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Instruction level parallelism (ILP) limitations have forced processor manufacturers to develop multi-

core platforms with the expectation that programs will be able to exploit thread level parallelism (TLP). Multi-

core programming shifts the burden of locating additional performance away from computer hardware to the

software developers, who often attempt high-level redesigns focused on exposing thread level parallelism, as

well as explore aggressive optimizations for sequential codes.

Precise dynamic analysis can provide useful guidance for program optimization efforts, including

efforts to find and extract thread level parallelism. Unfortunately, finding regions of code amenable to further

optimization efforts requires analyzing traces that can quickly grow in size. Analysis of large dynamic traces

(e.g. one billion instructions or more) is often impractical for commodity hardware.

An ideal representation for dynamic trace data would provide compression. However, decompressing

large software traces, even if decompressed data is never permanently stored, would make many analysis

impractical. A better solution would allow analysis of the compressed data, without a costly decompression

step. Prior works have developed trace compressors that generate an analyzable representation, but often

limit the precision or scope of analyses.

Zero-suppressed binary decision diagram (ZDDs) exhibit many of the desired properties of an ideal

trace representation. This thesis shows: (1) dynamic trace data may be represented by zero-suppressed

binary decision diagrams (ZDDs); (2) ZDDs allow many analyses to scale; (3) encoding traces as ZDDs can

be performed in a reasonable amount of time; and, (4) ZDD-based analyses, such as irrelevant instruction

detection and potential coarse-grained thread level parallelism extraction, can reveal a number of performance

opportunities in sequential programs.
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Chapter 1

Introduction

Instruction level parallelism (ILP) limitations have forced processor manufacturers to develop multi-

core platforms with the expectation that programs will be able to exploit thread level parallelism (TLP) [1–3].

This shift forces software engineers to try and improve the performance of their applications with high-

level redesigns focused on exposing parallelism, as well as explore aggressive optimizations for sequential

codes [39, 71]. Extracting TLP by manual high-level software redesign is often difficult [40]. Instruction

level dynamic program analysis can provide useful guidance for program optimization, including efforts to

find and extract thread level parallelism. However, optimizations often exist within large dynamic traces [44],

and finding opportunities for performance can require the analysis of gigabytes of trace data. This thesis

shows that: (1) Zero-Suppressed Binary Decision Diagrams (ZDDs) enables many analyses to scale; (2)

ZDD creation is practical for traces of a billion instructions for a variety of benchmarks; and, (3) ZDD-

based analysis, such as irrelevant instruction detection and potential coarse-grained thread level parallelism

extraction, can reveal a number of performance opportunities that exist in sequential programs.

1.1 Dynamic Trace Compression

Dynamic trace analysis has been used in prior work for performance tuning and hardware debug-

ging [102]. Unfortunately, trace files can easily grow to terabytes in size depending on the information

collected and the duration of traced execution. Large dynamic trace sizes (e.g. 1 billion instructions or more)

can make analysis and visualization impractical.

Researchers have developed streaming compression algorithms (e.g., Burtscher et. al. [18]) that can
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compress these traces by a factor of 10 or more. Unfortunately, these techniques do not speed trace analysis.

Compression techniques force analyzers to stream a decompressed version of the trace through the analysis

engine. Thus, analyses have complexity that depends on the decompressed trace size, even though the

decompressed trace is never stored on disk. With large traces, this time-consuming process prohibits certain

global analyses and interactive tools. Examples of prohibitively expensive operations include memory-data

liveness visualization, hot code visualization, trace slicing [105], and interactive visualization of thread level

parallelism.

Ideally, a compressed trace format should allow analyses to operate directly on the compressed

representation with complexity that is a function of compressed trace size. Then, if large portions of

compressed traces fit in memory, global analyses and interactive visualization become possible. Larus et.

al. propose such a technique for whole program path analysis [58]. The technique uses the SEQUITUR

compression method and works well for finding sequence matches in program execution. However, whole

program path analysis does not permit direct application of data-centric analyses (e.g., trace slicing) that are

of interest to system designers and programmers. Recent work on stride compression techniques addresses

this issue by forming hierarchies based on accessed memory regions [50], but is limited to analyses based on

loop-level dependence.

This thesis explores reduced, ordered, binary decision diagram (ROBDDs) [17], originally developed

for hardware verification, as a trace representation for dynamic program analysis. BDDs can provide

compression for large sets of data whose size would otherwise make analysis intractable. For example, BDDs

in hardware verification and validation allow equivalence checking of circuits with many states in constant

time [14]. In program analysis, BDDs have been used to store program contexts for each object in a program

analysis lattice object [99]. When BDDs are used for the analysis of large program traces [75, 78, 105], the

size of dynamic program traces can be reduced by up to 60x when encoded as a BDD [75]. Further, this

compressed representation can be analyzed without decompression, with algorithmic complexity that is a

function of the compressed size [75]. Thus, trace-encoded BDDs provide a solution to the dynamic trace size

issue by representing trace information in a compressed, yet analyzable, structure.
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1.2 Dynamic Trace Analysis at Scale

Encoding large traces as BDDs can be time consuming, requiring hours to days to complete [77].

This in turn makes tools that use BDD-based representations less effective than otherwise possible. Prior

applications of BDDs depend on three methods to mitigate BDD creation time: (1) search for a variable order

that allows for fast BDD creation, (2) tune the tables and caching systems used in many BDD packages, and

(3) encode an abstraction of the original data set. This thesis discusses zero-suppressed BDDs (ZDDs) as

an alternative to BDDs in order to reduce creation time for large traces. Prior work has shown that ZDDs

can reduce the final BDD size for sparse data and context data used during static program analysis [43, 62],

though this work has not applied ZDDs to compressing dynamic trace data. This thesis shows that, without

data loss, ZDD-based SPEC INT 2000 benchmark traces are 25% smaller than BDD-based traces.

Traces from a variety of applications need be analyzed to demonstrate the efficacy of ZDD-based

dynamic trace analysis. Reducing trace creation time by 25%, which intuitively should correspond to the

25% reduction in representation size, is beneficial, but simply not enough to allow analysis of billions of

instructions from a variety of benchmarks. Initial tests of ZDD creation time proved to be far worse; the 25%

reduction in representation size did not translate to 25% reduction in creation time. ZDDs creation time was,

for some benchmarks, 3× slower. Further investigation revealed a modification to the caching mechanism

will remove this penalty in most cases. In fact, ZDD-based trace compression algorithms have a smaller

working set size making tuning possible for large traces, which results in a creation time that can be 9× faster

than BDD creation time for the same benchmark. A detailed discussion of ZDD-based trace compression can

be found in Chapter 4.

1.3 Opportunities for Optimization

Reducing ZDD creation time is crucial to explore opportunities for optimization in a wide range of

program traces. Chapter 7 explores potential coarse-grained thread level parallelism (TLP) that exists in

sequential applications. Chapter 6 demonstrates the use of ZDD-encoded traces to locate irrelevant instruction

chains.
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Irrelevant Instruction Elimination

Irrelevant component elimination has been used in prior work to simplify abstractions for static

analysis [23]. This thesis uses an irrelevant component elimination with ZDD-encoded precise dynamic

instruction dependencies. This thesis will show that ZDD-based irrelevant instruction dependency elimination

can locate instructions that fail to the following criteria: (1) the instruction dependence chain should reach the

end of the program trace; or, (2) the dependence chain should produce an output through a Linux system call.

ZDD-based irrelevant instruction dependency elimination is designed to iterate irrelevant code calcula-

tion until convergence. However, irrelevant instruction dependency elimination can take days to complete

for traces with long dynamic dependency chains. Empirical data presented in this thesis shows that, for all

benchmarks in SPEC 2006 INT, the irrelevant instruction elimination algorithm reaches a steady state. In this

state, the number of instruction dependencies removed per slice iteration oscillates, but will not monotonically

decrease until the analysis converges. Thus, it is possible to approximate the number of instructions removed

by iterating irrelevant instruction elimination until oscillation is detected.

ZDD-based irrelevant instruction dependency elimination may also be used to filter irrelevant points

from program visualizations. However, irrelevant instruction dependency elimination may also be used

as a technique for code optimization or compiler evaluation. Chapter 6 contains a survey of irrelevant

code removal from the SPEC 2006 INT benchmarks using both -O0 and -O2 optimization levels in the gcc

compiler.

Hot-Code Visualization

In addition to the optimization analyzes presented in this thesis, which include coarse-grained thread

level parallel region location and irrelevant instruction elimination, a hot-code visualization algorithm was

created to focus optimization efforts on the most frequently executed regions of code.

Hot-code analysis captures static instruction execution frequency and counts the frequency of ex-

ecution. The static hot code information is combined with a mapping from dynamic instruction →

static instructions to create a new relation from each dynamic instruction to hot-code value. The resulting

visualizations can be found in Appendix C and Appendix D.
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1.4 Contributions

Traces from a variety of applications need be analyzed to demonstrate the efficacy of DD-based

dynamic trace analysis. The results in this thesis show that ZDD-based trace compression results in 25%

smaller representation compared to BDD-based traces. Further, ZDDs have a smaller working set, thus the

ZDD creation package can tuned to cache the working set of the trace-ZDD during creation. This reduces the

number of garbage collection operations and removal of useful dead nodes. This reduces DD creation by up

to 9×.

Hot code analysis can tell developers where to focus optimization and parallelization efforts. In

addition to the optimization analyzes presented in this thesis, which include coarse-grained thread level

parallel region location and irrelevant instruction elimination, a hot-code visualization algorithm was created

to focus optimization efforts on the most frequently executed regions of code.

The results from a survey of irrelevant instructions in the SPEC 2006 INT benchmark shows that over

50% of instruction dependencies do not produce a value and do not reach the end of the program trace. It

is possible for an instruction to be relevant to program execution but not meet the specified requirements.

Therefore, this thesis also presents results comparing the irrelevant dependence counts from both the -O0 and

-O2 compiler settings. The irrelevant dependency count from the -O0, or non-optimized, compiler setting

provides a worst-case value to normalize further comparison operations. Furthermore, this technique can test

the effectiveness of static compiler optimizations, as well as locate potential irrelevant instruction streams.

This thesis explores potential coarse grain TLP that may be exploitable in conjunction with TLS

and ILP techniques. In particular, the thesis examines the SPEC INT 2006 benchmark suite, looking for

parallelism with a granularity of thousands of dynamic instructions, and is not restricted to loop-level TLP.

The survey presented in Chapter 7 found, on average, 7% of instructions may be extracted as course-grained

parallelism, and for the benchmark 445.gobmk, 44% of instructions may be extracted as coarse-grained TLP.

Potential Coarse-Grained Thread Level Parallelism

An effective, popular, and widely studied mechanism for automatically exploiting parallelism is to

dynamically and speculatively thread groups of instructions [15, 20, 25, 64, 73, 79, 87, 90, 93, 97, 101]. Recent
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advances in this thread level speculation (TLS) can parallelize execute over 90% of some codes [64]. However,

TLS predictor accuracy limits TLS to fine-grained or loop-level TLP [15, 64, 79, 90, 98].

This thesis explores potential coarse grain TLP that may be exploitable in conjunction with TLS

and ILP techniques. In particular, the thesis examines the SPEC INT 2006 benchmark suite, looking for

parallelism with a granularity of thousands of dynamic instructions, and is not restricted to loop-level TLP.

Coarse-grained TLP is located using the ParaMeter dynamic trace visualization tool [78]. This technique,

which is discussed in Section 7.1, generates a visualization of program execution, called a DINxRDY

(dynamic instruction number by ready time) plot. This plot visually shows potential coarse grain TLP as

lines that overlap on the x-axis.

Potential parallel regions found within DINxRDY plots are further analyzed to expose dependence

relationships. Inter-region dependence conflicts, discussed in Section 7.4 are found by dynamic dependence

graph (DDG) slicing [4,5,30,52]. Slicing DDGs that contain a large number of instructions (e.g. billions) can

take weeks [5,104]. To efficiently, and precisely, explore the dependency relationships between two regions of

code this thesis extends the DDG chop to use the ZDD-compressed trace format. The dynamic chop [36, 54]

is often faster than an intersection of a forward and reverse slice and requires no loss of precision.

The survey presented in Chapter 7 found, on average, 7% of instructions may be extracted as course-

grained parallelism, and for the benchmark 445.gobmk, 44% of instructions may be extracted as coarse-

grained TLP.

Finally, a summary of contributions, techniques, and results of this thesis may be found in Chapter 9.

Thus, this thesis presents the following contributions:

(1) A ZDD-based trace compression algorithm with tuning for large traces, resulting in a 25% reduction

in BDD size and a 9× reduction in trace compression time.

(2) A ZDD-based iterative analysis for locating irrelevant instruction dependencies

(3) A method to quickly explore coarse-grained parallelism in serial applications.

(4) A ZDD-based dependence graph chopping algorithm need for the aforementioned method.
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(5) A survey of coarse-grained thread level parallelism in the SPEC INT 2006 benchmarks that shows

up to 44% of instructions may be extractable as coarse grain TLP.

1.5 Hypothesis

ZDD-based dynamic trace analysis can identify hot-code paths, irrelevant instructions, and

potential coarse-grained thread level parallelism in sequential codes, and thus create opportunities

for program optimization.



Chapter 2

Parallel Computation Background

Parallel computation is a source for performance for both software and hardware in many modern

computer systems [1–3]. Correct manual thread level parallelization of software can be difficult, may result in

non-deterministic errors, and often the resulting parallel application is often harder to debug than a sequential

application [29, 40, 57]. This thesis explores software tools that help a developer find and extract parallelism.

Parallel computation and parallel programming would require volumes to discuss completely [40, 61]. This

thesis requires an understanding of three attributes of parallel tasks: (1) location; (2) granularity; and, (3)

conflicts. Prior works have researched both automatic and manual techniques for defining the location,

granularity, and conflicts in potential parallel tasks. Following a discussion on these topics, this chapter will

then explore static and dynamic techniques that can locate parallel tasks and task conflicts.

2.1 Automatic Parallelization Techniques

Automatic parallelization is a heavily research field [38, 41, 95]. Parallel task location and granularity

are defined by instructions contained within a parallel task boundary [19]. Conflicts between parallel tasks

often occur from read-after-write hazards; if a task alters a value read by a different parallel task can result in

unexpected program execution. This section looks at static and dynamic techniques for automatically finding

parallel task locations, boundaries, and conflicts.
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1 : a = &( a r r ay B [ 4 ] )

2 : f o r ( i = 0 ; i < a r r ay B . s i z e ( ) ; ++ i )
3 : {
4 : b = funcA ( )
5 : c = a r r ay B [ i ]
6 : a r r ay B [ b + c ] = i
7 : }

8 : p r i n t (∗ a )
9 : p r i n t ( b )

Figure 2.1: Parallel Pseudo Code Example

2.1.1 Automatic Parallelization by Static Analysis

The location of parallelism can be determined a statically before program execution by a compiler [16,

25]. The example code in Figure 2.1 can help explain how to find parallel tasks and task boundaries using

only static program information. An illustration of the sequential execution of the source in Figure 2.1 can be

seen in Figure 2.2. This code is in C/C++ style, and contains many pointer operations to demonstrate the

limitations of some analysis methods. In line 1, the variable a is a integer pointer variable, and the arrayB

contains integers. Thus, line 1 sets the value of a to a pointer to the fourth member of arrayB.

The next point of heap obfuscation occurs inside the control flow test in line 2. The function size is a

member of the array type used in this pseudo code. This function determines the size of the array, which can

be difficult to determine at run-time. Thus, a static analysis would likely need to be context sensitive and

interprocedural. Context sensitivity allows the analysis to understand the difference, or similarities, between

multiple occurrences of the same static code [28]. An interprocedural analysis allows the analysis to go into,

and out from, a function call during analysis [8]. A context sensitive and interprocedural analysis would still

need to determine the size of the array arrayB which was likely allocated using heap memory. In languages

that allow heap allocation and references, the size and value of heap memory is difficult to determine at

compile-time difficult [51, 66, 92].

The size of the array may require an expensive points-to analysis [86], or, if the size of the array varies
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with a run-time input, than the size of the array could not be found by static analysis. Interprocedural static

analysis, such as points-to [86] and alias [22] can find conflicts between instructions.

The final heap accesses in the pseudo code in Figure 2.1 occur in lines 5 and 6. The heap read in line c

= arrayB[i] would a points-to analysis to disambiguate. The next line, arrayB[b + c] = i, is a write to a heap

memory location. If a static analysis can find the exact location of the memory write, then it is possible to

perform additional parallelization analyses. However, the heap write access location is the combination of a

function return value and the value in another heap memory location. It is likely that a static analysis would

need to classify this memory write location as all possible heap location values, or top using a lattice that also

represents the empty set ∅ as bottom [24, 89]. Top may also be written as >, and bottom may be seen in this

thesis as the symbol ⊥. If line 6 in Figure 2.1 is found to be > by a static analysis, it will cause line 6 to

conflict with all other heap memory writes, and add line 6 to the dependence chain of a heap memory read.

Thus, line 6 would become difficult to parallelize using static auto-parallelization.

The example code also contains potential parallelism that is not bounded by a programming construct.

For example, if the value of b + c in the line arrayB[b + c] = i is less than four, than the instructions a =

&(arrayB[4]) followed by print(*a), and the loop For (i = 0; i ¡ arrayB.size(); ++i) may be able to execute

in parallel. This program execution is shown in the illustration in Figure 2.4.

Figure 2.3 contains an illustration of the execution of the pseudo-code in Figure 2.1 using medium-

to-fine grained parallel tasks bounded by control flow constructs. This illustration assumes a static, likely

points-to, analysis finds that line 6 does not alter the heap locations read by line 5. Even if this is not

the case, and line 5 depends on a value written by line 6, it may still possible to create parallel software

pipelines [32, 81].

Figure 2.1 demonstrates how the boundary of parallel tasks located by static analysis can be limited by

control paths that are resolved at run-time [95]. Prior work has found that even state-of-the-art automatic

parallelizing compilers are often unable to parallelize simple embarrassingly parallel loops written in

C/C++ [50].
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Figure 2.2: Sequential Execution of Program in Figure 2.1

Figure 2.3: Static Fine-To-Medium Grained Parallel Tasks from Figure 2.1
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2.1.2 Automatic Parallelization by Dynamic Analysis

Dynamic auto-parallelization techniques examine the run-time execution of a program, and thus can

see how control flow dependencies are resolved. This illustration in Figure 2.4 show the pseudo-code in

Figure 2.1 could be parallelized if a dynamic analysis were able to extract all potential parallel instructions.

Note that the fine grained parallel tasks from Figure 2.3 are still executed as parallel tasks in Figure 2.4

spawned from Task 2.

An illustration of dynamic execution of the pseudo code in Figure 2.1 is shown in Figure 2.5. The for

loop from the static code is shown partially unrolled in the the dynamic execution illustration.

Parallel tasks found by a dynamic analysis are only correct for the program input, or the set of inputs,

that have been analyzed. Therefore, to ensure correct execution, thread-level parallelism found and executed

dynamically is often executed speculatively. There are many works exploring thread-level speculative (TLS)

techniques [20, 25, 69, 82, 87, 93, 97, 98, 101]. This thesis does not require a detailed understanding of

transactions and speculation, but basic concepts are necessary. If two tasks are executed speculatively, then,

for this work, it is assumed that the program executed in such a way that the final program state is identical to

that of the sequentially executed code.

The illustration of the pseudo code in Figure 2.1 contains the dynamic code execution with TLS from

Figure 2.5. The regions of this illustration contained by Transaction 1 or Transaction 2 may be rolled back

by our hypothetical TLS system. Note that this illustration does not include nesting TLS; this is also true for

many research TLS systems [74].

TLS often incorporate prediction to extract additional parallelism [48]. Prediction systems used by

TLS can speculate values, control directions, and data dependencies. Figure 2.7 shows an illustration of a

TLS system using control prediction to execute each iteration of the for loop in parallel. Value prediction in

Figure 2.7 also allows the value of i, which is read by instructions inside the for loop, to be predicted and

propagated.

The illustration in Figure 2.6 can help explain why TLS is often most effective when extracting threads

with fewer than 1000 instructions [64]. TLS will often execute many iterations of If any instruction in Task 2
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Figure 2.4: Static Fine-to-Coarse Grained Parallel Tasks from Figure 2.1

Figure 2.5: Dynamic Coarse Grained Parallel Tasks from Figure 2.1
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Figure 2.6: Dynamic Coarse Grained Parallel Tasks from Figure 2.1 with TLS

Figure 2.7: Dynamic Coarse Grained Parallel Tasks from Figure 2.1 with TLS and Prediction
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Benchmark TLS Perf
400.perlbench 6.47
401.bzip2 12.31
403.gcc 14.14
429.mcf 17.7
445.gobmk 12.78
456.hmmer 0.1
458.sjeng 16.1
462.libquantum 0.1
464.h264avc 3.34
471.ommnetpp 15.5
473.astar 40.67
483.xalancbmk 9.1

Figure 2.8: Performance from TLS [48]

conflict, then Transaction 2 will likely roll back the entire transaction. Complex tasks may increase the risk

of misprediction by including more predicted values, dependencies, and branch directions [64]. Work by

Ravi et. al. looks at a technique based on transactional memory to expand TLS to coarse-grained threads, but

is limited to scientific codes with regular access patterns [80]. TLS has been applied to C and Java objects that

contain thousands of instructions, but work by Warg et. al. found limited gains were realized from objects

with more than 100 instructions [98].

