
Microtopoclimatic effects on a climate-sensitive habitat 

specialist, the American pika (Ochotona princeps) 

 
by 

 

Aidan Taylor Beers 

B.A. Biology-Environmental Studies, Whitman College, 2011 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the 

 Faculty of the Graduate School of the  

University of Colorado in partial fulfillment 

of the requirement for the degree of 

Master’s of Arts 

Department of Ecology and Evolutionary Biology 

2016 

 

 

 

 

 

 

 

 

 

 

 

 

 



This thesis entitled: 

Microtopoclimatic effects on a climate-sensitive habitat specialist, the American 

pika (Ochotona princeps) 

written by Aidan Taylor Beers 

has been approved for the Department of Ecology and Evolutionary Biology 

 

 

 

__________________________________________ 

Katherine Suding 

 

 

 

__________________________________________ 

Chris Ray 

 

 

 

__________________________________________ 

Kendi Davies 

 

 

 

__________________________________________ 

Daniel Doak 

 

 

 

__________________________________________ 

Waleed Abdalati 

 

 

       Date:___________________ 
 

The final copy of this thesis has been examined by the signatories, and we 

find that both the content and the form meet acceptable presentation standards 

of scholarly work in the above mentioned discipline. 



iii 
 

ABSTRACT 

 

Beers, Aidan Taylor (M.A., Ecology and Evolutionary Biology) 

Microtopoclimatic effects on a climate-sensitive habitat specialist, the American pika (Ochotona 

princeps) 

 

Thesis directed by Professor Katherine N. Suding 

 

 

 

There has been increasing acknowledgement that refugia at different scales facilitate the long-

term survival of species and populations through climate oscillations. Species distributions and 

persistence are already affected by current climate change, and many taxa will become more 

spatially limited and less connected under further warming scenarios. Identifying likely 

microrefugia will improve our predictions of how species, communities, and ecosystems are 

likely to respond to climate change by providing a clearer understanding of likely demographic 

processes and connectivity. In this thesis, I considered suitable microhabitat in the face of current 

changing climates in the context of the persistence or development of microrefugia. The 

processes that drive microhabitat use by individuals likely also scale up to impact broader scale 

occupancy and connectivity patterns. Describing those fine-scale processes may therefore better 

predict how species will react to environmental change. To address these issues, we studied the 

ways in which fine-scale features of the terrain drive microhabitat use for the American pika 

(Ochotona princeps), a small lagomorph of western North America that has been cited as a likely 

climate and ecosystem change indicator species. The microtopoclimatic effect on habitat may 

drive patterns at the scales of individual habitat use, territory occupancy, patch occupancy, and 

regional population health. Though many studies have addressed some of the macroclimatic 

drivers of occupancy, we addressed fine scale processes and variation that likely interact with 

those broader factors. In the first chapter, we used radio telemetry to track pikas October-July in 

the Niwot Ridge Long Term Ecological Research site (NWT LTER) in Colorado’s Roosevelt 

National Forest and compared those data to records of summertime trapping success in the same 

area from 2008-2015. We used logistic regressions to test how terrain drives habitat use and how 

those effects vary seasonally. In the second chapter, we made predictions about suitable habitat 

across NWT using probability surfaces from Chapter 1 and supervised models made using 

remotely sensed data. We compared these predictions and discussed the importance of relevant 

habitat parameters and data at the appropriate scale to detect processes impacting species 

distribution models and larger predictions. 
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INTRODUCTION 

There has been increasing acknowledgement that refugia facilitate the long-term survival 

of species and populations through climate oscillations (Shimokawabe et al. 2015). Rull et al. 

(1988) introduced the term “microrefugium” as a small area with local favorable environmental 

features, in which small populations can survive outside their main distribution area (the 

macrorefugium), protected from the unfavorable regional environmental conditions. Species 

distributions and persistence are already affected by current climate change (Chen et al. 2011), 

and many taxa will become more spatially limited and less connected under further warming 

scenarios (Parmesan et al. 2003, Rull 2009, Mosblech et al. 2011). Patches of suitable habitat in 

which microclimatic conditions are decoupled from the surrounding climatic conditions may 

therefore provide essential relief for affected taxa and slow extinctions in the face of climate 

change (Pearson 2006). Similarly, climate microrefugia during the last glacial maximum (LGM) 

facilitated faster range shifts in response to early Holocene warming than can be explained by 

long distance dispersal models, as pockets of habitat that survived regionally unsuitable 

conditions began to expand (Clark et al. 1998, Mosblech et al. 2011).  

Identifying likely microrefugia will improve our predictions of how species, 

communities, and ecosystems are likely to respond to climate change by providing a clearer 

understanding of likely demographic processes and connectivity (Gillingham et al. 2012). For 

example, many mammals in the Great Basin that prefer cool, mesic climates had abundant 

habitat during the LGM, including in the modern Mojave Desert, but have since been extirpated 

or forced mostly into isolated patches in disparate mountain ranges (Brown 1971, Grayson 2005, 

2006). In this thesis, I consider suitable microhabitat in the face of current changing climates in 

the context of the persistence or development of microrefugia. Here, microhabitat is small spaces 
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of refuge at the scale exploitable by individuals within their territory, while microrefugia are 

larger, relevant more to populations than individuals. 

It is widely accepted that mountains represent a refuge of relatively mesic climate for 

many alpine species, relicts of the Pleistocene or early Holocene epochs (Hafner 1993, 

Schönswetter et al. 2002, Grayson 2006, Millar and Westfall 2010). Recent work has suggested 

mountain environments will likely provide crucial shelter under new and variable climate 

scenarios (Schönswetter et al. 2002, Dobrowski 2011, Ashcroft 2010). For plants, Gottfried et al. 

(2012) observed a significantly higher abundance of thermophilic species in the mountain 

summits of Europe over the last decade. In addition, recent projections of high mountain species 

habitat shifts that result from temperature increases indicate that there will be a decline of cold 

habitats by the end of twenty-first century (Thuiller et al. 2005, Dullinger et al. 2012, Pauli et al. 

2012). A similar trend is likely for animals, constrained by both climate directly and by 

diminished dispersal and connectivity potential because of habitat loss due to climate change 

(Grayson 2006, Anderson et al. 2009, Galbreath et al. 2009). Mountainous areas are therefore a 

good model system, as they are likely indicative of what changes may come elsewhere. 

Topographical heterogeneity can cause considerable local climate variation (Scherrer and 

Körner 2011), potentially decoupling local and regional climate. This decoupling is key to 

developing microrefugia (Dobrowski 2011, Ashcroft and Gollan 2012). There are likely 

shortcomings in our understandings of species topoclimatic habitat requirements—especially for 

taxa potentially threatened by climate change (Dobrowski 2011, Sandel et al. 2011). Despite the 

increased attention to macroclimatic interactions with local climate, there has been little work 

addressing how terrain heterogeneity may foster suitable of microhabitat in topographically-

complex landscapes at scales small relevant to individual habitat patches. The processes that 
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drive microhabitat use by individuals likely also scale up to impact broader scale occupancy and 

connectivity patterns. Describing those fine-scale processes may therefore better predict how 

species will react to environmental change. 

My thesis will address this knowledge gap by addressing the role of landscape 

topography at different scales in determining microrefugia and suitable microhabitats. I will 

particularly focus on populations of American pika (Ochotona princeps), a small lagomorph of 

western North America that is sensitive to both warm and cold temperature extremes (Jeffress et 

al. 2013, Yandow et al. 2015). 

To address these issues, we will study the ways in which fine-scale features of the terrain 

drive microhabitat use. This microtopoclimatic effect on habitat may drive patterns at the scale 

of individual habitat use, territory occupancy, patch occupancy, and regional population health. 

Though many studies have addressed some of the macroclimatic drivers of occupancy, we are 

addressing fine scale processes and variation that likely interact with those broader factors. For 

pikas, this means looking at the scale of even a few meters. They do not hibernate, do not 

disperse far, have small territories, and their habitat can vary significantly at that fine a scale 

(Smith and Ivins 1984, Smith and Weston 1990, Varner and Dearing 2014).  

In the first chapter, we used radio telemetry to track pikas October-July in the Niwot 

Ridge Long Term Ecological Research site (NWT LTER) in Colorado’s Roosevelt National 

Forest and compared those data to records of summertime trapping success in the same area from 

2008-2015. We used high resolution color imagery and a Digital Elevation Model (DEM) to 

derive habitat and terrain parameters. We performed a series of logistic regressions with the 

telemetry and trapping data to test how metrics of the terrain predict habitat use and how those 

effects vary seasonally. 
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In the second chapter, we used knowledge gained from Chapter 1 and prior work to make 

predictions about suitable habitat across NWT. Based on the best fit mixed logistic regression 

models for winter, summer, and the whole study period, we created probability surfaces by a 

logit transformation to represent habitat suitability across NWT. This was one method of 

suitability prediction. Separately, we created supervised models of suitable habitat by maximum 

likelihood based on landscape variables and expert opinion inputs from field experience and 

prior studies. We used linear regressions to relate each of those supervised models to the 

modeled probabilities of habitat suitability based on the probability surfaces. Included among 

those models was one derived at a coarser scale more commonly used in SDMs for pikas in order 

to compare the high resolution, fine scale metrics to those more commonly used. 
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CHAPTER 1 

Title: Seasonality in the use of heterogeneous terrain by a territorial habitat specialist, the 

American pika (Ochotona princeps) 

 

Introduction 

Climate is one of the main drivers of species distributions (Pintor et al. 2015). As a 

response to ongoing climate change, many species have started to shift their ranges poleward and 

toward higher elevations (Walther et al. 2002, Chen et al. 2011, but see Crimmins et al. 2011, 

Dobrowski 2011). Alpine environments are particularly vulnerable, and predicted to experience 

especially rapid climatic changes (IPCC 2013). Modeling studies have consistently predicted a 

greater risk of habitat loss and local extinctions for species at high elevations compared to 

species at lower elevations (Engler et al. 2011, Bellard et al. 2012). However, species sensitivity 

to rapid climate change may be modulated, by factors such as terrain heterogeneity that can 

decouple local microclimate from atmospheric lapse rate, and alpine and montane areas are not 

often studied at topographic and climatic scales appropriate to the species at risk there (Parmesan 

et al. 2003, Root et al. 2003, Ashcroft 2010, Dobrowski 2011, Ford et al. 2013, Varner and 

Dearing 2014). Heterogeneous terrain plays a key role in whether climate change in high-

elevation systems will increase the isolation of populations (likely resulting in local extinction) 

or create high-elevation microclimatic refugia, complicating predictions of both local and 

regional climate change effects and associated species responses (Anderson et al. 2009, Ashcroft 

et al. 2012, Hannah et al. 2014). 

