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Abstract

A new technique has been developed to examine the effect of strip edge
shape on conductor loss in planar transmission lines using a modified incre-
mental inductance rule. Based on Lewin’s and Vainshtein’s zero-thickness
strip perturbation in loss calculations, this method requires an expression
for the infinitely thin strip inductance, as well as prescribed integration
stopping points for the different strip shapes. Results are given comparing
loss for different edge shapes in a microstrip system, using both this new
method and the Lewin/Vainshtein technique. Finally, the differing results
of some other published analytical and numerical loss methods based on
the surface impedance boundary condition are compared.

1 Introduction

Recently, Lewin [1] and Vainshtein [2] have independently developed a per-
turbation method of calculating the strip portion of the conductor loss of a
nonzero-thickness microstrip using integrations of the currents from the limit-
ing case of a quasi-TEM zero-thickness strip. The ground plane loss contribution
is typically small in a microstrip environment, so the strip contribution forms
the major part of the total conductor loss. In any event, the ground plane loss
is more straightforward to compute, since no edges are involved, and we will
regard it as readily calculated. The edge singularity in the loss integration is
avoided in [1],[2] by stopping the integration just short of the edge by an amount
determined by the local geometry near the nonzero-thickness edge. Division of
the zero-thickness current into the portions on the top and bottom surfaces of
the strip can be difficult in planar lines, particularly in microstrip. This new
method enables comparison of the loss of planar transmission lines with differ-
ent edge shapes from only a knowledge of the inductance of the corresponding
structure with infinitely thin strips and also the integration stopping points.
The technique is applicable to microstrip as well as other planar lines. Once
accurate determination of the loss for a specific edge shape has been made from
other methods, losses for strips with other edges can be found. The conductor
loss in the specific case of a rectangular-edged microstrip is examined here in a
survey of published analytical and numerical results [3]-[7] based on the surface
impedance boundary condition.

2 Derivation of loss difference formulas
2.1 Use of the Lewin/Vainshtein current integration tech-
nique

For a highly conductive, nonzero-thickness strip, the assumption of a surface
impedance boundary condition is often taken. Using Eiupn = Z:@, X Hian,



where Z, = (1+ j)R, = (1 + j)/7fpp is the surface impedance and @, the
outward unit normal vector, and neglecting loss due to the ground plane, the
loss integration can be reduced to the contour integral [3]
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where o, is the attenuation constant in 22222 and C is the boundary of the

nonzero-thickness strip cross section as in Figure la. Here Z, is the charac-
teristic impedance of the transmission line, J, is the z-directed surface current
density on the longitudinally invariant (£ = 0) strip, and I is the total current
of the strip. According to Lewin and Vainshtein, this contour integral can be
replaced by a line integral using an infinitely thin, perfectly conducting strip
with its correspondingly simpler longitudinal current distribution J,,. Dividing
this current into J;, 10p and J,, 501, the top and bottom surface currents of the
strip, respectively, the loss becomes
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where A; and A, are the integration stopping points for the left and right edges,
respectively (see Figure 1b), and w is the strip width. Each stopping point, a
very small distance from the edge singularity, is a function only of the local edge
geometry, and is obtained by equating the loss in the zero-thickness case to the
actual loss due to local nonzero edge effects under static approximations of the
fields. The division of the ideal current expression J,, into top and bottom
strip currents J;o10p and Jzobor is dependent on the planar transmission line
configuration. As an example, the currents of the microstrip line of Figure 2
will be separated by a Green’s function technique.

Assuming the geometry for the microstrip as in Figure 2, the Lorentz po-
tential A can be expressed by the integral [8]

Az,y) = p > G so(p')al". (3)

An appropiate Green’s function G for this microstrip configuration is
V(e —a')? + (y +2h)?
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where the denominator of the logarithmic function is due to the strip, and
the numerator is due to its image below the ground plane. This is a purely
transverse, quasistatic function. When this Green’s function is used and only
the longitudinal component of surface current, J,,, is considered, the single
Lorentz potential component A, is

z—z')2 + (y+ 2h)?

Az(x’y) = %ﬁ Jzo(x/)ln[\/(m

Jdr. (5)
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Figure 1: (a) Finite-thickness strip with a rectangular edge; (b) Zero-thickness
strip with integration stopping points A; and A, and Cartesian coordinates
(z,y).
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Figure 2: Geometry of the microstrip used in the Lewin/Vainshtein current
integration method.



