demand,
or operations scenarios, i.e., it is used to evaluate the sensitivity of the
system to different inputs or assumptions (Reclamation 2012e).

In addition to the efforts mentioned under specific headings above,
Reclamation is engaged in multiple projects to identify, reduce, or account
for uncertainty in each of the three models. In collaboration with the
CBRFC, Reclamation is preparing a report identifying the sources of error
and uncertainty associated with 24MS. The draft Forecast and Reservoir
Operation Modeling Uncertainty Scoping report (Reclamation and Colorado
Basin River Forecast Center in preparation) addresses over a dozen
parameters, summarizes the cost and time required to reduce the error and
uncertainty in each of them, and estimates the impact that reduction would
have on 24MS projections.

A version of MTOM was adapted to be run in “verification mode” to
produce hindcasts as part of recently completed research that uses MTOM
as a testbed for experimental hydrology forecasts (Baker 2019). Results of
the hindcasting are currently being drafted in a Reclamation report. MTOM
will continue to be refined as further studies are completed.

A CRSS verification model has also been developed, but hindcast studies are
in preliminary phases. Finally, because long-term hydrologic uncertainty is
extremely large and cannot be reduced, Reclamation continues to explore
decision-making under deep uncertainty (DMDU) methods similar to the
robustness concepts used during the 2012 Basin Study (Reclamation 2012e).
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3.4 Limitations due to simplification

All models of river basin systems have limitations because they are
simplifications, in both space and time, of complex physical and
institutional processes. Simplification is clearly reasonable but it can
introduce error that affects the ability of Reclamation and others to
accurately simulate the Colorado River Basin and limits the level of analysis
that can be performed.

Natural flows in the Upper Basin are represented by aggregating large
runoff-producing areas on the Colorado, Green, and San Juan rivers. This
level of spatial resolution was set with the original FORTRAN model built in
the 1980s (Reclamation 1983) and has changed very little (the current
version contains an additional inflow point on the Taylor River). Wheeler,
Rosenberg, and Schmidt (2019) describe in detail the implications of both
the spatial and temporal resolution on the utility of CRSS for particular
types of analyses in the Upper Basin. They assert that the coarse resolution
of CRSS in the Upper Basin is “inappropriate for use in resolving water
supply and environmental tradeoffs in many tributary watersheds such as
the upper Colorado, Dolores, Yampa, Little Snake, Duchesne, White, San
Rafael, Little Colorado, or Virgin River watersheds” (Wheeler, Rosenberg,
and Schmidt 2019). It is also true, however, that CRSS was not designed to
perform those types of analyses and was rather designed as a tool for long-
range basin planning centered on the federal reservoirs. The impacts of
CRSS’s coarse resolution in the Upper Basin on scenario outcomes have not
been studied.

The development and limitations of natural flows are discussed in further
detail in Chapter 5.

The treatment of Lower Basin tributaries in CRSS limits the ability to fully
assess the natural water supply of the basin (Reclamation 2012e). For four of
the inflow points below Lees Ferry (the Paria, Little Colorado, Virgin, and
Bill Williams rivers), CRSS uses historical inflows (not natural flows) based
on USGS streamflow gages. In addition, the Gila River is not included in
CRSS, making the uncertainties associated with the Gila River and the other
Lower Basin tributaries and how they may contribute to system reliability
difficult to discern (Lukas, Wade, and Rajagopalan 2013).

Since the 2012 Basin Study, Reclamation has been engaged in efforts to 1)
resolve and correct, in collaboration with the basin states, the
methodological and data inconsistencies in Reclamation’s Consumptive
Uses and Losses Reports pertaining to all of the Lower Basin tributaries
(Reclamation “Plans & Reports” n.d.); 2) develop natural flows for the Little
Colorado, Virgin and Bill Williams rivers and modify CRSS to use natural
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flows for those tributaries; and 3) explore the feasibility and usefulness of
computing natural flows for the Gila River Basin and the feasibility and
usefulness of adding that basin to CRSS. See Basin Study supplements
Appendix C11 and Tech Report C (Reclamation 2012a; 2012d) for more-
detailed discussions of these issues.

The spatial and temporal detail of CRSS (and 24MS and MTOM,) limit the
ability to assess impacts to basin resources, in particular water deliveries
and shortages in the Upper Basin and ecological resources (Reclamation
2012e). For example, over 4,000 square miles of watershed above Glenwood
Springs are simplified, lumping headwater reservoir operations, major
exports to the Front Range, and over 100,000 acres of irrigated agriculture
at one node. Limitations due to the spatial simplifications of CRSS are also
described by Wheeler, Rosenberg, and Schmidt (2019). Such simplifications
require that natural systems are evaluated through approximations at
larger spatial scales and longer time steps (e.g., monthly versus daily) than
preferred or required for more detailed assessments.

Simplifications in CRSS’s institutional representation of the basin also result
in limitations. For example, CRSS tracks shortages in the Upper Basin when
the flow is insufficient to meet the local demands as opposed to simulating
the complex water rights system in each state that would be needed to
appropriately model shortages to individual water rights holders. In
addition, CRSS does not have the capability to assign Upper Basin shortages
in the event that a “Compact Call” is modeled; in such cases CRSS injects
deficit water directly above Lake Powell.

The implications of this limitation were made clear in the 2012 Basin Study
and in the 2018 Ten Tribes Partnership Study. During the 2012 Basin Study
analyses, it was discovered that two senior downstream water rights in
Colorado were subject to shortages in the model despite their priority,
because CRSS allocates water sequentially from upstream to downstream.
This issue was identified and rectified by modifying CRSS to ensure that
these two particular senior rights (the Shoshone Power Plant and the
senior users from the Grand Valley Irrigation Company) were satisfied
before upstream rights received water (Reclamation 2012f). In the 2018 Ten
Tribes Partnership Study, to partially address the water rights concern, the
CRSS representation of a tribal diversion on the Duchesne River was moved
upstream to ensure that it received its senior allocation, and the State of
Colorado’s StateMod model was used for simulation of tribal rights on the
San Juan River in order to ensure the proper allocation to water rights in
that basin (Reclamation 2018).

The general areas of uncertainty, error, and limitations noted above begin
with the input data and extend through the representation of the
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institutional setting. As noted, in most cases, the areas present
opportunities for additional research and development and improvement of
model representation and available data. Reclamation continues to pursue
these opportunities, as appropriate, in an effort to continually improve
their modeling capabilities.

3.5 Challenges and opportunities

Each Reclamation model (24MS, MTOM, and CRSS) has different ways that
uncertainty can be better quantified and either addressed or incorporated.
In particular, each model uses a more simplistic method for projecting
future inflows in the Lower Basin than in the Upper Basin (5-year averages
for 24MS and MTOM rather than a forecast, and gaged flow in CRSS rather
than natural flow). In the Upper Basin, demand projections may differ from
actual water use trends and the representation of complex operating
policies via rules deployed at the monthly time step may further contribute
to this deviation. Finally, more in-depth analyses are needed to verify how
well modeled operational policies reflect actual operations. (Challenges
associated with hydrologic uncertainty are described in Chapters 5, 8, 9, 10,
and 11.)

Opportunities

e Complete FROMUS report and update its findings as models are
refined.

o Work with the CBRFC to develop unregulated flow forecasts for the
Lower Basin.

¢ Continue to work toward commitments outlined in the Colorado River
Basin Study regarding the development of natural flows in the Lower
Basin.

o Work with Upper Basin states, water users, and tribes to refine long-
term demand projections.

e Complete hindcasting studies that can help identify how simplifications
in Reclamation’s models contribute to projection error.

The coarse spatial resolution in CRSS has implications for studying
demands and tributary flows. In the Upper Basin, water demands are
represented in highly aggregated nodes and do not reflect water right
priorities, which limits the ability to accurately model shortages to specific
users under different scenarios. On the Lower Basin tributaries, because
gaged flow is used rather than natural flow, demands are not explicitly
modeled. CRSS uses a monthly time step that limits the ability to analyze
the impacts to certain resources, in particular, ecological resources.
Additionally, the exclusion of smaller tributaries limits the analyses that can
be performed with CRSS.
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Opportunities

Review the configuration, number of nodes, and rules in the Upper
Basin to explore implementing an allocation system that captures the
distribution of water supply by water rights priority.

The quality, coverage, and resolution of data that is used to naturalize
inflows has improved and might support model disaggregation in both
time and space.

Explore iterative sub-basin implementations that are solved at shorter
time scales or finer resolutions and that may be aggregated and fed into
existing nodes in CRSS.

Reclamation models are complex and the projections they generate are the
product of combinations of many data sources and assumptions. It is
critical that stakeholders and the public understand the uncertainty and
how this uncertainty affects projections of risk in order to ensure the
appropriate use of the results for decision making. Reclamation continues
to work toward improving such communication but there is room for
improvement. Additionally, the models are not comprehensively
documented, despite their critical importance in Colorado River Basin
management and planning.

Opportunities

Continue to improve and refine communication of model assumptions
and uncertainty on Reclamation’s modeling website and in widely
distributed modeling results (e.g., the 24MS reports).

Develop comprehensive, technical overviews of each of the models to
share how each model is configured, how the rules are implemented,
and how the inputs are derived.
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Volume Il
Primary Data and Models That Inform All Time Horizons

Chapter 4. Observations—Weather and Climate
Chapter 5. Observations—Hydrology
Chapter 6. Hydrologic Models

Volume II of the Colorado River Basin State of the Science report focuses on primary data and
models that are relevant across all time scales. While Volumes III and IV concentrate on short- to
mid-term forecasting and long-term outcomes, respectively, the data and models addressed in this
volume can be applied to Colorado River Basin studies performed at all of those time scales. The
chapters in this volume describe how primary weather, climate, and hydrology data are collected
and how datasets of other variables are built from primary data. A simple regurgitation of the vast
literature about the primary data would not serve the goals of this report. The focus, instead, is on
compiling, summarizing, and offering objective assessment of the data and the work that has been
done to make it available. The objective of this volume is to be a uniquely useful reference for
readers.

Chapter 4 is a reference for weather and climate data. It begins with a description of the methods
and equipment that have been used to collect weather data, from the installation of the first weather
stations in the basin in the late 1800s, to the emergence of remotely-sensed distributed data. It
explains how point data become gridded datasets, how missing data are treated, how large scale
data are disaggregated, which datasets have common source data, and how quantitative biases can
be introduced. Knowledge about the methods behind, and idiosyncrasies of, the datasets, along with
their strengths and weaknesses is presented to help readers determine which data sources are
better fits for their applications. The chapter provides a detailed comparison of 11 gridded datasets.
It explains things to consider when comparing values and trends from these datasets, and practical
and scientific considerations when selecting a gridded dataset.



Chapter 5 is a reference to hydrology data—snowpack, streamflow, soil moisture, evaporation, and
evapotranspiration—that are key inputs to streamflow forecasting and system modeling. Snowpack,
soil moisture, and evaporation /evapotranspiration data are all gathered using three methods—in
situ measurements, modeled estimates, and remote sensing. Chapter 5 provides a comprehensive
description of the multiple data sets developed by each method, and an explanation of the
advantages and limitations of each. Streamflow, on the other hand, has been measured in essentially
the same way across the basin since measurements commenced at the end of the 19" century:
stream gages that measure stream stage, which is subsequently translated to flow by a rating curve
that is essentially an empirical hydraulic model of the gage site. This chapter explains the
uncertainties in the gage record, which arise from measurement error but to a larger degree from
errors in the rating curves. Measured streamflows are naturalized or deregulated for use in models.
This process introduces more uncertainty, and the sources and implications of this uncertainty are
thoroughly described in this chapter. The chapter closes with a summary of challenges and
opportunities regarding hydrology data.

Chapter 6 is devoted to describing the evolution, application, and trade-offs of a number of runoff
and land surface models that are the foundation of applications at the smallest time scale,
streamflow forecasting, to the largest time scale, climate change projections. This chapter is
complemented by Chapters 8 and 11, which place hydrology models in the context of forecasting and
projection applications, and by Chapters 4 and 5, which describe the provenance and qualities of the
data used to force and validate hydrology models. The advantages and disadvantages of the
hydrology models are summarized and their usefulness for either forecasting or simulating climate
sensitivity or both is assessed. Not surprisingly, the evolution of hydrologic models follows a path of
increasing complexity, from empirical conceptual runoff models, to simple water balance models,
which led to distributed land surface models and fine-scale physically explicit models and finally to
coupled land-atmosphere models. Models of all of these types continue to be applied in the basin,
and Chapter 6 describes the models currently in use in the basin and explores emerging models and
approaches that could improve forecasting and projection. The chapter closes with an examination
of knowledge gaps, challenges and opportunities for improvement.
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Key points

e Weather and climate data are collected and interpolated for specific
reasons, so not all data and datasets are suitable for all uses. Users
should be cautious about “off-label” use of climate data and should
thoroughly investigate the suitability of data before it is applied outside
of its planned uses.

e Users of weather and climate datasets should be aware that the data
reflect average or summary conditions over their spatial and temporal
resolution and should not expect a gridded product to accurately
reflect conditions at any particular point on the landscape at any given
point in time. This is particularly true for high-relief landscapes like the
Colorado River Basin.

e Most of the existing high-resolution gridded datasets share some base
information or use similar processing, or both, so they are not strictly
independent.

e There is not now, and likely never will be, perfect weather and climate
data. Producers of climate information need to communicate, and users
should be cognizant of, the strengths and weaknesses of the data they
choose and how climate data choices influence their conclusions.

¢ Inthe Colorado River Basin, the highest elevations have the lowest
weather station densities and likely the least precise and accurate
weather information. This is especially problematic for water resource
questions, because such a large fraction of the runoff is generated at
high elevations.

4.1 Introduction

Weather and climate are important drivers of many hydrologic processes
and thus have a profound influence on water availability in the Colorado
River Basin (Nash and Gleick 1991; Christensen et al. 2004; Barnett and
Pierce 2009; Rasmussen et al. 2011; Vano, Das, and Lettenmaier 2012). There
is increasing awareness of the fact that weather and climate also influence
water demand for agricultural (Wisser et al. 2008), municipal (Kenney et al.
2008), and industrial (van Vliet et al. 2016) uses. Accordingly, any assess-
ment of hydrologic variability in the Colorado River Basin must consider the
underlying weather and climate variability in spatially and temporally
explicit ways, which makes climate data and datasets (gridded
interpolations of station observations and potentially other information)
particularly critical.

Most climate data were initially collected in the context of weather

observation in particular locations and largely for specific reasons, such as
assessing irrigation demand, evaluating water supply, or ensuring aviation
safety (Tables 4.1 and 4.2). These primarily purpose-driven measurements,
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however, are now used in much broader ways. As part of spatially extensive
networks, long-term records are used to understand spatio-temporal
variability in climate and in the hydrologic processes it influences.

Table 4.1

Planned uses and operating agencies for station networks commonly used in hydrologic research
within the Colorado River Basin.

Network/Operating Agency

Cooperative Observer
Program (COOP)

NWS via volunteers

Automated Surface Observing
System/Automated Weather
Observing System

Planned Uses

Routine weather
and climate
monitoring to track
changes, improve
forecasts, and
assist with public
safety

Aviation, weather

Citations and Information

National Oceanic and Atmospheric
Administration (NOAA) 2019; National
Weather Service (NWS), n.d.; lowa State
University, n.d.

National Weather Service (NWS), n.d.; lowa
State University, n.d.; National Oceanic and
Atmospheric Administration (NOAA), n.d.;

(ASOS/AWOS) o Federal Aviation Administration (FAA) 2019;
monitoring : . .
National Oceanic and Atmospheric
NWS/FAA Administration (NOAA), n.d.; lowa State

Snow Telemetry Network
(SNOTEL)

NRCS

Remote Automated Weather
Station Network (RAWS)

USFS, BLM, NPS, BIA, FEMA,
FWS, state

Cooperative Agricultural
Weather Network (AgriMET)

Reclamation

Colorado Mesonet
(CoAgMET)

Colorado Climate Center at
Csu

Soil Climate Analysis Network
(SCAN)

NRCS

Monitoring snow
for water resources

Fire weather
(primarily)

Agriculture; ET
calculation

Agriculture; ET
calculation

Agriculture; ET
calculation
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University, n.d.

Schaefer and Paetzold 2001; Natural Resource

Conservation Service (NRCS), n.d.

Zachariassen et al. 2003; Western Regional
Climate Center (WRCC), n.d.; National
Interagency Fire Center (NIFC), n.d.

Reclamation 2019a

Colorado State University (CSU) 2019

Schaefer and Paetzold 2001; Natural Resource
Conservation Service (NRCS), n.d.; lowa State

University, n.d.
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Network/Operating Agency Planned Uses Citations and Information

Community Collaborative
Rain, Hail and Snow Network

Doesken and Reges 2010; Reges et al. 2016;

S Precipitation "CoCoRaHS: Community Collaborative Rain,
Colorado Climate Center at measurement Hail & Snow Network” n.d.
Colorado State University via
volunteers
US Climate Reference NOAA National Centers for Environmental
Network (USCRN) Long-term climate  Information n.d.; NOAA National

monitoring Environmental, Satellite, Data, and Information
NOAA

For many purposes, however, weather station data are not sufficient.
Individual station records can contain gaps when measurements were not
made. Moreover, there is incomplete spatial coverage. To resolve these
problems, point weather data have been used to develop gridded data
products. In the development of gridded datasets, the landscape is overlain
with a grid, and station observations are interpolated or aggregated to
estimate a value for each grid cell. This process is carried out at regular
time steps (most frequently daily or monthly) for some number of years
(e.g., 1950-2010). Because multiple stations—and potentially other types of
data—are used in the development of the gridded data, the resulting
products are spatially and temporally complete, i.e., there are values for
every grid cell and the time series contain no gaps.

Within the Colorado River Basin, weather and climate data are used for a
number of purposes. First, weather and climate data are used to calibrate
hydrologic and streamflow forecast models used in scientific studies and
for water resource management decisions. Once these models have been
calibrated, weather and climate data are used as inputs to drive them.
Climate data, particularly gridded datasets, have also been used extensively
to downscale and bias-correct climate model projections that are then used
as inputs to hydrologic models. The output from these future simulations is
then used in a variety of ways to assess the reliability of water supplies in
the Colorado River Basin under a range of future climate conditions (Vano,
Das, and Lettenmaier 2012; Vano and Lettenmaier 2014; Ayers et al. 2016). In
addition to their use as model inputs, compiled weather data have been
used to analyze climate patterns and trends across the basin (Hidalgo and
Dracup 2003; Mo, Schemm, and Yoo 2009; Nowak et al. 2012) and to better
understand historical patterns of hydrologic variability (McCabe and
Wolock 2007; Woodhouse et al. 2016; McCabe et al. 2017). Climate data have
also been used in the analysis and calibration of paleoclimate proxies,
primarily tree rings, that then provide long-term histories of streamflow,

Chapter 4. Observations—Weather and Climate

Service 2007; Diamond et al. 2013

117



temperature, precipitation, and snow in the basin (Meko et al. 2007;

Woodhouse and Pederson 2018).

Table 4.2

General information about station networks commonly used in hydrologic research within the Colorado
River Basin. Network start year indicates the earliest available data collected, but not all stations in the
network have coverage back to the start of the network. The “Available Variables” column describes
the most common variables available from the network, although there can be data gaps, and some
stations may provide additional variables.

Network

Cooperative Observer
Program (COOP)

Automated Surface
Observing
System/Automated
Weather Observing
System (ASOS/AWOS)

Snow Telemetry Network
(SNOTEL)

Remote Automated
Weather Station Network
(RAWS)

Cooperative Agricultural
Weather Network
(AgriMET)

Colorado Mesonet
(CoAgMET)

Soil Climate Analysis
Network (SCAN)

Community Collaborative
Rain, Hail and Snow
Network

(CoCoRaHS)

US Climate Reference
Network (USCRN)

Available Variables

Maximum temperature, minimum
temperature, snowfall, precipitation

Temperature, pressure, wind,
dewpoint, precipitation (type, amount,
intensity), visibility, ceiling height,
other comments

Temperature, precipitation, snow
water equivalent. Usually also solar
radiation, snow depth, wind, humidity;
subset of stations: soil moisture and
temperature

Precipitation, wind, air temperature,
humidity, fuel temperature, fuel
moisture, solar radiation

Temperature, precipitation, humidity,
soil temperature and moisture, wind,
radiation

Temperature, humidity, wind,
radiation, precipitation, soil
temperature

Soil temperature and moisture,
humidity, wind, radiation,
precipitation, temperature

Precipitation, snowfall, hail, and flood
reports; some evapotranspiration

Temperature, precipitation, wind
speed, humidity, radiation, soil
temperature and moisture
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Minimum
Temporal
Resolution

Daily

Hourly or sub-
hourly; some
stations collect
1- and 5-

minute
observations

Sub-daily;
some stations
are hourly

10-minute

Some variables
at 15 minutes

5-minute

Hourly

Daily

Hourly

Network Start
Year

1890

ASOS: late
1980s/1990s,
AWOS
implemented
earlier

1979

Late 1970s,

early 1980s

Early 1980s

Early 1990s

Early 1990s

1998

2003
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Numerous approaches have been taken to provide these data in ways that
meet diverse user needs. Most data products fall into one of four main
categories: 1) in situ point data collected at weather stations, 2) statistically
interpolated data, 3) physically interpolated data (i.e., reanalyses), and

4) spatially continuous data derived from a remotely sensed product. This
chapter focuses on in situ data and statistically interpolated data, as these
are the kinds of data that have been used most frequently to understand
the hydrology of the basin. However, one product discussed here, the
North American Land Data Assimilation Scheme (NLDAS-2) is derived from
reanalysis (Xia et al. 2012).

4.2 In situ observations

In situ weather station data are simply records of weather variables (e.g.,
temperature and precipitation) at specific locations. These stations are the
underlying source of all weather and climate information from the late
1800s, when the first weather stations were installed in the Colorado River
Basin, until the late 20" century, when remotely sensed climate monitoring
from satellites first became widely available (Davis 2007). Although the first
weather stations in the basin were put into place in the late 1800s, there
were relatively few stations, and their spatial coverage was quite limited
(Figure 4.1). As the number of stations has increased over time, their spatial
distribution has increased, as has the diversity of environments that they
sample in the basin (McAfee et al. 2019). That said, weather station coverage
is still more complete in river valleys where towns and cities are located,
and few high-quality stations were installed at high elevations prior to the
late 1970s or early 1980s (McAfee et al. 2019).

NWS Cooperative

Weather recording technology has also changed over time. Figure 4.2a
Observer Program

shows a COOP station in Granger, Utah from around 1930. Temperature is
measured inside a Cotton Region Shelter with a liquid thermometer. While
some COQP stations still use these sensors, others use an electronic
thermometer referred to as Maximum Minimum Temperature System or

MMTS inside a shield composed of white plates. Both can be seen in Figure
4.2b, the COOP station in Logan at Utah State University. Automated

Link:
Weather Observing System, or ASOS, stations (Figure 4.2c) also use
, https://www.weather.g
electronic temperature sensors.
ov/coop/

Almost all weather stations record daily minimum and maximum
temperature and daily precipitation (the total liquid content of all rain,
snow, and other precipitation that accumulates in a rain gage). The
intended or primary use of the station dictates where it is located, what
other variables it measures, and the temporal resolution of those data.
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Figure 4.1

Map showing stations from the Global Historical Climatology Network located in or near the Colorado River Basin
that have first record dates prior to 1950.
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Figure 4.2

Photos of (a) a COOP station in Granger, UT, taken around 1930, (b) the COOP station at Utah State University which
measures temperatures using both a Cotton Region Shelter and the Minimum Maximum Temperature System. (c) the
ASOS station at Milford, UT. Panel a is from the NOAA Photo Library. Panels b and c are from the Western Regional
Climate Center Station Pictures resource.

The need to monitor for specific reasons has led to the development of
specific weather station networks—collections of stations using very similar
instrumentation designed to measure weather for an explicit purpose. For
example, the SNOTEL network was developed primarily to assess water
resource availability in the western United States (Schaefer and Paetzold
2001). (It is possible for a station to belong to multiple networks. For
example, the weather station at Grand Junction Walker Field is an ASOS
station that also belongs to the COOP network.)

Because much of the western U.S. relies on water delivered as winter
precipitation and stored in mountain snowpacks (e.g., Christensen et al.
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https://wrcc.dri.edu/Monitoring/Stations/station_pics.php

2004), stations in the SNOTEL network are typically located in small valleys
in the mountains, where snow collects (Schaefer and Paetzold 2001).
Stations are instrumented to provide multiple measurements of the
snowpack such as snowfall, snow depth, and snow water equivalent (SWE)
that are not routinely measured at other networks. They are also often
designed to function in areas with deep snow by, for example, measuring
precipitation at heights well above 6 feet, although the World
Meteorological Organization notes that most gages are placed about 3 feet
above the surface (World Meteorological Organization 2008). Normally, the
use of tall rain gages would enhance undercatch, because wind speeds
increase with height; however, this may not influence the degree of
undercatch at SNOTEL stations because many SNOTEL sites are forested
(Serreze et al. 1999). Figure 4.3 shows the Arapaho Ridge SNOTEL station in
Colorado. The view of the rain gage relative to the surrounding vegetation
suggests that the gage is taller than three feet. The SNOTEL station also
includes a snow-depth sensor and a snow pillow, equipment that is
relatively standard for SNOTEL stations but not common in other weather
station networks.

Figure 4.3

Photo of the
Arapaho Ridge
SNOTEL site
northwest of Longs
Peak in Colorado.
(Source: Brian
Domonkos, Natural
Resources
Conservation
Service)

Tables 4.1 and 4.2 describe the characteristics of seven station networks
that are common across the western U.S. and that are frequently used to
understand hydrology and consumer demand in the Colorado River Basin.
These tables are not comprehensive; there are smaller and more localized
networks that may also be used in hydrologic analyses. In some cases, data
from smaller networks are provided via similar, more comprehensive
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networks. For example, the AgriMet webpage provides access to data from
NICENet, AgWxNet, and some state-run stations that provide similar kinds USBR Agrimet Network
of measurements (Reclamation 2019a).

Figure 4.4 shows stations in or within 6.2 miles (10 km) of the basin in the
Soil Climate Analysis Network (SCAN), and the AgriMET, CoAgMet,
SNOTEL, RAWS, and COOP networks. Only stations that reported in the 21
century (i.e., stations that have an end date later than 2000) are shown.
RAWS and COOP station locations were identified from the Global
Historical Climatology Network (GHCN) database on the basis of their
identification codes. The GHCN is an extensive collection of global weather

station data that meet minimum criteria for record length and metadata Link:

(Menne et al. 2012). Station records included within the GHCN are https://www.usbr.qov/p
subjected to automated quality control and assurance checks (Peterson, n/agrimet/ag rimetma;:;/
Vose, et al. 1998; Durre et al. 2010). agrimap.html

Although different station networks were developed for different purposes,
all station data are prone to a common set of errors. Missing data is a
common problem that occurs at both manual and automated stations
because of equipment malfunction and reporting failures. Station records
are also prone to inhomogeneities—non-climatic changes in the mean or
variance of the data—caused by changes in instrumentation, time of
observation, local surroundings, and even observers, as well as by
relocation of the entire station (Karl et al. 1986; Karl, Diaz, and Kukla 1988;
Quayle et al. 1991; Peterson, Easterling, et al. 1998; Menne and Williams
2009; Menne, Williams, and Vose 2009). Some of these inhomogeneities are
correctable, and some are not. One notable recent example of this is the
inhomogeneity in minimum temperature at SNOTEL sites caused by a
network-wide changeover to new thermometers beginning in the mid-
1990s and extending through the early 2000s (Oyler, Dobrowski, et al. 2015).