Considerable seasonal variation in the mountains is another level of heterogeneity that 

may complicate suitability predictions, and some have argued that seasonal variation in habitat 

quality should play a role in predicting habitat extent (Ashcroft et al. 2009). Yet our 

understanding of habitat suitability for many species, especially those in high alpine 
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environments, is typically based on occupancy surveys performed during summer, when the 

work is most tractable (Van Horne 1983). If wildlife use different habitat in winter, when many 

taxa and their resources are likely to be more spatially limited (e.g. wolves [Fortin et al. 2005, 

Bergman et al. 2006, McPhee et al. 2012]), we risk overestimating the extent of habitat available 

throughout the year, and the number of individuals it can support (Van Horne 1983). Some 

summer habitat may become entirely inhospitable in winter (Costello et al. 2006) and individuals 

without both types of habitat may not survive the whole year (Wallmo et al. 1977). For example, 

changes in the food resources in summer habitat for mule deer makes that same habitat untenable 

as winter forage, and herds have to move to slightly better areas (Wallmo et al. 1977). 

Accounting for spatial and climatic variation will therefore more thoroughly show the true extent 

of suitable habitat (Pintor et al. 2015). 

Several studies have shown that topographic heterogeneity likely plays a role in 

facilitating pockets of habitat for many taxa (Luoto and Heikkinen 2008, Ashcroft 2010, 

Dobrowski 2011, Ford et al. 2013). Terrain features can create habitat sheltered from wind, sun, 

or other limiting climatic factors. Topographic features at various scales, even at 10m or less, can 

influence microclimate shelter exploited by individuals, including wind exposure, snow 

accumulation, and surface temperatures (Anderton et al. 2002, Winstral et al. 2002). A 

heterogeneous terrain slows wind and is more likely to accumulate wind-carried snow than a flat 

landscape with no features to reduce flow, and high points are particularly exposed to high wind 

effects (Ruel et al. 1998). Prior studies have also shown that terrain heterogeneity can influence 

snow accumulation and the downstream hydrologic and ecologic effects such as the distribution 

of alpine meadows (Bell and Bliss 1979, Winstral et al. 2002, Déry et al. 2004, Millar et al. 

2014). Adequate snow cover can provide insulation from extreme cold, and has been tied to 
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thermal buffering for species seeking suitable microhabitat (Walter and Broome 1998, Shi et al. 

2015). Topographic heterogeneity therefore can structure communities at a fine scale and affect 

individuals. Considering the impacts of both spatial and temporal heterogeneity, it may be 

important to evaluate the fine-scale drivers of habitat use throughout the year, which could help 

to more thoroughly explain the way in which terrain can foster suitable microhabitat. 

Heterogeneity in climate, topography, and habitat play a large role in species distributions 

and interactions (Kubota et al. 2004, Kumar et al. 2006, Mosser et al. 2015). For example, 

heterogeneity in food resources (i.e. moose habitat vs edible berry patches) is critical for bears 

preparing for winter (Nielsen et al. 2010). Similarly, carrying capacity and demography for 

North American Odocoileus deer species are driven by the seasonal variation in available range 

(Wallmo et al. 1977). In those examples, including only one habitat parameter for species that 

require many would likely lead to overestimating the extent of suitable habitat, as a truly 

hospitable area would require many different kinds of habitat (Figure 1.1). Therefore, efforts to 

model and predict habitat use and extent should account for how habitat heterogeneity drives its 

presence (Luoto and Heikkinen 2008). 
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Figure 1.1. Conceptual figure showing how an organism may use different types of habitat within the same area. If 

both habitat types are required, occupancy projections based on either of the two habitat requirements individually 

would overestimate the extent of suitable habitat, which is in fact only the purple area that contains both habitat 

requirements. The scale of this process depends on the species. For more sessile species, this might function within a 

very small area. For mobile or seasonally migratory species, this could function over a larger extent or only during 

one season (e.g. mating season). 

 

Among the potentially threatened habitat specialists is the American pika (Ochotona 

princeps), which may already be experiencing climate-driven extirpations (Wilkening et al. 

2011, Calkins et al. 2012, Erb et al. 2014, Millar et al. 2014). Pikas are considered good 

indicators of late Holocene climate change effects (Hafner 1993, Galbreath et al. 2009). 

Topographic heterogeneity and seasonal variation are likely important for pikas at a very fine 

scale because pikas are territorial, have fairly small territories, and exploit suitable microhabitat 

to survive extreme weather (Hafner 1993, Beever et al. 2003, Rodhouse et al. 2010, Millar et al. 

2014). Several studies have already suggested important roles for habitat heterogeneity in pika 

distribution, especially in areas that might otherwise be inhospitable (e.g. Rodhouse et al. 2010, 

Jeffress et al. 2013). Sub-surface conditions within the pika’s preferred microhabitat (talus or 

boulder fields) can vary greatly within a single pika’s territory; by examining habitat use at a 

very fine scale relevant to the movements and shelter habitat of individual animals, we could 

study direct effects of heterogeneity at biologically relevant scales (Varner and Dearing 2014). 
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Because of this affiliation with heterogeneity and climate vulnerability, pikas are therefore a 

likely model species for studying the interactive effects of topography and climate on species.  

Though pikas do not hibernate and remain active through winter and summer, they are 

sensitive to both high and low temperature extremes (e.g. Ray and Beever 2012, Yandow et al. 

2015). Individuals also do not usually disperse great distances and have relatively small 

territories (14m-50m), giving them a small area in which to find and exploit suitable 

microclimate (Smith 1974, Smith and Ivins 1984, Smith and Weston 1990). Pikas are considered 

sentinels, indicators of environmental change in the ecosystems they inhabit. Changes in their 

distribution speak to changes in availability of resources they require and shifts in the 

environment. Research suggests pikas are less stressed where sub-surface ice features persist and 

act as a temperature buffer and potentially a water source (Hafner 1993, Millar and Westfall 

2010, Wilkening et al. 2015). Those sub-surface ice features are critical in water cycling and 

long-term water storage and have strong effects on downstream hydrological and ecological 

processes (Molotch et al. 2008, Leopold et al. 2015). Given their association with sub-surface 

ice, an important source of groundwater (Molotch et al. 2008, Millar and Westfall 2010), pikas 

are an indicator of change to resources in both the alpine and potentially all downstream 

ecosystems. Understanding how this species responds to climate change therefore provides a 

model to inform landscape level conservation and management decisions.  

During summer months, pikas are vulnerable to heat exposure and have been extirpated 

from some areas with warming summers (Smith 1974, Beever et al. 2003, 2010, Wilkening et al. 

2011). Yet pikas also have been shown to disappear from locations exposed to extremely low 

temperatures by a lack of snow cover (Beever et al. 2011), and they do not migrate seasonally to 

find winter shelter beyond their own small territory (Smith and Ivins 1984). Even cold-adapted 
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animals can succumb to extreme cold (Walter and Broome 1998), and pikas rely on snowpack 

for winter insulation (Krear 1965, Smith 1978). Despite overall climate warming, acute periods 

of extreme cold will occur, and the predicted decline in snow cover in western North America 

(IPCC 2013) means that pika habitat may be more exposed to that cold. However, most studies to 

date have focused on the heat sensitivity of pikas when projecting pika futures (e.g. Calkins et al. 

2012, Stewart et al. 2015). Variable terrain is more likely to accumulate snow (Ruel et al. 1998), 

yet there is an incomplete understanding of how variable mountain terrain impacts pika habitat 

use, and no published study has addressed habitat use during severe winter conditions. 

