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ABSTRACT

The gulf between the user and the developer perspectives leads to difficulties in producing
successful software systems. Users are focused on the problem domain, where the sys-
tem’s features are the primary concern. Developers are focused on the solution domain,
where the system’s lifecycle artifacts are key. Presently, there is little understanding of
how to narrow this gulf.

This paper argues for establishing an organizing viewpoint that we term feature engineer-
ing. Feature engineering promotes fealures as first-class objects throughout the software
lifecycle and across the problem and solution domains. The goal of the paper is not to
propose a specific new technique or technology. Rather, it aims at laying out some basic
concepts and terminology that can be used as a foundation for developing a sound and
complete theory of feature engineering. The paper discusses the impact that features
have on different phases of the lifecycle, provides some ideas on how these phases can
be improved by fully exploiting the concept of feature, and suggests topics for a research
agenda in fealure engineering.
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1 Introduction

A major source of difficulty in developing and delivering successful software is the gulf that exists
between the user and the developer perspectives on a system. The user perspective is centered in the
problem domain. Users interact with the system and are directly concerned with its functionality.
The developer perspective, on the other hand, is centered in the solution domain. Developers are
concerned with the creation and maintenance of lifecycle artifacts, which do not necessarily have a
particular meaning in the problem domain. Jackson notes that developers are often quick to focus
on the solution domain at the expense of a proper analysis of the problem domain [14]. This bias is
understandable, since developers work primarily with solution-domain artifacts. Yet the majority
of their tasks are motivated by demands emanating from the problem domain.

Looking a bit more closely at this gulf in perspectives, we see that users think of systems in
terms of the features provided by the system. Intuitively, a feature is a coherent and identifiable
bundle of system functionality that helps characterize the system from the user perspective. Users
request new functionality or report defects in existing functionality in terms of features. Developers
are expected to translate such feature-oriented requests and reports into a plan for operating on
lifecycle artifacts. This plan ultimately should have the desired effect on the features exhibited
by the system. The easier the translation process can be made, the greater the likelihood of a
successful software system. The key, then, is to gain a better understanding of the notion of feature
and how that notion can be carried forward from the problem domain into the solution domain.

Consider the software in a large, long-lived system such as a telephone switch. This kind of sys-
tem is composed of millions of lines of code, and includes many different types of components, such
as real-time controllers, databases, and user interfaces. The software must provide a vast number
of complex features to its users, ranging from terminal services, such as ISDN, call forwarding, and
call waiting, to network services, such as call routing, load monitoring, and billing.! Somehow,
the software that actually implements the switch must be made to exhibit these features, as well
as to tolerate changes to the features in a cost-effective manner. Bell Laboratories, for example,
developed a design in the solution domain for its 5ESS® switch software by following a layered
architectural style [5]. The layers are depicted in Figure 1. The Abstract Switching Machine layer
was intended to provide the foundation upon which the features (called “applications”) themselves
would be built. This was supposed to result in a clean separation of concerns, permitting features
to be more easily added and modified. An interesting and important question to ask is whether
this turned out to be true and, if not, whether it was a fault of the architecture, of the process
followed by the organization, or of some other factors at work.

To date, the notion of feature has not been concretely defined, nor has there been much work
specifically addressing its support throughout the lifecycle. Nevertheless, one does find the concept
used in several relevant and useful, if limited, ways.

e Cusumano and Selby [8] describe the strong orientation of software development at Microsoft
Corporation toward the use of feature teams and feature-driven archilectures. That orienta-
tion, however, has more to do with project management than with product lifecycle artifacts
and activities.

!Note that from the perspective of a switch builder, network services are not simply internal implementation
functions, but are truly system features, since they must be made available to external organizations, such as telecom-
munications providers.
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Figure 1: 5ESS® Switch Architecture.

o In domain analysis and modeling, the activity of feature analysis has been defined to capture
a customer’s or an end user’s understanding of the general capabilities of systems in an
application domain [15, 20]. Domain analysis uses the notion of features to distinguish basic,
core functionality from variant, optional functionality [10]. Although features are an explicit
element of domain models, their connection to other lifecycle artifacts is effectively non-
existent.

e There has been work on so-called requirements clustering techniques [13, 17], which would
appear to lend itself to the identification of features within requirements specifications. But
they do not address the question of how those features would be reflected in lifecycle artifacts
other than requirements specifications and in a restricted form of design prototypes.

