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Abstract 

 

Gordon, Eric S. (M.A., Ecology and Evolutionary Biology) 

 

Using Land Surface Modeling to Explore the Influence of Soil Moisture on Seedling 

Recovery After Wildfire 

 

Thesis directed by Professor Carol A. Wessman 

 

Previous research shows that multiple co-located disturbances can lead to a 

variety of potential outcomes in terms of the recovery of conifer forests across high-

elevation landscapes. Ecophysiology literature has demonstrated that soil moisture and 

vapor pressure deficit can be critical to the success of conifer seedlings. To explore the 

role that variation in soil moisture plays in potential forest regeneration after major 

disturbances, I combined a field study of seedling recovery after the 2012-2013 Fern 

Lake Fire in Rocky Mountain National Park, USA with a novel attempt to estimate plot-

level soil moisture using the Variability Infiltration Capacity land surface model. Results 

demonstrated that land surface modeling is a useful technique for estimating soil moisture 

at scales greater than that of an individual plant and for mitigating the limitations of 

sparse field observations. In addition, kurtosis of modeled growing season soil moisture 

was shown to be predictive of seedling success. More research is needed to determine 

whether these results can be replicated in other contexts. 
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CHAPTER 1  
 

FIELD-MEASURED SOIL MOISTURE AS A PREDICTOR OF SEEDLING 

SUCCESS FOLLOWING WILDFIRE IN SUBALPINE FOREST IN ROCKY 

MOUNTAIN NATIONAL PARK, CO, USA 
 

Introduction 

Disturbances in subalpine forests 

Subalpine spruce-fir forests are the highest-elevation and coldest forest type in the 

Southern Rocky Mountains. Disturbance history studies (e.g., Kulakowski et al., 2013) have 

shown that these forests are characterized by low-frequency disturbances such as stand-replacing 

wildfires, blowdowns, and bark beetle infestations. Field surveys (e.g., Pelz and Smith, 2012) 

and modeling studies (e.g., Buma and Wessman, 2012; Collins et al., 2012) demonstrate that 

these disturbances, alone or compounded, can have significant impacts on early and later 

successional forest conditions, potentially resulting in transitions to different species 

compositions or even to meadows. Less attention, however, has been paid to the mechanisms 

that potentially control early successional responses following disturbance, especially given the 

long return intervals in these ecosystems (Bigler et al., 2005). Understanding such mechanisms 

could help develop predictive tools useful for carbon modeling, restoration, or post-disturbance 

habitat conservation.   

Subalpine forests in the Southern Rocky Mountains are found roughly above 2500 meters 

in elevation and are comprised largely of early-succession stands of lodgepole pine (Pinus 

contorta) with Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) 

dominating older stands. Limber pine (Pinus flexilis) is found on drier slopes (Peet, 1981), and 

quaking aspen (Populus tremuloides) is an early colonizer of disturbed areas. These forests are 
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characterized by complex disturbance regimes, with the most common disturbances being high-

severity wildfire, bark beetle infestation, and blowdown (Kulakowski et al., 2013; Peet, 1981). A 

number of different types of studies demonstrate that these disturbances can produce significant 

changes in long-term species composition and forest structure (e.g., Collins et al., 2011; 

Kulakowski et al., 2013; Pelz and Smith, 2012). Moreover, recent research indicates that 

multiple co-located disturbances occurring over a short period of time can produce compounding 

impacts on early and later successional forest conditions that would otherwise not be predicted 

based on the effects of single disturbances. For example, in the Routt National Forest in northern 

Colorado, Buma and Wessman (2012) observed reduced seedling establishment after fire 

occurring in blowdown when compared to fire occurring in live forest, which led to significant 

long-term changes in modeled vegetation structure and type after a century of growth. Working 

in the same region, Kulakowski et al. (2013) found reduced regeneration of conifers and initial 

dominance by quaking aspen after multiple disturbances.  

 

Effects of soil moisture on survival of conifer seedlings 

A sizable body of work has established that microclimate strongly affects plant survival 

and is in turn affected by land cover characteristics, especially vegetation (Aussenac, 2000). Soil 

moisture has been shown to play a critical role in decreasing vapor pressure deficit (which 

affects how much water seedlings need to take up for survival and growth) and moderating air 

temperatures in temperate and subalpine forest stands (Von Arx et al., 2013). Soil moisture and 

leaf area index appear to be partly coupled, although a threshold effect may result in limited 

effects of a sparse canopy on microclimate (Von Arx et al., 2013). At the margins of climatic 

suitability for many conifer species, growing season moisture plays a significant role in survival 
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(Castro, 2016). Thus soil moisture may be particularly important to seedling success in subalpine 

stands, especially in challenging growing conditions such as the open canopy of a post-fire stand 

or in areas that experience significant summer drying. 

Those findings, along with a general understanding of subalpine forest dynamics, provide 

reason to believe that conditions affecting the relative success of seedling establishment after 

disturbance may have a long-term impact on future forest composition, including the possibility 

of transitions away from conifer dominance. Trees are most sensitive to microsite conditions and 

resource availability during seedling establishment (Gray et al., 2005), with some seedlings 

dying within hours of germination under unfavorable conditions (Von Arx et al., 2013). 

Modeling analysis of a disturbed subalpine forest suggests that early seedling establishment can 

determine longer-term forest structure and composition (Buma and Wessman, 2012), and 

compounding impacts of multiple disturbances can create conditions favorable to species that 

reproduce vegetatively, such as quaking aspen (Kulakowski et al., 2013). Studies of undisturbed 

sites indicate that seedling establishment may be limited by soil temperatures and light 

availability (Lajzerowicz et al., 2004) or by canopy density and its consequent effects on site-

specific water availability (Von Arx et al., 2013). In a study of mixed-conifer plots in the Sierra 

Nevada Mountains, Gray et al. (2005) found a positive relationship between soil moisture and 

frequency of most tree species, suggesting that lack of soil moisture may limit regeneration.  

One potentially critical determining factor in seedling success following disturbances is 

availability of moisture in the seedling root zone (roughly the top 10cm of soil). Because 

available soil moisture is determined by a number of other site-specific factors, such as soil 

texture, soil organic matter, bulk density, litter depth, and climate (Brady, 1974), it can be 

considered an integration of a number of microsite factors. Existing work has indeed 
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demonstrated that, along with vapor pressure deficit, soil moisture is a critical factor affecting the 

survival of individual seedlings (Gray et al., 2005; Von Arx et al., 2013). Moreover, among all 

disturbances, wildfire is particularly likely to affect soils in a manner that often reduces soil 

moisture (Ubeda and Outeiro, 2009), especially at seedling root depth (Gray et al., 2005). There 

is thus good reason to consider the possibility that availability of soil moisture in the seedling 

root zone could be a good predictor of the success of conifer regeneration following high-

severity fire.  

Although soil moisture is a complex variable affected by a number of site-specific 

conditions, its effect on seedling success can be better illuminated when other important 

parameters are relatively similar across sites. The ecophysiology research referenced above 

provides sufficient background to hypothesize that the ability of soil to hold plant available water 

in the seedling root zone is an important determinant of conifer seedling success in early (<5 

years) recovery from wildfire, and variations in root zone soil characteristics after wildfire will 

result in variations in soil moisture. In this study, I attempted to control for various other factors 

in order to isolate a potential connection between soil moisture and seedling success at the plot 

scale following a high-severity wildfire in a subalpine forest in northern Colorado, USA. Given 

that western North America has experienced an increase in the frequency and acreage of forest 

fires and that such an increase is projected to continue as the climate warms (Dennison et al., 

2014), understanding these relationships is increasingly important. 