TLS can greatly improve program performance, regardless of the granularity limitations. For example,

TLS performance gains from a TLS system that uses perform control, data dependence, and data value

speculation [48], are shown in Figure 2.8.

2.2 Parallelization with Tools

Automatic parallelization is difficult, and most successes are limited to highly numeric applications [60,

80]. This section examines tools that can help a programmer find potential parallel tasks and find potential

task conflicts. Static parallelization tools have had some success [49], but are ultimately limited in the

presence of pointers and dynamic memory allocation [50]. This section explores tools that use run-time

program information, much like TLS, for finding potential parallel tasks and task conflicts.

Commercial applications that use dynamic information to help find potential parallelism generally
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keep the science behind these systems a secret [21, 94]. A limited number of tools have recently emerged

from the research community, and are easier to explore for this section.

Alchemist is a dynamic profile based tool that locates potential parallelizable regions at run-time.

Dependence conflicts are also located and presented to a user for manual parallelization [106]. The Alchemist

tool restricts parallel tasks to regions bounded by artificial constructs, like if-than-else branches or loops.

Recent research into parallel extraction tools include SD3 [50], Parkour [45], and Kremlin [31]. The

SD3 tool performs inter-region dependence analyses similar to those discussed in this work. The regions

located by SD3 are defined stride-compression, and therefore are generally limited to locating potential

parallelizable regions in loops. Many recent advances in parallel task boundary locations are also limited to

parallelism bounded by explicit constructs [31, 45].

Most tools that use dynamic program information to aid parallel programming are restricted to parallel

tasks that can be bounded by if-than-else blocks, for or while loops, or function calls [31, 45, 50, 106]. This

limitation is likely in place for the following reasons: (1) it is unclear how to find task boundaries without

constructs; (2) constructs help trace compression; and, (3) frequently executed code blocks are often contained

inside loops.

Constructs Create Boundaries

Artificial constructs are an easy way to define a parallel task boundaries. If the user defined a task to be

contained in a function call, than that parallel task should be easy for the user to identify. Using techniques

prior to the work in this thesis, it is not clear how to define the boundaries of these parallel tasks [31, 45].

Further, some works include the “ease of thread extraction” in calculations for deciding if a task is worth

parallelizing [31]. Unfortunately, there may be groups of instructions that could be a parallel task, but are not

contained by a construct in the static code.

Constructs Help Compression

Dynamic program analyses often need some dynamic information to be visible for the life of the

program execution. Dynamic trace information can grow very large (e.g. gigabytes), and requires some form

of analyzable compression. A potential parallel task that is bounded by a static construct can be stored for

later analysis by only storing the static information. Multiple occurrences of the same construction may
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require storing additional context information, or multiple occurrences may be ignored [31, 45, 50]. Storing

only instances of the static code requires much less space than a trace of the dynamic execution, but at the

cost of a loss of precision and flexibility. For example, if the tool stores only static data than it would be

difficult to know how many times that region of code was executed. The execution count can be valuable for

finding hot code regions. If the tool also includes an execution count number per static region, there is likely

some additional data lost that could become useful in the future. The process of creating an abstraction of

the dynamic execution by storing only static data and limited contexts limits future analysis to what may be

performed using only data the original tool designer found to be relevant.

Constructs Define Hot-Code

The Kremlin tool [31] can find parallel tasks, and generates metrics for the ease of extraction, and

the frequency of execution. The ease of extraction metric is mostly a reflection of the number of potential

conflicts. The frequency of execution value can help the user focus parallelization efforts only highly executed,

or hot, regions of code. Loops created by for or while constructs are often the source of hot code regions [12].

However, a loop may contain an expensive operation, such as memory allocation or file IO, and may not

be executed frequently. Furthermore, a loop may contain instructions that are worthy of parallelization, but

are included in a loop that also may conflict with another parallel task. Conflicts make tasks difficult to

parallelize; some tools and may reduce the value of a potential parallel task with conflicts, or eliminate such

tasks altogether [31].

This thesis presents a system for finding, analyzing, and extracting potential parallel regions from serial

codes. The tool presented by this thesis can be used to quickly develop dynamic traces analyses. The trace

compression developed for this thesis allows for off-line analysis, thereby allowing new analysis to quickly

be tested and executed on a benchmark suite, without the additional step of re-running each benchmark. In

fact, the ability to quickly develop new analysis allows this system to be rapidly adapted to new tasks, such as

finding irrelevant code in dynamic traces. For modern multi-core systems, the work in this thesis can find

parallel tasks outside of artificial constructs at a granularity of hundreds to millions of instructions.



Chapter 3

Related Works

This chapter presents work relevant to this thesis. Trace compression, visualization, and analysis are

examined in this chapter. Decision diagram (DD) construction techniques are also discussed.

3.1 Dynamic Trace Compression

Managing large dynamic traces is the key problem when performing whole program analyses. Consider

that 1 billion 64bit values need ≈ 7.5 GB of uncompressed storage and that traces usually contain billions of

instructions (10-1000s of GB). Therefore, any trace analysis tool must operate on compressed data. Further,

analyzing this data many need either sequential or random access mandating different compression techniques.

ParaMeter requires rapid random access coupled with good compression.

Researchers have used three methods to reduce trace sizes: (1) abstraction; (2) compression by

predictor-based encoding; and, (3) compression by program structure exposing methods, such as run-length

encoding or hierarchical grammars. Stride-based compression techniques have recently emerged as a viable

option for some analyses, such has hot-code and memory-conflict location [50].

3.1.1 Abstraction and Elimination

Data abstraction creates an abstract representation for concrete data. Abstract representations can be

more compact and easier to analyze. For example, some abstractions applied to concrete dynamic trace data

include, but are not limited to, a mapping from instructions to object creation/destruction [85], or program

slices [105].
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Data elimination removes information from a trace that is deemed unnecessary by the original analysis

designer. For example, the whole program path (WPP) trace representation [58] aggregates data from multiple

occurrences of the same program path. However, information that is difficult to aggregate, like cache misses

or CPU temperatures, will be removed from the WPP representation.

3.1.2 SEQUITUR Compression

The Sequitur compression algorithm is useful for compressing instruction level dynamic traces into an

analyzable representation [67]. However, while Sequitur can rapidly provide an analysis with information

about the instruction sequences in a trace, specific instruction information often requires an expensive traversal

of the grammar. Do demonstrate grammar creation, lets generate a grammar for the following sequence of

letters:

abcdabcdabc

We begin by creating a start rule:

S → abcdabcdabc

Sequitur forms a grammar online, thus the algorithm would first detect the repetition of the variables ab. The

algorithm then creates a new rule A→ ab:

S → AcdAcdAc

A→ ab

This processes is repeated for Ac, thereby forming a hierarchical grammar:

S → BdBdB

A→ ab

B → Ac

This processes is repeated for Bd:

S → CCB

A→ ab

B → Ac

C → Bd
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3.1.3 Sequential Compressed Traces

Burtscher et. al. [18] in 2005 described a predictor based strategy requiring only mispredictions

to be stored in the trace file. The resulting compressed trace file is further compressed with a standard

stream compressor such as gzip or bzip2 achieving a 10 times compression factor with rapid streaming

decompression. Generating interactive DINxRDY plots from such stream compressed data is impractical

as the data must be entirely decompressed for each frame, ≈ 1 minute on a 2.0 GHz Pentium 4 for each

800x600 pixel plot in a trace containing only 100 million instructions. Worse, selecting and performing

slice analysis on instructions requires two additional passes through the complete data set adding another 2

minutes to the frame’s render time.

Work by both Iyer et. al. [44] and Zhang et al. [105] addresses this problem by generating intermediate

representations. Iyer’s work maintains a stream compressed intermediate representation suitable for working

on the current frame, but leaves the navigation problem unsolved. Zhang et al. [105] use a BDD to maintain

the intermediate analysis results in a compact form in RAM. However, the navigation problem, as well as

inquiries into the contents of a DINxRDY plot, is still prohibitively expensive.

3.2 Reduced Ordered Binary Decision Diagrams

Reduced, ordered, binary decision diagrams (BDD) were first described by Akers [6] and further

developed by Bryant [17]. BDDs have been used in many domains including hardware verification [14],

cryptography [53], static program analyses [56, 100], and some use in dynamic trace analysis [105].

BDDs can be viewed as compressed versions of binary decision trees. Figure 3.1(a) shows a binary

tree for the three variable function f(x, y, z) = x′y + xy′ + z. For example, traversing the left edges of

the graph we evaluate f(0, 0, 0) as 0. BDDs are a graph data structure in which each node corresponds to a

Boolean function (just as each node in a binary decision tree) [17]. The following two reduction rules are

used to convert a decision tree to an BDd:

(1) When two BDD nodes p and q are identical, edges leading to q are changed to lead to p and q is

removed
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Figure 3.1: A Three-variable Binary Decision Tree and BDDs
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(2) If both edges from a node p go to child node q, then p is eliminated and all nodes that go to p are

redirected to q.

The last reduction rule is commonly referred to as the S-deletion rule [43]. Figure 3.1(b) shows the

BDD for f under the variable ordering (x, y, z) with additional compression provided by inverting edges. To

compute f(0, 0, 0) with the BDD, we traverse the 0, or false, arc of the X node, the false arc of the rightmost

Y node and the inverting false arc of the Z node. Because we reached the constant 1 node through an odd

number of inverting arcs, we find f(0, 0, 0) = 0 as before.

3.3 Zero-Suppressed Binary Decision Diagrams

For this research I propose using BDDs to represent sets of dynamic program trace information. The

Boolean function that describes the inclusion of a set in a Boolean function is called the characteristic

function. BDDs can perform many set operations efficiently [17].

However, Minato [42] found that BDDs were inconvenient for sets of binary vectors. The tuple based

dynamic trace encoding method used by this proposal employs a variation of this binary vector encoding

technique. Specifically, a Minato creates sets of combinations of objects represented by a binary vector,

(xnxn−1xn−2...x2x1). In this vector each bit represents the inclusion of the object in the set. Using BDDs,

each bit in the binary vector and a variable in the Boolean formula. The size of a BDD depends on the number

of variables in the encoding, as well as the variable order. Therefore, it is useful to know the smallest number

of relevant bits in a bit vector before performing BDD encoding. Unfortunately, it is not always possible to

know the smallest number of relevant bits for a bit vector.

The following example better illustrates this problem: The vector 0101 has four bits. If the rightmost

bit is the least significant bit, then, in this case, let us assume only the rightmost three bits are actually useful.

It is possible to encode this vector in a BDD with three variables, representing the vector 101. However,

imagine this operation 101 ∧ 1101. The BDD must not contain four variables, but Boolean algebra states the

vector 101 contains a don’t care value for the fourth bit, which is not correct. Thus, the BDD should be built

with a variable for each potential bit in the bit vector.
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Figure 3.2: A ZDD for f(x, y, z)

Minato [42] proposed a variation on BDDs, called ZDDS, to address this issue, and to reduce the size

of BDDs for sparse data sets. ZDDs are a variant of BDDs where the S-deletion compression rule is replaced

by the use of the pD-deletion compression rule. In this section we see that ZDDs provide better compression

than BDDs for trace data, and over 9× faster creation times.

Zero-suppressed BDDs, or ZDDs, replace the S-deletion rule with the pD-deletion rule. This rule

states the following:

• If the 1 edge from a node p leads to a zero terminal node and whose 0 edge a child node q, then p is

eliminated and all nodes that lead to p are redirected to q.

Furthermore, ZDDs do not typically implement the inverting arcs optimization, i.e., ZDDs have no

inverting arcs, only plain then and else arcs. To see how this rule change results in a different decision

diagram, consider, once again, the function f(x, y, z) whose binary decision tree was shown in Figure 3.1a.

Figure 3.2 shows the ZDD for this function. For this function, ZDDs perform worse than BDDs, as most of

the values for (x, y, z) cause the function to evaluate to 1. However, for sparse functions (i.e., those with few

1’s in the range), such as trace data, ZDDs provide superior compression.
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Figure 3.3: Basic DINxRDY Plot with 5 instructions.

3.4 Hot Code Analysis

Ammons et. al. found that hot code regions often occupy less than 28% of the overall program code,

resulting in up to 98% of level one cache misses [10]. Therefore, hot code information can tell programmers

where to focus parallelization efforts. Using Sequitur-based trace representations, hot path information can

be generated by recursively summing the number of occurrences of sub-rules in a grammar [58].

3.5 Dynamic Trace Analysis

Dynamic traces information consists of information collected from a program at run-time. Software

developers can use instruction level dynamic trace analyses to create a picture of their software’s run-time

behavior, as well as software debugging [103]. However, dynamic traces can grow quickly in size (gigabytes

to terabytes) for seconds of program execution. Analysis of large quantities of data can be impractical using

commodity hardware [83].

3.6 DINxRDY Visualizations

Though parallelism found in prior studies [11, 55, 96] is not accessible to ILP techniques [96], it may

yield to thread level parallel (TLP) techniques. The Dynamic Instruction Number vs. Ready-time (DINxRDY)

plot (originally introduced by Postiff et al. [72]) can be useful in identifying the potential TLP inherent in

many sequential applications.
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DINxRDY plots graphically represent parallel structures and expose potential threads for TLP [44].

Consider the hypothetical 5 instruction trace shown in Figure 3.3(a). The vertical axis represents the Dynamic

Instruction Number (DIN) and the horizontal axis represents the earliest time at which an instruction can be

scheduled (ready-time, RDY). For example, Figure 3.3(a) shows that the 3rd instruction in the trace (dynamic

instruction 3, or DIN 3) was issued in cycle 3. Figure 3.3(b) shows the same trace under an ideal schedule

(i.e., one cycle per instruction, perfect branch prediction, infinite hardware resources, etc.) that respects all

data dependencies. This plot shows that DIN 3 is dependent on DIN 2 which in turn is dependent on DIN 1.

Further, the plot shows that DIN 4 is not dependent on DINs 1, 2, or 3 because it is scheduled in the first

cycle. Dependency analysis is needed to decide whether DIN 5 is dependent on DIN 1 or 4.

Iyer et. al. observed that lines running from lower left to upper right in DINxRDY plots form

dependency chains of relatively nearby instructions in a program [44]. Further, diagonal lines that have

overlapping x-extents suggest regions of code that might be convertible to TLP. Figure 3.6 shows a DINxRDY

plot for 254.gap with groups of divergent dependency chains (DDCs) (circled in the figure) suitable for TLP

extraction analysis. From Iyer’s work [44], we know that these suggest the presence of either data parallelism

or pipeline parallelism.

The Dynamic Instruction Number vs. Ready-time (DINxRDY) plot (originally introduced by Postiff

et. al. in 1998 [72]) can be a useful in identifying the potential TLP inherent in many sequential applications.

The dynamic instruction number (DIN) is a unique number assigned to each instruction when the instruction

executes at run-time. A single static instruction can execute many times during program execution and each

occurrence of that static instruction would generate a new DIN. The relation from SIN → DIN is also

stored.

This thesis uses sets {DINi, {DINd}} for program analysis. The DINi → {DINd} relation, also

referred to as DINxDIN in this thesis, maps an instruction DINi to a set of instructions DINd. The members

of the set DINd have a dependency that is resolved by dynamic instruction DINi. Thus, it is possible to

use the DINi → DINd to identify dependency relationships and perform dependence slicing. A full list of

ZDD trace tuple types can be found in Appendix A.
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Figure 3.4: Dynamic instruction number vs. ready-time plot of SPEC INT 2000 benchmark 254.gap. Circled
areas represent potential threads
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3.6.1 Dynamic Program Slicing

Numerous works have used dynamic program trace slicing, introduced by Korel et. al. [52], to explore

program behavior at run-time. Dynamic slices have been developed for locating the source of observed

program bugs [5, 91], program testing [30] and software maintenance [47]. Dynamic traces can quickly grow

in size beyond what can be stored and analyzed on commodity hardware [5, 75, 103]. Generating slices from

large dynamic traces can require days of computation time [5]. To reduce slice times, this thesis extends the

prior use of dependence chopping [36, 54].

Zhang et. al. first explored slicing with BDDs [105]. In the work by Zhang, program slice information

for each instruction is generated from the dynamic trace information. A variation of technique used to create

program slices is also used for the work in this thesis.

3.6.2 Hot Code Analysis

Hot code analysis can tell developers where to focus optimization and parallelization efforts. Ammons

et. al. found that hot code regions often occupy less than 28% of the overall program code, resulting in up to

98% of level one cache misses [10]. Therefore, hot code information can tell programmers where to focus

parallelization efforts. Using Sequitur-based trace representations, hot path information can be generated

by recursively summing the number of occurrences of sub-rules in a grammar. Using BDD-encoded traces,

hot code information is generated directly from the program execution by maintaining a count of each static

instruction’s occurrence in the dynamic trace.

3.7 Parallelism in Computing

Until recently, software engineers could gain performance by waiting for processor core performance

to improve. However, manufacturers have been unable to extract performance from uni-processor designs,

forcing a trend towards multi-core systems [88]. Tasks can be parallelized using a variety of scopes:

• System Parallelism

• Application Parallelism
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• Thread Level Parallelism

• Instruction Level Parallelism

With the advent of compute cloud infrastructures, tasks that may be parallelized among systems can

be expanded (or reduced) depending on demand [68]. Application parallelism exists if there is a need, or

desire, to run multiple applications at the same time on the same operating system. Thread level parallel

distributes work between regions of the same program, with no programmer stated total order between

regions. Programmers can state an explicit order using synchronization methods such as locks, mutexes or

transactions [35, 59].

Limit studies during the 1990s showed that sequential applications have considerable potential paral-

lelism [11,55,72,96] that is amenable to thread level parallelism (TLP) [44] but is not accessible via hardware

instruction level parallel techniques (ILP) [96]. Therefore, the proposed research will focus on software

optimization through extraction of thread level parallelism from existing sequential applications.



Chapter 4

Dynamic Trace Analysis at Scale

4.1 BDD Compression Time

To understand why BDD-based compression is time consuming, this section begins by first describing

BDD-based trace representation [75]. This section then analyzes the BDD-trace creation algorithm and shows

that inefficient trace BDD compression is primarily caused by:

• Frequent garbage collection of dead BDD nodes

• The deallocation of potentially reusable dead BDD nodes and corresponding BDD system cache

entries

4.1.1 Traces as Boolean Functions

BDDs represent boolean functions, and thus, to represent traces as BDDs, let us review how to

represent trace data as a boolean function [75].

Observe that boolean functions can encode arbitrary binary data. For example, if the represented

universe, Ω, consists of 4 elements Ω = {a, b, c, d}, then a 2-bit encoding can be used to represent each

element, {a 7→ 00, b 7→ 01, c 7→ 10, d 7→ 11} [75]. It is possible to create a boolean indicator function (i.e.,

characteristic function) that evaluates to true for any subset of the Ω with this encoding. For example, the

indicator function for the set {a, b} is I{a,b} = x′ where x is the variable for the most-significant bit (MSb)

of the set encoding and x′ is read as not x.
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It is possible to extend this simple notion to encode different data sets necessary for representing and

analyzing the trace. All trace data is encoded by a set of tuples (DIN, data) where the DIN is the dynamic

instruction number (i.e., the position in the trace, the first instruction has DIN 0, the second DIN 1, and so on).

Therefore, a simple instruction trace is encoded as (DIN,PC), where the PC is the program counter value.

Similarly, more complex data relationships can be encoded by simply joining the binary representations of

arbitrary tuples into a single equation.

This chapter uses three types of data tuples. The first is (DIN,SIN), where the SIN is the static

instruction number or PC (Note that this thesis will use PC and SIN interchangeably). The second tuple

type is (DIN,DIN), which is used to represent edges of the trace’s dynamic data dependence graph. If a

decision diagram (DD) encodes an edge set E, if (10, 24) is in the edge set then the 24th instruction in the

trace depends on the 10th instruction in the trace. If we wish to know the PC of either of these instructions,

we can refer to the (DIN,SIN) tuple set. Finally, this thesis evaluates (DIN,RDY ) tuple sets, which

encode the ideal schedule for the trace, i.e., for each DIN , RDY is the earliest time a scheduler could

execute that DIN given an ideal machine [78]. A description of all tuple members and relation types can be

found in Appendix A.