e Several researchers have studied the feature interaction problem, which is concerned with how
to identify, prevent, and resolve conflicts among a set of features [1, 4, 11, 24]. The approaches
identified in this literature do not provide insight into the role of features across the full range
of lifecycle activities and the ability of features to span the problem and solution domains.

e Automatic software generation is based on an analysis of a domain to uncover reusable compo-
nents [3, 21]. The components are grouped into subsets having the same functional interface;
a complete system is created by choosing an appropriate element from each subset. The
choice is based on the “features” exhibited by the elements. Here, the term feature is essen-
tially restricted to extra-functional characteristics of a component, such as performance and
reliability. Functionally equivalent systems having different extra-functional characteristics
can then be automatically generated by specifying the desired features—that is, the extra-
functional characteristics. Although this work represents an important element in support
of features, it needs to be extended to encompass the generation of functionally dissimilar
systems through selection of functional characteristics.

Thus, there is a growing recognition that features act as an important organizing concept within
the problem domain and as a communication mechanism between users and developers. There
has also been some limited use of the concept to aid system configuration in the solution domain.



There is not, however, a common understanding of the notion of feature nor a full treatment of its
use throughout the lifecycle.

We have set out to develop a solid foundation for the notion of feature and, more importantly,
for carrying a feature orientation from the problem domain into the solution domain. We term
this area of study feature engineering. The major goal behind feature engineering is to promote
features as “first-class objects” within the software process. Such a promotion holds the promise of
supporting features in a broad range of lifecycle activities, including requirements analysis, design,
testing, and user documentation, as well as configuration management and reverse engineering.

A feature orientation to software development offers a wide range of benefits. These include
identifying features in requirements specifications, evaluating designs based on their ability to incor-
porate new and modified features, understanding the relationship between a software architecture
and feature implementation mechanisms, uncovering feature constraints and interactions, and con-
figuring systems based on desired feature sets. Features are an organizational mechanism that can
structure important relationships across lifecycle artifacts and activities.

This paper proposes some basic concepts for feature engineering and evaluates the potential
impact of this discipline on software lifecycle activities. It does not attempt to solve particular
problems in software engineering, but rather to articulate a framework within which solutions
might be developed. This paper should be considered a first step toward the complete and detailed
definition of feature engineering and of its relationship with other domains of software engineering.

To achieve this objective, the next section introduces a typical model of lifecycle artifacts and
shows how features can be incorporated into that model. We then briefly discuss the application
of feature engineering to a variety of lifecycle activities. This is followed by a more in-depth
examination of feature engineering applied to one of those activities, architectural design. We
conclude with our plans for future research in feature engineering.

2 The Role of Features within the Software Process

The term “feature” is in common use, but has no common definition. We present and evaluate
three candidate definitions that are intended to capture the essence of the term as it is commonly
used in the software engineering community.

2.1 An Informal Definition

At the most abstract level, a feature represents a cohesive set of system functionality. Our three
candidate definitions each identify this set in a different way.

1. Subset of functional and extrafunctional requirements. ldeally, the requirements specification
captures all the important behavioral characteristics of a system. A feature is a cluster-
ing or modularization of individual requirements within that specification. This definition
emphasizes the origin of a feature in the problem domain.

2. Subset of system implementation. The code modules that together implement a system exhibit
the functionality contributing to features. Different subsets of these modules can be associated
with particular features. This definition emphasizes the realization of a feature in the solution
domain.



3. Aggregate view across lifecycle artifacts. A feature acts as a filter that highlights all of the
lifecycle artifacts related to that feature. It does this by explicitly aggregating the relevant
artifacts, from requirements fragments through code modules, test cases, and documentation.
This definition emphasizes historical connections among different artifacts.

It is not altogether clear which definition is “best”, although there are several good arguments in
favor of the first one. In particular, since features originate in the problem domain and not in the
solution domain, the first definition appears to be more useful than the second one. Furthermore,
the groupings of artifacts made explicit in the third definition can be inferred by using the first
definition together with an appropriate model of the relationships among lifecycle artifacts (e.g.,
PMDB [18]).

Thus, for the purposes of this paper, we employ the first definition. We use this definition as
a core concept to develop a model of the artifacts that are created during software engineering
activities. This model is not intended to be definitive of all lifecycle artifacts. Rather, it is intended
to be suggestive of their relationships. Particular development environments may define the artifacts
and relationships somewhat differently in detail, but they will nonetheless be compatible with them
in spirit. The model allows us to reason about the relationship of features to other lifecycle artifacts,
and to articulate and illustrate the benefits derived from making features first class.