In Colorado, the change in instrumentation occurred primarily in 2004~
2006 (Rangwala et al. 2015). The change in instrumentation led to the
appearance of rapidly warming minimum but not maximum temperatures
and a correspondingly sharp reduction in the daily temperature range
(Rangwala et al. 2015). This particular inhomogeneity appears to be
correctable, either through comparison with near-by stations as in Oyler,
Dobrowski, et al. (2015), or through corrections developed by the Natural
Resources Conservation Service (Ma 2017). In general, there are any number
of mechanisms for correcting inhomogeneities (Menne and Williams 2009;
Peterson, Easterling, et al. 1998; Hamlet and Lettenmaier 2005), most of
which rely on the presence of a nearby station with a homogenous record.
Inhomogeneities may be more difficult to correct in areas where, or during
times when, there are few weather stations to compare the suspect station
against.
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Figure 4.4

Locations of presumably active weather stations in or near the Colorado River Basin. COOP and RAWS locations were
derived from the GHCN, so COOP and RAWS stations not included in the GHCN are not shown on the map.
Likewise, stations in the COOP network but that are also ASOS or AWOS stations may not be represented on this
map depending on their coding the in the GHCN.
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Inhomogeneities that develop due to gradual changes in the surrounding
environment can be more challenging to adjust for (Menne, Williams, and
Vose 2009). The presence of multiple kinds of inhomogeneities in a record,
for example, at a station that is moved from one location to another while
also being impacted by urbanization, may further complicate correcting the
record.

Precipitation measurements are also affected by undercatch, where less
precipitation is captured by the gage than actually falls. Undercatch occurs
because of 1) evaporation from the gage; 2) wetting error (i.e., water that
adheres to the sides of the gage and may not be fully measured);

3) turbulence, wherein turbulent air flow over the mouth of the gage
pushes rain drops and snowflakes away from the gage opening; and 4) for
snow, bridging across the top of the gage, which makes it more likely that
precipitation will be lost before measurement. The last can also shift the
apparent timing and intensity of precipitation if snow accumulates over the
mouth of the gage only to fall in, all at once, at a later time. The degree of
undercatch varies with the type of gage used, the use and kind of shielding,
wind speed, precipitation phase, and precipitation intensity (Adam and
Lettenmaier 2003; Goodison, Louie, and Yang 1998). Numerous studies have
evaluated catch efficiency for a range of gage and shield combinations. A
clear finding is that unshielded gages measure less rain and snow than
shielded gages (Hanson, Johnson, and Rango 1999; Rasmussen et al. 2012).
This may be of concern because some networks, like CoCoRaHS (Reges et
al. 2016) and RAWS (National Wildfire Coordinating Group 2014) use
unshielded gages. Owing to the high variability in undercatch due to
equipment combined with environmental conditions, making accurate
correction is difficult, although some attempts have been made (e.g., Yang
et al. 1998).

Although rain and snow are particularly difficult to quantify, any
meteorological measurement can contain error. Stations that are not
regularly maintained and calibrated can collect inaccurate or imprecise
data, even in the absence of damage (Leeper, Rennie, and Palecki 2015). As
with precipitation, different models of temperature sensors and logging
equipment may measure slightly different values (Lin and Hubbard 2004),
and different types of shielding on temperature sensors can also modify the
temperature observed because they differ in the degree of shading and
airflow past the temperature sensor they provide (Hubbard, Lin, and
Walter-Shea 2001). Liquid thermometers can also be subject to parallax
error (Linacre 1992), for example, when a thermometer at a fixed height is
read by observers of different heights. Measurement error associated with
other variables is also expected (Linacre 1992). Recording errors of all kinds
can also be a problem, particularly for manual stations (Leeper, Rennie, and
Palecki 2015; Menne et al. 2012; Linacre 1992).
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Consequently, another consideration in the use of station data is whether
and in what way the data have been quality controlled (QC) prior to release.
Not all networks conduct extensive QC, those that do may use different
procedures, and QC protocols may evolve over time. The AgriMet network
regularly maintains and calibrates equipment, applies automated checks to
sub-daily data collected at its stations, flags potentially erroneous values in
near real-time and then uses manual checks daily (Hamel, n.d.). The
SNOTEL network also relies on a combination of equipment maintenance,
flagging, and eyes-on evaluations of data (Kuiper et al. 2014). Other
networks, such as RAWS, may have less standardized quality control
(Zachariassen et al. 2003; Brown et al. 2011). Integrative networks typically
apply their own checks. The Global Historical Climatology Networks
investigate data records independently and in relationship to nearby
stations, typically flagging suspect data (e.g., Global Historical Climatology
Network; Durre et al. 2010; Menne et al. 2012).

In general, in situ weather station data are most appropriate for
characterizing the climate variables they were designed to measure in their
immediate surroundings, assuming that they are routinely and

appropriately maintained. However, many stations have proven to be useful Agrimet Weather
outside of their intended purpose, especially when analyzed in innovative Station Equipment and
ways. For example, SNOTEL stations are designed primarily to describe the Sensors

depth and water content of the snowpack, understand how it developed

over the course of the season, and track year-to-year variability in the ffr.
snowpack at that location. Although SNOTEL stations were not necessarily Ag rl Met
designed for long-term climate monitoring, they are generally well

maintained stations that, barring the instrumentation-related Copertve Aokl Wenher Ntwrk

inhomogeneity, would be effective in tracking temperature trends in higher Link:

elevations. RAWS stations have been used for a much larger array of https://www.usbr.gov/p
applications than originally intended (Brown et al. 2011). AgriMet stations n/agrimet/aginfo/senso
are not designed to track snowpack, most notably because they are not rs.html

usually instrumented with a snow pillow and snow-depth sensor. They are,
however, equipped with both tipping bucket and weighing precipitation
gages. When both types of precipitation measurements are available, they
can be leveraged to effectively distinguish rain and snow (Strachan 2016). In
other cases, beneficial uses have been identified for what would otherwise
be errors or weaknesses. For example, the placement of COOP stations in
populated areas has diminished their ability to track regional climate
variability (without correction), but it has allowed the detection and
quantification of urban heat islands.
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4.3 Statistically interpolated gridded data

Statistically interpolated data fill spatial gaps between existing point
measurements using a variety of techniques. Most statistically interpolated
data are aggregated to represent grids or rasters of varying spatial
resolution; however, there are some climate data provided not for regular
grids, but for irregular areas like climate divisions, counties, or basins.
Some of these irregular area products are themselves developed from
gridded products. For example, the latest (2019) version of the climate
division data are derived from a roughly 3.1-mi (5-km) resolution gridded
product called nClimGrid (Vose et al. 2014).

The interpolation used to make gridded data may be based solely on
observations, with the value at a given point based on some, usually
distance weighted, function of values at nearby stations. This is more
common for coarser resolution (> 0.5°) products. Most higher-resolution (<
10-mile) products, however, also incorporate some physiographic
information to more accurately reflect the strong influence of terrain on
spatial variability in climate. For example, all of the products described in
this chapter incorporate an adjustment for the lapse rate or expected
decrease in temperature with elevation. Different statistical methods for
interpolation are used in different products. Although they are not
discussed here, Daly (2006) provides an overview of commonly used
interpolation methods.

For most hydrologic modeling applications, relatively high-resolution
gridded data are preferable, so the focus here is on selected, commonly
used products listed in Table 4.3 and described in Table 4.4.

Table 4.3

General information about gridded data products commonly used in hydrologic research within the
Colorado River Basin. Definitions are provided in the glossary.

. Spatial Spatial Temporal Temporal
Product Name Variables P . P P . P
Resolution Coverage Resolution  Coverage
. 30 sec (~0.5 mi)
PRISMANSTd M Tmin Tmean, Tdew, o> 5 ' o5 conus Daily 1981-near
VPDmax, VPDmin, Prcp mi) present
. 30 sec (~0.5 mi)
PRISM AN81m | M Tmin, Tmean, Tdew, o 5" 55 conus Monthly 1895-near
VPDmax, VPDmin, Prcp mi) present
Tmax, Tmin, Tmean, Tdew, 1895-near
PRISMLT81m  VPDmax, VPDmin, Prcp, 30 sec (~0.5mi) CONUS Monthly e
present
VPR
. . Daily,
TopoWx Tmax, Tmin 30 sec (~0.5mi) CONUS 1948-2016
monthly
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Product Name

Livneh 2013/
Maurer 2002

Livneh 2015

gridMET

Hamlet 2005

Hamlet 2010

Daymet v. 3

Newman
gridded
ensembles

nClimGrid

NLDAS-2

Variables

Tmax, Tmin, Prcp, Wind,
SolRad & VIC-simulated
baseflow, canopy water,
ground heat flux, sensible
heat flux, latent heat flux,
net radiation, SWE, soil
moisture, surface runoff,
total ET

Tmax, Tmin, Prcp, Wind,
SolRad & VIC-simulated
baseflow, canopy water,
ground heat flux, sensible
heat flux, latent heat flux,
net radiation, SWE, soil
moisture, surface runoff,
total ET

Tmax, Tmin, Prcp, RHmin,
RHmax, SpecHum, Wind,
SolRad & derived burning
index, fuel moisture, ERC,
PDSI, rET-alfalfa, rET-grass,
VPD

Tmax, Tmin, Prcp, Wind

Tmax, Tmin, Prcp, Wind

Tmax, Tmin, Prcp, SolRad,
DaylLength, VPR, SWE

Prcp, Tave, DTR

Tmax, Tmin, Prcp

Tave, SpecHum, Prcp,
Wind, Pres, SolRad, DLWR,
& numerous land-surface
model outputs derived
from the forcing variables

Spatial
Resolution

L: 1/16° (~3.8
mi)

M: 1/8° (~7.5
mi)

1/16° (~3.8 mi)

2.5 min (~2.5
mi)
1/8° (~7.5 mi)

1/16° (~3.8 mi)

1 km (~0.6 mi)

1/8° (~7.5 mi)

5 km (~3.1 mi)

1/8° (~7.5 mi)
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Spatial
Coverage

CONUS &
Columbia
River Basin

N. America
south of 53°N
through
Mexico

CONUS

CONUS plus
Columbia
River Basin

CONUS plus
Columbia
River Basin

N. America,
north of 14°N

CONUS &
portions of
Mexico and
Canada

CONUS

CONUS, parts
of Canada and
Mexico, (125°
to 67°W, 25°
to 53°N)

Temporal
Resolution

Sub-daily,
Daily,
monthly

Daily,
monthly

Daily

Daily

Daily

Daily

Daily

Monthly

Hourly

Temporal
Coverage

L: 1915-
2011

M: 1950-
2000

1950-2013

1979-very
near
present

1915-2003

1915-2006

1980-end
of last full
year

1980-2016

1895-
present

1979-near
present
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PRISM (Parameter-elevation Relationships on Independent Slopes Model)

was one of the first higher-resolution (< 10-mile) gridded climate products

PRISM

(Daly et al. 1994, 1997, 2002, 2008), and it is one of the few to extend back to
the late 19" century. Because of its long history and good temporal

coverage, PRISM has long been considered a solid climate data choice. It
also incorporates one of the most diverse networks of stations (Table 4.4),

particularly for precipitation. Many new, higher-resolution gridded

products have been developed over the last 10-20 years. Development

decisions regarding the spatial and temporal (daily versus monthly)

resolution, the time span of the product, and which variables to supply—

[ —_———————
‘ v
CLIMATE GROUP

Link:
http://www.prism.oreg

onstate.edu/

although most supply only temperature or precipitation, or both—are made
to match the product to its intended use and the developers’ assessment of
what the underlying data can reasonably support.

Table 4.4

Input data and development methodologies used in the production of commonly used gridded climate

datasets.

Product Name

Documentation

PRISM AN81d /
PRISM AN81m

Daly, Neilson,
and Phillips
(1994); Daly,
Taylor, and
Gibson (1997);
Daly et al. (2002;
2008); Daly,
Smith, and Olson
(2015; PRISM
2016)

PRISM LT81m

Daly, Neilson,
and Phillips
(1994); Daly,
Taylor, and
Gibson (1997);
Daly et al. (2002;
2008); PRISM
(2016); Daly,
Smith, and Olson
(2015)

Input Data

All networks listed in
Table 4.2, plus Canadian
and Mexican federal
networks, numerous
smaller networks, RADAR
data, and information
from the NCEP/NCAR
Reanalysis

AGRIMET, ASOS, AWOS
& WBAN, COOP, RAWS,
SNOTEL, Canadian and
Mexican federal
networks, and stations
run by the H.J. Andrews
Experimental Forest, the
Western Regional
Climate Center, the
Minnesota Climatology
Working Group, and the
North Dakota State
Water Commission

Key methodologies

Normals are developed using
the PRISM methodology,
wherein the regression
accounts for distance to the
coast, elevation, cold-air
pooling, and boundary layer
thickness. Climatologically
aided interpretation is then
used to develop the
temporally varying datasets.
Some radar data also used to
inform precipitation.

Normals are developed using
the PRISM methodology,
wherein the regression
accounts for distance to the
coast, elevation, cold-air
pooling, and boundary layer
thickness. Climatologically
aided interpretation is then
used to develop the
temporally varying datasets.
Some information from
RADAR is also used to inform
precipitation.
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Notes & Access

PRISM aims to make a "best
estimate" given available
information. Additional details
about adjustments between
daily and monthly data for
different versions of each are
provided in PRISM (2016)
Table 5.

Access:
http://www.prism.oregonstate.
edu/ (2.5 min, free)
prism_orders@nacse.org (30
sec, $)

The LT81m version aims for
"temporal consistency" and so
uses only networks with 20+
year records.

Access:
prism_orders@nacse.org ($)
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Product Name

Documentation

TopoWx

Oyler,
Dobrowski, et al.
(2015); Oyler,
Ballantyne, et al.
(2015); Oyler et
al. (2016); Oyler,
n.d.

Livneh 2013/
Maurer 2002

Maurer et al.
(2002); Livneh et
al. (2013); NOAA
ESRL, n.d;
Livneh, n.d.

Livneh 2015

Maurer et al.
(2002); Livneh et
al. (2013, 2015);
Livneh, n.d.

Input Data

GHCN-D (incl. COOP,
ASOS, WBAN, RAWS,
SNOTEL), SNOTEL,
RAWS that might not be
in GHCN-D. Requires 5+
years data, MODIS LST
(MYD11A2)

COOP temperature and
precipitation from
stations with 20+ years of
data. Environment
Canada stations in
Canada and Mexican
Meteorological Service
Stations in Mexico, with
gap-filling as needed
from NCEP/NCAR
Reanalysis and GPCP
precipitation. Wind from
NCEP/NCAR R1. Wind
values before 1948 are
the average of available
years.

As in Livneh et al. (2013):
COOP stations in the
U.S. with 20+ years of
data, Environment
Canada (EC) stations in
Canada, Mexican
Meteorological Service
stations in Mexico

Key methodologies

Station records are
homogenized and gap-filled
prior to interpolation. A terrain
index based on the PRISM
DEM is used to predict cold-
air pooling. Grids of monthly
averages are derived using
kriging; geographically
weighted regression is used to
interpolate daily anomalies,
which are added to the
monthly averages to get daily
values.

Temperatures were adjusted
to the elevation of the grid cell
before interpolation assuming
a constant lapse rate of -
6.5°C/km (-3.6°F/1000 ft).
Precipitation amounts were
adjusted to be consistent with
patterns in the 1961-90 PRISM
climatology. VIC uses MTCLIM
to estimate humidity and
radiation variables from
temperature and precipitation.

Methods are similar to
L13/M0O2. Precipitation was
adjusted to the 1981-2020
PRISM climatology in CONUS
and the Vose et al. (2014)
climatology in Mexico and
Canada.
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Notes & Access

Annual updates will
incorporate both new
observations and model
enhancements, resulting in
improved datasets, but
versions will be incompatible.

Access:
http://www.scrimhub.org/reso

urces/topowx/ (free)

Access:
https://www.esrl.noaa.gov/psd
/data/gridded/data.livneh.htm
| (free) or
http://ciresgroups.colorado.ed
u/livneh/data/daily-
obserational-

hydrometeorology-data-set-

conus-extent-canadian-extent-
columbia-river-basin (Livneh,
free)

http://www.engr.scu.edu/~em
aurer/gridded obs/index grid
ded obs.html (Maurer
updated, free)

One of the goals was to
reduce spatial inhomo-
geneities associated with
differing national precipitation
measurement standards for
better hydrologic simulation in
transboundary basins.

Access:
https://data.nodc.noaa.gov/cg

i
bin/iso?id=gov.noaa.nodc:012
9374:view=html (free) or
ftp://192.12.137.7/pub/dcp/ar
chive/OBS/livneh2014.1 16de
a/ (free)
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Product Name

Documentation

gridMET

Abatzoglou
(2013; 2019)

Hamlet 2005

Maurer et al.
(2002); Hamlet
and Lettenmaier
(2005)

Hamlet 2010

Maurer et al.
(2002); Hamlet
and Lettenmaier
(2005); Deems
and Hamlet
(2010)

Daymet v.3

Thornton,
Running, and
White (1997);
Thornton and
Running (1999);
Thornton,
Hasenauer, and
White (2000);
Thornton et al.
(2016)

Input Data

NLDAS-2, PRISM,
Climate Forecast System
Reanalysis for the
previous few days to
week

Stations with at least one
complete year (365
consecutive days) and at
least five total years of
data from COOP, EC,
monthly U.S. Historical
Climatology Network
(USHCN), Historical
Canadian Climate Data
(HCCD); Wind from
Maurer et al. (2002)
where wind values before
1949 are the average of
available years.

COOP, EC, monthly
USHCN, HCCD; Wind
from Maurer et al. (2002)

GHCN

Key methodologies

Daily NLDAS-2 output is
interpolated to the PRISM grid
and then temperature,
precipitation, and humidity are
adjusted to display spatial
variability as in PRISM. No
higher resolution information
is incorporated for any other
variable.

Smoothed COOP and EC data
are adjusted against
smoothed homogenized data
(USHCN and HCCD) at
monthly time scales to
account for major
inhomogeneities. Elevation
adjustment and interpolation
as per Maurer et al. (2002)
except that the lapse rate was
-6.1°C/km (-3.3°F/1000 ft).
Precipitation is adjusted to the
PRISM climatology.

Hamlet 2010 is constructed
similarly to Hamlet 2005, but
temperature is also adjusted
to match the PRISM
climatology.

Locally derived elevation
relationships and distance
weighted regressions are used
to estimate Tmax, Tmin, and
precipitation. All other
variables are estimated as a
function of one or more of
Tmax, Tmin, and precipitation
using MTCLIM algorithms.

Chapter 4. Observations—Weather and Climate

Notes & Access

Access:
http://www.climatologylab.org

/gridmet.html (free)

The goal in Hamlet and
Lettenmaier (2005) was to
develop a more temporally
homogenous dataset
otherwise similar to Maurer et
al. (2002).

Additional details about the
Hamlet 2010 data product
were found in Henn et al.
2018 and Lundquist et al.
2015

Access:
https://daymet.ornl.gov/ (free)
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Product Name

: Input Data
Documentation

Newman gridded
ensembles

GHCN and SNOTEL

Clark and Slater stations not included in

(2006); Newman GCHN

et al. (2015;

2019)

nClimGrid GHCN stations in the
COOP, ASOS, RAWS,
SNOTEL, EC, and
Mexican Meteorological

Vose et al. Service networks, but

(2014); NOAA, only temperature is used

n.d. from RAWS. Only stations
with 10+ years of data
since 1950 are included.

NLDAS-2

NARR for most variables,
CPC and radar for
precipitation over U.S.
(NARR over Canada and
Mexico), satellite data for
shortwave radiation
augments NARR

Cosgrove 2003;
Mitchell 2004;
Xia et al. 2012

Key methodologies

This is developed using the
probabilistic interpolation
method of Clark and Slater
(2006). For each grid point, T,
DTR, and P are calculated as a
function of distance-weighted
station values, latitude,
longitude, slope, aspect, and
elevation. Uncertainty is
gaged from the regression
residuals, and then ensemble
members are developed by
combining the outcome of the
regression with a random
value generated from the
uncertainty and a field of
spatially and temporally
correlated random numbers.

Station values are adjusted for
known biases, homogenized,
and then interpolated in a way
that accounts for latitude,
longitude, elevation, distance
to coast, cold-air pooling,
slope, and aspect effects.

Coarse output is interpolated
from ~20 mi to ~7.5 mi
resolution and temporally
interpolated to hours.
Temperatures are adjusted
assuming a static -6.5°C/km (-
3.6°F/1000 ft) lapse rate.
Spatial patterns in
precipitation are matched to
those in PRISM.
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Notes & Access

The goal was to estimate
potential uncertainty
associated with preparing
gridded climate data.

Access:
https://www.earthsystemgrid.o
rg/dataset/gridded precip an
d temp.html or
https://doi.org/10.5065/D6TH
8JR2 (free)

This is the gridded data
underlying the climate division
data nClimDiv.

Access:
https://data.nodc.noaa.gov/cg

i=
bin/iso?id=gov.noaa.ncdc:C0O0
332 (free)

Access:
https://Idas.gsfc.nasa.gov/nlda
s/nldas-2-forcing-data and
https://disc.gsfc.nasa.gov/data
sets?keywords=NLDAS (free)
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All of the higher resolution products explicitly account for changes in
temperature with elevation, although they do so in different ways (Table
4.4, Figure 4.5). Most products include a mechanism to adjust for changes in
precipitation with elevation, as well. Interestingly, many use the elevational
change in precipitation estimated by PRISM (Figure 4.6). Other decisions
made in the construction of a dataset are typically made to avoid specific
problems that arise from changes in the number, type, and location of
stations and the common measurement errors described above.

Weather Stations Reanalyses

Compare to

Homogenization B N

Locally derived

Additional
Processing

Adjust to PRISM
climatology

Slope, coast,
cold-air pools,
aspect

TOBS bias
adjustment

Probabilistic
interpolation

Hamlet Maurer/ NLDAS-2 nClimGrid Daymet
Livneh

Figure 4.5
Flow diagram of the data sources and processes used to produce the high-resolution gridded temperature products
featured in this chapter. Note that the diagram does not accurately indicate the order of processing. For example,

gap-filling in TopoWx occurs prior to adjustment for cold-air pooling. In addition to differences in choice of network,
products may select different stations from the same network.
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Homogenization USRal

Additional Agit:gn:l’ Slope, coast, Probabilistic
Processing climatolgy aspect interpolation

m “ﬂav‘:]r:;/ NLDAS-2 | gridMET PRISM nClimGrid
Figure 4.6

Flow diagram of the data sources and processes used to produce the high-resolution gridded precipitation products
featured in this chapter. In addition to differences in choice of network, products may select different stations from
the same network.

Common choices that must be made in developing a gridded data product
include 1) which station network or networks to use, 2) which stations to
use from those networks, 3) whether additional data from satellites, radar,
or reanalysis is included, 4) what statistical method to use for interpolation,
5) how to account for changes in temperature and precipitation related to
elevation, aspect, slope, or other aspects of the terrain, and 6) whether to
apply any additional corrections, such as filling gaps in the data, accounting
for undercatch, or homogenizing—correcting shifts in the measured
climate that are due to changes in the station or the area around the
station rather than to actual changes in regional climate.

These choices introduce some disagreement between different products,
although there are clear similarities, as well. Figure 4.7 shows time series of
average water year minimum and maximum temperature and total water-
year precipitation averaged over the Upper Colorado Basin for several of
the products listed in Tables 4.3 and 4.4.
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There are clearly strong correlations between the products. All of the
datasets that provide precipitation data estimate that basin-wide average
water-year precipitation is between 15.5” and 16” (1981-2010 average). They
all show that water year 1997 was quite wet—estimates range between 21.0”
and 22.1"—and that 2002 was dry—between 9.7” and 10.2". Earlier in the
record, however, there are much larger differences between precipitation
estimates. For example, in 1927, the Livneh et al. (2013) data estimate 3.2”
more precipitation over the Upper Colorado Basin than PRISM does.
Likewise, all of the datasets indicate increasing temperatures since the
1970s. All indicate that 1934 and 2000 were particularly warm years and that
the mid-1970s had relatively low minimum temperatures.

These plots also clearly demonstrate that both Livneh datasets estimate
substantially cooler minimum temperatures than the other datasets, even
though their estimates for maximum temperature are similar to the other
data products. Early in the 20" century, the PRISM and nClimGrid data sets
provide similar estimates of minimum temperature, but nClimGrid
estimates cooler maximum temperatures.

Newman et al. (2019) outline a few common sources of differences between
gridded datasets. Numerous other dataset comparison papers such as
Behnke et al. (2016), Henn et al. (2018) Lundquist et al. (2015), and Walton
and Hall (2018) also discuss the source of discrepancies between data
products. One of these is the choice of which weather stations to use.
Products that use more weather stations or a more spatially diverse set of
weather stations are more likely to capture detailed spatial patterns in
temperature and precipitation. Almost all of the products rely directly or
indirectly on data from the COOP network, although they may not sample
the same stations owing to differences in selection criteria. Exactly which
stations are chosen in any area by any product may not be clear without in-
depth inspection of the documentation or correspondence with the data
developers. For more discussion on this, see Guentchev, Barsugli, and
Eischeid (2010) and Newman et al. (2019).

Other choices made in developing gridded datasets also clearly influence
the outcome. Gridded datasets, like the Livneh data, that use a fixed lapse
rate of -3.6°F /1000 feet (-6.5°C /km) tend to estimate colder temperatures,
especially colder minimum temperatures and particularly during the winter
when cold air pooling is common, than other products (Newman et al.
2015), as can be seen in Figure 4.7. Other choices probably also cause
differences between different datasets, but it is not always possible to draw
clear lines between those choices (e.g., statistical interpolation method)
and the results (Newman et al. 2019). Products like that described in
Newman et al. (2015) use “probabilistic interpolation” to account for
uncertainty by producing multiple reasonable spatial patterns of
temperature and precipitation for each time step.
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Link:
http://www.scrimhub.or

g/resources/topowx/

Livneh 2013/Maurer
2002

Link:
https://www.esrl.noaa.g
ov/psd/data/gridded/d
ata.livneh.html

Livneh 2015

Link:
https://data.nodc.noaa.

gov/cgi-
bin/iso?id=gov.noaa.no

dc:0129374:view=html

gridMET

Link:
http://www.climatology
lab.org/gridmet.html
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Figure 4.7

Time series of average water-year maximum (a) and minimum (b) temperature and water-year total precipitation (c)
averaged over the Upper Colorado Basin. Note that Livneh15 provides monthly precipitation data as the average of
the daily precipitation rate. Monthly totals were calculated by multiplying the daily rate by the number of the days in
each month, ignoring February 29 in leap years.
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Tables 4.3 and 4.4 describe the characteristics of 11 statistically interpolated
gridded products that are commonly used for hydrologic applications in the
western U.S. Despite disagreeing in some ways, these gridded products are
also not entirely independent. Because the number of weather stations is
limited, particularly at higher elevations, most products share at least some
base information. There can also be closer interrelationships between
products. For example, the Livneh et al. (2013) product uses the Maurer et
al. (2002) methodology and is, in fact, billed as an “update and extension” of
the earlier effort.

Livneh et al. (2015) uses those same methods for temperature, with
additional data from Mexico and southern Canada to produce a gridded
product with coverage for all of North America south of 53°N. As a result,
their estimates of water-year average temperature over the Upper Basin
are nearly identical—the largest difference between the two is 0.24°F in
minimum temperature, while differences in maximum temperature are
even smaller. GridMET is made by taking the 1/8° (7.5-mi, 12-km) resolution
North American Land Data Assimilation System (NLDAS-2) reanalysis and
downscaling it to 2.5mi (4 km), using PRISM to guide the interpolation
(Abatzoglou 2013). Thus, temporal variability in gridMET will track that in
NLDAS-2, while its spatial patterns should be very similar, if not identical,
to those in PRISM.

As noted above and shown in Figure 4.6, many products account for fine-
scale spatial patterns in precipitation by adjusting their precipitation
patterns to match those in PRISM. Among the eight products mapped in
Figure 4.6, only Daymet and Newman do not use PRISM to adjust
precipitation for elevation (TopoWx does not produce precipitation
estimates). Henn et al. (2018) note that PRISM is used to adjust the spatial
variability of precipitation in data produced by Livneh et al. (2013, 2015),
Maurer et al. (2002), Hamlet and Lettenmaier (2005), Deems and Hamlet
(2010), NLDAS-2 (Cosgrove 2003; Mitchell 2004; Xia et al. 2012), and the
Climate Prediction Center (CPC) unified gage-based analysis of daily
precipitation (Higgins et al. 2000). Interestingly, NLDAS-2 incorporates
CPC precipitation early in product development (Cosgrove 2003; Mitchell
2004; Xia et al. 2012), so NLDAS-2 uses PRISM precipitation once indirectly
and once directly. GridMET, which further downscales NLDAS-2 to PRISM,
essentially uses PRISM to adjust precipitation three times (Abatzoglou
2013).