4.1.2 Boolean Functions as BDDs

BDDs can be viewed as compressed versions of binary decision trees. Figure 3.1(a) shows a binary

tree for the three variable function f(x, y, z) = x′y + xy′ + z. For example, traversing the left edges of

the graph we evaluate f(0, 0, 0) as 0. BDDs are a graph data structure in which each node corresponds to a

boolean function (just as each node in a binary decision tree does) [17]. A full discussion of BDD creation

can be found in Chapter 3, but for clarity the two reduction rules for converting a decision tree to an BDD are:

(1) When two BDD nodes p and q are identical, edges leading to q are changed to lead to p and q is

removed

(2) If both edges from a node p go to child node q, then p is eliminated and all nodes that go to p are

redirected to q.
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The last reduction rule is commonly referred to as the S-deletion rule [43]. Figure 3.1(b) shows the

BDD for f under the variable ordering (x, y, z) with additional compression provided by inverting edges. To

compute f(0, 0, 0) with the BDD, we traverse the 0, or false, arc of the X node, the false arc of the rightmost

Y node and the inverting false arc of the Z node. Because we reached the constant 1 node through an odd

number of inverting arcs, we find f(0, 0, 0) = 0 as before. BDD creation is covered in more detail in the

literature [17, 75, 84].

4.1.3 BDD Unique Tables

Prior work shows how to encode trace data as BDDs. However, the encoding processes can take an

unreasonable amount of time. Inefficient encoding is primarily caused by the interaction of garbage collection

and BDD system caches, specifically the unique table and the operation cache.

The S-deletion rule used to reduce a binary tree into a BDD is realized through the unique table. The

unique table enforces strong canonicity because each new node has a unique location in the table. If a node

is a duplicate of an existing table node (i.e., it represents the same boolean function), the node is reused

from the unique table [17]. The unique table also increases the efficiency of BDD creation. If a BDD node

already exists the BDD management system, such as CUDD [84] (a state of the art, high-performance, BDD

package), saves time by reusing the existing node and avoiding re-computation for the remainder of the nodes

below the cached one.

The unique table can be used to tune the overall creation time of the BDD by altering its size. The size

of the unique table must at least be large enough to contain all of the live BDD nodes. With CUDD, however,

nodes contained in the subtable can also be dead. Upon garbage collection, these dead nodes are added to

death row, which is an additional cache used to hold recently invalidated nodes. The nodes on death row can

also be resurrected and reused.

In addition to a simple node cache, BDD packages, including CUDD, also have an operation cache

that caches the results of BDD operations. For example, if one requests a computation of B ∧ C and the

result is A, then CUDD will cache that A = B ∧ C. If B ∧ C is requested again, it will immediately return

BDD A from this cache, and perform the potentially exponential recursion required to recompute A. This
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cache gives BDDs their polynomial time complexity [17].

Unfortunately, garbage collection frees the nodes on death row in order to free memory, which, in turn,

evicts corresponding results from the operation cache. As we will see, the eviction of useful results caused by

accumulation of real garbage ultimately hinders BDD creation efficiency.

4.1.4 Garbage Collection and Compression Time

Garbage collection allows BDD packages to control memory consumption and free the dead nodes

on death row. The CUDD package uses a saturating reference counter to keep track of the amount of node

use, and to determine if a node is safe to delete. A reference counting system also aids other BDD functions

related to automatic variable ordering.

CUDD uses plain pointers to DdNodes as a handle to an entire BDDs. If A, B, and C have different

pointer values they will represent different BDDs. In the pseudo code presented above, the B and C BDDs

have their reference counts increased to prevent them from being garbage collected. B and C are then

combined using a boolean ∧ operator to create the new BDD A. A then also has its reference count increased

to prevent garbage collection, but the code now decreases the reference count of B and C. If B and C now

have reference counts equal to zero they are considered dead, and could be removed by garbage collection.

To explain how BDD trace creation produces garbage, we first must consider the BDD creation

algorithm. The algorithm is simple. For each tuple, a BDD is created to represent the single element tuple

(see the work [75] for details), call it E, and this BDD is OR’ed into the set of all tuples, call it Ω. The

pseudo-code for the algorithm using CUDD calls is shown in Figure 4.1.

Notice that at the end of each loop iteration the only live nodes are those that are part of the BDD for

the current Ω; all other nodes are marked as dead.

Now, let us examine how this algorithm interacts with the BDD package and its data structures. Let us

set E = X̄ ∧ Ȳ ∧ Z̄ which is exactly the shape of a tuple BDD, assuming that we only had 8 possible tuples

and thus 3 boolean variables (in practice there are typically 64-128 variables per tuple). In Figure 4.2 we can

see the BDD representation of the boolean function for E = X̄ ∧ Ȳ ∧ Z̄.

As shown in the Figure 4.1, the start of the algorithm initializes the trace BDD as empty. After the
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DdNode ∗ b u i l d S e t ( )
{

DdNode ∗Omega = getEmptySetBdd ( )
w h i l e ( ! done ) {

DdNode ∗OmegaOld = Omega ;
DdNode ∗E = getNextTupleBdd ( ) ;
Cudd Ref ( E ) ;
Omega = Cudd or ( OmegaOld , E ) ;
Cudd Ref ( Omega ) ;
C u d d R e c u r s i v e D e r e f ( E ) ;
C u d d R e c u r s i v e D e r e f ( OmegaOld ) ;

}
r e t u r n Omega ;

}

Figure 4.1: BDD Build Set
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Figure 4.2: A BDD for X̄ ∧ Ȳ ∧ Z̄
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Figure 4.3: A BDD for (X ∧ Ȳ ∧ Z̄)

BDD is created for E, E is added to the trace BDD by computing Ω = E ∨ 0, as shown in the pseudo-code

in Figure 4.1.

Now we need to add our second tuple to the set, call it E′. The BDD for E′ is shown in Figure 4.3

along with the BDD for Ω and the garbage created so far.

Figure 4.4 shows the trace BDD Ω after adding E′. In this new BDD, the X term is now a don’t - care

value because the result of the function no longer depends on the value ofX . The S-deletion rule removes don’t

care values from the BDD structure. Figure 4.4 shows the BDD for the function (X̄ ∧ Ȳ ∧ Z̄)∨ (X ∧ Ȳ ∧ Z̄)

with the X node removed.

In Figure 4.5 we show yet another tuple E′′ = X̄ ∧ Ȳ ∧ Z̄, which will be added to Ω along with the

current trace BDD and the dead BDD nodes. At this point, notice that the entire BDD for both E and E′ is

dead and will be garbage collected.

Now, notice that E′′ is exactly the same as E. However, the BDD for E is garbage and is on death

row. If no garbage collection operation has taken place between the creation of E and the creation of E′′, the

BDD package can quickly resurrect E′′. If death row has been cleared by garbage collection, then the BDD

for function X̄ ∧ Ȳ ∧ Z̄ must be recreated.

Furthermore, though not shown in this simple example, a similar effect may occur even without

repeated tuples. If Ω from prior iterations of the trace creation loop contained sub-BDDs that would be useful
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for future Ω′s, they too may be garbage collected and thus have to be recreated.

The garbage collection process is triggered when system memory is running low, or when the amount

of garbage reaches a threshold set by the BDD package. This threshold is generally tuned to balance garbage

collection time and frequency. If the working set of trace-BDD creation is less than the threshold for garbage

collection, then the results of many BDD operations will be cached in death row and in the operation cache.

However, if the working set size of BDD creation is larger than this threshold, the BDD will free the nodes

on death row. Furthermore, if the working set size of the BDD continues to grow throughout trace-BDD

creation, then garbage collection will occur more often exacerbating the problem and increasing runtime.

To get an idea of the working set size, we can look at the amount of garbage produced during trace-

BDD construction. Figure 4.6 shows the number of live BDD nodes and the total number of BDD nodes

present at each sample point in a trace compression run with automatic garbage collection enabled (a run

without garbage collection quickly exhausts all system memory) vs. the number of instructions processed in

for the (DIN,DIN) BDD for 164.gzip.

Graphs for trace creation in other SPEC INT benchmarks look similar to 164.gzip. From the graph

we can see that while the number of live nodes is small, the working set size grows quickly (the spikes in

the graph) until automatic garbage collection reclaims the nodes. Because the BDD package must manage

this garbage, the package (1) spends most of its time in garbage collection (see Figure 4.7 for a breakdown

of garbage collection time vs. total trace creation time), and (2) removes the fraction of nodes that could
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accelerate BDD creation during garbage collection.

4.2 ZDD Compressed Traces

ZDDs are a variant of BDDs where the S-deletion compression rule is replaced by the use of the

pD-deletion compression rule. In this section we see that ZDDs provide better compression than BDDs for

trace data, and over 9× faster creation times.

4.2.1 BDDs vs. ZDDs

Zero-suppressed BDDs, or ZDDs, replace the S-deletion rule with a the pD-deletion rule. This rule

states the following:

• If the 1 edge from a node p leads to a zero terminal node and whose 0 edge a child node q, then p is

eliminated and all nodes that lead to p are redirected to q.

Furthermore, ZDDs do not typically implement the inverting arcs optimization, i.e., ZDDs have no

inverting arcs, only plain then and else arcs. To see how this rule change results in a different decision

diagram, consider, once again, the function f(x, y, z) whose binary decision tree was shown in Figure 3.1a.

Figure 3.2 shows the ZDD for this function.

Note, for this function, ZDDs are bad, as most of the values for (x, y, z) cause the function to evaluate

to 1. However, for sparse functions (i.e., those with few 1’s in the range), such as trace data, ZDDs are far

better.

4.2.2 Traces as ZDDs

To see the advantage of ZDDs for trace creation, let us revisit the equation E = X̄ ∧ Ȳ ∧ Z̄ from

Section 4.1. The ZDD, with trace-ZDD and garbage, is shown in Figure 4.8.

ZDD construction does not apply the S-deletion rule, therefore the resulting graph does contain Boolean

don’t - care values. However, if a node’s then arc terminates at the Boolean false value, that node is removed.

In the equation B = X̄ ∧ Ȳ ∧ Z̄ all then arcs terminate at 0, therefore the X , Y and Z nodes are removed,
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Figure 4.7: Break-down of Trace Compression time and Garbage Collection time for select SPEC INT
benchmarks.
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Figure 4.9: A ZDD for X ∧ Ȳ ∧ Z̄

leaving a very small ZDD. We can now construct the trace ZDD for the equation E′ = X ∧ Ȳ ∧ Z̄, as shown

in Figure 4.9.

The ZDD for E′ = X ∧ Ȳ ∧ Z̄ now contains a node for X . Notice X is a boolean don’t-care, but the

BDD don’t-care reduction rule has been replaced by the ZDD’s zero-suppression rule. Therefore X is not

removed and the then and else arcs point to the same node.

Figure 4.10 shows the state of the trace ZDD after the addition of E′. Notice how little garbage is

produced after this addition. Now, like the example from Section 4.1, we can add the functionE′′ = X̄∧Ȳ ∧Z̄,

where E′′ is equal to E. Like trace-BDD creation, the efficiency of this final step will depend if garbage

collection has occurred between the creation of E, E′, and the trace BDD. However, the ZDD creation of this

trace ZDD produced less garbage than the BDD, therefore it is less likely to invoke garbage collection.

In both functions (X̄ ∧ Ȳ ∧ Z̄) and (X ∧ Ȳ ∧ Z̄) most then arcs terminate at the false, or constant

zero node. Note that the trace representation method described in Section 4.1 uses nodes that with zero

terminating arcs to represent the binary 0 in a trace. Therefore, as long as the binary representation of such

trace data contains many zeros, and is therefore sparse, ZDDs can achieve good compression. In fact, ZDDs

have been found achieve better compression levels than BDDs for sets of combinations, as long as the data

remains sparse [43].

Figure 4.12, as well as Table 4.1, shows that for same set of traces studied in the work in [78] ZDDs
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achieve approximately 25% better compression. Figure 4.12 shows the number of nodes required to represent

the BDDs required for various trace analyses and visualizations. The data is for 250 million instruction traces

from the SPEC INT 2000 benchmark suite.

4.2.3 ZDD Variable Order, Visualization, and Analysis

It is important to note that ZDD and BDD size can vary significantly depending on the choice variable

order. Furthermore, the choice of the best variable order for a ZDD may not be the same as the best order for

the equivalent BDD. This can be problematic, as discussed in Section 4.3, as certain visualization algorithms

depend on the variable order in the ZDD. Fortunately, Lhoták et. al. found that in many cases the best BDD

variable order is also the best ZDD variable order [62]. Lhoták et. al. also show that it is trivial to convert any

BDD-based program analysis into a ZDD-based analysis. Applying Lhoták et. al.’s insight and the concept

of BDD-encoded dynamic traces [75], all the standard analyses can also be applied to ZDD compressed

traces. The one non-trivial algorithm is the trace visualization algorithm used by the ParaMeter tool [78].

However, Section 4.3 shows how to adapt this algorithm used for ZDDs.

4.2.4 ZDD Compression Time

BDD compression time may increase as node count decreases [77]. However, the ZDD unique table

growth in Figure 4.13 (compared to Figure 4.6) shows that far less garbage is produced during trace-ZDD

creation. Because there is far less garbage produced, the ZDD-based trace compressor spends far less time

collecting garbage. Figure 4.14 compares the amount of time required for garbage collection for ZDD and

BDD encoded traces for the set of trace data used by ParaMeter [78]. These figures are also presented in

Table 4.2. Notice that the ZDD-based code spends far less time collecting garbage.

Now that we know that ZDDs have a small working set size and that the amount of garbage produced

stays almost flat during trace-ZDD creation, it is possible to further accelerate ZDD trace creation by adjusting

the size of the unique table so that it will contain the working set of the trace-ZDD.

In Figure 4.15, and Table 4.3, we can see the time, in seconds, required to encode 250 million trace

instructions into a ZDD compared to the time required by BDDs. In this figure, the size of the unique table
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(a) DIN vs RDY

Benchmark ZDD BDD
164.gzip 14776031 20191795
175.vpr 26758473 39488720
176.gcc 47191021 65452369
181.mcf 13371337 18857151

186.crafty 1426447 1989019
197.parser 20298664 28928181

252.eon 13438978 19243812
253.perlbmk 15447265 22507110

254.gap 18167754 24067457
255.vortex 193184 260701
256.bzip2 101730 138353
300.twolf 26470707 36674682

(b) DIN vs SIN

Benchmark ZDD BDD
164.gzip 2395329 2954172
175.vpr 6220387 8094630
176.gcc 16477762 22851246
181.mcf 4166872 5302426

186.crafty 664726 944032
197.parser 4346929 5561810

252.eon 5758390 8175031
253.perlbmk 2728992 3490785

254.gap 3563179 4998176
255.vortex 140930 212049
256.bzip2 61088 89025
300.twolf 5912991 7515602

(c) DIN vs DIN

Benchmark ZDD BDD
164.gzip 22014614 28903561
175.vpr 27382836 41901557
176.gcc 51666471 76472039
181.mcf 5669206 8109996

186.crafty 1438765 2081447
197.parser 25075154 35929906

252.eon 7925540 12075596
253.perlbmk 10525806 15667727

254.gap 13014623 17960509
255.vortex 226433 312175
256.bzip2 113627 157461
300.twolf 21568405 34202383

Full benchmark trace, benchmark ran to completion.

Table 4.1: BDD vs ZDD Node Count
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(a) DIN vs RDY

Benchmark ZDD BDD
164.gzip 6149 34744
175.vpr 9395 60352
176.gcc 18260 86119
181.mcf 4970 33083

186.crafty 69 505
197.parser 7881 51172

252.eon 6478 46865
253.perlbmk 6417 41291

254.gap 5232 34420
255.vortex 1 10
256.bzip2 14 97
300.twolf 8511 51914

(b) DIN vs SIN

Benchmark ZDD BDD
164.gzip 20522 92132
175.vpr 18718 114093
176.gcc 47518 201188
181.mcf 7704 63987

186.crafty 143 1196
197.parser 20720 114329

252.eon 10218 82897
253.perlbmk 9549 68938

254.gap 11944 75353
255.vortex 3 19
256.bzip2 38 216
300.twolf 13663 100911

(c) DIN vs DIN

Benchmark ZDD BDD
164.gzip 1964 12410
175.vpr 3879 30428
176.gcc 7184 44513
181.mcf 3447 26368

186.crafty 69 262
197.parser 3042 28573

252.eon 4001 32793
253.perlbmk 2298 21147

254.gap 2547 24172
255.vortex 2 9
256.bzip2 18 90
300.twolf 3315 31596

Full benchmark trace, benchmark ran to completion.

Table 4.2: BDD vs ZDD Garbage Collection Time (Seconds)
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Figure 4.13: ZDD Total and Live Nodes

was manually increased to be initially 100x the normal size for both BDD and ZDD based creation. Note

that because BDDs generate so much garbage, their working set size is much larger than available RAM,

meaning that they gain little benefit from the 100x increase in table size. ZDDs on the other hand are much

faster because the larger unique table can fit almost the entire working set of useful BDD nodes, and garbage

does not cause these nodes to be reaped from death row and the operation cache.

4.3 ZDD Dependence Visualization

Section 4.2 described how to trivially extend BDD-based trace analysis to ZDDs by leveraging prior

work. The visualization scheme used by ParaMeter allows interactive identification, analysis, and extraction

of parallelism based on BDD-compressed traces [78]. However, this visualization algorithm is specific to

BDDs. Given the promise of this approach, we show that it is possible to apply the same with techniques on

ZDDs with only slight modifications.

4.3.1 DINxRDY Visualization

The ParaMeter tool, used throughout this thesis, creates a visualization based on the DINxRDY plot,

originally introduced by Postiff et. al. [72]. An example DINxRDY plot is shown in Figure 3.6.

DINxRDY plots can show potential regions of parallelism as follows (as first described by Iyer et.

al. [44]). Lines in a DINxRDY plot that run from the lower-left to upper right form dependence chains of
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(a) DIN vs RDY

Benchmark ZDD BDD
164.gzip 11487 61046
175.vpr 15699 87107
176.gcc 24612 116137
181.mcf 9995 57038

186.crafty 219 1495
197.parser 13392 79809

252.eon 11817 73301
253.perlbmk 11773 64993

254.gap 10145 59557
255.vortex 5 25
256.bzip2 50 469
300.twolf 14125 77106

(b) DIN vs SIN

Benchmark ZDD BDD
164.gzip 6100 37454
175.vpr 10532 55314
176.gcc 14015 76713
181.mcf 8974 48328

186.crafty 268 1385
197.parser 9214 52987

252.eon 10503 56826
253.perlbmk 7779 44185

254.gap 8013 48764
255.vortex 7 25
256.bzip2 71 526
300.twolf 9558 56593

(c) DIN vs DIN

Benchmark ZDD BDD
164.gzip 33581 156663
175.vpr 34234 178788
176.gcc 64607 276295
181.mcf 21517 121063

186.crafty 521 3711
197.parser 35717 178564

252.eon 24280 147433
253.perlbmk 21072 125391

254.gap 25234 143287
255.vortex 10 61
256.bzip2 132 1099
300.twolf 27167 162679

Full benchmark trace, benchmark ran to completion.

Table 4.3: BDD vs ZDD Creation Time (Seconds)
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Figure 4.16: Sample partial quad-tree regions superimposed a DINxRDY plot of SPEC INT 2000 benchmark
254.gap. (Not to scale)

relatively nearby instructions [44]. Iyer et. al. found that diagonal lines with overlapping x-extents could

potentially represent regions of code that have the potential to be parallelized (circled in the Figure 3.6).

DINxRDY plots can be used to find and extract parallelism by locating a region in a DINxRDY plot with

overlapping x-extents in the 175.vpr benchmark [78]. Using classic program analyses applied to traces, this

example extracted both data and pipeline parallelism from the benchmark.

4.3.2 Extended Visualization Algorithm

It is possible to generate visualizations from trace-BDDs in milliseconds by treating the BDD structure

like a quad-tree [78]. To understand this algorithm, consider Figures 4.16 and 4.17.

In graphics, a quad-tree decomposes two-dimensional image data into hierarchical regions. Figure 4.17

shows a quad tree for the DINxRDY graph shown in Figure 4.16. The region outlined on Figure 4.16

represents its decomposition, where node Ni corresponds to the region i in the figure.

The visualization algorithm used by ParaMeter is straightforward. Under the variable ordering used

in this work, if a BDD is traversed like a tree, then the even levels correspond to bisecting each region

horizontally, and the odd levels correspond to bisecting each region vertically. Thus traversing two levels of

the BDD corresponds to traversing a single level of the corresponding quad tree. However, since BDDs use

the S-deletion rule to eliminate nodes, this algorithm must account for eliminated nodes. Since ZDDs use a



50
N
0

N
1

N
2

N
3

N
4

N
2.1

N
2.2

N
2.3

N
2.4

N
3.1

N
3.2

N
3.3

N
3.4

N
4.1

N
4.2

N
4.3

N
4.4

Non-empty sub-trees

Figure 4.17: Sample partial quad-tree for regions in Figure 4.16

pD-deletion rule, the algorithm for BDDs applies to ZDDs with only a change to how missing levels in the

ZDD traversal are handled and what to do when the terminal state is reached.