2.2 Features and Software Lifecycle Artifacts

Figure 2 shows an entity-relationship diagram that models the role of features within a software
process. The model derives from the concepts typically used in software engineering practice
and commonly presented (often informally) in the literature. The entities, depicted as rectangles,
correspond to lifecycle artifacts. The relationships, depicted as diamonds, are directional and have
cardinality. Despite being directional, the relationships are invertible. Again, we point out that
this is just one possible model, and it is meant to be illustrative of the concepts we are exploring.

The model defines some of the key aspects and properties that are relevant to our understanding
of the role of features in the lifecycle, and are further explored in the paper.

1. Features as lifecycle entities are meant to bridge the problem and solution domains.

2. Whereas a requirements specification encompasses all the requirements, features are a means
to logically modularize the requirements.

3. The documentation of a feature is a user-oriented description of the realization of that fea-
ture within the solution domain. This contrasts with, and complements, their user-oriented
description as requirements within the problem domain.

4. The distinction between the problem and solution domains helps illuminate the fundamentally
different orientations among the various testing activities in the lifecycle. For example, “sys-
tem tests” are focused on user-visible properties and are therefore conceived of, and evaluated,
within the problem domain.

5. The connection between requirements and architectural design is difficult, if not impossible, to
formalize beyond the notion that designs reflect the requirements that drive them. However,
if those drivers are features, then there is hope for a better tie between the problem and
solution domains.
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Figure 2: Common Lifecycle Entities and Relationships.

Two less immediate, but no less important, points can also be seen in the model. First, while
design artifacts are directly related to features, the relationships between features and the deeper
implementation artifacts are implicit. For example, a developer might want to obtain all mod-
ules associated with a particular feature to make a change in the implementation of that feature.
Satisfying such a request would require some form of reasoning applied to the relevant artifacts
and relationships. In general, this reasoning would occur at the instance level, as illustrated in
Figure 3 and explained below. Second, there are two distinct levels at which features interact. In
the problem domain, features interact by sharing requirements or by simply depending on each
other for particular services. Similarly, features can interact in the solution domain through shared
subsystems and modules or through use dependencies. Although similar in nature, they are quite
different in their ramifications. The absence of an interaction in the problem domain does not im-
ply the absence of an interaction in the solution domain, which gives rise to the feature interaction
“problem” [11]. The reverse is also true, but less obvious, since it arises from the duplicate-then-
modify style of code update. Such a style results in a proliferation of similar code fragments that
are falsely independent (so-called self-similar code [7]).
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Figure 3: Instances of Entities and Relationships.

2.3 The Instance Level

If we populate the model of Figure 2 and examine it at the instance level, additional insights
into features are revealed. Figure 3 depicts this level for the instances of entities and relationships
of a hypothetical system. The figure is simplified somewhat by only considering a subset of the
entities. The shaded dots represent individual instances of the entity types named in the columns.
The unlabeled ovals within a column represent instances of aggregate entity types, which are
defined through the Composes relationship in Figure 2. In particular, the ovals represent, from
left to right, test sets, features, design specifications, and subsystems. For example, there are ten
requirements fragments and four features depicted in the figure. Notice that aggregate artifacts
are not necessarily disjoint. So, for example, the top two features share the fourth requirement
fragment. The semantics of the arrows are given by the relationships defined in Figure 2. Recall
that they are invertible.

An instance diagram forms the basis for reasoning about relationships across the lifecycle. There
has been a significant amount of work in developing, maintaining, and even discovering the data for
such representations, but none has involved the use of features as a central element. We advocate
a representation that allows one to ask questions that include the following.

o Which features were affected by this change to a requirement?

o Which modules should a developer check out to make a change to this feature?
o Which features were affected by this change to a module?

o Which test cases will exercise this feature?

o Which modules are needed to configure the system for these two features?

For instance, it is clear that different features are able to share requirement specifications. A shared
requirement from the switch example could be both the call-forwarding and call-screening features
signaling completion with an aural tone. These relationships lead to a deeper set of questions
regarding the role of features in a particular system.



The instance diagram also provides useful information for evaluating the structure of the system.
For example, we can see that the two features represented by the two topmost ovals in the second
column share a requirement, which means that a change to that requirement may potentially impact
both features. Further, we can see that despite this shared requirement, the feature represented by
the topmost oval is reflected in a single design fragment, which is in turn implemented in a single
module. This implies a significant separation of concerns that might make it easier to modify the
feature. We can also see that the features represented by the two bottommost ovals do not interact
at the requirements level, but do in fact interact at the subsystem level. Finally, we can see that
there are two subsystems forming part of the system whose designs are not related to any particular
feature. This last observation deserves further discussion.