 

Conceptual model of seedling survival following wildfire 

In order to determine how to control for factors other than soil moisture that could 

influence the success of tree seedlings, I developed a conceptual model of the factors necessary 
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for seedling survival. The conceptual model shown here (Fig. 1.1) also illustrates potential 

confounding factors that could also influence seedling success.  

 
Figure 1.1. Conceptual model of factors affecting seedling success after wildfire in subalpine 

forests. Blue dots and arrows represent water stored or moving though the soil. Abbreviations: N 

= nitrogen; P = phosphorous; E = evaporation from soil surface; T = transpiration; SW = 

incoming shortwave radiation; SW = outgoing shortwave radiation; LW = outgoing longwave 

radiation; LW = incoming longwave radiation;  = surface albedo. 

 

In this model, “seedling success” is defined as the survival of live conifer seedlings at a 

given site measured at a given time after wildfire. Following such a disturbance, any tree 

seedling needs the following (Oliver and Larson, 1990):  

1. Light from the sun, which is represented as SW (incoming shortwave radiation).  

2. Water obtained from the soil, represented by H2O.  

3. Mineral nutrients (N and P), also obtained from the soil, represented by N+P.  



 

6 
 

4. Temperatures in a suitable range, represented by T.  

5. Oxygen, represented by O2.  

6. Carbon dioxide, represented by CO2.  

In addition, the presence of a seedling implies the availability of one or more seeds at the site in 

question and the availability of suitable surface on which to grow—for example, duff and litter 

can impede the germination of spruce seedlings (Knapp and Smith, 1982). Seed availability and 

surface conditions are represented jointly by SS. Thus we can describe a general equation for 

predicting seedling success:  

Sseedling = f(SS, SW, H2O, N+P, T, O2, CO2) (Eq. 1) 

  

For seedlings on the soil surface, oxygen and carbon dioxide are not limiting factors, assuming a 

well-mixed near-surface atmosphere (a reasonable assumption in most real-world conditions).   

This allows us to simplify Eq. 1 into:  

  

Sseedling = f(SS, SW, H2O, N+P, T, O2, CO2) (Eq. 2) 

  

Each factor in Eq. 2 is a product of a number of site-specific drivers that can be measured 

in the field or parameterized in a model. Thus we can specify these drivers for each factor:  

1. Presence of a seed (assuming fire of sufficient severity to eliminate advanced 

regeneration) is a function of:  

a. State of existing seed bank (depends on pre-disturbance conditions and fire 

severity)  

b. Transport by wind (depends on prevailing wind direction, distance to seed source, 

condition of seed source, and stochastic factors); and 

c. Surface conditions (seeds cannot germinate on rocks or in water; conifer seedlings 

often struggle with too much duff/litter). 
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2. Availability of light for photosynthesis is a function of:   

a. Latitude   

b. Weather 

c. Time of year  

d. Aspect  

e. Ground cover (shading/non-shading)  

f. Albedo of soil (reflection up towards needles); and 

g. Microtopography. 

3. Availability of water for seedling use is a function of:  

a. Initial soil moisture after snow melts (a function of snow accumulation and 

ablation)  

b. Precipitation during the growing season  

c. Matric potential, which is a function of soil texture  

d. Soil albedo, which affects evaporation from the soil surface and is a function of 

fire severity  

e. Ground cover, which affects shading to reduce evaporation as well as the 

competing influence of understory vegetation  

f. Bulk density, which determines porosity and thus the soil water holding capacity 

and is affected by fire severity  

g. Relative humidity, which determines vapor pressure deficit and thus the rate of 

transpiration by seedlings and competing plants; and 

h. Soil organic carbon and soil texture, both of which can affect the ability of the soil 

to hold moisture. 
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4. Availability of mineral nutrients is a function of:  

a. Soil type (parent material determines original nutrient content)  

b. Soil microorganisms to fix nitrogen 

c. Mycorrhizal fungi to break down inorganic phosphorous and aid in the uptake of 

plant-available nitrogen 

d. Age of soil and climatic conditions—weathering makes phosphorous available 

but too much weathering leaches out mineral nutrients  

e. Fire severity, which leads to breakdown or destruction of pre-fire organic matter; 

and 

f. Draining of soil, which is a function of soil texture and compaction after fire. 

5. Optimal temperatures for growth are a function of:  

a. Air temperature  

b. Incoming shortwave radiation  

c. Soil albedo (influenced by fire severity)  

d. Ground cover (especially shading)  

e. Canopy cover (LAI’); and 

f. Soil moisture (partitioning of incoming energy into latent or sensible heat). 

  Although the above factors paint a complex picture of factors affecting seedling success, 

several major effects can be held constant in order to isolate the influence of soil moisture:  

 Growing season precipitation  

 Air temperature  

 Incoming shortwave radiation at the canopy level  

 Soil type  
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 Fire severity; and 

 Surface conditions, including seed availability. 

Thus by selecting plots with similar elevation, latitude, and aspect, one could minimize the 

influence of many of the most important confounding variables. Examining Eq. 2:  

 Variability in availability of seeds can be controlled by setting a minimum distance from 

the nearest living tree. Soil surface conditions can be controlled by selecting only plots 

that experienced high-severity fire, which eliminates the organic layer.  

 Incoming shortwave light is generally controlled given the same latitude and cloud cover 

if plots are close enough to the point that these factors vary imperceptibly across plots. 

 Given the proximity of plots to one another, the availability of soil nutrients can be held 

roughly constant by similar soil type and texture. 

 Air temperatures can be held constant given similar weather conditions and elevation. 

Thus site selection can be used to control a number of variables (listed in Table 1.1) affecting 

seedling success, allowing us to isolate the influence of soil moisture, as described below. 

 

Table 1.1. Variables derived from the conceptual model that are considered to be likely factors 

affecting seedling success after wildfire. Right-hand column lists means by which those variables 

can potentially be controlled to isolate the influence of available moisture. 

Variable Controlled By 

Soil surface conditions Selecting high-severity burn plots 

Incoming shortwave light Selecting high-severity burn plots and plots at the 

same latitude 

Available moisture Variable of interest 

Available nutrients Selecting plots with similar soil texture and type 

Temperature range Similar elevation and location 
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Methods 

Study Area 

 The study area for this project was located in Rocky Mountain National Park (RMNP), 

roughly 100 kilometers northwest of Denver, Colorado, USA (see Figure 1.2). In 2012, a nearly 

nationwide severe drought (AghaKouchak et al., 2013) contributed to conditions ripe for 

wildfire, even at high elevations in the subalpine forest zone where fire return intervals often 

stretch for 200 years or more (Bigler et al., 2005). On October 9
th

 of 2012, an illegal campfire on 

the eastern side of RMNP sparked a massive fire that climbed into a steep, inaccessible area in 

Fern Canyon. The resulting wildfire, known as the Fern Lake Fire, burned into the popular area 

of Moraine Park and consumed more than 3,500 acres of forest before it was officially declared 

out (US National Park Service, n.d.). Figure 1.3 shows an outline of the fire perimeter.  