The transverse variation of the magnetic field H of a quasi-TEM mode in
the quasi-static limit can be expressed in terms of the Lorentz potential as [9]

T=lv,x7, (6)
o

where the subscript T indicates transverse variation only, or a% = 0. Using (6)
with 4 = A,d,, the magnetic field in Cartesian coordinates is
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This expression for the magnetic field can be used to find the surface currents
on both sides of the infinitely thin strip by the boundary condition

To=Tn x H|s. (8)

Here @, 1s the outward unit normal vector from the surface S, which is the
surface of the strip in Figure 2. On the top of the strip, @, = @,, y = 0%, and

a, Jzo,top(x) =qy X E,[-—H,(:n,y) Iy=0+]’ (9)
1o)
Jzo,top(m) = _Hx(xay) |y=0+ . (10)
Thus only the x-component of the magnetic field needs to be considered. Like-
wise, on the bottom of the strip, @, = —@,, y =07,
a_szo,bot(l') = _Ey X Ez[Hz(myy) Iy:O"’]: (11)
so
Jzo,bot(l') = Hz(xyy) |y=0- . (12)

Solving for H, from (5) and (7),
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Since J,o = Jio,tep + Jz000t, the current on each side of the strip can be
subdivided as 1
Jzo,top(x) = §Jzo(m) - 5Jzo(x) (14)
and .
Jzo,bot(m) = ’2‘ zo(m) + 6‘]10(3)) (15)



where
6Jzo(x) = %‘(Jzo,bot(x)—rjzo,top(x)) = %‘[Hz(x;y) Iy:O- +HI($, y) |y=0+]' (16)

If (13) is rewritten as

2(—y + 2h) -2y
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then the sum of (13) and (17) is
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Jdr'.

In the limit y — 0%, half the sum (18) becomes 6J,, from (16), and since J,, is
the total current of both sides of the strip, the contour integral for §J,, becomes

the line integral
ho [/ J,,(z')da!
20 = - e e | 1
) =2 [ G 09
In terms of J,, and éJ,,, the integral (2) is then
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The approximation is possible since 6J,, & 0 near the edges.

The integration (20) can now be done with an expression for the total cur-
rent J,o(z) on an infinitely thin strip in a microstrip system. A closed form
expression by Kobayashi [10] is

Jeo(z) 2z, M(z) -1
T~ - T

(21)

where
1
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and z., given by Kobayashi, is a function of the microstrip geometry w/h. Using
Kobayashi’s current profile, the integral (20) can be easily reduced to closed form
except for the term (19), which must be approximated numerically.

M(z) = (22)



In the most general case of two similar strips, having the same widths but
different edge shapes, the unperturbed current distribution J,,(z) will be the
same for both. However, due to the different edge shapes, the losses are

R ¥-Ayr
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for the first and second strip, respectively. Combining (23) and (24), the differ-
ence in attenuation constants becomes
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This integral, using Kobayashi’s current profile, is the result used to employ the
Lewin/Vainshtein current integration technique on the loss effect of different
edge shapes.

2.2 Loss difference formula from a current model

The total current distribution J;, of the strip near the left edge can be modelled
as [10]
KI
Jzo(xl)_ '——+Fl(x1) (26)
Ve
as z; — 0, where K is a constant, Fi(z;) is a function of z; which is bounded
as z; — 0, and z; is distance from the left edge (see Figure 1). Similarly, J,,

near the right edge is
K.I

7=

as ¢, — 0, where K,, F.(z,), and z, are analogously defined. Since the stop-
ping points A are in general very near the tip, Jyotop and J;, 50t can each be
approximated as ‘;‘Jzo; that is, 2—-‘\/= or —\7’?1: Sincezr;=z+ % andz, = 5 -z
from the geometry of Figure 1, (25) becomes

Jzo(xr) -

+ Fo(z,) (27)
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= KPS + K2 (5]
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The constants K; and K,, the singularity terms in the current models J,, =
% and J,, = %, must be determined. Of course, when J,, is integrated
over the entire strip, the result is the current I, but the K terms are different
for each geometry and configuration. In the following, K will be related to the
inductance of the zero-thickness case, so that a modified incremental inductance
rule will be developed without thickness corrections. Eventually, the separate
terms K; and K, will combine into the derivative of inductance with respect to
width, g—i—, so the subscripts will be dropped for brevity.

2.3 Relating the singular part of the current with the ex-
panded Lorentz potential

From (6), the quasi-static magnetic fleld can be expressed as

H= lvT x A, (29)
M

where the potential A satisfies
ViA, =0, (30)

in the cross-sectional region surrounding the strip as in Figure 3a. If A; is
expanded in a sine series near the edge £ = —% (p = 0 in Figure 3a), the
potential becomes

Ax(pr8) = Ao+ Y Aum(p)sin(Z2), (31)

m=]

where A,, is the arbitrary constant value of the potential on the strip (at angles
of ¢ = 0 and 2). In this two-dimensional, source-free environment around the
edge, the scalar Laplace equation (30) becomes, upon substituting (31),

m\2
L - A =0 (52)

which is solved by
Asm(p) = Crp?, (33)

where Cy, is an amplitude constant. The other solution p‘% is disallowed due
to the Meixner edge condition of finite field energy in any finite volume. From
(33), (31) becomes