2.4 The System Core

If a system’s functionality is viewed, as we advocate, as a set of features then it is natural to
ask the following question: “Is a system completely composed of the sel of fealures it provides?” It
is clear that systems include underlying componentry to support their features. This underlying
componentry, which we call the core, arises solely in the solution domain to aid development of
features. Users are generally not concerned with the core, and therefore it is not directly reflected
in the requirements. A rather obvious core is evident in the example instance diagram of Figure 3.
At the module level, the core is composed of the bottom two subsystems, which have no tie back
to any feature at the requirements level, other than in their use by subsystems that do have such
a tie.

Chen, Rosenblum, and Vo [6] make a similar observation about the existence of feature com-
ponents and core components, but their definition is based on test coverage. In particular, core
components are those that are exercised by all test cases, whereas feature components are those
exercised by only a subset of the test cases.

In a sense, then, the concept of feature is helping us define the concept of core—the core is
what remains of the system in the absence of any particular feature. Given that we would like
maximum flexibility in both modifying features and in selecting the set of features in any specific
configuration of a system, then this definition identifies something quite significant. In fact, what
it provides is the conceptual foundation for the role of software architecture in software system
development. An architecture provides the core functionality of the system within the solution
domain that supports the functionality of the system desired in the problem domain. Of course,
an architecture must embody assumptions about the features it is intended to support, and the
degree to which it correctly anticipates the needs of those features will determine the quality of that
architecture. For example, the layers up to and including the Abstract Switching Machine shown
in Figure 1 can be considered to form the core of the system and the essence of its architecture.
The test of that architecture comes as features are added and modified.

We examine this notion of core more fully below when discussing the effect of feature engineering
on software architecture.

3 Features and Lifecycle Activities

The artifacts and relationships discussed in the previous section are created and maintained
through various lifecycle activities. In this section we present a brief and high-level survey of what



we see as the impact that feature engineering can have on several of those many activities. Our
intention is to suggest some of the broad ramifications of feature engineering, rather than to attempt
a complete coverage of the topic.

3.1 Requirements Engineering

Requirements engineering includes activities relating to the

“ . .identification and documentation of customer and user needs, creation of a doc-
ument that describes the external behavior and assoctated constraints that will satisfy
those needs, analysis and validation of the requirements document to ensure consistency,
completeness, and feasibility, and evolution of needs.” [12]

Research in requirements engineering is primarily focused on formulating improved requirements
notations and analyses, and on developing methods and mechanisms for requirements elicitation,
rationale capture, and traceability.

Requirements engineering is the starting point for feature engineering because it is concerned
with the creation and maintenance of the raw material from which features are composed. Require-
ments analysis must include the identification of the set of requirements fragments that comprise
each feature, as well as the various dependencies that might exist among the features. If the require-
ments analysis follows a domain analysis, such as that found in the FODA methodology [15, 20],
then it is likely that the important feature set has already been identified.

Looking at the example of the telephone switch software, features such as call waiting and call
forwarding both relate to the treatment of incoming calls to a busy subscriber line [2], and thus
exhibit overlapping requirements fragments. The identification of such feature interactions at the
requirements phase can help eliminate unanticipated interaction problems during later phases in
the software lifecycle.

The fundamental difficulty with requirements engineering in practice today is identified by Hsia
et al.:

“For the most part, the state of the practice is that requirements engineering produces
one large document, written in a natural language, that few people bother to read.” [12]

Feature engineering will make the requirements effort more useful by carrying the results of this
effort forward to the other lifecycle activities in a disciplined way.

In addition to the work on feature analysis in the FODA methodology, we have found two other
research efforts in requirements engineering that are potentially useful in the development of feature
identification techniques.

Hsia and Gupta [13] have proposed an automated technique for grouping requirements specifica-
tions. Their purpose is to support incremental delivery of system functionality through progressive
prototypes. The cohesive structures that Hsia and Gupta seek to identify are abstract data types
(ADTs) for objects in the problem domain. It is not clear, however, that ADTs are the most
suitable representation for features. In addition, their goal of delivering ADT-based prototypes
transcends requirements analysis and forces what amount to design choices.