 
Figure 1.2. Location of Rocky Mountain National Park in the Rocky Mountains near Denver, 

Colorado, USA. Map by National Park Trips Media, 

http://www.myrockymountainpark.com/places/.  

 

http://www.myrockymountainpark.com/places/
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Figure 1.3. Perimeter of Fern Lake Fire in Rocky Mountain National Park. Data from 

COFireMaps.com, background image from Google Maps. 

 
 

Elevations in the vicinity of the study area range from approximately 2500m to 3500m. 

At the lowest elevations in the Fern Lake Fire perimeter ponderosa pine (Pinus ponderosae) is 

common, but quickly transitions to a forest comprised of Douglas fir (Pseudotsuga menzesii) and 

lodgepole pine (Pinus contorta). Higher up, it then becomes a mixture of lodgepole pine, 

subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea engelmannii), as was the case 

within the study area and is common in subalpine forests along the Colorado Front Range. The 

forests found closest to treeline are generally comprised of only subalpine fir and Engelmann 

spruce. (Peet, 1981). Disturbance history is well-established in much of RMNP and indicates 

low-frequency fires at higher elevations along with large spruce beetle infestations and small-

scale windthrow (e.g., Veblen et al., 1991). 

 

Plot selection and setup 

 Selecting plots within the study area required controlling for a number of factors, as 

shown in Table 1.1. In order to control for the variable effects of climate, I first scouted and 
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established three general sites roughly 1 kilometer apart and at similar elevations (approximately 

2630m) and aspects (north-northeast). For consistency, plots were located in areas lacking young 

aspen. All plots were all in the vicinity of Cub Lake, a popular hiking area that provided 

relatively easy access on foot for our repeat sampling efforts (described below). Figure 1.4 is a 

satellite image of the three sites, all of which were divided into four plots.  

 
Figure 1.4. Satellite view of location of plots within study area. Background image from Google 

Maps, figure by author. 

 

To ensure that all study plots represented high-severity wildfire, I checked the plot 

locations against the Relative Differenced Normalized Burn Ratio (RdNBR; Miller et al., 2009), 

a satellite-based imagery product developed by the US Geological Survey and US Forest Service 

for post-wildfire assessment. As shown in Figure 1.5, all of the plots I established were located 

within high-severity burn areas identified by the RdNBR imagery. In addition, an in-person 

survey of the ground conditions showed a lack of organic layer at all of the sites, indicating high-

severity fire conditions. 
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Figure 1.5. Severity of Fern Lake Fire burn area as estimated by RdNBR algorithm (Miller et al., 

2009). Black crosses indicate study plot locations. Satellite image from Google Maps, figure by 

author. 

 

Sampling design and data collection 

 At each site, four 15m x 15m plots were set up in early July 2015. Plot locations, 

elevations, and aspect were recorded using a handheld Garmin GPS unit (Table 1.2). Initial plot 

surveys included a census of all conifer seedlings (classified by species) located within the plot 

boundaries. Given that many of the conifer seedlings were less than 5cm in height, at least two 

people conducted seedling censuses to double-check that all seedlings were found and to 

increase the accuracy of each count. Diameter at 137cm height was measured for standing dead 

trees over 150cm tall. Heights of standing dead trees were estimated using a Haglofs digital 

clinometer. 
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Table 1.2. Number, location, elevation, and aspect of study plots. All plot locations are listed in 

UTM coordinates for plot centers, and are located in zone 13T. Aspect is reported as 

approximate compass direction orthogonal to downhill slope. 

Plot Number Easting Northing Elevation Aspect  Slope 

FL1 0444412 4466445 2620m NW 1.6 

FL2 0444448 4466394 2625m NW 12.8 

FL3 0444445 4466408 2640m NW 16.2 

FL4 0444432 4466389 2636m NW 21.7 

FL5 0445057 4466502 2663m NW 17.1 

FL6 0445080 4466517 2665m NW 16.4 

FL7 0445114 4466512 2664m NW 19.0 

FL8 0445151 4466527 2664m NW 19.1 

FL9 0445633 4466325 2655m NW 13.5 

FL10 0445649 4466331 2655m NW 8.2 

FL11 0445691 4466337 2655m NW 11.25 

FL12 0445689 4466335 2655m NW 9.0 

 

 At each plot, ground cover was estimated visually. We placed a 1m
2
 quadrat divided into 

25 square cells on top of the ground in the plot and estimated the percentage of each cover type 

within the quadrat. (Table 1.3 lists the cover types used in the study.) Given that ground cover 

was likely randomly distributed, this process was repeated in a regular checkerboard pattern 

across each plot, resulting in a total of 28 1m
2
 estimations. Results were then averaged to provide 

an overall estimation of ground cover types per plot. 

 

Table 1.3. Ground cover type categories used in visual estimation of ground cover at each plot. 

Shrub 

Forb 

Grass 

Coarse woody debris 

Litter 

Moss 

Bare soil 

Bare rock 

P. tremuloides (aspen) 

A. lasiocarpa (subalpine fir) 

P. engelmannii (Engelmann spruce) 
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 Permitting requirements from Rocky Mountain National Park limited the total amount of 

soil that could be removed from each plot and thus dictated part of our soil sampling protocol. 

We were able to take five individual soil samples from across each plot. Although we attempted 

to select random sampling locations, the rockiness of the soils throughout the study area 

constrained where it was feasible to remove soil. Samples were removed using a 10cm bulb 

corer, providing approximately 200 cm
3
 of soil per sample. After removal, samples were double-

bagged in Ziploc freezer-type bags to reduce moisture loss and transported in insulated 

containers back to a laboratory, where they were stored in a refrigerator at 2.8C until they were 

used for analyses. 

 Soil samples were used to measure gravimetric water content at the time of sampling and 

to determine soil texture. Following standard methods, a portion of each sample was weighed 

with moisture, then oven-dried at 100C for 24 hours and weighed again, and gravimetric water 

content was reported as percentage of water weight in each sample (Jarrell et al., 1999). A 2mm 

sieve was then used to remove any large rocks from the samples, and 40cm
3
 of the dried and 

sieved samples were weighed to determine bulk density. Gravimetric water content and bulk 

density measurements were averaged across the five samples to report a single figure for each 

plot. 

 To determine soil texture, we used a commonly-established mechanical analysis method 

(Elliott et al., 1999). 50 grams of oven-dried and sieved soil from each sample were added to 1 

liter of distilled water with 5 milliliters of sodium hexametaphosphate, which helped avoid soil 

clumping. After mixing via a power blender for five minutes, the mixture was transferred to a 

graduated cylinder and hydrometer readings were taken at 40 seconds and 20 minutes. These 

readings were used to determine grams per liter of silt and clay as well as sand, allowing for soil 
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texture to be determined by percentage of each separate. Silt, clay, and sand separates were 

averaged across all five samples to create an average soil texture for each plot. 

