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 As water flows downstream, it is transported to and from environments that surround the 

visible stream. Along with surface water, these laterally and vertically connected environments 

comprise the stream corridor. Stream corridor connectivity influences many ecosystem services, 

including retention of excess nutrients. The subsurface area where stream water and groundwater 

mixes—the hyporheic zone—represents one of the most biogeochemically active parts of stream 

corridors.  

 The goal of my research is to advance understanding of how connectivity between 

different parts of a stream corridor controls the availability and retention of nitrogen (N), a 

nutrient that can limit primary productivity (low-N) and negatively impact water quality (excess 

N). First, I developed and applied a new machine learning method to objectively characterize the 

extent and variability of hyporheic exchange in terms of statistically unique functional zones 

using geophysical data. In applying this method to a benchmark dataset, I found that hyporheic 

extent does not scale uniformly with streamflow and that changes in the heterogeneity of 

connectivity differ over small (<10 m) distances. Next, I leveraged the relative simplicity of 

ephemeral streams of the McMurdo Dry Valleys (MDVs), Antarctica, to isolate stream corridor 

processes that influence the fate of N. Through intensive field sampling campaigns, I found that 

the hyporheic zone can be a persistent source of N even in this low nutrient environment. Next, I 

combined historic sample data and remote sensing analysis to estimate how much N is stored in 

an MDV stream corridor. My results indicate that up to 103 times more N is stored in this system 

than is exported each year, with most of this storage in the shallow (< 10 cm) hyporheic zone. 

Lastly, I examined 25 years of data for 10 streams to assess how stream corridor processes 

control concentration-discharge relationships. I found that in the absence of hillslope 

connectivity, stream corridor processes alone can maintain chemostasis – relatively small 
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concentration changes with large fluctuations in streamflow – of both geogenic solutes and 

primary nutrients. My analysis also revealed that solutes subject to greater control by biological 

processes exhibit more variability within chemostatic relationships than weathering solutes that 

are only minimally influenced by biota. 

 Altogether, this research advances understanding of processes that are difficult to 

measure or are often overlooked in typical studies of temperate stream corridors. My findings 

provide insight into the surprising ways in which N is mobilized, transformed, and retained due 

to stream corridor connectivity in intermittent stream systems with few N inputs. 
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Chapter I 

Introduction 

 

As water flows, it is transported to and from environments that surround the visible 

stream. Along with surface water, these laterally and vertically connected environments 

comprise the stream corridor (Harvey & Gooseff, 2015). Stream corridor connectivity influences 

many ecosystem services, including retention of excess nutrients, that are of importance to 

humans and downstream ecosystems (Peterson et al., 2001; Gomez-Velez et al., 2015). The 

subsurface area where stream water and groundwater mixes—the hyporheic zone—represents 

one of the most biogeochemically active parts of stream corridors due to strong redox zonation, 

extended residence time, and increased contact with sediment and microbial communities 

(Boano et al., 2014). With this dissertation, I advance the current state of knowledge regarding 

(1) how hyporheic connectivity is spatially structured and (2) how this connectivity controls the 

availability and retention of nitrogen (N), a primary nutrient that can negatively impact water 

quality and influence the function of downstream ecosystems.  

Hydrologic connectivity has served as useful framework for investigating and 

characterizing integrated hydro-biogeochemical functioning of stream corridors from the scale of 

pore spaces and bedforms up to stream reaches, networks, and entire basins (Harvey & Gooseff, 

2015; Magliozzi et al., 2018; Gomez-Velez et al., 2015). Within stream corridors, hydrologic 

connectivity influences the development of distinct biogeochemical processing along exchange 

gradients (Boano et al., 2014; Krause et al., 2017) as well as their significance over larger scales 

(Harvey et al., 2018; Bernhardt et al., 2017).  

Amongst the compartments connected by hydrologic exchange flows, hyporheic and 

parafluvial zones are of particular importance for many biogeochemical processes, especially N 

retention and transformation (Harvey et al., 2018; Jones et al., 1995a, 1995b; Mulholland et al., 

2008). Despite decades of research, it remains challenging to quantitatively characterize, 

numerically represent, and accurately predict the spatiotemporal heterogeneity of hyporheic 
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connectivity and biogeochemical function (Boano et al., 2014, Lewandowski et al., 2019; Ward 

et al., 2016). The challenges in this area largely reflect more general issues with understanding 

how multi-scale heterogeneity impacts emergent hydro-biogeochemical processes in natural 

systems (Blöschl et al., 2019, Li et al., 2021). 

Connectivity between landscapes and stream corridors is often leveraged in the analysis 

of concentration-discharge (C-Q) relationships to infer distributed hydro-biogeochemical 

processes over large scales. Utilizing simple C-Q analysis frameworks has provided significant 

insight into how catchments store, mobilize, and transform solutes (Evans & Davies, 1998; 

Godsey et al., 2009; Knapp et al., 2020). Yet, despite recognition of streams as biogeochemically 

active conduits, few studies employing the C-Q framework have attempted to isolate stream 

corridor effects on C-Q relationship form and variability from those of the surrounding 

catchment (e.g., Moatar et al., 2017).  

Since nutrient and organic matter fluxes in most systems are dominated by allochthonous 

inputs from the surrounding landscape (e.g., Mulholland et al., 2008; Tank et al., 2010), 

hydrologic connectivity often determines the availability of nutrients in streams and strongly 

modulates the balance between autotrophic and heterotrophic metabolic processes (Mulholland 

et al., 2001), as well as N cycling (Alexander et al., 2009). This has resulted in extensive 

research on how stream corridors remove excess allochthonous organic matter and N (e.g., 

Alexander et al., 2007; Boyer et al., 2002; Gomez-Velez et al., 2015). However, in environments 

with limited canopy cover (e.g., alpine, arid, or polar systems), autochthonous contributions to 

organic matter and N from benthic algal biofilms can be significant (Fellman et al., 2011; 

Fenoglio et al., 2015; Marcarelli et al., 2008). Attention to the ways in which autochthonous 

organic matter and N are transformed and stored in such systems has been overshadowed by the 

general focus on systems in which excess N is exported from the surrounding landscape.  

Additionally, very few streams are characterized by stable hydrologic conditions either in 

space or time. Hydrologic variability has profound implications for where and how N and other 

nutrients are cycled and whether short-term studies can adequately characterize variability in 
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their biogeochemical function. This is especially true of intermittent streams, which comprise 

more than half the length of global river networks, are becoming more prevalent due to 

anthropogenic activities, are often ignored in environmental policy, and exert an outsize 

influence on water availability and quality (Acuña et al., 2014; Datry et al., 2014). Intermittent 

streams exhibit unique hydro-biogeochemical behaviors that require more nuanced 

characterization and representation of spatial and temporal variability in connectivity, especially 

in terms of biogeochemical cycling (Allen et al., 2020; Larned et al., 2010). To address broadly 

relevant issues, advances in stream corridor science will increasingly need to incorporate the 

biogeochemical consequences associated with intermittent hydrologic connectivity. 

In this dissertation, I seek to characterize processes that are difficult to measure or are 

often overlooked in typical studies of temperate and perennial stream corridors. To do so, I 

combined data science techniques and geophysical data to enhance objective characterization of 

heterogenous hyporheic connectivity. I also leveraged the relative simplicity of ephemeral 

streams of the McMurdo Dry Valleys (MDVs), Antarctica, to isolate stream corridor processes 

that influence the fate of N. These studies provide insight into the surprising ways in which N is 

mobilized, transformed, and retained in intermittent stream systems with few N inputs. Chapters 

II – V of this dissertation include conceptual and methodological advice, analytical assistance, 

and guidance on writing by many coauthors, including committee members, who I have 

recognized in the Acknowledgements section. These chapters are formatted for submission to 

scientific journals, with the style of the text, graphics, and citations reflecting the target journal 

for each chapter. In the final chapter (VI), I summarize findings from Chapters II – V and 

provide recommendations for future lines of research, both in the MDVs and other stream 

systems.  

Chapter II: Estimation of hyporheic extent and functional zonation during seasonal 

streamflow recession by unsupervised clustering of time-lapse electrical resistivity models. 

Analysis of time-lapse ER data from tracer studies has shown great potential to address problems 

associated with characterizing the spatiotemporal complexity of hyporheic exchange processes 
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from limited point-scale sampling (i.e., wells and piezometers; Ward et al., 2010). However, its 

utility in objectively delimiting the extent and quantifying changes in connectivity has been 

impeded by reliance on qualitative analysis or the use of a priori assumptions about data quality 

and signal strength. In particular, it has been difficult to objectively and quantitatively interpret 

small scale (<25 cm) heterogeneity modeled in ER inversions relative to larger-scale functional 

differences within the hyporheic zone. Here, I develop and apply a machine learning method 

coupled with a statistical test to identify the spatial structure and transport behavior of distinct 

functional zones during seasonal flow recession in a headwater stream. 

Chapter III: The Role of Hyporheic Connectivity in Determining Nitrogen Availability: 

Insights from an Intermittent Antarctic Stream. In some systems, N fixation along stream 

corridors has been shown to be a relatively large compared to allochthonous inputs, but relatively 

little is known about how spiraling of this autochthonous N occurs and its impact on N 

availability. I conducted intensive field sampling campaigns involving concurrent sampling of 

surface and hyporheic water from an MDV stream along with a laboratory assay on the 

nitrification potential of hyporheic microbial communities. I used data from these efforts to 

assess the role of the hyporheic zone in cycling autochthonous N across flow conditions. This 

chapter has been published (Singley et al., 2021) in the Journal of Geophysical Research: 

Biogeosciences. 

Chapter IV: Differentiating Physical and Biological Storage of Nitrogen Along an 

Intermittent Antarctic Stream Corridor. Given the global increases in reactive N availability due 

to anthropogenic activities, most studies on N cycling in streams have focused on N export flux 

reductions, especially through biological uptake processes. Very few studies have determined 

how this N removal relates to N storage in the stream corridor, especially for intermittent 

systems where allochthonous N inputs are low and transport of N may only occur during brief 

periods. In this chapter, I combined historic datasets and remote sensing analysis to estimate how 

much N is stored in an MDV stream corridor in periphyton biomass and the hyporheic zone. I 

conducted a simple laboratory assay to assess whether fluid conductivity fluctuations 
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characteristic of MDV streams can release ammonium stored by sorption to sediment – which is 

generally understudied in small, intermittent streams. Lastly, I utilize a simple reactive transport 

model to assess the longitudinal distances over which allochthonous N inputs are attenuated by 

uptake to evaluate the prior inference that fluxes from internal N pools are needed to explain 

downstream concentration observations.  

Chapter V: Stream Corridor Processes Sustain Chemostasis of Weathering Solutes and 

Primary Nutrients in Antarctic Streams. Long-term C-Q relationships provide information about 

integrated hydro-biogeochemical processes occurring throughout catchments. Due to the 

challenges of parsing the influence of catchment and stream corridor biogeochemical processes 

on C-Q relationships, the latter are often ignored or assumed to be negligible. In this chapter, I 

analyze 25 years of data for 10 MDV streams to assess how stream corridor processes alone 

control C-Q relationship form and variability among a suite of solutes spanning geogenic solutes 

to primary nutrients. 
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Chapter II 

Estimation of hyporheic extent and functional zonation during seasonal streamflow 

recession by unsupervised clustering of time-lapse electrical resistivity models  

 

2.1. Introduction  

The exchange and mixing of surface and groundwater in stream corridors exerts a strong 

control on hydrologic transport, biogeochemical reactions, and the existence of ecological 

refugia (Harvey & Bencala, 1993; Ward, 2016; Harvey et al., 2018; Lewandowski et al., 2019). 

Despite decades of research, estimating the extent and spatiotemporal variability of the 

hyporheic zone remains challenging due to the structural heterogeneity of the subsurface and the 

difficulty of making direct observations beyond a few discrete points (i.e., wells and 

piezometers). Numerous studies have sought to determine how the extent of hyporheic exchange 

responds to variable hydrologic conditions, often with an interest in the implications for which 

biogeochemical reactions can occur and their reach-scale significance, but results are often in 

conflict between sites and few generalizable behaviors have been identified (Ward, 2016). The 

capability for predictive modeling is similarly limited either by overly simplistic representation 

of the hyporheic zone as a single well-mixed storage zone (Marion et al., 2003; Wondzell, 2006) 

or the rarity of sufficient data needed to inform accurate representation of transport heterogeneity 

at scales beyond individual channel features (Schmadel et al., 2017; Ward et al., 2017). 

Consequently, advances in observing and modeling both the dynamic behavior of hyporheic 

exchange will depend on developing data-driven techniques that can constrain the spatiotemporal 

complexity of hyporheic exchange at functionally meaningful and tractable scales.  

Numerous definitions of the hyporheic zone have been proposed, with specific criteria 

reflecting the primary discipline of a given study (White, 1993; Tonina & Buffington, 2007; 

Gooseff, 2010; Ward, 2016). A primary challenge in defining the hyporheic zone originates from 

the heterogeneity of nested flow paths that govern both reach-scale hydrologic transport and the 

significance of biogeochemical reactions. In an effort to incorporate prior studies and promote 
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interdisciplinary synthesis, Ward (2016) suggested that the region encompassing the HZ must (1) 

be in the saturated subsurface, (2) include flow paths that originate from and return to surface 

water, and (3) interact with the stream water within a specified temporal scale related to 

hydrologic or biogeochemical processes of interest. While this definition is flexible, it remains 

practically difficult to simultaneously delineate both the spatial and temporal boundaries implied 

by this definition in an actual field study.  

Interactions between surface water and the hyporheic zone are most often assessed 

through conservative-solute tracer injections (Harvey & Bencala, 1993; Harvey et al., 1996; 

Kasahara & Wondzell, 2003; Ward et al., 2019). The resulting solute breakthrough curves 

(BTCs) reflect the effects of advection, dispersion, and transient-storage processes (both surface 

and subsurface) that are integrated over space and time (Stream Solute Workshop, 1990). Point-

scale subsurface sampling combined with surface-water data is often used for model tuning to 

estimate lumped transport and storage parameters, but the results are often not clearly 

meaningful (Marion et al., 2003; Wondzell, 2006). Additionally, main-channel BTC 

observations reflect the convolution of surface and subsurface transient-storage processes, yet 

these compartments are known to exhibit distinct biogeochemical functions, especially aerobic 

versus anaerobic processes, making the need to parse their effects important in many studies 

(Knapp et al., 2018). Despite the computational feasibility of numerically modeling spatially 

explicit heterogeneity of coupled transport and biogeochemical reactions (e.g., Marzadri et al., 

2011), it is rarely possible to overcome issues of equifinality in parameterizing multiple storage-

zone models from surface and well BTC observations alone (e.g., Bottacin-Busolin, 2019), 

especially for reactive solutes (e.g., Kelleher et al., 2019). 

The use of time-lapse electrical resistivity (ER) imaging of hyporheic exchange during 

tracer injections was introduced over a decade ago (Ward et al., 2010b) as a promising method 

for characterizing time-varying hyporheic extent. Fundamentally, ER methods utilize surface 

measurements of electrical potentials from induced current flow to inversely model subsurface 

properties that are sensitive to the introduction and transport of electrically conductive solute 
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tracers (Singha et al., 2008). Since its adaptation to stream tracer studies, ER imaging has been 

employed to investigate how hyporheic exchange, especially its extent, responds to in-channel 

woody debris (Doughty et al., 2020), seasonal flow recession (Ward et al., 2012, 2014), flow 

regulation by dam operation (Cardenas & Markowski, 2011), and structural variations in bedrock 

boundaries (Rucker et al., 2021).  

Successful application of ER for delimiting and quantifying changes in hyporheic 

exchange has been impeded by reliance on qualitative analysis or a priori assumptions about the 

consequences of data quality and inversion decisions on the final model images to attempt more 

quantitative analysis. Prior studies have relied on evaluation of time-lapse 2D ER model images 

to compare hyporheic extent between times of data collection (e.g., Ward et al. 2010b), largely 

ignoring sensitivity issues (e.g., Day-Lewis et al., 2005). This approach is flexible but, like 

nearly all geophysical analyses, does not allow for robust quantitative comparison or prediction 

between stream reaches or injections. Alternatively, some studies (e.g., Doughty et al., 2020) 

have analyzed spatially lumped changes in bulk apparent resistivity data, which provide a basis 

for quantitatively describing temporal variations in exchange but sets aside spatially resolved 

information inherent in the time-lapse ER models. Finally, a few studies (e.g., Ward et al., 

2010b, 2012) have applied a priori signal thresholds to delimit and estimate hyporheic extent 

from model images. Unfortunately, the resulting estimates of hyporheic extent are particularly 

sensitive to the subjectively selected change in resistivity (Δρ) threshold (Ward et al., 2010b), so 

only relative changes, not the actual extents, are meaningful. Application of a standard threshold 

(i.e., Δρ > 2.5%) across multiple datasets does not account for actual differences in either the 

quality of the data or the relative strength of tracer injection signals compared to noise. 

In this study, we introduce a novel method for analyzing inverted ER images based on 

unsupervised time-series clustering that addresses the challenge of resolving both the extent and 

spatial heterogeneity of hyporheic exchange. Unsupervised clustering is a data-mining technique 

in which time series are objectively grouped based on structures within the data rather than a 

priori assumptions (e.g., Aghabozorgi et al., 2015). We apply unsupervised clustering to time-
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lapse ER models from a benchmark dataset (Ward et al., 2012, 2020) to assess how the extent 

and heterogeneity of hyporheic connectivity changes during baseflow recession in a headwater 

stream. We demonstrate that unsupervised clustering of inverted ER model time series from 

tracer injections can be used to (1) delimit hyporheic extent by distinguishing solute transport 

signals from noisy background inversions (adjacent hillslopes or at depth), and (2) characterize 

transport heterogeneity within the hyporheic zone in terms of spatially defined functional zones. 

Clustering of inverted ER models, therefore, represents a shift towards a data-driven functional 

zonation representation of hyporheic connectivity, which is akin to other facies frameworks in 

which complex heterogeneity is simplified by characterizing compartments for which in-group 

heterogeneity is smaller than between-group differences (e.g., Sassen et al., 2012; Wainwright et 

al., 2014; Hou et al., 2019; Hermes et al., 2020).  

2.2. Methods 

The principles of ER data collection and its application in stream tracer studies have been 

described extensively by prior studies (Singha et al., 2008; Ward et al., 2010a-b, 2012, 2014; 

McLachlan et al., 2017). Briefly, ER measurements are sensitive to lithology, porosity, 

connectivity of pore spaces, pore fluid conductivity, temperature and moisture content. The 

introduction of an electrically conductive tracer alters only pore-fluid conductivity, thereby 

allowing detection of solute transport through the subsurface (Singha et al., 2008). Data are 

collected by applying an electric current (I, A) to the ground surface and measuring the resulting 

potential difference (V) between two locations to calculate the geometry-dependent resistance (R, 

Ω) by Ohm’s Law (R = V/I). Then, depending on the arrangement of electrodes, a geometric 

factor (K) can be calculated for each measurement (see Binley et al., 2015) which is used to 

convert R to apparent resistivity (ρ, Ωm) as ρ = KR. Apparent resistivity can, in turn, be 

converted to apparent electrical conductivity (σ, S/m) as σ = 1/ρ. We present results for this 

study in terms of σ, which is more intuitively related to fluid conductivity (σfl) typically 

measured in surface water or wells during tracer studies.  



  12 

2.2.1 Injections and ER Collection from a Benchmark Dataset 

We use ER survey data and main channel σfl from tracer studies conducted in a forested 

second-order stream within the H. J. Andrews Experimental Forest, Oregon (48º10'N, 122º15'W) 

during the summer of 2010 (Ward et al., 2020). This dataset has been previously used to examine 

hyporheic connectivity throughout baseflow recession (Ward et al., 2012, 2014) and, therefore, 

serves as a useful benchmark for comparison of new methods. We focus our analysis on four 48-

hr tracer tests that were conducted in a 50-m reach of a headwater stream in Watershed 3 (101 

ha) for discharges decreasing from 35 to 4 L s–1. All injection solutions contained only sodium 

chloride (NaCl) as a conservative tracer. A two-week recovery period was observed between 

injections. Electrical resistivity data were collected using dipole-dipole configurations with an 

IRIS Syscal Pro (Orleans, France) on lateral transects, each consisting of 12 surface electrodes 

with approximately 1 m spacing (Figure 2.1). While data were collected from six transects, we 

consider ER data from Transects 2 and 3 as only they have complete data from all four 

injections; they also cross different channel morphologies. 
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Figure 2.1. Site location and instrumentation map for WS3 in the H. J. Andrews Experimental 
Forest, located in the Cascade Range of central Oregon. Main channel electrical conductivity 
sensors are identified as A–C from upstream to downstream locations in the text. Modified from 
Ward et al. (2012).  
 

2.2.2 ER Inversions  

We inverted resistance data from surface measurements with R2 (v2.7b compiled for 

Unix), which uses a regularized objective function and weighted least-squares regression 

approach to model and solve current flow in a quadrilateral finite-element mesh for each transect 

and injection (Binley & Kemna, 2005; Binley, 2015). The number of nodes in the inversion 

meshes for this study ranged from 2,394–2,698 due to differences in transect widths. The 

inversion mesh was generated with 25-cm spacing horizontally and 20-cm spacing vertically 

down to a relative depth of 6 m, with spacing doubling to each node thereafter. In all cases, we 

extended the inversion mesh at least 100 m horizontally beyond the outermost electrode 

locations and to a depth of about 150 m to reduce boundary effects. Surface topography for the 

inversion mesh was linearly interpolated between surveyed electrode locations. For 

comparability between injections, we limited analysis to data collected between, at most, 8 hours 

prior to and 96 hours after the beginning of each injection.  

For the time-lapse inversions we utilized a difference method wherein the first timestep 

data and ER model are used as a starting model and target dataset to which subsequent inversions 

are regularized (Binley, 2015). Changes in resistivity (Δρ) and its inverse, changes in 

conductivity (Δσ), from the starting model are provided for each time period of collection 

(timestep, hereafter) during the inversion process. For each injection and transect we calculated 

the resolution matrix as described by Binley & Kemna (2005) to quantify nodal sensitivity within 

the inversion mesh. We then used the diagonal of the resolution matrix to select nodes for 

subsequent analyses with a resolution of at least 1%, meaning that at least 1% of the node’s 

modeled resistivity was independent of adjacent nodes (Binley & Kemna, 2005; Ward et al., 
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2012). Areas with resolution values < 1% were parts of the inverted model for which temporal 

changes in conductivity could not be meaningfully interpreted.  

2.2.3 Unsupervised Clustering of Time-lapse ER Models 

As an alternative to qualitative assessments, spatially lumped analysis, or a priori 

selection of signal thresholds, we used unsupervised hierarchical clustering of nodal Δσ time 

series to identify clusters of nodes for which within-zone differences in tracer response are 

smaller than between-group differences. In so doing, we (1) estimated the spatial arrangement of 

functional zones, (2) identified characteristic Δσ BTCs for each cluster, and (3) estimated total 

hyporheic extent. Applying this method to time-lapse ER models identifies emergent patterns 

within the model outputs and retains both spatial and temporal information but does not require 

selection of arbitrary cutoffs in Δσ to determine where meaningful changes have occurred.  

2.2.3.1 Clustering of Nodal ER Time Series 

From the time-lapse ER models, we calculated a metric describing the dissimilarity 

between pairs of nodal Δσ time series (Figure 2.2a-c). To do so, we calculated the absolute value 

of Euclidean distances at each timestep for all pairwise combinations of the Δσ time series using 

the TSclust package in R (Montero & Vilar, 2014; R Core Team, 2019). The absolute Euclidean 

distance (d) between the time series for any two nodes (j and k) with Δ"!,# and Δ"$,# as their 

respective percent change in electrical conductivity at timestep t is: 

 #!,$# = %Δ"!,# − Δ"$,#% (2.1) 

We summed these distances for t between 8 hours prior to (ti) and 96 hours after (tf) the injection 

began to give the individual elements of the dissimilarity matrix (D): 

 '!,$ = ∑ #!,$#
#!
#"  (2.2) 

We opted to use Euclidean distances to construct a dissimilarity matrix as they represent the 

simplest distance metric that retains the physical meaning of the time-series values (no unit 

conversion) and are sensitive to both scaling and synchronicity in structure among time series, 

unlike other metrics used for time-series comparisons (e.g., Aghabozorgi et al., 2015). 
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Consequently, the resulting distance measure Dj,k is indicative of how similar two time series are 

in both shape and timing of the response to tracer transport. Additional discussion of alternative 

distance-metric selection as well as time-series normalization is provided in the supplemental 

information.  

 
Figure 2.2. Conceptual depiction of unsupervised clustering analysis of time-lapse ER models 
from tracer injections. At each timestep (a) percent change in modeled conductivity (Δσ) relative 
to the pre-injection condition is output, then (b) time series of Δσ are extracted for each node in 
the inversion mesh, (c) Euclidean distances are calculated and summed for each pairwise 
comparison of nodes to construct a dissimilarity matrix, which is then used to (d) hierarchically 
cluster nodes. The resulting clusters can then be analyzed for (e) characteristic BTCs and (f) 
approximate spatial extent. 
 

To identify similarities in hyporheic exchange processes within the subsurface, we then 

applied the built-in agglomerative hierarchical clustering algorithm in R (hclust; R Core Team, 

2019) to D (Figure 2.2d). Individual nodes are first assigned to their own clusters, then at each 

subsequent iteration the most similar clusters are merged until a single cluster is formed. Here we 

use the default complete-linkage method to identify the nearest clusters to be merged at each 

step. The resulting dendrogram consists of n-1 branching events, where n is the number of nodes 

retained from the ER inversion mesh with resolution > 1%. 
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2.2.3.2 Identifying the Number of Clusters and Characteristic BTCs 

There is no absolute best approach to selecting the “correct” number of clusters or how to 

cut a dendrogram (Liao, 2005) and many different cluster-validity indices have been proposed 

(Aghabozorgi et al., 2015). We pass the dendrogram data through a non-parametric permutation-

based test of within- versus between-branch variances (Park et al., 2009) to determine whether 

each branching event results in the formation of clusters with statistically different responses to 

the tracer addition. Significant branching events are identified if they satisfy a Bonferroni 

corrected p-value threshold (p < 0.05/[n-1], where n is the number of nodes). In selecting this 

approach, we base cluster retention on patterns and structures that exist within the data in a way 

that allows for asymmetric combination of non-significant branching events (Park et al., 2009). 