Fewer gridded products provide information on climate variables such as
wind, humidity, and radiation. Wind is an essential variable in hydrology. It
is critical for assessing snow redistribution (Liston and Elder 2006). It is
also required to accurately estimate evapotranspiration. Hobbins et al.
(2012) noted that winds are particularly important in driving
evapotranspiration over parts of the Colorado River Basin during the spring
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Link:
https://daymet.ornl.gov

Newman

Link:
https://www.earthsyste

mgrid.org/dataset/grid
ded precip and temp.
html

NClimGrid

Link:
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.nc
dc:C00332

NLDAS-2

Link:
https://data.nodc.noaa.
gov/cgi-
bin/iso?id=gov.noaa.no
dc:0129374;view=html
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and summer. Yet gridded wind variables are among the least certain and
robust of all climate variables. Figure 4.8 shows the development pathways
for wind in the datasets evaluated here. Essentially all wind variables in
high-resolution data products are derived from the NCEP /NCAR Reanalysis
(Kalnay et al. 1996; Maurer et al. 2002; Hamlet and Lettenmaier 2005;
Deems and Hamlet 2010; Livneh et al. 2013; 2015) or from the North
American Regional Reanalysis (Mesinger et al. 2006; Cosgrove 2003;
Mitchell 2004; Xia et al. 2012; Abatzoglou 2013). Because there are few, if
any, higher resolution wind products to correct against, most high-
resolution wind estimates do not actually contain any high-resolution
patterns in wind. They simply reproduce the coarse winds in smaller grid
boxes.

Dataset developers encounter similar problems in constructing high-
resolution fields of radiation and humidity (Figure 4.9). The gridMET
dataset interpolates NLDAS-2 humidity and radiation outputs without any
additional adjustment (Abatzoglou 2013). The Daymet, Maurer, and Livneh
datasets all use some formulation of the MTCLIM algorithm (Thornton,
Running, and White 1997; Thornton and Running 1999; Thornton,
Hasenauer, and White 2000) to estimate humidity and radiation from
temperature. PRISM provides humidity estimates (dewpoint temperature
and vapor pressure deficit), but not radiation, calculated from station-
measured relative humidity and air temperature (Daly, Smith, and Olson
2015).

As described in Chapters 5, 6 and 8, the Colorado Basin River Forecast
Center (CBRFC) forecast model system requires values for temperature and
precipitation that are area-averaged for each forecast zone (an elevation
band within a catchment) represented in the model. The CBRFC generates
these mean areal temperature (MAT) and precipitation (MAP) values for
each forecast zone in real-time to drive the daily production of seasonal
water supply forecasts and the daily (sometimes sub-daily) production of
short-range (1-10 days) streamflow forecasts. The CBRFC has also
generated them retrospectively, to create a historical dataset (1981-2015)
that is used for forecast model calibration and verification. In both cases,
the precipitation values are much more important to the forecast outcomes
than the temperature values, and thus greater attention is given to the
precipitation input data. The approach used to generate the MAT and MAP
values has some commonalities with the gridded products described above,
although the final real-time inputs (meteorological forcings) used to drive
the CBRFC forecast models are spatially “lumped” and not on a uniform grid
like the gridded products described above. The CBRFC endeavors to make
the real-time data and the historical calibration data as similar as possible,
so that the forecast model is trained on data that is comparable to, if not
identical to, what it sees in real-time.
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Figure 4.8

Flow diagram of the data sources and processes used to produce the high-resolution gridded wind products featured
here.
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Figure 4.9
Flow diagram of the data sources and processes used to produce the high-resolution gridded humidity products
featured here.

Chapter 4. Observations—Weather and Climate 139



For the Upper Basin watersheds, which are generally snowmelt-dominated,
real-time temperature and precipitation observations—the vast majority Rapid Refresh
from SNOTEL stations—are used to directly produce the areal averages for
forecast zones using station weightings determined through model
calibration. The stations that are used have been pre-screened and vetted
during the calibration process. Automated procedures identify potentially
erroneous station values, which can be then manually corrected by
forecasters. Freezing-level data from Rapid Refresh, NOAA’s hourly
operational weather reanalysis, is used to run the SNOW-17 model which

types the precipitation as rain or snow. The data used for real-time Link:

operations and for calibration are very similar, with the calibration data S e e e

having undergone additional quality control procedures. a.gov/

For the Lower Basin watersheds, which are generally rainfall-dominated
and respond more quickly to precipitation events, a denser station
coverage is employed, with temperature and precipitation observations
from multiple station networks, and then augmented by radar-based
precipitation estimates to generate the real-time data. The radar data is
most useful during the warm season when there is a larger radius of
accurate information from the radar, due to reflection differences between
rain and snow. The observations from all available stations are used, with
no prior screening of stations, to create the highest possible station
density. But the station temperature and precipitation values themselves
are quality-controlled as in the Upper Basin. As in the Upper Basin,
freezing-level data and SNOW-17 are used to type the precipitation into
rain and snow. The real-time precipitation observations and radar
precipitation estimates are transferred to a 4-km grid using an
interpolation algorithm in the Multi-sensor Precipitation Estimate (MPE)
software, the temperature observations are likewise transferred to a 4-km
grid, and the grid cells within each forecast zone are then averaged to
create the MAT and MAP data.

The historical calibration data for the Lower Basin are generated in a similar
manner as the real-time data, except only the station precipitation data are
used—not radar-based estimates—and a different algorithm and a finer grid
(800-m) are used for the intermediate gridding step. The CBRFC has also
generated a matching 800-m gridded historical dataset for the Upper Basin,
but it is not used for operations or calibration at this time. Both of these
intermediate 800-m gridded datasets can be made available to researchers.

In some respects, the real-time and historical meteorological forcings for
the Colorado River Basin used by CBRFC can be considered to be of higher
quality for hydrological modeling than many of the gridded datasets
described earlier, since they are produced at higher resolution (at least
during intermediate steps), use a greater number of stations, and use more
rigorous quality control.
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The CBRFC recently worked with Utah State University to evaluate a
physically based snow model that uses an energy balance to estimate
snowpack processes, rather than just temperature and precipitation.
Adoption of the potentially more accurate snow model, however, would
require additional observational data that better characterized, at a
minimum, surface radiation balance (P. Miller, pers. comm.). Due to the
increased complexity of the energy balance model, real-time data may not
be available for use within an operational framework. Increased model
complexity may not necessarily yield more accurate results; for example,
while radiation data are collected by a number of weather station networks
focused on agricultural and water resource monitoring (Slater 2016), all but
one of the gridded meteorological datasets discussed above that provide
information on the surface radiation balance provide simulated—not
observed—radiation fluxes (NLDAS-2 uses remotely sensed insolation).

4.4 Strengths and weaknesses of gridded data products

All gridded products that incorporate station data are likely to share common
strengths and weaknesses related to those data. For example, any product that
incorporates gage-measured precipitation—as do all of the datasets evaluated
here—will display precipitation amounts that reflect undercatch (see Section
14.2) and therefore underestimate precipitation, particularly precipitation that
falls as snow, unless some correction is applied, as in Newman et al. (2015).
Because different areas may experience higher winds, receive a greater
fraction of precipitation as snow, or use predominantly different styles of
precipitation gage, the influence of undercatch may vary spatially.

The sparseness of observational data at high elevations—particularly prior to
the late 1970s/early 1980s initiation of the SNOTEL and RAWS networks
(Zachariassen et al. 2003; Schaefer and Paetzold 2001)—is another common
weakness across all gridded data products. When and where the station
network is sparse, there is greater opportunity for gridded datasets to differ as
a result of other choices made in their development (e.g., lapse rate
adjustment, interpolation method, etc.) (Walton and Hall 2018). Over the upper
Colorado River Basin, this tends to lead to greater disagreement among
datasets prior to the late 1970s and especially before the 1950s when there
were generally fewer stations than in more recent decades (see Figure 4.7).
There are also larger disagreements in areas with fewer weather stations, such
as at higher elevations. For example, Henn et al. (2018) show greater absolute
and relative differences between precipitation datasets at higher elevations in
the Rocky Mountains. Figures in McAfee et al. (2019) suggest somewhat greater
differences between datasets in temperature trends at higher elevations than
trends at lower elevations, although there is some variability by month.
However, the same paucity of high-elevation stations, and particularly high-
elevation stations with long records, means that there is very limited ability to
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evaluate gridded products or weather simulations against independent
observations. This is especially problematic in the context of water resources,

as the alpine regions are critical water supply areas within the Colorado River

Basin (see Chapter 2).

As discussed above, choices about dataset construction are typically made so
that the resulting data products are most appropriate for their intended
purpose. As a result, different gridded data products have distinct
characteristics. For example, TopoWx fills gaps and homogenizes data prior to
gridding; as a result, temperature trends in TopoWx appear to be less variable
in space than temperature trends in other products (see Figure 3 in Oyler et al.
2015). Because of limited station observations, it is difficult to determine
whether spatially smooth gradients of trend or more spatially complex
distributions of trend reflecting local variability in the sign and magnitude of
trend represent actual changes. In the San Juan Mountains, temperature
trends between 1990 and 2005 were similar at COOP and SNOTEL stations,
despite the fact that the SNOTEL stations were, on average, located about
2580 feet higher in elevation than the COOP stations (Rangwala and Miller
2010), suggesting that trends may be more spatially consistent at least in some
parts of the western U.S. While some data characteristics may seem consistent
with the choices made in their construction or with known characteristics of

the underlying station network or networks used, a new analysis and review by
Newman, Clark, Longman, et al. (2019) highlights the fact that not all
discrepancies between datasets are predictable based on their compilation.
Some strengths and weaknesses of the datasets described in Tables 4.3 and 4.4
are listed in Table 4.5.

Table 4.5

Strengths and weaknesses associated with each of the gridded products described in Tables 4.3 and 4.4

Product Name Strengths Weaknesses

Very high resolution (~0.5 mi, 800 m) daily

product. Ability to capture cold-air

Free daily product only available back

PRISM AN81d pooling in many environments. Data to 1981

available to near present (lag typically ’

around 6 months).

Record extends back to 1895. Ability to

capture cold-air pooling in many Temporally changing station network.
PRISM ANS1m environments.. Responsive to cc.JastaI, There can be in.ght diﬁerenc§s in
and LT81m aspect, slope influence. Long history of values and spatial patterns with

use and well-known caveats. Data
available to near present (lag typically
around 6 months).
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Product Name

TopoWx

Livneh 2013/
Maurer 2002

Livneh 2015

gridMET

Hamlet 2005

Hamlet 2010

Strengths

Very high spatial resolution (~0.5 mi, 800
m) daily data back to 1948.
Homogenization and gap filling make data
product potentially suitable for trend
analysis. Incorporation of satellite data
provides additional insight to spatial
temperature patterns.

Daily data available back to 1915 (1950 for
Maurer). Internally consistent
hydrometeorological variables simulated
by VIC are provided.

Daily data with coverage over Mexico and
parts of Canada back to 1950. Internally
consistent hydrometeorological variables
are provided.

High-resolution (2.5 mi, 4 km) daily data
with multiple variables suitable for
ecological and fire weather modeling.
Data are available in very near real time,
but the last few days to weeks are based
on the Climate Forecast System, rather
than NLDAS-2.

Long-term temperature and precipitation
trends are adjusted to match USHCN, so
may be suitable for trend analysis. Daily
data back to 1915.

Long-term temperature and precipitation
trends are adjusted to match USHCN, so
may be suitable for trend analysis. Daily
data back to 1915.
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Weaknesses

Only temperature is available.
Homogenization could mask real
spatial diversity in trends. There can
be slight differences in values and
spatial patterns with updates.

Lapse rates may be too steep and
temporally stable. It is unclear whether
cold-air pooling can be evaluated—it
may be possible in areas with
particularly dense station coverage.
There do not appear to be plans to
update data past 2011. Precipitation is
adjusted to PRISM, so spatial pattern
will be similar to PRISM.

Lapse rates may be too steep. It is
unclear whether or not cold-air
pooling can be evaluated—it may be
possible in areas with particularly
dense station coverage. There do not
appear to be plans to update data
past 2013. Precipitation is adjusted to
PRISM, so spatial pattern will be
similar to PRISM.

Data are only available back to 1979.
Variables other than temperature and
precipitation are interpolated to 2.5mi
(4 km), but are not adjusted for
physiography at that scale, so
variables may not be physically
consistent. Precipitation and
temperature are adjusted to PRISM, so
spatial patterns will be similar to
PRISM.

Data are only available through 2003
and not specifically updated. Lapse
rates may be too steep and static
owing to fixed lapse rate. Precipitation
is adjusted to PRISM, so spatial
pattern will be similar to PRISM.

Data are only available through 2010
and do not appear to be updated.
Precipitation and temperature are
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Product Name Strengths Weaknesses

adjusted to PRISM, so spatial patterns

will be similar to PRISM.

Very high (~0.6 mi, 1 km) resolution daily
data, with multiple variables suitable for

ecological modeling. Data are updated Data are only available back to 1980.
Davmet v. 3 frequently so data are available for very Interpolation methods may not be
v i near present. Files of input station data for  able to capture very fine scale
each grid cell are provided, so users can variability in precipitation.
accurately identify stations used.
Coverage for all of N. America
. . : . The spatial resolution is relativel
These provide multiple estimates of daily P , y
o coarse. Data are only available
Newman temperature and precipitation for each
. . L through 2012 and update
gridded day for uncertainty quantification and can .
. . potential/schedule are unclear.
ensembles be used to explicitly predict the .
- R Intended use requires a large amount
probability of precipitation occurrence.
of data.
P Monthly data are available back to 1895.
nClimGrid y

Data are homogenized so may be suitable
for trend analysis. Data are updated
frequently. Spatio-temporal summaries,
ranking, etc., are readily available through
Climate at a Glance.

(gridded data

underlying the
climate division
data nClimDiv)

The spatial resolution is relatively
coarse. Data are interpolated

Sub-daily records for a full suite of
NLDAS-2 meteorological variables are available.
Data are available for close to present.

This is a relatively new product;
caveats associated with the data are
not yet well defined.

reanalysis, which are relatively prone
to error. Behnke et al. (2016) note
NLDAS-2 has some of the highest

errors relative to station observations.

For users with particular needs, there may be relatively little choice in
which data product to use. Applications that require spatially continuous
hourly data are limited to NLDAS-2 of the datasets evaluated here. In other
cases, there may appear to be greater choice, but apparently different
products may be very similar. Only the Maurer et al. (2002), Livneh et al.
(2013 and 2015), Hamlet and Lettenmaier (2005), and Deems and Hamlet
(2010) products provide daily precipitation data that extend back prior to
the early 1980s or late 1970s. These five products differ very little from each
other in underlying data or construction methodology. All are based
exclusively on COOP data in the U.S., although there are some differences
in which specific stations were used (Hamlet and Lettenmaier 2005). All
except Hamlet 2010 (Deems and Hamlet 2010) use pre-defined temperature
lapse rates (-3.6°F /1000 feet [-6.5°C /km] or -3.3°F /1000 feet [-6.1°C /km])
that are, at least for minimum temperature, steeper over the Upper Basin
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than observed in other data products (McAfee et al. 2019; Newman et al.
2015). Hamlet (2010) scales temperature to the PRISM climatology (Deems
and Hamlet 2010). All of the products adjust precipitation patterns to the
PRISM climatology, although they use different normal periods. All employ
the same SYMAP interpolation. The primary differences between these
products are that 1) they are supplied over different time periods and
domains at different spatial resolutions, 2) the Hamlet (2005 and 2010)
method homogenizes station data prior to interpolation, which the Maurer
and Livneh methods do not (Maurer et al. 2002; Livneh et al. 2013; 2015;
Hamlet and Lettenmaier 2005; Deems and Hamlet 2010), and 3) they adjust
their precipitation to different PRISM precipitation climatologies—1961-
1990 for most vs. 1981-2010 for Livneh et al. (2015)—that display slightly
different spatial patterns in precipitation.

4.5 Considerations in the analysis of gridded data products

Many of the characteristics of station and gridded data products discussed
above imply certain limitations in their analysis. As noted by Newman et al.
(2019), choices about which data to include, and particularly the density of
input data, can have a significant influence on the effective resolution of
the data. For example, a nominally high-resolution product based on a
small number of stations may not be able to accurately reflect fine-scale
spatial patterns, especially in complex terrain, such as in the Colorado River
Basin. Users should also be aware that gridded products do not reflect
variability that occurs at finer scales than their nominal resolution. For
example, a product with 2.5 x 2.5 mi resolution will reflect the average
temperature over 6.25 square miles, but local temperatures may vary
substantially within that area. Likewise, a daily precipitation total does not
imply information about when during the day precipitation fell or how
heavy it was. A final consideration most pertinent to daily data is that
different stations may use different start and end times for their day (e.g.,
9:00 a.m. vs. local midnight vs. 0:00 UTC), and those may change over time,
so a given day may not cover the exact same period of time (see (Menne et
al. 2012; Leeper, Rennie, and Palecki 2015).

The first consideration is related to dataset intercomparison. Because
different datasets are developed using different methods, disagreement in
poorly observed areas may be expected (Walton and Hall 2018). Shared
underlying station data can and should lead to agreement in areas where
the station network is densest, so agreement between datasets in those
areas or between specific grid cells and stations in those grid cells that
contribute to the gridded product may not be effective measures of
similarity or quality (Daly 2006). For example, Behnke et al. (2016) find the
Livneh et al. (2013) and Maurer et al. (2002) datasets, which use only COOP
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stations, to have relatively small biases in mean precipitation and maximum
temperature, but they compare the gridded dataset to a set of weather
stations that is likely dominated by COOP stations because of the chosen
time period (1981-2010) and data completeness criteria. Station siting may
also influence the representativeness of gridded products. Physiographic
features that are not well sampled in the observational network may not be
accurately portrayed in even the most complex and highest resolution
gridded products. For example, Strachan and Daly (2017) found that
systematic undersampling of mid-slope locations in the Great Basin drove
biases in the representation of temperature patterns in PRISM, even at very
high spatial resolutions. Gutmann et al. (2012) found that leeside
precipitation amounts were overestimated in PRISM in parts of
southwestern Colorado where there were few weather stations on leeward
slopes.

It is also important to be aware of interdependence between datasets
beyond shared underlying data, so that agreement between those products
is not over-interpreted in terms of confidence. Adjusting precipitation
patterns in gridded datasets to match the PRISM climatology is very
common, as is application of a pre-determined static lapse rate for both
minimum and maximum temperatures (Figure 4.5). Even homogenization
practices are very similar. TopoWx (Oyler, Ballantyne, et al. 2015) and
nClimGrid (Vose et al. 2014) both use the pairwise comparison method
described in Menne and Williams (2009), and Hamlet homogenizes station
data to USHCN records, which are homogenized using the Menne and
Williams (2009) pairwise method.

The second major consideration is related to the analysis of trends. Ideally,
trend analysis should only be performed on data that are known to be free
from inhomogeneities. As a result, many producers of gridded data caution
against the use of their data for trend analysis. Redundancy in the input
data might make it less likely that gridded data will display inhomogeneities
particular to an individual station—for example, due to a station move
(Groisman and Easterling 1994). In areas with few stations, however,
inhomogeneities in individual stations, or the loss of an individual station,
may be reflected in gridded products (McAfee, Guentchev, and Eischeid
2014). Inhomogeneities that impact an entire station network are often
reflected in gridded data (Groisman and Easterling 1994; Oyler, Dobrowski,
et al. 2015). Adding data from new station networks preferentially located in
different kinds of locations or using different instrumentation than existing
stations can also induce inhomogeneities in gridded data (McAfee et al.
2019) even when steps have been taken to mitigate the impact. Known
network-wide or common spatially extensive causes of inhomogeneity in
the region include changes in the time of observation (Karl et al. 1986) and
instrumentation (Quayle et al. 1991) at COOP sites, urbanization (Karl, Diaz,
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and Kukla 1988; Hausfather et al. 2013), changes in instrumentation at
SNOTEL sites (Oyler, Ballantyne, et al. 2015), and introduction of new
station networks (McAfee et al. 2019). Even the PRISM LT81m dataset, which
includes only longer-duration station networks, is not recommended for
trend analysis (PRISM 2016). Of the data products evaluated here, only
nClimGrid, TopoWx, and the Hamlet products are homogenized in a way
that may make them suitable for trend analysis (Oyler, Ballantyne, et al.
2015; Oyler et al. 2016; Hamlet and Lettenmaier 2005; Deems and Hamlet
2010; Vose et al. 2014; Walton and Hall 2018). Gap-filling and
homogenization, however, could mask real spatial variability in trends, so
homogenized data may be more appropriate for characterizing regional
trends than highly local ones. The effects of homogenization can be seen in
the precipitation trend maps shown in Henn et al. (2018) Figure 7. The trend
patterns in the homogenized Hamlet et al. 2010 data (Deems and Hamlet
2010) are spatially smoother than in the other products evaluated. The
trend maps shown in Henn et al. (2018) also demonstrate that while major
features of the 1982-2006 trend patterns are replicated—reductions in
precipitation over the Lower Colorado Basin and increasing precipitation
over California—there are localized differences in trend patterns and
magnitudes over parts of the Upper Colorado Basin.

Because of the complex ways in which choices about data selection,
adjustment, and interpolation combine (Newman et al. 2019), it may be
impossible to know whether gridded data contain detectable
inhomogeneities without thorough statistical investigation. Guentchev,
Barsugli, and Eischeid (2010) analyzed precipitation from the Maurer, BL
(which is similar in construction to the Maurer data, but uses different
stations and is not described Table 4.4), and PRISM datasets over the full
Colorado River Basin for the second half of the 20t century. PRISM had the
highest percent of grid cells without detectable inhomogeneities (88%),
followed by Maurer (83%) and BL (77%). While all of the datasets were
generally free of inhomogeneities, the inhomogeneities that exist were in
the same places in all datasets. They tended to be clustered in specific,
largely high-elevation sub-basins in the Lower Basin: the Little Colorado,
the Lower Colorado-Lake Mead, and the Upper Gila. Repeating this type of
analysis for the increased selection of temperature and precipitation data
that are available now, as well as for specific time periods, would be
beneficial and would help researchers in the region identify datasets that
might be suitable for climate trend analysis or for use in hydrologic models
whose output will be analyzed for long-term variability.
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4.6 Considerations in gridded data product selection

The single most important thing to know about selecting a gridded data
product is that there is no perfect product—if there were perfect
observations for every point, there would still be “errors” in all of the
gridded products. For example, Gutmann et al. (2012) note that gridded
precipitation from the Weather Research and Forecasting Model (WRF) and
the 1971-2000 PRISM climatology predict different amounts of
precipitation spillover from the windward to leeward side in parts of the
San Juan Mountains. This is an area that did not have good leeside station
coverage until recently; data from one station installed in late 2008 suggest
that WRF was providing more accurate precipitation totals. Nor is there a
best product, although there might be a best choice for certain
applications. Data selection is necessarily based on both practical and
scientific considerations. Many of the considerations that go into choosing
a historical gridded climate data product are similar to those that might be
used in climate change evaluation. In-depth discussion of the topic is
provided by Vano et al. (2018) and Daly (2006), but some practical and
scientific guidance for data selection is briefly outlined here.

From a practical standpoint, a user might reasonably consider eight criteria
about data products in choosing which to use. Many of the practical
considerations are easily assessed with basic product metadata.

1. Does the data product supply the weather or climate variables necessary

for the application? Some analyses or modeling efforts may require a
single variable, while others might require a much more extensive suite
of variables. It is often easier to use multiple variables from a single

gridded product because they are likely to be provided on the same grid,

minimizing geospatial processing.

2. Does the data product provide data with the appropriate temporal
coverage? Specific considerations related to temporal coverage include
the length of the dataset, how frequently it is updated, and latency—the
lag in data availability relative to real-time. There may also be concerns
related to how new data are released. Some data products, such as
TopoWx, may release updates with new versions of historical data and,
thus, may not be directly comparable to previous versions (although the
two versions of TopoWx shown here are essentially identical over the
Upper Basin). In this case, updating the data product may require

downloading an entirely new database for the full period. Others, such as

gridMET, simply extend the length of the data product during most
updates.

3. Does the data product provide data at the appropriate temporal
frequency? Monthly data are somewhat more widely available than daily
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data, which are, in turn, much more common than sub-daily data—at
least at high spatial resolution.

4. Does the data product cover the necessary spatial domain? For
applications entirely within the Colorado River Basin, this is not often of
concern. Most products provide reasonable coverage over the
contiguous United States. However, applications that include
transnational river basins (e.g., Rio Grande, Columbia), may require data
to be consistent across national boundaries, and such data products are
less common.

5. Isthe data product at the appropriate spatial resolution? Questions
about spatial resolution may be practical—a model operates at X mi*
resolution and requires input data at that resolution—or scientific—the
process in question occurs at Y mi? scale and cannot be detected in
coarser data. Conversely, the spatial resolution of a data product will also
influence computational time and storage demands, so data that are too
finely scaled may be inconvenient.

6. What resources are required to use the data? Although many data
products are served free of cost, some data (e.g., PRISM LT81m) are only
available for purchase. The decision to use a product that is not free
would be contingent on funding and potentially on the user’s ability to
justify the cost to a funder. Resource issues related to file conversion—
for example, from GRIB to GeoTiff for model compatibility—data storage
or other processing steps could also influence the choice of dataset.

7. Isit necessary to assess uncertainty, use multiple scenarios, or identify a
single type of scenario? Only the Newman et al. 2015 dataset is explicitly
designed to provide uncertainty quantification. However, it may be
possible to include multiple datasets with input data and development
techniques that are as different as possible. Related considerations may
include whether specific datasets seem to routinely provide “best case”
(e.g., robust average flows, modest flood peaks), middle-of-the-road, or
“worst case” (e.g., lower total flow, high flood peaks) outcomes and which
of those is most appropriate for the decision at hand.

8. Are there any other practical considerations? There may be questions
about whether a model being used has been parameterized with a
specific climate dataset and whether there are consistency issues that
need to be considered—for example, a desire to compare results from a
new study with a previous one that would be simplified by using the
same climate data.
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There are also scientific considerations related to dataset choice. Unlike

the practical decisions, however, consideration of the scientific

characteristics of data typically require a more in-depth knowledge of the

data product. Daly (2006) provides a discussion around dataset choice in

relation to physiographic features, along with background information on

how common interpolation techniques handle physiography. Scientific

considerations may apply particularly in post-hoc analysis of the results, in

assessing the confidence and uncertainty around certain statements, as

well as in gauging how widely the results could be applied to other regions,

systems, or time periods.

1.

Is the effective resolution of the grid cell consistent with its nominal or
apparent resolution? As computational capacity has improved, it has
become possible to interpolate climate data to a very fine apparent
resolution, even though little to no new information has been
incorporated. For example, gridded data with a nominally high spatial
resolution that rely on a low-density station network may have a lower
effective than apparent resolution (Newman et al. 2019). The gridMET
process adds additional climate-relevant information to NLDAS-2-
derived temperature, precipitation, and humidity, but simply
interpolates winds and radiation, so the effective resolution of gridMET
wind and radiation are the NLDAS-2 resolution, not their nominal ~2.5-
mi resolution (Abatzoglou 2013).

Do data need to be internally physically consistent? In some cases,
detailed process modeling may require suites of variables that are
physically consistent. For example, some applications need data that
can accurately reflect a drop in temperatures caused by evaporation or
melting of precipitation in order to better forecast precipitation
amount, intensity, and whether it will fall as rain, snow, or freezing
precipitation (e.g., Barros and Lettenmaier 1994; Kain, Goss, and
Baldwin 2000). The ARkStorm@Tahoe project—which simulated
snowfall and flooding caused by a single significant storm event to
evaluate environmental and socio-economic impacts and real-time
response mechanisms—required such a complex data set in order to
develop realistic and accurate timelines and spatial maps of flooding
and related hazards in a topographically complex region (Albano et al.
2016). Producing such data typically requires dynamical generation or
downscaling (e.g., Gutmann et al. 2012). Most observationally based
gridded data products probably cannot provide this level of internal
consistency, but it is also not clear how many applications would
require this.