 Repeat soil moisture measurements were necessary to provide a picture of the change in 

soil moisture during the course of the growing season. Because additional soil samples were 

neither permitted nor feasible, we used a Hydrosense soil moisture probe (Campbell Scientific) 

with 12cm prongs to take 10 random soil moisture measurements per week at each plot. These 

readings were reported as volumetric water content (percentage of total soil volume comprised of 

water.) The Hydrosense probe (Figure 1.6) uses time domain reflectometry technology (see 

Jarrell et al., 1999), integrating the conductivity between two probe prongs to estimate the 

amount of moisture in the soil to the nearest whole percentage. At each point where the 

Hydrosense probe was used, soil temperature at 8cm depth was measured to the nearest 0.1°C. 

 
Figure 1.6. Hydrosense soil moisture probe (Campbell Scientific) used for repeat sampling in 

this study. Probe uses time domain reflectometry technology to output volumetric soil water 

content as a percentage. Photo by Maja Krzic, University of British Columbia. 
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Results 

Plot characteristics 

 Given that the plots were all located in areas that had experienced high-severity burn less 

than three years prior to the plot surveys, there was little living ground cover and little to no 

organic matter on the soil. However, there was a great deal of variation in the amount of bare 

rock at each plot, which would affect the ability of seeds to germinate and turn into viable 

seedlings. In addition, some plots showed more understory vegetation, primarily grass and forbs, 

while others were nearly bare. Figure 1.7 shows the distribution of ground cover types across 

each plot.  

 
Figure 1.7. Percentage of each plot comprised of various ground cover types. CWD = Coarse 

Woody Debris; POTR = P. tremuloides (aspen); ABLA = A. lasiocarpa (subalpine fir); PIEN = 

P. Engelmannii (Engelmann spruce); PICO = P. contorta (lodgepole pine). Bars do not add up to 

100% due to rounding. 

 
 Pre-fire forest density, as measured by the area of each plot comprised of standing dead 

tree stems (i.e., basal area), also varied considerably (Figure 1.8). Note that despite the severity 

of the fire, most of the burned trees were still standing at the time of the plot surveys. 
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Figure 1.8. Basal area (area of plot covered by tree stems) of standing dead trees in each plot. 

Each bar represents total basal area. 

 
 Soil across the study area is primarily colluvium and till derived from granite, gneiss, or 

schist (Soil Survey Staff, Natural Resources Conservation Service, n.d.). Mechanical analysis of 

soil determined that all of the plots contained sandy loam soils (Figure 1.9), and texture varied 

relatively little across plots. Bulk density showed more variation, however, ranging from roughly 

0.8 g/cm
3
 to just over 1 g/cm

3
 (Figure 1.10). 
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Figure 1.9. Average soil texture in study plots. Each red dot represents the texture of an 

individual plot averaged from five samples. 

 

 
Figure 1.10. Bulk density of soil at each plot, based on five samples per plot. 
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Seedling counts 

 As described above, seedlings were counted individually across each plot and verified by 

at least two people. To the degree feasible, seedling species was identified as one of the three 

dominant conifer species in the study area (P. contorta, P. engelmannii, and A. lasiocarpa), 

although accurately determining species in seedlings can be difficult due to the lack of cones to 

use for identification. The vast majority of seedlings observed were first-year growth, as 

determined by the lack of whorls, although a few second-year lodgepole pine seedlings were 

found. Seedling density varied considerably across plots, as shown in Figure 1.11. 

 
Figure 1.11. Total seedlings at each plot. Colors indicate species identified; PICO = P. contorta 

(lodgepole pine), ABLA = A. lasiocarpa (subalpine fir); PIEN = Picea Engelmannii (Engelmann 

spruce). 

 

 Because bare rock does not provide a suitable surface for seed germination and seedling 

growth, seedling counts were first converted into density (seedlings per hectare) and then 

adjusted for the percentage of each plot covered in rock (Table 1.4). All analyses of soil moisture 

and seedling density described in this thesis use adjusted seedling density. 
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Table 1.4. Seedling density at each of the study plots. Adjusted seedlings per hectare (far right 

column) represents density adjusted for the percentage of each respective plot covered in bare 

rock. 

Plot Total Seedlings Seedlings/ha % Rock Cover Adjusted Seedlings/ha 

FL1 36 1600.0 12% 1818.2 

FL2 44 1955.6 2% 1995.5 

FL3 59 2622.2 10% 2913.6 

FL4 41 1822.2 19% 2249.7 

FL5 11 488.9 50% 977.8 

FL6 16 711.1 48% 1367.5 

FL7 30 1333.3 62% 3508.8 

FL8 4 177.8 54% 386.5 

FL9 4 177.8 24% 233.9 

FL10 5 222.2 18% 271.0 

FL11 4 177.8 23% 230.9 

FL12 2 88.9 26% 120.1 

 

Soil moisture 

 Figure 1.12 provides an overview of the variation in soil moisture from gravimetric soil 

moisture measurements obtained from soil samples, a snapshot of the heterogeneity in soil 

moisture within each plot. Gravimetric water content measurements were converted into 

volumetric water content using the bulk density of each plot, allowing for the gravimetric data to 

be incorporated into a time series of volumetric water content. This allowed for all field 

measurements to be reported as percentage of soil comprised of water and the demonstration of 

change in soil moisture during the study period, which lasted from the beginning of July to the 

end of August 2015. The highest soil moisture levels in early July when there was abundant 

rainfall, with a general drying trend towards the end of the study period (Figure 1.13). 
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Figure 1.12. Boxplot of gravimetric soil moisture measurements obtained from five soil samples 

gathered from each plot in early July 2015. Values were converted to volumetric soil moisture 

using bulk density values. 

 
 

 
Figure 1.13. Volumetric water content estimates for each plot from weekly repeat sampling. 
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Analyses of predictors of seedling density 

 To assess the effect of soil moisture on the amount of seedling growth in each plot, I 

converted the time series of field-measured soil moisture into single data points. Neither the 

average of all field measurements of soil moisture (Figure 1.14) nor the total (not shown) were 

predictive of seedling density across the study plots. Finally, variability in soil moisture, as 

measured by coefficient of variation, was not predictive of seedling density (Figure 1.15).  

 
Figure 1.14. Scatterplot of average volumetric soil moisture values from repeat field sampling 

and adjusted seedling density at each study plot. P-value represents results of an attempted linear 

regression model. 
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Figure 1.15. Scatterplot of coefficient of variation of soil moisture from repeat field sampling 

and seedling density at each study plot. P-value represents the results of an attempted linear 

regression. 

 

 Finally, I tested whether sheltering ground cover was predictive of seedling density. 

Previous research has demonstrated that sheltering cover on the surface, such as coarse woody 

debris, can moderate temperatures and provide more suitable growing conditions for conifer 

seedlings in some areas (Graham et al., 1994). Thus I combined the percentage of each plot 

estimated to contain grass, forbs, and coarse woody debris into a metric of “sheltering ground 

cover.” The presence of such cover was not predictive of seedling density in the study plots, as 

shown in Figure 1.16. 
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Figure 1.16. Scatterplot of percentage of "sheltering ground cover" (CWD, forb, and grass) and 

seedling density for each study plot. P-value represents the results of a linear regression. 