Recall that the S-deletion rule removes nodes from a BDD when both the 1 and 0 outgoing branches

lead to the same child node. The quad-tree graphing algorithm must detect removed BDD nodes before

graphing the extracted data. For example, consider the indicator function (X̄ ∧ Ȳ ∧ Z̄)∨ (X ∧ Ȳ ∧ Z̄). This

function represents the set of two numbers {000, 100}. In the BDD for this function, shown in Figure 4.4

the node for X was removed because it is a boolean don’t care. Thus, the algorithm used by ParaMeter has

to virtually traverse the graph shown in Figure 4.18 instead. To do this, ParaMeter detects that a variable

was skipped during traversal and then orchestrates its traversal to virtually traverse outgoing arcs from the

removed node, which is shown in grey. If a traversal through the BDD reveals many removed nodes, the

number of new arcs grows exponentially in the number of don’t care values, however, ParaMeter implements

a number of optimizations to terminate traversals early, limiting the exponential explosion.

To adapt this algorithm to ZDDs we must understand how to deal with missing nodes. In practice, the

final algorithm is simpler than that for BDDs because the pD-reduction rule does not have to be undone like

the S-deletion rule.

In Figure 4.19 we can see the ZDD for the function (X̄ ∧ Ȳ ∧ Z̄)∨ (X ∧ Ȳ ∧ Z̄) with removed nodes

also highlighted in grey. Notice that, as per the pD-deletion rule, all of the removed nodes have then branches

leading to the 0 terminal case. Therefore, any time the graphing algorithm detects a removed node, it knows

that there is no need to traverse the half of the region where the variable of the missing node is true, and thus

needs to do no work. For the half where the variable is false, the algorithm virtually traverses the else-edge of
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Figure 4.20: ZDD and BDD Visualization Time for SPEC INT 2000 benchmarks

the missing node, just as the BDD-based algorithm traversed both the then and the else edges. Accordingly,

Figure 4.20 shows ZDD rendering is slightly faster than BDDs. Data is from a 2.8 GHz Intel Core i7 with

12 GB of RAM running Linux.



Chapter 5

ZDD-based Dynamic Trace Slicing and Chopping

The pseudo code in Figure 5.1 shows how to compute the reverse slice of an instruction with a

BDD-encoded DIN d [75]. In this pseudo-code, e is given as the indicator function for the set of edges in

the data dependence graph, Id is given as the indicator function for the instruction with DIN d, and s is the

indicator function for the reverse slice that is computed [75]. The variables in indicator function Id are in the

vector d1, the variables in s are also in vector d1, and the variables in e are (d1,d2). The function rename

takes a function s and renames the variables from set d2 to the corresponding variables in set d1.

Slicing depends on the use of existential quantification to remove variables. In the pseudo code

in Figure 5.1 the ∃ function uses existential quantification to remove the variables e′ from the dynamic

instructions in d2. When using BDDs, variables that are removed are interpreted as boolean don’t care values.

However, variables that are removed from a ZDD are interpreted as zero values.

Thus, in order to perform operations that depend on don’t care values, an additional step is taken to

insert don’t care values. The slicing algorithm shown in Figure 5.3 uses the function yDC(d) to insert don’t

function reverse slice bdd(e,Id)
s := Id
s = rename(d1,d2, s)
e′ := e ∧ s
s := ∃d2.e′

return s

Figure 5.1: Computing a Reverse Slice using BDDs. [75]
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function reverse slice zdd(e,Id)
s := Id
s = rename(d1,d2, s)
s = yDC(s)
e′ := e ∗ s
s := ∃d2.e′

return s

Figure 5.2: Computing a Reverse Slice using ZDD Unate Product.

care values in the y variable positions. This function, given the variable positions for the tuple (x, y) and an

identity function d, will return the ZDD dot product [65] of the function d and the universal set of bits for

tuple variable y. A similar function, xDC(s), is used for forward slicing.

Let C and D be two trace encoded ZDDs. The unate product of two trace ZDDs is defined as

0 if ∃x(x ∈ C ∪D and x′ ∈ C ∪D), otherwise C ∪D [37].

Note that the If-Then-Else (ITE) operation can be used to create a logic conjunction. For example,

C ∧ D is logically equivalent to if(C) then(D) else 0. If x is a literal, for ∃x ∈ C ∧ ∃x ∈ D|. If

x 6∈ C ∨ x 6∈ D|0. Missing variables are treated like 0, and not like a Boolean don’t care. Thus, the ITE,

using bit vectors encoded as ZDDs, captures the logic and behavior used in slicing.

When ZDD functions are unate, the ZDD intersection operation does not take the place of the logic

conjunction.

5.1 ZDD Slice Performance

It is possible for a DDG slice to iterate billions of times before reaching a fixed point. Therefore, even

a small decrease in slice time can be multiplied into substantial overall increase in performance. This section

compares the slicing performance for the ITE and the Intersect techniques. The product slicing algorithm

fails to complete in a reasonable amount of time (one week) for these slicing tests. In fact, a product based

slice fails for DDGs with only 1 million nodes.
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function ITE slice zdd(e,Id)
I ′d = rename(d1,d2, I ′d)
e′ = yDC(e)
s := ite(I ′d, e

′, zero)
s′ := ∃d2.s
return s′

Figure 5.3: Computing an Reverse Slice using ZDD ITE.

function reverse slice zdd(e,Id)
s := Id
s = rename(d1,d2, s)
s = yDC(s)
e′ := e ∩ s
s := ∃d2.e′

return s

Figure 5.4: Computing an Reverse Slice using ZDD Intersection.
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5.1.1 Experimental Setup

Each ZDD slicing technique was tested using a 2.6 GHz Xeon server with 32 GB of RAM. Each slice

starts from an initial set of 10, 100, 1000, or 10000 randomly selected instructions from a set of 1 billion

instructions. Each slicing operation was repeated six to ten times; the final results in Figure 5.1.1 shows the

arithmetic mean.

These results show that for most operations ZDD slicing via intersection performs better than the ITE

method. Therefore, other analyses in this thesis that depend on a program slice will use intersection. The

intersection technique still requires more steps than the comparable BDD slice. Analyses in this thesis that

use slicing would likely benefit from a unification of operations used for ZDD slicing, similar to the work by

Lhotak et. al. with relational operations used for points-to analysis [62].
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Chapter 6

Irrelevant Component Elimination

Irrelevant component elimination was used in prior works for removing components from high-

level program abstractions [23]. For this thesis, a component is the dependency relation DINi → DINd,

which maps an instruction DINi to instructions, DINd, that produce a value DINi required for correct

execution. The DINi → DINd relation, which also forms a dynamic dependence graph, is stored in sets of

{DINi, DINd}.

Irrelevant instruction elimination removes instructions from a set d1 whose forward slice does not

reach any instruction in the set d2. Defining the members of the set d2 will alter the outcome of an analysis.

For example, din-ready analysis creates the set d2 by computing the set of instructions in the final RDY

position in the set {DIN,RDY }.

The whole-trace irrelevant instruction elimination adds an additional set to d2. This set contains

any dynamic instruction that produces an output value by invoking a Linux system call. An instruction is

considered irrelevant if:

• An instructions from a set d1 whose forward slice does not reach any instruction in the set of

instructions in the final RDY position in the set {DIN,RDY }.

• An instructions from a set d1 whose forward slice does not reach any instruction in the set of

instructions that produce an output through a Linux system call, such as fwrite.

It is possible for instructions removed by irrelevant instruction elimination to be the source of useful

output. However, irrelevant instruction captures the notion of program execution for cases when a program
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function dead ready slice(eddg,edinrdy,Id)
ed := yDC(Id) ∪ e
ef := iter slice zdd(e, ed, forward edge slice, 0)
topReady = get tuple top y(edinrdy)
Itopready = build tuple(topReady)
srev := iter slice zdd(Itopready, ef , reverse slice zdd, 0)
sdead := Id \ srev
enotDead := Ω \ sdead
e := edinrdy ∪ enotdead
return e

Figure 6.1: Irrelevant Instruction Dependency Elimination Pseudo Code

first performs a series of tasks while producing output to the user using system calls, or outputs values to

the user at the end of the program execution using some other means. A future extension to dead-ready

analysis could allowing the user to define where valuable output takes place in the source code by using

the {DIN,SIN} edge set. The static instruction number contained in the {DIN,SIN} set can be used to

lookup source code [78].

Figure 6.1 shows pseudo-code for irrelevant instruction dependency slice algorithm. This algorithm

contains new functions get tuple top y, build tuple, and the set Ω. The function get tuple top y returns

the value of the largest value of the y variable position, as an integer. The function build tuple builds a

ZDD for the identity function as ItopReady. Ω contains a ZDD that represents the identity function for all

possible bit combinations in our universe. Thus, in order to create the ZDD universal set Ω, the dead-ready

computation must know the maximum number of variables that could exist. ParaMeter defines this number to

be 128 in order to represent two 64 bit tuple members [76].

Additional results presented in this chapter compare irrelevant instruction dependencies for programs

compiled using the -O0 and -O2 optimization settings in the gcc 4.2.4 compiler. Comparing an optimized

binary to a binary without static optimization presents a clearer view of the number of instructions that are

irrelevant. Furthermore, this technique can be used to evaluate the effectiveness of a compiler optimization.

Figure 6.17 compares the absolute number of removed dependencies from -O0 and -O2.

Figure 6.16 presents the difference in the irrelevant dependence count from -O0 to -O2. Note that



60

0

1 · 106

2 · 106

3 · 106

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.2: 400.perlbench Instruction Dependencies Removed per Iteration

0

1 · 108

2 · 108

3 · 108

4 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80 100

Slice Iteration

O2
O0

Figure 6.3: 401.bzip2 Instruction Dependencies Removed per Iteration

0

5 · 107

1 · 108

1.5 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.4: 403.gcc Instruction Dependencies Removed per Iteration



61

0

5 · 107

1 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.5: 429.mcf Instruction Dependencies Removed per Iteration

0

5 · 107

1 · 108

1.5 · 108

2 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80 100

Slice Iteration

O2
O0

Figure 6.6: 445.gobmk Instruction Dependencies Removed per Iteration

0

5 · 107

1 · 108

1.5 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 25 50 75 100

Slice Iteration

O2
O0

Figure 6.7: 456.hmmer Instruction Dependencies Removed per Iteration



62

0

1 · 108

2 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.8: 458.sjeng Instruction Dependencies Removed per Iteration

0

5 · 107

1 · 108

1.5 · 108

2 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.9: 471.omnetpp Instruction Dependencies Removed per Iteration

0

1 · 108

2 · 108

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80

Slice Iteration

O2
O0

Figure 6.10: 473.astar Instruction Dependencies Removed per Iteration



63

0

2.5 · 107

5 · 107

7.5 · 107

R
em

ov
ed

In
st
ru
ct
io
n
s

0 20 40 60 80 100

Slice Iteration

O2
O0

Figure 6.11: 483.xalancbmk Instruction Dependencies Removed per Iteration

0.0

5.0 ·108

1.0 ·109

1.5 ·109

Ir
re
le
v
an
t
In
st
ru
ct
io
n
C
o
u
n
t

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm
k

45
6.
hm
m
er

45
8.
sj
en
g

46
4.
h2
64
re
f

47
1.
om
ne
tp
p

47
3.
as
ta
r

48
3.
xa
la
nc
bm
k

Benchmark

Figure 6.12: Total Irrelevant Instruction Dependencies Count for GCC -O0

0.0

2.5 ·108

5.0 ·108

7.5 ·108

1.0 ·109

Ir
re
le
v
an
t
D
ep
en
d
en
ce

C
o
u
n
t

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm
k

45
6.
hm
m
er

45
8.
sj
en
g

46
4.
h2
64
re
f

47
1.
om
ne
tp
p

47
3.
as
ta
r

48
3.
xa
la
nc
bm
k

Benchmark

Figure 6.13: Total Irrelevant Instruction Dependencies Count for GCC -O2



64

0

20

40

60

80

Ir
re
le
v
an
t
D
ep
en
d
en
ce

P
er
ce
n
t

40
0.
pe
rlb
en
ch

40
3.
gc
c

42
9.
m
cf

44
5.
go
bm
k

45
8.
sj
en
g

46
4.
h2
64
re
f

47
1.
om
ne
tp
p

47
3.
as
ta
r

48
3.
xa
la
nc
bm
k

Benchmark
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Figure 6.17: Total Irrelevant Instruction Dependence Diff -O0 to -O2

static compiler techniques are able to remove an average of 258,791,915 more instruction dependencies in

the -O0 binary trace than the -O2 trace.

6.1 Visualization Filtering

Irrelevant instruction dependence elimination uses a ZDD-based DDG chop to find instructions that

have no obvious impact on program output. The DDG chop can use any two arbitrary sets of instructions.

DINxRDY time plots can help identify potential parallel tasks [78]. However, some programs produce

DINxRDY plots are visually crowded, and thus it can be difficult to identify divergent dynamic decencies

chains that are candidates for further parallelization efforts.

This section chops from hot-code to final ready time instructions, all instructions to final ready time,

as well as the irrelevant instruction chop, implemented as visualization filters in the ParaMeter DINxRDY

plot. Furthermore, this section presents a case study that applies each filter to the of the DINxRDY plot of

254.gap from the SPEC 2000 integer benchmark.

6.1.1 Experimental Setup

The visualizations and analyses performed in the study presented in this section were performed using

a 1.0 to 1.2 GHz Opteron machine with 17 to 36 GB of memory using the Amazon EC2 [9]. The traces used
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in this case study 1 billion dynamic instructions of the 254.gap benchmark using the first reference input.

Figure 6.18 shows the DINxRDY plot produced by ParaMeter for 254.gap.

Note that this figures shows two regions in the DINxRDY plot that may correspond to program phases.

The first region, labeled α contains a series of instruction chains extending from the bottom-left corner of the

DINxRDY plot. Note that these chains are regions of potential parallel execution [78]. The second section, β

contains a sharp increase in the slope of the DINxRDY line towards the right side of the plot. The increase in

slope is a result of in increase in the number of dynamic instructions that may execute at that same ready time.

6.1.2 Ready Filter

It is possible to only include the set of instructions located at the final ready time for the d2 set used by

the chopping algorithm. This method, called the Dead-Ready filter, performs irrelevant instruction elimination

is used to filter a part of the α region of 254.gap. The selection to be filtered is shown in Figure 6.19.

The filtered visualization is shown in Figure 6.20. Note that very few instructions have a forward slice

that extends to the end of the DDG. ParaMeter also contains functions necessary to examine source code

from a DINxRDY plot [78]. The source code responsible for the region selected for this test includes lines

that produced Sum, Diff, and Product functions in the source code file eval.c. The results from these source

code lines is then printed and never read again, thus ending the forward chain of dependence.

The second test of dead-ready elimination involves the region in Figure 6.18 labeled β. The selected

region of β can be found in Figure 6.21

The results of the dead-ready filter for selected region in β show very few instructions removed, as can

be seen in Figure 6.22. Thus, almost all instructions contain a forward slice that reaches to the last RDY

time. An inspection of the source code responsible for the instructions in β found that almost all instructions

came from the 254.gap memory management system in gasman.c, including the functions InitGasMan and

NewBag. These instructions generate memory locations that are used for future operations, and contain a

long forward slice until the last RDY time.
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Figure 6.23: 254.gap Filtered with Irrelevant Component Elimination

6.1.3 Irrelevant Instruction Filter

Irrelevant instruction dependence elimination creates a new edge set ef using a forward slice of the

DDG e. Then perform a reverse slice from the set of dynamic instructions collected at the last iteration of the

forward slice, d1. The reverse slice is performed through the set e. It is possible to find the set of instructions

whose influence dies immediately by reducing the number of forward slice iterations to one.

The (DIN,RDY ) result set created by irrelevant instruction analysis is then removed from the

(DIN,RDY ) set used by ParaMeter for visualization. This filter was applied to the entire plot of 1 billion

instructions from 254.gap. The resulting plot, shown in Figure 6.23, has 72140005 (DIN,RDY ) fewer edges

than the original plot. However, the visualization shown in Figure 6.23 and the original plot (Figure 6.18)

appear almost identical.

6.1.4 Dead-Hot Filter

Figure 6.24 contains the DINxRDY plot for 254.gap with hot code highlighted in red. The Dead-Hot

filtering method considers only the top percentage of hot code as the initial starting point for dead-ready

analysis. For the case study, the hotness threshold was initially set to 25%, then reduced by increments of one
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Figure 6.24: 254.gap with Highlighted Hot Code

until the result from dead-ready elimination was greater than the empty set.

Using dead-hot elimination as a visual filter for the entire plot of 254.gap revealed 1) The top 57%

of hot codes are eliminated through dead-ready analysis, and 2) the top 58% of hot codes requires days of

dead-ready analysis computation to converge. Thus, this implementation of dead-hot allows the user to select

a smaller region of code to begin dead-hot analysis. The top 25% of the hottest codes in that region were than

used in dead-hot elimination. Dead-ready analysis was unable to remove many instructions from region β,

thus we used that region for this section of the case study. The selected region can be seen in Figure 6.25.

The selected region of β contained 2123492 dynamic instructions. The top 25% of the hot code from

this region contains 1068749 dynamic instructions. However, Figure 6.26 and Figure 6.26 show that the

bottom 75% of the hot code is responsible for almost all of the DINxRDY visualization of region β.

The dead-ready analysis produced 200376 dynamic instructions for this example. The total time for

the analysis was approximately 20 Minutes. The final filtered image is shown in Figure 6.27.
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-Selected Region β

Figure 6.25: Selected Instructions for Dead-Hot Test

(a) Top 25% of Hot Code Region β (b) Bottom 75% of Hot Code Region β

Figure 6.26: 254.gap Region β
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-Filtered Region β

Figure 6.27: Dead-Hot Filtered Region



Chapter 7

Coarse-Grained Thread Level Parallelism

Instruction level parallelism (ILP) limitations have forced processor manufacturers to develop multi-

core platforms with the expectation that programs will be able to exploit thread level parallelism (TLP). An

effective, popular, and widely studied mechanism for automatically exploiting parallelism is to dynamically

and speculatively thread groups of instructions [15, 20, 25, 64, 73, 79, 87, 90, 93, 97, 101]. Recent advances

in this thread level speculation (TLS) can parallelize execute over 90% of some codes [64]. However, TLS

predictor accuracy limits TLS to fine-grained or loop-level TLP [15, 64, 79, 90, 98].

This thesis explores potential coarse grain TLP that may be exploitable in conjunction with TLS

and ILP techniques. In particular, the thesis examines the SPEC INT 2006 benchmark suite, looking for

parallelism with a granularity of thousands of dynamic instructions, and is not restricted to loop-level

TLP. Because the parallelism explored here is coarse grained, it may be able to work synergistically with

techniques designed for a smaller granularity, such as TLS. Coarse-grained TLP is located using a dynamic

trace visualization created by the ParaMeter tool [78]. This technique, which is discussed in Section 7.1,

generates a visualization of program execution, called a DINxRDY (dynamic instruction number by ready

time) plot. This plot visually shows potential coarse grain TLP as lines that overlap on the x-axis.

Potential parallel regions found within DINxRDY plots are further analyzed to expose dependence

relationships. Inter-region dependence conflicts, discussed in Section 7.4, are found by dynamic dependence

graph (DDG) slicing [4,5,30,52]. Slicing DDGs that contain a large number of instructions (e.g. billions) can

take weeks [5,104]. To efficiently, and precisely, explore the dependency relationships between two regions of

code this thesis extends the DDG chop to use the ZDD-compressed trace format. The dynamic chop [36, 54]
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is often faster than an intersection of a forward and reverse slice and requires no loss of precision.

The thesis shows that on average, 7% of instructions may be extracted as coarse-grained parallelism,

and in some cases, as much as 44% of instructions may be extracted as coarse-grained TLP.

7.1 TLP Visualization with ParaMeter

The ParaMeter tool [78], used for analysis and visualization in this thesis, uses instruction-level

dynamic trace information for program visualization. Precise dynamic trace information can quickly grow

in size and must be compressed or abstracted. ParaMeter uses zero suppressed binary decision diagrams

to create a trace representation that provides compression, but is analyzable in its compressed form. Other

tools, such as SD3 [50], use also use analyzable compressed forms, such as stride compression or hierarchical

grammars [58], for dynamic trace representation. Stride compressors naturally find regions of parallelism that

exist inside loops. This thesis presents a study of thread level parallelism that includes potential opportunities

for parallelism without knowledge program structure, including loops.