Palmer and Liang [17] have described a somewhat different requirements clustering technique.
They define the problem as an effort to “aggregate a set of N requirements into a set of M
requirement[s] clusters where M < N7”7. This is a precise statement of the goal of identifying



features. Their motivation, however, is to detect errors and inconsistencies within requirements
clusters, and therefore the organizing principle behind their clusters is similarity of the requirements
within a cluster. In other words, they seek to find sets of redundant requirements in order to analyze
the elements of the set for consistency. For the purposes of feature engineering, we instead advocate
that the organizing principle of a cluster should be relevance of the constituent requirements to the
desired properties of the feature; the issue of redundancy and consistency is orthogonal, and so a
clustering for that purpose, while important, is also orthogonal.

3.2 Software Architecture and High-level Design

Ideally, a requirements specification is a precise statement of a problem to be solved; it should
structure the problem domain as features to be exhibited by an implemented system. The software
architecture, on the other hand, is the blueprint for a solution to a problem, structuring the solution
domain as components and their connectors. Researchers in software architecture are focusing
attention on languages for architectural design, analysis techniques at the architecture level, and
commonly useful styles or paradigms for software architectures.

Feature engineering has significant implications for software architecture. One is in relating
the problem-domain structure of features to the solution-domain structure of components and
connectors. Rarely is this mapping trivial. Another implication is that, from the perspective of
the user, features are the elements of system configuration and modification. A high-level design
that seeks to highlight and isolate features is likely to better accommodate user configuration
and modification requests. Within this context, then, we see at least three mutually supportive
approaches: feature tracing, feature-oriented design methods, and feature-based style evaluation.
We briefly discuss the first two approaches here and provide a more in-depth discussion of the third
approach in the following section.

The tracing of requirements to designs has been an area of investigation for many years. The
basic problem is that it is essentially a manual task whose results are difficult to keep up-to-date
and are prone to errors. One way to mitigate this problem is to raise tracing’s level of granularity
from individual requirements fragments to sensible groupings of such fragments—features. We
conjecture that tracing at the feature level is more tractable and, in the end, more useful than
traditional methods.

A somewhat different approach to high-level design than traditional functional decomposition
or object-oriented design methods arises from a focus on features. The starting point for a feature-
oriented design method is an analysis of the intended feature set to gain an understanding of the
features, both individually and in combination. Of particular importance is understanding the
requirements-derived dependencies among the features. If one takes feature prominence as a design
goal, then the top-level decomposition of the architecture should match the decomposition of the
requirements specification into features. At each successive level of architectural decomposition,
the goal should continue to be feature isolation. Points of interaction among features naturally
arise from shared requirements, as well as from the need to satisfy non-functional requirements,
such as performance. The criteria for creating new components should be to capture explicitly
some shared functionality among some subset of features. In this way, the feature interactions are
caused to distill out into identifiable components.

In the telephone switch, for example, the call forwarding, abbreviated dialing, and direct con-
nection features all require the association of directory numbers with a subscriber line [2]. Each



Switching Module (see Figure 1) includes a special database to store such information. Thus, the
database, as a design element, is driven by a specific and identifiable set of features. Maintaining
this relationship is critical to understanding how to properly evolve this element without violating
some constraint imposed by a feature.

Combining tracing at the feature level with a design method that leads to modules representing
features and feature interactions should help to illuminate the traditionally obscure relationship
between specific features and the design elements supporting them. Moreover, when a request for
a feature change is presented to a developer, that feature can be traced immediately to a design
element associated with the feature. Any potentially problematic interactions with other features
become visible through their capture in shared modules representing that interaction.

3.3 Low-level Design and Implementation

Low-level design and implementation are the activities that realize the modules and subsystems
identified in architectural design. While we could postulate a need for feature-oriented implemen-
tation languages, our experience with feature engineering has not lead to the discovery of any
compelling arguments in their favor. The effect that feature engineering has on these activities is
more likely felt indirectly through the effects on the high-level design and testing activities and
through the contribution of a tool set that makes the relationships across artifacts visible to the
developer.

Nevertheless, a feature orientation frequently exists during implementation. Cusumano and
Selby [8] report that development efforts for many Microsoft product groups are organized by the
features of their product. Small teams of developers are assigned responsibility for one or more
of those features. FEspecially complicated features are assigned to stronger teams that include
developers with more experience. This organizational structure built around features extends to
testing teams that are assigned responsibility for testing particular features.