 

Discussion 

 Overall, results show that field-measured soil moisture in the seedling root zone appears 

to be sensitive to summertime precipitation, even in an area where the bulk of the moisture falls 

as snow during the winter and spring. However, weekly manual measurements of soil moisture 

provided no ability to predict plot-level post-wildfire seedling density.  

Soil moisture measurements taken at the 12 plots used in this study followed a 

predictable pattern in line with daily precipitation. Soil moisture was highest during the early 

portion of the month of July 2015, when a total of 56mm of rain fell during the first ten days of 

the month  Soil moisture fell over the course of the summer in line with decreasing daily 

precipitation, as only 20.3mm of rain fell during the remainder of July and August (precipitation 

data from Bear Lake SNOTEL site, US Department of Agriculture Snow Survey.
1
) Thus there is 

good reason to believe that soil moisture as measured at 10cm depth by a Hydrosense time 

domain reflectometry probe is sensitive to summertime precipitation. Such a conclusion is quite 

                                                        
1 http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322  

http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322
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relevant to seed germination and seedling viability, although snow accumulation and melt may 

be equally or more critical for more mature trees in subalpine forests.  

 Although the field moisture measurements were capable of demonstrating an overall 

pattern of change in moisture, metrics derived from the probe data had little variation and did not 

appear to be robust enough to use in larger-scale considerations of seedling success following 

wildfire in subalpine forests.  

 The lack of a clear relationship is likely due to the paucity of data. It is plausible that a 

relationship might appear in an analysis using more plots, but the primary issue appears to be the 

lack of variation in soil moisture measurements averaged or totaled across the growing season. 

One potential remedy to this lack of data could be the installation of soil moisture sensors 

connected to digital loggers that could take continuous data and provide much more information 

about the change in soil moisture over time. However, permit restrictions and lack of funding 

prevented such equipment from being used. In addition, part of the motivation behind this project 

was to explore more time and cost-efficient means of measuring soil moisture to allow for 

techniques to be scaled up for post-fire assessment of likely areas for seedling success. 

 Finally, it is important to note that this analysis did not account for potential threshold 

effects due to the lack of finer-resolution soil moisture data. Given their very small size, conifer 

seedlings may be vulnerable to minimum moisture values or extended periods with saturated 

soils. Conifer seedling mortality is generally very high during the first few years of life (Castro, 

2016), and threshold effects may be responsible. The lack of soil moisture measurements at a 

sub-weekly time step may be hiding rapid changes in soil moisture that could have very real 

effects on the viability of individual seedlings. A much more elaborate field setup with logged 

soil moisture sensors placed in multiple study areas recorded over multiple growing seasons 
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could provide more robust data to use in testing the original hypotheses. However, in the absence 

of a such a field campaign, in Chapter 2 I explore land surface modeling as a means to provide 

more soil moisture data for each plot.  
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CHAPTER 2  
 

USING THE VARIABLE INFILTRATION CAPACITY LAND SURFACE 

MODEL TO EXPLORE THE EFFECTS OF WILDFIRE ON SOIL MOISTURE 

NECESSARY FOR POST-DISTURBANCE SEEDLING GROWTH 
 

 

Introduction 

 The field of landscape ecology focuses on the heterogeneity of landscapes at a variety of 

scales and works towards improved representation of patterns and processes in heterogeneous 

contexts (Wu, 2013). There is no universally accepted means for representing such 

heterogeneity; rather, methods and types of analyses are tailored to the data available and the 

relevant research questions (Turner et al., 2011). Thus the field is continually evolving and 

searching for new ways to address a variety of challenges.  

One such question facing landscape ecologists, ecohydrologists, and others is the 

accurate measurement of soil moisture at scales useful for landscape analyses and management 

applications. This question poses two challenges—the first being a technical one—the difficulty 

of obtaining accurate field measurements, especially in heterogenous non-agricultural soils 

(Jarrell et al., 1999). Although a number of techniques exist for rapidly estimating soil moisture, 

such as time domain reflectometry and installation of in situ soil tensiometers, these techniques 

all produce large errors when compared to careful laboratory measurements (Jarrell et al., 1999). 

The heterogeneity of forest soils, especially those in areas with younger soils and relatively low 

rates of weathering, adds an additional layer of complexity, making it virtually impossible to 

ensure truly accurate measurements at point scales. 

 More relevant to landscape ecology is the second challenge—trying to apply field 

measurements of soil moisture at individual points to scales relevant to landscape analyses. To 
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estimate field moisture across a larger area, investigators generally combine multiple point 

measurements (Boone et al., 1999). In heterogeneous soils, especially with non-random 

distributions of land cover and soil characteristics, the question of “representativeness” of soil 

moisture measurements remains largely unanswered. Remote sensing techniques, such as those 

used to develop the recent Soil Moisture Active Passive (SMAP) satellite product (Entekhabi et 

al., 2010), can provide regional-level soil moisture estimates, but lack the resolution needed to 

work in mountainous terrain.  

Thus in this study I turn to land surface modeling (LSM), which has frequently been used 

to estimate soil moisture in a number of hydrological and climatological analyses but has only 

begun to be used in some ecohydrologic applications (e.g., Livneh et al., 2015). I hypothesize 

that parameterizing a land surface model to create a continuous time series of soil moisture based 

on climatological data and soil parameters can provide useful estimates of soil moisture in 

mountainous, forested areas with heterogeneous soils. By using inputs based on soil, vegetation, 

and meteorological factors and calibrating to field measurements, LSM may be able to produce 

soil moisture estimates that are more representative of stand-scale conditions relevant to forest 

ecology questions than can be obtained by field measurements alone. 

 If the hypothesis related to LSM and soil moisture is supported, I can use model output to 

create a more robust picture of changes in moisture over time that can be used to investigate the 

influence of soil moisture on post-wildfire seedling establishment success in subalpine forests. 

Sparse field measurements, like those collected and analyzed in Chapter 1, provide only a broad 

overview of the changes in soil moisture that occur during the growing season when seedling 

viability sufficient for survival through the subsequent winter is established. Given the very high 

mortality rate among first-year conifer seedlings (Castro, 2016), subtle changes or threshold 
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effects could be critical to survival. Generating a daily time series of soil moisture can support 

more detailed investigations of the relationship between change in soil moisture and seedling 

success. In addition to the greater temporal resolution provided by model output, LSM provides a 

stronger means for simulating the effects across a spatial area even when compared to 

continuously logged soil moisture sensors, which could provide similar temporal resolution but 

lack the ability to integrate conditions across a spatially explicit domain. 

 In this study, I investigate whether using LSM to estimate soil moisture during the 

growing season can provide novel insights into the role that soil moisture plays in seedling 

success after wildfires in the subalpine zone. This effort is explicitly exploratory; rather than 

trying to compile significant evidence supporting any conclusions about the relationship between 

soil moisture and seedling success, I gathered data sufficient to conduct a pilot study of the 

viability of LSM for efficiently estimating soil moisture in post-wildfire plots. I then used those 

soil moisture measurements to look into possible relationships between post-fire soil moisture 

and seedling success at scales greater than that of an individual plant to develop possible new 

avenues of research in post-disturbance forest ecology and ecohydrology. 