How might known data characteristics influence an application? Data
intercomparisons, such as (Behnke et al. 2016; Henn et al. 2018; Walton
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and Hall 2018) and many others evaluate whether certain datasets are
relatively cool or warm, or wet or dry in certain locations, and data
documentation often highlights known errors, strengths and
weaknesses in data products. However, it can be difficult to determine
which data are most correct, either because station data are lacking,
and there is no real ground-truth, or because the available station data
were used to produce the gridded data and do not provide an
independent check (Daly 2006). More detailed studies might be
required to understand which datasets are more accurate and why.
There is also the question of how much errors or biases impact any
given application. For example, Strachan and Daly (2017) found that cool
biases in PRISM, related to the siting of available input stations,
impacted growing-degree day calculations more than they influenced
assessment of the length of the frost-free season or temperature-based
estimates of the percent of precipitation falling as snow. In that case,
users analyzing growing degree days might be particularly cautious
about their subsequent interpretations and conclusions.

4. Isit appropriate to use records with particular types of
inhomogeneities? Data containing inhomogeneities that impact only
how climate is recorded (e.g., inhomogeneities related to changes in
instrumentation) are likely to be problematic in many applications and
can lead to misleading conclusions (e.g., Oyler, Dobrowski, et al. 2015).
But inhomogeneities related to land cover change, such as
urbanization, (Karl, Diaz, and Kukla 1988) may be valuable components
of data for some applications. Identifying and correctly quantifying
trends related to large-scale forcing, such as global warming, requires
removing both sudden and “creeping” inhomogeneities (Menne and
Williams 2009). Understanding local-scale changes in evaporative
demand, however, might require climate records that reflect the sum of
all changes, including any local warming related to land-cover change
due to urbanization, conversion to agriculture, etc. In such cases,
homogenized data may, in fact, be inappropriate.

In sum, both practical and scientific considerations should influence users’
choices about which data product to use. The effect that those choices
might have on subsequent analyses is often not well characterized. There
are a number of open questions about weather and climate in complex
topography, how weather and climate variability across large basins
influences hydrology, and about how best to use imperfect gridded climate
data to better understand natural and managed hydrologic systems.
Research efforts to address these questions are on-going. For the time
being, users of these products should attempt to assess basic information
about the gridded or station data they use and consider how the
characteristics of those data might influence their analysis.
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4.7 Challenges and opportunities

While commonly used gridded climate datasets show very similar variability
and trends in precipitation and temperature for the basin, disagreements
between the datasets are larger for the sparsely instrumented high-
elevation areas in the Upper Basin—the areas that generate the vast
majority of the basin’s runoff.

Opportunities

e Use other types of measurements, such as streamflow and radar, to
constrain the gridded estimates of temperature and precipitation, and
add novel observation techniques (e.g., Airborne Snow Observatory; see
Chapter 5) to bolster ongoing observations.

e Use numerical weather prediction models (Chapter 7) for
spatiotemporal interpolation and validation of observation-based
products.

It is increasingly understood that the gridded climate datasets have
inherent uncertainties and differ from each other, but how those
uncertainties and differences manifest in the outputs of typical
hydroclimate modeling and analysis tasks needs to be better explored and
communicated to users.

Opportunities

e Conduct formal intercomparisons between gridded datasets in the
context of specific applications and outputs (e.g., Alder and Hostetler
2019 on the use of different gridded climate datasets for statistical
downscaling of GCM data; Chapter 11).

o Application projects can consider including a testing phase in which
multiple gridded datasets are tested on a limited portion of the project’s
domain or analyses.

e Both researchers and users can acknowledge that all data are
imperfect, and move away from trying to identify a single “best”
product toward greater consideration of the data characteristics that
are, and are not, important for their questions and analyses.
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Key points

e Robust real-time observations and long-term records of snowpack,
streamflow, soil moisture, and other hydrologic variables are key inputs
to basin streamflow forecasting and system modeling.

« Point measurements of these variables are not dense enough to fully
represent spatial variability across the basin, and not necessarily sited
to optimally inform streamflow forecasts.

e For snowpack observations, the in situ SNOTEL network has limitations
but remains essential to monitoring and skillful streamflow forecasting.

e Spatially distributed snowpack data from models and remote sensing
are increasingly used to augment SNOTEL data, though most of these
sources depend on SNOTEL data for calibration.

e Accurate and useful streamflow inputs depend on both the robustness
of the gage network and the procedures used to adjust and naturalize
gaged streamflows to account for human activity.

¢ Flow naturalization methods try to estimate what the streamflow at a
gage would have been, or will be, without the impacts of upstream
human activity; naturalization methods vary from agency to agency,
depending on the time scale and application.

o Evaporation and evapotranspiration estimates are central to flow
naturalization, thus as more types of observations become available,
models used to calculate these variables are being refined in both
physical process modeling and input data used.

e In situ measurements of soil moisture and evaporation-related
variables are especially sparse, and spatially distributed data from
models and remote sensing have a larger role to play in condition
monitoring and streamflow forecasting.

e Realizing the full value of spatially distributed hydrologic data will
ultimately require streamflow-forecasting and system-modeling
frameworks that are explicitly designed to use those data as inputs.

5.1 Overview

Robust real-time observations and long-term records of snowpack,
streamflow, soil moisture, and other hydrologic variables are critical to
multiple components of system modeling in the basin, at all timescales.
Many of these observations are used as real-time inputs to the CBRFC
streamflow forecast models (Chapter 8) and Reclamation system models
(Chapter 3), while long-term records are used to calibrate the models. The
long-term records are used to evaluate long-term hydrologic trends and
their causes (Chapter 2), and also serve as the historical planning baseline
(Chapter 9) for evaluating potential future risk. They are further used to
calibrate and validate alternative planning hydrologies based on tree rings
(Chapter 10) and climate model output (Chapter 11).
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Ideally, all observations of hydrologic variables would have long periods of
record, be consistent over time (temporally homogeneous), and be spatially
dense enough across large basins that the observing sites were
representative of all areas in between sites. All observed records fall short
of one or more of these ideal characteristics, and it is important to
understand the strengths and weaknesses of different datasets relative to
the intended application. Often, there are inherent tradeoffs among these
ideal characteristics. For example, many satellite-based observations have
high spatial density (resolution of 1 km or less), but few of these datasets
extend before 2000.

5.2 Snowpack observations and monitoring

The discussion of hydrology observations begins with snowpack
observations because most of the annual water supply in the basin likewise
begins as snowpack (Chapter 2). The snowpack is a key interface between
meteorological processes (weather and climate) and hydrological
processes. The physical characteristics of the snowpack are controlled by
weather and climate through the accumulation of precipitation occurring
as snowfall, redistribution by wind, sublimation losses, and melt driven by
solar and longwave radiation, sensible heat (i.e., measured as temperature),
and latent heat (from water phase-change).

The interactions of all these processes with complex terrain and vegetation
means that the snowpack is a highly dynamic entity in space and in time.
Some characteristics of the spatial patterns and temporal patterns of the
snowpack are fairly consistent from year to year; e.g., more snow
accumulates earlier and throughout the season, and persists later in the
spring, at higher elevations and on north-facing exposures. However, the
details of these patterns can vary greatly from year to year and from basin
to basin, influencing the magnitude and timing of snowmelt-driven runoff.
Inadequate characterization of these details of the snowpack is a significant
source of error in seasonal runoff forecasting, though a smaller source than
the uncertainty in future precipitation and temperature (Chapter 8).

The most important characteristic of the snowpack from the standpoint of
monitoring and forecasting water supply is snow water equivalent (SWE).
SWE can be measured directly through in situ observations, modeled from
precipitation observations and other meteorological data, or derived from
measurements of snow depth and estimates of snow density, since SWE is
the product of those two terms. Snow depth is much more spatially variable
than snow density, and so snow depth is by far the larger contributor to the
spatial and temporal variation in SWE.
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Table 5.1 summarizes key characteristics of the principal snowpack data
networks and products that are used or consulted by water management

entities in the Colorado River Basin; these sources are further described in
the following text. This list is not intended to be comprehensive; other data

and networks may also be used in the basin.

Table 5.1

Snowpack monitoring networks, data, and products available for some or all of the Colorado River Basin
and used by water management agencies. See the text for further description of these networks/

products.

Network or Product

SNOTEL
(NRCS)

Snow course
(NRCS)

Snow-17 snow
model

(CBRFC)

MODSCAG

(NASA JPL)

MODDRFS
(NASA JPL)

Method

In situ
measurement

In situ
measurement

Temperature-index
snow accumulation
and ablation
model, which uses
area-averaged
precipitation data
derived from point
observations, plus
freezing-level data

MODIS satellite
imagery used to
derive snow extent
and properties

MODIS satellite
imagery used to
derive snow
properties
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Variables

SWE, snow
depth,
precipitation,
many other
weather obs.

SWE, snow
depth, snow
density

SWE, snow
covered area

Fractional
snow-covered
area, snow
grain size

Radiative melt
forcing

Spatial
Resolution or
# Stations

>175 stations
in basin; ~900
West-wide

82 courses in
the basin

~600
modeling
units in the
basin

~500 km

~500 km

Spatial
Coverage

West-wide

West-wide

CBRFC
domain
(CRB + E.
Great
Basin)

CONUS

North and
South
America

Temporal
Resolution

Hourly or
3-hourly

Monthly
or semi-
monthly

Daily

Daily, 2-4
day lag

Daily, 2-4
day lag
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Network or Product

ASO
(NASA JPL)

SNODAS
(NOAA NOHRSC)

MODIS-based
spatial estimates
(Univ. of Colorado)

SWANN/SnowView

(Univ. of Arizona)

Method

Airborne-LiDAR-
measured snow
depth, combined
with snow density
(modeled or
measured)

Process-based
snow model which
assimilates
satellite, airborne,
and in situ snow
data and weather
obs

Statistical
regression model
based on in situ
SWE, MODSCAG,
physiographic
variables, energy-
balance snow
model

Process-based
snow model and
neural network
algorithm, uses
SNOTEL SWE and
MODIS SCA

Variables

SWE, snow
depth (also
snow albedo
from separate
sensor)

SWE, snow
depth,
snowmelt,
sublimation,
snow
temperature

SWE, snow
cover

SWE, snow
cover

Spatial
Resolution or
# Stations

50 m

1 km

500 m

1 km

For over 80 years, snowpack monitoring and water supply forecasting

throughout the western U.S. has relied on a network of in situ ground-

based observations managed and maintained by the Natural Resources

Conservation Service (NRCS) along with many state and local cooperators.

From the mid-1930s until the late 1970s, these observations came solely

from snow courses that were manually measured monthly or semi-monthly

(Figure 5.1).
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Spatial
Coverage

As flights
are made
on
demand;
currently
mostly in
CA, some
in CO

CONUS

California;
Southern
Rockies
inc. UCRB;
Northern
Rockies

CONUS

Temporal
Resolution

As flights
are made
on
demand;
typically
1-6 per
season

per

watershed

Daily

Typically
biweekly,
3-5 day
lag

Daily
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Figure 5.1

Soil Conservation Service
(SCS) snow surveyors
measuring a snow course
in the 1940s. The SCS is
now the Natural Resources
Conservation Service
(NRCS). (Source: Helms,
Phillips, and Reich 2008)

Starting in the late 1970s, the snow courses were increasingly augmented
by, and at many sites replaced by, automated SNOTEL (SNOwpack
TELelemetry) stations that report SWE, snow depth, precipitation,
temperature, and other variables on an hourly or 3-hourly basis, greatly NRCS Interactive Map
enhancing the timeliness and temporal resolution of snowpack data relative
to manually measured snow courses. Currently, there are 196 SNOTEL sites
that are within or near to (<10 km) the boundaries of the Upper Basin, and
46 for the Lower Basin (Figure 5.2). Monthly manual SWE measurements
are still taken at 104 snow courses in the Upper Basin, mainly in Colorado,
and 36 snow courses in the Lower Basin (NRCS website).
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Several years ago, NRCS implemented an Interactive Map to provide real-
time map-based access to primary data from all SNOTEL and snow-course

Link:

https://www.nrcs.usda.go

sites (SWE, snow depth, and precipitation) as well as many calculated v/wps/portal/wec/home/q
parameters such as SWE % of median, change in SWE, and snow density. uicklinks/predefinedMaps
The map also shows soil moisture data from SNOTEL and SCAN sites, /

observed and forecasted streamflows, forecast verification statistics, and
reservoir storage. The Interactive Map is routinely enhanced (now in
Version 5.0) and has rapidly become a highly valuable tool for snowpack
monitoring and other hydrologic monitoring.
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Elevation map: The National Map (USGS)

Rivers: CAP, USGS, National Hydrography Dataset, Arizona State Land Department
Lakes in the Colorado River Basin: ESRI, USGS, EPA

SNOTEL and snow course data: NRCS National Water & Climate Center

Figure 5.2

Locations of active SNOTEL sites and snow courses in the Colorado River Basin.
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The snow-course and SNOTEL network in the western U.S. has been
developed by NRCS to support their seasonal water supply forecasts, as
well as for general snow monitoring. Thus, the characteristics of the
network have influenced the NRCS water-supply forecasting approach, and
vice versa. In that approach, which has been used and refined for several
decades, statistical modeling (currently, principal components regression)
is used to relate several predictors—typically water-year-to-date
precipitation and current SWE from SNOTEL sites—to the target predicted
value: spring-summer streamflow at a given forecast point. The model is
calibrated on historical data, and then for forecasting, the model equation
is applied to real-time predictor data. Point-based in situ measurements
are well suited for such an approach that uses a limited number of
predictors to represent the basin snowpack above the stream gage being
forecasted. Additional details of the NRCS statistical forecasting approach
are provided in Chapter 8.

USDA Natural Resources Conservation Service
ﬁ National Water and Climate Center o

United States Department of Agriculture
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Figure 5.3

The NRCS Interactive Map (Version 5.0) provides real-time access to SNOTEL and snow-course data,
as well as observed and forecasted streamflows. (Source: NRCS;
https://www.nrcs.usda.gov/wps/portal/wcc/home/quicklinks/predefinedMaps/ )
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The observations from the SNOTEL /snow-course network in most years
and locations provide reliable indications of snowpack conditions in the
Colorado River Basin and its sub-basins, as indicated by the high overall
skill of April 1 water supply forecasts that are based solely on those
observations. For example, at key Upper Basin forecast points such as
Yampa near Maybell, Gunnison near Grand Junction, and Colorado near
Cameo, the explained variance of NRCS April 1 forecasted April-July
streamflow is R*= 0.63-0.80 (G. Goodbody, NRCS, pers. comm.).

SNOTEL sites provide very accurate point measurements that can, to a
large degree, collectively represent the vast majority of a basin that is not
being directly measured. However, there are general limitations in network
coverage; due to siting constraints and considerations, SNOTEL sites are
not located above treeline, on steeper slopes and southerly aspects, or at
lower elevations where snowpack is generally low or intermittent. Thus in
years with anomalous spatial patterns, such as much reduced wind scour
and sublimation loss above treeline, or unusually high mid-winter melt on
south-facing slopes, or unusually high accumulation at lower elevations
relative to higher elevations, the SNOTELs and snow courses will not
capture the actual basin-wide SWE conditions as well as in a more typical
year. Also, some watersheds have relatively fewer SNOTEL and snow
course sites, or lack in situ sites completely. According to the CBRFC, it is
likely that there is greater forecast error related to snowpack conditions in
these data-sparse areas, though no quantitative analysis has been done to
confirm this (FROMUS report, Reclamation and Colorado Basin River
Forecast Center in preparation).

Every year, several new SNOTEL sites are added to the network in the
basin, and the network is expanding, though slowly. A more concerted
effort to add SNOTEL sites in relatively data-poor basins could eventually
reduce snow-related uncertainty in runoff forecasts, though the return on
investment would be slow, since 10-15 years of record are needed to
adequately calibrate data from new SNOTEL sites in the CBRFC forecast
model (Reclamation and Colorado Basin River Forecast Center in
preparation), as well as the NRCS forecast model.

Over time, the instrumentation at SNOTEL sites has been updated and
additional sensors have been added, notably for soil moisture. Continued
modernization and upgrading would ideally include more sensors, including
image capture that could effectively extend the spatial reach of each site.

Despite some limitations, the point SWE observations from SNOTEL and
snow courses continue to serve as the basis for skillful statistical forecasts
of seasonal streamflows for the Colorado River Basin. However, the physical
models also used to forecast runoff (e.g., CBRFC'’s primary forecast system)
require additional modeling of the snowpack that directly addresses the
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issue of spatial representativeness, as well as additional input data, as
detailed below. The more spatially explicit depiction of snowpack that
results can also add value for general snow monitoring.

While the SNOTEL and snow course SWE observations are the backbone of
snowpack monitoring, there are additional in situ snow observations that
help round out the picture of the snowpack, especially at lower elevations.
Most stations in the COOP weather observer network (Chapter 4) report
daily snowfall and snow depth on the ground, in addition to temperature
and precipitation. For example, on a typical day in March 2019, 40 of 56
COOP observers in western Colorado reported snowfall and snow depth.
SWE on the ground can be estimated from snow depth using
measurements of, or assumptions about, snow density.

Since its initiation in 1997, the CoCoRaHS network has become an
important supplemental source of precipitation data for weather and
climate monitoring and other purposes (Reges et al. 2016). The volunteer
observers who make up the CoCoRaHS network are encouraged to record
snow measurements along with their daily precipitation observations,
including snowfall, daily SWE accumulation, snow depth, and total SWE on
the ground. Most CoCoRaHS observers do record snowfall and the daily
SWE accumulation, and most of those also record snow depth, though far
fewer of them measure and record total SWE. For example, on the same
day in March 2019, roughly 100 CoCoRaHS observers across the Upper
Basin (mainly in western Colorado) reported snow depth, and roughly 20 of
them also reported total SWE. Both COOP and CoCoRaHS snow
observations are now being incorporated into the NOAA SNODAS products,
as described below, while CoCoRaHS data are incorporated into the
MODIS-based spatial estimates of SWE from the University of Colorado,
also described below.

Remote sensing from satellite or airborne platforms provides spatially
continuous data that can usefully complement the point SWE data from
SNOTEL or other in situ observations. In the Colorado River Basin,
remotely sensed snow data is being increasingly deployed and integrated
into snowpack monitoring and runoff forecasting systems. It is important
to note that remote sensing products have inherent uncertainties not
shared by in situ measurements. They infer the variable of interest (e.g.,
fractional snow cover), typically by translating a different variable being
sensed (e.g., reflected light from the surface at certain wavelengths) by way
of an algorithm. In general, airborne products are more reliable than
satellite products, mainly due to the sensor being roughly 2-3 orders of
maghnitude closer to the land surface.
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MODIS, MODSCAG and MODDRFS

MODIS is a moderate-resolution (500 m for most products) multi-spectral
sensor that is currently on two different satellites, Aqua and Terra, with
daily near-global coverage, with data availability back to 2000. NASA JPL
developed, and continues to refine, two snow-specific data products from
MODIS that are made available in near real-time: one that depicts fractional
snow-covered-area and snow-grain size (MODSCAG) and one that depict
the radiative melt forcing from dust-on-snow (MODDREFS) (Painter et al.
2009). While MODSCAG does not capture SWE, it can be integrated with in
situ observations in a snow-modeling environment to better represent the
distribution of SWE across a landscape. See Figure 8.4 (in Chapter 8) for
examples of MODSCAG and MODDRES applications in the Colorado River
Basin.

Data from MODIS have been used both qualitatively and quantitatively by
the CBRFC to inform streamflow forecasting since 2013 (Bryant et al. 2013).
The MODSCAG data on fractional snow-covered area is used qualitatively
to manually adjust forecasts, though the CBRFC is working with NASA JPL
to develop a dataset that would allow for quantitative information to be
used in operational streamflow forecasting. The MODDREFS information
regarding changes to snow albedo due to dust-on-snow is quantitatively
used to assess the impact of dust on snow to snowmelt runoff, and adjust
the CBRFC snow model to compensate. The snow model used by the CBRFC
(as described below) is not able to directly use spatially distributed data as
input so their hydrologists have had to work around this limitation.

Airborne Snow Observatory (ASO)

The Airborne Snow Observatory (ASO) is an airplane-based platform
developed by NASA JPL in 2013 (Painter et al. 2016). It carries a very high-
resolution scanning LiDAR (Light Detection and Ranging) sensor that can
very accurately measure snow depth as the difference between the current
snow-surface height and the land-surface height measured earlier during
snow-free conditions. Observed or modeled snow density, or both, is then
used to translate the snow-depth data into SWE, resulting in a spatial SWE
product with a 50-m resolution (Figure 5.4). A second sensor, an imaging
spectrometer, measures snow albedo and thus the radiative melt forcing
from dust-on-snow. ASO data are the closest to “truth” for spatial
variability in SWE across large areas (10s of km) and can directly provide
estimates of snow-water volume throughout a watershed, if all of the
watershed is flown and scanned.

ASO has been primarily deployed in several basins in California, most
intensively the Tuolumne River Basin, and in the past few years ASO flights
have covered the bulk of the southern Sierra Nevada range. In the Colorado
River Basin, ASO has been flown as part of pilot projects in the
Uncompahgre Basin (2013-2017), Gunnison Basin (2016, 2018-19), over
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What is LiDar?

LiDAR, Light
Detection and
Ranging, is a remote
sensing method that
uses light in the form
of a pulsed laser to
measure variable
distances to the
Earth. These light
pulses—combined
with other data
recorded by the
airborne system—
generate precise, 3-
D information about
the Earth’s surface
characteristics.

From NOAA:
https://oceanservice.

noaa.gov/facts/lidar.
html
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Grand Mesa (2013-2017), and in the Blue River Basin (2019; for Denver
Water). Typically, 1-6 flights are carried out per basin per season.

SWE (m)
1+

Figure 5.4

ASO-estimated SWE conditions based on airborne LiDAR snow-depth observations for the East River
Basin around Crested Butte, April 1, 2018. The very fine spatial detail within the snow-covered area
(blue shades) results from snow depth and SWE being driven by terrain features at multiple scales.
(Source: Jeff Deems, CU CIRES and NASA/JPL)
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California water agencies that have used ASO SWE data to produce or
adjust water supply forecasts have found reductions in forecast error
versus forecasts based only on in situ SWE data, allowing better
optimization of reservoirs (Friant Water Authority 2019). This is particularly
true during the latter portion of the melt season, when the remaining snow
is at high elevations where it is poorly captured by the in situ network. At
those times, the ASO-estimated SWE volume can effectively provide a
lower bound on runoff that has yet to come. Previously collected ASO data
are not publicly accessible, but generally can be obtained from ASO
investigators.

The CBRFC and NASA JPL are working collaboratively to evaluate the ability
to incorporate remotely sensed snowpack information from ASO into
CBRFC models to improve water supply and streamflow forecasts. Although
limited in frequency of data collections and spatial domain, ASO data is
available over the Senator Beck region in the Uncompahgre River Basin, the
East River, Ohio Creek, and Taylor Park regions in the Gunnison River
Basin, and the Blue River. The CBRFC indicates they will continue to stay
informed regarding the availability of ASO and other remotely sensed
snowpack information, and its potential for incorporation into operational
forecasting.

Because users typically pay for data capture and processing on a per-
basin/per flight-basis, ASO appears to have higher costs compared with
SNOTEL, satellite data, and the other spatially distributed snow products
described below. However, the costs associated with these other platforms
and methods, while often not as apparent to individual users, are still real
and need to be considered within a broader context of regional priorities.
Streamflow forecast errors associated with inadequate characterization of
snowpack also incur real costs. For ASO and any other snow monitoring
data, the value of the information and return on investment may be more
relevant metrics than simply the cost of the product per unit area.
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SPOTLIGHT

Winter orographic cloud seeding to enhance
( snowpack

Winter orographic cloud seeding involves introducing very small particles, typically silver iodide, into clouds
that contain supercooled (<0°C) water droplets. The particles serve as nuclei for ice crystals that grow as the
water droplets freeze onto them, until they are too heavy to remain aloft and fall out as snow. The small
silver iodide particles are most often released into clouds from ground-based generators; aircraft-based
seeding appears to be more effective but is much more expensive (Flossmann et al. 2019). Orographic cloud
seeding is done on the windward side of mountain ranges in order to leverage the natural enhancements by
precipitation and snowfall by mountain barriers. The concept of orographic cloud seeding is inherently
attractive, as even a small enhancement in precipitation and snowpack will, in principle, produce additional
runoff at a lower cost than other sources of new water (Rauber et al. 2019).

In the 1960s and 1970s, several cloud-seeding programs were carried out in different parts of the Upper
Basin on an experimental or operational-research basis. The largest of these, Reclamation’s Colorado River
Basin Pilot Project (CRBPP), was focused on the San Juan Mountains and lasted from 1970 to 1974.
Reclamation was prepared to use the findings of that pilot project to design and conduct a region-wide
operational cloud-seeding program (Weisbecker 1974), but the final report was inconclusive regarding the
effectiveness of the CRBPP, and called for further research and pilot efforts instead of an operational
program.

Over the next 40 years, there was a marked shift in the impetus and funding for cloud seeding research and
operations in the western U.S., from federal agencies to state, local, and private entities (National Research
Council 2003). During this period, two narratives about the efficacy of cloud seeding have emerged. The
scientific community asserted, multiple times, that controlled experiments and other studies had been
unable to demonstrate winter precipitation enhancements that were unambiguously attributable to cloud
seeding in the Upper Basin or elsewhere (National Research Council 2003; Reynolds 2015). On the other
hand, private firms carrying out operational winter cloud seeding programs, and their clients, have
consistently claimed to see evidence of precipitation enhancement in seeded basins, typically a 5-15%
increase on a seasonal basis.

Across the Upper Basin, the state water agencies and many water districts and ski areas have clearly
endorsed the cost-effectiveness of cloud seeding by sponsoring and conducting numerous cloud-seeding
programs, the longest-running of which began in the mid-1970s. As of 2019, there were seven cloud-seeding
programs operating in western Colorado, three programs in central and southern Utah; and two in
Wyoming, including a long-term, ground-based program in the Wind River Range, and a newer, aerial-based
program in the Medicine Bow and Sierra Madre Ranges. Since 2007, the Lower Basin states have funded
some of these programs; in 2018, entities representing all seven basin states signed a new agreement to
continue funding coordinated cloud-seeding programs in the Upper Basin through 2026.
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It remains difficult to isolate and quantify the effect of cloud seeding on snowfall totals and SWE (i.e.,
signal), given the complicated physics, the range of factors that can affect precipitation formation, and
the large spatial and temporal variability in snowfall (i.e., noise). Researchers have used both modeling
and field programs to investigate the effectiveness of cloud seeding projects. Modeling studies rely on
advances in the modeling of cloud microphysics and seeding processes. Field programs need to extend
for a long period of time (multiple seasons) and cover a large spatial area to support statistically
meaningful findings (Flossmann et al. 2019).

Active from 2008-2013, the Wyoming Weather Modification Pilot Project (WWMPP) was explicitly
designed to evaluate the effectiveness of cloud seeding in Wyoming’s Sierra Madre and Medicine Bow
ranges (NCAR 2014; Rasmussen et al. 2018). In a companion study, researchers using aircraft-based
radar found increases in boundary layer reflectivity, which implies an increase in the snowfall rate,
following ground-based seeding activities as part of the WWMPP (Geerts et al. 2010; 2013). Preliminary
analyses of the WWMPP results indicated an increase in snowfall with cloud seeding of 5-15% in
“seedable” storms, although seedable conditions occurred in only about 30% of the season’s storms
(NCAR et al. 2014). Thus, the corresponding increase in seasonal snowfall would be more on the order
of 1.5-4.5%. The researchers later conducted a more systematic assessment of the WWMPP results
using both statistical methods and high-resolution atmospheric modeling. The statistical analysis was
unable to identify a statistically significant effect of ground-based cloud seeding, while the modeling
study estimated that seeding enhanced annual precipitation by about 1.5% (Rasmussen et al. 2018).

In 2018, researchers were finally able to observe the long-theorized microphysical process for seeding-
induced snow formation in action, during an operational cloud-seeding project in Idaho (French et al.
2018; Tessendorf et al. 2019). This was a major breakthrough in the scientific understanding of cloud
seeding, with the potential to lead to improved monitoring of cloud seeding programs and better
quantification of its impacts (French et al. 2018). At this point, one can say that cloud-seeding “works,”
in that it clearly enhances snowfall along the path of the seeded particles; there are still large
uncertainties in how that enhancement scales up to a seasonal basin-wide effect in the context of a
specific operational program.