With this method any number of clusters that is statistically supported can be retained depending 

on the end goal or application of the resulting information. We present results for four 

statistically unique clusters for each transect and injection. Objectively parsing the hyporheic 

zone into a few functional zones signifies an advance beyond treating it as a single well-mixed 

compartment while not exceeding the complexity represented in widely available, 

computationally inexpensive multiple transient storage zone models. 

After identifying four statistically unique clusters and the membership of individual 

nodes, we determined the characteristic Δσ BTC for each cluster by calculating the mean and 

standard error (SE) of individual nodal Δσ values within a cluster by timestep (Figure 2.2e). We 

calculated the SE on the mean instead of the standard deviation as the number of nodes within 

each cluster can vary largely, with some clusters potentially including fewer than 10 nodes while 

others may include hundreds.  

2.2.3.3 Identifying and Delimiting Extent of Hyporheic Exchange 

Next, we identified which of the retained clusters represent the effective hyporheic zone – 

that is, which groups of nodes have time series that are reflective of tracer transport at the 

timescale of interest for a particular injection as informed by the BTC observed in the stream. 
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We used the dendrogram and cluster-wise characteristic BTCs to subjectively distinguish 

clusters comprising the effective hyporheic zone and those that behave as non-responsive 

“reference” nodes. Specifically, reference nodes lack BTC structure related to the tracer injection 

and exhibit a signal akin to white noise. However, reference nodes may exhibit some temporal 

patterns deviating from white noise due to variations in temperature and soil moisture, or the 

spatial smearing of signals through the mesh by the inversion algorithm (Day-Lewis et al., 2005). 

In contrast, we interpret clusters representing the effective hyporheic zone as exhibiting BTCs 

with systematic increases in σ (decreases in ρ) from the pre-injection state, which is indicative of 

conductive solute transport (Singha et al., 2008; Ward et al., 2010b). In the event that such 

qualitative distinctions between BTC shapes for reference and hyporheic clusters were not 

obvious, we utilized the branching structure of the dendrogram to inform decision making.  

We then qualitatively categorized the clusters comprising the effective hyporheic zone 

based on the speed and magnitude of their Δσ BTC as “fast”, “moderate”, or “slow”. These 

descriptors reflect the relative Δσ BTC behaviors that indicate differences in advective solute 

transport between the clusters (Ward et al., 2010a). 

We then calculated the approximate extent of the clusters comprising the effective 

hyporheic zone based on the location of nodes within the inversion mesh. Due to the ill-

determined nature of the inverse problem and resolution limitations, neither the ER models nor 

our calculated hyporheic extents represent a precise quantification of the system. Rather, they are 

simply estimates based on a smoothed approximation of subsurface properties, from which we 

more objectively, but imprecisely, map patterns via hierarchical clustering. 

2.2.3.4 Quantifying Heterogeneity of Hyporheic Exchange Over Time 

While clusters represent coarse spatial characterization of hyporheic complexity into just 

a few functional zones based on modeled responses over the entire injection, we also seek to 

estimate the heterogeneity of tracer transport into and from the subsurface at different times 

during the injection. Therefore, we quantified the magnitude and trajectory of heterogeneity in 
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modeled tracer signal (as Δσ) at particular times throughout a tracer study and how that changes 

under different flow conditions. Specifically, we characterized the temporal patterning of 

modeled Δσ by calculating the mean and standard deviation of d (Eqn 2.1) across all nodal 

pairings within the interpreted effective hyporheic zone for individual timesteps. This metric is a 

rough proxy for heterogeneity of tracer exchange into and from the subsurface. We included only 

nodes interpreted as belonging to effective hyporheic clusters, such that differences between 

those and reference clusters did not influence the results.  

2.2.4 Threshold-based Estimates of Hyporheic Extent 

Prior studies (e.g., Ward et al., 2010b, 2012) have estimated hyporheic extent based on a 

priori selection of Δρ (or Δσ) thresholds. Because the resulting estimates of hyporheic extent are 

particularly sensitive to the selected threshold (Ward et al., 2010b), only relative changes, not the 

actual extents, are likely meaningful—ignoring issues with out-of-plane effects (e.g., Bentley 

and Gharibi, 2004). Therefore, we identified the nodes for each injection and transect for which 

Δσ ≥ 2, 3, 4, 5, and 10% for at least one timestep during the injection to compare to Ward et al. 

(2012). We then estimated the hyporheic extent by calculating the total area within the inversion 

mesh represented by the nodes retained by each of these 5 thresholds. We compared the 

directionality and magnitude of changes in threshold-based and clustering-based extent estimates 

in response to seasonally declining streamflow. 

2.3 Results and Discussion 

2.3.1 Spatial Arrangement and Transport Characteristics of Hyporheic Clusters 

The total number of nodes with resolution ≥ 1% varied for each set of inverted ER data, 

with fewer nodes retained (n) for Transect 2 than 3. Over the four injections, n ranged from 300–

324 for Transect 2 and 318–408 for Transect 3. In all instances, a permutational test (Park et al., 

2009) of inter- versus intra-cluster variances identified > 50 significant branching events such 

that there are more statistically unique clusters than can be individually interpreted. Therefore, 

we analyzed the four clusters resulting from the four highest branching events for each transect 
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and injection (Figure 2.3) – these four clusters were all statistically significantly different (p ≪

0.001) from each other. While this approach joins clusters formed by subsequent branching 

events that exhibit significantly different Δσ responses to the tracer, all of the within-cluster 

differences are significantly smaller than those between clusters and no clusters from non-

significant branching events are retained. Given the ill-determined nature of inverse modeling 

from surface ER data and resolution limitations, we chose to avoid retaining large numbers of 

clusters, wherein the size of some clusters would potentially become too small to generate valid 

statistical comparisons or meaningful hydrological interpretations.  

 
Figure 2.3. Individual injection dendrograms based of hierarchical clustering of nodal Δσ time 
series for Transect 2 (a-d) and Transect 3 (e-h). Clusters are labeled by qualitative descriptors of 
characteristic BTCs (Figure 2.5). 

In general, the hillslopes to either side of the stream clustered together with additional 

clusters forming in a radial pattern within the valley bottom (Figure 2.4). Based on relative 

differences in the characteristic Δσ BTCs (Figure 2.5), we found that the clusters with the most 

advective signatures (“fast”) occurred nearest to surface. These regions were ringed by the 

cluster exhibit moderately (“mod”) advective behavior while the least advective (“slow”) clusters 

were located at even greater depths and lateral distances within the subsurface. This spatial 

organization matches both conceptual expectations of hyporheic exchange and prior 

visualizations of ER data from tracer studies in streams (e.g. Ward et al., 2010a, 2010b, 2012; 
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Doughty et al., 2020). It is notable, however, that this pattern is neither explicitly defined by nor 

provided as an input in the cluster-identification algorithm.  

While the nodal membership and spatial arrangement of clusters shifted over the four 

injections, we observed some persistent patterns in the organization of functional zones. For 

Transect 2, the primary pattern is the assignment of two spatially separated regions on either side 

of the valley bottom to the same cluster (i.e., “Fast” cluster for injections 1 and 2, shifting to 

“Slow” for injections 3 and 4). In contrast, a singular radial clustering pattern was exhibited in 

Transect 3 throughout all four injections. This difference highlights the ability of hierarchical 

clustering to parse the effective hyporheic area into functional zones with spatial arrangements 

that reflect connectivity to surface water at a particular transect, but that are not necessarily 

contiguous. Additionally, the location and extent of certain functional zones (i.e., “fast” for 

Transect 3) change very little even as flow changes suggesting that this functional zonation 

approach based on clustering is sensitive to spatial differences in hyporheic exchange that reflect 

stable physical properties. 

 
Figure 2.4. Inversion mesh cross-sections with individual node regions colored by cluster 
membership for Transect 2 (a-d) and Transect 3 (e-h) across each of the four injections. Vertical 
relief is exaggerated two fold. Clusters are labeled by qualitative descriptors of characteristic 
BTCs (Figure 2.5). 
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Figure 2.5. Observed specific conductivity BTCs for main channel sensors (a-d) and cluster-
wise Δσ BTCs for Transect 2 (e-h) and Transect 3 (i-l). The Δσ traces (e-l) are presented as 
ribbon plots (mean ± SE) representing Δσ values for nodes within each cluster at teach timestep. 
Errors are relatively small compared to line width in most cases. Clusters are labeled by 
qualitative descriptors of characteristic BTCs (Figure 2.4). 

As noted by prior studies (e.g., Ward et al., 2012), main-channel fluid-conductivity BTCs 

from each injection reached a plateau quickly (< 1 hour) and returned to background levels over 

slightly longer, but still fairly rapid time spans (< 2 hours), after the injection ended (Figure 2.5a-

d). In contrast, characteristic Δσ BTCs for each cluster show a much more gradual shift from 

background conditions and most do not reach a fully plateaued state (Figure 5e-l), especially for 

injection 4 at the lowest flows. While many clusters show an initially rapid response to the end of 

the injection, the rate at which characteristic Δσ BTCs return to their pre-injection state generally 

slows after a few hours, and most do not return to the initial state even 48 hours later. These 

behaviors reflect the sensitivity of ER to low concentrations of solute that are retained in and 

slowly released from relatively immobile pore spaces and diluted below detection in stream 
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water (Singha et al., 2008; Ward et al., 2010a). Notably, the “fast” clusters appear to load and 

unload with tracer the most rapidly and exhibit the greatest change in σ, reflecting more 

advective transport and greater dominance by mobile domains. In contrast, the “slow” clusters 

show the smallest and most gradual σ responses, indicative of less advective transport and more 

immobile pore spaces. Clustering of inverted ER data, therefore, categorizes portions of the 

subsurface in terms of BTC behavior that emerges from distinctive combinations of transport 

phenomena (i.e., advection vs dispersion) and relative density of mobile versus immobile 

domains within the subsurface.  

By providing a means to quantify how these behaviors differ at each timestep for 

spatially defined sets of nodes, clustering improves upon approaches that either lump all surface 

ER data together (i.e., bulk apparent-resistivity time series; Doughty et al., 2020) or characterize 

spatial trends within modeled cross-sections for only a small subset of times (i.e., Δρ cross-

sectional images at a few selected timesteps; Ward et al., 2012). Thus, this application illustrates 

how functional zones defined by their transport characteristics can be identified and 

approximately mapped in space by hierarchical clustering of inverted ER data. 

We interpreted reference clusters (“ref1”) across injections and transects when they did 

not exhibit an obvious BTC response to the tracer addition (Figure 2.5) and were mostly located 

within adjacent hillslopes above the streambed where exchange is unlikely (Figure 2.4). 

Generally, this reference cluster was the largest across all injections and exhibited Δσ traces that 

were flat and near zero (< ±5%) as would be expected. Notably, however, for Transect 2 

injection 2, cluster “ref2” showed a flat Δσ response during the injection but had a large negative 

Δσ step change in the post-injection period. Such a negative Δσ response is likely an artifact of 

the second-derivative smoothing incorporated into the inversion process. Altogether, these 

examples demonstrate that hierarchical clustering is useful for identifying spatial organization of 

distinct tracer transport signals in the subsurface, distinguishing unresponsive nodes from those 

in the effective hyporheic zone and detecting inversion-process artifacts.  



  23 

While main-channel fluid conductivity BTCs vary between injections (Figure 2.5a-d), 

some notable patterns reflective of seasonally evolving subsurface solute transport emerge across 

the injections. Specifically, cluster-wise Δσ BTC shapes (particularly the “fast” clusters) shift 

temporally toward slower loading and weaker plateauing. That change in the “fast” cluster 

behavior is most apparent for Transect 2 and to lesser extent for Transect 3. This difference 

between transects is suggestive of subsurface advective transport declining more substantially for 

Transect 2 as surface flow (35 L/s at injection 1 to 4 L/s during injection 4). Temporal moment 

analysis on nodal BTCs for this dataset by Ward et al. (2014) similarly reported larger changes in 

first-arrival time, mean-arrival time, and skewness for Transect 2 than Transect 3. That analysis 

required lumping data for all nodes identified as part of the effective hyporheic zone, while our 

analysis parses this into spatially defined functional zones. 

2.3.2 Comparison of Methods for Estimating Effective Hyporheic Extent  

We compared the total effective hyporheic extent among injections with different 

streamflow rates estimated by hierarchical clustering with Δσ thresholds (Figure 2.6). We limit 

analysis of relative differences in extent to a single significant digit due to the imprecise nature 

of models resulting from inversion of field data. Based on the clustering method, we found that 

total effective hyporheic extent for Transect 2 decreased by ~40% (10 to 6 m2) between the 

highest and lowest flows. In contrast, for Transect 3 cluster-based analysis resulted in a ~30% 

increase (6 to 8 m2). For Transect 2, threshold-based estimates of hyporheic extent were 

relatively stable for flows of 35 and 14 L s–1, with decreasing extents observed as flow fell from 

14 to 7 and then 4 L s–1, except for Δσ ≥ 2%. For Transect 3, estimated hyporheic extent 

increased as flow fell from 35 to 14 L s–1 then declined thereafter.  
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Figure 2.6. Total effective hyporheic extent by method versus surface discharge for (a) Transect 
2 and (b) Transect 3.  

Interestingly, the cluster-based estimates of total effective hyporheic extent are relatively 

more stable at the three lowest streamflow conditions and most similar to those generated by 

different threshold values depending on the injection and transect. For the lowest flow 

conditions, cluster-based extent estimates for both Transect 2 and Transect 3 are very similar to 

those generated by a Δσ threshold of 5%, while this shifts to 10% for the 14 L s–1 injection. At 

the highest-flow condition, the cluster-based extent estimate for Transect 2 was again more 

similar to a 5% threshold while Transect 3 was more similar to that based on a 10% threshold. 

Thus, applying a single Δσ threshold across multiple datasets does not replicate the way in which 

clustering distinguishes reference from responsive signals to delimit hyporheic extent, likely 

because clustering is a more robust method than threshold-based analysis of hyporheic extent 

when comparing inverse model results amongst injections. 

The inconsistent relationships between hyporheic extent and streamflow (directionality 

and magnitude) we found for adjacent transects are reflective of the complex and contradictory 

patterns reported by many other studies (e.g., Ward, 2016; Magliozzi et al., 2018). Our results 

demonstrate that analyzing time-lapse inverse ER models generated from data collected along 

multiple transects can, at least, capture some of the sub-reach variability in how hyporheic extent 

responds to complex interactions between in-channel hydraulics and riparian head gradients. 

Therefore, collection and processing of such data in this way can provide estimates of the range 

of extents and relative spatial structure of hyporheic exchange to variations in discharge, beyond 
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just a single areal estimate as is often obtained from inverse modeling of surface-water tracer 

BTCs.   

Notably, the total hyporheic extents that we estimate (as well as the depth to which nodes 

are retained) are much smaller than those reported for prior analysis of these data (Ward et al., 

2012, 2014). This result highlights an additional sensitivity not just to the method used to delimit 

hyporheic extent, but also to small differences in the inversion mesh, models used for 

regularization, and inversion settings as the underlying data are the same. 

2.3.3 Temporal Patterns in the Heterogeneity of Hyporheic Connectivity 

We calculated the mean and standard deviation of all pairwise Euclidean distances (d) for 

modeled Δσ time series at each timestep (Figure 2.7). Generally, d traces (Figure 2.7) reflect the 

shape and timing of Δσ BTCs (Figure 2.5e-l). Increases in mean d at the beginning of an 

injection suggest heterogeneous loading of flow paths while plateauing would indicate stable, but 

non-zero, differences amongst nodal responses. For most injections, d nears a plateau but 

continues to increase slightly throughout the injection. Since characteristic BTCs for hyporheic 

clusters all begin to respond almost immediately after injections began (Figure 5e-l), these 

continued increases in d are likely due to slow and heterogeneous loading of relatively immobile 

pore spaces within the area of the hyporheic zone represented by each cluster over the injection 

duration, rather than loading of entirely new zones within the streambed. We also note that d 

begins to decline immediately after the end of the 48-hour injections. Similarly, an initial rapid 

decline in Δσ BTCs was noted for clusters that had larger overall responses (Figure 5e-l). Thus, 

subsurface locations that had exhibited a larger response are flushed more quickly, allowing both 

individual nodal responses and their heterogeneity to decline simultaneously. 
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Figure 2.7. Time series of pairwise Euclidean distances (mean ± SD) among effective hyporheic 
nodes by injection for (a) Transect 2 and (b) Transect 3. Data from Transect 2 during injection 2 
is excluded. Elapsed time is relative to the start of each tracer injection. High values of d 
represent larger differences in the response amongst nodes, while small values are indicative of a 
similar response amongst hyporheic nodes, not necessarily a lack of response. 

Most injections exhibited similar d traces between injections and across the two transects. 

The most notable deviations, however, is for Transect 2 injection 4, which had both smaller 

mean and SD values for d than injections at higher flows. Additionally, the data from Transect 2 

injection 4 exhibits a much steadier increase throughout the injection period and a steadier 

decline than for injections 1 and 3. Combined, these patterns indicate that at the lowest flows, 

hyporheic exchange became less spatially and temporally heterogeneous at Transect 2 while 

similar declines were not found for Transect 3. This means that transport behavior (i.e., advective 

timescales) becomes more similar amongst functional zones as flows decline for Transect 2, but 

not for Transect 3. Ward et al. (2014) reported increased heterogeneity of transport amongst 

hyporheic flow paths during seasonal flow recession based on the coefficient of variance from 

normalized temporal moments from time-lapse ER models for the same data. It is not entirely 

clear why these different metrics give conflicting results, although one explanation may be that 

our analysis is of a smaller hyporheic region that excludes many nodes with weaker Δσ signals. 
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2.3.4 Potential Extensions 

While the analyses we introduce are useful for characterizing transport heterogeneity 

within the effective hyporheic zone, they also have the potential to improve model representation 

of hyporheic processes. For instance, utilizing our proposed method to identify the extent and 

characteristic BTCs for regions within the hyporheic zone could be used to parameterize both 

cross-sectional areas and exchange coefficients in reactive transport models. This is especially 

important as physical parameters such as the extent of hyporheic exchange cannot be uniquely 

determined solely by observing surface-water BTCs (Bottacin-Busolin, 2019). Similar progress 

has been achieved using the hydrologic facies frameworks to parameterize reduced-complexity 

models based on sediment property observations (Hou et al., 2019).  

The utility of clustering could also be further extended through changes to the inversion 

process. Most obviously, in streams that have a large enough cross-sectional area, the stream 

itself could be included in the inversion mesh and subsequent clustering. This would provide a 

more direct point of comparison rather than using observed surface water conductivities and 

modeled subsurface conductivity as in this study. It may also be possible to develop inversion 

techniques that solve specifically for functional zones. This may be accomplished by extending 

alternative inversion techniques that can solve for specific, albeit simple, shapes reflective of 

hydrologic processes and limited artifacts (e.g., Pidlisecky et al., 2011). 

Our method may also be extended to identify the region over which point-scale sampling 

(i.e., from wells, piezometers, or mini-point samplers) may provide representative information. 

This information is potentially most useful in the context of reactive-tracer studies, wherein 

metrics of reactivity or the balance of transport and reaction timescales from particular points 

could be extrapolated in space based on ER-informed functional-zone mapping. Conversely, 

such functional-zone mapping could be used to develop testable hypotheses about the spatial 

structure of biogeochemical activity (i.e., occurrence of oxic or anoxic reactions, relative reaction 

completion, etc.). For instance, the decreasing heterogeneity we observed amongst functional 

zones with declining streamflow for Transect 2 but not 3 (Figure 2.7), could be used to predict 



  28 

whether spatial gradients in biogeochemical reactions remain stable or decline seasonally at each 

transect. Such extensions would represent a major development in linking heterogeneity of 

coupled transport and biogeochemical processes occurring at the scale of a few meters to their 

aggregate significance over entire reaches.  

Beyond identifying functional zones representing distinct transport and connectivity 

signals within the hyporheic zone, there are also potential extensions for this method that could 

advance synthesis across time (injections) and space (transects or sites). In particular, there is the 

potential to develop methods that either form clusters across merged datasets or match clusters 

across datasets through post-hoc comparisons so that the persistence and spatial evolution of 

particular functional zones can be investigated. The greatest challenge in this area will be 

determining how to normalize data given differences in forcings from separate solute injections. 

It is difficult, if not impossible, to perform multiple tracer additions that generate BTCs with the 

same relative change in stream water fluid conductivities, as is apparent even in this dataset 

(Figure 2.5a-d). Determining how to quantitatively handle such differences among injections will 

be necessary to definitively differentiate changes due to the tracer input itself or subsurface 

transport processes when examining clustering between datasets.  

Another intriguing potential extension exists around supervised clustering or similar 

machine-learning techniques in which cluster characteristics are defined based on an initial 

training dataset containing time-lapse ER and ancillary measurements to allow for prediction 

elsewhere. Such methods have been applied to classify and then predict spatiotemporal evolution 

of other hydrologic behaviors such as seasonal soil moisture (Hermes et al., 2020) and 

hydrologically homogeneous regions within catchments (Nadoushani et al., 2018) based on 

topographic indices, but not, to our knowledge, for hyporheic exchange. Doing so could support 

reduced-complexity modeling that still represents spatial variations in functionally distinct zones 

at finer resolution along stream reaches than is currently possible. The primary challenge to this 

extension will be in determining which combination of metrics are obtainable over entire reaches 
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(at least compared to discrete ER transects) and can provide predictive power of subsurface 

functional zonation. 

2.4. Conclusions 

With the goal of developing a more objective approach to evaluating hyporheic extent, 

we present a method to analyze inverted ER models using unsupervised hierarchical clustering to 

delimit the extent of hyporheic exchange and to characterize functional zones with distinct 

transport behaviors within the subsurface. We used this method to show that total hyporheic 

extent and the spatial heterogeneity of exchange respond differently to seasonal baseflow 

recession between adjacent (< 10 m) transects in a mountain stream. We also found that the 

application of a single signal threshold to delimit hyporheic extent across ER datasets cannot 

replicate statistically supported parsing of active hyporheic and inactive reference regions in the 

subsurface. While this method does not overcome the inevitable issues of blurring in inverse 

models of the subsurface, it provides a more objective approach to distinguishing where and to 

what degree stream tracers may be exchanged with the subsurface from geophysical datasets. It 

also helps distinguish the spatial structure of zones with distinctive combinations of transport 

phenomena (i.e., advection vs dispersion) and relative density of mobile versus immobile 

domains within the subsurface, as well as how these structures persist temporally. To our 

knowledge, this represents the first application of machine learning to classify statistically 

unique spatial patterning of hyporheic exchange during tracer studies. Additionally, this 

approach has the potential to inform data-driven reduced-complexity modeling that could 

address known shortfalls of representing the hyporheic zone as a single well-mixed 

compartment. 
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Chapter III 

The Role of Hyporheic Connectivity in Determining Nitrogen Availability: 

 Insights from an Intermittent Antarctic Stream1 

3.1 Introduction  

The biogeochemical processing of nitrogen (N) in streams has drawn wide interest related 

to various water quality problems (Davidson et al., 2011) and the mobilization of N from local 

human activities adjacent to freshwater systems to downstream locations (Fowler et al., 2013). 

To date, most research has focused on how human manipulation of N sources – through fertilizer 

applications or emissions – increase the amount of reactive N that is transported from terrestrial 

to aquatic systems (Alexander et al., 2007; Bernot & Dodds, 2005; Boyer et al., 2002; Dodds, 

2006; Mulholland et al., 2008). Yet, in many oligotrophic systems with little to no input of 

anthropogenic N, autochthonously derived N (i.e., N fixed by periphyton within the stream) is a 

significant driver of ecosystem metabolism (Grimm & Petrone, 1997; Kunza & Hall, 2014; 

Marcarelli & Wurtsbaugh, 2006; McKnight et al., 2004). Largely, these low-N systems are in 

alpine, arid, or polar environments. Even in low-N systems, directly quantifying N inputs from 

both autochthonous and allochthonous sources can be difficult (Hamilton et al., 2004), especially 

because N fixation is highly heterogenous (Grimm & Petrone, 1997; Horne & Carmiggelt, 1975; 

Marcarelli et al., 2008). Consequently, attributing biologically available N to either source in 

these oligotrophic streams and determining how internally sourced N is processed remains 

challenging.  

Nitrogen cycling in streams results from coupled hydrologic and biogeochemical 

processes, which result in the spiraling of N (Harvey et al., 2018; Stream Solute Workshop, 

1990; Webster et al., 2003). The coupling of physical and biological processes control the 

balance of reaction and transport timescales (Briggs et al., 2014; Harvey et al., 2013; Lansdown 

et al., 2015; Zarnetske et al., 2011, 2012), redox zonation (Briggs et al., 2015), and the 

availability of other nutrients (e.g., carbon or phosphorus) (Koch et al., 2010; Oviedo-Vargas et 
 

1 This chapter has been published, see Singley et al. (2021a) in the bibliography for the full citation.  
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al., 2013). Low-N systems in alpine, arid, or polar environments are often characterized by 

ephemeral or intermittent streamflow (Jensen et al., 2017; Larned et al., 2010; Robinson et al., 

2016). Streamflow variability and intermittence result in heterogenous spatial and temporal 

patterns of N cycling as a result of variations in connectivity with terrestrial N sources, exchange 

between the main channel and streambed, and hyporheic residence times relative to process rates 

(Bernal et al., 2013; Harvey et al., 2018; Mendoza‐Lera et al., 2019; von Schiller et al., 2017). 

While autochthonous N sources are expected to be more important in such systems, flow re-

initiation may be accompanied by a first flush of N from the surrounding landscape (Bernal et 

al., 2005, 2019; Merbt et al., 2016), further obscuring how N is transformed within the stream. 

Thus, the hydrology of many low-N systems may make it difficult to quantify the importance of 

internally-sourced N. By altering surface and subsurface connectivity, these streamflow 

dynamics likely modulate the function of the hyporheic zone as an ecosystem control point 

(sensu Bernhardt et al., 2017) that influences N fate and availability to biota.  

Widely distributed autotrophic cyanobacteria (e.g., Nostoc) are responsible for N fixation 

in many streams (Dodds et al., 1995). As a result, the spiraling of internal N is driven by the 

transport of this autochthonous organic matter (OM) and subsequent heterotrophic respiration. 