  

Methods 

Model Selection 

A wide variety of land surface (alternately called “hydrologic”) models have been 

developed for a wide variety of applications, many of which focus on enabling watershed-scale 

investigations of hydrology (Singh and Woolhiser, 2002). For this thesis, I selected the Variable 

Infiltration Capacity model (VIC; Liang et al., 1994) based on the availability of a course I could 

take that covered how to use the model as well as the available expertise of one of my thesis 
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committee members (B. Livneh). VIC is a macro-scale, partially distributed model originally 

developed to allow for variability in land cover types within global climate simulations (Liang et 

al., 1994). During the more than 20 years since its initial development, however, it has primarily 

been used in hydrologic applications. In its most recent version, it incorporates two layers of 

vegetation varying in type over space and in leaf area index over time. Multiple layers of soil are 

simulated with varying infiltration capacities at multiple levels producing surface flow, baseflow, 

and groundwater recharge. Parameters for differential snow accumulation across elevation bands, 

full energy balance, and frozen surface lakes are available (see http://vic.readthedocs.io.) Figure 

2.1 shows a generalized schematic of the VIC model.  

 

Figure 2.1. A generalized schematic of the Variable Infiltration Capacity land surface model. 

Image from vic.readthedocs.io. 

 
 

http://vic.readthedocs.io/
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 The VIC model produces output for individual grid cells of uniform size. For runoff 

estimation and other large-scale hydrologic applications, a routing algorithm is added after the 

model has been run in order to estimate total water yield in the area of interest (see 

vic.readthedocs.io). However, in ecohydrologic applications, investigators will more likely be 

interested in energy and water balance terms affecting ecological parameters, for which the 

routing algorithm can be ignored. At this scale, it is often impractical or undesirable to vary 

infiltration capacity or other parameters across space; instead, investigators may wish to assume 

that a plot is effectively homogenous. For such an instance, spatial data can be removed from 

VIC inputs, and the model treats an entire cell as if it were a uniform point. Although this 

removes some of the spatial heterogeneity in the real-world site being investigated, it provides 

for a much simpler and faster estimation of energy and water terms that can be applied to larger-

scale analyses. 

 

Study area and field investigation 

 As described in Chapter 1, the study area used in this analysis is located in Rocky 

Mountain National Park in Colorado, USA. The Fern Lake Fire, which burned from October 

2012 to January 2013, provided an ideal location to place easily accessible study plots that could 

be visited repeatedly during the growing season to capture field estimates of the change in soil 

moisture over time and with varying weather conditions. I set up 12 study plots with similar 

elevations, aspects, and locations in order to control for a variety of factors that could influence 

seedling growth (see Figs. 1.2-1.5 and Table 1.2 for more information regarding the study area 

and plot locations.) At each plot, relevant location and soil characteristics were collected for use 

in parameterizing the VIC model for each plot. Seedlings were counted manually and adjusted 
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for percentage of bare rock in each study plot, creating a response variable to test against 

modeled soil moisture output. In addition, soil moisture measurements were taken weekly in July 

and August, with 10 random measurements of volumetric water content obtained at each plot 

using a Hydrosense soil moisture probe (Campbell Scientific). 

 

Model parameterization 

 Table 2.1 lists parameters in the VIC model that were adjusted for analyses conducted in 

this study. The VIC model includes a large number of other potential user-defined parameters; 

for a complete list, see http://vic.readthedocs.io/en/vic.4.2.c/Documentation/Inputs/.  

 

Table 2.1. VIC model parameters adjusted in this study. 

Parameter Units Adjustments 

SITE PARAMETERS   

Location Lat/lon Set to plot center as measured in the field 

Elevation m Set to plot elevation as measured in the field 

Start date  Estimated as date of snowmelt at each plot 

(see details in text) 

End date  Date of first snowfall recorded at Bear Lake 

SNOTEL site (identical for all plots) 

SOIL PARAMETERS   

Depth of top soil layer m Set to 12cm for all plots to match length of 

Hydrosense field probe  

Bulk density, which affects porosity and 

thus water holding capacity of soil 

g/cm
3
 Set to value measured from average of five 

soil samples taken at each plot 

Initial soil moisture mm Estimated based on bulk density 

VEGETATION PARAMETERS   

Overstory leaf area index  m
2
/m

2
 Adjusted to represent relative differences in 

basal area of standing dead 

Minimum incoming shortwave radiation 

for transpiration to occur 

W/m
2 

Set to 1200, an artificially high value that 

ensures no transpiration (appropriate to 

represent dead mature trees) 

METEROLOGICAL PARAMETERS   

Daily maximum air temperature C Bear Lake SNOTEL 

Daily minimum air temperature C Bear Lake SNOTEL 

Incoming precipitation mm Bear Lake SNOTEL 

http://vic.readthedocs.io/en/vic.4.2.c/Documentation/Inputs/
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Model inputs 

 To simplify analysis, the period for seed germination and seedling growth was limited to 

the snow-free season at each plot, creating a start and end date for VIC model runs. The start date 

was determined using remotely-sensed snow-covered area from the MODIS Snow-Covered Area 

and Grain size retrieval algorithm (MODSCAG; Painter et al., 2009). MODSCAG returns the 

fraction of each 500m resolution MODIS pixel that is covered by snow. This provides sufficient 

resolution to discern among some of the study area plots. However, because snow cover was 

inconsistent over the study area in late winter 2015, the beginning of the snow-free season was 

defined as the last date where fractional snow-covered area exceeded 25 percent for two 

consecutive days, including days where cloud coverage obscuring MODSCAG data preceded 

snow coverage. End date for all plots was set to the date when snow accumulation was first 

recorded at the nearby Bear Lake SNOTEL station (see below for details.) 

Soil bulk density was estimated from soil samples taken during field surveys. Five 

samples were removed from each plot and sifted to remove rocks larger than 2mm. 40 cm
3
 of 

each sample was weighed, and the resulting densities were averaged to create a single value for 

each plot (see Fig. 1.10). Soil porosity was then calculated using the formula: 

 

 Total porosity = [1 – (bulk density/particle density)] x 100 (Eq. 3) 

 

where particle density is held constant at 2.65 g/cm
3
, a common assumption for mineral soils 

(Elliott et al., 1999). Porosity was then used to calculate initial soil moisture under the 

assumption that soils would be completely saturated upon snowmelt; thus initial moisture in 
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millimeters was calculated as depth of the soil layer (12cm) multiplied by porosity. In addition, 

percentage of saturation, used in some metrics of soil moisture, was calculated as the value of 

soil moisture on a given day divided by initial soil moisture.  

Vegetation parameters were adjusted in the model to represent the influence of standing 

dead trees in each plot. Transpiration was artificially turned off by setting the minimum level of 

incoming shortwave radiation necessary for transpiration to 1200 W/m
2
, far above the 30 W/m

2
 

used for trees in most VIC model simulations (see 

http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/VegLib/.) To simulate the 

shading effect of standing dead trees in each plot, basal area measurements taken in the field 

were converted into measurements of LAI. Reference values were obtained from Pugh and 

Gordon (2013), who reported field-measured values of effective LAI (LAI’) from stands of “grey 

phase” lodgepole pine (P. contorta) that had lost all needles and small twigs due to a bark beetle 

infestation. Variation in LAI at each plot was calculated by scaling the range of basal area values 

measured at each plot to the range of LAI’ values reported in Pugh and Gordon (2013). 