By evaluating seasonal variation in habitat use, we seek to strengthen predictive models 

of pika habitat and to demonstrate how this sort of work can provide insight toward a greater 

understanding of the role that habitat heterogeneity (spatial and temporal) play for this and other 

species potentially threatened by climate change. For pikas, habitat heterogeneity means a mix of 

both talus for shelter and nearby vegetation for food (Millar and Zwickel 1972, MacArthur and 

Wang 1974, Smith and Weston 1990, Erb et al. 2014). Pikas have occasionally been described as 

an alpine obligate species (Howell 1924, Brown and Knowles 2012), but many observers note 

that they are in fact more broadly distributed, occurring as low as 300 meters above sea level in 

mild temperate (Grinnell 1917, Beever et al. 2008, Simpson 2009) or xeric environments 

(Simpson 2009). In this study we therefore evaluate the effects of topographic and habitat 

heterogeneity, which could more effectively describe the pika’s habitat and suggest a means to 

do the same for other species with variable habitat requirements. We hypothesized that 

microhabitat use is driven by fine-scale terrain heterogeneity that buffers both extreme winter 

cold and summer heat. Pikas are constrained by different factors in summer than in winter, so we 

predicted that pikas use different types of terrain in winter compared to summer. Because more 
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heterogeneous terrain is more likely to accumulate pockets of snow, we predicted that areas of 

more heterogeneous terrain would be more suitable for pikas in winter. 

 

 

Methods 

Summary 

 We used radio telemetry to track pikas October-July in the Niwot Ridge Long Term 

Ecological Research site (NWT) in Colorado’s Roosevelt National Forest and compared those 

data to records of summertime trapping success in the same area from 2008-2015. We used high 

resolution three band color imagery (RGB) and Digital Elevation Models (DEMs) to derive 

habitat and terrain parameters, including measures of terrain position (prominence) and 

heterogeneity. We performed a series of logistic regressions with the telemetry and trapping data 

to test how metrics of the terrain predict habitat use and how those effects vary seasonally. 

 

Data collection 

There were two lidar-derived DEMs, filtered (vegetation removed) and unfiltered. We 

used the filtered DEM to derive all terrain metrics. We first performed a 1m resolution land 

cover classification in ENVI 5.2 (Exelis 2014) using the RGB, measures of topographic 

heterogeneity and position, and vegetation height, the difference between the filtered and 

unfiltered DEMs. Also based on this land cover classification we created a metric of distance 

within talus to the nearest area of meadow (MeadowDist). We created all the terrain metrics 

using ArcMap 10.3 (ESRI 2014). 

To address our hypothesis, we used radio telemetry to track radio-collared pikas through 

the year (collars from Telonics, Inc. Mesa, Arizona). The collars were custom fit for each of the 
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four pikas collared. During each visit to the field site, we triangulated each pika’s position within 

the talus every five minutes for one hour, except when extreme cold made data collection 

untenable. From early October to mid-July we visited the site 44 times, returning every 2-7 days, 

recording a total of 693 observation points among four pikas (Figure 1.2). The majority of field 

visits were conducted when snow cover was present at the study site. We defined the period 

when snow covered much of the study site and likely influenced microhabitat as Winter 

(October-May) and the period without snow as Summer (June-July). During or immediately 

following snowfall, most of the rocks (and the spaces between them) were covered with snow. 

NWT is often windy, and snow is quickly redistributed by wind after a storm. We collected data 

at different points throughout the day and in conditions ranging from sunny and above 0°C (and 

above 15°C in summer) to below -20°C with winds in excess of 65 km/h. Through the winter 

three of the pikas died, dispersed, or dropped their collars. This study was primarily focused on 

previously unstudied winter habitat use. For that reason and because of unfavorable trapping 

conditions, we did not re-collar pikas. 

For each pika, we first found the minimum bounding extent of true presence points 

(detections by telemetry). We then created an absence point to correspond to each of those 

presence points, randomly placed on the landscape within the same bounding extent and 

restricted to talus (Figure 1.4). These absence points represent the overall landscape within that 

extent—if the presence and absence points vary significantly in their spatial characteristics, then 

pikas are likely preferentially selecting microsites with topographic characteristics 

disproportionate to their availability within the pika’s territory.  

As a second measure of pika summer habitat use, we used records of pika trapping 

success at NWT during 2008-2015. Most trapping occurred during July of each year. This 
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amounts to hundreds of attempts and 170 successful traps. However, only the location of 

successful traps was recorded, so failure locations were drawn from randomly selected points to 

represent a sample of the characteristics of area where we made attempts. The timing of 

telemetry and trapping efforts is shown in Figure 1.3. Similar to the randomly selected points for 

telemetry, we selected random points to represent available trapping area within the same spatial 

extent, yet restricted to talus. Further, most trapping attempts were made close to talus edge 

where they are most often observed, so we restricted these random points to within 5m of talus 

edge and no closer than 5m to a successful trapping location. 

 

 
 
A. 
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B. 

Figure 1.2. All radio telemetry locations for radio-collared pikas in winter (October-May) and summer (June-July). 

Winter was defined as time where snow covered most of the talus in the study area. 
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Figure 1.3. Comparison of the timing for radio telemetry efforts (October 2013-July 2014) and trapping success 

(2008-2015). 
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Figure 1.4. All 1386 points used in logistic regressions, colored by presence (1, blue) and pseudo absence (0, red). 

 

Terrain metrics 

Varner and Dearing (2014) showed that talus subsurface temperatures can vary widely in 

pika habitat at the scale of a few meters, so studies that involve their habitat use should measure 

terrain at a fine scale. We therefore used Topographic Position Index (TPI), a measure of a cell’s 

elevation compared to the cells around it within a given radius. We also used the absolute value 

of the TPI (AbsTPI) to show how extreme a cell’s elevation is within that window and created a 

metric, Terrain Heterogeneity Index (THI), which estimates the total heterogeneity in an area by 

defining each cell by the summed AbsTPI within the same window size. We calculated each of 

these metrics at scales of 3m, 5m, and 10m. We show the visual representation of this process in 

Figure 1.5. We selected these three scales because they may describe different effects of terrain. 
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THI at a 3m scale (sum of AbsTPI within a 3m radius) is the effect of rocks in the immediate 

vicinity of any place a pika may take shelter—deeper snow may be just downwind of the largest 

rocks rather than on them. We called this metric PointRoughness. A 5m radius would capture 

similar terrain as PointRoughness and some of the same rock effects, but would weight those 

effects less and begin to capture the larger scale heterogeneity. We called that 5m heterogeneity 

LocalRoughness. Similarly, heterogeneity within a 10m radius does not give great weight to 

individual rocks, but does account for land surface topographic features that a small radius does 

not. This 10m heterogeneity we called PatchRoughness. For example, a pika territory could be 

close to a cliff wall and sheltered from wind in that direction, but have nearly no large rocks or 

variation in rock size. Using each of these scales allows us to measure the effect of different 

terrain-microclimate interactions. 

We created a flow accumulation surface (FlowAcc), which uses elevation at each cell to 

show low points which would attract the flow or pooling of hypothetical fluid; e.g., where cool 

air might pool in the summer or where snow could accumulate in winter. FlowAcc effectively 

shows low channels parallel to the landscape’s slope. The final predictor rasters were plan 

curvature (PlanCurv), profile curvature (ProfCurv), total curvature (TotCurv), and slope. Surface 

curvature is the derivative of the slope, or the second derivative of the surface. PlanCurv is that 

derivative perpendicular to the slope of the surface, ProfCurv is parallel to the slope of the 

surface, and TotCurv. Each of the terrain metrics described above could affect microclimate, 

especially in how they affect snow accumulation, exposure to wind, and subsurface air pooling. 
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Table 1.1. All possible predictor variables used in detecting terrain effects on habitat use and range of possible 

values for each.  

Predictor variable Value range Units 

MeadowDist 0-383.85 Meters 

Slope 0-87.57 Degrees 

Cos(Aspect) -1.00-1.00 Cosine(degrees) 

TPI3 -22.96-15.77 Meters 

AbsTPI3 0-22.96 Meters 

PointRoughness (THI3) 0-278.77 Meters 

TPI5 -29.11-18.78 Meters 

AbsTPI5 0-29.11 Meters 

LocalRoughness (THI5) 826.07 Meters 

TPI10 -54.91-22.10 Meters 

AbsTPI10 0-54.91 Meters 

PatchRoughness 

(PATCHROUGHNESS) 

0-1149.94 Meters 

FlowAcc 0-506673.00 Cubic meters 

PlanCurv -4573.98-4809.50 d(ΔMeters) 

ProfCurv -3696.71- 3832.17 d(ΔMeters) 

TotCurv -6336.94- 6851.78 d(ΔMeters) 

 

 

 

 
A. 
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B. 
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Figure 1.5. A conceptual figure and a subset of the NWT area, each showing how elevation is processed to 

Topographic Heterogeneity Index (THI). TPI is a measure of a point’s prominence, AbsTPI is the absolute value of 

TPI, and THI is the summed AbsTPI within a user-defined window. 

 

 

Data analysis 

We performed all statistical analyses using R 3.1.2 (R Core Team 2014). We used a 

series of logistic regressions with the telemetry and trapping data to test how metrics of the 

terrain predict habitat use in single-predictor models. We also used AIC to find the best multiple-

predictor logistic model within each of the three datasets (winter telemetry, summer telemetry, 

and summer trapping), both by manually comparing progressively simpler models and by the R 

package bestglm (McLeod and Xu 2014). We excluded any models with correlation coefficient 

between two predictor variables >0.5, and of the two correlated variables we dropped the one 

with the highest average correlation across all variables. We observed that pika locations were 

autocorrelated at a temporal scale of five minutes. Therefore, we used mixed effects models, 

with Date (of visit) as a random effect using the R package lme4 (Bates et al. 2012). Because we 

observed any single pika for an hour but never more than once in a day, there are not multiple 

time sequences for any pika within the grouping variable Date. We tested individual pikas as 

both random and fixed effects to test individual variation in habitat use. 