Unlike streams with abundant allochthonous sources (Tank et al., 2010), in environments with 

limited canopy cover (e.g., alpine, arid, or polar systems), autochthonous contributions to 

dissolved OM (DOM) from benthic algal biofilms can be significant (Dahm et al., 2003; Fellman 

et al., 2011; Fenoglio et al., 2015) and serve as a relatively labile source of C and N (Jones et al., 

1995b). Consequently, understanding the temporal and spatial dynamics of how internally 

sourced N is processed will provide insight into multiple facets of stream ecosystem function 

controlled by both physical and biological processes.  

Despite widespread human manipulation of N, there exist some relatively unaltered 

systems that can serve as models for understanding the cycling of internal N sources in streams. 

Ephemeral streams in the McMurdo Dry Valleys (MDVs) of Antarctica represent one such 

system. Streamflow resulting from glacial meltwater generation occurs for 4–10 weeks per year 
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in MDV streams in a landscape devoid of plants. The extremely arid climate (<10 cm snow 

water equivalent yr-1, Fountain et al., 2010) and presence of continuous permafrost (Bockheim et 

al., 2007; Conovitz et al., 2006) result in stream channels that are disconnected from hillslopes or 

deeper groundwater. Thus, MDV streams provide relatively isolated model systems with a single 

upstream source of N from atmospheric deposition on glaciers, N sourced from benthic algae 

within the stream channel (including Nostoc), and very limited OM inputs (Howard-Williams et 

al., 1989; McKnight et al., 1999).  

Given the relative simplicity of MDV streams, their nutrient and OM cycling has been 

studied for over three decades. Previous nutrient tracer additions and longitudinal sampling 

demonstrated that N uptake occurs in both the main channel via benthic algal mats and the 

hyporheic zone (Gooseff et al., 2004; Howard-Williams et al., 1989; McKnight et al., 2004). Due 

to hydrologic isolation and lack of carbon sources, relatively labile OM in dissolved or 

particulate form is predominantly sourced from benthic algal mats along the stream channel. As 

flow increases, particulate OM (POM) is scoured from these mats and transported downstream 

(Cullis et al., 2014). Fortuitously, the sources of N to MDV streams are isotopically distinct 

(Kohler et al., 2018). Recently, Kohler et al. (2018) found that the abundant Nostoc dominated 

black mats maintained a stable isotopic signature indicative of N-fixation (δ15N ≈ 0‰). By 

contrast, the δ15Ν of non-N fixing orange mats increased longitudinally from a depleted signature 

reflective of glacial inputs (δ15N≪0‰) to that of black mats in the lower reaches. Together with 

δ15N values in POM matching that of black mats and evidence of POM entrainment in the 

hyporheic zone (Heindel et al., 2021), these findings imply that internal N sources dominate in 

lower reaches due to the mobilization, remineralization and subsequent release of black mat 

derived POM. Yet, it is important to note that neither OM mineralization nor nitrification have 

been directly investigated in MDV streams.  

In this study, we use a MDV stream as an ideal ecosystem to examine the fate of 

autochthonous N under conditions of limited hydrologic connectivity with the surrounding 

landscape. We test the hypothesis that the availability of remineralized autochthonous N is 
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controlled by connectivity between the hyporheic zone and main channel due to the contrasting 

biogeochemical function of benthic autotrophs and hyporheic heterotrophs. To do so, we 

collected samples of hyporheic water and surface water frequently (~4–6 hr) over a diel period in 

January 2019 and opportunistically throughout the 2020 flow season. We used water chemistry 

to identify signatures of remineralization, nitrification, and hydrologic exchange as well as any 

spatiotemporal variations of these processes. In addition, we performed a laboratory nitrification 

potential assay on sediment from the same stream. With this assay, we tested prior inferences 

that hyporheic microbes possess the functional potential to carry out nitrification, which is 

essential for the coupled spiraling of OM and N. By leveraging the relative simplicity of MDV 

streams, we are able to assess the roles of hyporheic residence time and microbial processing on 

the cycling of autochthonously-derived N sources, which are difficult to examine in other 

ecosystems. 

3.2 Study Site and Methods  

3.2.1 McMurdo Dry Valley Streams 

The MDVs are part of a polar desert ecosystem that comprises the largest ice-free area in 

Antarctica (Levy, 2013). The landscape is characterized by large, open expanses of loosely 

consolidated glacial till, ephemeral stream channels, closed basin lakes, and cold-based alpine 

glaciers. Flood pulse events generated by diel fluctuations in the net energy balance of source 

glaciers determine streamflow in the MDVs. These flood pulses punctuate periods of flow 

intermittence that can be on the order of a few hours to days during the flow season, which only 

lasts for 4–10 weeks per Austral summer (Wlostowski et al., 2016). Mean transit times for 

median streamflows (<10 L s–1 for most streams) range from days to a few months (Wlostowski 

et al., 2018). Given the loosely consolidated sediment, hyporheic exchange rates are relatively 

high in MDV streams (Gooseff et al., 2004; Runkel et al., 1998), although hydrological flow path 

residence times vary due to the expansion-contraction dynamics and relatively large wetted 

margins along the stream corridor (Gooseff et al., 2003). At low flows (i.e., < 5 L s–1), the cross-
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sectional area that exchanges water with the surface is relatively small, yet preferential flow 

paths and temperature-dependent variations in viscosity can maintain rapid exchange to limited 

portions of the hyporheic zone (Cozzetto et al., 2013). Consequently, hyporheic connectivity 

exhibits marked spatial and temporal variability. 

For this study, we focused on Von Guerard Stream, a relatively long (5.2 km) ephemeral 

stream located in Taylor Valley with an average gradient of 0.078 m m-1 (Wlostowski et al., 

2016) (Figure 3.1). Streamflow is derived entirely from glacial melt. The upper reaches of Von 

Guerard Stream are relatively steep and the streambed consists of cobbles and boulders 

embedded in sandy gravel. The gradient eases into a broader, sandy area where streamflow is 

diverted between the main channel to the east (~75% of flow) and a relict channel, which 

contributes streamflow to Harnish Creek to the west (Alger, 1997; McKnight et al., 2007). Below 

this diversion, there is a large playa composed of loosely consolidated alluvium. Below the 

playa, the gradients increase and the streambed re-channelizes, although it remains broader than 

the upper reaches. The streambed in the lower reaches varies from stone pavements to a braided, 

sandy delta as it approaches the outlet, where a stream gage is operated by the McMurdo Dry 

Valleys Long-Term Ecological Research project (mcmlter.org).  
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Figure 3.1. Map of sample collection locations along the lower reaches of Von Guerard Stream 
(left) and photo of Transect 2 (right) with porewater sites A-D and close up of samplers at site A 
(inset).  
 

Benthic algal mats dominated by cyanobacteria cover substantial portions of the 

streambed along the length of Von Guerard Stream (Alger, 1997). The perennial mats lie in a 

freeze-dried state for much of the year and reactivate quickly upon the return of streamflow 

(McKnight et al., 2007). The dominant species composition of these mat communities varies 

with mat location and color. Black mats, dominated by Nostoc spp., are well developed along the 

stream margins and in slightly raised areas within the channel that are less frequently inundated. 

Orange mats, dominated by non-N-fixing cyanobacteria (Oscillatoria spp. and Phormidium 

spp.), cover much of the streambed in smooth, tightly-adhered formations (Alger, 1997; Kohler 

et al., 2015). Kohler et al. (2018) demonstrated that autochthonous N derived from scoured black 

mat OM dominates the N budget in the lower reaches of Von Guerard Stream and the 

neighboring stream of similar length, Harnish Creek.  

High-frequency (15 min) discharge (Q) data were obtained from the gage at the outlet of 

Von Guerard Stream into Lake Fryxell (Gooseff & McKnight, 2019). The duration and 

magnitude of Q varied widely within and between the two seasons (Figure 3.2), as is typical for 
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MDV streams. Gage data for the final weeks of the 2020 flow season were not recovered by the 

time of writing due to impacts of the COVID-19 pandemic on fieldwork. However, discrete 

measurements of Q for the final four sampling events are provided based on portable flume 

measurements or observations of zero flow (Figure 3.2b). Field teams observed zero or low Q for 

streams throughout the Lake Fryxell Basin during this period.  

 
Figure 3.2. Gage for Von Guerard Stream over the 2019 and 2020 flow seasons. Each sampling 
period is indicated with a single point representing samples across transects and sites. Concurrent 
manual Q measurements are indicated for samples during the latter part of 2020 where gage data 
is unavailable. 

3.2.2. Hyporheic Water and Surface Water Samples 

We established three lateral transects (T1–3) in the lower reaches of Von Guerard Stream 

(Figure 3.1). Transects extended from the center of the channel (site A) to the wetted margin (site 

D), with the actual spacing and overall length of each transect varying with channel morphology. 

Hyporheic water samplers were constructed of flexible polyethylene tubing (3/16” inner 

diameter) encased in a rigid plastic tube and screened at the bottom with fine metal mesh. We 

installed samplers to depths of 15 and 30 cm at locations A-D on each transect and allowed them 

to remain in situ 6 hours prior to sample collection so any disturbed sediment could settle.  
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We collected samples every 4-6 hrs over a 32 hr period during January 2019 (n=192), and 

periodically throughout the 2020 flow season (n=54, Figure 3.2). For 2019, samples were 

collected from all three transects at depths of 15 and 30 cm and lateral sites A-D. For 2020, 

samples were again collected for T1–3, but only at a depth of 15 cm at the thalweg (site A).  

To collect samples, we slowly drew 15–20 mL of water into a syringe attached to the 

sampler tubing, closed a T-valve to prevent backflow, discarded the rinse water, and then slowly 

drew another 100 mL. The collected water was immediately partitioned into 20 mL glass 

scintillation vials with no head space for stable isotope analysis (18Ο and deuterium), a 60 mL 

HDPE bottle for nutrient and silica (Si) analyses, and 25 mL glass analysis tubes for dissolved 

organic carbon (DOC). Each vessel was rinsed with ~5 mL of sample water prior to filling. 

Surface water samples were taken concurrently at site A by triple-rinsing bottles with stream 

water and filling directly. All samples were kept out of direct sunlight and transported back to 

the laboratory at F6 Camp. In the lab, we immediately filtered nutrient and DOC samples 

through pre-combusted (4 hr at 450ºC) Whatman GF/C glass fiber filters. Combined nutrient and 

Si samples were stored frozen in 60 mL HDPE bottles, while samples for DOC and stable 

isotope analyses were kept chilled (+4ºC) in the dark prior to analysis. We analyzed DOC in the 

Crary Lab at McMurdo Station, while samples for nutrient and stable isotope analyses were 

shipped to the University of Colorado Boulder, USA. Dissolved organic carbon, water isotopes, 

and Si were not measured for the 2020 season samples due to logistical constraints on fieldwork. 

Silica and dissolved inorganic nitrogen (DIN) species concentrations were measured 

colorimetrically for samples from both seasons immediately after thawing at room temperature 

by the Arikaree Environmental Laboratory, University of Colorado Boulder, using a Lachat 

(USA) QuikChem 8500 Flow Injection Autoanalyzer. Nitrate (NO3–) – measured as NO3–+ 

nitrite (NO2–) – was analyzed by standard method 4500-NO3 I (cadmium reduction flow 

injection) with a limit of detection (LOD) of 0.004 mg NO3––N L–1. Samples were analyzed for 

ammonium (NH4+) by standard method 4500-NH3 H (phenolate flow injection, LOD 0.005 mg 

NH4+–N/L). For Si, the LOD was 0.004 mg Si L–1 by standard method 4500-SiO2 F. We 
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measured water isotopes (δ18O and δD) using a cavity ring-down spectrometer (Picarro, USA) 

and calculated deuterium excess as δD – 8*δ18O.  

3.2.4. Stream Sediment Nitrification Potential Assay 

To verify the functional potential of hyporheic microbes to perform nitrification, we 

conducted a laboratory assay on sediment from Von Guerard Stream. We collected sediment 

from mid-channel and lateral locations (equivalent to A and C) from two different transects in 

the lower half of Von Guerard Stream during January 2018 (Figure 3.1). We first removed the 

top 5 cm of the streambed to avoid contamination from benthic algal mats, then scooped 

sediment from approximately 5–10 cm depth into sterile Whirlpaks. These sediment samples 

were stored frozen and shipped to the University of Colorado Boulder for analysis. 

After thawing the samples at room temperature (20ºC), we subsampled 20 g of wet 

sediment from each site in triplicate into sterile 250 mL HDPE bottles and an additional 20 g in 

triplicate into pre-weighed aluminum weigh boats. We dried the subsamples in the aluminum 

weigh boats at 105ºC for 24 hours and reweighed to calculate mean volumetric water content for 

each sampling location. For the wet subsamples in 250 mL HDPE bottles, we performed a 

nitrification potential assay using 100 mL of a 0.5 mM phosphate (KH2PO4 and K2HPO4) 

buffered solution containing 10 mM perchlorate and 0.5 mM NH4+, which was mixed constantly 

with the sediment on a shaker table. A detailed description of the assay protocol is provided by 

Schmidt & Belser (1994). We took samples of the solution in triplicate from each replicate flask 

at 0, 1 and 8 hours then 1, 2, 3, and 5 days from the start of the assay. This extended duration 

follows prior nitrification assays with MDV microbial communities that found relatively slow 

NO2– accumulation (Hopkins et al., 2006). All subsamples were immediately filtered through 

Whatman GF/C glass fiber filters and stored frozen (-20ºC) until thawed for analysis. As 

perchlorate in the incubation solution inhibits the final oxidation of NO2– to NO3–, we analyzed 

the filtered aliquots for NO2– colorimetrically using a Lachat QuikChem 8500 Flow Injection 
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Autoanalyzer. Accumulated NO2– concentrations were converted to mass NO2––N normalized by 

the calculated dry weight of sediment in each replicate flask.  

Due to a number of factors, the data from this assay is not intended to reflect in situ 

nitrification rates. While sediment in MDV stream corridors frequently experiences freeze-thaw 

cycles during the Austral summer (and are frozen most of the year) (Wlostowski et al., 2018), it 

is possible that extended freezing during transportation and thawing immediately prior to 

analysis may have altered the viable microbial community and observed rates. However, stream 

sediment temperatures cycle between 4ºC and 12ºC on a daily basis and water advected into the 

hyporheic zone can be up to 15ºC (Cozzetto et al., 2013; Wlostowski et al., 2018). So, while the 

assay was conducted at room temperature (20ºC), it is likely that highly temperature sensitive 

microbes are not dominant in this system. We utilized a perchlorate inhibition protocol (Schmidt 

& Belser, 1994) originally intended for soils rather than methods designed for streams (Dodds & 

Jones, 1987; Kemp & Dodds, 2001, 2002) as stream corridor sediments are dry for most of the 

year and similar perchlorate-based approaches have been used on sediment from MDV stream 

margins (Hopkins et al., 2006). Consequently, we use the data from this assay as an indication of 

whether the microbial community of MDV stream sediments possess the functional potential to 

perform nitrification, not to quantify in situ rates. 

3.2.5 Data Analysis 

In order to assess N cycling, we examined spatial and temporal patterns in solute 

concentrations (NH4+, NO3–, DOC, and Si) and water isotopes (18O and deuterium) between 

surface water and hyporheic water samples. We assessed variability of solute concentrations at 

each sampling site over the entire 2019 diel-sampling campaign by calculating coefficients of 

variation (CV = σ/μ, where σ is the standard deviation and μ is the mean for each particular site). 

To assess net rates of change in the concentration of each solute, we performed simple linear 

regressions for those sites and solutes for which a significant monotonic trend was detected 

(Mann-Kendall, p<0.05). 
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We also analyzed concentration discharge (C-Q) relationships for each solute. To do so, 

we aggregated data within each type (hyporheic and surface water) across sites, transects, and 

seasons. We utilized a non-linear least squares regression approach to fit power law relationships 

(C=aQb).  

Apart from time series and C-Q results, unless otherwise noted, we present time-averaged 

mean concentrations and masses ± 1 standard error by sampling site within transects. Due to 

small and unequal sample sizes across groupings, we performed nonparametric Mann-Whitney 

U-tests with p-value adjustments on multiple comparisons (Benjamini & Hochberg, 1995) to 

identify significant differences at the level of hyporheic versus surface water and among lateral 

and vertical hyporheic locations within each transect. We also analyzed the correlation of each 

analyte to DIN concentrations to identify factors controlling variability in net N cycling. Based 

on prior work in MDV streams (Gooseff et al., 2003; Wlostowski et al., 2018), we utilized Si as 

an indicator of relative residence time and deuterium excess to assess whether evaporation rather 

than biological processes explained variations in DIN concentrations. We analyzed the 

correlation between DOC and DIN concentrations to assess whether DOC is an important 

substrate for remineralization and nitrification (POM was not quantified by this study). In 

instances where either temporal or spatial variations existed, we also calculated ratios of 

coefficients of variation to assess the degree of connectivity between hyporheic sites and surface 

water.  

We used the results of our intensive hyporheic and surface water sampling during the 

2019 flow season to compare the relative size of DIN pools at a single moment in time (i.e., not 

accounting for fluxes or spiraling) for Von Guerard Stream under low streamflow conditions. We 

estimated the total mass of DIN per longitudinal meter in three compartments: (1) surface water 

as well as hyporheic water from (2) 0-15 cm and (3) 15-30 cm depths. To simplify these 

calculations, we assumed rectangular cross-sectional areas for each zone where surface water 

had a width of 1.5 m and a depth of 0.03 m, while each hyporheic compartment had a width of 6 

m. These dimensions reflect commonly estimated values (Gooseff et al., 2004; Runkel et al., 
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1998) and are within ranges found from surveys of water sampling transects. We used a porosity 

of 0.34 ± 0.01 (n=18) based on bulk densities observed by a concurrent study and a mineral 

density of 2.65 g cm–3. We multiplied the mean concentrations of DIN in surface water and 

hyporheic water from each depth to the resultant fluid volume per meter of stream length – 

resulting in a mass of N as DIN per unit length along the stream. We propagated errors from bulk 

density and DIN concentrations by adding in quadrature (Taylor, 1997). Errors were not included 

for the surface water depth or width and the hyporheic compartment widths; these assumptions 

were held constant across estimates.  

3.3 Results 

3.3.1 Hyporheic Water and Surface Water Chemistry 

During both the 2019 and 2020 streamflow season, the largest diel pulse events and peak 

streamflow occurred in late December and gradually tapered off until flow ceased completely in 

late January (Figure 3.2). Discharge ranged from 0 to 2.4 L s–1 during the 2019 diel sampling 

campaign (Figure 3.2a inset), with two distinct, albeit small (1.5 and 2.4 L s–1), peaking events. 

While the fluctuation in streamflow was relatively small throughout the diel sampling period, the 

magnitude of change was large enough that wetted channel expansion and contraction variably 

inundated and exposed sampling locations at all three transects. For the 2020 season, we 

conducted opportunistic sampling at streamflow values from 0–15.5 L s–1. While the highest 

streamflow values for either season were not represented by our sampling, historic streamflow 

data (1990-2020) for Von Guerard Stream exceed the range over which we obtained samples less 

than 20% of the time (Figure S3.1). Therefore, although higher flows may alter N cycling 

dynamics, our data represent the temporally dominant state of the system.  

Despite cyclic Q pulsing during the diel sampling campaign in 2019, hyporheic 

concentrations of all solutes and water isotopes at 26 locations remained relatively stable over 

time (Figure 3.3), although some significant monotonic patterns (Mann Kendall, p < 0.05) were 

detected. Nitrate concentrations were stable for 17 of the 26 locations, while the remaining 9 
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sampling locations exhibited significant temporal trends (median rate -15.4 μg NO3–-N L–1 day–1, 

adj. R2 > 0.60). For all sites, NH4+ fluctuated or remained near the LOD throughout the diel 

period, trends were not significant. Similarly, DOC mostly declined over time, although the trend 

was only significant for 7 locations (median of -0.18 mg DOC L–1 day–1, adj. R2 > 0.42). 

Dissolved Si concentrations increased significantly at 11 locations (median of 0.38 mg Si L–1 

day–1, adj. R2 > 0.78), while cyclic behavior reflecting changing Q was observed for T3. Only 4 

sites exhibited trends in deuterium excess (T1 C, T2 B, T3 A and D all at 30 cm depths), 

although cyclic behavior with Q is apparent in a few instances (e.g., T3 surface water).  
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Figure 3.3. Concentration time series for (a-c) NO3–, (d-f) NH4+, (g-i) DOC, (j-l) Si, and (m-o) 
deuterium excess by transect during the 2019 diel sampling period. SW indicates surface water 
samples, all other samples are for hyporheic water. 

Median CVs across all sites in 2019 were 0.12, 0.22, 0.04, < 0.01, < 0.01, and 0.07 for 

NO3–, DOC, Si, δ18Ο, δD, and deuterium excess, respectively. Where mean differences existed, 

they were most pronounced between surface and hyporheic water samples rather than laterally 

within or between transects for both seasons (detailed comparisons in the supplemental 

information, Figures S3.2–7 and Tables S3.1–6). Additionally, relatively sparse sampling 
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(~weekly) in a system characterized by hydrologic changes on hourly timescales limited the 

utility of temporal analysis for the 2020 season. Consequently, we present further analysis for 

both seasons that is organized around aggregate hyporheic versus surface water comparisons.  

For both seasons, NO3– was above detection (4.0 μg NO3––N L-1) in all surface and 

hyporheic water samples. While variations exist between sites within a transect and between 

transect (Figure S3.2), NO3– concentrations were about 7 to 30 times higher in hyporheic water 

than surface water (Figure 3.3). For both seasons, the mean concentration of NO3– across all 

hyporheic water samples was significantly higher (p < 0.05, Mann-Whitney U) than in the 

concurrent surface water samples. Within each transect, spatial differences (lateral and vertical) 

in mean NO3– concentrations existed among sites, but patterns were not consistent across 

transects in 2019 (Figure S3.2) and sampling only at site A prevented analysis of lateral patterns 

for 2020. A complete pairwise comparison of NO3– concentrations by site and depth within each 

transect are reported in the supplemental information (Table S3.1).  

Ammonium remained below detection (5.0 μg NH4+-N L-1) in 71.6 % of the hyporheic 

water (ntotal=169) and 65.2% of the surface water samples (ntotal=23) in 2019. In contrast, NH4+ 

was above the LOD for all samples (ntotal=54) during the 2020 season. Together, these results are 

consistent with the long-term surface water sampling record from the MCM LTER: NH4+ was 

below detection in 37.8% (ntotal=90) of samples from the lower reaches of Von Guerard Stream 

and 42.9% (n=28) from the upper reaches over the period from 1994–2018. Furthermore, NH4+ 

was below detection in 31.2% (ntotal=3131) of all samples from all monitored MDV streams from 

1993–2018 (Lyons, 2015). Mean NH4+ concentrations were not significantly different between 

hyporheic water and surface water for either season (p > 0.05, Mann-Whitney U), but 

concentrations were higher in 2020 than 2019 (p < 0.001, Mann-Whitney U; Figure 3.4b). 
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Figure 3.4. Hyporheic and surface water concentrations of (a) NO3–, (b) NH4+ (c) DOC, (d) 
dissolved Si, (e) deuterium excess, and (f) C:N (mg DOC mg–1 DIN)  aggregated by flow season 
across transects and sites. Non-detections of NH4+ were replaced with half of the LOD. The 
dashed line in (f) represents C:N of the Redfield ratio. DOC was not measured in 2020. 
Uppercase letters denote significant statistical difference among groups (Mann-Whitney U, 
p<0.05). 

DOC concentrations remained very low (< 0.9 mg C L–1) throughout the diel sampling 

period in 2019 across all sites. Mean surface DOC concentrations aggregated over time across 

transects were higher than for hyporheic water (p < 0.001, Mann-Whitney U), although DOC 

was more variable in hyporheic samples (Figures 3.4c; S3.3). Despite the expectation that DOC 

would exhibit the opposite patterns compared to NO3–, as it is a substrate for nitrification, our 

sampling did not provide evidence for consistent lateral or vertical patterning of DOC 

concentrations in hyporheic water. This finding is likely due to the low concentrations for both 

solutes. Full pairwise comparisons of DOC by site within each transect are reported in Table 

S3.3.  
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Silica was significantly greater (p < 0.001, Wilcoxon) in hyporheic water relative to 

surface water for 2019 (Figure 3.4c; Table S3.4). This pattern held across all transects (Figure 

S3.5) and was relatively stable over time despite small variations in streamflow or increases in Si 

with time at low flows (Figure 3.3). Yet the magnitude of difference between hyporheic water 

and surface water Si concentrations was much less than for NO3–. Similar to NO3–, the lateral 

patterning differed between transects; Si concentrations decreased with lateral distance from the 

channel center for T1, but generally increased across T2 and T3. Furthermore, mean Si 

concentrations were greater at 30 cm than 15 cm depths except for T2 site C and T3 site D 

(Figure S3.5; Table S3.4).  

Dissolved C:N (mg DOC mg–1 DIN) was significantly higher (p < 0.001, Mann-Whitney) 

for surface water samples as was variability in C:N (Figure 3.4e). In calculating DIN we replaced 

non-detects of NH4+ with half of the LOD. The mean C:N of hyporheic water was 5.5 ± 0.3 mg 

DOC mg–1 DIN, which is near a Redfield ratio of 6.6, while the mean C:N of surface water was 

47.0 ± 3.9 mg DOC mg–1 DIN. While significant lateral and vertical differences in C:N were 

found within transects these patterns were much smaller than the difference between surface and 

hyporheic water (Figure S3.5; Table S3.6). This ratio could not be calculated for 2020 samples 

due to the lack of DOC data.  

We found that NO3– concentrations were most strongly related to Si and deuterium 

excess, while there was not a significant relationship between NO3– and DOC (Figure 3.5). We 

predicted that remineralization of OM would drive the production of NO3– in the hyporheic zone 

(Jones et al., 1995a), and, given the low DOC concentrations in these streams, we expected to 

find a negative correlation between DOC and NO3–. However, no such relationship was observed 

(Figure 3.5a). Across all three transects and both seasons, NO3– was positively correlated with Si 

(Figure 3.5b), indicating that NO3– concentrations generally increase with increasing residence 

time in the hyporheic zone of MDV streams. In MDV streams, more negative deuterium excess 

values result from evaporative fractionation (Gooseff et al., 2003). We found that NO3– was 
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positively correlated with deuterium excess (Figure 3.5c), which indicates that increasing 

concentrations of NO3– cannot be attributed to evaporative losses of streamwater.  