The prevalence of cloud-seeding programs in the Upper Basin also raises some issues for snowpack
monitoring and its application. Measurements of SWE in locations with active cloud seeding programs
may reflect greater values than natural processes alone would have produced (Julander and Bricco
2006). Such influences could potentially affect both snowpack trend analyses and the calibration of
streamflow forecast models. Similarly, seeding-enhanced runoff could influence the analyses of
streamflow trends and climate-streamflow relationships.
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Spatially distributed snow modeling uses spatially variable meteorological
conditions and modeled physical processes to produce snow state and
snow flux estimates specific to each location or grid cell across a basin. For
water supply purposes, the key output of such modeling is estimate of SWE
for each pixel or other modeling unit across a basin, such that the total
volume of basin-wide SWE can be tabulated directly from the smaller units.
Thus they compensate for the key limitations (spatial density,
representativeness, and elevational coverage) of the SNOTEL network.
Equally critically, spatially distributed modeling also generates insights into
processes, sensitivities, and patterns in time and space that are difficult or
impossible to glean from point observations alone.

It is important to note, though, that spatially distributed modeled snow
products are not independent of SNOTEL. All of the products described
below either calibrate /validate their respective models on SNOTEL data, or
directly assimilate SNOTEL data, or both, to inform the SWE estimates.
They use spatial SWE estimates from a process model, and (in most cases)
remotely sensed snow data, to in effect “spread” the SNOTEL observations
across the landscape, generating a snowpack that is consistent with the
SNOTEL observations but fills in the spatial gaps and detail. Accordingly,
the SWE estimates from any of these products will be more uncertain in the
elevation bands below and above the bulk of the SNOTEL network.

It is also difficult to independently validate (i.e., apart from SNOTEL) the
accuracy of these spatial SWE products. Comparing them to each other can
identify systematic differences, but not which product is “right.” ASO SWE
data, however, can serve as a viable reference for those basins and dates for
which ASO flights have been carried out (Oaida et al. 2019).

CBRFC modeled snowpack

For operational streamflow forecasting, the CBRFC pairs a snow model
(SNOW-17) with a hydrology model (Sac-SMA; see Chapter 8). SNOW-17 is
run in a spatially “lumped” or partially distributed framework, meaning that
area averages are calculated for each modeling unit, with each unit typically
representing an elevation zone, of which there are usually three in each
watershed. The mean area precipitation for a modeling unit is calculated
from the precipitation observations at one or more SNOTEL or COOP
stations, using weightings determined by model calibration and the PRISM
precipitation climatology (Bender et al. 2014). In the Upper Basin, 6-hourly
precipitation data is used, while in the Lower Basin, hourly data is used.
SNOW-17 then builds a simulated snowpack, using the temperatures
observed at the SNOTEL sites and local freezing levels, to determine
whether precipitation is falling as snow or rain, and whether the snowpack
is accumulating or ablating. Historical precipitation observations are used
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to calibrate the snow model. The model effectively estimates a snow-water
volume for each modeling unit, and thus for each watershed, sub-basin, CBRFC Colorado Basin
and basin, which is then used to model the forecasted spring-summer River Forecast Center
streamflow volume (Bender et al. 2014). The model allows snow to persist at / o
the highest elevations even after most or all SNOTEL sites have melted out,
consistent with real-world behavior of the snowpack.

The operational estimates of snow-water volumes for each modeling unit
are now available on the CBRFC website, accessible from the water supply
forecast evolution plot for a given forecast point (Figure 5.5).

The CBRFC also computes a % median SWE for each modeling unit, and
generates maps with these values (Figure 5.6) that can be accessed under

the Snow Conditions menu item on the CBRFC home page. The CBRFC is Link:
increasingly using additional snow information to supplement the modeled https://www.cbrfc.noaa.g
SWE from Snow-17 in their forecasting procedures; see below for more ovf
details.
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Figure 5.5

CBRFC modeled area averaged SWE during Water Year 2019 for the three modeling units (“Basin
Zones") comprising the catchment above the Yampa at Steamboat Springs forecast point: upper-
elevation unit (>10,000'; blue line), mid-elevation unit (8500-10,000; red line), and low-elevation unit
(<8500’; green line). The three gray lines are observations from the three SNOTEL sites within the
catchment, at elevations from 8400’ to 9400'. (Source: NOAA CBRFC;
https://www.cbrfc.noaa.gov/dbdata/station/snowmodel/snowmodel dg.htm|?id=STMC2)
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Figure 5.6

CBRFC modeled snow conditions (% of median SWE) for March 1, 2018 (left) and March 1, 2019

(right) showing both the broad contrast between an unusually dry and unusually wet winter, and the

finer scale spatial differences. The CBRFC snow model is “lumped” or “partially distributed,”
meaning that conditions are estimated for each model unit (multiple elevation bands in each

watershed) but not on a gridded, pixel-by-pixel basis. (Source: NOAA CBRFC;
https://www.cbrfc.noaa.gov/rmap/grid800/index.php?type=snow)

SNODAS (NOAA NOHRSC)

The Snow Data Assimilation System (SNODAS) was developed by NOAA’s
National Operational Hydrologic Remote Sensing Center (NOHRSC) and
been produced operationally for the U.S. since 2004. SNODAS estimates
multiple snow characteristics on a daily basis by merging satellite, airborne,
and in situ snow data with modeled depictions of snow cover (Barrett
2003). The snow variables that are modeled and made available include
SWE, snow depth, snowmelt, sublimation, and snowpack average
temperature. Model calibration and validation are focused primarily on
SWE because of its importance to water management.
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SNODAS is a physically based energy- and mass-balance snow model,
driven by near real-time weather variables that can assimilate available
snow data from remote sensing and in situ measurements. NOHRSC
analysts decide on a daily basis whether to adjust model output in order to
correct for discrepancies between measurements and model estimates
(Hedrick et al. 2015). The final snow products have a spatial resolution of
about 1 km over the conterminous United States (Figure 5.7).
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Figure 5.7

SNODAS modeled SWE for April 1, 2018 for a portion of the Colorado River headwaters and
Gunnison Basin in western Colorado, showing the 1-km resolution of the SWE product. The SNODAS
interactive map allows viewing of spatial data at multiple scales, and also time series for user-selected
basins. (Source: NOAA NHRSC https://www.nohrsc.noaa.gov/interactive/html/map.html )

Three studies have assessed the accuracy of SWE or snow-depth estimates
from SNODAS through comparison with high-density, in situ snow
sampling in Colorado (Clow et al. 2012; Hedrick et al. 2015) and Idaho
(Anderson 2011). These studies indicated that SNODAS snowpack estimates
were reasonably accurate and useful at watershed scales (>10 km), more so
than at the ~1 km (single pixel) to ~10 km scale, where there could be
systematic errors in areas with substantial wind scouring and
redistribution, such as above treeline, or on forested slopes with complex
topography. While there have been a number of improvements to the
SNODAS model and data assimilation scheme over time, including some
that may have addressed the shortcomings identified in those studies,
these changes are not well documented.
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In 2016, the Colorado Water Conservation Board (CWCB) funded the
development of a prototype map-based web tool by the Open Water
Foundation to access and display SNODAS SWE data, including average
SWE and total snow-water volume, for hundreds of basins covering
Colorado. This tool is now operational on the CWCB website (Figure 5.8).
The development of this tool by CWCB speaks to the interest in and
demand for spatial snow data.
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Figure 5.8

The CWCB-Open Water Foundation map tool for viewing SNODAS snow data by basin, showing
basin-average SWE for April 1, 2018 for a portion of the Colorado River headwaters and Gunnison
Basin in western Colorado. The map tool also allows viewing of multiple time series for a user-

selected basin. (Source: CWCB; http://snodas.cdss.state.co.us/app/index.html)

Chapter 5. Observations—Hydrology 172


http://snodas.cdss.state.co.us/app/index.html
http://snodas.cdss.state.co.us/app/index.html

MODIS-based spatial estimates of SWE

Researchers at the University of Colorado (INSTAAR and CWEST) have
developed a method to obtain MODIS-based 500-m resolution spatial
estimates of SWE. This is an experimental research product using a method
that was originally developed for the Sierra Nevada (Guan et al. 2013). A
near real-time product has been generated biweekly during a February-
June season for water managers in California since 2012. The methodology
was later refined and extended to two additional domains: Southern
Rockies, which includes all of the Upper Basin and the northern portion of
the Lower Basin (Schneider and Molotch 2016), and Northern Rockies,
which includes northern Wyoming, Montana, and eastern Idaho.
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Figure 5.9
MODIS-based spatial estimates of SWE at 500-m resolution across the Colorado headwaters sub-

region. The SWE amounts for April 3, 2018 are shown in the left panel, and the % of average SWE for

April 3, 2018 (relative to the 2001-2012 average) over the snow-covered area is shown in the right
panel. (Source: CU INSTAAR/CWEST)
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For the Southern Rockies domain, a linear regression model is used to
effectively blend the data listed below.

e Observed SWE at the approximately 300 SNOTEL sites and at 2,100
CoCoRaHS observer sites in the domain, scaled by the fractional snow-
covered area from MODSCAG data from that day.

e Physiographic variables that affect snow accumulation, melt, and
redistribution, including elevation, latitude, upwind mountain barriers,
and slope.

¢ An analogous historical daily SWE pattern (2000-2012) that was
retrospectively generated using historical MODSCAG data, and an
energy-balance snow model that reconstructs peak SWE given the
fractional Snow Covered Area (SCA) time series and meltout date for
each pixel.

The linear regression model generates estimated SWE values for each pixel,
out to the edges of the snow covered area shown in the MODSCAG image.
The method works best in the spring, near or after the peak SWE
(February-May). The SWE data are distributed in a multi-page report that
includes maps (e.g., Figure 5.9), a summary of current conditions, and
summary statistics.

In spring 2018 and 2019, this product was produced and distributed 4-5
times per season with the support of Western Water Assessment, and it is
being produced again in spring 2020.

SWANN: The Snow Water Artificial Neural Network

The SWANN modeling system is a research product, developed at the
University of Arizona, that uses snow models, assimilated in situ SWE data,
and artificial neural networks (ANNs), a type of machine learning algorithm,
to generate gridded estimates of SWE and snow cover (Broxton et al. 2017).
SWANN was prototyped for the Salt River Basin in Arizona, in collaboration
with the Salt River Project (SRP). The SWANN SWE estimates, which are
available back to the early 1980s, use ANNs to account for local variations in
topography, forest cover, and solar radiation, while the snow cover
estimates (generated on a limited basis), use ANNs that are applied to
Landsat and MODIS satellite reflectance data. The models are trained with
in situ SWE observations and aerial LIDAR SWE estimates from across the
southwestern U.S. The SWANN SWE data are produced in near real-time,
and delivered to SRP via a prototype decision support tool that provides
daily-to-annual operational monitoring of spatial and temporal changes in
SWE and snow cover conditions. The product also includes 35+ years of
daily SWE estimates, allowing it to be used in modelling applications that
require long-term SWE records.
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The developers of SWANN have also created a beta map-based web tool
(SnowView) to visualize and access SWANN SWE estimates for basins
across the U.S., including the Colorado River Basin and individual sub-
basins (Figure 5.10). The SnowView tool can also display SNODAS SWE for
comparison, as well as SNOTEL SWE and USGS streamflow data. While
there has not yet been a published evaluation of the near real-time SWANN
SWE estimates, an earlier version of the dataset was evaluated against ASO
SWE estimates in California, and compared with a variety of remotely
sensed SWE and snow cover products (Dawson, Broxton, and Zeng 2018).

A _THE UNIVERSITY OF ARIZONA

SNOWVIEW - BETA 1 SINGLE MAP | SWIPE VIEW | DUAL PANEL

ot S W o ) a w T"_ ‘ > 5 - =
e S B Overiay|Opacity: 07 R L1 002 S S
-8 |  EErs 9_421_11;_2_9% o -

Vernal

<5 Centenpial

Castle

Coat Canyon . SWANN SWE (in)
L Swdyarea 5

0010102505 1 25 5 7.5 10 20 40

20 Delta 4
Dominguez *

: P TR
| Leaflet | Map data and tiles created by Palrick Broxton., Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

x Colorado Headwaters (All Elevations)

Choose a value.. v| x Median SWANN SWE x 2018 SWANN SWE Frequency of SWANN SWE
on April 1 (line shows 2018

75 —— Maedian SWANN SWE 1z Yole - S omt of 37)

—— 2018 SWANN SWE

SWE / Accumulated
Precipitation (in)
# of yoars

0.0
Oct  Nov Dec Jan Feb  Mar Apr  May Jun  Jul01  Aug  Sep

01 (1} 01 o1 01 01 01 01 01 01 o1 SWE / Accumulsted Presipitation {in)

Time sensitive map data from 04/01/2018

| Selact Variable. Date Chart Data is for Ci b (All EI

Figure 5.10
The SnowView map tool showing SWANN SWE estimates for the Colorado River headwaters and
portions of adjacent basins for April 1, 2018. The seasonal curves in the lower left show the 2018

SWANN SWE for the river headwaters compared to the median for 2008-2019. (Source: SnowView,

U. of Arizona; https://climate.arizona.edu/snowview/ )

Challenges and opportunities in snow observations

As noted above, the SNOTEL snow-monitoring system serves its central
purpose well, as indicated by the generally high skill of seasonal water
supply forecasts that rely on SNOTEL data. However, the assumption of
spatial representativeness underpinning these monitoring and forecasting
systems is less robust in years with unusual conditions, e.g., an overall
average snowpack with above average low-elevation snow. The larger
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forecast errors that occur in these cases can potentially be reduced by
better real-time characterization of those aspects of the snowpack’s spatial
distribution that are not captured well by SNOTEL. In order to take full
advantage of this enhanced spatial information, though, streamflow
forecasting systems need to be able to efficiently take in these data—which
is not the case for the current CBRFC or NRCS systems.

The current snow monitoring and streamflow forecasting systems have also
been built upon another assumption, that of stationarity: that temperature,
precipitation, and SWE conditions at SNOTEL sites will maintain their
statistical and model-calibrated relationships with seasonal and daily
streamflow. This assumption is increasingly strained by non-stationarity in
the hydroclimate system: warming temperatures and changing spatial and
temporal patterns of snow accumulation and ablation. The current
observation network and operational modeling capacities are not finely
resolved enough—in space, time, or physical processes—to capture these
changes, and therefore the usefulness of in situ measurements as robust
indices of basin runoff production is at risk.

Ongoing efforts seek to add physical process representation to operational
models in order to increase the capacity of runoff forecasting systems to
handle diverse and changing watershed conditions, including climate
change and variable dust-on-snow loading. This increased realism in turn
demands data at higher spatial and temporal resolution. Over the past 15
years, new observing platforms, datasets, and modeling approaches have
emerged, providing spatially distributed SWE information that builds on
and complements the in situ point observations. New, remotely sensed data
also capture additional snow characteristics, like albedo /dustiness, for
which few in situ observations are available. As described above, some of
these spatially distributed snowpack data are now used to inform
operational streamflow forecasting by CBRFC, augmenting their partially
distributed (“lumped”) modeled snowpack, for which precipitation
observations from the SNOTEL network play a critical role.

An ideal future snowpack-monitoring system for the Colorado River Basin
that is more robust to both year-to-year variability and long-term climate
change will still require observations from the SNOTEL network at its core.
But it would be increasingly augmented by remotely sensed /spatially
distributed snowpack products, and feed into a streamflow forecast system
that is itself upgraded to better handle spatial information and represent
the physical processes of snow accumulation and melt that are undergoing
change. Uncertainties related to the spatial and temporal representation of
the snowpack would inevitably remain, but they would be much reduced.
Ideally, CBRFC would continue to act as a testbed and integrator of these
new snow data and methods, in partnership with university, agency, and
private-sector researchers.
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SPOTLIGHT

(‘ Dust-on-snow in the Colorado River Basin

Water managers, water users, recreationists, and residents alike have become increasingly accustomed to
seeing pinkish to brownish color on the surface of spring snowpacks in the mountain headwaters of the
Upper Basin, especially in western Colorado, from widespread deposition of desert dust. The dust’s visual
impact reflects physical changes that have already impacted the hydrology of the basin. Indeed, the
emergence of accumulated dust at the top of the melting snowpack is increasingly recognized as the herald
of the rapid end of the snow season.

Soil surfaces in the Colorado Plateau and Great Basin are naturally resistant to wind erosion thanks to
physical and biogenic soil crusts, but these crusts are easily disturbed by land uses such as grazing, oil and
gas drilling, dryland agriculture, and off-road vehicle use (Duniway et al. 2019). Once disturbed, the fine soil
particles can be picked up by strong winds and transported hundreds of miles from the source. Dust-
deposition events in the Upper Basin typically occur with large-scale storms that move in from the
southwest, most frequently in the spring (Painter et al. 2007). The dust layers from each event are often
buried by subsequent snows, but then reemerge and coalesce at the snow surface as the snowpack
compacts and melts down in late spring.

Sediment cores from alpine lakes in the San Juan Mountains of Colorado show a seven-fold increase in dust
deposition in the mid-1800s over the late Holocene average, coinciding with increased settlement and
grazing (Neff et al. 2008). The deposition decreased somewhat after the late 1800s, but leveled off in the late
20th century at about five times the natural background levels, due to continued disturbance by an
increasing array of agents. Dust deposition appears to have been on the increase again since the late 1990s,
due to both increasing aridity in the dust source areas and increasing human disturbance of the soils
(Brahney et al. 2013).

Field studies starting in the mid-2000s have demonstrated that dust loading in the snowpack increases the
radiative energy absorbed by snow, enhances snowmelt rates, and leads to earlier timing of spring runoff
(Painter et al. 2007; 2012; Skiles et al. 2012). Using the VIC (Variable Infiltration Capacity) hydrologic model
(Chapter 6), two studies have quantified the likely impact of recent dust loading on both the timing and
amount of runoff across the Upper Basin (Painter et al. 2010; Deems et al. 2013). Moderately dusty years like
2005 through 2008 are estimated to cause snowmelt and the peak of spring runoff to occur about three
weeks earlier compared to the pre-1800s dust levels. The extreme dust loading—several times more than
2005-2008—that occurred in 2009, 2010, and 2013 is estimated to cause melt and runoff to occur another
three weeks earlier, or a total of six weeks earlier than in the pre-historic hydrology.
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The largest impacts are occurring in southwestern Colorado; the impacts generally decrease with
distance from the Colorado Plateau (Painter, Bryant, and Skiles 2012; Skiles et al. 2015). From 2014 to
2018, there were no extreme dust years, but moderate to high dust years occurred in 2014 and 2016.

More recent work has demonstrated that the steepness of the hydrograph’s rising limb on rivers in
southwestern Colorado is tightly linked to the dust concentration—more dust means a steeper rise in
flow—but is not correlated with spring air temperatures, indicating that dust is the far more important
driver of melt (Painter et al. 2018). Changes to the slope and shape of the rising limb can impose
constraints on water management, reducing the time window over which allocation decisions are
made, or producing ‘false peaks’ which may trigger management decisions inadvertently.

Hydrologic modeling with the VIC model has also indicated that moderate dust loading has reduced
natural streamflows at Lees Ferry by about 5% annually, or 800,000 acre-feet, compared to pre-1800s
conditions (Painter et al. 2010). In the model, as the snowpack melts out earlier, more
evapotranspiration occurs from soils and vegetation, reducing runoff. The additional dust loading in
extreme dust years like 2013 only increases that loss from 5% to 6%, because meltout occurs so early
that the sun angle is too low to drive much additional evapotranspiration.

View of the Senator Beck Study Plot at the Center for Snow and Avalanche Studies (CSAS), San Juan Mountains,
Colorado, on May 5, 2013. The dark patches where that season’s extreme dust accumulation has emerged at the
surface sit lower than the adjacent cleaner snow, indicating the enhanced melt rate due to the dust. (Photo: CSAS
Colorado Dust-on-Snow program.)
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This dust-caused shift and reduction in runoff has likely been present in many water years since the
early 1900s, so a moderate dust impact is partly embedded in what we consider normal. The spatial and
year-to-year variability in dust loading, and resulting impacts on the hydrograph, complicate the
streamflow forecast, and therefore basin operations. The accuracy of the Colorado Basin River Forecast
Center (CBRFC) streamflow forecasts in the dust-impacted watersheds has been found to be linearly
related to the amount of dust influence on snowmelt, with both unusually high and unusually low
loading being associated with larger forecast errors, indicating that their model has effectively been
calibrated to moderate dust levels over time (Bryant et al. 2013). The CBRFC now uses satellite data
(MODDREFS) showing dust loading to adjust the temperatures in their model to force the model to melt
snow faster, as described elsewhere in this chapter, though dust-on-snow effects may still contribute
to forecast error.

Given the multiple snowmelt processes affected by dust, the modeled interaction of the projected
future regional warming with the dust-on-snow effect is complex (Deems et al. 2013). Runoff timing is
strongly affected by dust under all future warming scenarios, which means that dust reduction efforts
could still have a beneficial impact on snowpack longevity even under a markedly warmer climate.
However, there may be lower potential for recovery of annual runoff under high-warming scenarios.
Because warming reduces snowpack amounts much more strongly than dust-induced evaporation
losses, moving from moderate dust to extreme dust in a warmer future climate has no additional effect
on runoff volume (Deems et al. 2013). A warmer future climate would also lead to drier soils in the dust
source region, reducing vegetation cover and allowing for greater dust emission (Munson, Belnap, and
Okin 2011).

It may be possible to at least partly reverse dust-on-snow impacts in the Upper Basin with
management and policy changes (Duniway et al. 2019). Researchers continue work to determine how
improved land-use practices or restoration efforts might reduce the amount of dust that is mobilized
and ultimately deposited in the snowpacks of Colorado and the West, with funding from water
management agencies in the Colorado River Basin. It is now understood that impacts to snowpacks
from dust and other aerosols are a global phenomenon, increasing in many other regions due to
anthropogenic disturbances similar to those in the western U.S. (Skiles et al. 2018).

The Colorado Dust-on-Snow (CODOS) dust monitoring program, conducted by the Center for Snow
and Avalanche Studies, has been a critical source of information, providing dozens of updates
throughout the snow season on their weather and dust observations, and integrated assessments of
the seasonal impacts of dust on snowmelt and runoff. The CODOS program is funded by CWCB and the
Basin Roundtables, Reclamation, Colorado River District, Denver Water, and several other water
districts and utilities, indicating the relevance and utility of the CODOS data and assessments.
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5.3 Streamflow observations and monitoring

Streamflow observations in the Colorado River Basin have formed the basis
for the agreements, decrees, treaties, and compacts that comprise the Law
of the River. They are critical to ongoing management and operations of all
aspects of Colorado River Basin water supply today.

Observed (gaged) streamflow records are used directly in multiple ways,
including real-time applications, streamflow forecasting, flood warning
systems, reservoir operations, diversion scheduling, and ecological and
recreational assessments. They are also commonly modified (e.g., to adjust
for upstream activities), manipulated (e.g., to examine different sequences),
or transformed (e.g., to fit a frequency distribution) for use in planning,
research, and design. The gaged records are the starting point for all of
these activities.

The USGS is the primary entity that operates and maintains stream gages.
Within the Colorado River Basin, Reclamation, the basin states, and dozens
of other entities also maintain, operate and fund stream gages through N —
their participation in the Cooperative Water Program (Interstate Council on f.~ ;"ﬁ; : ; ol
Water Policy 2012). The USGS performs quality control and is the central TR
clearing house for data collected through the Cooperative Water Program.

USGS National Water
Information System

Be

Near real-time streamflow data as well as historical streamflow data are Link:
available for these stations through the National Water Information System https://waterdata.usgs.gov
(NWIS). /nwis/

Streamflow gage uncertainty

As is true with all data input to water resources models, “you cannot
forecast any better than you can gage” (R. Julander, as quoted in Lukas et al.
2016). The USGS provides assessments of the gage quality of each
streamflow gage, for each year. These annual accuracy assessments depend
on the stability of the stage-discharge relationship (rating curve), which is
used to convert the observed water elevation (stage) to streamflow
(discharge). They also depend on the accuracy of the observations of stage,
measurements of discharge, and interpretations of the records. The rated
accuracy corresponds to 95% of the reported discharge data departing
from the “true value” by the following percentages: excellent (<5%), good
(<10%), fair (<15%), and poor (>15%) (US Geological Survey n.d.). USGS gage
accuracy documentation can be found in the USGS Annual Water-Year
Summaries for each gage, an example of which is provided in Figure 5.11.

Chapter 5. Observations—Hydrology 180


https://waterdata.usgs.gov/nwis/
https://waterdata.usgs.gov/nwis/
https://waterdata.usgs.gov/nwis/

Water-Data Report 2012
09380000 COLORADO RIVER AT LEES FERRY, AZ

Upper Colorado-Dirty Devil Basin
Lower Lake Powell Subbasin

LOCATION.~Lat 36°51'53", long 111°35°15" referenced to North American Datum of 1927, in NE ¥ SE ¥ sec.13, T.40 N, R.7 E., Coconino County, AZ,
Hydrologic Unit 14070006, in Navajo Indian Reservation, on left bank at head of Marble Gorge at Lees Ferry, just upstream from Paria River, 16 mi
downstream from Glen Canyon Dam, 28 mi downstream from Utah-Arizona State line, and 61.5 mi upstream from Little Colorado River.

DRAINAGE AREA.—-111,800 mi?, approximately, including 3,959 mi? in Great Divide Basin in southern Wyoming, which is noncontributing {previously
considered part of the MissouriRiver basin).
SURFACE-WATER RECORDS
PERIOD OF RECORD.~-Jan. 1835 to current year. Estimates of monthly and annual discharge only for some periods, published in WSP 1313.
REVISED RECORDS.—WSP 859: 1921-23. WSP 1313: 1914-21.

GAGE.-Water-stage recorder. Datum of gage is 3,106.16 ft above sea level. Prior to Jan. 19, 1923, nonrecording gages or reference points within 400 ft
of present gage, at different datums.

REMARKS.--Records good. Flow regulated since Mar. 13, 1963, by Lake Powell, 16 mi upstream. Many diversions above Lake Powell for irmigation,
municipal, and industrial use. No diversions or inflow between Lake Powell and the gage.

AVERAGE DISCHARGE FOR PERIOD OF RECORD.—-51 years (water years 1912-62), 17,850 ft3/s, 12,930,000 acre-ft/yr.

EXTREMES FOR PERIOD OF RECORD.--1895-1962: Maximum discharge, 220,000 ft%/s, June 18, 1921, gage height, 26.5 ft, from floodmarks, from rating
curve extended above 120,000 ft3/s on basis of discharge computed for station near Grand Canyon; minimum, 750 ft3/s, Dec. 27, 1924

1963-Curent year: Maximum discharge, 97,300 ft3/s, June 79, 1983, gage height, 18.14 ft; minimum daily, 700 ft3/s, Jan. 73, 24, 1963, result of closing
coffer dam at Glen Canyon Dam.

EXTREMES OUTSIDE PERIOD OF RECORD.—-Maximum discharge since at least 1868, about 300,000 ft3/s July 7, 1884, gage height, 31.5 ft, present site and
datum, from floodmark at mouth of Paria River, from rating curve extended above 120,000 ft3/s on basis of discharge computed for flood of June 18,
1921, for station near Grand Canyon.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 21,200 ft¥/s, Nov. 20, 21, 25, gage height, 10.83 ft; minimum daily discharge, 7,910 ft3/s, Sept. 9.

Figure 5.11

Typical USGS annual water-year summary for a streamflow gage. (Source: US Geological Survey
2018c)

Uncertainties in streamflow data arise from multiple possible sources and
those sources are often noted in the gage documentation. They include
equipment limitations, errors in the rating curve, errors in stage
observations (due to ice, for example), errors due to the averaging methods
used to obtain mean gage height, and changes in stream channel or
vegetation (Hamilton and Moore 2012). Opportunities to measure extreme
high or low flows are rare and brief, making such events difficult to capture
and represent in the rating curves, and therefore subject to additional
uncertainty. Finally, conversions to more automated stream gaging means
fewer field visits to gages to observe and address site conditions (Hamilton
and Moore 2012).
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The combined uncertainties found in streamflow estimates have been
summarized as follows: 50-100% for low flows, 10-20% for medium or high
in-bank flows, and 40% for out-of-bank flows (McMillan, Krueger, and
Freer 2012; McMillan et al. 2017). Cohn, Kiang, and Mason (2013) have
offered a method that uses statistical techniques and on-site
measurements to try to get better estimates of discharge uncertainty, and
Kiang et al. (2018) have reviewed current methods of estimating discharge
uncertainty and found that estimates vary widely from method to method.