ParaMeter generates plots of (DIN,RDY ) as the primary form of visualization [78]. Dependence

chains, or DDCs, form lines in the DINxRDY time plot. DDCs that overlap in the DINxRDY plot are targets

for parallel thread extraction Figure 7.1 shows a sample (DIN,RDY ) visualization of 175.vpr used in a case

study of visualization of program parallelism [78]. Note the lines labeled α, β, and γ overlap on the x-axis,

which represents the RDY time value. If the lines in the (DIN,RDY ) plot correspond to distinct regions

of code, and they overlap on the RDY axis, the source code has the potential to be parallelized. A single

iteration of a reverse dynamic program slicing was used in this work to find the dependence relationship

between α, β, and γ [78]. The regions α and β were found to be completely independent areas in the source

code, and were threaded using standard pthreads. The resulting code executed all test benchmark inputs

without error.

7.2 Region Selection

The human brain has a keen ability identify patterns in images [13]. Pattern recognition is used by

ParaMeter to locate regions within DINxRDY visualizations that contain potential thread level parallelism,
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Figure 7.1: Overview DINxRDY Plot of 175.vpr

such as regions shown in Figure 7.1. The pattern that often corresponds to a good potential TLP region may

be described informally as follows:

(1) The region should overlap another region on the RDY time axis

(2) At a given RDY time location, the region should not extend over the DIN axis

The first point reiterates the idea that two DDCs that overlap on the READY time axis can potentially

be extracted as TLP. The second point addresses regions that contain a large amount of ILP. The instructions

that form this ILP in a bad region often originates from many static instructions from an unrelated locations

in the source code, and are difficult to compose as a thread.

The pattern may be quantified by examining the selected regions and the static code. Static instruction

numbers, or SINs, connect the dynamic trace information to the program source. However, sets of DIN,SIN

tuples also can characterize hard-to-parallelize regions. A good region can be clustered into nearly contiguous

strides of static instructions. The number of resulting clusters should be small.

The description of a good region leaves room for interpretation. First, the distance between static

instructions should be as close to contiguous as possible, with some margin for variable-length instructions.

Second, a cluster is often part of a distinct section in the source code (such as a function), and a region that

encompasses multiple functions may still be parallelizable.

Clusters for this work were found using a standard k-means clustering algorithm. A cluster contains

a set of tuples static instructions, or SINs, and the DINs created by each SIN. A static instruction may be

executed many times within a dynamic trace, thus the DIN,SIN set from a region selected from the DINxRDY
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Figure 7.2: DINxRDY for Bad Region Selection (η)

visualization. The RDY tuple member is removed from the selected set, and the resulting DIN values are

intersected with a DINxSIN tuple set. The clusters are then formed from DIN,SIN tuples. If a DINxRDY

selection requires a large number of clusters to meet this requirement, then the static source code for the

region would be difficult to include in a thread. It is important to note that this technique only requires SIN

values to be contiguous in a cluster, not all SIN values in a given region. This allows good regions to contain

function calls and other forms of branching.

The regions α, β, and γ were found to be part of three distinct areas in source code [78]. Figure 7.2

presents an example of a selected region, region η, that does not contain instructions that would easily be

extracted as TLP. The region β, was identified as easily extractable TLP in prior work [78], can be seen in the

DINxSIN plot shown in Figure 7.3. Only a tiny point, in the upper left corner of the plot for β, deviates from

the line extending across the bottom DIN axis. A DINxSIN plot for η, shown in 7.3, contains a number of

lines that extend over the DIN axis. Each line may be a separate distinguishable section in the source code.

Further, there are a number of points that do not form a line. Thus, composing the region η as a thread, for

TLP, requires each instructions to be removed from their original location in the source code and placed in

this new thread.

The regions selected from the SPEC 2006 INT benchmark suite can be found in Appendix B. The

source code for the selected regions can be found in Appendix F. The source code in Appendix F has been

abstracted to the function level due to the tens of thousands of lines of code, mostly C and C++, included in

these regions. Some regions also contained thousands of functions. This number was reduced by creating

an additional abstraction that truncates functions with similar letters at the beginning of the function name.



78

(a) 175.vpr Good Region Selection β

(b) 175.vpr Bad Region Selection η

Figure 7.3: DINxSIN for Selected Regions
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function iter reverse slice(e,Id)
sold = 0// Empty set
s := Id
stotal := s
while sfull 6= sold
sold := sfull
s := reverse slice bdd(e, s)
stotal := sfull ∪ s

return sfull

Figure 7.5: Computing a Reverse Slice to Convergence using BDDs.

For example, the functions math::round and math::abs may become math::. Functions that required this

additional abstraction are truncated with ..., so our example would become math::.... Note that this truncation

was determined not by the length of the function name, but the breadth of a trie containing the function name;

for this thesis, the breadth limit was set at twenty.

7.3 ZDD Slicing

Dynamic program slicing has been used in prior work to find the source of observed software bugs [4,

5, 30], or to perform points-to analysis [62]. The BDD based slicing algorithm for ParaMeter is shown in

Figure 5.1 [75]. The pseudo code in Figure 5.1 shows how to compute the reverse slice of an instruction with

DIN d [75]. In this pseudo-code, e is the indicator function for the set of edges in the data dependence graph,

Id is the indicator function for the DIN d, and s is the indicator function for the reverse slice that is computed.

The variables in s, as well as variables for indicator function Id, are in the vector d1. The variables in e are

(d1,d2). The function rename takes a function s and renames the variables from set d2 to the corresponding

variables in set d1.

The algorithm in Figure 5.1, located in Chapter 5, can be extended to return the set of indicator

functions for all variables in the reverse slice of d by iterating until a set sfull converges. The pseudo-code

for this function is shown in Figure 7.5.

Program slicing with ZDDs requires modification to the pseudo-code in Figure 7.5 and Figure 5.1.
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function reverse slice zdd(e,Id)
s := Id
s = rename(d1,d2, s)
s = yDC(s)
e′ := e ∩ s
s := ∃d2.e′

return s

Figure 7.6: Computing a Single Reverse Slice using ZDDs.

Slicing often requires the use of existential quantification, shown with the symbol ∃, to remove variables

from a function represented by a ZDD or BDD. A missing variable in the BDD structure is interpreted as a

boolean don’t care value. A variable missing from a ZDD may be interpreted as a zero value or don’t care.

An additional step is taken to insert don’t care values into a ZDD-based function to perform operations that

intersect with don’t care variables. The slicing algorithm shown in Figure 7.6 uses the function yDC(d) to

insert don’t care values in the y variable positions. This function, given the variable positions for the tuple

(x, y) and an identity function d, will return the ZDD dot product [65] of the function d and the universal set

of bits for tuple variable y. A similar function, xDC(s), is used for forward slicing.

The pseudo-code shown in Figure 7.7 performs a union of s with the result of function f until s

converges. Note that comparison is a constant time operation with ZDDs, like BDDs [17].

Iteration of a dynamic dependence graph (DDG) slice until convergence can be O(2n) for both space

and computation, where n is the number instructions being sliced [5, 91]. The worst case O(2n) computation

assumes each slice instruction contains at most two subsets. ZDD-based slicing also requires O(2n) space.

However, ZDD representation often provides adequate compression (better than 10x) [76]. The ZDD-based

slice computation presented in Figure 7.7 computes the slice for both subsets of for a single slice iteration

simultaneously.
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function iter slice zdd(e,Id,f , n)
sold = 0// Empty set
count := 0
s := Id
stotal := s
while ((sfull 6= sold)∧

((n == 0) ∨ (count < n)))
sold := sfull
s := f(e, s)
stotal := sfull ∪ s
count := count+ 1

return sfull

Figure 7.7: Fixed-Point Slice Computation with ZDDs.
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function forward edge slice(e,ed)
s := ∃d2.ed
s = rename(d2,d1, s)
s = xDC(s)
es := e ∩ s
return es

Figure 7.8: Computing a Single Forward Slice using ZDDs.

7.4 ZDD Chopping

Unfortunately, performing a reverse slice of 1 billion dynamic instructions can take days; often the

processes were terminated before completion. The survey presented in this work determines the dependence

relationship of two or more sets of instructions. Therefore, for each instruction region, we can compute the

slice of that region with respect to all other regions. This operation is known as a DDG chop [36, 54].

A ZDD chop is provided two sets of instructions d1 and d2 in the form of the identity functions Id1

and Id2 respectively. The set e contains the edges of the DDG in the form (d1,d2). The tuple (d1,d2) may

labeled as (x, y), in this thesis. In ParaMeter, the set (d1,d2) is also called the (DIN,DIN) set [78]. The

ZDD chop begins by generating the edge set during the forward slice. The new edge set, es, contains the

edges in the DDG e that extend from the first instruction set to the end of the DDG. The pseudo-code for one

iteration of this function is shown in Figure 7.8.

Figure 7.9 contains pseudo-code for producing a ZDD-based DDG chop. An initial edge set ed1

is constructed by intersecting the union of Id1 and the don’t care for the y variable positions with the

edge set e that contains the entire DDG for our trace. The iterator function is this called on the function

forward edge slice to produce the full forward slice of edge values from Id1, which is stored in ef . Finally,

the iterator function is called again using the reverse slice function for the instruction set Id2 using the new

edge set ef . This processes is illustrated in Figure 7.10
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function ZDD Chop(e,Id1,Id2)
s := Id
ed1 := yDC(Id1) ∪ e
ef := iter slice zdd(e, ed1, forward edge slice, 0)
s := iter slice zdd(Id2, ef , reverse slice zdd, 0)
return s

Figure 7.9: ZDD Chop

Figure 7.10: ZDD Chop Illustrated
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Figure 7.11: Fine-Grained from Figure 7.12

7.5 Potential Coarse-Grained Thread Level Parallelism in SPEC INT 2006

This study explores potential coarse-grained thread level parallelism in the SPEC 2006 INT benchmark

suite. Traces were capped at one billion dynamic instructions. The benchmarks 400.perlbench, 403.gcc,

445.go, and 483.xalanchbmk -O2 were traced completely. Traces used for this survey were collected using

64-bit x86 Intel Xeon processors.

7.5.1 Fine-Grained Harmony

The TLP located by the technique presented in this thesis should have a minimum impact on finer-

grained TLP extraction techniques. Therefore, potential TLP detected by the techniques presented in this

thesis will likely work with thread-level speculation or instruction-level parallelism.

Consider the example code presented in Figure 7.12. Lets assume that the functions processDataA()

and processDataB() do not modify the program state to simplify the example. Each call to processDataA()

and processDataB() is independent, therefore TLS could execute all iterations of the loop in processDataA().

It should also be possible to execute all iterations of processDataA() as parallel threads with TLS. This

execution is illustrate in Figure 7.11.

Note that Figure 7.12 also contains course-grained TLP. For example, assume the DINxRDY visualiza-

tion, discussed in Section 7.1 can determine processDataA() and processDataB() do not depend on each

other, but DINxRDY visualization is unable to determine each loop iteration is independent. Thus, DINxRDY
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function potential parallel main()
allLines := read()// Read Lines from File
foreach line in allLines
processDataA(line)

foreach line in allLines
processDataB(line)

Figure 7.12: Potential Parallel Code Example.

visualizations could locate the coarse-grained TLP, but not the fine-grained TLP. In Figure 7.13 illustrates the

execution of coarse-grained TLP from the source code in Figure 7.12.

The course-grained parallelism and fine-grained parallelism can work independently to locate the

parallel execution seen in Figure 7.13 and Figure 7.11, respectively. The combination of two techniques can

extract greater amounts of TLP. Figure 7.14 shows the execution after extracting coarse-grained parallelism

using the DINxRDY visualizations, and executing each thread in a system that contains TLS.

The Figure 7.15 contains the percent of parallelized instructions found in this work and the performance

gained from a TLS system that uses perform control, data dependence, and data value speculation [48].

7.5.2 Compiler Influence

A compiler optimization pass, such as loop unrolling, constant propagation, or constant folding, can

expose opportunities for parallelism. Compiler optimization may also remove potential TLP regions though

dead-code elimination. This thesis examines TLP increases for programs compiled with gcc 4.2.4 using

the -O0 and -O2 flags. The gcc documentation describes -O0 as unoptimized code, and -O2 as “nearly all

supported optimizations that do not involve a space-speed trade-off.”

A difference in potential coarse-grained TLP can be seen in the -O0 and -O2 for all benchmarks. This

thesis will look further at the output found from 401.bzip2 benchmark. The bzip2 application is generally

considered to be highly amenable to TLP optimization through manual high-level software changes [33]. In

Figure 7.18 we can seen that a large amount of potential does TLP exists for in the DINxRDY plot from both

compilation settings. However, Figure 7.18 does show a 12% difference with the -O0 and -O2 compiler
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Figure 7.13: Fine-Grained from Figure 7.12

Figure 7.14: Coarse-and-Fine Grained from Figure 7.12
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure 7.16: 401.bzip2 with Selected Regions

settings for 401.bzip2.

The regions selected as potential TLP can be seen in Figure 7.16. The parallel regions in 401.bzip for

both gcc settings were traced back to source code. Examination of the source code responsible for TLP found

that, while some parallel instructions differed between optimization settings, all enclosing functions were

identical. A list of the functions that contain TLP for both -O0 and -O2 is shown in Figure 7.17. The -O2

compiler optimization setting reduced the number of instructions in each thread, thus reducing the benefit of

parallel execution.

7.5.3 Summary of Potential Coarse-Grained TLP

Figure 7.18 shows the percent of instructions identified as potential coarse-grained parallelism, given

optimistic speculative execution. Optimistic speculative execution ignores all dynamic dependencies. Fig-

ures 7.18 and Figure 7.20 show the percentage of dynamic instructions that may potentially execute in the

same cycle as another instruction. A potential parallel instruction is only allowed to be counted a single

time. The Figure 7.19 shows the maximum number of potential parallel regions that overlap on the READY

axis in the DINxRDY plot. Potential parallel instructions are allowed to be counted twice in Figure 7.19;

the optimistic algorithm would otherwise remove an entire region from the thread count, thus artificially

restricting the optimistic thread count.
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BZ2_blockSort
BZ2_bzCompress
BZ2_bzWrite
BZ2_compressBlock
BZ2_hbAssignCodes
BZ2_hbMakeCodeLengths
add_pair_to_block
bsPutUInt32
bsW
compressStream
copy_input_until_stop
copy_output_until_stop
generateMTFValues
handle_compress
mainGtU
mainQSort3
mainSimpleSort
mainSort
makeMaps_e
mmed3
myfeof
prepare_new_block
sendMTFValues
spec_fread
spec_fwrite
spec_getc
spec_ungetc

Figure 7.17: 401.bzip2 -O0 and -O2 Functions with TLP
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It should also be noted that finding the thread counts in Figures 7.19 and 7.21 can be difficult to calculate.

Fore example, it may be possible to delay the execution of a potential thread to resolve dependencies, and

thus allow for a greater maximum thread count. Therefore, Figures 7.19 and 7.21 should be considered

approximations of the true maximum thread count.

The ZDD-chop is used to calculate interdependent instructions that exist in two or more selected

regions. Figure 7.21 was calculated using the number of overlapping selected regions on the READY time

axis that contain potential parallel instructions. The results in Figure 7.20 and Figure 7.21 remove all

interdependent instructions found in the dynamic trace, and also do not allow duplicate parallel instructions.

This work further explores the potential coarse-grained TLP found in the benchmarks 445.gobmk,

400.perlbench, and 462.libquantum. The DINxRDY visualizations and potential coarse-grained TLP for

456.hmmer and 471.omnetpp have properties that closely resemble 400.perlbench. The benchmarks 401.bzip2,

464.h264ref, and 445.gobmk produce visualizations and potential coarse-grained TLP with similar traits.

Visualizations and potential coarse-grained TLP generated by 458.sjeng and 473.astar have features that

closely resemble 462.libquantum.

7.5.4 Potential Coarse-Grained TLP in 400.perlbench

Less than 1% of the dynamic instructions in the benchmarks 400.perlbench, 456.hmmer, and 471.om-

netpp were identified as potential coarse-grained TLP. The benchmark 400.perlbench contains two regions

with potential TLP, and each region contains two potential threads. The Figure 7.23 shows the DINxRDY

plot of 400.perlbench -O0 and -O2 with potential TLP highlighted. The DINxRDY plots in Figure B.1 show

few dynamic dependence chains that overlap on the horizontal RDY axis.

Figure 7.23 corresponds to source code that performs file I/O, lexing, parsing, and other functions in

the Perl interpreter. Each region for 400.perlbench contain threads with similar source code. For example, the

first thread in region 1 and region 2 contain instructions for lexing, parsing and IO (Perl yylex, Perl yyparse).

The second thread in region 1 and 2 both contain functions for the Perl-to-C interpreter(S new xpvbm). Thus,

it may be possible for lexing and parsing operations to work in parallel with other instructions in the Perl

interpreter, perhaps as a software pipelines [7, 32]. However, the two regions from 400.perlbench likely
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Figure 7.18: Potential Coarse-Grained TLP
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Figure 7.19: Optimistic Thread Count
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Figure 7.20: Potential TLP W/0 Interdependent Instructions
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Figure 7.21: Maximum Threads W/0 Interdependent Instructions

Figure 7.22: 400.perlbench TLP with Synchronization
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure 7.23: 400.perlbench with Selected Potential TLP
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must execute in sequence. Therefore, 400.perlbench may contain two stages with potential coarse-grained

TLP, and synchronization between stages. Figure 7.22 illustrates the possible interaction between potential

coarse-grained TLP in 400.perlbench.

The Figure 7.24 and Figure 7.25 contain an abridged source code list for potential threads, with parallel

threads grouped into regions. For example, Region 1 contains two threads that could potentially execute in

parallel.

The DINxRDY visualization and source code for the benchmarks 456.hmmer and 471.omnetpp have

properties similar to 400.perlbench.

7.5.5 Potential Coarse-Grained TLP in 445.gobmk

The benchmark 445.gobmk contains the greatest percentage of potential coarse-grained parallelism.

Figures 7.18 and 7.20 show that TLP in 445.gobmk is reduced by 29% when inter-region instruction

dependencies are removed. Inter-region dependent instructions depend on a result from an instruction in

another region. The DINxRDY plot for -O0 in Figure 7.28 contains 123 selected dynamic dependence chains

that overlap on the horizontal RDY axis for the -O0 binary, resulting in over 44% of the dynamic instructions

are candidates for coarse-grained TLP. Note that many selected regions in 7.28 also contain instructions

stacked vertically; instructions that extend vertically along the DIN axis can potentially be parallelized by

ILP extraction or fine-grained TLS.

The source code responsible for the potential TLP shown in Figure 7.28 perform a variety of functions

that play the game Go. These include do trymove, defend1, order moves, and is suicide. Each potential

thread contains similar source code, which implies multiple Go moves can be tested at the same time.

Potential coarse-grained TLP in 445.gobmk is reduced by 29% when inter-region instruction depen-

dencies are removed, which is the largest reduction of all surveyed benchmarks. Instructions that depend on

the result of an instruction in another parallel region include special attack3, find defense, and is suicide.