 
Figure 3.5. Concentrations of NO3– by Si, deuterium excess, and DOC (a-c, respectively) as well 
as DOC by Si (d). Lines denote significant linear relationships (p<0.05) for hyporheic water data 
only – surface water samples are plotted for comparison but were not included in regressions. 

For all solutes in this study, C-Q relationships were largely chemostatic over streamflows 

ranging from 0-15.5 L s–1 (Figure 3.6). Power-law C-Q regressions resulted in slope (b) 

parameters that were not significantly different from 0 (p>0.05; |b| < 0.05 for all analytes). In all 

instances, hyporheic water and surface water data from this study were reflective of the range of 

surface water concentrations in the historic data. Hyporheic water NO3– concentrations were 

generally above the upper limits observed historically in surface water, although surface water 

samples from this study were similar to historic surface water data. Nitrate also exhibited notably 

larger variations in this study. Both NH4+ and DOC from this study fell well within their historic 

C-Q patterns. Dissolved Si exhibited similar patterns to NO3– insofar as hyporheic water 

concentrations fell at or above the upper limits observed historically in surface water, although 

there was notably less variation in concentrations. 
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Figure 3.6. Solutes and deuterium excess C-Q relationships for hyporheic water and surface 
water from the present study as well as historic surface water grab sample data (1994-2018) at 
the Von Guerard Stream gage. Samples paired to a gage Q of 0 L s–1 were assigned a value of 
0.01 L s–1 due to rating curve errors at low flows. Deuterium excess values, which are all 
negative, were multiplied by –1 to visualize as positive values in log-log space. 

We compared relative DIN concentrations between concurrent surface and hyporheic 

water samples by Q over both the 2019 and 2020 season (Figure 3.7). Except for a few samples 

at the A sites (thalweg), DIN remained elevated in hyporheic water (DINHZ:DINSW >>1) 

regardless of Q. While the data suggest weakly declining DINHZ:DINSW for some distal sites (C 

and D), the pattern is not consistent across transects and only thalweg sites were sampled during 

the 2019 streamflow season. These data suggest that elevated DIN in hyporheic water is both 

spatially and temporally ubiquitous for Von Guerard Stream.  
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Figure 3.7. Relative DIN concentration in hyporheic water (HW) versus surface water (SW) for 
concurrent samples during both flow seasons. Samples paired to a gage Q of 0 L s–1 were 
assigned a value of 0.01 L s–1 due to rating curve errors at low flows.  

We estimated the instantaneous size of DIN pools for surface water and two 

compartments in the hyporheic zone for depth ranges of 0–15 and 15–30 cm (Table 3.1). We 

utilized concentrations of NO3– only as NH4+ was below detection in most samples for 2019 and 

was relatively low when detected in 2020. For all three transects, the estimated mean mass of N 

as NO3– per meter of stream length was three to four orders of magnitude greater in hyporheic 

water than surface water.  
 
Table 3.1. Estimated dissolved NO3– pools (mg NO3––N m–1) in surface water (SW) and 
hyporheic (HZ) compartments during 2019 sampling period. 
 

 Transect 1 Transect 2 Transect 3 
SW 6.9×10–3 ± 3.8×10–4 4.6 ×10–3 ± 7.7×10–4 8.0 ×10–3 ± 1.5×10–3 
HZ (0-15 cm) 24.5 ± 17.9 42.2 ± 28.9 19.6 ± 20.5 
HZ (15-30 cm) 26.8 ± 11.8 61.8 ± 24.2 21.5 ± 8.7 

 

3.3.2 Nitrification Potential of Hyporheic Microbial Communities 

We observed the accumulation of NO2– for all replicates from all four sites in a 

laboratory nitrification potential assay (Figure 3.8). Despite the extended duration of the assay (5 

days), it was not clear whether the accumulation of NO2– had plateaued, as expected under 
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Michaelis-Menten kinetics. For this reason and limitations noted above (see 2.4) we did not 

calculate rates of nitrification. The final normalized accumulation of NO2– varied by more than 

an order of magnitude across the four collection points. For the upstream site (Figure 3.8a, more 

NO2– accumulated in the marginal location (site C) than for the center of the channel (site A), but 

no such difference was observed at the downstream site (Figure 3.8b).  

 
Figure 3.8. Accumulated NO2– normalized to sediment dry weight (mean ±1 SE, n=3) by 
location over time from a laboratory nitrification potential assay for (a) upper and (b) lower 
sediment collection locations (see Figure 3.1). Site A is located in the channel center while site C 
is located near the wetted margin.  

3.4 Discussion 

3.4.1 Hyporheic Contributions to Autochthonous N Availability 

We leveraged the relative simplicity of an intermittent stream in the MDVs of Antarctica 

to test the hypothesis that the biological availability of remineralized autochthonous N is 

controlled by connectivity between the hyporheic zone and main channel due to the contrasting 

biogeochemical function of benthic autotrophs and hyporheic heterotrophs. Due to the lack of 

terrestrial vegetation, limited hillslope connectivity, and stable isotopic evidence that 
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autochthonous N is the predominant source of N in the lower reaches of Von Guerard Stream 

(Kohler et al., 2018), our findings can be interpreted as signatures of autochthonous N cycling. 

In particular, we found that elevated NO3– concentrations in the hyporheic zone (Figure 

3.4) were positively related to an indicator of residence time (Si, Figure 3.5a), not due to evapo-

concentration (Figure 3.5b), and there are no known subsurface influxes of water and solutes 

(including allochthonous DIN) via groundwater in MDV streams (Gooseff et al., 2016). 

Additionally, a laboratory assay demonstrated that hyporheic microbes in Von Guerard Stream 

possess the functional potential to carry out nitrification (Figure 3.8) – although this assay is not 

indicative of in situ rates. Therefore, we attribute the elevated NO3– concentrations in hyporheic 

water to the net remineralization and nitrification of autochthonous OM. Since much of the 

autochthonous OM that is mobilized and subsequently entrained in the hyporheic zone of Von 

Guerard Stream is predominantly sourced from Nostoc-dominated N-fixing benthic algal mats 

(Heindel et al., 2021; Kohler et al., 2018), these elevated NO3– concentrations reflect the role of 

the hyporheic zone in transforming N that is fixed within the stream corridor into readily 

available and mobile forms. 

We found that the NO3– pool in the hyporheic zone is approximately three to four orders 

of magnitude larger than that of surface water per unit of stream length (Table 3.1), indicating a 

surprisingly large reservoir of mobile N for such a highly-oligotrophic system. Over both 

seasons, observations of elevated NO3– concentrations in hyporheic water were spatially and 

temporally persistent regardless of changing flow conditions (Figures 3.3, 3.6, and 3.7). 

Similarly elevated NO3– in hyporheic water relative to surface water was also reported in a prior 

study of MDV streams (McKnight et al., 2004). Surface water samples from the present study 

match historic surface water C-Q patterns for Von Guerard Stream, yet hyporheic water NO3– is 

at or above the upper limit for historic surface water concentrations (Figure 3.6). While the range 

of Q represented by our samples does not include the highest flows that occur in this stream, 

such high flows are relatively short-lived and our samples represent the temporally dominant 

state of the system (Figure S3.1). Combined with relatively high hyporheic exchange rates in the 
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loosely consolidated sediment of MDV streams (Cozzetto et al., 2013; Gooseff et al., 2003, 

2004; Runkel, 2002; Runkel et al., 1998), these results suggest that the hyporheic zone may be a 

persistent net source of remineralized autochthonous N to surface water and benthic algal 

communities even under rapidly varying or intermittent flow.  

We would expect autotrophic algal communities that are not capable of N fixation in 

oligotrophic systems to rapidly remove much of the DIN that returns to surface water from the 

hyporheic zone (Gooseff et al., 2004; Hall & Tank, 2003; McKnight et al., 2004). This is 

especially true for MDV streams where N-limited benthic algal mats are capable of removing all 

NO3– added above ambient conditions over short spatial and temporal scales (Gooseff et al., 

2004; McKnight et al., 2004). As MDV hyporheic zones are well connected (Cozzetto et al., 

2013; Gooseff et al., 2003, 2004; Runkel, 2002; Runkel et al., 1998) and hyporheic processes 

consequently drive surface water concentration dynamics for many solutes (Singley et al., 2017; 

Wlostowski et al., 2018), it is unlikely that the hyporheic zone could remain relatively enriched 

in NO3– while also acting as a net sink that prevents return fluxes of N to the main channel. In 

Mediterranean systems, studies have found that short-term streambed drying can promote 

nitrification (Gómez et al., 2012) and result in the accumulation of NO3–, which can then account 

for ~50% of NO3– mobilized when flow reinitiates (Merbt et al., 2016). Our study uniquely 

suggests that the processing and temporary storage of autochthonously-derived N could result in 

contributions of NO3– from the hyporheic zone that persist beyond brief fluxes occurring with 

flow re-initiation, even throughout diel-scale flow pulsing. Thus, the persistently lower NO3– 

concentration in surface water that we found (Figures 3.4 and 3.7) and longitudinal δ15Ν patterns 

(Kohler et al., 2018) are more readily explained by rapid uptake of returned DIN by extensive 

benthic autotrophs in the main channel than by an absence of fluxes from the hyporheic N pool.  

Although N cycling has been investigated in MDV streams for decades, the focus of prior 

work was on removal of DIN in the main channel and hyporheic zone rather than processes 

controlling its production from internal N and OM cycling (Gooseff et al., 2004; Koch et al., 

2010; McKnight et al., 2004). Our findings complicate interpretation of MDV streams, and 
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intermittent streams in oligotrophic systems more generally, as functional sinks that retain or 

remove N (e.g., Bernal & Sabater, 2012; Dubnick et al., 2017; Schade et al., 2005). Instead, we 

have shown that while surface water and benthic algae may operate as strong DIN sinks, the 

hyporheic zone may simultaneously serve as a persistent source for DIN. Moreover, our results 

support prior claims based on stable isotope data (Kohler et al., 2018) that remineralization in the 

hyporheic zone serves as a pathway through which in-stream N fixation can subsidize 

downstream N availability to biota. Critically, this is dependent on hyporheic connectivity, 

including for the import of substrate containing N from N-fixing autotrophs (e.g., Nostoc-

dominated benthic algal mats) (Cullis et al., 2014; Kohler et al., 2018), retention of POM in the 

hyporheic zone (Heindel et al., 2021), and the export of DIN to the main channel. Thus, our work 

necessitates a shift in the conceptualization of N cycling in MDV streams as simple N sinks to 

recognize the role of hyporheic connectivity in maintaining N availability to biota.  

3.4.2 Additional Factors Influencing Autochthonous N Cycling 

Both autochthonous N cycling and short-term intermittence (or wetted channel 

expansion-contraction) have received relatively little attention in previous studies, especially in 

combination. Based on the results of this study and prior research in both MDV and temperate 

streams, we discuss further factors and processes likely to be important in controlling 

autochthonous N cycling, especially under similar short-term hydrologic variability. For much of 

this section, we refer to autochthonous N simply as N (or DIN), unless otherwise necessary for 

clarity. 

Principally, streamflow variability will influence the cycling of N through its control on 

benthic primary production and biomass (Datry et al., 2017) as well as hyporheic residence time. 

The pool of N and OM in benthic algal mats and their N uptake capacity following flood pulse 

events can be influenced by both the return frequency and magnitude of individual pulsing 

events as well as seasonal streamflow patterns (Acuña et al., 2015; Cullis et al., 2014; Kohler et 

al., 2015; Martí et al., 1997). Thus, we would expect streamflow variations to determine the 
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stability of N source pools as well as the efficiency of sink processes. Surprisingly, our data 

suggest that variations in streamflow did not result in a shift from transport- to reaction-

limitation for remineralization and nitrification in the hyporheic zone as concentrations remained 

fairly stable. It is notable that, even in well-studied perennial systems, there is conflicting 

evidence of how hyporheic exchange scales with discharge across geomorphologies (Lee et al., 

2020; Ward et al., 2012; Wondzell, 2006; Wondzell & Gooseff, 2013; Zimmer & Lautz, 2014) 

and how N uptake rates are affected (Webster et al., 2003), although evidence from MDV 

streams suggests hyporheic turnover increases during periods of higher flow (Singley et al., 

2017). While we cannot constrain actual rates on any particular process from the data, it is 

notable that cycling of autochthonous N in the hyporheic zone of Von Guerard Stream must 

occur on timescales sufficiently fast to counteract transport losses, or shifts in residence time, 

that can occur due to successive flow pulses (Singh et al., 2020). Thus, hyporheic function in 

MDV streams can remain relatively stable even where the timescale of persistent diel flow 

pulsing and intermittence is much shorter than the seasonal intermittence that dominates well 

studied Mediterranean streams (e.g., Arce et al., 2014; Bernal et al., 2005; Gómez et al., 2009; 

von Schiller et al., 2017). This stability may, in part, be due to elevated processing rates 

stemming from the high lability of autochthonous OM (Bertilsson & Jones, 2003) and its 

increasing mobilization with increasing flow via scouring (Cullis et al., 2014). Whether this 

balance exists in other streams characterized by short-term intermittence or pulsing remains an 

open but important question.  

The availability of N to biota is likely further complicated by multiple organic source 

forms from which DIN can be derived. We found that differences in NO3– concentrations were 

not explained by changing DOC concentrations (Figure 3.5c). This is probably due to the 

exceedingly low concentrations as well as spatial differences in previous supply of DOC, 

heterogeneity in processing rates, and contributions of autochthonously-derived N in forms other 

than DOM. Prior studies of MDV streams have investigated some of the dynamics controlling 

both DON (Howard-Williams et al., 1989) and POM (Cullis et al., 2014; Heindel et al., 2021), 
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although the relative importance of these sources for hyporheic DIN production has not yet been 

investigated. N-fixing autotrophs, such as Nostoc spp., are recognized as relatively leaky with 

respect to DIN and DON in marine and dryland systems (Glibert & Bronk, 1994; Mayland et al., 

1966). Leaching of DIN and DON may increase with elevated N fixation activity (Barr, 1999), 

which can resume rapidly after rewetting (Dodds et al., 1995; McKnight et al., 2007). Nostoc 

mats often occupy the margins of streams due to their resistance to desiccation (Dodds et al., 

1995; McKnight et al., 1999), such that channel expansion and contraction with streamflow 

variations will likely further control both the timing and the spatial scale over which leached N is 

transported. Consequently, direct leaching coupled to flow variations are another likely, albeit 

understudied, pathway by which N from periphyton may subsidize downstream production 

without POM mobilization, both in MDV streams and elsewhere.  

The presence and relative concentrations of C and N species reflect the stoichiometric 

needs of multiple biotic communities connected by hydrologic exchange. For instance, the 

production of excess DIN is expected for heterotrophic microbes in the hyporheic zone due to 

stochiometric demands when OM is predominantly sourced from autotrophic microbes (Jones et 

al., 1995a). This is consistent with our finding that dissolved C:N (mg DOC mg–1 DIN) is 

significantly lower in the hyporheic zone, largely due to higher DIN concentrations. Studies in 

other systems have found that NH4+ concentrations may increase during periods of declining 

flow or drying, mainly due to remineralization of less labile allochthonous inputs (Acuña et al., 

2005; von Schiller et al., 2011). Yet, we observed that NH4+ remained below detection in the 

majority of both hyporheic water and surface water samples in 2019 and, although 

concentrations were detectable in 2020, they remained much lower than those of NO3–. 

Consequently, NH4+ produced by remineralization of OM (as POM, DOM, or DON) in the 

hyporheic zone of Von Guerard Stream must be removed from solution relatively quickly. As in 

semi-arid and arid-land streams, one of the most likely fates for excess NH4+ produced by OM 

mineralization in transient storage is accumulation of NO3– via enhanced nitrification (e.g., 

Gómez et al., 2012; Jones et al., 1995a). The elevated NO3– concentrations and potential for 
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nitrification we observed (Figure 3.8) provide evidence that relatively rapid nitrification is a 

probable explanation of low NH4+ concentrations in this system. 

Importantly, denitrification in the hyporheic zone may result in the loss of remineralized 

N prior to remobilization. However, there is conflicting evidence about whether streamflow 

intermittence promotes or inhibits denitrification (Gómez et al., 2012; Merbt et al., 2016; von 

Schiller et al., 2011). Provided that streamflow events are sufficiently large and frequent, we 

would not expect denitrification to represent a dominant process controlling the fate of 

accumulated NO3– in hyporheic water, although there is evidence that it can still contribute to N 

losses even in MDV streams (Gooseff et al., 2004; Maurice et al., 2002) and temperate systems 

characterized by diel-scale hydrologic pulsing (e.g., Knights et al., 2017). It is possible that the 

small but significant declines in DOC and NO3– at lateral and deep locations during the 2019 

season (Figure 3.3) were due to denitrification, though it remains unclear how large this loss of N 

may be for this system. The degree to which denitrification reduces subsidies by in channel N-

fixation to downstream communities, or N spiraling more generally, depends on the duration and 

intensity of hydrologic contraction and expansion cycles.  

Ultimately, our work elucidates the role of the hyporheic zone as a source of 

remineralized autochthonous N. Spiraling of autochthonous N likely occurs in many streams, 

even though it may be obscured by large allochthonous inputs of N. The controls on 

hydrochemical variability and biogeochemical cycling in other intermittent and ephemeral 

streams is often attributed to catchment-scale factors (e.g., geology and land use) while instream 

factors become dominant only during flow cessation (Vidal-Abarca et al., 2004). Prior work has 

conceptualized such behavior as the unique ‘biogeochemical heartbeat’ or ‘punctuated 

biogeochemical reactions’ of intermittent and ephemeral systems (Datry et al., 2014; Jacobson & 

Jacobson, 2013; Larned et al., 2010), but few studies or conceptual models have focused 

explicitly on autochthonous N. Some traditional conceptual models of river ecosystems must be 

modified to include the spatiotemporal dynamics of drying as a key process governing 

connectivity in intermittent rivers (Allen et al., 2020). Similarly, our findings demonstrate that 
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conceptual models of nutrient dynamics ought to further incorporate autochthonous N (and OM) 

spiraling and its reliance on hyporheic connectivity, which may be important beyond periods of 

flow cessation.  

In some systems, it may be necessary to better constrain the contributions of instream N 

sources and cycling to variations of surface water N, especially given the influence of 

biogeochemical cycling in intermittent and ephemeral systems in modulating downstream N 

fluxes in many mid-latitude systems (Bernal et al., 2019; Larned et al., 2010; Leigh et al., 2016; 

von Schiller et al., 2017). Investigating the connections between flow fluctuations and 

autochthonous N availability will also be increasingly necessary as climate change and intensive 

management of water resources drive more incidences of short-term intermittency, particularly in 

previously perennial streams (Krysanova et al., 2008; Larned et al., 2010; Sabater, 2008). Lastly, 

as N-fixing periphyton, such as the Nostoc in Von Guerard Stream, are globally pervasive 

(Dodds et al., 1995), the role of hydrologic connectivity in modulating autochthonous N cycling 

may exist in systems other than alpine, arid, or polar streams. For example, network expansion 

and contraction, which is common in humid temperate climates (Buttle et al., 2012; Jensen et al., 

2017), may result in similar autochthonous N cycling processes in the uppermost reaches of 

headwater systems. 

3.5 Conclusions 

Despite decades of research on N cycling in streams, large allochthonous N inputs in 

many systems have obscured or impeded efforts to understand how N fixation by stream 

periphyton contributes to N cycling. Our study of a relatively simple stream setting (without 

hillslope or groundwater connectivity) in the McMurdo Dry Valleys, Antarctica, yielded 

evidence of nitrification following remineralization of autochthonous OM in the hyporheic zone. 

Our results indicate that the accumulation of remineralized N, which represents a readily-mobile 

N pool that can subsidize the N budget of downstream autotrophs, is sustained regardless of 

short-term flow variation and intermittence. Together, the results of this study complicate 
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simplistic interpretations of oligotrophic intermittent stream systems, and especially their 

hyporheic zones—that they function strictly as N sinks. While prior studies demonstrated that 

MDV hyporheic zones act as a source for many geogenic solutes (Gooseff et al., 2002), ours is 

the first to show that similar hyporheic sourcing occurs for DIN via remineralization processes. 

As in other systems, sink processes for N in MDV streams have been quantified (e.g., Gooseff et 

al., 2004; Koch et al., 2010; McKnight et al., 2004), but DIN sourcing coupled to in-stream N 

fixation remains poorly constrained. Ultimately, this work demonstrates the potential for 

hyporheic connectivity both to enhance the contributions of internal N sources to nutrient 

budgets in oligotrophic streams and control how tightly and in what form this material it cycles.  
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Chapter IV 

Differentiating Physical and Biological Storage of Nitrogen Along an Intermittent 

Antarctic Stream Corridor 

4.1. Introduction 

Biogeochemical processes in small headwater streams modulate nutrient concentrations 

and exert a strong influence on nutrient fluxes to downstream ecosystems (Peterson et al. 2001, 

Alexander et al. 2007). Much of the research on biogeochemical cycling within streams has 

focused on the retention of nutrients, especially nitrogen (N) sources from the surrounding 

landscape (e.g., Boyer et al. 2002, Duncan et al. 2015, Drummond et al. 2016). Quantification of 

N retention in streams has centered on relationships between hydrologic connectivity and 

biogeochemical reactions rates (Gomez‐Velez et al. 2015, Harvey et al. 2018) or a simple mass 

balance approach wherein retention is a residual term between input and output fluxes (Burns 

1998, Seitzinger et al. 2006). These flux- or transport-centric approaches have not documented 

the extent of N storage within stream corridors, especially intermittent streams and oligotrophic 

environments with low allochthonous N inputs. 

Unlike in terrestrial biogeochemistry, where the importance of particular N cycling 

processes are frequently contextualized by the relative sizes of coupled pools and fluxes 

(Vitousek and Reiners 1975, Aber et al. 1989, 1998, Lovett and Goodale 2011), only a few 

studies of streams have actually quantified N pools in stream corridors. In temperate forested 

systems > 90% of N storage is in the form of allochthonous detritus (Triska et al. 1984, Naiman 

and Melillo 1984). In contrast, Grimm (1987) found that more than 90% of N storage in a desert 

stream is in autochthonous detritus, although area normalized N storage was lower than in 

forested systems (3-9 g/m2 compared to 12-22 g/m2). These few studies demonstrate that the 

form, magnitude, and temporal stability of N storage depends heavily on system characteristics 

including organic matter (OM) sourcing, hydrologic variability, and net metabolic status.  

Storage of N in any particular stream occurs through both physical and biological 

mechanisms (Naiman and Melillo 1984, Triska et al. 1984, Grimm et al. 1987). Biotic 
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assimilation into periphyton biomass was more important than denitrification in the stream 

benthos in temporarily removing N stream during nutrient uptake experiments (O’Brien et al. 

2012). Most studies of N retention by such biological uptake characterize spatial and temporal 

variations in small-scale area normalized periphyton biomass (i.e., mg Chlorophyll a/cm2) in 

response to environmental conditions or nutrient availability (e.g., Horner and Welch 1981, 

Stelzer and Lamberti 2001, von Schiller et al. 2007, Koch et al. 2018). Focus on area normalized 

biomass has ensured comparability of results at small scales among systems and allowed for 

cross-system synthesis (e.g., Dodds et al. 2002). But apart from the few whole stream N budget 

studies, biomass, or the N contained therein, is never scaled along entire reaches. Such scaling is 

hampered by the inherently patchy distribution of periphyton, especially due to physical 

disturbance (i.e., scouring with flood pulses) or grazing processes (Hillebrand 2008, Luce et al. 

2010). Yet, scaling N and biomass pools across an entire reach would permit benchmarking of 

stored mass against total seasonal or annual fluxes. 

Apart from algal biomass in the stream, N can be transiently stored by physical processes 

in the hyporheic zone such as sorption to sediment (Triska et al. 1994), entrainment of particulate 

organic matter (POM) (Triska et al. 1984, Heindel et al. 2021a), and in dissolved form in 

interstitial waters (Grimm 1987, Bernhardt et al. 2005). As with total storage, the relative 

magnitude and stability of these storage mechanisms at the reach-scale is understudied but likely 

varies due to climate and flow regime. For example, it is known that ammonium (NH4+) sorption 

can compete with biotic uptake (Triska et al. 1994) in temperate systems, but the conditions 

under which sorption is reversible and the size of sorbed NH4+ pools remain poorly characterized 

in most streams. This knowledge gap is particularly relevant to intermittent streams that can be 

subject to rapidly changing ionic concentrations and fluid conductivities (Datry et al. 2017), 

which could theoretically alter cation exchange dynamics governing NH4+sorption. The 

hyporheic zone can also entrain POM (which contains N) but this storage is also transient due to 

mineralization and remobilization processes (Bernhardt et al. 2005, Burrows et al. 2017), which 

vary widely as a function of the climatic characteristics (especially temperature and annual 
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precipitation) of intermittent stream systems (Shumilova et al. 2019). Lastly, N storage as 

dissolved solutes in the stream corridor, mainly in interstitial waters of hyporheic and riparian 

areas, is potentially even more transient due to relatively rapid turnover resulting from 

hydrologic exchange flows. In intermittent streams, much longer residence times result from 

diminished surface flow such that transient storage in the hyporheic zone may actually occur 

over longer timescales and with greater variations in space (Gómez et al. 2009). Therefore, the 

importance of particular N retention mechanisms may differ between perennial and intermittent 

streams. 

Proglacial intermittent streams of the McMurdo Dry Valleys (MDVs), Antarctica, are 

often invoked as an ideal natural setting to investigate coupled physical and biological stream 

corridor processes (McKnight et al. 2015). Even in a cold and hyper-arid environment that is 

devoid of high-order plants and allochthonous OM inputs, cyanobacteria algal mats cover 

extensive portions of streambeds (Alger 1997, McKnight et al. 1999). Along with heterotrophic 

microbes in the hyporheic and parafluvial zones, these mats contribute to biogeochemical 

cycling of N (Koch et al. 2010, Kohler et al. 2018; Singley et al. 2021a) including relatively 

rapid N removal from surface water (Gooseff et al. 2004b, McKnight et al. 2004) and N fixation 

(Howard-Williams et al. 1989, McKnight et al. 2007). The hyporheic zone of MDV streams 

contain elevated concentrations of dissolved and sorbed N (Heindel et al. 2021a, Singley et al. 