Federal priority stream gages

A subset of USGS streamflow gages are part of the “Federal Priority
Streamgages” (FPS) network, a group of gages that are considered critical
for federal support of forecasting, compact and border agreements,
analysis of long-term trends, and other purposes (US Geological Survey
2018a). The FPS network is considered the backbone of critical stream
gages throughout the nation and was developed in order to give the USGS a
systematic way to evaluate how and where funding and other support
should be placed. The criteria used to determine which gages to consider
priority gages are listed below.

1. Meeting Legal and Treaty Obligations on Interstate and International
Waters (to monitor legal requirements for deliveries of water at state
and national borders; presently 515 gage sites according to
http: / /water.usgs.gov/nsip /nsipmaps /federalgoals.html)

2. Flow Forecasting (sites needed for validation and improvement of
forecasts where the National Weather Service and other federal
agencies carry out flood or water supply forecasts; 3,244 gage sites)

3. Measuring River Basin Outflows (for calculating regional water
balances over the nation; 450 gage sites)

4.  Monitoring Sentinel Watersheds (for determining long-term trends in
streamflow across the country; 874 gage sites)

5. Measuring Flow for Water Quality Needs (for characterizing the
quality of surface waters; 210 gage sites) (National Research Council
2004)

These active FPS gages are supported through a combination of federal and
partner funding—less than one-quarter are fully funded by the USGS. The
agency uses the FPS designation to indicate those gages that USGS
classifies as critical and thus eligible for FPS funding as available from
federal appropriations. For example, preventing the loss of long-term data
collection stations, because of their value in assessing trends, recurrence
frequencies of floods and droughts, and other variables, is of particular
concern. The value of long-term streamgaging has been expressed by the
National Research Council (2004):
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Elevation map: The National Map (USGS)

Rivers: CAP, USGS, National Hydrography Dataset, Arizona State Land Department
Lakes in the Colorado River Basin: ESRI, USGS, EPA

Federal Priority Streamgages: USGS

Figure 5.12

Map of active and proposed USGS federal priority stream gage locations. (Data: USGS;
http://water.usgs.gov/networks/fps/)
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“The streamgaging network ... has had to contend with unstable and
discontinuous funding support. Gages have been inactivated when
cooperators cut budgets, and these incremental losses have eroded the
network. Many inactivated gages had long records that are valuable for
trend analysis and forecasting. It is practically impossible to quantify the
cost of losing an individual gage. Its value even for one goal—for
example, flood or drought forecasting—is embedded in the operation
and accuracy of the entire forecast system, the forecast delivery
mechanisms, and the forecast response.”

National Research Council (2004)

Sixty percent of the FPS sites serve a forecast function. FPS streamflow
gages in the Colorado River Basin for all purposes, both active and
proposed, are shown in Figure 5.12. More detail about each station is
available on the USGS’s FPS website by clicking on the individual gage and
bringing up the station information. It is important to note that the FPS
network streamflow gages shown on the map in Figure 5.12 are a subset of
gages within the larger network of USGS streamflow gages that supply

information for a diverse set of needs and therefore are not inclusive of all
USGS streamflow gages.

Streamflow data gaps in the Colorado River Basin

In its 2016 report, “Looking Forward: Priorities for Managing Freshwater
Resources in a Changing Climate,” the interagency Water Resources and
Climate Change Workgroup (2016) recommended sustaining and expanding
existing monitoring networks and data collection by identifying and
addressing data gaps and needs for water resource management, and
expanding adoption of regional monitoring networks to establish baseline
conditions for evaluating impacts due to climate change. The first step in
identifying streamflow data gaps is the national streamgage gap study by
Kiang et al. (2013), which compiled information about each USGS gage and
the basin areas contributing to it. For consistency, the authors focused
exclusively on USGS gages and did not consider gages operated by other
agencies or organizations. Within the Colorado River Basin, they list 619
total USGS gages: 405 in the Upper Basin and 214 in the Lower Basin. For
comparison with gage coverage in other basins nationally, Figure 5.13
shows the location of smaller basins (<500 sq. mi.) for which streamflow is
measured by at least one USGS gage. Of course, gage density will
correspond, to some extent, to stream density, so arid regions will have
lower gage density. In the Colorado River Basin, the smaller basins with
gage coverage shown in Figure 5.13 are mainly located in higher-elevation
areas that provide most of the basin’s runoff (Chapter 2).
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Figure 5.13

Basins of 500 square miles or less for which streamflow is measured. (Source: Kiang et al. 2013)

Kiang et al. (2013) also looked at the density of reference-quality gages, that
is, those with relatively little human activity upstream that might impact
the measured flow and are therefore of particular interest for researchers
and planners looking for unimpaired data. They list 104 reference quality
gages with 20 or more years of record in the Colorado River Basin, 68 in the
Upper Basin and 36 in the Lower Basin, a fairly low density compared to
other, more humid, parts of the country. As mentioned above, in the
Colorado River Basin, stream gages are more common in the higher
elevation watersheds. The USGS is beginning a new national gap analysis
for stream gages in 2020 (M. Landers, pers. comm.).

Additional monitoring of Colorado River Basin streamflow has been
suggested in the draft, joint Reclamation-CBRFC Forecast and Reservoir
Operation Modeling Uncertainty Scoping (FROMUS) report to help reduce
errors and uncertainty in 24MS forecasts and therefore in system condition
projections. In particular, that report suggests that additional gaging at
Upper Basin diversion sites and Lower Basin intervening flow locations
could improve streamflow forecasts substantially (Reclamation and
Colorado Basin River Forecast Center in preparation). The FROMUS report
is discussed in more detail in Chapter 3.
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Streamflow observations in the Colorado River Basin

Records of streamflow observations in the Colorado River Basin date back
to the late 19" century. The longest record that is used in planning studies
in the basin is the “Green River at Green River, UT” gage that has a period
of record extending back to October 1894 (US Geological Survey 2018b).
Perhaps the most important 19" century record is the “Colorado River at
Lees Ferry, Arizona” gage, for which records begin in January, 1895 (US
Geological Survey 2018c). The Lees Ferry gage measures flow in the
Colorado River mainstem and is located just upstream of the mouth of the
Paria River, and about a mile upstream of the Colorado River Compact point
dividing the Upper Basin and the Lower Basin at Lee Ferry, Arizona.

Figure 5.14

Lees Ferry Gage in
1923. Photograph taken
by G.C. Stevens of the
U.S. Geological Survey
just after sunset on
September 22, 1923.
(Source: Topping,
Schmidt, and Vierra Jr.
2003)

A historical summary and analysis of the Lees Ferry gage describes the
evolution of the gage from a staff gage that was read twice a day to a
continuous recording strip chart gage to an instantaneous recording gage
(Topping, Schmidt, and Vierra Jr. 2003). The Topping et al. report provides
a wealth of information about measurement methods at Lees Ferry,
hydrologic conditions prior to the closure of Glen Canyon Dam,
characteristics of the channel at the gaging station, and analysis of the
flood record prior to construction of the dam.
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Within the Colorado River Basin, many individual gaging stations have
documented idiosyncrasies, from station relocations (Colorado River near
Glenwood Springs, CO), to missing seasons (Yampa River near Maybell, CO),
to changes in equipment (Colorado River at Lees Ferry, AZ). For example,
records from the Colorado River at Lees Ferry, AZ gage were rated “good”
in 2006 through 2012, but were upgraded to “excellent” in 2013 through
2018.

The primary stream gaging stations used for planning and operations
models in the Colorado River Basin are the 29 stations listed in Figure 5.15
and shown in the map in Figure 5.16. The numbers on the map are keyed to
the station names in Figure 5.15, which shows the record lengths for the
gage locations. The 29 stations have varying record lengths and therefore
have varying levels of overlap with each other.

In 1983, Reclamation developed a “hydrology database” for its Colorado
River modeling system; the record lengths shown in Figure 5.15 reflect the
gage records in that database. The record lengths in Figure 5.15 don’t
always correspond to the record lengths reported by the USGS for the
gages—in some cases, the Reclamation record is longer. The gage locations
shown on Figure 5.16 correspond to the inflow points for Reclamation’s
CRSS model, described in Chapter 3, and therefore correspond to the
locations where natural flows are calculated.

First year

of record 1905 1915 1925 1935 1945 1955 1965

1. Colorado River near Glenwood Springs, CO = 1905
2. Colorado River gains above Cameo, CO | 1933

3. Taylor River at Taylor Park Resevoir, CO = 1938

4. Gunnison River above Blue Mesa Res, CO = 1905
5. Gunnison River above Crystal Res, CO = 1905

6. Gunnison River gains near Grand Junction, CO 1916
7. Dolores River near Cisco, UT 1936

8. Colorado River gains above Cisco, UT | 1905

9. Green River below Fontenelle Reservoir, WY 1905
10. Green River near Green River, WY = 1914

11. Green River near Greendale, UT = 1950

12. Yampa River near Maybell, CO | 1916

13. Little Snake River near Lily, CO | 1920

14. Duchesne River near Randlett, UT = 1942

15. White River near Watson, UT = 1923

16. Green River at Green River, UT | 1905

17. San Rafael River near Green River, UT = 1909

18. San Juan River near Archuleta, NM = 1905

19. San Juan River near Bluff, UT = 1914

20. Colorado River near Lees Ferry, AZ = 1911

21. Paria River atLees Ferry, AZ = 1924

22. Little Colorado River near Cameron, AZ = 1925
23. Colorado River near Grand Canyon, AZ = 1923

24, Virgin River at Littlefield, AZ = 1923

25. Colorado River below Hoover Dam, AZ-NV | 1923
26. Colorado River below Davis Dam, AZ-NV | 1935
27. Bill Williams River below Alamo Dam, AZ = 1914
28. Colorado River below Parker Dam, AZ-CO = 1935
29. Colorado River above Imperial Dam, AZ 1935

1975

1985

1995

2

8

Figure 5.15

Gage names and record lengths for locations identified on the basin map in Figure 5.16, through

2005. (Source: adapted from Lee and Salas 2006)
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Lakes in the Colorado River Basin: ESRI, USGS, EPA

Figure 5.16

Primary gage stations used for Reclamation’s planning and operations models. The names and record lengths for the
numbered locations are provided in Figure 5.15
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Streamflow data obtained directly from gages reflects contemporaneous
upstream natural processes and human activities such as diversions,
agricultural return flows, and reservoir operations. The time series reflects
changes in those natural processes and human activities over time as
climate, vegetation, and land use in the basin change. These homogeneities
in the observed streamflow record, if quantifiable, may be reduced through
“naturalization” of the record. That is, if quantitative information about
upstream activities is available or can be developed, it can be used to adjust
gage observations to calculate streamflows that are restored to natural,
unimpaired levels.

The USGS provides some documentation of upstream effects on
observations at the gages. For example, the USGS 2019 annual water year
summary for the “Gunnison River near Grand Junction, Colorado” gage
describes its observations as affected by upstream activities thus: “Natural
flow of river affected by diversions for irrigation of about 233,000 acres
upstream from station, storage reservoirs, and return flow from irrigated
lands.” However, the USGS documentation of upstream activities is both
very coarse and only infrequently updated. For example, the 2019
description of upstream activities for the Gunnison River near Grand
Junction gage is almost identical to one published for water year 1975 (U.S.
Geological Survey 1977). Streamflow naturalization requires finer temporal
and spatial estimates of upstream impacts.

The three Reclamation models described in Chapter 3 simulate the fate of
runoff under existing or potential policies, and account for either current
system development and demands or different projections of future
development and demands. If the inflow datasets used by those models
were simply gaged streamflows, the results would be confused by the
inhomogeneities in the record. Therefore, prior to use in the Reclamation
models, the gaged record needs to be adjusted, or naturalized, to
approximate the flows that would have been observed in the absence of
human activity. The level of adjustment depends on the model, the time
step, and the availability of data quantifying upstream activities.

The process of naturalizing the streamflow gage data differs somewhat
among the entities that develop and maintain naturalized streamflow
datasets. The State of Colorado, the Upper Colorado River Commission
(UCRC), Reclamation, and the CBRFC each produce versions of adjusted
gage flows at selected locations in the basin. A summary of these products
is provided in Table 5.2 and described briefly below the table.
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Table 5.2

Adjusted flow records that are currently used in the Colorado River Basin.

Entity

State of
Colorado

UCRC

Reclamation

CBRFC

Reclamation

Naturalized
flow label

Baseflow

Virgin flow

Natural flow

Unregulated
flow

Unregulated
flow

State of Colorado baseflows
For its Colorado River Water Availability Study using StateMod, a water
allocation and accounting model (Colorado Water Conservation Board
2012), the State of Colorado developed historical monthly “baseflows” for
hundreds of inflow points from the river’s headwaters in Colorado to the
Colorado-Utah state line. StateMod’s baseflows represent flows that have

been adjusted for upstream human effects, that is, historical gage

Locations

214 points in
Colorado

Lee Ferry (the
Colorado River
Compact point)

29 points
throughout the
Colorado River
Basin

159 sites
throughout
area of
responsibility

9-12 points in
the Upper
Basin

Time step
and period

Monthly
1950-2005

Annual,
1896—
present

Monthly,
1906-
present

Monthly
and
seasonal
1964-
present
Daily and
monthly,
1964-
present

Application

StateMod

Reporting

CRSS, and
most long-
term basin
research
studies

24MS and
MTOM and
stakeholders’
forecast needs

Contributes
indirectly to
24MS and
MTOM

observations are adjusted for diversions, reservoir operations, estimated

consumptive uses, and return flows. Baseflows calculated at gage locations
are distributed to upstream, ungaged reaches and locations.

UCRC virgin flows

The UCRC publishes current and historical total annual “virgin flows” at Lee
Ferry, the Colorado River Compact point below the USGS Lees Ferry gage
and below the Colorado River confluence with the Paria River, in its annual
reports (UCRC 2017, 2018). The UCRC defines virgin flow as “the estimated
flow of the stream if it were in its natural state and unaffected by the
activities of man.”
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Reference

Colorado Water

Conservation
Board (2012)

UCRC (2017,
2018)

Prairie and
Callejo (2005)

See Table 3.1 in
Chapter 3

See Table 3.1 in
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Specifics of the UCRC calculation methods were not available, but
presumably they are very similar to the methods used by Reclamation,
described in the next section. Figure 5.17 shows a comparison of the UCRC
and USBR virgin and natural flows at Lee Ferry and Lees Ferry, respectively.
The agencies’ flows will differ slightly because of their different locations
relative to the mouth of the Paria River (discharge of 20 kaf /yr on average).
However, the difference between the two records is not consistently signed
negative, as one would expect, and is frequently on the order of hundreds
of thousands of acre-feet. For most of the historical record, there is
insufficient documentation on the development of the two entities’ flows to
understand the differences; however, data sources are available from
Reclamation and the UCRC for the more recent 1988-2017 period if
comparison were to be pursued. The lesson from the differences is that
there may be uncertainties in the naturalization process that propagate to
the naturalized streamflow values, above and beyond the uncertainties in
the underlying gaged record.

30

=——JCRC virgin flow at Lee Ferry

25 e USBR naturalized flow at Lees Ferry

ﬂ Delta USBR-UCRC
20 N | | )

15—+ v

: J V |

Annual water year streamflow volume, maf

-5 4
905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Water Year

Figure 5.17

Comparison of USBR and UCRC water-year annual naturalized flows at Lees Ferry and Lee Ferry,
respectively, 1906-2016. (Data: UCRC 2017, 2018; Reclamation 2019d)
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Reclamation natural flows

As the key inputs to its CRSS model, Reclamation produces historical

monthly “natural flows” at each of the 29 inflow points listed on Figure 5.16. USBR Colorado River
The names and record lengths for the numbered locations are provided in Basin Natural Flow
Figure 5.15. The natural flow dataset, available on the Reclamation website, and Salt Data

is actively maintained and updated with recent natural flow values once all Link
INK:

hs af h dof th dditi ddi h L https://www.usbr.go
months after the end of the year). In addition to adding to the natural flow v/lc/reqion/a4000/N

of the components have been compiled and adjustments made (about 12

record as each year’s data becomes available, Reclamation also frequently aturalFlow/
refines its natural flow calculations using new information and methods.
These calculations and refinements are described in more detail in the next

section.

To develop the monthly natural flows that are input to CRSS, Reclamation
adjusts gaged streamflow data at all 29 inflow points for reservoir
operations and consumptive use. The specific adjustments made to
calculate natural flow for Upper Basin locations differ from those of the
Lower Basin. The following summary of Reclamation’s adjustments to the
gage record draws primarily from Prairie and Callejo (2005). That document
describes the natural flow calculation inputs, methods, and assumptions for
what was then the 1971 to 1995 natural flow dataset. Figure 5.18, modified
from that document, shows a simplified process diagram for the natural
flow calculations. Natural flow calculations made prior to 1971 have not
been revisited since 1983 for the Upper Basin, and 1985 and 1992 for the
Lower Basin, with the exception of the record extension described later in
this section.

Upper Basin

Consumptive Uses and Distributed to .
Losses Reports along with HUC’s by month Flgure 5.18

available sources data
¢ Reclamation's

natural flow
Lower Basin Consumptive Reservoir Historical Gage .

Water Accounting Reports Uses and Losses Regulation Flow calculation
method, as
applied to gaged

B data from 1971
ompute
natural flow in onward
RiverWare
(Source: adapted
from Prairie and
Callejo 2005
Upper and J )

Lower Basin
Natural Flow
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Upper Basin flow naturalization. For Upper Basin natural flows,

Reclamation adjusts the observed gage record to account for upstream

changes in reservoir storage and consumptive uses and losses at the 20

locations shown in Table 5.3.

Table 5.3

Upper Basin natural flow locations used in CRSS. (Source: USBR Colorado River Basin Natural Flow and

Salt Data; J. Prairie pers. comm.)

USGS gaging station number
Was 09072500
Current 09085100-09085000
09095500
09109000
09124700
09127800
09152500
09180000
09180500
09211200
09217000
09234500
09251000
09260000
09302000
09306500
09315000
09328500
09355500
09379500

09380000

Station name

Colorado River at Glenwood Springs, Colorado

Colorado River near Cameo, Colorado

Taylor River below Taylor Park Reservoir, Colorado
Gunnison River above Blue Mesa Reservoir, Colorado
Gunnison River at Crystal Reservoir

Gunnison River near Grand Junction, Colorado
Dolores River near Cisco, Utah

Colorado River near Cisco, Utah

Green River below Fontenelle Reservoir, Wyoming
Green River near Green River, Wyoming

Green River near Greendale, Utah

Yampa River near Maybell, Colorado

Little Snake River near Lily, Colorado

Duchesne River near Randlett, Utah

White River near Watson, Utah

Green River at Green River, Utah

San Rafael River near Green River, Utah

San Juan River near Archuleta, New Mexico

San Juan River near Bluff, Utah

Colorado River at Lees Ferry, Arizona
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Reclamation considers two sets of reservoirs in its Upper Basin natural flow
adjustments: the eight Upper Basin mainstem reservoirs explicitly
represented in CRSS, and eighteen non-mainstem reservoirs not
represented in CRSS. For the former, historical pool elevation data are used
to determine changes in storage for adjustment of downstream natural
flows. For the latter, historical monthly change in storage is used. Natural
flows below Flaming Gorge Reservoir and Lake Powell include additional
adjustments for changes in bank storage.

Adjustments for consumptive uses and losses (CUL) include reservoir
evaporation, stock pond and livestock uses, thermal power, minerals, M&I,
exports and imports, and irrigated agriculture. Reservoir evaporation is
calculated from historical surface area for 42 major reservoirs and from an
estimated “fullness factor” for minor reservoirs, with net evaporation rates
from NOAA “Annual FWS Evaporation Atlas.” Consumptive uses and losses
from historical M&I, minerals, and measured imports and exports are taken
from USGS reports and communications. Losses from sublimation and
evapotranspiration (ET) from non-irrigated lands are not factored into
natural flow calculations.

Reclamation calculates historical Upper Basin irrigated agriculture
consumptive use with the modified Blaney-Criddle ET estimation method,
in combination with data on temperature, crop types, and acreage.
However, because of better availability of a wider range of weather data
(see Chapter 4), the modified Blaney-Criddle method may be phased out;
the more fully physical Penman-Monteith method is now the preferred
approach (Sammis, Wang, and Miller 2011; Technical Committee on
Standardization of Reference Evapotranspiration 2005). In cooperation
with, and pending approval from, the UCRC and the Upper Basin states,
Reclamation may replace modified Blaney-Criddle-derived estimates of
consumptive use with Penman-Monteith-derived estimates in its natural
flow calculations (J. Prairie, pers. comm.).

Reclamation routinely refines the natural flow calculations. Updates to the
natural flows are issued approximately annually and each update may
reflect multiple refinements. The refinements fall into three categories
corresponding to the data sets needed to compute natural flow: CUL data,
reservoir regulation (change in storage) data, and USGS gage data.
Reclamation provided several years of documented updates—three
examples taken from the documentation are provided in Figure 5.19.
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Natural
Flow
Years

Release
Date

Change
Source

Brief Description

2017-2016

Updated
31819

CuLl

Reservoir|
Regualtion
Gage data

Lower Basin

CUL changes to Ag in all reaches. Changes to
New Mexico M&|, Minearals & Power in Bluff
reach.

N/A

Updated StreamGauge 09302000 for December
2016

Mead outflow revised to comect USGS intake of
BOR data

2010-2008

Updated
4/2/13

CuL|

Reservoir
Regualtion

Gage data

Lower Basin

CUL changes in all reaches 2006-2008

Added Viva Naughton Res data. Updated Moon
Lake Res data. Changed Powell Bank Storage
method from 3-gage to mass balance method

Updated StreamGage 09127800 data after
November 1980

Bill Williams inflow moved from above
MWDandCAP reach to into the MWDandCAP
reach representing actual layout of these points
within the MWD and CAP diversions.

2003-2000

Updated
9/23/05

CuL
Reservoir
Regualtion

Gage data
Lower Basin

Fixed Ag shortage issue in Green River, UT
Updated Powell evaporation, determined
evaporation from 3-tier methed, which is not
presently available in CRSS, then input directly
into the Natural Flow model. Previously Powell
evaporation was computed with an internal
RiverWare user method based on monthly
evaporation coefficients not the 3-tier method
Added Willow Creek, SilverJack,Fruilgrowers,
Meeks Cabin, Moon Lake Res. Revised data for
Crystal, Paonia, Vega, Joes Valley, Navajo and
Jackson Gulch Res

N/A

Replaced 1906-1970 with data from
Reclamation report "CRSS Colorado River
Simulation System Hydrologic Flow and Salt
Data Base for the Lower Colorado Regicn, Lees
Ferry to Impenal Dam” dated March 1982
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Figure 5.19

Three examples of Reclamation’s Upper Basin natural flow updates. Reclamation’s documentation of natural flow
refinements summarizes the changes to each natural flow component and includes a figure with the total monthly
change in natural flow at Lees Ferry since the previous update. (Source: Reclamation)

For nearly all gages, and for nearly all years, the sum of the adjustments
made to naturalize the observed record are positive (i.e., adding flow back
in), resulting in a natural flow record that exceeds the historical gage
record. However, at the Lees Ferry gage, in extremely dry years like 1977
and 2002 (Figure 5.20), the natural flow for the entire Upper Basin (5.4 and
5.9 maf, respectively) can be less than the Lake Powell release (typically
8.2 maf), revealing a net negative adjustment to the gaged value.
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———USGS Lees Ferry gage flow

55 ———USBR naturalized flow at Lees Ferry
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Figure 5.20

Comparison of naturalized and gaged water-year flows at Lees Ferry, 1922-2017 (Data: USGS and
Reclamation)

Lower Basin flow naturalization. The basin map in Figure 5.16 shows 9
inflow points for CRSS in the Lower Basin. Five of these points are located
in reaches along the mainstem, and are considered naturalized flows, and
four represent tributaries. The methods for calculating CRSS inflows differ
between these two types of Lower Basin inflow points.

The five Lower Basin reaches and the USGS gages (natural flow calculation
points) at the downstream ends of them are shown in Table 5.4.
Reclamation’s Lower Basin natural flows contain adjustments for operations
at Lakes Mead, Mohave, and Havasu, and include estimates of changes in
bank storage for Lake Mead.
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Table 5.4

Lower Basin natural flow locations (Source: Prairie and Callejo 2005)

US(.ES gaging Station name et !nflow Reach name
station number point
09402500 i;lorado River near Grand Canyon, 23 Lees Ferry to Grand Canyon
Colorado River below Hoover Dam, Grand Canyon to Hoover
09421500 AZ-NV 25 Dam
09423000 Celere [Hveroeiern e ey 26 Hoover Dam to Davis Dam
AZ-NV
09427520 (Celemre! [verlosien e Dem), 28 Davis Dam to Parker Dam
AZ-CA
09429490 Colorado River above Imperial Dam, 29 Parker Dam to Imperial Dam

AZ-CA

The method for estimating consumptive uses and losses for these reaches
is different from that in the Upper Basin. Rather than calculate historical
consumptive use from acreage and ET estimates, Reclamation relies on
water use records from Decree Accounting, recently renamed Water
Accounting, reports (Reclamation 2016¢) that are compiled in accordance
with the court decree in Arizona v California. In total, consumptive uses
from 52 diversions are accounted for in the Lower Basin natural flow
calculations. However, according to Prairie and Callejo (2005), for some
diversions, the consumptive use is modified by an “unmeasured returns”
factor that reduces the depletion.

Reservoir evaporation is estimated with monthly evaporation coefficients
and surface areas for lakes Mead, Mohave, and Havasu.

Lower Basin natural flows are also adjusted to reflect the impact of
phreatophytes. Monthly average consumptive use by phreatophytes for two
reaches, Davis to Parker and Parker to Imperial, which sum to over 500,000
acre-feet per year, are applied.

Natural flow is not calculated for the Lower Basin tributaries; instead,
historical gage data are used for the 4 tributaries shown in Table 5.5, with
the corresponding gaging station. As described in Chapter 3, the Gila River
is not represented in CRSS.
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Table 5.5
Lower Basin tributaries represented in CRSS. (Source: Prairie and Callejo 2005)

USGS gaging station  Station name CRSS !nflow
point
09382000 Paria River At Lees Ferry, AZ 21
09402000 Little Colorado River Near Cameron, AZ 22
09415000 Virgin R At Littlefield, AZ 24
09426000 Bill Williams River Below Alamo Dam, AZ 27

There are hydroclimatic implications to using the historical gage data at the
tributaries rather than naturalizing the inflows. Lower Basin tributary gage
flows are heavily modified by upstream human activity and therefore do not
reflect the natural hydrologic variability of those tributaries. Efforts to
analyze trends or calibrate models based on these inflows will produce
misleading results, and simulations that are imposed on this already-
impaired streamflow record cannot explore changes to the uses or
operations on the tributaries. Reclamation is in the process of computing
historical (1971-present) consumptive uses and losses for the tributaries and
will ultimately compute natural flows at the four gage locations for use in
CRSS (J. Prairie, pers. comm).

Natural flow record extension

The time series for observed streamflow records for the 29 key inflow
points in the basin are only partially overlapping, as noted above and shown
in Figure 5.15. Rather than attempt to extend the various gage records back
to a common starting point and then estimate natural flows from the
extended gage records, Reclamation has extended the natural flow records
themselves. In 1983, Reclamation used multiple linear regression on the
overlapping natural flows that had been calculated from gage records to
derive equations to extend all the missing natural flows back to 1906. In
2006, taking advantage of 20 additional years of common natural flow
estimates, Lee and Salas used multiple linear regression and nearest-
neighbor methods to revise and update the 1983 extensions. They
disaggregated the updated annual natural flows to monthly natural flows
and incorporated a random error term to represent the uncertainty in the
estimates (Lee and Salas 2006). Reclamation currently uses the Lee and
Salas (2006) extended natural flow for all periods from 1906 until the start
of the gage record at a given site.
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CBRFC unregulated flows

The CBRFC forecasts monthly “unregulated flows” for basin locations
corresponding to Upper Basin inflow points in Reclamation’s 24MS

(9 points) and MTOM (12 points) models (see Chapter 3 for the locations
and details of these inflow points). The CBRFC’s unregulated flows are
gaged flows that have been adjusted for some, but not all, upstream
activities, and thus are not as fully naturalized as natural or virgin flows.
The CBRFC takes observed flows and removes the effects of measured
upstream diversions, exports, imports, and reservoir regulation. The
formula for CBRFC’s unregulated flow calculation, in which all the terms are
taken from measured data, is given below and illustrated in Figure 5.21.