Winter telemetry presence ~ Terrain metrics + Random effects: Date, Pika 

Example equation: 

WinterPresence~MeadowDist + PointRoughness + FlowAcc + (1|Date) + (1|Pika)  

 

To analyze the records of successful trap locations, we randomly selected failure points in 

the same way as the absence points describe the overall territory available for the radio telemetry 
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models. We used all of the same terrain metrics as used for the telemetry models except for 

MeadowDist as a possible predictor in the summer trapping models, because trap locations and 

randomly selected points were all within 5m of talus edge 

To compare terrain effects across seasons, beyond simply noting different important 

predictors, we used the parameters and coefficients from the best multiple-predictor model for 

winter telemetry to perform a logit transformation and make a raster grid of probability of pika 

presence within the study landscape. We then used logistic regression models to test the ability 

of those probability surfaces to predict the location of summer telemetry points and summer 

trapping successes compared to the absence points.  

 

Results 

Several terrain metrics were predictive of pika habitat use in single-predictor logistic 

regressions and the significant predictors were different across seasons (winter telemetry, 

summer telemetry, summer trapping) (Table 1.2). Of particular note, PointRoughness (Figure 

1.6) was positively associated with pika presence in winter (p<<0.0001) while it had a negative 

association with trapping success in summer (p=0.003) and no significant association with 

summer telemetry presence. Similarly, pika presence was positively associated with MeadowDist 

(Figure 1.7) in winter (p<<0.0001) but negatively (though insignificantly) associated with 

presence and trapping success in the two summer datasets. For every dataset, the null model was 

a significantly poorer predictor than the best model (Table 1.3).  

Both methods of best fit model selection—bestglm and manual comparison—arrived at 

the same best model for each dataset. We tested Pika as a random effect and as a fixed effect. As 

a fixed effect it did not appear in any of the best models. For no model did its inclusion as a 
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random effect change the p-value or coefficient by more than 0.00001 compared to its absence 

from the model. 

We used the best fit model for each response variable to create three probability rasters 

by a logit transformation where every cell is the predicted probability of pika presence at that 

point as a measure of predicted habitat use. Summer trapping was able to predict summer 

telemetry (p=0.007) and summer habitat use detected by telemetry predicted summer trapping 

success (0.048). However, neither measure of summer habitat use significantly predicted winter 

habitat use and winter habitat use did not significantly predict either summer habitat use measure 

(Table 1.4). 

 

Table 1.2. Effect and significance of all predictor variables in single logistic regressions in each of the datasets, 

ranked by their explanatory power (AIC). 

 

Dataset Individual Predictor p-value AIC ΔAIC Coefficient 

Summer telemetry slope 0.001 294.041 0.000 0.087 

Summer telemetry MeadowDist 0.085 302.407 8.366 -0.052 

Summer telemetry null 1 303.496 9.455 0 

Summer telemetry LocalRoughness 0.183 303.644 9.604 -0.054 

Summer telemetry PointRoughness 0.213 303.876 9.836 -0.241 

Summer telemetry AbsTPI5 0.378 304.657 10.616 -1.195 

Summer telemetry AbsTPI10 0.378 304.879 10.839 -1.195 

Summer telemetry PatchRoughness 0.465 304.903 10.863 -0.025 

Summer telemetry AbsTPI3 0.543 305.068 11.028 -1.343 

Summer telemetry TPI3 0.592 305.152 11.111 -0.732 

Summer telemetry FlowAcc 0.750 305.333 11.293 0.000 

Summer telemetry TPI10 0.754 305.342 11.301 0.129 

Summer telemetry profile curvature 0.767 305.352 11.311 0.004 

Summer telemetry TPI5 0.895 305.422 11.382 -0.105 

Summer telemetry plan curvature 0.911 305.427 11.387 0.002 

Summer telemetry total curvature 0.916 305.428 11.388 -0.001 

Summer Trapping PointRoughness 0.004 319.395 0.000 -0.496 

Summer Trapping AbsTPI10 0.004 319.575 0.180 -2.240 

Summer Trapping PatchRoughness 0.008 320.802 1.407 -0.099 

Summer Trapping AbsTPI5 0.008 321.262 1.867 -3.320 

Summer Trapping LocalRoughness 0.013 321.818 2.423 -0.113 
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Summer Trapping slope 0.038 324.2 4.805 -0.046 

Summer Trapping AbsTPI3 0.064 325.108 5.712 -3.424 

Summer Trapping null 1 326.622 7.227 0 

Summer Trapping TPI10 0.208 327.027 7.631 0.552 

Summer Trapping TPI5 0.315 327.603 8.208 0.749 

Summer Trapping TPI3 0.557 328.274 8.878 0.691 

Summer Trapping FlowAcc 0.669 328.443 9.048 0.000 

Summer Trapping plan curvature 0.760 328.528 9.133 0.004 

Summer Trapping total curvature 0.907 328.609 9.214 0.001 

Summer Trapping profile curvature 0.932 328.615 9.220 0.001 

Winter telemetry PointRoughness <0.0001 1582.29 0.000 0.471 

Winter telemetry AbsTPI3 <0.0001 1586.89 4.604 4.890 

Winter telemetry AbsTPI5 <0.0001 1590.68 8.397 2.710 

Winter telemetry TPI5 <0.0001 1592.86 10.572 1.622 

Winter telemetry TPI3 <0.0001 1595.28 12.994 2.718 

Winter telemetry TPI10 <0.0001 1604.62 22.329 0.819 

Winter telemetry total curvature <0.0001 1608.5 26.214 0.014 

Winter telemetry plan curvature <0.0001 1611.29 29.005 0.023 

Winter telemetry meadow distance <0.0001 1612.51 30.222 0.054 

Winter telemetry profile curvature <0.001 1614.51 32.220 -0.019 

Winter telemetry LocalRoughness <0.001 1615.33 33.045 0.060 

Winter telemetry FlowAcc 0.013 1620.92 38.630 0.000 

Winter telemetry PatchRoughness 0.115 1627.47 45.187 -0.021 

Winter telemetry null 1 1627.96 45.677 0 

Winter telemetry AbsTPI10 0.001 1629.3 47.011 -1.213 

Winter telemetry slope 0.464 1629.43 47.141 0.007 
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Figure 1.6. Effect of PointRoughness (THI3) on the predicted probability of pika presence or trapping success in 

each of the three datasets analyzed. *p<0.05. Presence and absence points for each dataset are overlaid. 

 

 
Figure 1.7. Effect of distance to the talus-meadow interface on the predicted probability of pika presence or trapping 

success in each of the three datasets analyzed. *p<0.05. Presence and absence points for each dataset are overlaid. 
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Figure 1.8. Effect LocalRoughness (THI5) on the predicted probability of pika presence or trapping success in each 

of the three datasets analyzed. *p<0.05. Presence and absence points for each dataset are overlaid. 
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Table 1.3. Summary of the best model for each of the three measures of pika habitat use. For all models, Pika is a 

fixed effect, Date is a random effect. 

Dataset Best model (coefficient +/-) 

Model 

AIC ΔAIC Rank 

Winter telemetry 

MeadowDist(+) + PointRoughness(+) + TPI5(+) + AbsTPI5 (+) + 

PatchRoughness(-) 1478.555 0 1 

Winter telemetry 

MeadowDist(+) + PointRoughness(+) + TPI5(+) + AbsTPI5 (+) + 

PatchRoughness(-) + FlowAcc (-) 1478.808 0.253 2 

Winter telemetry 

PointRoughness (+) + TPI3(+) + LocalRoughness(+) + AbsTPI5(+) 

+ PatchRoughness (-) 1480.609 2.054 3 

Winter telemetry 

PointRoughness (+) + TPI3(+) + LocalRoughness (+) + AbsTPI5(+) 

+ PatchRoughness (-) + slope(+) 1483.529 4.974 4 

Winter telemetry null 1627.964 149.409 null 
Summer 

telemetry MeadowDist(-) + Slope(+) 292.2563 0 1 
Summer 

telemetry MeadowDist(-) + slope(+) + TPI3(-) 
293.939 

1.6827 2 
Summer 

telemetry MeadowDist(-) + slope(+) + TPI3(-) + TPI5(+) 
294.9087 

2.6524 3 
Summer 

telemetry null 
303.4396 

11.1833 null 
Summer 

telemetry MeadowDist(-) + AbsTPI5(-) 
304.0442 

11.7879 4 

Summer trapping  Slope (-) + AbsoluteTPI10(-) 315.822 0 1 

Summer trapping Slope(-) + AbsTPI10(-) + PointRoughness (-) 316.7686 0.9466 2 

Summer trapping Slope(-) + AbsTPI10(-) + PointRoughness (-) + LocalRoughness (+) 318.2587 2.4367 3 

Summer trapping 

Slope(-) + AbsTPI10(-) + PointRoughness (-) + LocalRoughness (+) 

+ aspect(+) 
320.0374 

4.2154 4 

Summer trapping null 326.6222 10.8002 null 

 
Table 1.4. Summary of models comparing different datasets. The predictive models are the probability surfaces 

generated by a logit transformation of the best fit logistic regression model for each dataset (Table 1.3), and the 

predicted response is the different datasets of observed habitat use. 