2021a) and autochthonous OM in various states of decomposition (Heindel et al. 2021a). A prior 

study of the stable isotopic composition of mat biomass indicated that N-fixed within the stream 

corridor supplants N inputs from glacial meltwater as the primary N source with increasing 

distance downstream (Kohler et al. 2018). 

Despite their relative simplicity, N budgets for MDV streams remain poorly constrained. 

We seek to better characterize stream corridor N storage and fluxes in this system by addressing 

four questions:  

1. How large are annual N fluxes into and from an MDV stream corridor? 

2. How much N is stored within stream corridor biomass and the hyporheic zone?  
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3. Is NH4+ stored by sorption to sediment released in response to short-term changes in 

cation concentrations?  

4. What is longitudinal distance over which allochthonous N inputs are removed? 

To address these questions, we take advantage of multiple field, lab, and modeling 

techniques. We combined data from historic point-scale sampling of water, sediment, and 

biomass along with remote sensing analysis and uncertainty propagation to uniquely characterize 

N storage over an entire stream corridor and compare these results to other stream systems. We 

also conducted a laboratory assays to assess the stability of NH4+ sorption as an N storage 

mechanism in light of observed short-term changes in stream water conductivity. Lastly, we used 

a reactive transport model with unsteady flow routing to evaluate whether upstream fluxes of N 

can account for downstream exports given biotic uptake. By synthesizing historic point-scale 

observations, a laboratory assay, and these model simulations we evaluate differentiate the 

contributions of physical and biological processes to annual N fluxes and storage. 

4.2. Study Site 

We focused our analysis on Von Guerard Stream, a fairly long (5 km) stream that runs 

north from its source glacier in the Kukri Hills to Lake Fryxell in Taylor Valley, Antarctica 

(Figure 4.1). This stream has been gaged and sampled for both algal biomass and surface water 

chemistry by the McMurdo Long-Term Ecological Research project (MCM LTER) each Austral 

summer since 1994. Channel morphology, streambed composition, and algal mat coverage vary 

along Von Guerard Stream (Alger 1997, Wlostowski et al. 2016), making it a useful model for 

the diversity of stream characteristics present in the MDVs. Streamflow in Von Guerard Stream 

occurs for just a few months each year and is characterized by large diel pulsing events and 

periods of intermittency (Wlostowski et al., 2016). The stream corridor is largely hydrologically 

disconnected from adjacent hillslopes due to the hyper-arid climate (Gooseff et al. 2016). 

Continuous permafrost in the prevents groundwater exchange beyond the seasonally-thawed 

active layer (Conovitz et al. 2006, Bockheim et al. 2007), thereby further constraining hydrologic 
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connectivity. While there is evidence of deep groundwater system beneath the permafrost layer 

(Mickuki et al. 2015), there is no evidence that substantial exchange occurs between this system 

and Von Guerard Stream.  

 
Figure 4.1. Von Guerard Stream in Taylor Valley, Antarctica, with stream corridor buffer (blue) 
used for remote sensing analysis and total area calculations. 

Inputs of N to the stream corridor generally occur via meltwater mobilization of N 

deposited on glaciers and directly into the stream corridor (Witherow et al. 2006, Deuerling et 

al., 2014). Further N additions occur via in-channel N-fixation by Nostoc-dominated black algal 

mats (Howard-Williams et al. 1989, McKnight et al. 2007). Extensive Phormidium-dominated 

orange algal mats form broad cohesive films across many reaches but are not thought to be 

capable of N-fixation (McKnight et al. 2007; Kohler et al. 2018). N can be exported by DIN, 

DON, and PON fluxes with streamflow at the outlet into Lake Fryxell. While denitrification is 
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possible in MDV streams during nutrient addition experiments (Gooseff et al. 2004), little is 

known about its contribution to N losses under ambient conditions. 

4.3. Methods 

For this study, we estimated N import and export fluxes for the Von Guerard stream 

corridor as well as N storage by mining historic field and laboratory data from the MCM LTER. 

We scaled site specific data over areal and volumetric footprints representing the whole Von 

Guerard Stream corridor. We also propagated uncertainty from observational data using Monte 

Carlo simulations based on fitting distributions to the field data with fitdistrplus in R (Delignette-

Muller and Dutang 2015, R Core Team 2019) or drawing from normal distributions described by 

summary statistics (mean and SD) reported in the literature. For each flux and N pool 

calculation, we randomly sampled 10,000 values for each variable and repeated the calculation 

based on these parameterizations. Table 4.1 defines each parameter used in the calculations 

presented below and the references for publications or datasets from which values were obtained. 

4.3.1 Estimation of stream corridor N fluxes  

We estimated seasonal dissolved and particulate N import and export fluxes based on 15-

minute discharge data (Gooseff and McKnight 2019b) and concentration observations from the 

gage at the outlet of Von Guerard Stream into Lake Fryxell (Figure 4.1). For each season, we 

calculated total flow (Qtotal) as the cumulative trapezoidal integration over the gap-filled 

discharge time series using the pracma package (Borchers 2021). We assumed no majors gains 

or losses in discharge along the stream corridor such that we used the same Qtotal values to 

calculate the fluxes at the head and outlet. For import fluxes, we used concentration data from 

MDV ice cores and supraglacial streams (Howard-Williams et al. 1989; Bergstrom and Gooseff 

2021a, 2021b), while export fluxes were based on observations of surface water in Von Guerard 

Stream (Lyons 2019; Singley et al. 2021b). The flux (F, kg N) for each dissolved and particulate 

constituent in a given flow season was calculated as: 

 - = ./#%#&' 0 (	$*
(+#	,*1 (4.1)
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Table 4.1 Literature-derived values used to estimate N fluxes and pools (Eqns. 4.1–4.9). Parameters are listed in the order that they 
first appear in the manuscript. 

Symbol Description Value or Distribution 
Type* 

Units Sample 
Count 

Source† 

Qtotal Total seasonal stream discharge varies by season L  Gooseff and McKnight 2019b 
DINgl DIN concentration in glacial ice and supraglacial meltwater gamma μg N/L 875 ice 

287 melt 
Bergstrom and Gooseff 2021a 
Bergstrom and Gooseff 2021b 

DINsw DIN concentration in stream water from lower reaches 21.2 ± 22.5 μg N/L 74 Lyons 2019 
DONgl DON concentration in glacial ice melt 92.5 μg N/L 2 Howard-Williams et al. 1989 
DONsw DON concentration in stream water from lower reaches 34.0 ± 19.0 μg N/L 15 Singley et al. 2021b 
PONgl PON concentration in glacial ice melt 0 mg N/L 2 Howard-Williams et al. 1989 
POMsw POM concentration in stream water from lower reaches min = 1⨉10–4	

max =2.59⨉10–2 
mg/L 35 Cullis et al. 2014 

CNPOM C:N of POM in stream water from lower reaches 9.51 ± 1.92  13 Kohler 2018 
ω N-fixation rate of Nostoc mats 8.11 ± 5.45 mg N/m2 day 16 McKnight et al. 2007 
D Flow season duration 49.8 ± 15.3 days 22 Gooseff and McKnight 2019b 
Ablk Total areal coverage by Nostoc mats 4000 m2  McKnight et al. 1998 
φ Inorganic N deposition rate for Lake Fryxell 2.68 μg N/m2 year  Deuerling et al. 2014 
AVG Von Guerard Stream corridor area 134,112.5 m2   
l1 Upper reach length 1000 m  McKnight et al. 1998 
l2 Middle reach length 3500 m  McKnight et al. 1998 
l3 Lower reach length 500 m  McKnight et al. 1998 
wblk,1 Nostoc mat width in upper reach 0 m  McKnight et al. 1998 
wblk,2 Nostoc mat width in middle reach 1.0 m  McKnight et al. 1998 
wblk,3 Nostoc mat width in lower reach 1.0 m  McKnight et al. 1998 
wor,1 Phormidium mat width in upper reach 0.5 m  McKnight et al. 1998 
wor,2 Phormidium mat width in middle reach 3.0 m  McKnight et al. 1998 
wor,3 Phormidium mat width in lower reach 0.5 m  McKnight et al. 1998 
Chlblk,1 Chl a content of Nostoc mats in upper reach 0 μg Chl a/cm2  McKnight et al. 1998 
Chlblk,2 Chl a content of Nostoc mats in middle reach 31.0 μg Chl a/cm2  McKnight et al. 1998 
Chlblk,3 Chl a content of Nostoc mats in lower reach 9.0 μg Chl a/cm2  McKnight et al. 1998 
Chlor,1 Chl a content of Phormidium mats in upper reach 4.7 μg Chl a/cm2  McKnight et al. 1998 
Chlor,2 Chl a content of Phormidium mats in middle reach 12.0 μg Chl a/cm2  McKnight et al. 1998 
Chlor,3 Chl a content of Phormidium mats in lower reach 31.0 μg Chl a/cm2  McKnight et al. 1998 
γblk AFDM:Chl a of Nostoc mats gamma mg AFDM/μg Chl a 130 McKnight et al. 2019 
γor AFDM:Chl a of Phormidium mats gamma mg AFDM/μg Chl a 141 McKnight et al. 2019 
CNblk C:N of Nostoc mats 9.10  ± 0.80  32 Kohler 2018 
CNor C:N of Phormidium mats 10.50 ± 1.54  32 Kohler 2018 
Ap Pixel area from WorldView-3 imagery 1.95 m2   
τblk Spatial coverage by Nostoc mats varies by pixel percent   
τor Spatial coverage by Phormidium mats varies by pixel percent   
βblk Areal AFDM content of Nostoc mats gamma AFDM/m2 130 McKnight et al. 2019 
βor Areal AFDM content of Phormidium mats exponential AFDM/m2 141 McKnight et al. 2019 
l Total stream length 5000 m   
whz Saturated hyporheic zone width 6 m   
d Hyporheic zone depth of seasonally-thawed active layer 0.5 m  Conovitz et al. 2006 
Φ Hyporheic sediment porosity 0.34 ± 15.3  18 Heindel et al. 2021b 
Cnitr NO3

––N concentration of interstitial hyporheic water 78.6 ± 0.66 μg N/L 255 Singley et al. 2021b 
wwet Wetted corridor width 9.54 ± 5.45 m 9 Heindel et al. 2021b 
ρ Hyporheic sediment bulk density 1749 ± 269.2 kg/m3 18 Heindel et al. 2021b 
Camm Sorbed NH4

+–N concentration for hyporheic sediment 0.679 ± 0.655 mg N/kg dry sed 45 Heindel et al. 2021b 
dshallow Shallow hyporheic depth based on sediment sample collection 0.1 m  Heindel et al. 2021b 
LOI Hyporheic organic matter content as AFDM 6.24 ± 1.34 g AFDM/kg dry sed 45 Heindel et al. 2021b 

*Values are provided where only a single value could be derived from the literature or where a normal distribution with the indicated mean ± SD were used. In all other instances the distribution type that was fitted to the raw data is identified.  
†Values derived or assumed by this study do not have a source listed  
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where C is concentration (μg N/L). This calculation was repeated for each flow season (1995-

2018) for both DIN and dissolved organic nitrogen (DON) concentrations. For imports from 

glacial sources, we calculated DIN concentrations as the sum of NH4+ and NO3– (combined 

analysis for NO3– + NO2–). Individual concentrations that were below the detection limits were 

treated as zeros in the DIN sum. For glacier ice, 58.6% and 18.7% of samples were below 

detection for NO3– and NH4+, respectively. For supraglacial stream water, 0.3% and 20.6% of 

samples were below detection for NO3– and NH4+, respectively.  

Similarly, we used DIN concentration data from historic grab samples collected in the 

lower reaches of Von Guerard Stream (1995-2018; Lyons 2019) to calculated export fluxes. For 

each grab sample, we calculated the DIN concentration as the sum of NO3–, NH4+ and NO2–. 

Individual concentrations that were below their respective detection limits (37.6% and 54.8% of 

all samples for NH4+ and NO2–, respectively) were again treated as zeros in the DIN sum. For the 

Monte Carlo simulations, we propagated uncertainty in these fluxes due to the variations in 

observed concentration data, except for the DON input flux from the glacier, for which only a 

single value is available. 

To our knowledge, only one prior study analyzed PON in MDV glacial ice melt, but none 

was detected (Howard-Williams et al. 1989). Consequently, we assume that the PON flux into 

Von Guerard from its source glacier is negligible (~0 kg N/yr). Along Von Guerard Stream, 

POM, which contains N, is mobilized from algal mats with each meltwater pulse in a hysteretic 

pattern (Cullis et al., 2014). Both POM concentrations and total fluxes differ amongst individual 

flood pulses as a function of the time since a resetting flood event and the regrowth of potentially 

mobile benthic biomass. Currently, there is insufficient information to adequately model these 

time varying biomass pool dynamics and generate continuous estimates of POM concentrations 

(CPOM), especially for multiple seasons. Thus, for tractability, we simply calculate the absolute 

boundaries of seasonal PON export fluxes (FPON, kg N) as: 

 !!"# = #$!"#%$%$&'
$#!"#

$ # &	()
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$ (4.2) 
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For each season, we repeated this calculation with both the minimum and maximum CPOM 

observations reported by Cullis et al. (2014). The resulting estimates do not account for the 

complex interactions between biomass regrowth and POM mobilization, but rather represent 

extremely conservative estimates for the range of FPON. We propagated uncertainty for CNPOM 

via the Monte Carlo simulations.  

We calculated the annual biological N fixation flux for the stream corridor by scaling 

areal N fixation rates (ω) over the approximate black mat area (Ablk) and stream season flow 

length (D) as: 

 !,-. = %&/0(' # &	()

&*(	+)
$ (4.3) 

We calculated the flow season duration (D) from 1995-2018 as the elapsed time in days between 

the first and final gaged flows. We held the Nostoc area constant and propagated uncertainty for 

ω and D using Monte Carlo simulations.  

Lastly, we estimated total annual atmospheric deposition of inorganic N (Fdep) directly 

into the stream corridor. To do so, we scaled annual deposition rates estimated from Lake Fryxell 

(φ; Deuerling et al. 2014) over the entire Von Guerard stream corridor (AVG, see 3.2.1).  

 !123 = (&45 # &	()

&*)	6)
$ (4.4) 

4.3.2 Estimation of stream corridor N pools  

To quantify the relative importance of different storage mechanisms, we estimated total 

N in periphyton biomass, shallow (<10 cm) hyporheic OM, NH4+ sorbed to hyporheic sediment, 

and dissolved NO3– in hyporheic water along the entire stream corridor. For all N pool estimates, 

we again propagated uncertainty using Monte Carlo simulations based on fitting distributions to 

the field data or summary statistics.  

4.3.2.1 N storage in periphyton biomass 

We estimated the total mass of N stored in benthic algal mat biomass in two different 

ways. First, we estimated N in algal biomass (Nbio) in each mat type (black and orange) over 
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three reaches (r) representing the entire length of Von Guerard Stream using a simple scaling 

calculation based on McKnight et al. (1998) as: 

)/-7 = ∑ #0*8+',,*9:0+',,*;+',
$#+',

+ 0*8%*,*9:0%*,*;%*
$#%*

$ #&*.	9+/

&	+/ $ # &	()

&*(	+)
$<

=>&  (4.5) 

Here, we calculate areal coverage of each mat type and converted these footprints to N content 

based on relationships between Chlorophyll a, AFDM, and C:N from analysis of mat cores. type 

as the product of mat width (w) and reach length (l). Then we determine total biomass content 

based on areal Chlorophyll a (Chl-a, chl) data and Chl-a to AFDM ratios (γ) for each mat type. 

Lastly, we convert this biomass pool to N mass using C:N ratio data (CN) calculated for each 

type based on historic samples. We propagated uncertainty for γ and CN using Monte Carlo 

simulations. 

We also estimated spatial coverage of algal mats and N content based on analysis of 

multispectral satellite imagery and an MDV-specific spectral mixing model (Salvatore et al. 

2020). We based our analysis on data from a WorldView-3 (DigitalGlobe, Inc., now Maxar 

Technologies) image taken on January 26, 2019. This image was acquired towards the end of the 

streamflow season and showed relatively snow-free conditions across most of the landscape. As 

per Salvatore et al. (2020), we leveraged the unique spectral reflectance signature of black and 

orange algal mats, moss, bare soil, and water to determine the percent coverage of each pixel by 

spectral endmember. We used a non-negative spectral unmixing model that linearly combines a 

suite of endmember spectra to produce the best mathematical fit between the input spectrum and 

the model output. It has been demonstrated that surface endmembers in Taylor Valley, 

Antarctica, are optically opaque and, therefore, can be appropriately modeled as a linear 

combination of their areal abundances at each pixel (Salvatore et al., 2020, 2021). The root mean 

square error (RMSE) on modeled versus observed spectra across all pixels ranged from 0.00 to 

81.35%. Most model fits were very good with a mean ± SD RMSE of 1.63 ± 2.35% (median of 

1.19%), with less than 0.5% of all pixels exhibiting RMSE > 10%. 
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From the individual mat coverage estimates by type and pixel, we then calculated N 

content of all algal biomass ()/-7∗)	in the stream corridor as: 

 )/-7∗ = ∑ #@+',,0A+',,0B1
$#+',

$ + #@%*,0A%*,0B1
$#%*

$C1
-  (4.6) 

Here, we sum the N content of each mat type for each pixel (i), across the 68,767 pixels 

(np) within a 134,112.5 m2 region that encompasses an approximately 10 m wide buffer to either 

side of the thalweg of Von Guerard Stream (Figure 4.1). This width is approximately double the 

distance between the visible wetted margins for Von Guerard Stream reported by Heindel et al. 

(2021b) at low flows (< 0.5 L s–1). We converted percent coverage (τ) for each pixel by mat type 

to AFDM based on areal biomass (β) from field samples for Von Guerard Stream and average 

pixel area (Ap). Lastly, we used the same C:N ratios noted above to convert AFDM to N content. 

In this estimation, we propagated uncertainty for β and CN by mat type. 

4.3.2.2 N storage in the hyporheic zone 

Following Singley et al. (2021a), we estimated the mean N pool contained in dissolved 

NO3– in interstitial hyporheic waters of Von Guerard Stream as: 

 )C-D= = /0:E123C-D= #&*
2	F

&	+2$ #
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where l is the length of the stream, whz is the saturated hyporheic width, and d is the hyporheic 

depth within the seasonally thawed active layer. We used NO3– concentrations (Cnitr) from an 

extensive set of samples (n = 255) from the lower reaches of Von Guerard Stream (Singley et al. 

2021b). Then we determined total hyporheic fluid volume based on estimates of porosity (Φ) for 

the Von Guerard Stream bed as 0.34 ± 0.10 from bulk density measurements (n = 18; Heindel et 

al. 2021b) and an assumed mineral density of 2.65 g/cm3. We limited this analysis to NO3– (as 

NO3– + NO2–) since NH4+ concentrations were often much lower than NO3– (Singley et al., 

2021a) or below detection (64.9%, Singley et al. 2021b). Uncertainty was propagated for Φ and 

Cnitr using normal distributions fitted to each dataset.  
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Hyporheic sediments of Von Guerard Stream also contain OM (both heterotrophic 

bacteria and POM from algal mats) as well as a NH4+ sorbed to sediment (Heindel et al. 2021a). 

We calculated the total N mass in each of these pools as: 

 )G7=/21 = /082D143H++ # &	()

&*(+)
$ (4.8) 
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Here we used wetted corridor width (wwet), bulk density (ρ), total extractable NH4+ 

(Camm), and loss on ignition (LOI) from 9 sediment transects in the lower half of Von Guerard 

Stream (Heindel et al. 2021b). We set d to 0.5 m as described above for dissolved NO3–. For 

Nhyp,om we limited the analysis to a shallow depth (dshallow) of only 0.1 m, given the sample 

collection protocol used by Heindel et al. (2021b). Using these physical values, we scaled up 

mean OM content from LOI (as AFDM/g dry soil) and Camm (mg NH4+–N/kg dry sediment) 

across the estimated mass of sediment in their respective volumes. As most POM entrained in the 

hyporheic zone can be traced to black mats (Heindel et al., 2021a), we used the CNblk data 

described above to convert AFDM to N in the Nhyp,OM calculation. For these estimations, we 

propagated uncertainty in the Monte Carlo simulations by fitting and drawing values from 

normal distributions based on the data for wwet, ρ, Camm, LOI, and CNblk. 

4.3.3 Assay on desorption of NH4+ from stream sediment 

We performed a laboratory assay on sediment samples collected from the lower reaches 

of Von Guerard Stream (Figure 4.1) to assess the availability of NH4+ adsorbed to stream 

sediment as a potential source for internal DIN fluxes. We conducted an assay to determine 

whether NH4+ desorbed over the range of conductivities observed in Von Guerard Stream from 

1995-2015 (Figure 4.2A). 

Sediment samples were collected from the top 10 cm of the streambed at 5 locations 

along a transect spanning between the wetted margins of the stream corridor. Subsamples from 

this sediment was previously analyzed for OM content through loss on ignition (LOI) in a muffle 
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furnace and total extractable NH4+ by 2M potassium chloride (KCl) extraction. A full description 

of sediment sample collection, storage and analytic methods is provided by Heindel et al. (2021a, 

2021b). For this study, we thawed sediment samples at +4ºC and weighed 15 sub-samples 

(approximately 20 g of sediment each) for 5 lateral locations into 250 mL HDPE bottles. We 

prepared treatment solutions containing KCl and deionized water to achieve specific 

conductivity (SC) values that reflect the range of diel to seasonal fluctuations of SC observed in 

Von Guerard Stream (Figure 4.2B). Based on measurements with a temperature corrected 

benchtop conductivity probe, the treatment solution SC values were 0.06 (DIW only), 40.7, 77.1, 

155.9, and 317.7 μS/cm.  

 
Figure 4.2. (A) Illustrative discharge and specific conductivity variability from the 2012 flow 
season in Von Guerard Stream. (B) Historic (1995-2015) specific conductivity distribution for 
high-frequency surface water observations with laboratory assay treatment solution values. 

Homogenized sediment subsamples were taken in triplicate from each location then 

mixed with each treatment solution at a 2:5 ratio of sediment to solution by mass. The resulting 

sediment slurries and solution blanks for each treatment were immediately placed on a rotary 

shaker table at 300 rpm for 1 hour, then centrifuged at 3000 rpm for 5 minutes, and filtered via 
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GF/F filters (Whatman). The filtrate was stored frozen (-20ºC) until analysis. We analyzed NH4+ 

concentrations with a Lachat Quickchem Flow Injection Analysis System (Hach, USA) 

according to standard protocol 4500-NH3 H (phenolate FIA), with a minimum detection limit of 

5 μg NH4+-N/L. We analyzed NO3– as the sum of NO3– and nitrite (NO2–) by standard method 

4500-NO3 I (cadmium reduction flow injection) with a detection limit of 4 μg NO3––N/L. The 

resultant concentrations were normalized to sediment dry weights, which were calculated using 

transect location-specific gravimetric moisture content determined during the LOI protocol 

performed by Heindel et al. (2021a). Incubation solution concentrations of K+ and Cl– were 

measured by atomic absorption spectrophotometry with detection limits of 4 and 30 μg L–1, 

respectively.  

We analyzed these data for relationships between solution SC and the net mass of DIN 

released per mass sediment and the percentage of total extractable NH4+ for each site. We also 

compared changes in concentrations of K+ and Cl– to determine whether cation exchange was a 

likely explanation for any observed release of NH4+.  

We did not utilize a kill treatment to limit biological activity as preliminary trials found 

that 1% formalin solutions may have substantially altered cation exchange through changes to 

solution pH. Similarly, buffered formalin contains ion concentrations that exceeded the low 

conductivities needed to replicate MDV stream water observations, so a formalin kill was not 

suitable for this assay. We also did not autoclave sediment as a prior study reported potential 

releases of N and phosphorus during such treatment of MDV sediments (Bergstrom et al. 2020). 

Consequently, the results from this assay reflect only the potential for NH4+ to desorb from 

stream sediment in response to changing stream water conductivities, not in situ dynamics or 

kinetics. 

4.3.4 Modeling longitudinal attenuation of allochthonous N inputs 

The relatively simple hydrologic characteristics of MDV streams ensure that N 

concentrations are predominately controlled by meltwater inputs and stream corridor processes – 
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namely advection, dispersion, transient storage through hyporheic exchange, and reactions in the 

hyporheic zone and main channel. Lateral inflows from adjacent hillslopes are negligible as are 

groundwater gains and losses. To represent this system, we coupled kinematic wave routing 

(Koohafkan and Younis 2015) with a one-dimensional transport and storage model (OTIS; 

Runkel et al., 1998) to assess the spatial scales over which glacially derived N inputs are 

attenuated in MDV streams. The OTIS model has been widely utilized for both conservative and 

reactive transport simulation, including in the MDVs (Runkel et al. 1998, Gooseff et al. 2004a, 

2004b, McKnight et al. 2004). Given the ability of OTIS to handle unsteady flow, hyporheic 

exchange, and multiple reaction processes along with estimates of reasonable parameters from 

prior tracer studies, it is well suited to approximating the longitudinal distance over which 

allochthonous N inputs are removed in MDV streams.  

Due to the lack of gage data at the head of most MDV streams, including Von Guerard 

Stream, we used a proxy from another stream gage on a shorter stream. This approach has been 

applied in prior studies of discharge pulse routing in MDV streams (e.g., Koch et al. 2011). To 

this end, we selected the 2009 seasonal hydrograph for Commonwealth Stream (Gooseff and 

McKnight 2019a), also located in Taylor Valley. These data were selected as the gage is located 

within 0.7 km from the toe of its source glacier and flow varied by three orders of magnitude (0.8 

to 888.1 L/s) with diel pulsing that is characteristic of this system (Figure 4.3A). Although the 

selected hydrograph is not likely to be a perfect representation of flow pulse shape for Von 

Guerard Stream, which flows from a different source glacier, it captures the general unsteady 

flow that governs transport in MDV streams. 

We routed this upstream boundary condition (USBC) for stream flow down an idealized 

model reach based on the upper portions of Von Guerard Stream using the Rivr package in R 

(Koohafkan and Younis 2015, R Core Team 2019). The model channel was 1100 m long, with a 

Manning’s roughness coefficient of 0.066, a slope of 0.078 m/m, and a constant wetted width of 

2 m. These parameters were drawn from prior descriptions and modeling of MDV streams (e.g., 

Runkel et al. 1998, Wlostowski et al. 2016). We linearly interpolated the USBC hydrograph from 
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15 to 1 minute resolution and routed the flow with a 5 m spatial step size. We extracted time 

series for locations spaced 100 m apart and used the discharge and main channel area data in as 

inputs for the unsteady flow files for the OTIS model. 