Unregulated flow = Observed flow + Diversions + Exports — Imports = Change in Storage

Historical Gage Flow Reservoir Regulation

Figure 5.21

CBRFC's
unregulated flow
calculation method
Unregulated Flow (Source: adapted
from CBRFC
formula)

Measured Diversions

Measured Exports

Measured Imports

Besides having very different applications, the primary difference between
the CBRFC’s unregulated flows and Reclamation’s natural flows is the
treatment of upstream diversions and return flows. Upstream activities that
are either not measured or for which data is unavailable in a routine and
timely manner are not backed out of the observed gage flow in the CBRFC
version.

It should be noted that, for purposes besides 24MS or MTOM inputs,
unmeasured depletions, such as localized irrigation, are modeled by the
CBREFC to estimate how much water is applied to, consumed by, and
returned from known irrigation areas, but these estimates are not used in
the CBRFC’s unregulated flow calculations.
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Reclamation unregulated flows

Reclamation also calculates unregulated flows, but only retrospectively (i.e.,
they are not used as the basis of forecasts like CBRFC’s). With the exception
of the inflow to Navajo Reservoir, Reclamation’s unregulated flow
calculations only account for the change in storage of any Reclamation
reservoir directly upstream. Unregulated inflows to Navajo Reservoir are a
special case because 24MS and MTOM both model projected diversions
through the Azotea Tunnel, which is above the reservoir. Within
Reclamation this Navajo Reservoir inflow is termed “modified unregulated”
because Reclamation does add back in the diversions in its unregulated
calculation.

Though there are minimal differences between Reclamation's and CBRFC's
unregulated streamflow values at all overlapping locations, three CBRFC
forecasts are adjusted based on Reclamation’s calculations or needs: inflows
to Powell, Flaming Gorge, and Navajo reservoirs. CBRFC’s Lake Powell
unregulated inflow forecast is adjusted via a linear regression to more
closely match Reclamation’s retrospective calculations, and this adjusted
inflow becomes CBRFC’s official forecast. For the inflow to Flaming Gorge,
CBRFC calculates a special forecast for use in Reclamation’s models that is a
hybrid between regulated and unregulated: the impacts of regulation by
non-Reclamation reservoirs between Fontenelle and Flaming Gorge are
preserved (i.e., not backed out as in the standard unregulated calculation
procedure). This is different from CBRFC's official published forecast into
Flaming Gorge, which is developed as described above. The last special case
is for the inflow into Navajo Reservoir. As previously described, Reclamation
adjusts its unregulated calculation for the impacts of Azotea Tunnel, so this
aspect of inflow to Navajo matches the CBRFC procedure and does not
require any special treatment. Because there is significant irrigation activity
between Vallecito Reservoir and Navajo that Reclamation does not consider
in its internal unregulated calculations, CBRFC provides a hybrid forecast
that includes regulation between Vallecito and Navajo so that the resulting
Navajo forecast value is closer to what Reclamation produces in its
retrospective calculations. This hybrid product is different from CBRFC'’s
official, published, unregulated Navajo inflow forecast.

A comparison of Reclamation’s natural flows and unregulated flows is
shown in Figure 5.22. Comparison of Reclamation’s and CBRFC'’s publicly
reported April-July unregulated flows into Lake Powell over the 1964 to
2016 period show that they are almost perfectly correlated and agree, on
average, within 0.02%. If the CBRFC unregulated flows for Lake Powell were
plotted in Figure 5.22 they would be indistinguishable from Reclamation’s
unregulated inflows.
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———USBR Unregulated flow into Lake Powell

25 ———USBR Naturalized flow at Lees Ferry
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Figure 5.22

Comparison of Reclamation's water-year unregulated flows into Lake Powell with their naturalized

flows at Lees Ferry, 1964-2017. (Data: Reclamation)

5.4 Soil moisture observations and monitoring

Soil moisture, like snowpack, serves as a key interface between
atmospheric and hydrologic processes. It links the energy budget and
water budget of a watershed by controlling whether incoming energy goes
into the evaporation of moisture, or the heating of the land surface. And
like snowpack, soil moisture integrates precipitation and
evapotranspiration over long time periods, imparting memory to the
hydrologic system (Shelton 2009).

Antecedent fall soil moisture is an important influence on runoff efficiency
for the following spring, and thus a soil-moisture term is included in the
CBRFC streamflow forecast model. Anomalously low antecedent soil
moisture will reduce the forecasted seasonal streamflow, especially for the
early season forecasts (December and January) because there is less
information then about the snowpack; at those times, forecasted flows are
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reduced by about 7-10% per 10% departure from normal soil moisture
conditions (P. Miller, pers. comm.). Until 20 years ago, in situ observations
of soil moisture in the Colorado River Basin were extremely sparse. The
density of in situ soil moisture observations in the basin has increased in
recent decades, but the spatial representativeness of the point
observations is still problematic for basin-wide applications. Accordingly,
CBRFC uses modeled soil moisture in their streamflow forecasting. CBRFC
has found that only the deepest in situ soil moisture measurements, at

about 1 m, correlate with their modeled soil moisture, and many in situ sites

do not have sensors at that depth. New remotely sensed data on soil
moisture from satellites have the potential to augment and better tie
together in situ and modeled soil moisture data, though most remotely
sensed data only extend through the top layer (roughly 10 cm) of soil (Table
5.6).

The modeling of soil moisture has a large conceptual and practical overlap
with the modeling of evapotranspiration and evaporative demand (Section
5.5) since they are all terms in balancing the energy budget and water
budget at the land surface.

About 100 in situ soil moisture observing sites have been established in
recent years in the basin, with most of them located in the Upper Basin
(Figure 5.23). By far, the greatest number of these are at SNOTEL sites, with
some of them having records going back to early 2000s. Other networks
that host multiple soil-moisture sites in the basin include the Soil Climate
Analysis Network (SCAN), U.S. Climate Reference Network (USCRN) and the
Interactive Roaring Fork Observing Network (iRON) in central Colorado.
Each site provides measurements of soil moisture at multiple depths from 5
cm (2") up to 1 m (39”), depending on the network.

Outside of the SNOTEL network, which covers the high-elevation regions
in the Upper Colorado River Basin, the in situ monitoring is still very sparse,
and may not adequately assess the conditions (and water demand) from the
lower-elevation, more arid part of the basin. Real-time data and historical
data from all of these networks and stations can be accessed from the
National Soil Moisture Network (NSMN) or the International Soil Moisture
Network (Dorigo et al. 2011).
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Table 5.6

Summary of characteristics of in situ, remotely sensed, and modeled soil-moisture (SM) data available for
the Colorado River Basin. See the text for further description of most of these networks/products.

Network or
Product Name

National Soil
Moisture
Network

NLDAS-2

SMAP

SMOS

LIS (Noah
Model +
SMAP)

ESI

LERI

GRACE-DA-
DM

Method

In situ
Observations

Land Surface
Modeling

Remote Sensing

Remote Sensing

Remote Sensing
+ Land Surface
Model

Remote Sensing
+ Energy
Balance Model

Remote Sensing
+ Energy
Balance Model

Remote Sensing
+ Land Surface
Model

Soil Moisture
(SM) Variables

SM at multiple

depths (5-100 cm)

SM at multiple

depths (10-100 cm)

0-5 cm SM

0-5 cm SM

0-10, 10-40, 40-
100 and 100-200
cm SM

Root zone SM in
percentiles

Root zone SM in
percentiles

Groundwater, root

zone SM and
surface SM
percentiles
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Spatial
Resolution or
Number of
Stations

~1000
stations from
multiple
networks

12 km

36km

50km

3 km

4 km

1 km

12 km

Spatial
Coverage

CONUS

CONUS

Global

Global

CONUS

CONUS

CONUS

North
America

Temporal
Resolution

daily

daily

2-3 days

3 days

daily

monthly
composite

monthly
and 8-day

weekly
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WYOMING

SNOTEL soil moisture
SCAN

USCRN

NOAA HMT

iRON (Roaring Fork)
SoilSCAPE

NEVADA

NEW
MEXICO

MEXICO

Elevation map: The National Map (USGS)

Rivers: CAP, USGS, National Hydrography Dataset, Arizona State Land Department
Lakes in the Colorado River Basin: ESRI, USGS, EPA

SNOTEL soil moisture, SCAN: NRCS National Water & Climate Center

URSCRN, NOAA HMT: NOAA

iRON (Roaring Fork): Aspen Global Change Institute

SoilSCAPE: USC University of Southern California

Figure 5.23

Locations of in situ soil moisture monitoring sites that are part of the National Soil Moisture Network (NSMN).
(Source: NSMN; http://nationalsoilmoisture.com/)
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Because of the scarcity of both in situ and remotely sensed soil moisture
data, real-time soil moisture conditions have generally been modeled, using
observed meteorological inputs—primarily temperature and precipitation,
but also humidity and solar radiation in some cases.

Hydrologic models used to model soil moisture have been either simple
bucket models, as in the case of NOAA’s Climate Prediction Center’s Soil
Moisture product (Huang, Van den Dool, and Georgarakos 1995), or more
complex land surface models as the NLDAS-2 Drought Monitor Soil
Moisture online products (VIC, MOSAIC, Sac-SMA and NOAH models;
Schaake et al. 2004) and UCLA’s Experimental Surface Water Monitor (VIC
model; Wood 2008). Modeled estimates of soil moisture are typically made
for the total moisture in the whole soil column and do not have explicit
information on moisture conditions at particular depths. This poses a
challenge to efforts to blend the modeled total-column estimates with the
depth-specific in situ observations, such as the National Soil Moisture
Network blends described below.

The CBRFC models soil moisture as part of their streamflow forecast
procedure using the Sac-SMA model (Sacramento-Soil Moisture
Accounting, see Chapter 6). Sac-SMA divides the soil response into a fast-
responding upper zone (approximately the top 20-50 mm of soil) and a
slower-responding lower zone (generally deeper than 50 mm). In the
model, a basin's antecedent condition prior to snowmelt, i.e., the lower
zone soil moisture, influences the forecasted volume of runoff during the
spring and summer months. As with the Snow-17 model, the Sac-SMA
model is run in a lumped framework, in which individual watersheds are
divided into up to three elevation zones, depending on the amount of relief
within the basin, vegetation patterns, and snowpack patterns. Sac-SMA
model parameters, including those that govern soil moisture processes, are
defined separately for each elevation zone within each watershed. The
CBRFC has examined incorporating in situ observed soil moisture data into
their model but has found that these data were not appropriate for the
CBRFC’s modeling environment (P. Miller, pers. comm.).

Modeled soil moisture provides much more spatially distributed
information than point in situ observations; however, the modeled data also
inherit the uncertainties in the underlying meteorological observations,
particularly precipitation (Chapter 4), as well as uncertainties in the
parameterization of soil and vegetation properties that influence the
translation of precipitation into soil moisture.
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Figure 5.24

CBRFC operational modeled soil-moisture conditions (% of average) for mid-November 2017 (left)
and 2018 (right). The mid-November time frame is indicative of the antecedent soil moisture that
influences the efficiency of the spring runoff. The CBRFC soil moisture model is “lumped” or

“partially distributed,” meaning that conditions are estimated for each model unit (multiple elevation

zones in each watershed), but not on a gridded, pixel-by-pixel basis. (Source: CBRFC;
https://www.cbrfc.noaa.gov/wsup/sac_sm/sac_sm.php)

Remotely sensed soil moisture

Satellite-based data have become increasingly available in recent years to
assess soil moisture, through retrieval of soil moisture’s signature in
microwave-band radiation reflections and scatter, or by assimilating satellite
observations of various surface properties in a land surface /hydrology model
to model soil moisture. While satellite retrievals of soil moisture are generally
restricted to the upper 10 cm of soil, as mentioned earlier, the assimilation of
satellite data into modeled soil moisture can usefully inform estimates at
much greater depths (>100 cm), since soil moisture anomalies tend to
propagate downward in the soil column over time (Kumar et al. 2019). The
CBRFC has not yet evaluated the potential to incorporate remotely sensed
soil-moisture data in their forecast model.
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NASA’s Soil Moisture Active Passive (SMAP) satellite was launched in 2015 to
retrieve the soil moisture signal in microwave-band radiation. Because of
the failure of the radar (the active sensor), only the radiometer (the passive
sensor) data is available. The passive sensor provides an assessment of the
near-surface soil moisture (upper 5 cm) and a spatial resolution of 36 km
every 2-3 days and is available on a SMAP webpage. SMAP radiometer
observations have also been combined with Sentinel-1 satellite radar (i.e.,
active) observations to estimate soil moisture at a much higher spatial
resolution (3 km); a near real-time Beta-release version of this data is
currently available online for monitoring applications with a 2-day lag time
(Das et al. 2018). NASA's Short-term Prediction Research and Transition
(SPoRT) Center provides real-time output of soil moisture variables every
hour for CONUS at 3 km resolution by assimilating SMAP observations in
the Noah land-surface /hydrology model (Blankenship et al. 2018).

The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS)
mission was launched in 2009. Similar to SMAP, SMOS provides estimates
of soil moisture in the top 5 cm at a spatial resolution of 50 km every 3
days. One study has shown that both SMAP and SMOS products have a dry
bias in a topographically complex mountain region in China (Zhang et al.
2019), but it is not clear whether this is true for other mountain regions.

Root zone soil moisture can also be assessed using other satellite derived
products that use remotely sensed “land skin” temperature and an energy-
balance model to assess the evaporative response from land. The
Evaporative Stress Index (ESI; Anderson et al. 2011) is a 4-km spatial
resolution data product based on GOES satellite data, available as a
monthly composite updated with 1-day latency between late March and
early October. ESI has been shown to be a useful predictor of agricultural
yield anomalies and other vegetation impacts caused by soil-moisture
drought stress (Hobbins, McEvoy, and Hain 2017)

A newer, similar product is the Landscape Evaporative Response Index
(LERI; Rangwala et al. 2019), which is a 1-km spatial resolution dataset
derived from Simplified Surface Energy Balance (SSEBop)
evapotranspiration data that incorporates MODIS Terra observations and is
available online at multiple timescales of integration with a lag time of 1-2

weeks.

The National Soil Moisture Network (NSMN) is an ongoing multi-agency
and multi-university effort that aims to integrate soil moisture data from
the several existing in situ monitoring networks throughout the United
States, and also to merge these data with modeled and remotely sensed soil
moisture products to generate near real-time, high-resolution, gridded
national soil moisture maps and other products (Clayton et al. 2019).
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Currently, the NSMN website provides three types of soil moisture map
products for the U.S.: 1) interpolated in situ observations of soil moisture,
including an interpolation scheme (regression kriging) that uses PRISM
precipitation; 2) a blend of the regression-kriging interpolated in situ map
with NLDAS modeled soil moisture, and 3) a blend of 2) and a SMAP
passive-radiometer remotely sensed soil moisture product. The NSMN also
provides daily soil-moisture data from all in situ networks, but the data
archive only extends back to August 2018.

5.5 Evaporation, evapotranspiration, and evaporative
demand

To support a variety of water resource management decisions, estimates of
open-water evaporation, evapotranspiration (ET), and evaporative demand
are required at varying timescales: daily (reservoir operations), weekly
(irrigation scheduling), and seasonally (demand and consumptive use
estimation) (Hobbins and Huntington 2017). Estimates of watershed-scale
evapotranspiration are also used to validate the simulated water budget in
hydrologic models, including that used by the CBRFC for streamflow
forecasting. Estimates of monthly reservoir evaporation and consumptive
use by agriculture are also important terms in the Reclamation operations
and planning models and in their flow naturalization calculations.

Generally, evaporation-related variables are estimated using a model driven
by meteorological observations, or are derived from remote sensing data.
Direct in situ observations of these variables (e.g., pan evaporation) are very
sparse and do not offer an adequate spatial representation at the
watershed or basin scale.

Open water evaporation in a large reservoir setting is notoriously difficult
to quantify; many different methods have been used to estimate open water
evaporation, each with benefits and challenges for operational use, as
summarized by Friedrich et al. (2018). Historically, pan evaporation has
often been used by water managers as a proxy for reservoir evaporation,
including at Lake Powell in the late 1950s, but this method can produce
large errors in both the amount and seasonal timing of evaporation
(Friedrich et al. 2018).

The bulk aerodynamic, or mass transfer, method is arguably the most cost-
effective approach for near real-time operational monitoring. From 1955-
1994, the USGS calculated evaporation at Lake Mead using the mass
transfer method, and from 1965-1979, Reclamation calculated evaporation
at Lake Powell using the mass transfer method (Reclamation 1986). The
average monthly evaporation from these deployments of the mass transfer
method have been incorporated into the 24MS model as static coefficients
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for modeling reservoir evaporation. However, comparison with newer
techniques has shown that the mass transfer method likely has consistent
biases (Moreo and Swancar 2013).

The Eddy Covariance (EC) method is regarded as the most direct and
accurate approach to quantifying open water evaporation, if properly
instrumented and calibrated (Hobbins and Huntington 2017). This method
has been shown to have high accuracy in estimating evaporation from Lake
Mead, with estimated uncertainties of 5-7% or less (Moreo and Swancar 2013).

A major advantage of the EC method is the ability to accurately quantify
daily and sub-daily evaporation. However, this method has substantial
instrumentation and data processing requirements that limit its application
more widely (Friedrich et al. 2018). Another relatively accurate approach is
the Bowen Ratio Energy Balance (BREB) method. But this method requires
accurate estimates of the reservoir heat storage term, which varies
considerably, and is therefore considered more appropriate for applications
over longer timescales, i.e., weeks to months (Moreo and Swancar 2013;
Friedrich et al. 2018).

The Penman-Monteith method, which uses a suite of climate variables as
input to estimate evapotranspiration, has been modified to estimate open
water evaporation and can compute annual fluxes within 5% accuracy
(Finch 2001; Jensen, Dotan, and Sanford 2005; Harwell 2012). The accuracy,
however, is lower at finer temporal scales, e.g., the daily or monthly inputs
needed for most water system modeling.

Since 2010, the USGS and Reclamation have partnered to produce real-time
evaporation estimates for Lake Mead and Lake Mojave using the EC and
BREB methods (Moreo and Swancar 2013) with the goal of generating a
continuous record from 2010-2019. A final report is expected in 2020. The
results will be used to revise projections of future evaporation for use in
system modeling. Also, as of 2019, Reclamation is partnering with the
Desert Research Institute (DRI) to calculate and compare evaporation
estimates for Lake Powell using the EC, BREB, and mass transfer methods
at the same floating observation site (Figure 5.25). This effort will try to
establish which method or methods have the greatest potential for long-
term operational monitoring, given accuracy, cost, and other considerations.
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Figure 5.25

Evaporation monitoring
platform located in Padre
Bay at Lake Powell, part
of a joint study between
Reclamation and the
Desert Research Institute
(DRI). Sensors measuring
wind speed and other
weather parameters
along with water
temperature will allow
intercomparison of
multiple methods for
estimating reservoir
evaporation. (Image:
DRI.)

Monitoring of evapotranspiration

Evapotranspiration (ET) refers to aggregate loss of water from the land
surface: evaporation from soils, open water, and snow and ice, and
transpiration from plants. Actual ET (AET) is the real loss of water from the
land surface, while potential ET (PET) refers to the water loss that would
occur if the water supply at the land surface were unlimited. In the
following discussion, ET is used to mean AET. The robust estimation of ET
losses from irrigated lands is central to consumptive use (CU) estimates
used in system modeling and planning. Direct in situ measurements of ET,
such as the Eddy Covariance method described above, are relatively sparse
and do not provide an adequate spatial representation across a landscape
or basin, though they are critical for validating estimates from other
methods.

More frequently, ET is estimated using one of several indirect methods
described in more detail below, including 1) estimation of a reference crop
evapotranspiration based on meteorological inputs and relevant crop
coefficients, appropriate for irrigated land only, 2) using a land-surface /
hydrology model with meteorological inputs, and 3) using satellite
observations of land-surface temperature in an energy balance model. The
accurate estimation of ET losses at the landscape /basin scale remains a
major challenge (Amatya et al. 2016).
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Table 5.7

Summary of evapotranspiration and evaporative demand data available over some or all of the Colorado

River Basin. See the text for further description of most of these networks and products.

Network or
Product
Name

CoAgMET
(CO Climate
Center)

NICE Net
(DRI)

AZMET
(U. of Arizona)

AgriMet
(Reclamation
and partners)

Utah AgWx

(Utah Climate
Center)

Ameriflux

(LBNL and
partners)

NLDAS-2

SSEBop

ALEXI ET

EDDI

Method

Reference ET formulation
incorporating weather
obs

Reference ET formulation
incorporating weather
obs

Reference ET formulation
incorporating weather
obs

Reference ET formulation
incorporating weather
obs

Reference ET formulation
incorporating weather
obs

In situ measurement
based on Eddy
Covariance

Land Surface Modeling

Remote Sensing + Energy
Balance Model

Remote Sensing + Energy
Balance Model

Reference ET formulation
incorporating gridded
weather obs
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Variables

Reference
ET

Reference
ET

Reference
ET

Reference
ET

Reference
ET

Actual ET

Actual ET

Actual ET

Actual ET

Evaporative
Demand

Spat‘lal Spatial Temporal
Resolution or .
. Coverage  Resolution
# Stations
> 100 stations ~ Colorado daily
18 stations Nevada daily
29 stations Arizona daily
~ 300 stations
(includes
CoAgMet, .
NICE Net, Western US daily
Utah AgWx
stations)
Utah and
~ 40 stations western daily
Wyoming
> 400 stations  North and 30 min to
(20 within South dail
CRB) America aly
12 km CONUS daily
1 km CONUS 8-day
8 km CONUS daily
12 km CONUS daily
211


https://cals.arizona.edu/azmet/index.html
https://cals.arizona.edu/azmet/index.html
https://earlywarning.usgs.gov/ssebop/modis

Reference crop ET estimations

Reference ET or reference crop ET (ET)) is an estimate of the upper bound
of ET losses from irrigated croplands given a specific crop type, and
thereby the water needed for irrigation, and not actual water fluxes from
the land (i.e., AET). Traditionally, the Blaney-Criddle method has been used
to estimate reference ET, but the tradeoff for its simple requirements for
meteorological input—temperature only—is highly inaccurate estimates
under many conditions (URS 2013). More physically based formulations of
Reference ET, such as Hargreaves and Penman-Monteith, require more
meteorological inputs—maximum and minimum temperatures, humidity,
solar radiation, and wind speed—and, as with Blaney-Criddle, a specific
crop ET coefficient (Allen et al. 1998). Real-time daily estimates of
Reference ET for 10 different crop types are available from the CoAgMET
network for more than 100 locations across Colorado. Several other
networks—AZMET, NICE Net, Utah AgWx, Agrimet—also provide real-time
daily estimates of Reference ET (Table 5.7). Spatially gridded data for
reference ET (e.g., ASCE Grass or Alfalfa Reference ET) are also computed
in near real-time using different gridded climate datasets and are
accessible through Climate Engine.

Land surface modeling

Real-time and gridded ET (AET) estimates are also available from land
surface /hydrology models that are driven by observed meteorological
forcings. The North American Land Data Assimilation System Phase 2
(NLDAS-2) project provides ET data at hourly or daily timescales at 12 km (7
mile) spatial resolution for CONUS from four different models: Mosaic,
Noah-2.8, SAC, and VIC-4.0.3 (Xia et al. 2012). These models generally do
not incorporate observations of irrigation water use. Uncertainties in soil
and vegetation characteristics, and in climate at finer spatial scales, can
also significantly influence the model output. Different models driven by
identical climate inputs will result in different outputs.

Remote sensing

Optical and thermal imagery from satellites have become important
datasets in recent years for estimating ET from field to landscape scales
with a temporal resolution from days to weeks (Hobbins and Huntington
2017). Near real-time ET (AET) datasets from remotely sensed data include:

e SSEBop ET: This estimate of ET is based on a thermal index approach
that integrates satellite observations (MODIS, Landsat) of land skin
temperature (at about 5 cm depth) and gridded climatological
observations of air temperature (e.g., PRISM) by using the SSEBop
model (Senay et al. 2007). The MODIS-based ET product (1-km
resolution) is available in near real-time (every 8 days) during the
growing season (April-October). A monthly ET product is also available
throughout the year.
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e METRIC: This method likewise uses satellite data (Landsat; 30-m
resolution) in an energy balance model to compute and map ET (Allen,
Tasumi, and Trezza 2007). METRIC calculates ET as a residual of the
surface energy balance. METRIC is currently used by all four Upper
Basin states and Reclamation for monitoring ET.

e ALEXI ET: The Atmosphere-Land Exchange Inversion model also
estimates ET using an energy-balance model (Anderson et al. 1997). It
exploits the daily observations of land skin temperature from the NOAA
GOES satellite to deduce land surface fluxes, including ET. These ET
data are available daily at an 8-km spatial resolution.

Efforts to improve ET estimation in the Colorado River Basin and the West
The Upper Colorado River Commission, the four Upper Division states
(Wyoming, Colorado, Utah, and New Mexico), and Reclamation have
sponsored a multi-year study, currently in its third phase, to assess and
improve determinations of consumptive use from agriculture. The study is
reviewing the different methods used by the four states and Reclamation to
estimate ET, including newer remote sensing-based methods (SSEBop and
METRIC). The reports on the first two phases of the study provide
important background on ET and CU estimation methods in the basin (URS
2013; 2016). The overall recommendation from the reports is to support the
ongoing shift to remote sensing-based methods with the installation of
additional eddy covariance towers and enhanced weather stations that
collect wind speed, humidity, and radiation, to improve validation and user
confidence in the newer methods.

A multi-institutional effort is underway to create an open-source digital
platform called Open ET to bring together different satellite observations
and ET estimation methodologies to provide low cost, automated, and
widely accessible ET data at multiple spatial and temporal scales.

Link:

https://etdata.org/

Evaporative demand is a measure of the “thirst” of the atmosphere or
atmospheric dryness. It is quantified as the maximum rate of
evapotranspiration for given atmospheric conditions and an unlimited
supply of water; thus, it is effectively the same as reference ET (Hobbins
and Huntington 2017). When sufficient moisture is available at the land
surface, evaporative demand dictates the magnitude of ET fluxes. When
evaporative demand is abnormally high for a period of weeks to months,
particularly during the growing season, water use for irrigation and other
sectors typically increases.
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In situ

In situ measurement of evaporative demand is done through open-pan
evaporation measurements. Real-time pan evaporation measurements are
available from only a handful of stations within the Colorado River Basin,
mainly in western Colorado, and therefore do not provide adequate spatial
coverage of the region.

Modeled

Evaporative demand is usually computed using several different
formulations that require meteorological inputs. The preferred formulation
is Penman-Monteith, which is considered to be fully physical, incorporating
temperature, humidity, wind speed and solar radiation, and is the same as
reference ET. The Evaporative Demand Drought Index (EDDI) uses this
formulation and the 12-km gridded meteorological input from NLDAS to
quantify the relative evaporative demand over multiple user-defined
timescales (weeks to months) for CONUS (Hobbins et al. 2016). EDDI data is
updated daily, with a 5-day lag from real time.

5.6 Other remotely sensed hydrologic data relevant
to the basin

Other remotely sensed hydrologic data types that do not fit neatly into the
categories covered in previous sections of this chapter are summarized in
Table 5.8, and discussed in the text below.

Table 5.8

CPC Evaporation
Data

Link:
https://www.cpc.nce

p.noaa.gov/products
/GIS/GIS DATA/JA
WE/

ESRL Evaporative
Demand Drought
Index

Link:
https://www.esrl.noa
a.gov/psd/eddi/

Summary of other remotely sensed hydrologic data currently available (or to become available, in the

case of SWOT). See the text for further description of these networks/products.

Mission or Variables Spatial Spatial

Product Name Resolution Coverage

GRACE Surface water + groundwater 250-300 km Global
mass change

NDVI (MODIS, Vegetation greenness,

Landsat, VIIRS, differentiate between irrigated 30 m-1 km Global

Sentinel-2) and non-irrigated lands

EVI (MODIS, .