Ossher and Harrison [16] discuss a method of extending existing class hierarchies by apply-
ing “extension hierarchies”, which would appear to bear some relation to feature engineering at
the implementation level. Goals for this work include reducing modification of existing code and
separating different extensions. Much like change sets in configuration management (see below),
these extensions can be used as a conceptual mechanism to add functionality to existing object-
oriented systems. Unfortunately, this research describes extensions only at the granularity of object
methods, which seems inappropriate for dealing with complex features such as the call-forwarding
feature of a telephone switch. In addition, the semantic compatibility of combined extensions are
not well understood in this technique, which is a critical need for feature engineering.

A primary benefit to be gained from concentrating on features as a bridge from the problem
domain to the solution domain is a reduction of the intellectual burden placed on developers when
interacting with the implementation of a system’s features. Developers will be able to work with a
feature implementation without having to recreate the mapping from problem-domain artifacts to
solution-domain artifacts, and vice versa.

3.4 Testing

Testing is an approach to software verification that involves experimenting with a system’s
behavior to determine if it meets expectations. In practice, there are three levels of testing. Unit
testing is used to test the behavior of each module in isolation. Integration testing is used to detect
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defects in the interactions among modules at their interfaces. System testing is focused on testing
the complete system as a whole for compliance with the requirements set out by the users. System
testing is oriented toward the problem domain, while unit and integration testing are oriented
toward the solution domain (see Figure 2).

Feature engineering can have an impact on testing activities by suggesting a somewhat different
organization of test sets than is traditionally encountered. In particular, test sets would be organized
around the feature or features they are intended to test. The telephone switch software, for example,
supports a vast number of features that need to be tested for every release. Having requirements
for each feature provides a basis for testing each feature in isolation. Taking all the feature tests
together, we get the equivalent of a system test set.

Where a feature implementation is confined to a single module, tests for that feature amount
to unit tests for the module. Of course, feature implementations frequently involve more than
one module. In this case, feature tests are a mechanism for evaluating module integration. The
connections between features that are highlighted by instance diagrams, such as Figure 3, point
out sets of features that should be tested in combination. This would be useful, for example, in
guiding the testing of modifications to the database component of the telephone switch’s Switching
Module, which is shared by several features [2]. Such feature-combination tests could prove useful
for detecting unwanted feature interactions.

The feature-oriented organization of test sets can also help to minimize regression testing. This
harks back to the theme of users posing requests in terms of features. If a developer can make a
change to the system with respect to some particular feature, then only the tests related to that
feature (and, possibly, any other features that depend upon that feature) need to be run.

3.5 Configuration Management

Configuration management is the discipline of coordinating and managing evolution during the
lifetime of a software system. Traditionally, configuration management is concerned with maintain-
ing versions of artifacts, creating derived objects, coordinating parallel development efforts, and
constructing system configurations.

The vocabulary of existing configuration management systems is oriented toward solution-
domain artifacts, such as files, modules, and subsystems. Many of the accepted configuration
management techniques, such as version management and derived-object creation, should be di-
rectly applied at the feature level. For example, the developers of the telephone switch software
should be able to request a specific version of all the artifacts associated with a particular feature,
such as call waiting, by simply identifying the feature, not each of the individual relevant artifacts.
It should also be possible to issue a request to construct a system where that request can be pa-
rameterized by a given set of features. For example, it might be useful to construct a “compact”
release of the telephone switch software that has basic call processing features but no call waiting or
call forwarding features. Another useful capability would be the delineation of parallel workspaces
based on features. For features to become first class, they will have to exist in the models of the
systems that are built. This has the potential for raising the level of abstraction at which developers
work from files to features.

Realizing this expanded role for configuration management will require feature implementations
to be separately encapsulated and versioned. Bare files do not appear to be the right abstraction
for this purpose. Change sets [9, 23], on the other hand, show promise as a potentially useful
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storage base. In addition, information about feature dependencies at both the specification and
implementation levels will be needed for assembling consistent configurations.

3.6 Reverse Engineering

Reverse engineering is the process of discovering the structure and organization of an existing
system from whatever artifacts may be available. Typically, such artifacts are limited to those
associated with the implementation, such as source files. The activities in reverse engineering
center around the application of various analyses techniques to the artifacts in order to reveal
internal structure, as well as to reveal static and dynamic dependencies.

The primary influence of feature engineering on reverse engineering is to focus the analyses
toward discovering connections to features. In essence, this means recreating the (lost) relationships
in Figure 3. For example, reverse engineering could be used to discover the interactions between
call waiting and call forwarding mentioned above, or to discover the features that are dependent
on the database component of the Switching Module.