Finally, accurate growing season meteorological data was critical for this project, and 

proximity to a reliable climate station was incorporated into the selection of plot locations. The 

Bear Lake SNOTEL (Snow Telemetry; part of a network of remote snowpack measurement 

stations managed by the US Department of Agriculture’s Snow Survey) station is located at 

2900m, approximately 270m higher than the study plots and 3.6 km to the south (Figure 2.2; see 

also Figs. 1.3 and 1.5). The station instantaneously records snow-water equivalent during the 

snow season and precipitation during the growing season, along with air temperatures, and 

reports them in hourly and daily formats.
2
 Daily maximum and minimum air temperatures and 

                                                        
2 For more details on instrumentation and recordings taken at this station, visit the Bear Lake SNOTEL station 
web page at http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322.  

http://vic.readthedocs.io/en/master/Documentation/Drivers/Classic/VegLib/
http://wcc.sc.egov.usda.gov/nwcc/site?sitenum=322
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daily precipitation from this station were used as meteorological inputs into all runs of the VIC 

model. 

 
Figure 2.2. The Bear Lake SNOTEL site in Rocky Mountain National Park. Photo by author. 

 

 

Results 

Modeling soil moisture at study plots 

The VIC model provides output for selected variables in tabular format. Thus I used 

the R software package (R Core Team, 2016) to create graphical plots and conduct 

statistical analyses on the model output.  

To assess the quality of model outputs and compare to data obtained from the field 

study, I initially plotted soil moisture output as a time series for the modeled period, 

accompanied by a hyetograph of daily precipitation measured at the SNOTEL site. A brief 

inspection of the graphical output (see example in Figure 2.3) shows that soil moisture, as 

calculated by the VIC model for the 12cm-depth top layer of soil, rises and falls in a general 

pattern following daily precipitation. This demonstrates that the model is indeed capable of 
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providing output that is responsive to daily weather conditions, at least within the 

geographic confines of the study area. Considering the precipitation pattern that occurred 

in the area during the summer of 2015, the soil moisture output seems reasonable—i.e., it 

stays quite high during the wet weather of July and drops much lower as the rest of the 

summer sees much less precipitation. 

  
Figure 2.3. Example VIC model output of estimated volumetric soil moisture in the top 12 cm of 

soil (top graph) and accompanying daily precipitation data recorded at the Bear Lake SNOTEL 

station. This graph is for plot FL2 only. 

 
 
 I then compared model output to field measurements of soil moisture to assess the 

degree to which modeled soil moisture matched in situ data in terms of both magnitude 

and temporal pattern. These comparisons confirmed that model output did adequately 

represent the July peak in field-measured soil moisture and the subsequent drying. 

However, the magnitude of modeled soil moisture differed from field measurements, with 

the model producing roughly twice as much moisture as the field data showed (Figure 2.4). 

Adjusting bulk density allowed the model to more accurately reproduce field 

measurements (Figure 2.5). Doing so required increasing bulk density by a factor of 2, 

which resulted in bulk densities of nearly 2 g/cm3, well above the range of 0.6 to 1.8 g/cm3 

typical for most soils (Elliott et al., 1999) and above the density permitting root penetration 
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by most plants. A sensitivity analysis of the VIC model showed that modeled soil moisture 

is particularly sensitive to bulk density (see below.)  

 
Figure 2.4. Same as Figure 2.3, but with weekly field measurements of soil moisture by 

Hydrosense probe added (green points.) 

 

 
Figure 2.5. Same as Figure 2.4, but blue line represents VIC model output with bulk density at 

200% of the parameter value in the original model run. 

 
 

Increasing bulk density would have resulted in a closer fit between modeled soil 

moisture and field measurements. However, given that doing so would have required using 

unrealistic values of bulk density and that the study was aimed at assessing relative 

differences in soil moisture across plots rather than reproducing measured magnitude of 

soil moisture, I chose not to adjust the original modeled outputs. Moreover, there is no way 
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to know whether the model or the field measurements are more accurate estimations of 

the “true” values. The probe used for taking field measurements relies on Time Domain 

Reflectometry, which assumes homogeneous, rock-free soils in the space between the two 

prongs of the probe. It is thus plausible that the model is as close to, if not closer to, the 

real-world values. 

Figure 2.6 provides summary data in the form of boxplots of daily modeled soil 

moisture values at each of the plots. A one-way analysis of variance (ANOVA) indicates that 

there is a significant difference in soil moisture values across all of the plots (p < 0.05). 

Figure 2.7 provides modeled output with corresponding field measurements above 

hyetographs for all 12 of the study plots. 

 

Figure 2.6. Boxplot of modeled daily soil moisture values at all of the Fern Lake field sites. A 

one-way ANOVA indicates a significant difference among the values of the means for each plot 

(p = 0.003). 
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Figure 2.7. Modeled growing season soil moisture (blue line) with field measurements (green 

dots) for each of the 12 study plots. Each graph has an accompanying hyetograph below. 
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VIC model sensitivity 

As mentioned above, soil bulk density appeared to have the strongest influence on 

soil moisture output in the VIC model. To better understand how the model responds to the 

bulk density of the soil, I performed a sensitivity analysis. Using output from the model run 

for plot FL2 (the same plot used in Figs. 2.3-2.5), I adjusted the bulk density parameter by 

increasing or decreasing it relative to the field-measured value. Increasing or decreasing 

bulk density by up to 20 percent of the field-measured value resulted in effectively no 

change, as shown in Fig. 2.8. However, soil moisture showed much greater sensitivity to 

greater changes in soil bulk density. A 50 percent reduction in bulk density resulted in 

higher soil moisture at all times with greater increases during drier periods. A 200 percent 

increase, on the other hand, resulted not only in much lower values overall but also much 

shorter peaks during wetter periods (Fig. 2.9). Future investigations of the use of the VIC 

model for soil moisture experiments may necessitate a consideration of how to adjust this 

parameter. Moreover, additional research is needed to determine whether it is feasible to 

better simulate rocky soils in the model, which could result in improved reproduction of 

field measurements of soil moisture in these types of conditions.  
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Figure 2.8. Sensitivity of VIC model soil moisture output for plot FL2 to bulk density. Colored 

lines represent bulk density set to different percentages of field-measured bulk density. 

 

 
Figure 2.9. Same as Fig. 2.7, but with greater variations in bulk density. 

 
 
Predictors of seedling density 

Generating output from the VIC soil model produced a growing season-length time 

series of soil moisture for each of the study plots, at a daily time step. This is far more detail 

about soil moisture than was obtained via field measurements (see Chapter 1). A variety of 

analyses were performed using this these time series to explore whether various measures 
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of soil moisture could have predictive relationships with the success of conifer seedlings in 

these post-wildfire areas. 

Simple mathematical transformations of field-measured soil moisture data had not 

provided any predictive power for seedling density, as described in Chapter 1. However, 

the lack of any significant relationship could have been a result of the coarse temporal scale 

of data in the weekly sampling of soil moisture. Given that the VIC model output provides 

daily values, I was able to test whether greater temporal resolution might provide greater 

predictive power. Thus to provide direct comparisons to the analyses conducted with field 

data alone, I calculated simple mathematical averages, totals, and coefficients of variation 

for daily modeled growing season soil moisture at each plot. Figure 2.10 shows that total 

modeled growing season moisture, a metric of the maximum water available to seedlings in 

a given plot, has no predictive power for adjusted seedling density. Neither did the average 

daily value of soil moisture at each plot, as shown in Figure 2.11. 