Landsat, VIIRS, Vf(?jji:;\(ji: spiowily cid 30 m-1 km Global

Sentinel-2) P y

NDWI (MODIS,

Landsat, VIIRS, Vegetation liquid water content 30 m-1 km Global

Sentinel-2)

SWOT (planned  River and lake water surface 50 m Global

future mission)

elevation
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Monthly
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Daily to monthly

Daily to monthly

Approximately
monthly
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There are several derived indices from satellite observations that provide
monitoring of vegetation type and its moisture content, and differentiation
between irrigated areas and non-irrigated ones. These indices include
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), and Normalized Difference Water Index (NDWI). Most of the
basin states, as well as Reclamation, use satellite data to determine
irrigated acreage and crop type.

NDVI measures vegetation greenness, and because it can capture the
differences in the spectral responses between irrigated and non-irrigated
croplands, it is highly applicable to mapping of irrigated areas (Ozdogan et
al. 2010). However, NDVI is susceptible to atmospheric scattering and
background canopy effects. EVI has been developed to address this issue.
Relative to NDVI, EVI has an improved sensitivity to photosynthetic activity
(i.e., vegetation growth and productivity) and does not have a saturation
problem (Waring et al. 2006). Finally, NDVI has been developed to more
robustly assess the liquid water content of the vegetation (Gao 1996). Near
real-time information on these three indices are available from multiple
satellites, including MODIS, Landsat, VIIRS, and Sentinel-2. Much of these
data can be accessed from data portals such as Climate Engine.

The NASA Gravity Recovery and Climate Experiment (GRACE) mission,
which consists of a twin satellite configuration, was launched in 2002. By
detecting gravitational anomalies, GRACE provides precise monthly
measurements of change in terrestrial mass, albeit at a very coarse (250~
300 km) spatial resolution. Because these mass changes represent the
change in combined surface water (including snow), soil moisture, and
groundwater, the estimation of basin-scale total water storage over time is
made feasible with GRACE data (Tapley et al. 2004). The partitioning of the
different components of the water budget, however, requires land-surface
modeling (Chapter 6).

Several studies have reported on different aspects of the GRACE-derived
water budget for the Colorado River Basin. The first study highlighted the
apparent magnitude of groundwater depletion in the Upper and Lower
Basins from 2005-2014 (Castle et al. 2014), although Alley and Konikow
(2015) asserted that that interpretation of the GRACE data was flawed.
Scanlon et al. (2015) further showed that most of the downward trend in
total water storage identified by Castle et al. (2014) was due to declines in
soil moisture and reservoir storage.

More recent studies have compared the water budget for the basin derived
from GRACE with water budgets from land-surface models and other
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hydrology models, finding that GRACE shows larger annual fluxes of water
than the models. These GRACE-model differences in the Colorado River
Basin are not as large, however, as in many other basins around the world
(Scanlon et al. 2018).

GRACE data has also been assimilated in NLDAS land surface modeling of
groundwater, root-zone, and surface soil moisture at 1/8-degree (12-km)
spatial resolution (GRACE-DA-DM; Kumar et al. 2016). Given the issues
raised by Alley and Konikow (2015), assimilation of GRACE data in a land
surface model may be a better approach for capturing its added value,
versus direct interpretation of the GRACE data.

Surface Water and Ocean Topography (SWOT) is a future (2021) NASA
satellite mission that will provide information on water-surface elevations
of lakes and large rivers with high accuracy (about 10cm) at monthly to
seasonal scales. There are also plans to assimilate SWOT data into
hydrological models to improve runoff information at very fine spatial
scales.

5.7 Challenges and opportunities

Hydrologic data—whether for snowpack, streamflow, soil moisture, or
evaporation—have enormous importance for all aspects of Colorado River
Basin research, operations, and planning. Additional efforts to identify the
challenges, improve and expand the historical record and current
monitoring, and reduce uncertainties serve all interests. While pursuing
new methods and data however, it is critical to maintain attention to the
core monitoring capacity (SNOTEL network, stream gage network) that
provides the foundation for those efforts and is chronically under-
resourced.

In November 2019, USGS announced that the second Next-Generation
Water Observing System (NGWOS) would be located in the Upper Basin,
specifically the Colorado Headwaters above Cisco, UT, plus the Gunnison
Basin. The objective of NGWOS is to intensively monitor up to ten medium-
sized watersheds (10-20,000 sq. mi.) that are representative of larger
regions. This advanced observing system will provide quantitative
information on streamflow, ET, snowpack, soil moisture, a broad suite of
water quality constituents, connections between groundwater and surface
water, and water use. The new observations are intended to be used
alongside those from existing monitoring networks in various operational
and research applications, such as streamflow forecasting on multiple
timescales. In the first year of the Colorado River NGWOS, the USGS will
initiate planning and stakeholder engagement. This will be a valuable
opportunity for stakeholders to shape and leverage a significant federal
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effort to enhance the hydrologic observing capacity in key watersheds of
the Upper Basin.

Inadequate characterization of the snowpack is still a major source of
error in streamflow forecasts, especially in years with anomalous
patterns of snow distribution in space and time—a phenomenon which
appears to be more frequent in a changing climate.

The in situ (point) snow course and SNOTEL network was designed for
the statistical streamflow forecasting paradigm, which is no longer used
by CBRFC.

Many new spatially distributed SWE products are now available, but
there have been few rigorous evaluations of these datasets, in part
because it is difficult to validate spatial products with point
measurements.

The SNOTEL network will remain essential to any conceivable future
snow monitoring system in the basin, especially with additional sensor
capacity at SNOTEL sites, but the network has been inadequately
supported in recent years by USDA.

Opportunities

Building on recent smaller scale pilot efforts to conduct larger scale,
systematic intercomparisons of SWE datasets and products for the
basin, including SNOTEL, ASO, and SNODAS and other spatially
distributed modeled products.

Based on the results of such intercomparisons, pursuing “hybrid”
approaches where multiple methods and datasets are combined in a
way to best exploit their relative advantages.

Continuing and stepping up the modernization and expansion of the
SNOTEL network, with more and better sensors, more imagery, and
better data communication—all of which would necessitate more
resources for NRCS to support the network.

Streamflow observations that could contribute to more accurate
naturalization calculations are not available at many key sites,
especially diversion and return flow locations.

Naturalizing the gage record requires adjustments that come with
potential errors and uncertainties, many of which are impossible to
address or resolve because of the dearth of early-period data and
documentation.

Fully characterizing the natural hydrology of the basin is problematic
with the exclusion of the Gila River from consideration.

A number of research activities use Reclamation’s natural flow record
for baseline or reference purposes. For example, synthetic streamflow
generation relies on the natural flow record for parameter estimation
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or for nonparametric sampling (Chapter 9), tree-ring reconstructions of
paleostreamflows (Chapter 10) are calibrated against the natural flows
at Lees Ferry, and hydrologic simulations from the Variable Infiltration
Capacity model that are used to project future streamflows were bias-
corrected based on the natural flows at Lees Ferry and other gaging
stations (Reclamation 2012c).

Opportunities

Regarding gaging, the biggest gains in information going forward would
be achieved by expanding the streamflow monitoring network to fill
gaps in coverage. This includes gages at diversion sites and in locations
to measure return flows or verify return flow and gain /loss
calculations.

Increasing the spatial resolution of Reclamation’s models might be a
useful avenue to pursue in order to simulate and analyze impacts from
climate change on sub-basin hydrology.

Major modifications to the natural flow record, to improve consumptive
use estimates for example, have implications for both the calibrations
and other applications listed above, and for the record extension back
to 1906 because the extended records were based on statistical
analyses of the natural flow record that was in place at the time of
extension. As more recent natural flow data becomes available, there is
an opportunity to revisit the characterizations, calibrations, bias-
corrections, and record extension that were based on earlier versions
of the natural flow record.

Compared with snowpack (which is variable over space and time), soil
moisture is poorly monitored and understood, with frequent
discrepancies between in situ measurements and modeled estimates.
Real-time soil moisture data is collected from at least 6 different in situ
networks, with differing observing protocols (depth, etc.).

Reservoir evaporation estimates as used in basin system modeling have
been based on decades-old data that does not reflect current climate
conditions.

Estimates of evapotranspiration and crop water use have been
constrained by physically incomplete methods and input data that are
not spatially representative.

Opportunities

Support and expand ongoing efforts to comprehensively collate in situ
soil moisture measurements and merge these observations with
spatially distributed modeled estimates (e.g., National Soil Moisture
Network).
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e New satellite sensors and products (e.g., SMAP) that provide spatially
comprehensive and consistent soil moisture estimates can likewise be
compared and blended with other types of soil moisture data.

e When applicable, conduct testing of new soil moisture products to
determine if they add value to the CBRFC forecast process.

¢ Ongoing efforts will provide updated reservoir evaporation estimates
for Lakes Mead and Powell; those efforts could be expanded to other
large reservoirs in the basin.

¢ Expand the in situ monitoring of evaporation/ET /PET with enhanced
weather stations that capture all four variables needed for fully physical
estimates (e.g. the Penman-Monteith method), and new flux towers
needed for the Eddy Covariance method.

e Better in situ data will also help in calibrating /validating remote
sensing-based spatial estimates of ET and crop water use; use of these
spatial estimates in the basin has been increasing, though it has been
limited by user confidence in the data.
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Key points

e With a range of hydrologic models readily available, it is important for
prospective applications of models to articulate the objectives of the
modeling as well as the requirements that the model must satisfy.

e Asingle model is likely designed for a specific application or context
and may not be optimal for a wider range of uses.

¢ Inthe Colorado River Basin, the NWS models (streamflow forecasting)
and the VIC model (sensitivity studies; climate change projection) have
been the most-consulted hydrologic models for those respective
applications. Each has varying capabilities and limitations.

e Increasing model complexity does not guarantee improved model
performance. Complexity should be increased subject to the
consideration of process needs, data sufficiency, computational
feasibility, and ultimately the model’s demonstrated performance.

e For some applications, such as streamflow forecasting at a river
location, simpler models may continue to offer valuable and even
superior performance for years to come.

e For other applications, such as understanding hydrologic sensitivity to
climate change or hydrologic response to watershed changes, more
complex process-oriented models are usually more appropriate.

e Calibration (parameter estimation) is almost always needed to achieve
high-quality simulations in all hydrologic models, and it is easier to
implement in simpler models than in computationally intensive
complex models.

6.1 Overview

Hydrologic models are the foundation of broad range of applications in the
Colorado River Basin, ranging from streamflow forecasting to trend analysis
to climate change projection. This chapter provides an overview of
hydrologic modeling, including perspectives on both model development
and applications. There is some overlap with Chapter 8 (Streamflow
Forecasting), but the additional applications of hydrologic models in basin
water management and planning merits more thorough treatment of the
models beyond their use in streamflow forecasting.

Hydrologic modeling refers to the use of simulations to characterize the
likely behavior of real watershed features and systems (Allaby 2008).
Hydrologic modeling can be applied to improve our understanding of
hydrologic phenomena and how changes in, for example, pervious surfaces,
vegetation, land use and weather and climate affect the hydrologic cycle. It
is furthermore used to estimate runoff and water availability in the context
of forecasts at timescales of hours to months, and projections over
decades. The general components of a hydrologic model include
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meteorological inputs (such as precipitation and temperature), governing
equations enforcing physical laws (e.g., mass continuity), parameters,
parameterizations (the algorithms specifying processes such as infiltration),
and the model structure, including the arrangement and connectivity of
watershed components (canopy, snowpack, subsurface) (e.g., Singh 1995;
Clark et al. 2015).

The hydrologic models currently applied in the Colorado River Basin and
elsewhere arise from several distinct traditions. The use of hydrologic
models in streamflow forecasting (Chapter 8) has deep and practical roots
in civil engineering, where models were developed to support water
systems design and management (Anderson and Burt 1985). The
communities driving these forecasting models tend to be operational
agencies. In contrast, hydrologic models used in the projection of future
hydrology to support water supply assessment (e.g., Chapter 11), or in trend
and variability analysis, are mostly driven by academic institutions and
agency research laboratories. These latter models have a stronger heritage
in earth system modeling and watershed process modeling.

Despite their different origins, all models have watershed (or land)
representations that involve terms for the common input and output fluxes
and states, such as precipitation, temperature, soil moisture, snow water
equivalent (SWE), runoff and evapotranspiration (ET). How these
components are represented within the models, the way runoff is
calculated, and the spatial interpretation of the model’s catchment area can
vary significantly from one model to another.

Hydrologic models can be viewed along a general continuum of complexity.
Complexity can refer to the number of processes represented in the model,
the spatial resolution of the model, or the structure and configuration of
the model. With the rise of supercomputing as a resource for hydrology,
the range of complexity for regional (e.g., Colorado River Basin) model
applications has become ever broader. The lower bound of complexity has
been set by the lumped conceptual configuration of traditional operational
models, while the advancing upper bound tracks the evolution of very high
resolution watershed process modeling approaches that were previously
applied only in small scale studies.

This widening range of model complexity has prompted much debate in the
research and operational communities (e.g., Grayson, Moore, and McMahon
1992a; 1992b; Reggiani, Sivapalan, and Hassanizadeh 1998; Beven 2002;
Sivapalan et al. 2003; Maxwell and Miller 2005; Beven and Cloke 2012; Wood
et al. 2012), with differing perspectives on issues such as the adequacy of
representations of physical processes, and the impact of real-world data
limitations and uncertainty. What is clear, though, is that there is no one
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level of model complexity that is optimal for all applications. The following
sections describe several general modeling approaches that differ in
complexity, including the models used for the CBRFC’s operational
streamflow forecasting in the Colorado River Basin. (Streamflow forecasting
itself is treated more thoroughly in Chapter 8.)

Conceptual and physical models
An initial distinction can be made between conceptual models and physical

models—though models in each class may have elements of both, and these
labels are inexact. Conceptual models have relatively simple
representations of watershed attributes and processes, generally with no
more than a dozen components. The relationships and linkages (fluxes of
moisture or energy) between the components are typically controlled by
adjustable parameters whose values may be only indirectly known from
observations or otherwise deduced through calibration. The structure of
the conceptual model is motivated by our understanding of the physics of
the real world system (e.g., shallow and deep storage zones, percolation,
radiation-driven snowmelt), but remains an extreme simplification of those
physics. Conceptual models as well as physical models adhere to
fundamental physical laws (such as mass and energy conservation) but
conceptual models rely more much directly on external parameters to
describe or specify hydrologic processes.

Physical models, also called process-based or mechanistic models, are
generally more complex. They also contain many conceptual elements, but
nonetheless represent the watershed attributes and processes with a
higher degree of detail, and in arrangements that attempt to more closely
mimic the storages of water and energy in the watershed and the fluxes
between them. In contrast to conceptual models, physical models attempt
to provide a more explicit representation of the hydrologic processes and
the resulting hydrologic dynamics. Rather than allow an external parameter
to directly control a process, they specify a physically informed equation
describing the process (called a parameterization), which in turn is
controlled by external parameters.

For example, in a conceptual model, the percolation rate from one storage
zone to another may be determined by the storage amounts (states) and an
external rate parameter specified in calibration. In contrast, the percolation
in a physical model is determined by the storage states and an equation
(and algorithm, a parameterization) that may calculate percolation also as a
function of the soil properties assigned to the zones. These properties are
often given by external parameters that may also be calibrated. As in
conceptual models, the hydrologic responses in physical models are
summations (i.e., an emergent behavior) of the hydrologic processes.
Spatial and temporal variations in catchment characteristics are
incorporated into physical models to a greater degree than conceptual
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models, and consequently the structure and configuration of the physical
models more closely reflect the real world watershed.

Notwithstanding the above discussion, it is important to note that a
physical model is almost always applied at a scale larger than that at which
some processes occur (see Clark et al. 2017 for a discussion). For example, a
hydrologic model implemented at 12-km grid resolution is much coarser
than the real world scale at which processes such as percolation of
meltwater through a snowpack, or infiltration through soil, take place
(which may be on a scale of centimeters). Thus, even though the
description of a process may be through a physical parameterization, the
model does not explicitly resolve that process, and remains, in a sense, also
conceptual, and usually requires some degree of calibration.

Spatial framework
A second important distinction between models refers to the spatial

framework of the model. Spatial variability in topography, geology, soils,
and vegetation affects the hydrologic responses within a watershed (Clark
et al. 2017). The spatial framework in hydrologic models can be categorized
as lumped, semi-distributed, or fully distributed (Figure 6.1).

Lumped models average the spatial variability across a watershed unit;
semi-distributed models reflect some spatial variability; and fully
distributed models process spatial variability by many small spatial units

A

Figure 6.1

Schematic of the spatial frameworks in hydrologic models. A: Lumped model, B: Semi-distributed
model by sub-catchment, C: Distributed model by grid cell. Runoff is calculated for each sub-

catchment at the confluence points represented by the black dots in B. Distributed models calculate

runoff for each grid cell, while lumped models calculate one runoff value for the entire catchment at

the river outlet point represented by the black dot in A. (Source: Sitterson et al. 2017)
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(usually grid cells). The spatial framework of each of the classes of models is
given in Table 6.1. The spatial framework is strongly associated with the
model class: conceptual models generally have a lumped framework, while
physical models generally have a more distributed framework. It should be
noted that terms such as “distributed” and “lumped” are labels reflecting
model intent, rather than definitive descriptions of the characteristics of a
model, especially resolution. For example, a 12-km distributed model may
have similar spatial resolution and degree of spatial averaging as a lumped

model broken into three elevation zones for the same watershed. Also,

physical models may incorporate sub-grid variability for selected

watershed attributes, such as vegetation and elevation.

The characteristics of four general classes of hydrologic models are
summarized in Table 6.1 and described in greater detail in the text that
follows. Note that the distinctions among the model types are not hard and
fast, and some models may blend aspects of two or more classes. Table 6.1

serves as an organizing reference for this chapter and is referred to

throughout.

Table 6.1

Summary of characteristics of four general classes of hydrologic models. Terms are defined in the text.

Stand-alone land

Land surface

Bucket-style surface models models in a
conceptual models  and multi-model coupled ESM
frameworks system
Examples in Sac-SMA, SNOW- Community Land
the Colorado 17, Monthly Water VIC, SUMMA Model, Noah-MP,
River Basin Balance Model HTESSEL
A mixture of A mixture of
Model Comace physically explicit  physically explicit
structure and conceptual and conceptual
components components
. . Distributed, but
£ peiitl AiREe] @ Sl can have lumped  Distributed
framework distributed P
components
Tvpical 3-30 km, or 10-
R 1000 km? 500 m=-25 km 10-100 km
Resolution

hydrologic unit
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Explicit watershed
process models

WREF-Hydro terrain-
routing, DHSVM,
GSSHA

Physical, with fewer
unresolved
(conceptual)
process
components

Distributed

10-500 m
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Primary
applications in
the Colorado
River Basin

Advantages

Disadvantages

Bucket-style
conceptual models

Operational
streamflow
forecasting,
sensitivity analyses,
coarse-scale
climate-change
impact analysis

Computationally
cheap, highly
amenable to
calibration
(parameter
estimation), agile
for running
ensembles and data
assimilation,
typically the
highest- performing
model for
streamflow
simulation and
forecasting (within
the calibration
envelope)

Conceptual
representation and
simplification of
physical processes
and extensive
calibration limit the
ability to simulate
multiple outputs
and project
significantly beyond
the calibration
envelope
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Stand-alone land
surface models
and multi-model
frameworks

Climate sensitivity
analyses, climate
change and
variability
impacts,
streamflow
forecasting

Computationally
feasible for most
applications but
requires high-
performance
computing for
large domains,
more process-
oriented,
maintains water
and energy
balance, more
trusted for
analysis beyond
the calibration
envelope,
designed for
regional to global
implementation

Computationally
demanding
relative to
conceptual
schemes, and
structure,
parameterization
inflexibility can
undermine
performance and
hamper
calibration

Land surface
models in a
coupled ESM
system

Weather and
climate
prediction,
variability
analysis, and
climate projection

Includes land-
atmosphere
feedbacks and a
greater variety of
process
representations
(including carbon
cycle and
dynamic
vegetation in
some cases),
albeit at a coarser
scale due to
coupling in
continental and
global scale
applications

Application in the
coupled context
in which
atmospheric
variables are
often most
important means
that hydrologic
quantities such as
runoff or
snowpack are less
scrutinized and
less calibrated

Explicit watershed
process models

Hydrologic process
studies (e.g.,
surface-
groundwater
interactions, ET
modeling, snow
hydrology), climate
variability and
change studies

Can represent
hydrologic
processes with
more explicit detail
and granularity,
suitable for
evaluation of high-
resolution
observations, can
better represent
explicit terrain and
vegetation influence
on hydrologic
phenomena

Computational
demands restrict or
degrade many
applications,
including long-
range or large-
domain simulation,
comprehensive
parameter
estimation, and use
of ensemble
techniques
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Bucket-style conceptual models
Conceptual models can be viewed as being based on the assumption that

we know (or once knew) relatively little about the real world structure and
functioning of a watershed, therefore we use a minimal structure, and infer
parameters to directly control processes from observations. This strategy
has been shown to work well where there are sufficient data for calibration
and inputs, despite concerns about the extent to which the resulting
parameters are overly tuned to the data.

At the time these models were initially developed in the 1960s and 1970s,
the main motivation for the relatively simple representation of a watershed
was to make the model supportable by the limited available weather and
hydrology data at that time, which were almost entirely point-based
(Chapters 4 & 5). But even today, these simple hydrologic models produce
highly accurate simulations and forecasts that are difficult to outperform
using physical models.

Bucket style conceptual models remain relatively simple, with lumped
modeling units of small watershed areas, on the order of 10-1000 km?. This
lower complexity, with consequently lower computational demands, is

D

Evapotranspiration \\'
\g\ Direct runoff
W BB e —
Tension Water
Upper Zone
Interflow
Percolation

Lower Zone | Tension
Water

Baseflow

Figure 6.2

Conceptual flow diagram of the Sac-SMA model and a schematic representation of model output.

(Source: adapted from NOAA NWS 2002)
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advantageous because it enables manual calibration in the model
development phase, and facilitates forecasters’ examining and iteratively
updating their inputs, states, and outputs in real-time during the
forecasting workflow. An example of a traditional lumped approach is
provided in Figure 6.2.

The conceptual hydrology model whose output is most familiar to Colorado
River stakeholders is the Sacramento Soil Moisture Accounting Model (Sac-
SMA) used by the CBRFC and other National Weather Service (NWS) River
Forecast Centers (RFCs) for operational streamflow forecasting (Figure 6.2).
Sac-SMA has five soil storage types (“buckets”), each with an underlying
physical rationale. For example, the upper zone tension water content
bucket represents the portion of the soil column that experiences
unsaturated flow and in which capillary pressure in soil pores resists
drainage and lateral flow. Figure 6.3 shows an example of the output of Sac-

Soil Moisture - Fall - 2018 (November 15)

(Modeled, Averaged by Basin)
% Average
>500%
300-500%
200-300%
150-200%
130-150%
110-130%
100-110% .
90-100% Figure 6.3
70-90%

LN N Repupspnncy N N N |

Example of model output
of Sac-SMA for the upper
Colorado River Basin. Note
the lumped nature of the
model output. (Source:
NOAA NWS CBRFC;
https://www.cbrfc.noaa.gov

Prepared by NOAA, Colorado Basin River Forecast Center
Salt Lake City, Utah, www.cbrfc.noaa.gov
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SMA, which is operationally paired with SNOW-17 (Anderson 1973), a
temperature-index based conceptual snow accumulation and ablation
model. See section 6.3 for a more detailed description of the NWS models.

Stand-alone land surface models (LSMs)
Stand-alone land surface models (LSMs) such as the Variable Infiltration

Capacity (VIC) model are physical models and differ from conceptual
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Figure 6.4

Schematic representation of the VIC model, showing land cover tiles, soil column, and major water
and energy fluxes (Source: VIC Model Overview,
https://vic.readthedocs.io/en/master/Overview/ModelOverview/)
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models in that the states, inputs, and outputs are designed to emulate
physical processes more explicitly (Figure 6.4).

LSMs use physical equations and other quantitative methods to simulate
the exchange of water and energy fluxes at the Earth surface-atmosphere
interface. For example, LSMs dynamically calculate potential ET (PET) and
simulate evaporative fluxes through parametrizations of sub-processes
such as vegetation transpiration and bare soil evaporation, while
conceptual models may lack a representation of vegetation entirely, or take
PET as an input or use PET as a parameter that is tuned in calibration.

Since their advent in the 1990s, VIC and similar land surface models have

demonstrated their utility for a broader range of hydrologic analyses, Downscaled CMIP3 and
including the assessment of long-term trends in regional hydrology (Mote CMIP5 Climate and
et al. 2005), drought (Andreadis et al. 2005), streamflow forecasting (Hamlet Hydrology Projections

and Lettenmaier 1999; Wood et al. 2002), climate change detection and
attribution studies (e.g., Barnett et al. 2008) and impact assessment. In the
Colorado River Basin alone, as discussed in Chapter 11, VIC has been used
for at least a half dozen studies and is the basis for the major climate

change hydrology datasets developed by a Reclamation-led consortium and Link:
archived at the Lawrence Livermore National Laboratory website. See https://gdo-
section 6.3 for a more detailed description of the VIC model. dep.uclinl.org/downscaled

_cmip_projections/dcplnt
As alluded to earlier, VIC has parameters directly regulating the subsurface erface.htm|
stores of water and the transfer (fluxes) of water from one storage layer to
another. For soil drainage, where a conceptual model might apply a linear
reservoir formulation in which the outflow from one bucket to the next is
linearly related to the bucket’s current water storage, a land surface model
such as VIC represents water storage and transfer in terms of process
concepts and attempts to specify parameters using observed, or estimated,
geophysical attributes.

In a land surface model, soil drainage in the saturated zone may be
described by a Darcy’s law representation in which drainage rate is
dependent on the amount of water in the column and a hydraulic
conductivity parameter that is estimated based on the soil texture.
However, because soil textures are very sparsely observed, the relationship
between soil textures and the conductivity parameter are uncertain, and
soil drainage is simulated at a spatial scale (e.g., 12 km) that is much larger
than the scale at which the drainage process acts, this physically based
model parameterization may be almost as rough an approximation of the
real-world process as found in the conceptual model formulation. The
hydraulic conductivity, soil layer depths and other physical parameters may
also be used as calibration parameters, meaning that the soil drainage
process in a physically based land surface model application may effectively
be as “tuned” as the water transfer in a conceptual model. The greater
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process realism in the land surface model (or any physical model) and its
distributed nature requires a far larger number of sensitive parameters—
many of which may be hidden in the code through hardwiring (Mendoza et
al. 2015)—and more complex model structure. The result can often be a
model that is less amenable to calibration, that is, less flexible for tuning to
reproduce observed variability for an output such as streamflow.

Table 6.1 provides a summary of the advantages, disadvantages and
applications of stand-alone LSMs used in the Colorado River Basin.
Figure 6.5 shows an example of VIC model output.

0 50 100 200 km

Figure 6.5

Example of output from an application of the VIC model in the Colorado River Basin. The red shading
shows the mean difference per cell in the timing of snow depletion (ASD90%, i.e., the change in the
date at which 10% of the peak snowpack remains) between ‘Before Dust Loading’ and ‘After Dust
Loading scenarios’ for 1916-2003. (Source: Painter et al. 2010)
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Land surface models (LSMs) in a coupled system
Over the last few decades, the land surface has become an increasingly well

represented component in climate models. A GCM (from “General
Circulation Model” or “Global Climate Model”) is a modeling framework that
couples a global atmospheric model, an ocean model, a sea ice model, and a
land surface model (see Chapter 11). An Earth System Model (ESM) extends
a GCM to include a suite of more detailed sub-models, including
representations of the biogeochemistry of the ocean and land (e.g., carbon
cycle, nutrient cycle, etc.), atmospheric chemistry, dynamic ice sheets
(Lenaerts et al. 2019), dynamic vegetation, and water management.

Recently, computing capabilities have advanced such that more complex
land surface schemes are being included in coupled GCMs and ESMs. Land
surface models such as the NCAR Community Land Model (CLM) now
incorporate detailed physics to represent land surface moisture and energy
fluxes (e.g., the impacts of surface albedo on longwave and shortwave
radiation), including the influence of land cover changes and idealized
hillslope-scale effects on moisture distribution (Figure 6.6). Although these
models are still run at a relatively coarse resolution (e.g., >25 km), some
have more detailed parameterizations than a typical hydrology model like
VIC, and far more detailed process descriptions than are found in
conc