These instructions, and some others, likely require the results from a previous Go move. The highlighted

portions of Figure 7.29 represent instructions that do not contain an inter-region dependency. Note that few

regions shown in -O0 in Figure 7.28 do not depend on a result from an instruction in another region.
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Per l IOBuf
P e r l a p p e n d
P e r l a l l o c m y
P e r l c k c o n c a t
P e r l c o n v e r t
P e r l c v u n d e f
P e r l b i n d m a t c h
P e r l b l o c k s t a r t
P e r l g v i n i t
P e r l i n t r o m y
P e r l h v i t e r i n i t
P e r l k e y w o r d
P e r l m y a t t r s
Per l mod
P e r l l i s t k i d s
P e r l l o c a l i z e
Per l oopsAV
P e r l p e e p
P e r l s c a l a r
P e r l s c o p e
P e r l s v g r o w
P e r l y y p a r s e
P e r l y y l e x
P e r l j m a y b e
S c a l l b o d y
S c l i n i t
S g v i n i t s v
S f o r c e w o r d
S i n c l i n e
S i n t u i t m o r e
S h s p l i t
S h v m a g i c c h e c k
S my kid
S more xpvbm
S modkids
S new xiv
S p a d f i n d l e x

(a) Thread 1

S new xpvbm
(b) Thread 2

Figure 7.24: 400.perlbench TLP Source Code Region 1
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P e r l I O B a s e
P e r l a l l o c m y
P e r l a v p u s h
P e r l c k f u n
P e r l c o n v e r t
P e r l b l o c k g i m m e
P e r l g r o k h e x
P e r l g v i n i t
P e r l h v i t e r i n i t
P e r l k e y w o r d
P e r l f r e e t m p s
P e r l m y a t t r s
P e r l m g m a g i c a l
Per l mod
P e r l l i s t k i d s
P e r l l o c a l i z e
P e r l p a d n e w
P e r l p e e p
P e r l s c a l a r
P e r l s v g r o w
P e r l u t i l i z e
P e r l y y p a r s e
P e r l y y l e x
S c a l l b o d y
S dopop tosub
S g v i n i t s v
S f i l t e r g e t s
S f o r c e v e r s i o n
S hv fe tch common
S my kid
S more sv
S new xiv
S scan word
S s u b l e x p u s h

(a) Thread 1

P e r l a p p e n d e l e m
P e r l a p p e n d l i s t
P e r l b l o c k s t a r t
P e r l b l o c k e n d
P e r l g v i n i t
P e r l i n t r o m y
P e r l l e a v e s c o p e
Perl newOP
Perl newFOROP
P e r l p r e g c o m p
P e r l p m r u n t i m e
P e r l s a v e I 3 2
P e r l y y p a r s e
P e r l y y l e x
S l o p
S new xpvav
S new xpvcv

(b) Thread 2

Figure 7.25: 400.perlbench TLP Source Code Region 2
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t o k e . c : 218−227 492−794 906−1404 1626−1743
1864−2599 2784−2828 2931−2985 3116−3196
3304−4107 4248−4388 4561−4717 4895−4897
5028−5121 5276−5673 5818−5958 6342−6350
6480−6588 6795−6951 8708−8737 8858−9171
9639−10313 10421−10447

pad . c : 139−1181

p e r l . c : 2209−2382 4743−4850

p e r l i o . c : 1599−1802 3776−3892

hv . c : 41−108 321−813 1064−1323 1649−1665
1931−1933 2079−2133

op . c : 211−724 863−1046 1167−1528 1693−2385
2710−2951 3203−3257 3402−3658 3998−4522
4746−5291 5485−5505 5636−5792 6176−6220
6383−6652 7009−7015

p p h o t . c : 44−329 2341−2396 2595−2695 2835−2996

sv . c : 633−654 785−1189 1294−1721 3254−3263
3635−3811 3973−4176 4371−4384 4535−4807
5045−5359 6105−6457 6744−6844 7040−7056

mg . c : 116−129 354−393

gv . c : 49−174 669−927 1115−1116 1258−1275

u t i l . c : 72−165 375−431 804−817

av . c : 63−367 491−550 679−714

numer ic . c : 32−46 515−747

p e r l y . c : 1467−2521

run . c : 37−43

regcomp . c : 481−554 687−1070 1361−1379 1579−2173
2430−2922 3096−3357 4351−4548 5090−5101

scope . c : 112−277 380−556 663−722 822−897 1019−1061
(a) Thread 1

sv . c : 1153−1158
(b) Thread 2

Figure 7.26: 400.perlbench TLP Source Code Lines Region 1
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t o k e . c : 492−1526 1671−1710 2094−2599 2784−2828
2964−2985 3116−3132 3373−3423 3679−3906
4648−4662 5209−5423 5604−5853 8708−8946
9047−9048 9639−10313 10421−10439

pad . c : 139−547 920−1181

p e r l . c : 2209−2382 4743−4850

p e r l i o . c : 1575−1802 2050−2084 2487−2509
3521−3652 3776−3892 4793−4801

hv . c : 41−108 321−408 573−794 1305−1323 1649−1665
2079−2133

op . c : 211−722 875−1046 1210−1229 1340−1528
1693−1796 1984−2385 2905−3091 3203−3483
3998−4051 4175−4522 4826−4838 5108−5291
5485−5505 5790−5899 6391−6537 7009−7015

p p h o t . c : 44−92 2341−2396 2595−2695 2835−2996

sv . c : 275−320 633−642 785−1021 1294−1721
3254−3263 3635−3811 3973−4176
4371−4384 4490−4807 5045−5359
6105−6457 6744−6844 7050−7055

pp . c : 46−50

mg . c : 116−129

gv . c : 49−174 669−899 1115−1116 1258−1275

u t i l . c : 72−165 804−817

av . c : 63−367 491−550 679−714

numer ic . c : 263−350 515−747

p e r l y . c : 1467−1677 1818−2064 2223−2521

run . c : 37−43

scope . c : 112−277 381−556 663−722
822−897 1019−1061

p p c t l . c : 1174−1230 2993−3079 3361−3362

(a) Thread 1

t o k e . c : 710 4649−5030

pad . c : 888−943

scope . c : 419−423 687−697

op . c : 1892−1917 2186−2330
2754−2811 3424−3483 3767−3952

sv . c : 923−974

regcomp . c : 1748 2134

gv . c : 107−158

u t i l . c : 72−101

p e r l y . c : 1467−2521

(b) Thread 2

Figure 7.27: 400.perlbench TLP Source Code Lines Region 2

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure 7.28: 445.gobmk with Selected Potential TLP
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Figure 7.29: 445.gobmk Inter-Region Dependencies

The benchmarks 401.bzip2 and 464.h264ref also contain a large percentage of coarse-grained TLP.

The DINxRDY plots for 401.bzip2 and 464.h264ref have properties similar to 445.gobmk.

7.5.6 Potential Coarse-Grained TLP in 462.libquantum

The benchmark 462.libquantum is generally regarded as highly amenable to manual explicit TLP

extraction [34]. However, as shown in Figure 7.15, most TLS systems extract only modest parallelism from

462.libquantum [48]. The results from the coarse-grained analysis performed in this work also show a modest

percentage of potential TLP from 462.libquantum. Figure 7.30 contain the DINxRDY visualizations for -O0

and -O2 gcc optimization levels.

The source code responsible for the potential TLP shown in Figure 7.30 perform a number of scientific

operations. Much like the benchmark 445.gobmk, the threads in each region of 462.libquantum are nearly

identical. Figure 7.31 contains the source code of the first two threads in the first region.

Between 1% and 10% of the instructions in the benchmarks 458.sjeng, 462.libquantum and 473.astar

are identified as potential coarse-grained TLP. The DINxRDY plots and source code for 458.sjeng and

473.astar have properties similar to 462.libquantum.



103

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure 7.30: 462.libquantum with Selected Potential TLP

quan tum cno t
qu an t um de coh e r e
q u a n t u m o b j c o d e p u t
q u a n t u m q e c g e t s t a t u s
quan tum s igma x
q u a n t u m s w a p t h e l e a d s
q u a n t u m t o f f o l i
add mod n
addn
madd
muxha
muxfa
muln inv
t e s t s u m

(a) Thread 1

quan tum cno t
qu an t um de coh e r e
q u a n t u m o b j c o d e p u t
q u a n t u m q e c g e t s t a t u s
quan tum s igma x
q u a n t u m s w a p t h e l e a d s
q u a n t u m t o f f o l i
add mod n
addn
madd
muxha
muxfa
muln inv
t e s t s u m

(b) Thread 2

Figure 7.31: 462.libquantum TLP Source Code Lines Region 1



Chapter 8

Future Work

ZDD-compressed traces provide analyzable compression with reasonable creation time [76]. ZDD-

compressed traces are highly adaptable to new analyses. This thesis begins to explore the use of dynamic

visualization and analysis, but leaves a framework for further analysis and visualizations. This section

highlights ideas that for future research.

8.1 Visualization

The visualization algorithm used in this thesis generates a simple, two dimensional representation of

program execution [78]. The addition of coloring allows for hot-code region visualization, but the overall

presentation does not provide the user with enough information to examine source code, or do simultaneous

hot-code and dependence visualization. This image could be extended into three dimensions and allow the

user to perform simultaneous static and dynamic program analyses. The combination of static and dynamic

analysis has been explored by prior works with some success [27, 63, 70].

8.2 Dynamic Dependence Chain Classification

In addition to the standard thread-level parallelism discussed in this thesis, it may be possible to analyze

a dependence chain and find other potential performance optimizations, such as software pipelines [7, 26, 46].

The ParaMeter tool can locate regions amenable to software pipelines [78], but such regions are not uniquely

identified.



Chapter 9

What Just Happened?

This thesis demonstrated: (1) Zero-Suppressed Binary Decision Diagrams (ZDDs) enables many

analyses to scale; (2) ZDD creation is practical for traces of a billion instructions for a variety of benchmarks;

and, (3) ZDD-based analyses can reveal a number of performance opportunities that exist in sequential

program traces. This chapter restates the motivation for this work, as well as summarizes the contributions of

this dissertation.

9.1 Dynamic Trace Compression

Dynamic trace analysis has been used in prior work for performance tuning and hardware debug-

ging [102]. Unfortunately, trace files can easily grow to terabytes in size depending on the information

collected and the duration of traced execution. Large dynamic trace sizes (e.g. 1 billion instructions or more)

can make analysis and visualization intractable.

Ideally, a compressed trace format should allow analyses to operate directly on the compressed

representation with complexity that is a function of compressed trace size. Then, if large portions of

compressed traces fit in memory, global analyses and interactive visualization are possible. Larus et.

al. propose such a technique for whole program path analysis [58]. The technique uses the Sequitur

compression method and works well for finding sequence matches in program execution. It does not permit

direct application of data-centric analyses (e.g., trace slicing) that are of interest to system designers and

programmers. Recent work on stride compression techniques addresses this issue by forming hierarchies

based on accessed memory regions [50], but is limited to analyses based on loop-level dependence.
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This thesis first explored reduced, ordered, binary decision diagram (ROBDDs) [17], originally

developed for hardware verification, as a trace representation for dynamic program analysis. BDDs can

provide compression for large sets of data whose size would otherwise make analysis intractable. When

BDDs are used for the analysis of large program traces [75,78,105], the size of dynamic program traces can be

reduced by up to 60x when encoded as a BDD [75]. Further, this compressed representation can be analyzed

without decompression, with algorithmic complexity that is a function of the compressed size [75]. Thus,

trace-encoded BDDs provide a solution to the dynamic trace size issue by representing trace information in a

compressed, yet analyzable, structure.

9.2 Dynamic Trace Analysis at Scale

The SPEC 2006 INT benchmark suite, which is both large and diverse, requires nontrivial analyses to

scale gracefully. Unfortunately, encoding large traces as BDDs can be time consuming, requiring hours to

days to complete [77]. This, in turn, makes tools that use BDD-based representations less practical. Prior

applications of BDDs depend on three methods to mitigate BDD creation time: (1) search for a variable order

that allows for fast BDD creation; (2) tune the tables and caching systems used in many BDD packages; and,

(3) encode an abstraction of the original data set, instead of the raw data. This thesis showed that, without

any data abstraction, ZDD-based SPEC INT 2000 benchmark traces are 25% smaller than BDD-based traces.

Furthermore, with the modification to a ZDD caching structure, ZDD-based trace compression results in a

creation time that can be 9× faster than BDD creation time for the same benchmark.

9.3 Dynamic Dependency Graph Slicing and Chopping

Slicing algorithms have been able to efficiently traverse the dynamic dependence graph (DDG) of

dynamic trace data when encoded as BDDs [78]. Some algorithms, such as points-to analysis, have be

adapted for ZDDs [62]. However, ZDD-based DDG slicing algorithms have yet to be explored beyond the

most straight-forward translation from BDDs [76]. In Chapter 5, this dissertation explored two potential

techniques for performing dynamic slicing with ZDD-encoded data sets.

The first method uses ZDD set intersection to identify dependency relationships that should be included
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in the slice. The second technique uses the If-Then-Else (ITE) operator to identify common dependencies.

Slices using intersection and slices using ITE were tested on benchmarks from the SPEC 2006 integer

benchmark suite. Despite mixed results from these tests, the method based on set intersection showed

good performance over most cases. The results from these tests were later incorporated into other analysis

algorithms, such as dynamic dependence graph chopping used in TLP exploration and irrelevant instruction

elimination.

9.4 Coarse-Grained Thread Level Parallelism

Instruction level parallelism (ILP) limitations have forced processor manufacturers to develop multi-

core platforms with the expectation that parallel execution can be found at the thread level. This thesis

examines the SPEC INT 2006 benchmark suite, looking for parallelism with a granularity of thousands of

dynamic instructions, and is not restricted to loop-level thread level parallelism (TLP). Coarse-grained TLP

is located using a dynamic trace visualization created by the ParaMeter tool [78]. This technique generates a

visualization of program execution, called a DINxRDY (dynamic instruction number by ready time) plot.

This plot visually shows potential coarse grain TLP as lines that overlap on the x-axis.

Potential parallel regions found within DINxRDY plots are further analyzed to expose dependence

relationships. Inter-region dependence conflicts are found by dynamic dependence graph (DDG) slicing [4,

5, 30, 52]. Slicing DDGs that contain a large number of instructions (e.g. billions) can take weeks [5, 104].

To efficiently, and precisely, explore the dependency relationships between two regions of code this thesis

extends the DDG chop to use the ZDD-compressed trace format. The dynamic chop [36, 54] is often faster

than an intersection of a forward and reverse slice and requires no loss of precision.

The thesis shows that on average, 7% of instructions may be extracted as coarse-grained parallelism,

and in some cases, as much as 44% of instructions may be extracted as coarse-grained TLP.

9.5 Irrelevant Instruction Elimination

Irrelevant component elimination has been adopted in prior work to simplify abstractions for static

analysis [23]. This thesis uses irrelevant component elimination with ZDD-encoded precise dynamic
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instruction dependencies. ZDD-based irrelevant instruction dependency elimination is designed to iterative

irrelevant code calculation until convergence. However, irrelevant instruction dependency elimination can

take days to complete for traces with long dynamic dependency chains. Empirical data presented in this thesis

shows that, for all benchmarks in SPEC 2006 INT, the irrelevant instruction elimination algorithm reaches a

steady state. In this state, the number of instruction dependencies removed per slice iteration oscillates, but

will not monotonically decrease until the analysis converges. Thus, it is possible to approximate the number

of instructions removed by iterating irrelevant instruction elimination until oscillation is detected.

ZDD-based irrelevant instruction dependency elimination was used to assist the study of TLP by

filtering irrelevant points from program visualizations. Irrelevant instruction dependency elimination also can

be used for code optimization or compiler evaluation. Chapter 6 contained a survey of irrelevant code removal

from the SPEC 2006 INT benchmarks using both -O0 and -O2 optimization levels in the gcc compiler.

9.6 Hot-Code Visualization

In addition to the optimization analyzes presented in this thesis, which include thread-level parallel

region location and irrelevant instruction elimination, a hot-code visualization algorithm was created to focus

optimization efforts on the most frequently executed regions of code.

Hot-code analysis captures static instruction execution frequency and counts the frequency of ex-

ecution. The static hot code information is combined with a mapping from dynamic instruction →

static instructions to create a new relation from each dynamic instruction to hot-code value.

9.7 Contributions

Traces from a variety of applications need be analyzed to demonstrate the efficacy of DD-based

dynamic trace analysis. The results in this thesis show that ZDD-based trace compression results in 25%

smaller representation compared to BDD-based traces. Further, ZDDs have a smaller working set, thus the

ZDD creation package can tuned to cache the working set of the trace-ZDD during creation. This reduces the

number of garbage collection operations and removal of useful dead nodes. This reduces ZDD creation by up

to 9×.
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Hot code analysis can tell developers where to focus optimization and parallelization efforts. In

addition to the optimization analyzes presented in this thesis, which include coarse-grained thread level

parallel region location and irrelevant instruction elimination, a hot-code visualization algorithm was created

to focus optimization efforts on the most frequently executed regions of code.

The results from a survey of irrelevant instructions in the SPEC 2006 INT benchmark shows that

over 50% of instruction dependencies do not produce a value or reach the end of the program trace. It

is possible for an instruction to be relevant to program execution but not meet the specified requirements.

Therefore, this thesis also presents results comparing the irrelevant dependence counts from both the -O0 and

-O2 compiler settings. The irrelevant dependency count from the -O0, or non-optimized, compiler setting

provides a worst-case value to normalize further comparison operations. Furthermore, this technique can test

the effectiveness of static compiler optimizations, as well as locate potential irrelevant instruction streams.

Finally, this thesis explores potential coarse grain TLP that may be exploitable in conjunction with

TLS and ILP techniques. In particular, the thesis examines the SPEC INT 2006 benchmark suite, looking for

parallelism with a granularity of thousands of dynamic instructions, and is not restricted to loop-level TLP.

The survey presented in Chapter 7 found, on average, 7% of instructions may be extracted as course-grained

parallelism, and for the benchmark 445.gobmk, 44% of instructions may be extracted as coarse-grained TLP.

The primary contributions of this thesis include:

(1) A ZDD-based trace compression algorithm with tuning for large traces, resulting in a 25% reduction

in BDD size and a 9× reduction in trace compression time.

(2) A ZDD-based iterative analysis for locating irrelevant instruction dependencies

(3) A method to quickly explore coarse-grained parallelism in serial applications.

(4) A ZDD-based dependence graph chopping algorithm need for the aforementioned method.

(5) A survey of coarse-grained thread level parallelism in the SPEC INT 2006 benchmarks that shows

up to 44% of instructions may be extractable as coarse grain TLP.
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Appendix A

ZDD Trace Data Types

The DINi is a data member of the {DINi, DINd} tuple set. It represents an individual dynamic

instructions. The DINd data member is the set of dynamic instructions that have a true data dependency

resolved by DINi. The members of DINd must be scheduled to execute after DINi has executed.

The SIN data type represents a static instruction number. It also is the instruction address in the

original binary that was used for trace creation. Therefore, it is possible to find the original source code line

using a SIN value.

The RDY time is the earliest time at which a dynamic instruction may be scheduled to execute on an

optimal machine. An optimal machine has perfect branch prediction, an unlimited instruction window, an

infinite number of functional units, single cycle execution of all instructions, and more.

A HOT data member is the number of times a static instruction (or SIN ) was executed during trace

collection. It is equivalent to the number of DIN values that exist for a given SIN .

The SY S data type contains system call values on a Linux version 2.6.24-28-server using the 64-bit

set of system calls. Figure A.1 contains all tuple types used in this thesis, and the relation type.

Tuple Set Type
{DINi, DINd} Surjective DINd ⇒ DINi

{DIN,SIN} Surjective DIN ⇒ SIN
{DIN,RDY } Bijective
{DIN,HOT} Surjective DIN ⇒ HOT
{DIN,SY S} Surjective DIN ⇒ SY S

Figure A.1: Tuple Relation Types
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Selected Regions from SPEC 2006
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.1: 400.perlbench with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.2: 401.bzip2 with Selected Regions
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.3: 403.gcc with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.4: 429.mcf with Selected Regions
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.5: 445.go with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.6: 456.hmmer with Selected Regions
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.7: 458.sjeng with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.8: 462.libquantum with Selected Regions
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.9: 464.h264ref with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.10: 471.omnetpp with Selected Regions
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.11: 473.astar with Selected Regions

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure B.12: 483.xalancbmk with Selected Regions
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Hot Code Visualizations of SPEC 2000
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Figure C.1: 164.gzip DINxRDY with Hot Code

Figure C.2: 175.vpr DINxRDY with Hot Code
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Figure C.3: 176.gcc DINxRDY with Hot Code

Figure C.4: 181.mcf DINxRDY with Hot Code
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Figure C.5: 197.parser DINxRDY with Hot Code

Figure C.6: 252.eon DINxRDY with Hot Code
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Figure C.7: 253.perl DINxRDY with Hot Code

Figure C.8: 254.gap DINxRDY with Hot Code
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Figure C.9: 255.vortex DINxRDY with Hot Code

Figure C.10: 256bzip2 DINxRDY with Hot Code



132

Figure C.11: 300.twolf DINxRDY with Hot Code
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Hot Code Visualizations of SPEC 2006
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.1: 400.perlbench DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.2: 401.bzip2 DINxRDY with Hot Code
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.3: 403.gcc DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.4: 429.mcf DINxRDY with Hot Code
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.5: 445.go DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.6: 456.hmmer DINxRDY with Hot Code
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.7: 458.sjeng DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.8: 462.libquantum DINxRDY with Hot Code
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.9: 464.h264ref DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.10: 471.omnetpp DINxRDY with Hot Code
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(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.11: 473.astar DINxRDY with Hot Code

(a) GCC -O0 DINxRDY (b) GCC -O2 DINxRDY

Figure D.12: 483.xalancbmk DINxRDY with Hot Code



Appendix E

Trace ZDD and BDD Variable Orders

Variable Index Naı̈ve LSB-MSB Naı̈ve MSB-LSB LSB-MSB MSB-LSB SPLIT

0 0 127 0 127 93

1 1 126 64 63 29

2 2 125 1 126 92

3 3 124 65 62 28

4 4 123 2 125 91

5 5 122 66 61 27

6 6 121 3 124 90

7 7 120 67 60 26

8 8 119 4 123 89

9 9 118 68 59 25

10 10 117 5 122 88

11 11 116 69 58 24

12 12 115 6 121 87

13 13 114 70 57 23

14 14 113 7 120 86

15 15 112 71 56 22

16 16 111 8 119 85

17 17 110 72 55 21

18 18 109 9 118 84

19 19 108 73 54 20

20 20 107 10 117 83

21 21 106 74 53 19
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22 22 105 11 116 82