Predicted response Predictive model p-value AIC 

Summer trapping Winter telemetry 0.426 327.99 

Summer trapping Summer telemetry 0.048 327.25 

Summer telemetry Winter telemetry 0.192 300.15 

Summer telemetry Summer trapping 0.007 295.79 

Winter telemetry Summer telemetry 0.144 1587.6 

Winter telemetry Summer trapping 0.613 1593.4 

 

 

Discussion 

 Our results showed significant impacts of terrain on microhabitat use by pikas throughout 

the year. This was especially notable in how pikas preferentially used more heterogeneous terrain 

in the winter. Both the individual logistic regressions and the best fit multiple logistic models 
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suggest that topographic heterogeneity played a significant role in fostering suitable winter 

microhabitat. This could be due to greater snow accumulation in heterogeneous terrain, which 

provides insulation from the extreme cold that likely affects pika overwinter survival (Winstral et 

al. 2002, Beever et al. 2010, Jeffress et al. 2013). Even when wind had scoured snow from most 

of the study area, we observed deep snow drifts (in some places >3m) and usually found pikas 

under those drifts when the rest of the talus was exposed.  

In winter, snow tended to accumulate in some areas more than others, as expected. Most 

of the meadow area was bare except for during active snowfall, while the talus of higher surface 

roughness retained snow. In fact, most of the pika presence points were in areas that held snow 

through the whole winter, including one area where the snow was more than 2-3m deep from 

January to April. Qualitatively, the pikas seemed far more likely to use other areas of talus 

during or immediately following snowfall, before wind redistributed it. In Figure 1.9, the two 

pictures were taken only three days apart. The first was during a heavy snowfall, and all rocks 

and meadow were covered with even, deep snow, and we detected the pikas across their territory, 

not constrained to the deepest snow or their haypile. The following few days were windy, and the 

snow was scoured from much of the talus, leaving it only on the leeward side of the largest rocks 

and in the most heterogeneous areas. 
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Figure 1.9. Photos taken days apart from the same point at the study site. Left: January 4. Right: January 8. 
 

 It is also notable that pika presence in winter was significantly associated with greater 

TPI, a measure of a point’s prominence, at 3m, 5m, and 10m scales (p<0.0001), suggesting that 

pikas preferentially use points higher on the landscape. This would seem to contradict our 

explanation for the mechanism driving heterogeneity’s role, as higher points at a fine scale are 

more exposed to wind and accumulate less snow (Ruel et al. 1998). However, pikas were rarely 

observed at the surface of the talus during the winter. One possibility, then, is that that higher 

points at this fine scale correspond to larger rocks, which would accumulate more snow than 

smaller rocks. 

 The fact that Pika was not a significant fixed effect and had no significant impact on 

models when included as a random effect suggests that our results are more likely to be 

generalizable. We found the same impacts of terrain on habitat use for each pika—though there 

may be some impact of this study site in itself, we expect that these trends will likely translate 

well to other pika-occupied talus with similar macroclimatic controls. 

It is especially important to note the strong seasonal component in these terrain effects. 

While terrain heterogeneity is important in winter, it had an insignificant or negative effect in 
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summer. This seasonality is also apparent in that pikas were more likely to be found close to 

meadow edge in summer than in winter. This is possibly because in summer, pikas are more 

actively gathering food than in winter and spend a great deal of their time foraging and collecting 

hay from adjacent meadows. On the other hand, in winter they appear to huddle in talus sheltered 

from the extreme cold; that sheltered, heterogeneous terrain was, at this study site and across the 

NWT area, also further from the edge (for PointRoughness~MeadowDist, r=0.37, p<0.001). 

Similarly, none of the probability surfaces generated from the best fit models for any of the 

datasets could be used to predict presence and absence in the other datasets. This speaks to pikas’ 

need for habitat heterogeneity. An individual territory with only suitable summer habitat may be 

one near to meadow edges, while one with only suitable winter habitat is likely to be very 

sheltered but farther from suitable vegetation. Winter is a large source of mortality for pikas 

(Kreuzer and Huntly 2003, Beever et al. 2010), and our results demonstrate further why winter 

may be limiting and suggest the importance of considering the seasonality of pika habitat 

requirements (Figure 1.10). 
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A. 

 
B. 
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C. 

Figure 1.10. The predicted habitat suitability in a subset of the NWT area using a logit transformation of the best fit 

models of habitat use from A) Summer telemetry, B) Winter telemetry, and C) Summer and winter telemetry 

multiplied to show the overall suitability.  

 

Most models of pika habitat are based on occupancy surveys conducted in summer 

(Rodhouse et al. 2010, Erb et al. 2011, Jeffress et al. 2013, Stewart et al. 2015, Schwalm et al. 

2016). The seasonality in habitat requirements that we observed suggests that these models may 

overestimate the extent of suitable habitat, as they do not account for winter habitat 

requirements. Further, the fact that we found significant effects of topographic heterogeneity at 

three different spatial scales suggests that the processes that create refugia and microrefugia 

likely function at multiple spatial scales. Though species distribution models (SDMs) can be 

powerful tools for estimating habitat suitability and population connectivity, many do not use 

high resolution data to address relevant habitat requirements (Gillingham et al. 2012). It is 

therefore problematic to rely on regional climate projections and SDMs when both conservation 
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decisions and habitat heterogeneity occur at mostly finer scales (Dobrowski 2011, Ashcroft et al. 

2012). Instead, models should be based on data scaled to account for both spatial and temporal 

heterogeneity in the habitat used by individuals to best quantify occupancy (Quintero and Wiens 

2013, Valladares et al. 2014, Schwalm et al. 2016) (Quintero and Wiens 2013, Valladares et al. 

2014, Schwalm et al. 2015). 

 Our results continue to build support for the role of various sorts of heterogeneity at 

different scales in driving species occupancy and habitat use. These processes may be especially 

important to understand in ecosystems such as alpine and montane environments that are more 

threatened by climate change. If those environments are to serve as refuge for climate-sensitive 

species, then they must do so at scales relevant to each species. Our results emphasize the need 

for models of occupancy and connectivity at biologically relevant scales that account for both 

spatial and temporal heterogeneity to better understand how climate change is likely to affect 

threatened species, the resources they require, and downstream ecosystems. 
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CHAPTER 2 

Title: Predicting habitat suitability for a habitat specialist, the American pika (Ochotona 

princeps) using high resolution remotely sensed data 

 

Introduction 

Topographic and climatic heterogeneity create ‘microrefugia’—patches of suitable 

habitat within regionally unfavorable conditions (Rull 2009, 2010). Their distribution and 

responses to climate are important for understanding ecosystem responses to climate change in 

both historical and contemporary contexts (Pearson 2006, Keppel et al. 2012). Because climate 

change is likely to have the strongest effects on alpine ecosystems (Hughes 2000, Parmesan 

2006), it will become ever more important to identify refuge habitat within those sky islands that 

will remain suitable for vulnerable species despite an increasingly hostile matrix (Thomas et al. 

2004, Hannah et al. 2014). Despite an overall warming climate, the mountains will likely still 

provide needed refuge habitat for cold adapted species from unfavorable climate (Holderegger 

and Thiel-Egenter 2009, Rull 2009, Dobrowski 2011, Hannah et al. 2014). However, even these 

patches of relative shelter vary in their suitability, and some may offer only a temporary reprieve 

from climate effects. It is important to detect microrefugia and quantify their relative quality to 

predict the role they may play in species persistence (Keppel et al. 2012, Hannah et al. 2014).  

Understanding that role and predicting suitable habitat patches at scales relevant individual 

movements and survival could have a great impact on conservation decisions (Ashcroft et al. 

2012, Hannah et al. 2014).  

By the same mechanism that allows microrefugia to persist in hostile landscapes, the 

suitability of habitat patches will vary, especially in mountainous terrain where climate varies 

dramatically over short distances (Whiteman et al. 2004, Pepin and Lundquist 2008). In some 

cases, mountain ridges can actually be less hospitable to mesic species than the adjacent valleys; 
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site climate on the ridge is more closely coupled with broader atmospheric conditions and likely 

to experience large temperature swings, while a valley is more stable (Dobrowski 2011). 

Because of this, some plants may actually move downhill in response to regional warming, as 

cold-air pooling makes the valleys more hospitable than the temperature swings on high slopes 

(Lundquist et al. 2008, Dobrowski 2011). Habitat models that do not account for more fine-scale 

topoclimatic phenomena may fail to predict these trends (Thornthwaite 1953, Lundquist et al. 

2008, Dobrowski 2011, Hannah et al. 2014). Predictions based only on coarse-scale metrics and 

surveys are likely to overestimate occupancy where pockets of unsuitable habitat exist. With a 

strong influence of topography on microclimate, there are likely patches of occupied habitat that 

will become less suitable with any advance of climate change (Ashcroft 2010, Dobrowski 2011, 

Hannah et al. 2014). 

Among those potentially threatened habitat specialists is the American pika (Ochotona 

princeps), which may already be experiencing climate-driven extirpations (Wilkening et al. 

2011, Calkins et al. 2012, Erb et al. 2014, Millar et al. 2014). The climatic effects of topographic 

heterogeneity are likely important for pikas at a very fine scale because pikas are territorial, have 

fairly small territories, and exploit suitable microhabitat to survive extreme weather (Hafner 

1993, Beever et al. 2003, Rodhouse et al. 2010, Millar et al. 2014). Several studies have already 

suggested important roles for habitat heterogeneity in pika distribution, especially in areas that 

might otherwise be inhospitable as their overall range retracts, and they likely currently occupy 

patches within inhospitable landscapes that could function as microrefugia (Simpson 2009, 

Millar and Westfall 2010, Rodhouse et al. 2010, Henry et al. 2012, Jeffress et al. 2013, Varner 

and Dearing 2014). Pikas are likely a biogeographic indicator species of late Holocene climate 

change, already occupying refugia and a likely model species for studying the interactive effects 
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of topography and climate on species (Hafner 1993, Beever et al. 2003, Grayson 2005). Sub-

surface conditions within the pika’s preferred microhabitat (talus or boulderfields) can vary 

greatly within a single pika’s territory; by examining habitat use at a very fine scale, we could 

study direct effects of heterogeneity at biologically relevant scales (Varner and Dearing 2014).  