One possible technique would be to broaden the scope of program slicing, following Sloane and
Holdsworth [22], to create a feature slice through the implementation artifacts. A feature slice
would include all of the fragments that contribute to a feature’s implementation. Working in the
other direction, if a feature test set existed, then observations of test case executions could reveal
the portions of the implementation that were involved in implementing the feature.

4 Example: Feature-based Style Evaluation

In this section, we begin to examine the interaction between feature engineering and software
architecture as a way to illustrate the general utility of a feature orientation in lifecycle activities.
It is important to note that this study is only an initial attempt at using feature engineering to
gain insight into architectures, and that much more work remains to be done in this area.

4.1 Mechanisms for Change

Change is endemic to nearly all successful software systems, so features are a natural increment
to system functionality. The demand for change is frequently couched in terms of the additional
features that the system should provide and the defects in existing features that should be corrected.
Understanding the difficulty involved in adding and modifying features is a firm analytical basis
upon which to evaluate architectural styles. Results from such an analysis provide design rationale
that support informed choices among competing styles.

By separately viewing features and the architectural core, we can explore and better understand
a range of mechanisms used in adding or modifying a feature. These mechanisms ultimately result
in changes to the set of components comprising the system. We list them in order of increasing
impact on the development effort:

1. changes to components, excluding core components;
2. changes to components, including individual core components; and

3. changes to components that involve a modification of the architectural style embodied in the
core.
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The first mechanism is the one intended for the switch software whose architecture is depicted in
Figure 1. Features were to be added or modified as largely separate components built on top of
the abstract switching machine layer, which served as the interface to the core. A greater level
of difficulty is encountered through the second mechanism. For example, the addition of ISDN
features to the switch required changes at all levels of the architecture, since the core was not
defined in such a way as to anticipate those features. The third mechanism is, of course, the most
radical. In essence, the architectural style does not feasibly support the required functionality, and
so must be replaced. Generally, such a change is resisted by an organization well beyond when it
is appropriate. But this is understandable because of the severe cost implied.

As noted above, the core of a system captures the essence of its architecture. Each canonical
architectural style should therefore present a distinct core that highlights its differences from other
styles. We can gain insight into the nature of an architectural style by considering what it means to
apply the change mechanisms to systems that follow the style. Here we look at two styles, pipe and
filter and event-action. We restrict ourselves to considering only the first two change mechanisms.
In addition, we only consider the effects of adding a feature, since they are similar to the effects of
modifying a feature.

4.2 Pipe and Filter Style

The core of a pipe and filter style consists of the following four elements: the standardized
input and output channels provided by each component, the pipes that carry the information,
the structure of the information that flows within pipes, and the controller that connects filters
together into a pipeline. A good example of a system that follows this style is an HTTP (Hyper
Text Transfer Protocol) proxy server. It is designed to allow the addition of new features into the
server, such as data compression, by simple insertion or modification of filters.

There are two main methods for adding a new feature using the first change mechanism. One
method is to replace an existing filter with a version that provides the additional feature. For
example, we may want to add data compression to the HTTP proxy server. We can do this by
adding compression to the last filter in the pipeline and decompression to the first filter. While
keeping the core intact, this method confounds the implementations of features. The other method
involves creating a new filter and adding it into the pipeline. This would require the use of an
additional pipe resource and a configuration change to the controller so that the controller can
establish connections with the new filter. But these are not considered changes to the core, since
they make use exclusively of primitive features provided by the core for exactly that purpose.
Although this method has the advantage of keeping the feature implementations separate, there is
still a potential feature interaction, since the output from one filter is expected to be the input to
another.

The second change mechanism involves modifications to the core as part of adding a feature.
Potentially, each of the four core elements of the pipe and filter style could be altered to support a
new feature. Let us consider one such modification. Suppose we wish to have features that run on
different hosts on the internet, perhaps to take advantage of some remote processing power or to
help secure sensitive data. This would mean creating pipelines that span the internet, rather than
simply confining themselves to a single machine. Such a change could be carried out by modifying
different core elements. For instance, changing the standardized input and output channels and
the nature of the pipes, one could support connections that span network links. But this change
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involves modifying each of the components that takes part in the new feature.

Changes to the core that require modifications to all the filters is potentially an onerous task.
Often pipeline systems employ individual components that are not under the control of the system
developer. An alternative approach to adding the distribution feature is to modify the controller
that connects the components. The control mechanism can be responsible for managing the flow
of information across the network links by inserting hybrid components that support the old stan-
dardized connections on one end and the network-based connections on the other end. This change
to the core will have an impact on the existing filters due to the decreased reliability of, and delays
inherent in, network channels. Nevertheless, the basic architecture of the system could remain the
same.