Here, we utilize the standard version of OTIS to model solute concentrations in the main 

channel (C) and the hyporheic zone (CHZ), with the following governing equations: 
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where Q is surface water discharge (m3/s), α is the hyporheic exchange coefficient (/s), D is the 

dispersion coefficient (m2/s), A and AHZ are the cross-sectional areas (m2) of the main channel 

and hyporheic zone. Here λ and λΗΖ are first-order uptake coefficients (/s) for the main channel 

and hyporheic zone. As described above, Q and A vary with time based on kinematic routing. 

We set α to 4.34×10–4 /s, which is the median exchange coefficient from prior studies in which 

OTIS parameters were fitted to MDV tracer data (Runkel et al. 1998, Gooseff et al. 2004b, 

McKnight et al. 2004). To deal with the uncertainty in uptake due to changing biotic activity and 

algal mat coverage, we ran simulations with “slow”, “moderate”, and “fast” λ values set to 

3.74×10-4, 3.74×10-3, and 3.74×10-2 (/s), respectively. The moderate uptake rate represents the 

mean main channel uptake for NO3– tracer studies in another MDV stream (Gooseff et al. 

2004b), while the slow and fast scenarios represent an order of magnitude change in either 

direction. We held λΗΖ constant at 3.29×10-5 /s, which is the average hyporheic removal rate for 

NO3– from the same studies. 
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Figure 4.3. Reactive transport model inputs for (A) discharge and (B) concentration-discharge 
typologies at the upstream boundary over the simulation duration (44 days).  

Historically, surface water sampling in MDV streams has occurred primarily at gage 

locations, resulting in a lack of information on the relationship between concentrations and flow 

at the head of each stream. To overcome this gap, we simulated four different possible USBC for 

NO3– concentration (C0) [ppm]: 

 3*9:2+7 = 0.044 (4.12) 

 3*1-0 = (2.10 × 10S<)>*S*.UV& (4.13) 

 3*2C= = 0.175>**.V<& (4.14) 

 3*=HC1 = A(1.42, 0.039) (4.15) 

where Eqn. 4.12 represents chemostasis set to the mean NO3– concentration in glacial ice and 

supraglacial stream samples (excluding 18 values comprising 2.5% of the data with DIN > 200 

μg N/L; Bergstrom et al., 2021a, 2021b); Eqns. 4.13 and 4.14 represent power-law diluting and 

enriching relationships, respectively. We derived Eqn. 4.13 by pairing the minimum 

concentration with the maximum discharge, the medians of each, and maximum concentration 

with the minimum discharge, then fitting the coefficient and exponent parameters to these three 

points (R2 = 0.840). Similarly, we derived Eqn 4.14 by pairing the minimum, median, and 

maximum concentrations with those for discharge and fitting the coefficient and exponent 

parameters (R2 = 0.997). Eqn. 4.15 is a random selection of values drawn from a gamma 
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distribution with the noted shape and inverse rate parameters fit to that data. The resulting USBC 

time series for each typology are presented in Figure 4.3B. Concentration-discharge plots for 

each USBC are provided in Figure S4.1.  

We ran simulations (n = 9) representing each combination of λ and C0 over the model 

reach at 1 minute and 10 m resolution. We summarized longitudinal patterns in C (mean ± SD) at 

sites located at distances of 5 m, 10-100 (by 10 m increments), and every 50 m thereafter, across 

the entire time span for each simulation (44 days). 

4.4. Results 

4.4.1 Seasonal N fluxes to and from the Von Guerard Stream corridor 

On an annual basis, the interquartile ranges (IQR, first to third quartiles) of Monte Carlo 

estimates for input fluxes from the source glacier meltwater totaled 1.2-29.8 kg N/yr. This total 

flux was composed of 1.1–4.3 kg N/yr as DIN, 0.1–25.5 kg N/yr as DON, and negligible PON 

imports. We estimated that N fixation by Nostoc in the stream corridor adds a further 0.7–2.3 kg 

N/yr while direct atmospheric deposition of inorganic N is very small (<< 0.1 kg N/yr). 

Combined, these fluxes amount to total imports of 2.2–32.2 kg N/yr, which normalized over the 

entire stream corridor is equivalent to a gross input of 16.4–240 mg N/m2 yr. 

We estimated that in total 0.3–5.6 kg N/yr (IQR) is exported from the stream corridor in 

particulate and dissolved form. Specifically, we estimated that N fluxes as DIN from Von 

Guerard Stream into Lake Fryxell ranged from 0.1–1.9 kg N/yr. DON exports were slightly 

larger at 0.2–3.4 kg N/yr. while N export as PON must be no more than 0.3 kg N/yr. Notably, 

cumulative seasonal streamflow varies widely (719.5 to 2.76×108 L) and with no identified 

directional relationship between DIN or DON concentrations and discharge (i.e., diluting or 

enriching), N flux estimates into Lake Fryxell are primarily governed by variations in Qtotal from 

one season the next. We estimated that only ~17% of N imports are likely exported from the Von 

Guerard Stream corridor on an annual basis, although we could not account for losses via 
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denitrification. Scaled to stream corridor area, exports amount to a gross N release of 2.2–41.8 

mg N/m2 yr, resulting in a net increase in storage of 14.2–198.2 mg N/m2 yr. 

4.4.2 Estimates of periphyton biomass coverage by remote sensing 

Estimates of algal biomass and N stored therein were remarkably consistent between 

simple back-of-the-envelope estimates and those based on spectral analysis of satellite imagery 

(15% and 27% difference on the means and medians, respectively). Generally, modeled 

abundances show the greatest biomass in the stream channel, especially for orange mats (Figure 

4.4). Patchy black mats are known to occur throughout the landscape, especially where snow 

patches form each winter. However, the modeled presence of orange mats outside the channel is 

unexpected. This is most likely due to the presence of chlorophyll-bearing photosynthetic species 

present at small abundances throughout the landscape, either as mosses or disaggregated mat 

communities, that are contributing to weakly photosynthetic signatures in the surrounding soils 

(Adams et al. 2006). The spectral absorption of chlorophyll-a is most easily identified in 

multispectral satellite data in the absence of dark sunscreen pigments, which is likely why the 

unmixing model is indicating the presence of orange mat over black mat or other spectral 

signatures. The high abundance of orange mats within the stream corridor, in addition to the 

dominance of black mats along the stream margins, matches in situ observations (Alger 1997, 

McKnight et al. 1998, 1999) and previously published remote sensing results (Salvatore et al., 

2020, 2021 [in review]). 
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Figure 4.4. Modeled biomass and mat coverage from multispectral remote sensing data along 
Reach 6 of the Von Guerard Stream corridor. (A) Visible spectrum with corridor buffer ~10 m to 
either side of the thalweg, flow is from bottom to top. (B) Modeled biomass, (C) percent 
coverage by Nostoc-dominated “black” mats, and (D) percent coverage by Phormidium-
dominated “orange” mats from linear unmixing model applied to multispectral data. Scale and 
orientation are the same for all panels. 

4.4.3 Stream corridor N storage 

We found that relative to the seasonal import and export fluxes, large masses of N are 

physically and biologically stored along the stream corridor (Figure 4.5, Table S1). Across the 
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10,000 Monte Carlo simulations for each pool, we estimated that algal biomass contains 

approximately 297.2 kg N (mean), while multispectral imagery analysis resulted in a mean 

estimate of 349.7 kg N. The vast majority of Monte Carlo simulations (>70%) resulted in 

estimates wherein more than 90% of the total N stored in the stream corridor is found in the 

hyporheic zone. Organic matter in just the top 10 cm of sediment may account for approximately 

5051 kg N. Additionally, we estimate that the hyporheic zone likely stores on the order of 35.7 

kg N in sorbed NH4+ and 0.4 kg N in dissolved NO3–. We do not report standard deviations on 

these means as multiple pool estimates have highly skewed non-normal distributions resulting 

from the underlying distributions of field measurements. Table S4.1 in the supplemental 

information provides the mean, median, and first and third quartile values for each of the pool 

estimates that are depicted in Figure 4.5. Combining the mean estimate for each N pool and 

normalizing over the largest pool area (134,112.5 m2), we obtain total N storage estimates of 

about 40 g/m2. 

It is important to note that total N storage exceeds the mean annual flux of N at the outlet 

of Von Guerard Stream (Figure 4.5). The only exception is for N stored in dissolved NO3– in 

hyporheic waters, which is expected to be more transiently mobile and was of comparable size 

to, or slightly below, seasonal N fluxes. In total, mean annual imports and exports are less than 

0.5% and 0.1% of mean N storage in all pools, respectively.  

 
Figure 4.5. Estimates (A) annual N import fluxes, (B) storage pool sizes, and (C) annual export 
fluxes with uncertainty propagation through Monte Carlo simulations (n=10,000). The lower and 
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upper box boundaries correspond to the first and third quartiles while the inner horizontal line is 
the mean. Whiskers extend to 1.5 times the interquartile range above and below the first and 
third quartiles. Data beyond these ranges are denoted with light gray circles. 

4.4.4 Ammonium desorption in response to changing fluid conductivity 

Through a laboratory assay on stream sediment, we found that more K+ than Cl– was lost 

from solution with increasing concentrations (Figure 4.6A). For the two lowest concentration 

treatments, K+ and Cl– concentrations increased slightly, suggesting that some additional ions 

were mobilized from the sediment as they were wetted. Losses of K+ in the 77.1, 155.9, and 

317.6 μS/cm treatments were not matched by similar losses of Cl– despite comparable ionic 

masses. This result suggested that greater net cation but not anion exchange was occurring. The 

pattern is consistent with field observations of ion exchange during a previous tracer study in an 

MDV stream (Gooseff et al. 2004a).  

We also found that NH4+ sorbed to the sediment of Von Guerard Stream can be rapidly 

liberated into solution as fluid conductivities increase (Figure 4.6B–C). This relationship was 

fairly strong for each location (linear regressions gave adjusted R2 values from 0.44–0.89, p < 

0.005). We also found that differences in the net mass of NH4+ released normalized to sediment 

dry mass among sample sites was reflective of differences in the amount of total extractable 

NH4+. In other words, while the concentration of NH4+ stored by sorption varies laterally across 

the stream (Heindel et al. 2021a), similar proportions of total stored NH4+ are released for 

particular fluid conductivities (Figure 4.6B). We also observed a trend towards plateauing of K+ 

losses at higher concentrations (4.6A), which may indicate an upper limit to cation exchange 

and, potentially, NH4+ desorption (i.e., neither 100% of K+ was lost or NH4+ released) under 

reasonably representative SC values for Von Guerard Stream. 
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Figure 4.6. Changes in incubation solution ion concentrations and responses of sediment sorbed 
NH4+ to increasing fluid conductivity. (A) Changes in solution concentrations of Cl– and K+ 
(mean ± SE) by treatment conductivity. Assay treatment solution specific conductivity against 
(B) mean (± SE) net mass of desorbed NH4+ normalized to dry sediment mass and (C) mean (± 
SE) net percent of total extractable NH4+ desorbed. Treatment sample size is 5 for panel A and 
15 in panels B and C. 

4.4.5 Longitudinal attenuation of allochthonous N inputs  

Modeling results demonstrate that for the probable range of uptake rates, glacial inputs of 

NO3– at the head of an MDV stream are removed over very short distances (<500 m) regardless 

of USBC form (Figure 4.7). For all simulations, larger variations in concentration were modeled 

for slower uptake rates at each longitudinal location. In “moderate” uptake simulations, which 
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are based on the mean uptake coefficients from prior tracer studies, allochthonous NO3– 

concentrations reached or were near zero within 500 m. For uptake rates an order of magnitude 

larger (“fast” simulations), all allochthonous N was removed within the first 100 meters. Uptake 

rates that were one order of magnitude slower than the mean of prior estimates from in situ tracer 

studies, resulted in concentrations at 1000 m that were comparable to historic observations made 

much further downstream (Figure 4.7A-D). 
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Figure 4.7. Modeled NO3– concentration (mean ± SD) by longitudinal location for each reactive 
transport simulation. Simulations represent various boundary concentration-discharge typologies 
as (A) chemostatic, (B) enriching, (C) diluting, and (D) random. Observed NO3– concentrations 
are shown for reference by point and whiskers (mean ± SD) in each panel for glacial ice and 
historical grab samples at Von Guerard Stream gage located at a distance of 5 km. 
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4.5. Discussion 

4.5.1 High stream corridor storage of N relative to fluxes 

We found that, despite the uncertainty in field data and scaling values over large areas, 

there is likely substantially more N stored in biomass and the hyporheic zone than is exported 

from the stream corridor in any given flow season (Figure 4.5, S4.1). We estimated that mean 

annual import and export of N represents less than 0.5% of the N that is physically and 

biologically stored within the stream corridor. Our results reveal that relatively substantial N 

storage in the stream corridor can occur even without allochthonous POM inputs, which 

dominate stream corridor N storage in forested temperate catchments (Triska et al. 1984). At 

about 40 g/m2, the N storage rates we estimated for Von Guerard Stream are larger than the 12-

22 g/m2 estimated for headwater streams in temperate forests or the 3-9 g/m2 for a mid-latitude 

desert stream (Triska et al. 1984, Naiman and Melillo 1984, Grimm 1987). While we expected 

biomass to store the largest mass of N, given extensive benthic algal mat coverage (Alger 1997), 

we found that the majority (> 90%) of stored N is likely held in the hyporheic zone. 

It is possible that our mean estimates of N storage in Von Guerard Stream are inaccurate 

due to utilizing values from point-scale samples in the calculations. It is notable that even an 

order of magnitude reduction in total N mass stored would result in area normalized storage that 

is comparable to that of Sycamore Creek, AZ (Grimm 1987). Importantly, we constrained our 

estimates of N in hyporheic OM content – by far the largest N pool – to only the top 10 cm of 

sediment, although the active layer thaws to depths of up to 60 cm (Conovitz et al. 2006), such 

that we may have underestimated the size of this pool. Ultimately, our total N storage 

calculations would need to be reduced by approximately three to four orders of magnitude to 

equal the highest fluxes at the stream outlet. It is unlikely that the data from historic samples that 

we used are that unrepresentative of the overall system. In summary, despite uncertainty related 

to propagating point-scale measures to the entire reach, it is highly likely that substantial N 
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storage occurs relative to import and export fluxes in this hyper-arid, highly intermittent, polar 

desert stream.  

4.5.2 Rapid reversible sorption is an import mechanism for inorganic N storage 

Physicochemical storage of NH4+ by sorption to stream sediment represents a dynamic N 

storage process that can vary over both space and time in temperate systems while also 

competing with microbial N demand (Triska et al. 1994). Our relatively simple laboratory assay 

demonstrates that NH4+ sorption to MDV stream sediments is likely reversible over the range of 

fluid conductivities observed in Von Guerard Stream. Specifically, the net release of NH4+ into 

solution increases with increasing cation concentrations (K+ only in the assay; Figure 4.6). 

Similar sensitivity has been documented in coastal sediment at much higher fluid conductivities 

(Seitzinger et al. 1991), but remains generally understudied in small headwater streams. The 

exact kinetics of NH4+ desorption may vary in situ, but our results indicate that 20-40% of sorbed 

NH4+ can likely be released into solution rapidly (< 1 hr). As sorbed NH4+ content varies in space 

for MDV streams (Heindel et al. 2021a), channel expansion and contraction cycles with diel flow 

pulsing likely plays an important role in when and where such releases occur.  

MDV stream sediments modulate other cation fluxes (K+, Na+, and Li+) through 

concentration-dependent sorption and release in well-connected hyporheic zones (Gooseff et al. 

2004a). This is reflected in how fluid conductivities exhibit small fluctuations during diel flow 

pulsing and rise during sustained low flow periods (e.g., Figure 4.2A) due to evapoconcentration 

and hyporheic weathering (Maurice et al. 2002, Barrett et al. 2009, Singley et al. 2017). 

Extending our laboratory results, we conclude that it is probable that NH4+ sorption and 

desorption similarly varies over time in Von Guerard Stream. Interestingly, it is possible that the 

net direction of NH4+ sorption may shift over time, just as occurs for other cations. While we 

cannot conclude that this behavior occurs or the exact conditions that may control such shifts, 

our findings represent an interesting topic for future investigations into how physicochemical 

processes govern N availability in these oligotrophic and intermittent stream corridors.  
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4.5.3 Fluxes from internal pools sustain N availability 

Our modeling results suggest that regardless of upstream C-Q form and a wide range of 

uptake rates, N in glacial meltwater could be removed over relatively short longitudinal distances 

(Figure 4.7). Except for simulations with uptake rates that are an order of magnitude lower than 

direct observations (Gooseff et al. 2004b, McKnight et al. 2004), concentrations at 1 km are 

already lower than historic observations collected at 5 km.  

From these results, we conclude that there must be an additional source flux of DIN along 

the stream corridor to explain consistent observations of measurable DIN made much farther 

downstream (4 km beyond model boundary). Without substantial hydrologic connectivity to 

adjacent hillslopes or groundwater (Gooseff et al. 2016), the most likely source of this flux is 

through widely distributed N-fixing Nostoc (black) algal mats and remineralization of stored 

OM, especially in the hyporheic zone (Singley et al. 2021a). This conclusion aligns with stable N 

isotope analysis showing a shift from a predominance of glacially-sourced N in the upper reaches 

to autochthonously-sourced N in the lower reaches of MDV streams (Kohler et al. 2018). While 

our flux estimates agree with prior characterization of MDV streams as net N sinks (e.g., Gooseff 

et al. 2004b, McKnight et al. 2004, Dubnick et al. 2017), this simple modeling exercise suggests 

that much more complicated spiraling of OM an N governs N availability rather simply removal 

from stream water along the entire reach.  

Our N pool estimates indicate that there is a sufficiently large pool of N stored in the 

hyporheic zone to help maintain DIN sourcing from the hyporheic zone even during extended 

periods (or whole seasons) when streamflow pulses are not large enough to mobilize POM. The 

same is likely true for sorbed NH4+ as low flow periods result in rising fluid conductivities 

(Figure 4.2A), potentially driving releases of physically stored N (Figure 4.6) when POM import 

to the hyporheic zone ceases. We would expect that the relative stability of each of these N pools 

plays an important role in governing N availability. Diel flow pulses in MDV streams mobilize 

POM, especially from Nostoc-dominated mats, resulting in a transfer of autochthonous OM and 

N into the hyporheic zone (Cullis et al. 2014, Heindel et al. 2021a). Remineralization of this OM 
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is thought to sustain elevated DIN concentrations in hyporheic water even as flow fluctuates 

(Singley et al. 2021a). In quantifying the extent of this hyporheic OM pool, we show that it does 

not need to be continually replenished to allow for DIN production by remineralization. Thus, 

this dynamic physical retention and release of OM and NH4+ in the hyporheic zone likely plays a 

critical role in sustaining N availability and downstream productivity in this highly oligotrophic 

system, especially at distances from the source glacier greater than 500–1000 m.  

There are, of course, a number of assumptions underlying our simulations which preclude 

our results from representing the exact behavior of any particular MDV stream. First, mat 

coverage varies longitudinally and amongst streams (Alger 1997, McKnight et al. 1998), which 

would impact uptake rates and the distance over which allochthonous DIN signals diminish. 

However, mat coverage can now be modeled for specific stream corridors in the MDVs based on 

multi-spectral remote sensing data. Secondly, we include only NO3– removal processes, although 

there is evidence for NO3– production and release from the hyporheic zone due to 

remineralization (Kohler et al. 2018, Singley et al. 2021a). Such production would allow 

glacially-sourced N signals (both isotopic signatures and concentrations) to propagate further 

downstream than shown in our results. There has been insufficient quantification of DON 

concentration dynamics to determine the importance of DON production, uptake, and 

transformation along the stream, but there is evidence that it is not simply transported 

conservatively (Howard-Williams et al. 1989). Regardless of the limitations, our approach using 

uptake rates spanning two orders of magnitude and all USBC forms explores the widest range of 

plausible system behaviors. Through this approach we show that rapid attenuation of glacially-

derived DIN inputs in MDV streams is highly likely even with widely variable diel flow pulses.  

4.5.4 Implications for studies of intermittent streams in the MDVs and beyond 

A few major knowledge gaps must be addressed to better constrain the longitudinal 

evolution of dominant N sources and actually close N budgets in MDV streams. Foremost is the 

need to document upstream boundary conditions for N inputs – including C-Q typology, DIN 
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and DON concentrations, and meltwater hydrographs at the glacier face. Quantifying 

spatiotemporal variation of N fixation rates would further limit uncertainty surrounding N inputs. 

There is also a need to better quantify N export dynamics for DON and POM, not just DIN. At 

present, none of the specific reaction rates linking these N pools (i.e., hyporheic OM 

mineralization, nitrification, POM entrainment, NH4+ sorption/desorption, etc.) have been 

determined in situ. Thus, our findings raise questions about how stream corridor N pools change 

over time such as: When does each pool act as a source or sink? Does this behavior change 

within and between seasons? Which pools are most sensitive to changes in streamflow, water 

temperature, and microbial activity that may occur with climate change? What is the importance 

of N in hyporheic OM pools to the recovery of periphyton following massive disturbance from 

large flow years (e.g. 2001-2002, Gooseff et al. 2017)? How common is reversible sorption of 

NH4+ in other intermittent streams? Resolving how N pools change over time is critical for 

explaining how and why streams regulation of N fluxes varies over time, rather than only during 

narrow discrete periods (i.e., nutrient addition studies). 

Beyond these questions, our study also extends the work of Salvatore (2020; 2021 [in 

review]) in demonstrating the potential to map and quantify biomass of benthic algae, and the 

nutrients stored therein, in intermittent and ephemeral streams using multispectral remote sensing 

imagery. For alpine, arid, and polar environments without canopy cover obscuring the 

streambed, this method provides a promising means for characterizing spatial and temporal 

heterogeneity when flow is reduced or ceases altogether. A few studies have used various remote 

sensing platforms to map intermittent stream networks (Yang and Smith 2013, Spence and 

Mengistu 2016, Hamada et al. 2016), but little has been done to leverage such imaging to 

analyze exposed periphyton along the stream corridor when flow ceases and, to our knowledge, 

none have attempted to quantify nutrient storage over large areas. The use of spectral libraries 

based on the particular system of interest offers an intriguing means to provide more nuanced 

characterization of biotic communities than, say, simply detecting biomass in aggregate. 

Applying such tools will advance investigations into the processes governing patchy and 
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temporally variable ecosystem production, carbon and nutrient storage, and ecological responses 

to disturbance in intermittent streams.  

More broadly, the results of our study taken together demonstrate that progress in our 

understanding of stream biogeochemistry may occur by more closely examining stream corridor 

N storage in the context of flux modulation at the reach scale, especially beyond perennial 

streams in forested temperate catchments. We have highlighted the utility of relatively simple 

scaling calculations with uncertainty propagation that serves as an initial approach for future 

studies in more complex systems. By applying this approach to MDV streams, we have 

illuminated the surprising magnitude of N storage over large regions in systems that appear 

starved for N.  

4.6. Conclusions 

In this study we leveraged historic point-scale sampling, remote sensing analysis, 

numerical modeling and a laboratory assay to demonstrate that N storage can be surprisingly 

high compared to observed fluxes in an intermittent Antarctic stream corridor. We uniquely scale 

biological and physical N storage over the entire stream corridor scale (> 100,000 m2) to 

contextualize the importance of N storage at the system rather than centimeter scale. We find that 

even without significant allochthonous N inputs, N storage, especially in the hyporheic zone, can 

be comparable (or potentially higher) than has been reported for temperate forested systems. We 

also demonstrate that, despite generally being ignored outside of tracer addition studies, NH4+ 

sorption to stream sediment may be an important transient physicochemical storage mechanism 

that responds to short-term fluctuations in streamflow and governs the mobility of inorganic N. 

Altogether, this work illustrates the importance of quantifying N storage within stream corridors 

to understand the importance of internal cycling and retention in modulating and sustaining the 

availability of N in dissolved, mobile forms.  
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Chapter V 

Stream Corridor Processes Sustain Chemostasis of Weathering Solutes 

and Primary Nutrients in Antarctic Streams 

5.1. Introduction 

Analysis of concentration-discharge (C-Q) relationships has been widely applied across 

many solutes and systems to infer integrated catchment-scale hydrological and biogeochemical 

processes (e.g., Anderson et al., 1997; Chorover et al., 2017; Godsey et al., 2009, 2019; Rice et 

al., 2004). Most studies have focused on C-Q pattern classification or event-scale hysteretic form 

(Evans & Davies, 1998; Fazekas et al., 2020; Godsey et al., 2019). The causes of variability 

within long-term C-Q relationships for particular sites and solutes have received less attention 

(Knapp et al., 2020; Thompson et al., 2011) or are often ignored altogether as “noise” within the 

data. Stream corridor biogeochemical processes are widely acknowledged modulators of 

observed solute concentrations (Bernhardt et al., 2005; Duncan et al., 2015; Harvey & Gooseff, 

2015; Peterson et al., 2001), but are rarely invoked in explanations of either the form or 

variability within long-term C-Q relationships because isolating their influence remains difficult. 

The form and variability in C-Q relationships typically explained by hillslope controls on 

hysteretic patterns through mixing or hydrochemical non-stationarity of source waters (Chanat et 

al., 2002; Evans & Davies, 1998; Knapp et al., 2020; McDonnell et al., 1990; Pilgrim et al., 

1979). Such catchment-focused studies have shown that for a particular location, land cover, 

lithology, and climate determine both the mean concentrations and variations in C-Q form across 

catchments (Fazekas et al., 2020; Godsey et al., 2019).  

Similar catchment-centric explanations are invoked to explain chemostasis, in which 

concentrations remain relatively stable over large fluctuations in discharge (Clow & Mast, 2010; 

Godsey et al., 2009; Thompson et al., 2011). Chemostasis of geogenic solutes has nearly always, 

heretofore, been attributed to either large terrestrial source pool reservoirs or mobilization of 

relatively “old” subsurface water that has reached chemical equilibrium within the landscape 

(Clow & Mast, 2010; Godsey et al., 2009; Kirchner, 2003; Thompson et al., 2011). Chemostasis 
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of primary nutrients, such as nitrogen (N), has been narrowly reported in systems with large 

legacy stores from fertilizer additions (Basu et al., 2010; Marinos et al., 2020). Apart from 

Thompson et al. (2011), studies of chemostasis rarely discuss the ubiquity of variability within 

the general C-Q pattern (i.e., residuals from the general trend) at a particular site rather than 

spatially throughout networks.  