Pikas are considered sentinels, indicators of environmental change in the ecosystems they 

inhabit (Hafner 1993, Jeffress et al. 2013). Changes in their distribution suggest changes in 

availability of resources they require and shifts in the environment. Research suggests pika 

presence in many places is closely tied to sub-surface ice features that act as a temperature buffer 

and perhaps as a water source (Hafner 1993, Millar and Westfall 2010, Wilkening et al. 2015). 

Those sub-surface ice features are critical in water cycling and long-term water storage and have 

strong effects on downstream hydrological and ecological processes (Molotch et al. 2008, 

Leopold et al. 2015). Understanding how pikas respond to climate change therefore may provide 

a model to inform landscape level conservation and management decisions. 

In describing limitations to pika habitat in the cooler, wetter past, Hafner (1993) 

emphasized that pikas could persist in a region that was not entirely cool and mesic, as long as 

there were patches of suitable rocky microhabitat. To better understand the response to climate 

change of these microclimate-constrained specialists, it is necessary to identify the landscape 

features that create these local anomalies and microhabitat at a relevant scale. Many prior studies 

identifying suitable habitat for other species have used terrain data at “high” resolutions, though 

that resolution ranges from 1m-250m, and most commonly is between 25m and 50m (e.g. 

Lassueur et al. 2006, Copeland and Harrison 2015). However, using even higher resolution 

terrain data improves species distribution predictions (Lassueur et al. 2006, Nagendra et al. 

2013). In this study, we used 1m resolution imagery and elevation models to predict the extent of 
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suitable pika habitat in an alpine environment and compared our predictions with predictions 

made based on direct observations of habitat use. Our approach allowed predictions of habitat 

suitability at scales relevant to the daily movements and shelter habitats of individual animals 

(Varner and Dearing 2014), i.e. scales not commonly used in species distribution models 

(SDMs).  

Though SDMs can be powerful tools for estimating habitat suitability and population 

connectivity, many do not use high resolution data to address relevant habitat heterogeneity, and 

many fail to address habitat variables important to a species’ niche (Gillingham et al. 2012). It is 

therefore problematic to rely on regional climate projections and SDMs when both conservation 

decisions and the phenomenon of habitat heterogeneity occur at mostly finer scales (Dobrowski 

2011, Ashcroft et al. 2012). Instead, the set of candidate models for projecting range dynamics 

should include models based on fine-scale, place-based metrics (Quintero and Wiens 2013, 

Valladares et al. 2014, Schwalm et al. 2016). In the case of pikas, this means modeling habitat at 

scales less than 10m and at high resolution, as microclimate in their habitat can vary greatly 

across even a few meters and their territories are usually less than 25m in diameter (Smith and 

Ivins 1984, Varner and Dearing 2014). This approach in itself is not novel for wildlife 

conservation, yet it is a necessary step for understanding pika range dynamics at appropriate 

scales and for applying that understanding to predict greater landscape change. 

I hypothesized that habitat models using remotely sensed data would yield results similar 

to those derived from direct observation, identifying similar areas on the landscape. Such results 

would support the importance of considering fine-scale habitat metrics and using remote sensing 

when projecting range dynamics over a large area without extensive direct observation. 
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Methods 

Summary 

 In the previous chapter of this thesis, we used radio telemetry to track the movements of 

radio-collared pikas in the Niwot Ridge LTER area (NWT). To test the effect of terrain on the 

habitat use we detected, we selected random points to represent the available landscape, 

constrained by the extent of talus and minimum bounding extent of true presence points. Based 

on the best fit mixed logistic regression models for winter, summer, and the whole study period, 

we created probability surfaces by a logit transformation to represent habitat suitability across 

NWT. Separately, we created supervised models of suitable habitat by maximum likelihood 

based on landscape variables and expert opinion inputs from field experience and prior studies. 

We used linear regressions to relate each of those maximum likelihood models to the modeled 

probabilities of habitat suitability. Included among those models was one using coarser scale 

predictor variables more commonly used in SDMs for pikas in order to compare the high 

resolution, fine scale metrics to those more commonly used.  

 

Spatial and spectral data 

 To derive predictor terrain metrics we used lidar-derived 1m resolution digital elevation 

models (DEMs), both filtered and unfiltered. We used the difference between the two DEMs to 

calculate vegetation height and used that in a land cover classification described in Chapter 1. 

We used the filtered (bare ground) DEM to derive the terrain metrics described in Chapter 1. In 

this study we again used Topographic Position Index (TPI), the absolute value TPI (AbsTPI), 

and Topographic Heterogeneity Index (THI) within 3m, 5m, and 10m windows 
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(PointRoughness, LocalRoughness, and PatchRoughness, respectively). In the land cover model 

we also used three band color imagery (RGB), which is fine enough to visually pick out 

individual trees, shrubs, and rocks. This data is at 30cm resolution, though we coarsened it to 1m 

for these analyses to match the DEMs. We downloaded all data from the NWT LTER project 

(NWT LTER, http://niwot.colorado.edu).  

 To compare this high resolution data to that more commonly used in occupancy models 

for pikas, we also coarsened the predictor variables most commonly used (aspect, slope, 

elevation) to 10m resolution to match what is often the highest resolution available for large-

scale SDMs. 

 

Probability surfaces 

 In Chapter 1, we collected data on pika habitat use throughout the year using radio 

telemetry on radio-collared pikas, noting an individual pika’s position (presence) within the talus 

every five minutes. For a comparison to those true presence points, we sampled the terrain 

characteristics of each cell (1m2) within the study extent to represent all possible habitat (3717 

points). Differences between the detected presences and the total available landscape suggest 

pikas making choices about terrain disproportionate to its presence on the landscape. We created 

three probability surfaces based on the best fit (lowest AIC) logistic regression models, 

excluding models with correlated predictor variables (Table 2.1). 

 We also created a response surface based on the overlap of summer and winter habitat by 

multiplying the summer and winter probability surfaces (Year-round). Because habitat use varies 

through the year (see Chapter 1), this is likely a better indicator of overall habitat suitability than 
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the single-season models. We also created a probability surface using all of the telemetry data 

combined (Whole year), rather than calculating each season separately and multiplying them. 

 
Table 2.1. Summary of the best fit logistic regression models based on radio telemetry performed in Chapter 1. 

These models inform the models used for comparing habitat model methods in this chapter. 

 

 

Dataset 

 

 

Best model parameters (coefficient +/-) 

Null 

model 

AIC 

Best 

model 

AIC 

Null model 

ΔAIC 

Summer MeadowDist (-) + Cos(Aspect) (+) 661.348 657.793 3.55 

Winter MeadowDist (+) + Slope (-) + PointRoughness (+) + 

PatchRoughness (-) + TPI10 (+) + AbsTPI5 (+) + 

Cos(Aspect) (-) 

3402.398 3068.130 334.268 

 

Year-round Cos(Aspect) (-) + MeadowDist (+) + Slope (-) + 

PointRoughness (+) + PatchRoughness (-) + TPI10 (+) 

+ AbsTPI5 (+) 

3837.832 3583.365 254.467 

 

 

Supervised habitat suitability models  

In ArcGIS 10.3 (ESRI 2014), we stacked rasters of each predictor variable (bands) into 

one file, then created supervised (user defined) suitability models in the program ENVI 5.2 

(Exelis 2014). They are supervised models, meaning they are all expert opinion models that 

assign each cell in the study area to one of the categories of habitat quality defined by the user. 

We created five classes of habitat quality: Good, Moderate, Marginal, Bad, and Untenable. 

Based on our own expert opinion of NWT and pika habitat, we drew polygons on the landscape 

as training data for each of those classes such that each class had at least 10 polygons and 10,000 

input training pixels. It is important that none of the polygons we drew overlapped spatially with 

any of the observations used to find the best fit models of habitat use and create the probability 

rasters, so the coefficients for the two kinds of models are derived independently. We selected 

maximum likelihood as the classification method. In this method, the program creates a 

probability distribution in multispectral space (across each user-selected predictor band) for each 

of the five classes based on the characteristics of the pixels we selected as training data. The 
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program then classifies each pixel in the study area based on which of those probability 

distributions it falls closest to in multispectral space. 

Each of the models we created were based a different set of predictor variables, so for 

each there were slightly different probability distributions to describe each possible habitat 

category. The same training pixels were used in all supervised models. Because all of the 

predictor variables were measured at 1m resolution, each model has 1m2 pixels. 

Models 1 included the predictor variables found in the best fit logistic regression models 

summarized in Table 2.1 as a direct comparison of the two methods. Model 2 included the same 

variables as Model 1 with color imagery (RGB) added as a way to distinguish further from cover 

types other than talus. Model 3 included just measures of topographic position and heterogeneity, 

selected to capture three scales. Models 4 and 5 were based on understanding prior studies—

these were meant to mimic what any pika expert might choose as important landscape variables, 

not necessarily one with empirical data on habitat use and terrain. Model 4, similar to Model 2, 

included RGB and vegetation height to distinguish further from other cover types or talus 

interspersed with vegetation. Model 5 includes measures of topographic position and 

heterogeneity and two predictors that could influence both small and larger scale processes. 