23 23 104 75 52 18

24 24 103 12 115 81

25 25 102 76 51 17

26 26 101 13 114 80

27 27 100 77 50 16

28 28 99 14 113 79

29 29 98 78 49 15

30 30 97 15 112 78

31 31 96 79 48 14

32 32 95 16 111 77

33 33 94 80 47 13

34 34 93 17 110 76

35 35 92 81 46 12

36 36 91 18 109 75

37 37 90 82 45 11

38 38 89 19 108 74

39 39 88 83 44 10

40 40 87 20 107 73

41 41 86 84 43 9

42 42 85 21 106 72

43 43 84 85 42 8

44 44 83 22 105 71

45 45 82 86 41 7

46 46 81 23 104 70

47 47 80 87 40 6

48 48 79 24 103 69

49 49 78 88 39 5

50 50 77 25 102 68

51 51 76 89 38 4

52 52 75 26 101 67
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53 53 74 90 37 3

54 54 73 27 100 66

55 55 72 91 36 2

56 56 71 28 99 65

57 57 70 92 35 1

58 58 69 29 98 64

59 59 68 93 34 0

60 60 67 30 97 127

61 61 66 94 33 63

62 62 65 31 96 126

63 63 64 95 32 62

64 64 63 32 95 125

65 65 62 96 31 61

66 66 61 33 94 124

67 67 60 97 30 60

68 68 59 34 93 123

69 69 58 98 29 59

70 70 57 35 92 122

71 71 56 99 28 58

72 72 55 36 91 121

73 73 54 100 27 57

74 74 53 37 90 120

75 75 52 101 26 56

76 76 51 38 89 119

77 77 50 102 25 55

78 78 49 39 88 118

79 79 48 103 24 54

80 80 47 40 87 117

81 81 46 104 23 53

82 82 45 41 86 116

83 83 44 105 22 52
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84 84 43 42 85 115

85 85 42 106 21 51

86 86 41 43 84 114

87 87 40 107 20 50

88 88 39 44 83 113

89 89 38 108 19 49

90 90 37 45 82 112

91 91 36 109 18 48

92 92 35 46 81 111

93 93 34 110 17 47

94 94 33 47 80 110

95 95 32 111 16 46

96 96 31 48 79 109

97 97 30 112 15 45

98 98 29 49 78 108

99 99 28 113 14 44

100 100 27 50 77 107

101 101 26 114 13 43

102 102 25 51 76 106

103 103 24 115 12 42

104 104 23 52 75 105

105 105 22 116 11 41

106 106 21 53 74 104

107 107 20 117 10 40

108 108 19 54 73 103

109 109 18 118 9 39

110 110 17 55 72 102

111 111 16 119 8 38

112 112 15 56 71 101

113 113 14 120 7 37

114 114 13 57 70 100
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115 115 12 121 6 36

116 116 11 58 69 99

117 117 10 122 5 35

118 118 9 59 68 98

119 119 8 123 4 34

120 120 7 60 67 97

121 121 6 124 3 33

122 122 5 61 66 96

123 123 4 125 2 32

124 124 3 62 65 95

125 125 2 126 1 31

126 126 1 63 64 94

127 127 0 127 0 30



Appendix F

Functions from Parallel Region Selection

F.1 400.perlbmk -O0 Functions in Selected Regions for TLP

S_new_xpvbm

F.2 400.perlbmk -O2 Functions in Selected Regions for TLP

stat

PerlIOBase_p...

PerlIOBase_cl...

PerlIOBase_no...

PerlIOBase_re...

PerlIOBase_fi...

PerlIOBuf_clo...

PerlIOBuf_get...

PerlIOBuf_fi...

PerlIOBuf_fl...

PerlIOBuf_ope...

PerlIOBuf_pu...

PerlIOBuf_po...

PerlIOBuf_set...

PerlIOBuf_rea...

PerlIOBuf_tel...

PerlIOUnix_clo...
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PerlIOUnix_fil...

PerlIOUnix_op...

PerlIOUnix_of...

PerlIOUnix_pus...

PerlIOUnix_se...

PerlIOUnix_re...

PerlIOUnix_tel...

PerlIO_arg_fet...

PerlIO_alloca...

PerlIO_context...

PerlIO_debug

PerlIO_defaul...

PerlIO_getc

PerlIO_fast_get...

PerlIO_isutf8

PerlIO_layer_f...

PerlIO_list_fr...

PerlIO_openn

PerlIO_push

PerlIO_pop

PerlIO_resolve...

PerlIO__close

Perl_append_ele...

Perl_append_lis...

Perl_allocmy

Perl_av_clear

Perl_av_extend

Perl_av_fetch

Perl_av_make

Perl_av_push
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Perl_av_shift

Perl_av_store

Perl_av_undef

Perl_cast_ul...

Perl_call_sv

Perl_call_li...

Perl_ck_conca...

Perl_ck_bitop

Perl_ck_exist...

Perl_ck_fun

Perl_ck_join

Perl_ck_metho...

Perl_ck_null

Perl_ck_s...

Perl_ck_requ...

Perl_ck_rvco...

Perl_croak

Perl_convert

Perl_cv_undef

Perl_block_start

Perl_block_end

Perl_block_gimme

Perl_die_where

Perl_do_join

Perl_gp_ref

Perl_grok_numb...

Perl_grok_nume...

Perl_gv_AVadd

Perl_gv_HVadd

Perl_gv_stashpv...
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Perl_gv_init

Perl_gv_fetch...

Perl_free_tmps

Perl_fbm_instr

Perl_force_lis...

Perl_fold_cons...

Perl_intro_my

Perl_hv_iterinit

Perl_hv_clear

Perl_hv_exists_ent

Perl_hv_store_ent

Perl_hv_fetch_ent

Perl_keyword

Perl_jmaybe

Perl_magic_set

Perl_magic_get

Perl_my_attrs

Perl_my_atof2

Perl_mod

Perl_mg_size

Perl_mg_set

Perl_mg_magica...

Perl_mg_get

Perl_mg_find

Perl_listkids

Perl_linklist

Perl_leave_sco...

Perl_lex_start

Perl_lex_end

Perl_localize
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Perl_op_clear

Perl_op_null

Perl_op_free

Perl_oopsHV

Perl_new...

Perl_packa...

Perl_pad_a...

Perl_pad_ch...

Perl_pad_bl...

Perl_pad_f...

Perl_pad_le...

Perl_pad_ne...

Perl_pad_re...

Perl_pad_un...

Perl_pad_ti...

Perl_peep

Perl_pop_sco...

Perl_pop_ret...

Perl_pp_a...

Perl_pp_cal...

Perl_pp_con...

Perl_pp_bit_o...

Perl_pp_eq

Perl_pp_ex...

Perl_pp_en...

Perl_pp_defi...

Perl_pp_gr...

Perl_pp_gt

Perl_pp_gv...

Perl_pp_iter
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Perl_pp_hsl...

Perl_pp_hel...

Perl_pp_join

Perl_pp_mat...

Perl_pp_met...

Perl_pp_li...

Perl_pp_le...

Perl_pp_lt

Perl_pp_oras...

Perl_pp_nex...

Perl_pp_not

Perl_pp_p...

Perl_pp_s...

Perl_pp_re...

Perl_pp_rv2...

Perl_pp_uc

Perl_pp_un...

Perl_prepe...

Perl_pregc...

Perl_push_sc...

Perl_push_re...

Perl_save...

Perl_sawpar...

Perl_safesy...

Perl_scalar...

Perl_scan_nu...

Perl_scope

Perl_start_sub...

Perl_sv_add_are...

Perl_sv_catpv...
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Perl_sv_clear

Perl_sv_eq

Perl_sv_grow

Perl_sv_gets

Perl_sv_free

Perl_sv_force...

Perl_sv_magic...

Perl_sv_morta...

Perl_sv_newmor...

Perl_sv_set...

Perl_sv_2uv

Perl_sv_2cv

Perl_sv_2mor...

Perl_sv_upgrad...

Perl_sv_tainte...

Perl_sv_vcatp...

Perl_sv_vsetp...

Perl_sv_replac...

Perl_runops_stan...

Perl_regexec_f...

Perl_re_intuit...

Perl_ref

Perl_utilize

Perl_vcroak

Perl_vmess

Perl_vnewSVpvf

Perl_yyparse

Perl_yylex

Perl_PerlIO_close

Perl_PerlIO_get_pt...
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Perl_PerlIO_get_cn...

Perl_PerlIO_get_ba...

Perl_PerlIO_fil...

Perl_PerlIO_flus...

Perl_PerlIO_see...

Perl_PerlIO_set...

Perl_PerlIO_stdi...

Perl_PerlIO_read

Perl_PerlIO_tell

S_ao

S_call_body

S_call_list_body

S_cop_free

S_expect_number

S_del_xiv

S_del_xpvav

S_del_xpviv

S_del_xpvcv

S_del_xpvmg

S_del_xpvnv

S_dopoptosub_a...

S_dopoptoloop

S_doeval

S_doopen_pm

S_gv_init_sv

S_filter_gets

S_force_ident

S_force_version

S_force_word

S_force_next
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S_incline

S_intuit_method

S_intuit_more

S_hsplit

S_hv_fetch_common

S_hfreeentries

S_my_kid

S_mulexp10

S_method_common

S_more_he

S_more_sv

S_more_xpvav

S_more_xpvhv

S_more_xnv

S_modkids

S_list_assignment

S_lop

S_new_he

S_new_logop

S_new_xiv

S_new_xpvav

S_new_xpvcv

S_new_xpviv

S_new_xpvhv

S_new_xpvmg

S_new_xpvnv

S_new_xnv

S_pad_findlex

S_path_is_absolut...

S_pending_ident
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S_save_hek_flag...

S_save_magic

S_share_hek_fla...

S_scalarboo...

S_scalar_mod...

S_scan_ident

S_scan_const

S_scan_str

S_scan_word

S_scan_formli...

S_sublex_push

S_sublex_start

S_sublex_done

S_skipspace

S_refto

S_tokeq

S_vdie_croak_common

restore_rsfp

restore_magic

yydestruct

XS_attributes_reft...

XS_attributes__modi...

XS_UNIVERSAL_can
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add_pair_to_block

copy_input_until_s...

copy_output_until...

compressStream

BZ2_hbAssignCode...
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BZ2_hbMakeCodeLe...

BZ2_compressBlock

BZ2_bzCompress

BZ2_bzWrite

BZ2_blockSort

generateMTFValue...

handle_compress

mainQSort3

mainSimple...

mainSort

mainGtU

makeMaps_e

myfeof

mmed3

prepare_new_block

spec_ungetc

spec_getc

spec_fread

spec_fwrite

sendMTFValues

bsPutUInt32

bsW
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add_pair_to_block

copy_input_until_s...

copy_output_until...

compressStream

BZ2_hbAssignCode...

BZ2_hbMakeCodeLe...
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BZ2_compressBlock

BZ2_bzCompress

BZ2_bzWrite

BZ2_blockSort

generateMTFValue...

handle_compress

mainQSort3

mainSimple...

mainSort

mainGtU

makeMaps_e

myfeof

mmed3

prepare_new_block

spec_ungetc

spec_getc

spec_fread

spec_fwrite

sendMTFValues

bsPutUInt32

bsW
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active_insn...

adjust_off...

address...

addr_aff...

addr_sid...

add_insn_a...

add_insn_b...
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aliases_e...

alias_set...

allocate...

alloc_INS...

alloc_pag...

alloc_blo...

alloc_EXP...

any_condjum...

any_uncondj...

approx_reg...

apply_chan...

apply_dis...

apply_del...

asm_noperan...

avoid_const...

cached_mak...

calculat...

calc_idom...

calc_dfs_t...

cancel...

canon_h...

canon_r...

can_com...

can_thr...

can_del...

can_fal...

cant_co...

change_addr...

check_asm_op...

check_hard_r...
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check_depen...

check_promo...

check_for_la...

classify_i...

clear_edg...

cleanup_c...

close_dump...

copy_insn...

copy_rtx_i...

copy_loop...

comp...

combin...

commut...

count_reg...

count_bas...

const...

contro...

conver...

cselib_subs...

cselib_look...

cse_around_l...

cse_basic_bl...

cse_end_of_ba...

cse_insn

cse_main

cse_process...

cse_set_arou...

cse_rtx_vari...

create_basic...

create_delay...
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base_alias_check

bitmap_clear_bi...

bitmap_copy

bitmap_bit_p

bitmap_equal_p

bitmap_element...

bitmap_find_bit

bitmap_initiali...

bitmap_operatio...

bitmap_set_bit

blocks_nrevers...

block_label

ehl_hash

emit_insns...

emit_insn_b...

emit_note_af...

emit_note_be...

emit_barrie...

emit_label_a...

emit_label_b...

emit_jump_in...

eliminate_p...

end_alias_an...

end_sequenc...

equiv_const...

eval

exact_log2...

expand...

expung...

expect...
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exp_equ...

distribute_no...

diddle_return...

duplicate_loop...

dead_or_set_p

dead_or_set_re...

decl_for_comp...

delete_dead_j...

delete_insn_c...

delete_noop_m...

delete_rela...

delete_reg_e...

delete_unrea...

delete_trivi...

do_SUBST_INT

get_addr

get_alias_set_en...

get_cse_reg_info

get_insns

get_max_uid

get_last_value_v...

get_label_after

get_related_valu...

general_operan...

gen_sequence

gen_raw_REG

gen_reg_rtx

gen_rtx_CONST...

gen_rtx_REG

gen_rtx_SUBRE...
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gen_rtx_fmt_i...

gen_rtx_fmt_E

gen_rtx_fmt_e...

gen_rtx_fmt_u...

gen_rtx_fmt_w

gen_jump

gen_label_rtx

gen_lowpart_if...

gen_lowpart_co...

gen_lowpart_fo...

ggc_add_rtx_root

ggc_add_root

ggc_alloc

ggc_push_context

ggc_pop_context

ggc_collect

ggc_del_root

fixed_scalar...

first_insn_af...

find_compari...

find_basic...

find_base_t...

find_base_v...

find_best_ad...

find_empty_s...

find_evalua...

find_single_u...

find_reg_not...

find_regno_p...

find_regno_n...



162

find_unreach...

free_basic_blo...

free_bb_for_ins...

free_EXPR_LIST_l...

free_dom_info

free_INSN_LIST_l...

free_propagate...

free_edge

flow_delete_b...

flow_dfs_comp...

floor_log2_wid...

force_to_mod...

forwarder_b...

for_each_rtx

fold_rtx

ix86_address_co...

ix86_compariso...

ix86_binary_ope...

ix86_decompose...

ix86_find_base_t...

ix86_hard_regno...

initiali...

init_alia...

init_prop...

init_reg_l...

init_dom_i...

init_labe...

inside...

insert...

instan...
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insn_in...

insn_li...

int_size_in...

in_expr_lis...

invalida...

invert_br...

invert_ex...

invert_ju...

immediate_oper...

if_then_else_con...

higher_prime_num...

htab_create

htab_expand

htab_traverse

htab_find_slot_wi...

host_integerp

hook_void_bool_f...

maybe_remove...

max_reg_num

make_compoun...

make_eh_edg...

make_edges

make_extra...

make_field_as...

make_insn_raw

make_jump_ins...

make_label_ed...

make_new_qty

make_regs_eqv

mark_all_labe...
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mark_regs_liv...

mark_jump_lab...

mark_used_reg...

mark_set_1

mark_set_regs

merge_blocks_n...

merge_equiv_cl...

mems_in_disj...

memrefs_con...

memory_addr...

memory_oper...

mention_regs

mode_for_size

move_deaths

label_is_jump_ta...

link_roots

life_analysis

legitimate_add...

lookup_as_funct...

lookup_for_remo...

open_dump_file

optimize_siblin...

onlyjump_p

num_sign_bit_copi...

num_validated_ch...

next_active_in...

next_real_insn

next_nonnote_i...

new_basic_bloc...

new_elt_loc_lis...
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never_reached...

notice_stac...

notreg_cost

note_stores

noop_move_p

nonimmedi...

nonzero_bi...

nonmemory...

nonoverla...

page_group_in...

pc_set

phi_alternat...

plus_constan...

prev_real...

prev_nonn...

predict_i...

preferra...

propagate_b...

propagate_o...

push_operan...

purge_all_de...

purge_dead_e...

purge_line_n...

safe_has...

sbitmap...

sequen...

setup...

set_pa...

set_bl...

set_un...
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set_li...

set_no...

simpl...

side_e...

singl...

shallow...

specqs...

splay_t...

ssa_rena...

ssa_elim...

subst

subreg...

start_se...

swap_co...

re...

rtx_alloc

rtx_cost

rtx_equal_p

rtx_equal_for_mem...

rtx_varies_p

rtvec_alloc

update_table_tic...

update_br_prob_no...

update_life_info

update_forwarde...

uses_addressof

use_related_val...

unshare_all_rtl_1

unshare_all_decl...

tail_recursion_l...
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timevar_push

timevar_pop

tidy_fallthru_e...

try_combine

try_redirect_b...

try_simplify_c...

try_optimize_c...

try_forward_ed...

true_depende...

trunc_int_for...

tree_low_cst

varray_init

varray_grow

validate_change

x86_64_sign_exte...

x86_64_zero_exte...

x86_64_movabs_op...

x86_64_general_o...

xcalloc

xrealloc

xmalloc
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adjust_offs...

address_co...

addr_affec...

addr_side_e...

aliases_ev...

alias_sets...

allocate_r...
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alloc_page

any_condjump...

any_uncondju...

approx_reg_c...

apply_chang...

asm_noperand...

avoid_consta...

cached_make...

cancel_ch...

canon_has...

canon_re...

canon_rt...

can_throw...

change_addr...

check_depen...

check_for_la...

close_dump_fi...

copy_rtx

compari...

commuta...

count_reg...

count_bas...

const0...

const_i...

control...

cse_around_lo...

cse_basic_blo...

cse_end_of_bas...

cse_insn

cse_main
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cse_process_n...

cse_set_aroun...

cse_rtx_varie...

create_basic...

base_alias_check

bitmap_initializ...

bitmap_clear

bitmap_element_al...

bitmap_element_li...

bitmap_set_bit

bitmap_find_bit

equiv_constant

exact_log2_wide

expand_mult_add

expand_binop

expand_expr

exp_equiv_p

decl_for_componen...

delete_reg_equiv

delete_trivially...

get_addr

get_alias_set_en...

get_insns

get_cse_reg_info

get_related_valu...

general_operan...

gen_raw_REG

gen_rtx_CONST_I...

gen_rtx_REG

gen_rtx_SUBREG



170

gen_rtx_fmt_i0

gen_rtx_fmt_ei

gen_rtx_fmt_ee

gen_lowpart_if_p...

gen_lowpart_com...

ggc_alloc

ggc_collect

fixed_scalar_an...

first_rtl_op

find_compariso...

find_basic_bl...

find_base_ter...

find_base_val...

find_best_addr

find_reg_note

for_each_rtx

fold_rtx

ix86_address_cos...

ix86_expand_bina...

ix86_decompose_a...

ix86_find_base_te...

immed_double_con...

init_alias_an...

inside_bas...

insert_reg...

insn_inval...

integer_zero...

integer_onep

invalidate_m...

invalidate_f...
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host_integerp

max_reg_num

make_regs_eqv

make_edges

make_new_qty

merge_equiv_cla...

mems_in_disjo...

memrefs_conf...

memory_addre...

memory_opera...

mention_regs

legitimate_addre...

loop_optimize

lookup_as_functi...

lookup_for_remov...

open_dump_file

next_real_insn

next_nonnote_ins...

new_basic_block

notreg_cost

note_stores

nonimmediate_o...

nonoverlappin...

pc_set

prev_nonnote_in...

preferrable

push_operand

safe_hash

scan_loop

set_page_tab...
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set_page_gro...

set_unique_r...

simplify...

side_effe...

single_se...

specqsort

splay_tre...

split_tre...

subreg_lowp...

swap_commu...

swap_condi...

record_s...

record_j...

recog_1...

recog_2

recog_5

registe...

reg_scan...

reg_ment...

reg_over...

refers_to...

rehash_us...

remove_in...

remove_fr...

replace_e...

rest_of_co...

reverse...

rtx_alloc

rtx_cost

rtx_equal_p
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rtx_equal_for_memr...

rtx_varies_p

use_related_value

timevar_push

timevar_pop

tidy_fallthru_ed...

true_dependenc...

trunc_int_for_mo...

tree_low_cst

varray_init

validate_change

x86_64_sign_exten...

x86_64_zero_exten...

xcalloc

xmalloc
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approxlib

accuratelib

assimilate_st...

assimilate_ne...

add_stone

attack1

attack3

attack2

attack4

chainlinks2

create_new_stri...

clear_board

clear_move_reas...
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countstones

countlib

count_common...

break_chain3_mo...

break_chain2_mo...

break_chain2_ef...

break_chain2_de...

break_chain_mov...

buildSpiralOrde...