While a small number of studies have considered how biogeochemical processing and 

network connectivity stabilize C-Q patterns for carbon (C) and N (e.g., Creed et al., 2015; 

Marinos et al., 2020), or may alter the slope or breakpoints in C-Q relationships (Moatar et al., 

2017), many investigations have ignored stream corridor biogeochemical processes as a potential 

control of C-Q relationship form and variability. Yet, streams are recognized as strong 

modulators of primary nutrient concentrations, especially for N (Alexander et al., 2009; Harvey 

et al., 2018; Mulholland, 2004; Peterson et al., 2001). The general form of C-Q patterns (both 

event-hysteresis and long-term) may be primarily governed by catchment hydro-biogeochemistry 

in most systems, but signals from stream corridor biogeochemical activity will further modulate 

these underlying patterns for some solutes. This influence may be particularly important to long-

term C-Q analysis as biogeochemical processes within stream corridors vary considerably over 

time (Hoellein et al., 2013; Martí & Sabater, 1996; Savoy et al., 2019). The effects of such 

temporal variations have been analyzed in terms of alteration of seasonal fluxes (Bernhardt et al., 

2005; Mulholland, 2004), but not explicitly in terms of C-Q variability. Temporal changes in 

stream-corridor biogeochemical kinetics are not solely controlled by seasonal Q patterns 

(Matheson et al., 2012; Rusjan & Mikoš, 2010; Seybold & McGlynn, 2018) or may even differ 

among solutes in the same stream (Simon et al., 2005). Therefore, ignoring time variable stream 

corridor processes may over attribute variations in C-Q patterns to catchment processes alone. To 

our knowledge, no study has isolated solute specific differences in long-term C-Q form and 

variability due to stream corridor biogeochemical processes.  

Here, we leverage the relative simplicity of ephemeral proglacial streams in the 

McMurdo Dry Valleys (MDVs), Antarctica, to isolate stream corridor controls on C-Q form and 
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variability across a range of solutes. Streamflow in the MDVs varies by orders of magnitude on 

the timescale of hours with diel glacial meltwater pulses and frequent periods of intermittency 

(Wlostowski et al., 2016). Due to a hyper-arid climate and the presence of continuous 

permafrost, MDV streams are hydrologically disconnected from adjacent hillslopes and 

associated solute pools therein (Bockheim et al., 2007; Conovitz et al., 2006; Fountain et al., 

2010; Gooseff et al., 2016). Consequently, most solute concentrations are controlled by 

processes occurring in the main channel and well-connected hyporheic zones (Gooseff et al., 

2002, 2016; Green et al., 1988; Lyons et al., 2021; Wlostowski et al., 2018). Wlostowski et al. 

(2018) demonstrated that due to rapid chemical equilibrium in hyporheic waters, MDV stream 

corridors can maintain chemostasis of geogenic solutes (i.e., silica, potassium, calcium, and 

bicarbonate).  

Whether similar patterns exist for other solutes, especially primary nutrients (C, N, P) 

that are controlled by coupled physical and biological processes, remains an open question. 

Large portions of MDV streambeds are covered by cyanobacterial mats that persist in a freeze-

dried state throughout much of the year and reactivate quickly upon rewetting (Kohler et al., 

2015; McKnight et al., 1999, 2007). These mats, along with heterotrophic microbial 

communities in hyporheic sediment, strongly drive autochthonous organic matter (OM) and 

primary nutrient cycling (Gooseff et al., 2004; Koch et al., 2010; Kohler et al., 2018; McKnight 

et al., 2004). In this highly oligotrophic system, biotic demand exerts a strong influence on the 

stoichiometric ratio of primary nutrients (Barret et al., 2007). Compared to annual fluxes, MDV 

stream corridors can store relatively large N and OM pools (Chapter IV) and P is readily released 

by apatite weathering (Green et al., 1988; Heindel et al., 2018), but it has not been determined 

whether the reactions governing release from these pools are sufficiently rapid to sustain 

chemostasis. 

In this study, we investigate the role of stream corridor processes in driving C-Q 

relationship form and variability for both geogenic solutes and primary nutrients, that are largely 

independent of hillslope influences. We hypothesize that:  
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H1: Unlike geogenic solutes, the production and mobilization of solutes dependent on 

autochthonous organic matter cycling in stream corridors will be reaction limited due to 

relatively slower biotic process rates. Consequently, we predict that despite relatively large 

source pools within MDV stream corridors, C-Q patterns for primary nutrients will be 

characterized by dilution.  

H2: Stream corridor biological processes are likely to exhibit greater spatial and 

temporal variability than weathering reactions of broadly distributed mineral substrate. 

Therefore, we predict that stream corridors will impart larger variability into C-Q patterns for 

primary nutrients than geogenic solutes that are only minimally influenced by biota. Secondly, 

we predict that variations in C not controlled by Q will be correlated with primary drivers of 

biological activity including light, temperature, and antecedent flow conditions. 

To evaluate these hypotheses and the resulting predictions, we analyze historic (1994-

2018) C-Q form and variability for six solutes in ten MDV streams with varying flow 

characteristics. We also assess C-Q variability against concurrent environmental data (water 

temperature and light), antecedent flow metrics, and stream characteristics. The selected solutes 

range from those for which concentrations are most strongly influenced by physical processes 

alone (i.e., chloride and silica) to those governed by coupled physical and biological processes 

(i.e., dissolved organic carbon, ammonium, and nitrate). While dissolved P, represents an 

intermediate case as a primary nutrient sourced from mineral weathering. 

5.2. Study System Background 

The MDVs are a large, relatively ice-free polar desert landscape characterized by 

unvegetated expanses of glacial till and very little precipitation (10-50 mm water equivalent per 

year; Fountain et al., 2010; Levy, 2013). Stream gage maintenance and operation is notably 

challenging in such a hydrodynamic, cold, and arid landscape (Chinn & Mason, 2016), and 

weather often prevents regular site visits. Thus, we selected ten streams in Taylor Valley (Figure 

5.1) gauged by the McMurdo Dry Valleys Long-Term Ecological Research (MCM LTER) 
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project based on the number of historic surface water grab samples, duration and quality of their 

gaging record (≥ 15 years), and representative variability in stream length and flow intermittence 

(Table 5.1). 

 
 

Figure 5.1. Study stream locations within Taylor Valley, Antarctica. Points denote gage 
locations. 
 
Table 5.1. Study stream characteristics and historic record details.  
 

Stream Name Length to 
Gage 

(km) 

Record 
Duration1 

Grab 
Samples  

(n) 

Median2 
Q 

(L s–1) 

Seasonal 
Flashiness3 

(mean±sd) 

MFMTT4 

(days) 

Andersen  1.4 1994-2018 138 7.5 0.57±0.17 – 

Canada  0.7 1994-2018 194 8.6 0.43±0.07 3.95 

Commonwealth 0.7 1994-2018 113 15.2 0.44±0.08 2.04 

Crescent  5.5 1994-2018 112 5.9 0.58±0.18 48.83 

Delta  7.5 1994-2018 121 3.3 0.67±0.27 105.82 

Green  0.7 1994-2018 180 12.2 0.46±0.11 3.69 

Harnish 5.7 2002-2017 57 2.1 0.69±0.32 – 

Lost Seal 2.0 1994-2018 139 11.1 0.58±0.14 10.21 

Priscu 2.3 1994-2011 85 9.0 0.50±0.12 – 

Von Guerard 4.7 1994-2018 107 3.7 0.62±0.18 54.13 
1Seasons are indicated by the year in which flow ends (i.e., 2006 denotes the 2005-2006 Austral summer) 
2Calculated for non-zero flows only over entire record 
3Mean of seasonal Richards-Baker Index (Baker et al., 2004) based on daily Q volumes 
4Median flow mean transit time (Wlostowski et al., 2018) 
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We matched historic surface water grab sample data (Lyons, 2021a-b; Lyons & Welch, 

2021) with 15-minute Q data (Gooseff & McKnight, 2021a-j) from the 1994-2018 Austral 

summer streamflow seasons for the 10 selected streams. For each grab sample, we utilized data 

for chloride (Cl–), silica (Si), soluble reactive phosphorus (SRP), dissolved organic carbon 

(DOC), ammonium (NH4+), and nitrate (NO3–). Detailed sampling, handling, and analytic 

procedures are provided in the grab sample metadata (Lyons, 2021a-b; Lyons & Welch, 2021). 

To minimize the influence of contaminated samples or analytic errors, we removed outliers with 

concentrations more than 1.5 times the interquartile range above or below the first and third 

quartiles for a given stream and solute. Outliers represented only 0.0–9.2% (median = 1.0%) of 

the reported data for each solute and stream.  

The stream corridor cycles influencing the selected solutes span a continuum of 

complexity ranging from only a few physical processes (i.e., mineral weathering or atmospheric 

deposition) to numerous biological processes (Figure 5.2). Here, we provide an overview of 

which source and sink processes influence each solute, as well as a qualitative assessment of 

their relative importance. Of the solutes we consider, Cl– has the simplest of cycles, at least in 

terms of the number of coupled processes and lack of biological influence. Deposition of marine 

aerosols represents the dominant flux of Cl– into the system, while salt crust precipitation and 

dissolution along stream margins primarily contribute to observed stream water Cl– patterns 

(Keys & Williams, 1981; Welch et al., 2010; Witherow et al., 2006). 
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Figure 5.2. Conceptual depiction of MDV stream corridor characteristics and summary of the 
physical and biogeochemical source and sink processes controlling cycling of selected solutes (N 
species lumped). Supporting studies are cited in the main text.  

Dissolved Si concentrations are similarly controlled predominantly by physical processes 

in MDV stream corridors. Aluminosilicate mineral weathering occurs in the hyporheic zone 

(Lyons et al., 2021; Maurice et al., 2002) resulting in longitudinal increases in Si concentrations 

(Gooseff et al., 2002). Wlostowski et al. (2018) determined that timescales for chemical 

equilibrium associated with mineral weathering are relatively fast compared to transit times, 

resulting in Si chemostasis. In addition to primary mineral weathering, some Si cycling occurs 

through biological uptake by diatoms, precipitation and dissolution associated with freeze-thaw 

cycles, and chemical equilibrium with secondary mineral Si products that occur relatively 

homogenously throughout the hyporheic zone (Hirst et al., 2020). Intact and fragmented diatom 

frustules have been observed in hyporheic sediment (Heindel et al., 2021), suggesting that 

weathering of biogenic Si could also be a minor influence on observed concentrations.  

Dissolved phosphorus is dominantly sourced from mineral weathering of apatite (Green 

et al., 1988; Heindel et al., 2018), resulting in relatively elevated SRP concentrations in 

hyporheic water (McKnight et al., 2004). While aeolian transport deposits sediment on glaciers, 
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SRP is typically undetectable in supraglacial streams and ice cores (Bergstrom et al., publication 

pending), but can be elevated in cryoconite holes (Bagshaw et al., 2013). Combined with 

physical and biological removal of SRP in supraglacial sediment deposits (Bergstrom et al., 

2020), the glacial inputs of SRP at the head of proglacial streams appears to be relatively minor 

most of the time. In the stream corridor, added SRP is removed rapidly in the main channel by 

algal mats (McKnight et al., 2004). The release of SRP by organic matter remineralization has 

not been specifically quantified, but is likely, given the retention of algal mat particulate organic 

matter (POM) in the hyporheic zone (Heindel et al., 2021) and indications of subsequent 

remineralization (Kohler et al., 2018; Singley et al., 2021). Even with these biological influences, 

SRP concentrations, especially in lower Taylor Valley, are likely predominantly controlled by 

mineral weathering in the hyporheic zone. 

In contrast, DOC and N cycling involve many more complexly coupled biological and 

physical processes. Active biota exist in cryoconite holes and supraglacial streams (Bagshaw et 

al., 2011, 2013; Bergstrom et al., 2020), yet organic matter export from glaciers tends to be 

relatively small, although not zero (Bagshaw et al., 2013; Howard-Williams et al., 1989). 

Atmospheric deposition of NO3– is important on source glaciers (Witherow et al., 2006) and 

supraglacial streams do have the potential to modulate fluxes prior to meltwater reaching the 

head of proglacial streams (Bergstrom et al., 2020; Fortner et al., 2005). Dissolved inorganic 

nitrogen (DIN) concentrations observed at stream gages are often about equal to those in glacial 

ice, but N stable isotope data indicate that glacially sourced N is supplanted by N fixed by algal 

mats along the length of MDV streams (Kohler et al., 2018). Autotrophic production by benthic 

algal mats represents the largest C flux into MDV streams, but net productivity remains near zero 

for many mats (Hawes & Howard-Williams, 1998). The spiraling of autochthonous C and N is 

reliant upon mobilization of DON or POM from algal mats in response to flow pulses (Cullis et 

al., 2014), transport of this material into the hyporheic zone (Heindel et al., 2021) and subsequent 

remineralization and nitrification, which results in elevated DIN concentrations in hyporheic 

water (Singley et al., 2021). Uptake of DIN by benthic algal mats act as a strong sink in the main 
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channel (Gooseff et al., 2004; McKnight et al., 2004) and likely quickly depletes elevated DIN 

concentrations associated with hyporheic exchange flows (Singley et al., 2021). Additionally, 

NH4+ is subject to reversible sorption to hyporheic sediment, which may represent an important 

physical source and sink in the hyporheic zone (Chapter IV). Compared to the other solutes we 

consider, C and N are much more strongly influenced by heterotrophic and autotrophic processes 

that are coupled to physical drivers of transport and storage.  

5.3. Analysis of Concentration-Discharge Relationships 

Using the paired C and Q data, we fit power-law relationships (C = aQb) to quantitively 

characterize C-Q relationships as diluting (b < –0.2), chemostatic  (|b| < 0.2), or enriching (b > 

0.2; Godsey et al., 2009). We then calculated coefficients of variations (CV = σ/μ, where σ is the 

standard deviations and μ is the mean of samples) for both Q and individual solute 

concentrations. We analyzed long-term, system-wide differences in CVC/CVQ by solute using 

pairwise Mann-Whitney U tests. We assessed the stability of C-Q patterns over time by 

calculating CVC/CVQ values and power-law fits using an overlapping 5-year sliding window 

approach over the entire period of record for each stream and solute. A 5-year moving window 

was selected to overcome limitations from low sample numbers in particular seasons due to the 

difficulty in regularly accessing sites and frequent periods of flow cessation. 

To identify potential drivers of variability within chemostatic patterns, we analyzed 

relationships between observed C and light, water temperature, and Q metrics. We paired grab 

sample data with 15 minute photosynthetically active radiation (PAR) data from the Lake Fryxell 

met station (Doran & Fountain, 2019) as well as concurrent water temperature data from each 

stream gage (Gooseff & McKnight, 2021a-j). We characterized short-term changes in Q as the 

average dQ/dt (n=4) for the hour preceding each grab sample. To assess the influence of Q over 

longer-timescales on C variations, we also calculated the cumulative flow (SQ) over the prior 12, 

24, and 48 hours and the for the entire season to the time of sample collection. As the selected 

streams differ dramatically in their geomorphic and hydrologic characteristics, we also compared 
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CVC/CVQ values to stream length to gage, flashiness (sensu Baker et al., 2004), and median flow 

mean transit time (MFMTT; Wlostowski et al., 2018). We visually inspected the relationships 

between each of these metrics and solute concentrations for each stream and fit linear 

relationships for each case. 

5.4. Results 

Despite the highly dynamic nature of MDV streams and limited hillslope interaction, 

both weathering solutes and primary nutrient data indicate that chemostasis is remarkably 

ubiquitous and persists over decades (Figures 5.3-5.4). All C-Q relationships had a log-log slope 

parameter close to zero (Figure 5.5), while CVC/CVQ values ranged from 0.07–0.64. Regardless 

of solute or stream, the C-Q relationships satisfy definitions of chemostasis (i.e., |b| < 0.20 and 

CVC/CVQ < 1; Godsey et al., 2009; Thompson et al., 2011). The only case in which this 

definition may not be met is for NO3– in Priscu Stream (b = 0.23±0.06, CVC/CVQ = 0.35), largely 

due to higher concentration variability at low flows. We also found that chemostatic means (or 

“set points”, sensu Godsey et al., 2019) varied both among solutes for particular streams and 

across streams for each solute. Generally, Cl– and Si concentrations were the highest, followed 

by DOC while concentrations of DIN species and SRP were lower, but set points varied by a few 

orders of magnitude amongst streams.  
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Figure 5.3. Historic C-Q relationships by solute for Andersen Creek, Canada Stream, 
Commonwealth Stream, Crescent Stream, and Delta Stream.  

 
Figure 5.4. Historic C-Q relationships by solute for Green Creek, Lost Seal Stream, Priscu 
Stream, and Von Guerard Stream. Note that Priscu Stream discharge data ended in 2011 due to 
lake level rise.  
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Figure 5.5. Log-log slopes of fitted C-Q relationships (±SE) for each solute by stream over the 
entire period of record. Dashed lines at ±0.2 indicate the quantitative boundary used to define 
chemostasis.  

The ratio of coefficients of variation exhibited consistent patterns across the long-term 

record for the 10 streams we studied (Figure 5.6). In particular, CVC/CVQ was significantly 

lower for Si relative to all other solutes (p < 0.05, Mann-Whitney U). Variability of Cl–, SRP, 

and DOC were not statistically different (p > 0.35), while at the other end of the continuum, the 

relative variability of NO3– was greater than for all other solutes (p < 0.028), except in 

comparison to NH4+ (p = 0.68). Full pairwise statistical test results are provided in Table S5.1. 
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Figure 5.6. Ratio of coefficients of variation by solute across the 10 study streams for all historic 
data. Lowercase letters denote statistically significant differences among groups (p < 0.05, 
pairwise Mann-Whitney U test). 

The observed trend towards higher CVC/CVQ among primary nutrients (especially DIN 

species) than less biologically active geogenic solutes (i.e., Cl and Si) generally held for 

narrower temporal windows in each stream as well (Figure 5.7). However, five-year moving 

averages of CVC/CVQ were generally more variable than when aggregated over decades. 

Notably, some longer streams (i.e., Crescent, Delta, Harnish, and Von Guerard) also exhibited 

larger ranges of CVC/CVQ for NH4+ and NO3– over time. Andersen Creek, which has very little 

mat coverage and flows closely along the edge of Canada Glacier, exhibited the least structure in 

CVC/CVQ among solutes.  
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Figure 5.7. Ratio of coefficients of variation from five-year moving window analysis across the 
historic record for each stream and solute.  

Surprisingly, we found that variability within chemostatic relationships was not strongly 

related to canonical drivers of chemical and biological reactions such as water temperature or 

PAR, even for nutrients (Figures 5.8 and S5.1-9). Concentration variations did not exhibit 

relationships with cumulative discharge over the prior 12, 24, and 48 hours or the entire flow 

season to the time of sample collection. Nor did we find that variations in concentration were 

controlled by dQ/dt at the time of sample collection. Of the 420 combinations of environmental 

variables and solutes across the 10 streams, only 117 relationships exhibited a significant linear 

relationship (p < 0.05), but only 44.4% of those had p-values < 0.01. For linear relationships with 

p < 0.05, we found the mean adjusted R2 was fairly low at 0.10 ± 0.06, while maximum was only 

0.32. An example of these generally weak relationships is shown for Canada Stream (Figure 5.9), 

which had the largest number of grab samples. The same information for all other streams is 

provided in Figures S5.1-9. The only discernable pattern other than weak linear relationships is 

an apparent collapse of concentration variability (especially for Si and Cl–) for samples collected 

at times with larger prior cumulative flows, particularly over shorter preceding window widths 

(i.e., 12 hours). As the collapse tends towards the mean concentration, it is not possible to 

determine whether this is merely an artifact of relatively sparse sampling at higher value or 

actual behavior of the system. 
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Figure 5.8. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC).   

We found that few differences in CVC/CVQ among streams were explained by stream 

length, MFMTT, or mean seasonal flashiness (Figure 5.9). As reported by Wlostowski et al. 

(2018), stream length and MFMTT were negatively correlated to Si CVC/CVQ. In contrast, we 

found that CVC/CVQ for SRP, NH4+ and NO3– increased with stream length, although these 

relationships were not very strong (adjusted R2 < 0.33). Neither DOC nor Cl– CVC/CVQ were 

related to stream length. MFMTT was only significantly correlated to Si CVC/CVQ and 

flashiness was only weakly positively correlated to NO3– CVC/CVQ.  
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Figure 5.9. Solute CVC/CVQ by stream length, median flow mean transit time (MFMTT), 

and mean seasonal Richards-Baker flashiness index. Adjusted R2 and linear fit lines are only 

shown for relationships with p < 0.10.  

5.5. Discussion 

5.5.1 What Causes Nutrient Chemostasis in MDV Streams? 

Contrary to H1, we found that chemostasis is remarkably ubiquitous and temporally 

persistent among all solutes, even primary nutrients (Figures 5.3–5). Prior studies have 

demonstrated that little to no catchment processes are necessary to bring about and maintain 

chemostasis of geogenic solutes due to hyporheic weathering in this system (Lyons et al., 2021; 

Wlostowski et al., 2018). Our findings uniquely demonstrate that chemostasis can also be 

established and sustained by stream corridor processes for nutrients in a highly oligotrophic 

system with rapid changes in flow.  

In temperate systems, chemostasis is most commonly attributed to large, distributed pools 

of weathering products, mobilization of “old water” or legacy nutrients from fertilizer 

applications (Clow & Mast, 2010; Godsey et al., 2009; Marinos et al., 2020; Thompson et al., 

2011). Yet, such explanations are unsuitable for MDV streams. Without substantial hydrologic 

connectivity to hillslopes (Gooseff et al., 2016), stream solute concentrations above those in 
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relatively dilute glacial meltwater (Bagshaw et al., 2013; Fortner et al., 2005; Fortner & Lyons, 

2018) must be primarily sourced from the hyporheic and parafluvial zones (Gooseff et al., 2002). 

Wlostowski (et al., 2018) explained chemostasis of weathering solutes in MDV streams in terms 

of chemical equilibrium timescales that are relatively fast compared to transit times in the 

hyporheic zone. While this explanation may similarly apply to SRP through apatite weathering 

(Green et al., 1988; Heindel et al., 2018), it does not immediately explain chemostasis of solutes 

without a geogenic source (i.e., DOC and DIN). Rather, it is likely that the mobilization and 

remineralization of autochthonous organic matter sustains fluxes from source pools within the 

hyporheic zone (Heindel et al., 2021; Singley et al., 2021; Chapter IV). It is notable that storage 

in the stream corridor does not occur predominantly in dissolved, readily mobile forms (Chapter 

IV). This requires that remineralization processes also be (at least transiently) equal to or faster 

than exchange timescales and occur over sufficiently large, well-connected hyporheic volumes to 

prevent shifts towards dilution at higher flows. For DIN species, chemostasis may be further 

sustained by temporary storage and release of NH4+ through reversible sorption to hyporheic 

sediment (Chapter IV). Thus, chemostasis of nutrients in MDV streams is distinctive in that it (1) 

does not require anthropogenically enlarged nutrient pools, (2) emerges principally from stream 

corridor processes, and (3) implies dynamic biogeochemical processing to permit mobilization of 

solutes in dissolved form.  

5.5.2 How and Why does Chemostatic Variability Differ Among Solutes? 

Our analysis also demonstrated that variability within chemostatic relationships exhibits 

system-wide structure by solute over a range of timescales (Figures 5.6 and 5.7). Specifically, Si 

exhibited the least variability while Cl–, SRP, and DOC had intermediate variability and DIN 

species were the most variable. In temperate and tropical experimental watersheds, larger source 

pools and export loads stabilize C-Q relationships, resulting in decreased CVC/CVQ values for 

some solutes (Thompson et al., 2011). Although this pattern exists for a few pairwise 

comparisons in this study (i.e., Si vs NO3–), it does not generally hold for MDV streams. In 
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particular, this explanation is refuted by the statistical similarity of CVC/CVQ values for Cl- and 

SRP (Figure 5.6), despite their having chemostatic set points and export fluxes that differ by 

three to four orders of magnitude (Figures 5.3–4). Therefore, the system-wide structure of 

CVC/CVQ in MDV streams is not simply a function of total solute export. 

As predicted by H2, we instead found that solutes subject to greater control by biological 

processes, especially DIN species, exhibit more variability within chemostatic relationships than 

Si (Figure 5.6) This pattern holds over time, particularly in longer streams (Figure 5.7). We 

conclude that even when all solutes are sourced from a far more constrained area (i.e., the stream 

corridor), more variability will emerge in chemostasis due to biological processes. Of course, the 

temporal changes in biotic processes driving this “noise” may occur contemporaneously with 

changes in discharge, but persistent directional correlations would result in structured deviations 

from a C-Q slope near zero, which we do not observe. In other systems, OM mineralization, 

autotrophic assimilation (of C, N, and P), nitrification, denitrification, gross primary production, 

and ecosystem respiration have all been shown to exhibit large, multi-scale temporal variation 

that is controlled by environmental variables such as PAR or temperature, rather than discharge 

(Griffiths & Tiegs, 2016; Heffernan & Cohen, 2010; Hoellein et al., 2013; Matheson et al., 2012; 

Rusjan & Mikoš, 2010; Seybold & McGlynn, 2018; Warwick, 1986). The relationship between 

discharge and temporal variations in biological process kinetics can be further obscured through 

interactive control by multiple environmental variables (e.g., both light and temperature; Huryn 

et al., 2014) or lagged coupling between processes (e.g., autotrophic organic matter exudation 

and denitrification; Heffernan & Cohen, 2010).  