Aspect may interact with the prevailing wind direction to impact snow accumulation, and 

MeadowDist may be important in both winter and summer (Smith and Weston 1990, Erb et al. 

2014, Chapter 1). 

 

 

 

 

 

 

 

 



41 
 
Table 2.2. Summary of all sets of predictors used in supervised maximum likelihood models. 

Model # of bands Predictor bands 

1 7 MeadowDist, Slope, PointRoughness, PatchRoughness, TPI10, AbsTPI5, 

Cos(Aspect) 

2 10 Red, Green, Blue, MeadowDist, Slope, PointRoughness, PatchRoughness, TPI10, 

AbsTPI5, Cos(Aspect) 

3 5 PointRoughness, TPI3, LocalRoughness, AbsTPI5, PatchRoughness 

4 10 Red, Green, Blue, Cos(Aspect), PointRoughness, LocalRoughness, TPI10, 

PatchRoughness, MeadowDist, vegetation height 

5 9 Cos(Aspect), TPI3, PointRoughness, AbsTPI5, LocalRoughness, TPI10, 

AbsTPI10, PatchRoughness, MeadowDist 

10m 6 Red, Green, Blue, Elevation, Slope, Cos(Aspect) 

 

In order to test the spatial extent at which habitat suitability can be predicted, for each 

model, we created four more outputs. We made moving search windows of 1m, 3m, 5m, and 

10m radii such that each cell is assigned a 1 if the maximum likelihood model predicted Good 

habitat within that radius. We then clipped the output of each of these models so that a 1 could 

only be found on talus, as that is a basic requirement for even marginal pika habitat.  

We also performed the same sort of supervised habitat model by maximum likelihood 

using predictors coarsened to 10m resolution, a more widely available resolution for most North 

America than 1m and the resolution at which many prior pika habitat models have been made. 

While many models with large spatial extent include climate variables, the climate does not vary 

enough across NWT to avoid singularity errors in maximum likelihood estimation. Instead, we 

used RGB, elevation, slope, and aspect. By including these variables most commonly used for 

predicting habitat, we can compare this more common method’s similarity to predictions based 

on radio telemetry and how it performs compared to high resolution models. 

 

Sampling points 

At 1m resolution, the total extent of the NWT study area is 22,633,590 pixels. We 

selected 50,000 randomly distributed points in ArcGIS as a way to sample the area for the 
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predicted suitable habitat of both the probability surfaces and the supervised habitat suitability 

models. We selected those points in two ways, by 1) randomly selecting them from the entire 

landscape and 2) by randomly selecting them only from talus-covered portions of the landscape. 

One of our supervised models uses data at 10m resolution. To avoid pseudoreplication by having 

more than one sampling point possible in any one pixel, we made a minimum distance of 10m 

between any of these randomly selected points. Even in that 10m resolution version of NWT, 

there are 226,149 total pixels and 55,951 pixels classified as talus, meaning there will be no 

pixels double-sampled, whether or not the selected points are restricted to talus. 

  

Data analysis 

In addition to creating expert opinion models of potentially suitable habitat, as many 

previous studies have done, we compared those predictions to the predictions we made with 

probability rasters derived from radio telemetry observations. We compared these different 

predictions by linear regression models, where the predictor variable was the predicted habitat 

suitability based on the supervised classifications and each probability surface (e.g. Winter) was 

a response variable. For each of the four probability surfaces, each sampled at the two sets of 

50,000 random points, we compared models by AIC to find the best scale at which to identify 

suitable habitat, including models based on data at10m resolution and at 1m resolution using 

search windows of 1, 3, 5, and 10 meters. For each comparison to a response variable, we also 

use the lowest AIC model using more than one search window size. For each possible predictor 

in the linear regressions (e.g. Model 2), we excluded all multiple-window models but the one 

with the lowest AIC.  
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Probability surface ~ Supervised habitat suitability prediction 

Example equation: 

Predicted winter pika presence ~ Model 2 supervised habitat prediction 

MeadowDist + Slope + PointRoughness + PatchRoughness + TPI10 + AbsTPI5 ~ Red + Green 

+ Blue + MeadowDist + Slope + PointRoughness + PatchRoughness + TPI10 + AbsTPI5 + 

Cos(Aspect) 

There is an important distinction between the two kinds of models we compared. They 

use many of the same metrics of terrain to make predictions about the NWT area. However, the 

predictor and response variables in these linear models are not based on the same data. The 

probability surfaces (response variable) were created based on a precise intercept and 

coefficients for each predictor in the model, giving each cell across the landscape a continuous 

value between 0 and 1. Those coefficients are not present in the supervised models. The 

coefficients to define the probability distribution for each level of habitat quality are defined by 

maximum likelihood and the input training pixels, not any of the data that was used to build the 

response variables, the probability rasters.  

The best of these linear models should reveal the scale of analysis at which this remote 

sensing-based method is most similar to the probability surfaces. In these analyses, the 

supervised models were based on expert opinion, a common approach when predicting suitable 

habitat. We compared these models with probability surfaces, habitat predictions based on 

empirically derived from field observations. This is therefore not a direct test of either method 

using other observations of pika presence, but rather we are comparing two different kinds of 

prediction of habitat suitability. If the supervised models can significantly predict the same 

suitable habitat as the models based on direct observation, then the supervised models may be 
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useful in other, unsurveyed areas that would otherwise take great effort to survey. While we 

could also use the probability surfaces based on observation to predict habitat suitability in 

unsurveyed areas, that method does not allow us to incorporate other predictors that could be 

more important and comes with previously defined coefficients. For example, a pika expert in 

the Columbia River Gorge may choose to exclude distance to meadow, as they know that many 

occupied sites are surrounded by dense forest instead of meadow (Simpson 2009, Varner and 

Dearing 2014), but include instead the lithology, which could impact fracture size and the 

amount of subsurface microclimate. 

We created a total of 170 candidate models (excluding null models for each response 

variable). For each probability surface we compared up to 25 competing models. For any 

response variable (probability surface), there were models of different scales from each of 

Models 1-5. For the sets of predictor variables (supervised models), Models 1-5, there were at 

least four candidate models that could predict the probability surface. We created search 

windows of 1m, 3m, 5m, and 10m. Further, for each of the supervised models, we also included 

the best fit model that used multiple window sizes. For each response variable we also included 

the supervised model using 10m resolution data to compare with the other supervised models. 

Finally, we performed a series of t-tests to demonstrate how terrain characteristics vary 

with land cover and the importance of talus to pika habitat. 

 

Results 

 The supervised models we created consistently predicted suitable habitat in the same 

places predicted by the probability rasters for each dataset. Of the 170 models, only six were not 

significant at an alpha level of 0.05. All probability surfaces, regardless of whether the randomly 
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sampled points were restricted to talus, were best predicted by one of the variants of Models 1, 2, 

or 3. 

 For all response variables except summer habitat with sample points not restricted to 

talus, the top five best models had a positive and significant slope, with all p-values<0.0001. For 

all comparisons, the top model was the best fit by >90 AIC. It is especially important that while 

Models 1-3 used the predictor terrain metrics from the best fit winter habitat model, they were 

the best at predicting both winter and summer habitat, as well as the Year-round model of 

aggregate habitat suitability in both seasons. For both models using only points on talus and 

those including points off talus predicting Year-round, the best model was that which included 

all four possible search window sizes (null ΔAIC=1419 for talus only, null ΔAIC=6627 not 

restricted to talus). 

There was a clear difference between the models restricted to talus versus unrestricted 

models mimicking inputs without adequate land cover data. While these were entirely different 

datasets and could not be compared directly, for each probability surface the R2 and null model 

ΔAIC were notably higher when points could occur outside of talus. When predicting Winter 

habitat, the top five models with points restricted to talus explained less variation (mean 

AIC=2750<null AIC, mean R2=0.054) than the top five models where points were not restricted 

to talus (mean AIC=42146<null AIC, mean R2=0.566).  

We excluded from comparison all multiple-window models except the best fit one. In 

some cases this meant that we excluded multiple-window models that used all four window 

sizes, and had a greater R2 than the model we included but AIC <2 AIC units lower (Arnold 

2010). For each probability surface and in both talus-restricted and unrestricted datasets, the best 

model (lowest AIC of those included) was one that used more than one size of search window. 
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For the summer on-talus probability surface, a multiple-window model was the best by AIC=94. 

In all other cases, a multiple-window model was the best by AIC>195. There was further 

distinction in the results between those points on talus and those not restricted to talus. Though 

the best models for each include multiple sizes of window, the next best models when restricted 

to talus tend to have small search window while the window was more often 10m when the 

points are not restricted. Among the models with points restricted to talus, a window size of 1m 

or 3m was among the top 3 models in all cases, while a 10m model was never in the top 8 for 

that dataset. On the other hand, when points were not restricted to talus, a model with a 10m 

search window was always the second best in that dataset. 