extend_neighbor_s...

edge_clamp_moves

edge_closing_bac...

edge_block_moves

draw_back

defend1

defend3

defend2

defend4

double_atari_ch...

do_attack

do_get_read_resu...

do_find_superst...

do_find_break_ch...

do_find_defense

do_play_move

do_remove_strin...

do_trymove

gameinfo_pla...

gameinfo_cle...

gameinfo_loa...
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gametree

get_read_resul...

get_moveY

get_moveXY

gtp_attack

gtp_decode_co...

gtp_defend

gtp_finish_res...

gtp_internal_s...

gtp_main_loop

gtp_mprintf

gtp_loadsgf

gtp_print_cod...

gtp_print_ver...

gtp_printf

gtp_start_resp...

gg_srand

gg_drand

gnugo_add_ston...

gnugo_clear_bo...

gnugo_set_komi

fastlib

findstones

findlib

find_cap2

find_defense

find_liberties...

find_origin

find_persisten...

find_superstri...
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is_ko

is_edge_vertex

is_suicide

is_self_atari

iterate_tgfsr

incremental_or...

inv_rotate

hashtable_cl...

hashtable_en...

hashtable_se...

hashdata_inv...

hashdata_rec...

hashnode_sea...

hashnode_new...

has_neighbor

have_common_lib

hane_rescue_move...

komaster_trymove

mark_string

match

liberty_of_string

order_moves

nexttoken

next_rand

new_position

node

propagate_st...

propident

property

proper_supe...
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propose_edge...

propvalue

popgo

same_strin...

search_p...

sequenc...

set_up_sn...

set_dept...

sgfNe...

sgfMk...

sgftr...

sgfGe...

sgfFr...

simple_lad...

sort_moves

special_at...

special_re...

superstri...

store_pers...

reading_cache...

readsgffile

reset_move_hist...

reset_engine

remove_liberty

remove_neighbo...

rotate_on_input

rotate_on_output

update_liberties

undo_trymove

transformation_i...
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tryko

trymove

xalloc
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approxlib

accuratelib

assimilate_st...

assimilate_ne...

add_stone

attack1

attack3

attack2

attack4

chainlinks2

create_new_strin...

countstones

countlib

count_common_l...

break_chain2_move...

break_chain2_effi...

break_chain_moves

extend_neighbor_s...

edge_clamp_moves

edge_closing_bac...

edge_block_moves

draw_back

defend1

defend3

defend2
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double_atari_ch...

do_attack

do_get_read_resu...

do_find_superst...

do_find_break_ch...

do_find_defense

do_play_move

do_remove_strin...

do_trymove

gameinfo_play_sg...

get_read_result

gtp_printf

fastlib

findstones

findlib

find_persisten...

find_cap2

find_superstri...

find_liberties...

find_origin

is_ko

is_edge_vertex

is_suicide

is_self_atari

incremental_orde...

hashtable_clea...

hashtable_ente...

hashtable_sear...

hashdata_inver...

hashnode_searc...
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hashnode_new_re...

hane_rescue_moves

komaster_trymove

mark_string

liberty_of_string

order_moves

new_position

propagate_strin...

propose_edge_mov...

popgo

same_string

set_up_snapba...

sgftreeForw...

special_atta...

special_resc...

superstring...

store_persis...

reset_move_histor...

remove_liberty

remove_neighbor

update_liberties

undo_trymove

tryko

trymove
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Bishop

King

Knight

QProbeTT
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QStoreTT

Queen

Pawn

ProbeTT

StoreTT

Rook

add_capture

add_move

checkECache

check_legal

comp_to_san

bishop_mobility

eval

gen

findlowest

f_in_check

is_attacked

is_draw

initialize_eva...

interrupt

in_check

hash_extract_pv

make

order_moves

qsearch

push_pawn_simple

push_king_castle

push_knighT

push_slidE

post_thinking
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post_fail_thinki...

post_fl_thinking

search_root

see

setup_attacker...

stringize_pv

std_eval

storeECache

remove_one

rdifftime

rook_mobility

rtime

unmake

think
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hash_extract_pv

std_eval

push_king

push_knighT

push_slidE
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add_mod_n

addn_inv

main

madd_inv

muxha_inv

muxfa_inv
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mul_mod_n

muln_inv

emul

quantum_addscrat...

quantum_add_hash

quantum_cnot

quantum_exp_mod_n

quantum_decohere

quantum_delete_ma...

quantum_gate1

quantum_gate_cou...

quantum_get_state

quantum_imag

quantum_hash64

quantum_hadamard

quantum_memman

quantum_objcode_pu...

quantum_new_matrix

quantum_qec_get_sta...

quantum_prob_inlin...

quantum_sigma_x

quantum_swapthel...

quantum_real

quantum_toffoli

test_sum
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quantum_bmeasure

quantum_frand

quantum_memman
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quantum_objcode_pu...

quantum_state_coll...

quantum_real

spec_rand

main
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cMessage30

cObject

EtherAppReq

EtherAppResp

EtherCtrl

EtherFrameWith...

genk_dblrand

MACAddress_Base

operator<=

operator>

_Z11expon...

_Z11trunc...

_Z10intun...

_Z10opp_st...

_Z12opp_ne...

_Z12genk_i...

_Z14check_a...

_Znwm

_ZNK...

_ZN1...

_ZNS...

_ZN2...

_ZN5...
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_ZN4...

_ZN7...

_ZN6...

_ZN9...

_ZN8...

_ZdlPv

_Z6normalddi

_Rb_tree_iterator

_wrap_intuniform

_wrap_exponential

_wrap_truncnormal

˜MACAddress_Base

˜cPolymorphic

˜cMessage30

˜cObject

˜EtherAppReq

˜EtherAppResp

˜EtherCtrl

˜EtherFrameWith...
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pointt

regobj

_Z13_aligned_f...

_Z15_aligned_m...

_Z8myrandomv

_Z3sqri

_Z7random1i

_Z7myroundf

_ZN11regbo...
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_ZN15large...

_ZN9stati...

_ZN9regmn...

_ZN9flex...

_ZN6regobj...

_ZN6wayobj...
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pointt

regobj

_Z13_aligned_f...

_Z15_aligned_m...

_Z8myrandomv

_Z3sqri

_Z7random1i

_Z7myroundf

_ZN11regbo...

_ZN15large...

_ZN9stati...

_ZN9regmn...

_ZN9flex...

_ZN6regobj...
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AbstractSt...

AbstractNu...

AllContentM...

AnySimpleTy...
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ArrayInde...

ArrayJani...

ArenaAllo...

ArenaBloc...

AttrImpl

Attribut...

AttrMapI...

AttrNSIm...

AVTPrefixCh...

CurrentNodePus...

CMStateSet

CMLeaf

CountersTabl...

CommitPushPa...

ConcatToken

Context

ContentSpe...

BaseRefVect...

Base64Binar...

BitSet

BinMemOutp...

BinFileIn...

BinFileOu...

BMPattern

BuildWrapper...

BorrowRetur...

BooleanData...

EmptyStackEx...

ExtensionNS...

ExtensionFu...
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EEndianNameM...

Elem...

ENameMapFor

DoubleToDOMS...

DeleteFunct...

DefaultColl...

DOMA...

DOMC...

DOMB...

DOME...

DOMD...

DOMN...

DOMP...

DOMS...

DOM_N...

DGXMLScanner

DFAContentMo...

GuardCachedObj...

GrammarResolve...

GetAndReleaseC...

FieldMatcher

Function...

FormatterTo...

IconvTrans...

IDREFData...

IDDatatyp...

IC_KeyRef

IC_Unique

IOExceptio...

IllegalArg...
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InputSo...

InScope...

InMemMs...

Invalid...

IdentityCo...

KeyDeclaration

KeyTable

Janitor

MalformedURL...

MatchPattern...

MixedContentM...

MemBufFormatT...

ModifierToke...

MonthDayDat...

MonthDataty...

LastPoppedHolde...

LongToDOMString

OutputContextSt...

OutputString

NameIdPool

NameSpace

Namespace

NCNameDataty...

NumberForma...

NullPointer...

NoSuchEleme...

NodeSortKe...

NodeRefLis...

NOTATIONData...

QName
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ParamsVectorE...

ParseExceptio...

PrefixResolve...

ProcessingIns...

PushAndPopCo...

PushAndPopEl...

PushPopInclud...

SAXParser

SAXParseE...

SAXExcepti...

SAXNotSup...

SAXNotRec...

SchemaAttD...

SchemaElem...

SchemaGram...

SelectionEv...

SetAndResto...

StackEntry

Stylesheet...

SGXMLScanner

RuntimeExceptio...

ReaderMgr

ResultNames...

ReusableAre...

RegxParser

RegularExp...

RefHash2...

RefHashT...

RefCounte...

RefVector...
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URLInputSource

UTFDataFormatE...

UnionDatatyp...

UnsignedLong...

UnexpectedEO...

ThrowEOEJanito...

TracerEvent

TraverseSche...

Transcoding...

TranscodeT...

TranscodeF...

TopLevelArg

Wrapper4InputSo...

Wrapper4DOMInpu...

VariablesStack

ValueStoreCach...

ValueVectorOf

Xalan...

Xerces...

XML...

XObjectI...

XObjectP...

XPathMat...

XPathExc...

XS...

XResultTr...

XToken

_Construct<xalanc_1...

_Construct<std::vect...

_Bit_iterator_base
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_Bit_const_iterato...

_Bvector_impl

_Deque_impl

_Deque_iterator

_Deque_base

_Destroy<xalanc_1_8...

_Destroy<std::deque...

_Destroy<std::_Deque...

_Destroy<std::vecto...

_Destroy<__gnu_cxx::__no...

_GLOBAL__I__Z5Usagev

_GLOBAL__I__ZN11xer...

_GLOBAL__I__ZN10xal...

_M_allocate_and_copy...

_M_insert_dispatch<c...

_M_insert_dispatch<__g...

_M_range_initialize...

_Rb_tree_impl

_Rb_tree_iterator

_Rb_tree_const_itera...

_Vector_impl

_Vector_base

_ZN11x...

_ZN10x...

_ZN12I...

_ZN9__gnu_c...

_ZNK1...

_ZNK9...

_ZNKS...

_ZNK6...
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_ZNSt...

_ZNSols...

_ZStm...

_ZSt1...

_ZSt2...

_ZSt4...

_ZSt6...

_ZSt9...

_ZSt8...

_Z5Usagev

_Z41__static_i...

_Z7stricmp...

_Z7getArgs...

_Z8xsltMa...

_Z8strnic...

_Z8getXPa...

_ZThn1...

_ZThn3...

_ZThn2...

_ZThn4...

_ZThn6...

_ZThn8...

__advance<std::_Deque_i...

__copy_b<xalanc_1_8::Ar...

__copy_b<xalanc_1_8::At...

__copy_b<xalanc_1_8::Ele...

__copy_b<xalanc_1_8::Nod...

__copy_b<xalanc_1_8::Reu...

__copy_b<xalanc_1_8::Var...

__copy_b<xalanc_1_8::Xa...
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__copy_b<xalanc_1_8::Xe...

__copy_b<char>

__copy_b<const xala...

__copy_b<short unsi...

__copy_b<std::_Deque_it...

__copy_b<std::vector<x...

__copy_b<std::vector<s...

__copy_b<std::vector<d...

__distance<const ...

__destroy_aux<xala...

__destroy_aux<std::s...

__destroy_aux<std::d...

__destroy_aux<std::_D...

__destroy_aux<std::v...

__do_global_dtors_a...

__lg<long int>

__normal_iterator

__static_initializa...

__uninitialized_cop...

__uninitialized_fil...

__tcf_111

__tcf_113

__tcf_117

__tcf_109

__tcf_105

__tcf_107

__tcf_18

__tcf_0

__tcf_38

__tcf_29
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__tcf_27

__tcf_51

__tcf_59

__tcf_48

__tcf_43

__tcf_72

__tcf_75

__tcf_63

__tcf_64

__tcf_91

__tcf_92

__tcf_95

__tcf_80

__tcf_88

appendBtoFLis...

append<xalanc_1...

assign

addIfNotFound

castToChild...

call_gmon_sta...

charAt

clear

c_str

c_wstr

copy<short...

copy<std::re...

copy<std::de...

copy<std::_Bi...

copy<std::_De...

copy<char>
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copy<const...

copy<xalanc...

copy<double...

copy<long u...

copy_backwa...

compareIgno...

equalsIgnoreCase...

distance<__gnu_cxx...

deque

doAppendCh...

doAppendSi...

doAppendTo...

doCollationC...

doWarn

getAtt...

getChi...

getEx...

getEv...

getDoc

getKey...

getNum...

getPar...

getSu...

getSt...

getTra...

getXPa...

gValidatorMutex

fill<xalanc_1_8::C...

fill<xalanc_1_8::N...

fill<const voi...
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fill<short un...

fill<std::deque...

fill<std::vecto...

fill_n<const vo...

fill_n<short un...

find<std::_Deque_i...

find<__gnu_cxx::__nor...

find_if<__gnu_cxx::__n...

frame_dummy

isPrefixUsed...

isPendingAtt...

isEmpty

isXMLLetterOr...

indexOf

map

max<size_t>

length

operator ne...

operator+

operator-<xa...

operator-<co...

operator-<st...

operator==<x...

operator<< <st...

operator>>

pair

startsWith

swap<xalanc_1_8::Att...

swap<xalanc_1_8::Xal...

swap<xalanc_1_8::Key...
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swap<xalanc_1_8::Na...

swap<xalanc_1_8::No...

swap<size_t>

swap<short uns...

swap<std::deque<x...

swap<std::_Bit_ite...

swap<std::_Bit_typ...

swap<std::_Deque_i...

swap<std::vector...

swap<unsigned in...

swap<long unsign...

releaseMemory

returnExternalM...

uninitialized_fil...

transcodeStrin...

transform

toCharArray

vector

˜AbstractNum...

˜AllContentM...

˜AnySimpleTy...

˜ArrayJanit...

˜ArenaAllo...

˜ArenaBloc...

˜AttrImpl

˜Attribute...

˜AttrMapIm...

˜AVTPartXPa...

˜AVTPrefixC...

˜CurrentNodePus...
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˜CMStateSet

˜CMLeaf

˜CMNode

˜CommitPushPa...

˜CollationCo...

˜CollectionD...

˜ContextNode...

˜ContentHan...

˜ContentSpe...

˜BaseRefVector...

˜BinMemOutput...

˜BinOutputStr...

˜BuildWrapperT...

˜BorrowReturn...

˜EEndianName...

˜Elem...

˜EnsurePo...

˜EnsureDe...

˜EndOfEnti...

˜EntityRes...

˜ErrorHandle...

˜ExtensionN...

˜ExtensionF...

˜ENameMapFor

˜DocTypeHandl...

˜DeclHandler

˜DefaultHand...

˜DTDHandler

˜DOMA...

˜DOMC...
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˜DOMB...

˜DOMD...

˜DOMI...

˜DOMN...

˜DOMP...

˜DOMS...

˜DOMX...

˜DFAContentMo...

˜GetAndReleaseCac...

˜FunctionID

˜FunctionCu...

˜FunctionCo...

˜FunctionS...

˜FunctionDif...

˜FunctionGen...

˜FormatterStrin...

˜FormatterTree...

˜FormatterToX...

˜FormatterToN...

˜IconvTransSe...

˜IC_Selector

˜IC_Unique

˜IDREFDatatyp...

˜IGXMLScanner

˜InMemHandl...

˜InMemMsgLo...

˜InvalidQNa...

˜InvalidSta...

˜HashCMStateSet

˜HashBase
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˜Janitor

˜MalformedURLE...

˜MixedContentM...

˜MemBufFormatT...

˜ModifierToken

˜LastPoppedHold...

˜LexicalHandler

˜LocalFileForm...

˜Locator

˜OutputContextPu...

˜OutputContextSt...

˜NCNameDatatypeV...

˜NodeSortKey

˜NodeSorter

˜Parser

˜PSVIAttribut...

˜PrefixResolv...

˜PushAndPop...

˜PushPopIncl...

˜PopAndPushCo...

˜SAXParser

˜SAXParseEx...

˜SAXExceptio...

˜SchemaAtt...

˜SchemaEle...

˜SchemaGra...

˜Scope

˜SelectorMat...

˜SetAndResto...

˜Stylesheet...
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˜SGXMLScanner

˜ReaderMgr

˜ResolveAndCl...

˜ReusableAren...

˜RegxParser

˜RegularExpr...

˜RefHash2Ke...

˜RefHashTab...

˜RefVectorOf

˜URLInputSource

˜UnknownEncodi...

˜UnexpectedEOF...

˜UnsupportedEn...

˜TracerEvent

˜TraceListener...

˜TranscodingEx...

˜TranscoderInt...

˜TopLevelArg

˜WFXMLScanner

˜VariablesStack

˜ValueVectorOf

˜Xalan...

˜Xerces...

˜XML...

˜XObjectP...

˜XNodeSet

˜XPathMat...

˜XS...

˜XResultT...

˜XToken
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˜_Vector_base

˜_Rb_tree

˜_Deque_base

˜_List_base

˜deque

˜map

˜pair

˜vector
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ArenaBlock

CurrentNodePush...

CommitPushPara...

ContextNodeLis...

BorrowReturnNo...

BorrowReturnMu...

BorrowReturnFo...

ElementPropertie...

DOMStringPrintWr...

GetAndReleaseCac...

FormatterString...

FormatterListen...

MutableNodeRefLi...

OutputContextPus...

NumberFormatStr...

NodeSortKey

NodeRefListBa...

NodeTester

ParamsPushPo...

ParamsVector...
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PrintWriter

PrefixResolv...

PushAndPopC...

PushAndPopEl...

PopAndPushCon...

SetAndRestoreC...

StackEntry

ReusableArenaBlo...

Writer

VectorEntry

Xalan...

XObjectPtr

XObjectRes...

XNumberBase

XStringRe...

XStringCa...

XStringBa...

XResultTree...

XTokenStri...

XTokenNumb...

_Construct<xalanc_1...

_Construct<std::vect...

_Bit_const_iterator

_Deque_iterator

_Destroy<xalanc_1_8...

_Destroy<std::vecto...

_M_insert_dispatch<c...

_M_insert_dispatch<__g...

_Temporary_buffer

_Vector_impl
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_Vector_base

_ZSt16__ins...

_ZSt16__mer...

_ZSt2...

_ZSt5merg...

_ZSt4fill...

_ZSt6__fin...

_ZSt6fil...

_ZSt9__find...

_ZSt8for_e...

_ZThn8_NK10xala...

_ZThn64_NK10xal...

_ZN11xerces...

_ZN10xalanc...

_ZN9__gnu_cxx1...

_ZNK10xala...

_ZNK9__gnu_cx...

_ZNKSt1...

_ZNKSt8...

_ZNKSt3...

_ZNKSt6...

_ZNSt1...

_ZNSt8_Rb_t...

_ZNSt5deq...

_ZNSt6vec...

__advance<const xal...

__copy_b<xalanc_1_8::Nod...

__uninitialized_cop...

__uninitialized_fil...

__distance<const x...
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__destroy_aux<xalan...

__destroy_aux<std::ve...

__normal_iterator

append

assign

advance<const x...

charAt

createEmptyS...

clear

c_wstr

copy<xala...

copy<cons...

copy<shor...

copy_back...

compareIg...

collation...

consume...

convertH...

equalsIgnoreCase...

doAppendChildN...

doCollationCom...

doValidate

getChildren...

getChildDat...

getResult

getSingleT...

getSubstri...

getStartI...

getString...

get_temporary...
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getTotal

fill<short uns...

fill<std::vector...

fill_n<short uns...

find<__gnu_cxx::__norm...

find_if<__gnu_cxx::__no...

isXMLLetterOr...

isEmpty

isNamespaceDe...

indexOf

max<size_t>

length

operator==

operator-<xalanc...

operator-<const ...

operator-<short ...

notCached

startsWith

stable_sort<__gnu_c...

swap<xalanc_1_8::Xal...

reserve

uninitialized_fil...

toCharArray

vector

˜CurrentNodePush...

˜CommitPushPar...

˜CollectionCle...

˜ContextNodeLi...

˜BorrowReturnNod...

˜BorrowReturnFor...
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˜EnsurePop

˜DOMStringPrintWr...

˜GetAndReleaseCac...

˜FormatterString...

˜FormatterListen...

˜OutputContextPus...

˜NodeSortKey

˜PrintWriter

˜PrefixResolve...

˜PushAndPopCont...

˜PopAndPushCont...

˜SetAndRestoreCu...

˜SetAndRestoreCo...

˜Writer

˜vector

˜Xalan...

˜XObjectPtr

˜XObjectRes...

˜XNumberBase

˜XStringRe...

˜XStringCa...

˜XStringBa...

˜XResultTree...

˜XTokenStri...

˜XTokenNumb...

˜_Temporary_buffer

˜_Vector_base