It is probable that temporal variations in net reaction rates would contribute to 

concentration variations in MDV streams, especially given the rapidly changing environmental 

conditions as well as prior evidence that stream biota respond to rewetting within hours, even 

after decades of desiccation (McKnight et al., 2007). In contrast to secondary predictions related 

to H2, observed concentration variations for particular streams and solutes were not well 

explained by antecedent flow conditions, instantaneous rates of change in discharge, water 
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temperature, or PAR (Figures 5.9 and S5.1-9). This certainly does not indicate that these 

variables do not drive changes in biogeochemical cycling, but more likely the magnitude of 

process rate changes and the response timescale of those changes to environmental drivers 

differs among individual processes. For instance, autotrophic assimilation capacity for NO3– by 

benthic algal mats may respond strongly and rapidly to large diel fluctuations in streamflow, 

while nitrification in continuously wetted, thermally buffered hyporheic and parafluvial zones 

may be more stable throughout daily pulses. Consequently, surface water concentrations at a 

particular time and location will reflect resulting fluctuations in the net sum of source and sink 

processes, but may not necessarily exhibit simple relationships to concurrent or antecedent 

conditions as the number of processes being integrated increases. As these processes are 

chemically and physically interlinked, increasing the number of coupled processes is not 

equivalent to summing evermore random independent variables as has been explored for 

relationships between catchment area and C or Q variability (Egusa et al., 2019; Marinos et al., 

2020; Woods et al., 1995). Differences in variability among solutes, as we found in this study, 

would then arise due to both the number of controlling processes and their individual but 

interdependent spatiotemporal fluctuations. 

Despite the relative simplicity of Si and Cl– cycling (Figure 5.2) and the abundance of 

minimally weathered substrate or atmospherically deposited salts (Maurice et al., 2002; 

Witherow et al., 2006), variability still exists within geogenic solute chemostasis in MDV 

streams. This suggests that non-biological stream corridor processes also likely contribute to C-Q 

noise. As in other systems, this may be due to influences of temperature, pH, relative 

concentrations of ions, and dissolved carbon dioxide concentrations – all of which vary over time 

– on mineral dissolution rates (Brantley, 2008). 

Additionally, solute generation and storage are not homogenously distributed throughout 

hyporheic and parafluvial zones (Singley et al., 2021). Thompson et al. (2011) demonstrated that 

more homogenous source pool distribution in catchments would lead to lower CVC/CVQ values, 

which could theoretically apply to the stream corridor itself. In MDV streams, such 
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heterogeneity in Cl– pools is apparent in visible salt crusts that form in particular locations along 

stream margins. In contrast, the lower CVC/CVQ for Si is likely due to more homogenous 

sourcing from primary and secondary weathering of minerals (Hirst et al., 2020). The influence 

of heterogeneity in source pools and microbial process potentials may be even more pronounced 

for DIN forms due to combinations of habitat suitability, substrate supply, and differences in the 

timescale and frequency of hydrologic connectivity. Similar to other systems, hyporheic 

connectivity varies in MDV streams as a function of temperature (Cozzetto et al., 2013) and 

hyporheic extent changes seasonally due to active layer dynamics (Conovitz et al., 2006). These 

complexities contribute to hyporheic residence time distributions that range from seconds to 

months (Gooseff et al., 2003, 2016; Wlostowski et al., 2018) and change over seasonal to 

interannual timescales (Singley et al., 2017). Modeling has shown that cyclic hydrologic pulsing, 

as is typical in MDV streams, can also alter hyporheic residence time and efficacy of 

biogeochemical transformations (Singh et al., 2020). This effect could theoretically result in 

different observed concentrations at a particular point and flow condition. Unraveling the relative 

importance of hyporheic solute pool heterogeneity versus time-varying source-sink kinetics in 

driving the observed patterns is critical but lies outside the scope of the present study.  

Our explanations of C-Q variability are also limited by the insufficient information to 

constrain whether observed variations in chemostasis are driven by time variable solute removal, 

production, or both in the stream corridor. Regardless of this unresolved distinction, the long-

term system-wide behaviors that we present here demonstrate that there is a need to merge 

investigations into C-Q form and variability with understanding of solute-specific stream 

corridor processes. By doing so, we have begun to unravel the convolution of stream corridor 

and catchment biogeochemical signals in long-term C-Q patterns.  

5.5.3 Why does Chemostatic Variability Differ Among MDV Streams? 

Apart from a few weak relationships, differences in CVC/CVQ among streams are not 

well explained by characteristics related to flow such as length, transit time, or flashiness (Figure 
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5.9). Large variability in CVC/CVQ in short streams for most solutes may reflect the importance 

of glacial signals rather than the emergence of stream corridor-controlled patterns that dominate 

solute dynamics in longer streams (Gooseff et al., 2002; Kohler et al., 2018) (Chapter IV). The 

distances over which this transition occurs is not known and likely differs depending on source 

glacier as well as physical and biological characteristics (i.e., slope, channel incision, algal mat 

coverage and composition, etc.). In non-polar settings, increasing dominance of hydrologic 

exports by precipitation (i.e., similarly dilute inputs with limited sediment or soil contact) 

reduced the ability of distributed subsurface solute pools to serve as a chemostatic buffer 

(Thompson et al., 2011). Even for a relatively simple system, our findings reinforce the need to 

develop biogeochemical reaction rate theories for nutrients and geogenic solutes that integrate 

hydrologic controls while addressing spatial and temporal heterogeneity at field relevant scales 

(Li et al., 2021). 

5.5.3 Extensions to Other Systems 

While hydrologic connectivity and solute sourcing are more narrowly constrained in 

MDV streams, the over-arching principles guiding our analysis can be extended to more complex 

systems with greater catchment influence on C-Q patterns. We have shown that stream corridors 

can imprint variability on chemostatic C-Q relationships that differs systematically across 

solutes. Although the underlying C-Q pattern in this demonstration case emerges from the stream 

corridor itself, similar behavior could result in distinct variability about the general form of 

catchment-driven C-Q relationships. Studies of C-Q relationships and temporal variations in 

stream biogeochemical processes have not been fully integrated – largely because C-Q studies 

span much longer timescales than, say, nutrient uptake studies. Developing complementary 

sampling, modeling, and analysis strategies, that merge these two lines of investigation would 

greatly advance the development of hydro-biogeochemical theories while connecting catchment 

and river corridor science (Harvey & Gooseff, 2015; Li et al., 2021). 



  130 

Further exploration of the structure and relative magnitude of C-Q variability among 

weathering solutes and nutrients can likely provide more information about heterogeneity of both 

source pool distributions and reaction rates than has previously been acknowledged – whether 

these reactions occur in the stream corridor or adjacent hillslopes. It is worth recognizing that 

regardless of changing catchment connectivity, C-Q data are always observed in the stream 

corridor. Even if the relative magnitude of signal modulation changes over time or with 

discharge (Moatar et al., 2017), the filter is may never be completely bypassed. Just as in 

streams, catchment biogeochemical reaction rates exhibit spatiotemporal variability due to 

interacting environmental factors (Bond-Lamberty & Thomson, 2010; Chen et al., 2020; Zhi et 

al., 2020), which could contribute to C-Q variability, as we have discussed here. Although we 

cannot identify exact causes of C-Q variability, by comparing many solutes and sampling 

locations, we can identify overarching patterns that lead to narrower hypotheses about processes 

governing C-Q dynamics. While developing specific techniques to isolate catchment and stream 

corridor influences on C-Q variability lies beyond the scope of this study, we have demonstrated 

the need to more directly consider the later in future studies. 

5.6 Conclusions 

Our analysis of historic data from ephemeral streams in Antarctica shows that while the 

stream corridor maintenance of chemostasis is ubiquitous across solutes, including nutrients, 

solutes controlled by biological processes exhibit more variability than weathering solutes. We 

demonstrate that this pattern is not directly controlled by environmental drivers of biological 

processes (i.e., light, temperature, and antecedent discharge), but may arise due to spatial and 

temporal complexity of biogeochemical and hydrologic processes within the stream corridor. 

Ultimately, our work provides evidence that chemostasis of many solutes can be maintained by 

stream corridor processes and that what has otherwise been viewed as “noise” in C-Q 

relationships can provide useful information about the relative variability in coupled 

biogeochemical processes across solutes. Important questions remain regarding exactly which 
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biogeochemical processes drive this variability and what controls their fluctuations in space and 

time. Future studies should draw on comparing variability in C-Q patterns across solutes to 

identify emergent biogeochemical patterns, consider distinct stream corridor versus catchment 

effects, and formulate hypotheses that will advance integrated hydro-biogeochemical theories.  
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Chapter VI 

Conclusions  

The spatial and temporal patterning of stream corridor connectivity influences water 

quality and the export of nutrients to downstream systems (Harvey & Gooseff, 2015). Hyporheic 

connectivity, in particular, exerts a strong control on hydrologic transport, biogeochemical 

reactions, and the provisioning of ecological refugia (Harvey et al., 2018; Harvey & Bencala, 

1993; Lewandowski et al., 2019; Ward, 2016). Hydrologic connectivity and N cycling are 

particularly complex in intermittent stream corridors, which are both globally pervasive and 

challenging to characterize (Allen et al., 2020; Datry et al., 2014; Larned et al., 2014) With this 

dissertation, I advance quantitative analysis of (1) how hyporheic connectivity is spatially 

structured and (2) how this connectivity controls the availability and retention of N in 

intermittent streams with few external N inputs. Altogether, this research advances 

understanding of processes that are difficult to measure or are often overlooked in typical studies 

of temperate stream corridors. Specifically, I demonstrated that machine learning can be utilized 

to characterize multi-scale heterogeneity of hyporheic connectivity into functional zones. I also 

leveraged field sampling, laboratory assays, numerical modeling, and remote sensing to 

characterize the surprising fate of N in highly oligotrophic and intermittent Antarctic streams. 

Chapter II introduced a method to analyze inverted ER models using unsupervised 

hierarchical clustering to delimit the extent of hyporheic exchange and to characterize functional 

zones with distinct transport behaviors within the subsurface. I used this method to show that 

total hyporheic extent and the spatial heterogeneity of exchange respond differently to seasonal 

baseflow recession between adjacent (< 10 m) transects in a mountain stream. To our knowledge, 

this represents the first application of machine learning to classify statistically unique spatial 

patterning of hyporheic exchange during tracer studies and represents a major advance in data-

driven characterization of multi-scale transport heterogeneity. 
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In Chapters III – V, I turned to the relatively simple ephemeral streams of the McMurdo 

Dry Valleys to isolate stream corridor processes governing autochthonous N cycling, transport 

and storage. The results of Chapter III challenge the typical conceptualization of the hyporheic 

zone as an N sink, which is based mostly on studies of temperate perennial streams with 

relatively large allochthonous N inputs. My findings highlight the need to develop more nuanced 

representations of autochthonously sourced N cycling in oligotrophic intermittent stream 

systems, and especially their hyporheic zones. Ultimately, this work demonstrates the potential 

for hyporheic connectivity both to enhance the contributions of internal N sources to nutrient 

budgets in oligotrophic streams and control how tightly and in what form it cycles this material.  

Chapter IV highlighted the surprising magnitude of N storage that is possible in an MDV 

stream corridor relative to annual import and export fluxes. Even in a system devoid of higher 

plants, hillslope connectivity, and allochthonous N inputs, large amounts of N are stored, 

especially in the hyporheic zone. This chapter also demonstrated the potential to quantify the 

spatial heterogeneity of periphyton biomass and nutrient content over much larger scales than 

has previously been attempted. In doing so, we illustrate the potential to contextualize N flux 

modulation by stream corridors in terms of broad-scale storage processes.  

In Chapter V, I demonstrated that stream corridor processes can sustain chemostasis even 

of nutrients and that biological processes appear to generate more concentration variability than 

physical processes alone. Traditionally, chemostasis has been explained almost exclusively in 

terms of distributed catchment storage and release of solutes. This work provides evidence that 

stream corridors can more strongly influence the form of C-Q relationships than is often 

recognized and that what has otherwise been viewed as “noise” in C-Q relationships may provide 

useful information about the relative variability in coupled biogeochemical processes across 

solutes. Moreover, in showing that the additional variability in C for biologically active solutes is 

not directly correlated with canonical drivers of biological activity, my work demonstrates that 

even in a relatively simple system the consequences of temporally varying coupled hydro-

biogeochemical processes are not easy to predict or infer from discrete sampling. A forthcoming 
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modeling component that addresses the dynamic balance of stream corridor N uptake and release 

processes necessary to sustain chemostasis in these intermittent streams will be added to this 

chapter prior to publication.  

Taken together, Chapter III – V represent a major shift in how MDV stream N cycling 

has been characterized over the past three decades from simple N removal by assimilatory uptake 

to hydrologically linked interdependence of autotrophic periphyton (both capable and incapable 

of N fixation) and heterotrophic microbial communities. My research demonstrates the central 

importance of autochthonous N sourcing and the physical and biogeochemical processes that 

allow in-stream N fixation to influence downstream N availability in the absence of 

allochthonous inputs. This research also establishes that beyond hyporheic exchange, other 

physical processes such as entrainment of N containing organic matter and reversible sorption in 

the hyporheic zone influence the availability of N in a hyper-oligotrophic system. Of course, this 

shift in conceptual understanding of N cycling and a greater appreciation for the importance of 

instream N fixation potentially applies to other intermittent stream systems in low N 

environments.  

More broadly, this work demonstrates the potential to advance linked understanding of 

hydrological and biogeochemical processes through data-driven investigations of systems and 

processes that are often overlooked, assumed to be of negligible importance, or overly simplified 

despite recognized complexity. Relatedly, in order to address pressing questions about how the 

biogeochemical function of stream corridors will respond to global change (i.e., increasing 

prevalence of intermittency due to climate change), future studies should focus on analytical 

approaches that promote cross-site and cross-scale comparisons. My cluster-based analysis of 

hyporheic exchange represents one such pathway, as does my analysis of long-term C-Q 

variability of many solutes from many streams. Similar applications of pattern extraction to 

repeated remote sensing analysis has the potential to further link point-scale sampling with 

process-based understanding of ecosystem resilience and sensitivity to hydrologic variability. 

With high spatial and temporal resolution data from networks becoming increasingly common, 
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conducting data-driven analyses that promote cross-site synthesis is both feasible and necessary 

to address applied and basic questions about the influence of stream corridor connectivity on 

ecosystem function and water quality.   
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Appendix 

Chapter III Supplemental Information 

 

Figure S3.1. Flow exceedance curve for 15-minute Q data from Von Guerard Stream and 
sampling range of present study. 
 

 
Figure S3.2. Nitrate concentrations by transect, lateral sampling site, and depth.  
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Figure S3.3. Ammonium concentrations by transect, lateral sampling site, and depth. 
 

 
Figure S3.4. Dissolved organic carbon concentrations by transect, lateral sampling site, and 
depth. 
 

 
Figure S3.5. Dissolved silica concentrations by transect, lateral sampling site, and depth. 
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Figure S3.6. Deuterium excess by transect, lateral sampling site, and depth. 
 

 
Figure S3.7. Carbon to nitrogen ratio (as mg C DOC to mg N DIN) by transect, lateral sampling 
site, and depth.  
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Table S3.1. Results for pairwise comparison of mean dissolved nitrate by sampling site. Surface 
water samples are denoted as “Surface”. All values are p-values resulting from a Mann-Whitney 
U test rounded to the nearest hundredth. No samples were collected from the 30 cm depth at T1 
site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - 
T1 A 15 cm - <0.01 <0.01 <0.01 <0.01 0.30 <0.01 - 
  30 cm - - 0.11 <0.01 0.90 <0.01 <0.01 - 
 B 15 cm - - - 0.02 0.49 0.02 0.49 - 
  30 cm - - - - 0.70 <0.01 <0.01 - 
 C 15 cm - - - - - 0.015 0.06 - 
  30 cm - - - - - - <0.01 - 
 D 15 cm - - - - - - - - 
  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T2 A 15 cm  - <0.01 0.03 0.03 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 <0.01 <0.01 <0.01 <0.01 0.08 
 B 15 cm - - - 0.65 <0.01 <0.01 <0.01 <0.01 
  30 cm - - - - <0.01 <0.01 <0.01 <0.01 
 C 15 cm - - - - - <0.01 <0.01 <0.01 
  30 cm - - - - - - <0.01 <0.01 
 D 15 cm - - - - - - - <0.01 
  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T3 A 15 cm - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 0.01 <0.01 0.14 <0.01 <0.01 
 B 15 cm - - - <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - - - 0.03 0.43 <0.01 0.06 
 C 15 cm - - - - - <0.01 <0.01 0.96 
  30 cm - - - - - - <0.01 0.02 
 D 15 cm - - - - - - - <0.01 

20
20

 T1  Surface <0.01 - - - - - - - 
T2  Surface 0.06 - - - - - - - 
T3  Surface <0.01 -  - - - - - 

 
  



  171 

Table S3.2. Results for pairwise comparison of mean dissolved ammonium by sampling site. 
Surface water samples are denoted as “Surface”. All values are p-values resulting from a Mann-
Whitney U test rounded to the nearest hundredth. No samples were collected from the 30 cm 
depth at T1 site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface 0.52 0.27 0.46 0.79 0.99 0.15 0.64 - 
T1 A 15 cm - 0.09 0.99 0.48 0.65 0.06 0.35 - 
  30 cm - - 0.24 0.39 0.18 0.95 0.29 - 
 B 15 cm - - - 0.46 0.61 0.11 0.33 - 
  30 cm - - - - 0.89 0.22 0.74 - 
 C 15 cm - - - - - 0.15 0.68 - 
  30 cm - - - - - - 0.32 - 
 D 15 cm - - - - - - - - 
  SW 0.45 0.20 0.69 0.48 0.52 0.58 0.12 0.40 
T2 A 15 cm - 0.55 0.73 0.99 0.99 0.94 0.29 0.71 
  30 cm - - 0.29 0.81 0.81 0.50 0.70 0.94 
 B 15 cm - - - 0.67 0.72 0.89 0.17 0.48 
  30 cm - - - - 0.99 0.88 0.56 0.99 
 C 15 cm - - - - - 0.99 0.56 0.99 
  30 cm - - - - - - 0.29 0.71 
 D 15 cm - - - - - - - 0.63 
  SW 0.35 0.37 - - 0.37 0.37 - - 
T3 A 15 cm - 0.99 - - 0.99 0.93 - - 
  30 cm - - - - 0.99 0.99 - - 
 B 15 cm - - - - 0.37 0.37 - - 
  30 cm - - - - 0.37 0.37 - - 
 C 15 cm - - - - - 0.99 - - 
  30 cm - - - - - - - - 
 D 15 cm - - - - - - - - 

20
20

 T1  Surface 0.09 - - - - - - - 
T2  Surface <0.01 - - - - - - - 
T3  Surface 0.79 - - - - - - - 
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Table S3.3. Results for pairwise comparison of mean dissolved organic carbon by sampling site. 
Surface water samples are denoted as “Surface”. All values are p-values resulting from a Mann-
Whitney U test rounded to the nearest hundredth. No samples were collected from the 30 cm 
depth at T1 site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface 0.07 0.30 0.39 0.28 0.99 0.25 0.43 - 
T1 A 15 cm - 0.67 0.11 0.44 0.95 0.27 0.25 - 
  30 cm - - 0.24 0.83 0.25 0.89 0.94 - 
 B 15 cm - - - 0.08 0.24 0.19 0.46 - 
  30 cm - - - - 0.28 0.99 0.95 - 
 C 15 cm - - - - - 0.20 0.31 - 
  30 cm - - - - - - 0.99 - 
 D 15 cm - - - - - - - - 
  SW 0.06 0.02 <0.01 0.01 0.56 0.02 0.57 0.89 
T2 A 15 cm - 0.85 0.85 0.56 0.16 0.44 0.15 0.09 
  30 cm - - 0.75 0.80 0.05 0.70 0.10 0.07 
 B 15 cm - - - 0.40 0.04 0.48 0.06 0.10 
  30 cm - - - - 0.03 0.90 0.07 0.05 
 C 15 cm - - - - - 0.07 0.99 0.57 
  30 cm - - - - - - 0.09 0.07 
 D 15 cm - - - - - - - 0.75 
  SW 0.03 0.75 <0.01 <0.01 0.03 <0.01 0.17 0.03 
T3 A 15 cm - 0.10 0.77 0.96 0.66 0.60 0.64 0.70 
  30 cm - - 0.06 0.07 0.12 0.02 0.37 0.15 
 B 15 cm - - - 0.96 0.82 0.27 0.39 0.82 
  30 cm - - - - 0.82 0.25 0.43 0.69 
 C 15 cm - - - - - 0.27 0.59 0.99 
  30 cm - - - - - - 0.18 0.27 
 D 15 cm - - - - - - - 0.75 
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Table S3.4. Results for pairwise comparison of mean dissolved silica by sampling site. Surface 
water samples are denoted as “Surface”. All values are p-values resulting from a Mann-Whitney 
U test rounded to the nearest hundredth. No samples were collected from the 30 cm depth at T1 
site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 - 
T1 A 15 cm - 0.01 0.02 0.25 <0.01 <0.01 <0.01 - 
  30 cm - - 0.02 <0.01 <0.01 <0.01 <0.01 - 
 B 15 cm - - - 0.02 0.82 0.02 0.11 - 
  30 cm - - - - <0.01 <0.01 <0.01 - 
 C 15 cm - - - - - 0.10 0.02 - 
  30 cm - - - - - - <0.01 - 
 D 15 cm - - - - - - - - 
  SW <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T2 A 15 cm - <0.01 0.02 <0.01 0.05 0.20 <0.01 <0.01 
  30 cm - - <0.01 0.61 0.02 <0.01 0.94 <0.01 
 B 15 cm - - - <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - - - 0.02 <0.01 0.89 <0.01 
 C 15 cm - - - - - 0.34 0.03 <0.01 
  30 cm - - - - - - <0.01 <0.01 
 D 15 cm - - - - - - - <0.01 
  SW <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T3 A 15 cm - <0.01 0.03 <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 <0.01 0.06 0.02 0.37 <0.01 
 B 15 cm - - - <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - - - 0.05 <0.01 <0.01 0.01 
 C 15 cm - - - - - <0.01 0.67 0.48 
  30 cm - - - - - - <0.01 <0.01 
 D 15 cm - - - - - - - 0.19 
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Table S3.5. Results for pairwise comparison of mean deuterium excess by sampling site. Surface 
water samples are denoted as “Surface”. All values are p-values resulting from a Mann-Whitney 
U test rounded to the nearest hundredth. No samples were collected from the 30 cm depth at T1 
site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface <0.01 <0.01 0.06 <0.01 0.70 <0.01 0.44 - 
T1 A 15 cm - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - 
  30 cm - - <0.01 <0.01 <0.01 <0.01 <0.01 - 
 B 15 cm - - - 0.06 0.19 0.46 0.06 - 
  30 cm - - - - <0.01 0.01 <0.01 - 
 C 15 cm - - - - - 0.02 0.37 - 
  30 cm - - - - - - <0.01 - 
 D 15 cm - - - - - - - - 
  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T2 A 15 cm - <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 0.44 0.22 0.90 0.62 <0.01 
 B 15 cm - - - <0.01 <0.01 <0.01 0.04 <0.01 
  30 cm - - - - 0.13 0.44 0.22 <0.01 
 C 15 cm - - - - - 0.22 0.99 <0.01 
  30 cm - - - - - - 0.52 <0.01 
 D 15 cm - - - - - - - <0.01 
  Surface 0.47 <0.01 0.48 <0.01 <0.01 <0.01 <0.01 <0.01 
T3 A 15 cm - <0.01 0.77 <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 <0.01 0.02 <0.01 0.04 <0.01 
 B 15 cm - - - <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - - - <0.01 0.12 0.01 <0.01 
 C 15 cm - - - - - <0.01 0.92 <0.01 
  30 cm - - - - - - 0.06 <0.01 
 D 15 cm - - - - - - - <0.01 
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Table S3.6. Results for pairwise comparison of mean dissolved C:N by sampling site. Surface 
water samples are denoted as “Surface”. All values are p-values resulting from a Mann-Whitney 
U test rounded to the nearest hundredth. No samples were collected from the 30 cm depth at T1 
site D during the 2019 season. 
 

Season    A B C D 
    15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 15 cm 30 cm 

20
19

 

  Surface <0.01 <0.01 0.07 <0.01 <0.01 <0.01 <0.01 - 
T1 A 15 cm - 0.05 0.06 0.04 <0.01 0.28 <0.01 - 
  30 cm - - 0.24 0.83 0.43 0.22 0.17 - 
 B 15 cm - - - 0.06 0.19 0.11 0.46 - 
  30 cm - - - - 0.20 0.25 0.10 - 
 C 15 cm - - - - - 0.02 0.61 - 
  30 cm - - - - - - 0.02 - 
 D 15 cm - - - - - - - - 
  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T2 A 15 cm - <0.01 0.03 0.03 <0.01 <0.01 <0.01 <0.01 
  30 cm - - <0.01 <0.01 <0.01 <0.01 0.01 0.10 
 B 15 cm - - - 0.44 <0.01 <0.01 0.04 <0.01 
  30 cm - - - - 0.02 0.01 0.03 <0.01 
 C 15 cm - - - - - 0.31 0.43 0.22 
  30 cm - - - - - - 0.83 0.43 
 D 15 cm - - - - - - - 0.58 
  Surface <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
T3 A 15 cm - 0.04 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
  30 cm - - 0.40 0.01 <0.01 0.02 <0.01 <0.01 
 B 15 cm - - - 0.03 0.01 0.04 <0.01 <0.01 
  30 cm - - - - 0.72 0.72 0.29 0.54 
 C 15 cm - - - - - 0.86 0.92 0.99 
  30 cm - - - - - - 0.53 0.93 
 D 15 cm - - - - - - - 0.60 
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Chapter IV Supplemental Information 
 
Table S4.1. N pool mass estimates from Monte Carlo uncertainty propagation (n = 10,000).  
 

Mass N (kg) Hyporheic OM Algal Biomass Algal Biomass 
(Remotely Sensed) 

Sediment Sorbed 
NH4

+ 
Hyporheic 
Dissolved NO3

– 

1st Quartile 3624.0 87.5 162.4 17.2 0.3 

Median 4769.0 201.5 276.3 31.6 0.4 

Mean 5051.8 297.2 349.7 35.7 0.4 

3rd Quartile 6161.1 405.4 456.6 49.1 0.5 

Chapter V Supplemental Information 
 
Figure S5.1. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Andersen Creek. 
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Figure S5.2. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Commonwealth Stream. 

 
Figure S5.3. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Crescent Stream. 
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Figure S5.4. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Delta Stream. 

 
Figure S5.5. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Green Creek. 
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Figure S5.6. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Harnish Creek. 

 
Figure S5.7. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Lost Seal Stream. 
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Figure S5.8. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Lawson Stream. 

 
Figure S5.9. Concentration variations of each solute (columns) versus expected environmental 
drivers (rows) with dQ/dt (L s–2), PAR (μS s–1 m–2), cumulative discharge (L) over the prior 12, 
24, and 48 hours and season to date, and water temperature (ºC) for Von Guerard Stream. 
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