 
Figure 2.10. Seedling density as a function of the sum of growing season soil moisture values 

from VIC model output for each plot. P-value represents the result of an attempted linear 

regression. 
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Figure 2.11. Seedling density as a function of average daily modeled soil moisture, expressed as 

a percentage of total saturation. P-value represents the result of an attempted linear regression. 

 

 In addition, I hypothesized that higher soil moisture during the early part of the 

growing season has a strong effect on the likelihood of seedling success. The VIC model 

output allowed me to test this hypothesis easily, in contrast to what would have likely been 

a very laborious and time-consuming field campaign. Thus I selected the first 45 days of the 

growing season to explore this idea and looked for a relationship between total moisture 

during that time period and seedling density. This metric had no significant relationship 

with seedling success (Fig. 2.12), nor did average moisture during that time period (not 

shown.) 
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Figure 2.12. Adjusted seedling density as a function of total modeled soil moisture during the 

first 45 days of the VIC soil moisture output. P-value represents the result of an attempted linear 

regression. 

 
 
 I also hypothesized that the persistence of soil moisture in a given plot would create 

conditions more favorable to seedlings. Persistence provides a metric of how much 

moisture conditions persist, or stay similar over time. Given the importance of sufficient 

moisture for seedlings, I came to such a hypothesis based on the idea that longer periods of 

available moisture would predict greater likelihood of seedling success. To assess this, I 

used autocorrelation functions, a common method in time series analysis. The 

autocorrelation function calculates how similar any given data point along a time series is 

to the same data point a certain time period earlier, resulting in a final score representing a 

time series signal as a function of the specified time lag (Crawley, 2013). Using VIC model 

output, I calculated autocorrelation functions for monthly and weekly lags in soil moisture, 

as well as for weekly lag during the first 45 days of the growing season. The results show a 

significant (p<0.05) negative relationship between soil moisture persistence and seedling 

density (Figs. 2.13-2.15.) 
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Figure 2.13. 30-day lag autocorrelation of VIC modeled growing season soil moisture predicts 

lower adjusted seedling density. Line, p-value, and R
2
 represent results of a linear regression. 

 

 
Figure 2.14. Same as Fig. 2.12, but 7-day lag autocorrelation of modeled soil moisture instead of 

30-day lag. 
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Figure 2.15. Same as Figure 2.13, but using only modeled soil moisture values for the first 45 

days of the growing season. 

 
 

Given that persistence of soil moisture had a negative relationship with seedling 

density, I then calculated kurtosis of modeled soil moisture to determine if it had predictive 

power. Kurtosis is a measure of the “peakedness” of a set of continuous data; in other 

words, it provides a single measurement of how quickly a variable rises and falls over time 

(Rogerson, 2006). Higher values of kurtosis, therefore, would indicate more rapid changes 

in soil moisture over the course of the growing season. As Figure 2.16 shows, kurtosis of 

modeled growing season soil moisture was indeed a significant predictor, explaining nearly 

50 percent of the change in adjusted seedling density, according to a linear regression 

model. 



 

48 
 

 
Figure 2.16. Adjusted seedling density as a function of kurtosis of modeled soil moisture. Line, 

p-value and R
2
 represent the results of a linear regression. 

 

Discussion 

The results presented above are from a relatively small number of study plots 

established in the aftermath of a single wildfire. However, despite the lack of a larger data 

set, these analyses provide a starting point for further investigations that can draw upon 

the computational efficiency and scalability of the methods used here.  

This thesis demonstrates that, after collecting a few plot characteristics and a 

relative handful of field measurements of soil moisture, the VIC model can be used to 

characterize soil moisture across heterogeneous landscapes. Given the flexibility of the 

model, it is wholly plausible that the scope of similar modeling efforts could cover a range 

of spatial scales. I was able to reproduce the general pattern of soil moisture decay over the 

course of the growing season and demonstrated responsiveness of soil moisture in the 

model to daily summertime precipitation events. More importantly, the model produced 

daily data and could be parameterized to produce sub-daily output given input data with 



 

49 
 

appropriate time steps. The computational efficiency of the VIC model makes this an 

appealing approach for approximating soil moisture at the plot or larger scale, rather than 

relying on point-scale or plant-scale measurements as would be gathered by continuous 

field monitoring.  

Given the demonstrated ability to reproduce soil moisture at the plot scale, the 

results of analyses of the relationship between soil moisture and seedling success merit 

further exploration. There is evidence that kurtosis of modeled growing season soil 

moisture is a promising metric for predicting likelihood of post-fire recovery by conifers at 

plot or landscape scales. This pushes beyond findings from the literature that demonstrate 

the importance of available moisture and vapor pressure deficit on the ability of a seedling 

to survive (e.g., Von Arx et al., 2013), implying that soils where moisture persists for too 

long could be less suitable and that repeated additions of soil moisture from episodic 

growing season precipitation may be more important than overall moisture availability, at 

least in subalpine forests recovering from recent wildfires. Additional field-calibrated 

moisture outputs and seedling counts from other post-fire sites are needed to build more 

evidence for the utility of soil moisture kurtosis as valuable metric. 

From an ecological standpoint, this work raises additional questions about how the 

spatial distribution of land surface conditions affects recovery after wildfire. Ecophysiology 

research gives us good insight into plant-scale conditions affecting seedling survival during 

early succession after disturbance in subalpine forests and post-disturbance studies inform 

our understanding of general trajectories in structure and composition. However, we lack a 

clear understanding of the specific factors that control the direction of these trajectories at 

larger scales in heterogeneous landscapes. Moving further in that direction will require a 
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combination of insights drawn from ecophysiology, ecohydrology, and landscape ecology 

using tools such as land surface modeling, spatial analyses, and field measurements.  

Thus logical follow-up work building on this study would begin with a replication of 

the VIC modeling effort using field data from a number of other sites. Regardless of 

disturbance condition, the ability of the model to reproduce soil moisture conditions in 

heterogeneous, rocky soils found in the subalpine could be tested at multiple other sites, 

and the model could be better calibrated to improve representativeness of soil moisture. 

Following such an effort, the seedling study could be replicated at multiple other sites to 

assess whether the predictive power of kurtosis remains and whether other metrics, which 

were not significant predictors in this study, might still have a relationship to seedling 

success. Given the infrequency of fires in the subalpine zone (Baker, 2009), this may be a 

challenge, but incorporating field sites from across a wide area, such as the U.S. West, 

should provide sufficient replicates. 

Finally, ecohydrologists and soil scientists may wish to further investigate questions 

related to better measurement and representation of soil moisture in rocky areas. Time 

domain reflectometry, used to obtain field measurements in this study, provides an 

efficient and cost-effective means to measure soil moisture but faces challenges in areas 

with very rocky soil. Moreover, the VIC model itself assumes soil heterogeneity. Those 

familiar with the model could investigate whether the pedotransfer functions in the model 

could be adjusted to better simulate rocky soils, or whether integration with another model 

could improve the quality of model output.  
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