For all probability surfaces, the models using 10m resolution data were among the 

poorest performers (Figures 2.1, 2.2). In 3 of the comparisons (Winter not talus-restricted, Year-

round not talus-restricted, and Whole-year not talus-restricted), the 10m model was the worst, 

though in all comparisons it was a better fit than a null model by AIC>2. Overall, 123 models 

had a lower AIC than the 10m model for the same probability surface. Of those 41 that did not, 7 

were the 10m resolution models and 14 were predicting summer habitat where all input points 

were restricted to talus. In building the probability surfaces, the model for summer habitat was 

the closest to the null (ΔAIC=3.55) and had a lower R2 (0.01) than the best fit models of winter 

or year-round habitat use. 

 Of the 22,627,360 pixels in the study area, our land cover classification detect 24.1% of 

the landscape was talus or other rock. The supervised suitability models predicted Good habitat 

would cover between 1.7%-24.7% of the landscape (Table 2.3).  
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Table 2.3. Percent of the NWT area predicted by each supervised habitat model. The supervised land cover model 

predicted 24.1% of NWT was talus or other rock. 

Predictor variable % of landscape predicted Good habitat % of talus predicted Good habitat 

Model 1 2.88 11.91 

Model 2 3.36 13.91 

Model 3 10.54 43.65 

Model 4 1.72 7.13 

Model 5 2.65 10.97 

10m resolution 24.74 102.44 

 

 
Figure 2.1. Relationship between predicted habitat suitability and predicted winter (blue) or year-round (green) pika 

presence using supervised models based on high resolution and lower-resolution topographic data (red). In this 

example, both model predictions were sampled from both talus and non-talus areas of the landscape. The lines 

showing Winter and Year-round predicted probability represent the top five models for each. 
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Figure 2.2. Relationship between predicted habitat suitability and predicted winter (blue) or year-round (green) pika 

presence using supervised models based on high resolution and lower-resolution topographic data (red). In this 

example, both model predictions were sampled from only talus areas of the landscape. The lines showing Winter 

and Year-round predicted probability represent the top five models for each. 

 

 Land cover plays an important role in terrain characteristics (Table 2.4). For many terrain 

parameters in our analyses, talus is significantly different from other land cover types. 

 
Table 2.4. Results of t-tests comparing the terrain characteristics of randomly sampled points both on talus 

(n=12,151) and on all other cover types (n=37,849). 

Terrain metric Talus mean Off-talus mean p-value 

PointRoughness 3.52 1.70 <0.0001 

LocalRoughness 14.49 14.55 0.604 

PatchRoughness 9.11 9.69 <0.0001 

TPI3 -0.0002 -0.0005 0.366 

TPI5 -0.005 -0.0003 0.031 

TPI10 -0.014 -0.0009 <0.001 

AbsTPI3 0.126 0.114 <0.0001 

AbsTPI5 0.178 0.180 0.302 

AbsTPI10 0.314 0.335 <0.0001 

 

 

Discussion 

 These results suggest several things about pika habitat and about using remotely sensed 

data to model it. The fact that nearly all of the effective models (and 85% of the top 5 models) 



49 
 

had a positive slope shows that these methods using remotely sensed data and expert opinion 

training data tend to make the same predictions about suitable habitat as models extrapolating 

from empirical observation. This suggests two sets of predictions and two methods that could be 

further tested to predict habitat suitability over larger extent. Doing so will allow us to make 

predictions of pika habitat over unsurveyed areas using expert opinion and remotely sensed data 

to better inform our understanding of both pika habitat and pikas’ role as indicators of ecosystem 

change. 

 The analyses we performed do not empirically test either type of model against other 

observations in NWT. Rather, we compared methods to create suitability models to show the 

utility of supervised models. It is therefore important that the coefficients for each type of model 

were derived independently. The pika presence probability surfaces were created based on data 

from tracking radio-collared pikas and extrapolating across NWT using coefficients from a small 

subset of NWT. On the other hand, the coefficients in the habitat suitability models were derived 

from the terrain characteristics of pixels in areas not overlapping with any of the radio telemetry 

observations. Further, the maximum likelihood models that did not use all the same predictors as 

the telemetry models still had a significantly smaller ΔAIC than a null model, as well as a 

smaller ΔAIC than the 10m resolution model in 67% of comparisons overall and in 100% of 

comparisons where the testing points were not restricted to talus. 

 When comparing the tests using those points restricted to talus and distributed entirely 

randomly across the study area, there was a notable difference in which sizes of search window 

produced predictions most similar to the probability surfaces. When restricted to talus, smaller 

search windows performed better, while larger windows were better when points were not 

restricted to talus. It is important that, knowing that talus is a basic requirement for suitable pika 
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habitat, we changed the probability surfaces such that all pixels off talus were equal to 0. 

Therefore, any random points that are off talus will always have a 0 value. There are some 

landscape parameters that helped to distinguish talus from the other land cover types. For 

example, fine scale heterogeneity (e.g. PointRoughness) is greater on talus than off it (Table 2.4). 

Points with a 0 value on the probability surfaces therefore are fairly distinct in those 

characteristics, making the presence of talus itself indirectly an important variable. Therefore, 

when points can appear off talus, a larger search window detects more talus and is more likely to 

find suitable habitat. On the other hand, when points are restricted to talus the range of values of 

important terrain metrics are narrower and more representative of talus. A smaller search 

window therefore better describes the variation of habitat quality on talus. The pixels that are 

unsuitable by other metrics (and more than 1-3m away from good habitat) are still classified as 

unsuitable. These data all speak to the importance of talus for pika habitat and therefore, the 

importance of including talus extent as a predictor variable in suitability models.  

 The fact that coefficients and R2 values were higher for the models where points were not 

restricted to talus reiterates this. There is less clear difference between predicted good habitat and 

suboptimal habitat when all the points are on talus, yet the fact that those models are still 

predictive shows that there is variation in habitat quality within talus. Even with high resolution 

land cover data, using a variety of terrain metrics allows us to address the important fine-scale 

processes that likely affect pika microtopoclimatic affiliation that would be masked using 10m 

resolution metrics and those variables most commonly used (aspect, elevation, slope) (Rodhouse 

et al. 2010, Varner and Dearing 2014). Similarly, there was a clear difference between Models 1-

5 and the 10m resolution supervised model. Using the variables and scale commonly used to 

predict pika habitat, the 10m resolution model was consistently less similar in its predictions to 
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the probability surfaces compared to the 1m resolution models, and even predicted that more 

than 100% of available talus would be occupied (Table 2.4). This in itself does not make the 10m 

predictions wrong—those models did predict much of the same suitable habitat as the probability 

surfaces and the other supervised models—but the fact that they predicted more suitable habitat 

at NWT than is likely possible suggests that the models would be improved by incorporating 

biologically relevant data to distinguish the variation within talus. Pikas require talus, so this 

demonstrates how using coarse scale data may in fact overestimate the extent of suitable habitat.  

 Multiple-criteria habitat modeling based on remotely sensed data and expert opinion is 

not in itself novel—this method has been pursued for many different kinds of wildlife, including 

for pikas. However, it is less common to make predictions for the same area using two methods 

and at a scale relevant to the movements and survival of individuals of those species (e.g. 

Rabinowitz and Zeller 2010, Calkins et al. 2012). Understanding these fine scale processes is 

likely important, and further work should more thoroughly evaluate how the processes at that 

scale are modulated by macroclimatic drivers in order to make predictions across pika range 

(Schwalm et al. 2016). This is especially important when considering the differences in winter 

and summer habitat distinguished both in Chapter 1 and by the greater AIC and lower R2 values 

for comparisons between supervised models and the Summer probability surfaces. Because of 

the apparent importance of both summer and winter habitat, which has been largely excluded to 

date, we need to determine whether these fine-scale microtopographic and seasonal effects affect 

occupancy at larger scales and across environmental gradients. Understanding the interaction of 

macroclimatic and fine-scale drivers will help us better understand this potentially threatened 

species’ role as an indicator of ecosystem change. Testing across greater areas predictions such 

as those we have produced will provide greater insight into the factors that drive habitat 
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suitability for this indicator species and the relevant scales at which it functions. Testing 

predictions at various scales will also help elucidate how macroclimatic variables interact with 

microtopography to foster suitable microhabitat. 

 As climate changes, microrefugia and the pathways that join them will play a significant 

role in changes to biodiversity and in overall ecosystem resistance and adaptive capacity 

(Mackey et al. 2012). It is therefore important to identify potential microrefugia for climate-

sensitive species to adequately track suitable habitat and functional connectivity. This is 

especially true for indicator species such as pikas, as changes in their distribution and 

connectivity speak more directly to ecosystem change than for more resilient or generalist 

species (cite). Though broad scale climate factors are important drivers of species distributions 

(Thomas 2010, Pintor et al. 2015), with the importance of microrefugia it is more fitting to 

predict suitable habitat for indicator species at both local scales, where microrefugia will persist, 

and at scales that will drive individual survival (Gillingham et al. 2012, Quintero and Wiens 

2013, Valladares et al. 2014, Varner and Dearing 2014). My findings with this climate sensitive 

indicator species further support that accounting for fine-scale processes will likely improve our 

understanding of wildlife and ecosystem responses to climate change. 

 In the first chapter of this thesis I suggested that not all areas of talus are equally 

hospitable and that quantifiable metrics of terrain and habitat determine the location of suitable 

habitat. Further, I showed that the important habitat constraints vary seasonally. In this second 

chapter, I expanded on those findings to predict how microclimatic constraints might affect 

habitat occupancy across a larger landscape. I included predictions based on variables measured 

at different levels of spatial resolution to show the effect of model scale on habitat-occupancy 

predictions.  
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