4.3 Event-action Style

In an event-action style, the core consists of a message substrate and the protocols that are
used to send and receive messages. The message substrate is a shared medium that is responsible
for message delivery, while the protocols provide for anonymous communication. A good example
of a system using the event-action style is the Field environment [19]. This system provides a
collection of software development tools that are integrated using the message substrate. The
message substrate essentially directs messages generated by one tool to all other tools that have
registered their interest in the message. New features can be added to the environment by adding
or modifying tools and by changing the set of generated messages.

Adding a feature to an event-action system using the first change mechanism is conceptually
similar to adding a feature to the pipe and filter style, in that there are two distinct methods,
one of which confounds features and the other of which keeps them separate. In particular, there
is a choice when adding a feature whether to modify an existing component or to add a new
component. For example, one might want to add a feature to list the source code surrounding the
current line being executed by a debugger. This can be done either by modifying the debugger
itself to include a lister, or by adding a new listing tool. The listing tool would be added by having
it register for current line number messages, presumably generated by the debugger. The message
substrate acts as a decoupling mechanism that allows features to exist in isolation. The ability to
extend the system features by adding independent components that react to messages is a defining
characteristic of the event-action style. Some reconfiguration of the message substrate is required
for a new component to participate. But, as in the pipe and filter style, this is not considered a
change to the core, since it makes use exclusively of primitive features provided by the core for
exactly that purpose.

Making a modification to the core using the second change mechanism is another way to add
a feature to an event-action system. An example would be to add security and authentication to
the system. For authentication, the message protocol would be enhanced to require an exchange
of password each time a tool connects to the message substrate. Another measure of security
would be to encrypt the data that is sent across the message substrate. This feature would prevent
untrusted components from participating in the communication. These changes to the core would
require retrofitting the participating components with the new protocols. Clearly, such a change
to the core involves a significant impact on the entire system.
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4.4 Style Evaluation Summary

Both the pipe and filter style and the event-action architectural style enable the addition of
features to a system without having an impact on the architectural core. In fact, the inherent
flexibility in those styles supports feature additions that can be contained to a small set of compo-
nents. When the strategy for introducing a new feature involves a change to the core, however, the
impact of the change can be seen to be much greater. The maintainer of a system must be careful
to understand the tradeoffs in using these different approaches.

To date, there has been little support available for the analysis of architectural designs beyond
basic functional correctness. Cohesion and coupling of modules remain the sole generally accepted
criteria for such analysis. We have illustrated how to employ features as a tool for evaluating
architectural styles. Feature engineering thus provides a new dimension along which architectures
can be evaluated.

5 Conclusion

In current practice, the notion of feature is an ill-defined yet widely used concept. It becomes
meaningful when seen as a way to modularize system requirements and when related to the range
of lifecycle artifacts and activities. The goal of feature engineering is to provide disciplined methods
for projecting features from the problem domain into the solution domain. Doing so will bridge
the gulf between the user and developer perspectives of a system. In addition, feature engineering
has the potential to improve system understanding by raising the level of abstraction consistently
across the lifecycle.

This paper is a first step towards the development of feature engineering. We have presented
a provisional model for features in terms of their relationships to other artifacts. Further, we have
explored how feature engineering affects lifecycle activities, including requirements engineering,
testing, configuration management, and reverse engineering. We have also taken a deeper look
at its affect on the emerging area of software architecture. We can conclude that the concepts
involved in feature engineering cut across the entire software lifecycle, and that research efforts in a
number of software engineering disciplines are relevant to feature engineering. These efforts should
be leveraged to help bring features to the fore.

In this paper, the features we describe are undifferentiated from each other. In complex software
systems, features will exist within hierarchies organized by interesting properties such as depen-
dence, importance, and complexity. Understanding such hierarchies, and particularly the nature of
feature dependencies, should produce additional insights and benefits to software development.

In addition to refining basic concepts of feature engineering, there is a need for the development
of tools to support the integration of features into the solution domain. Using a feature orientation
to make explicit the relationships among development artifacts should increase a developer’s ability
to comprehend complex systems. This will only come about, however, if tools exist to capture,
organize, and present the structure that features offer. For example, we can easily imagine the
development of new-generation configuration management tools that are cognizant of features.
These tools would, for instance, provide primitives for controlling access to artifacts in terms of
features, as well as support the configuration of systems based on feature sets.
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