A:(p,$) = Ao+ D Crmp¥ sin(—r-n;—). ' (34)

m=1



The transverse magnetic field components H4 and H, are found from (6), using
only A,. In terms of the expanded potential 4,,
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From the magnetic field, the surface current on both sides of the infinitely
thin strip can be found from the boundary condition (8). On the top surface,
the outward unit normal vector @, = @y = 4y, @, = Gz, and ¢ = 0, so

- — _ - — 1 m m
Jzo,top(p) =ay X (Hpaz + Hd;ay) I¢>=0: _asz I¢=0: _/'; '§‘Cmp 2 Q.

m=1
On the bottom surface, @, = —

7zo,bot(p)

= —@y, G, = Gz, and ¢ = 27, s0

I
— 9-

Hpay + Hytly) p=2n=T. H, |p=2x (38)

Thus, the total surface current is

Since on the strip surface p = 27, (39) can be compared with the current ex-
pression from (26) to find that

ﬂ_
2

(39)

(1 - cos(mm)) = —=Lp~% —
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KI=-2 40
p (40)

where the [ subscripts have been omitted from K and C;. A similar derivation
using the Lorentz potential expansion about the right edge yields

K. I= Cr1

(41)

The relation (40) will be compared with another derivation based on inductances
in order to eliminate C; and determine K in terms of an incremental inductance.



2.4 Relating the singular part of the current with the in-
ductance derivative

Figure 3 illustrates two cases of an infinitely thin strip surrounded by a per-
fectly conducting surface, both invariant in the z-direction. The first case has
associated with it the Lorentz potential A,, magnetic field H, width w, and a
cylindrical geometry (p, ¢) with origin at the left strip edge. The second, per-
turbed, case has an extra length §w to the left of the first edge, so its width
is w + éw. It has a different cylindrical geometry (r,6) centered at the new
left edge, as well as quantities A,s and Hs. In the first, the Lorentz potential
expansion near the edge is (34), and in the perturbed case, it is

- . ,mb
Azé(ra 9) = A.os + mz_:l Cmﬂ'%l 51n(—2—). (42)

The first term, A5, the arbitrary constant potential of the strip, is set equal to
Ao, the potential of the first strip. The outer perfect conductors in each case
are assigned potentials of 4, = 0.

Starting with the integral

/ Bs - HdS, (43)
S

where S is the enclosed area in Figure 3a excluding the strip, and using the

definition . _
B& = VT X A& (44)

along with the vector identity
(VrxC)-D=Vr-(CxD)+C-(Vrx D), (45)

the integral becomes
/ B, TdS = /(VT «75)-TdS = /[VT~(Z6 <)+ - (Vo x TS, (46)
5 S S

The region S has no sources, so Vo x H = 0 can be used to simplify the integral.
Also, the divergence theorem

/ (Vr - Fr)dS = ]f Fr - a,dl, (47)
S C

where @, is the outward unit normal vector, is applied. In this case, the trans-
verse vector Fip is (A5 x H) = (Az0sG, x H). Thus,

/ B, - HdS = }{ (Fs x H) - Godl = }{ (AvosT, x H) -Todl,  (48)
S C Cw+Co
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Figure 3: (a) First case, with strip of width w and cylindrical geometry (p, ¢)
centered at the left edge; (b) Perturbed case, having strip width w + 6w and a
new cylindrical geometry (r,0) centered at the new left edge.
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where C, is the outer conductor on which 4, = 0 and C,, is the closed loop
around the strip in Figure 3a. From the identity

A BxC)y=C-(AxB) (49)

and defining @; as the unit vector tangential to the strip contour C,, such that
G, X G, = G, the integral (48) reduces to

= H (Tn X Az05,)dl = ]4 H-(Azosa)dl = Azos H-dl = A0 (50)
Cw Cw Cw

since the contour integral

H dl=1 (51)
C

is defined as the conductor current I. From the definition of inductance, the
strip potential A;, can be expressed as 4,, = LI. Similarly, A,,5s = Lsls. Since
the potential of the strips in both cases were set equal,

/E “HdS = A,os] = LsIsI = A;,] = LI% (52)
5
Now, if the permeability u is linear throughout,
/E,-ﬁdszfﬁ.mds (53)
5 s
is true, and from a derivation similar to (43)-(50) before,

/FEdS:f Ap,¢)Hs - dl. (54)
N Cw+6w

Previously, the magnetic field of the first case, H, was integrated over the first
width w. Now, Hj is being integrated over the perturbed width w + w. The
difference will arise because A,; was constant, 4,5, over a larger region w+ §w
than what the previous integration was carried over, specifically w. In the
present integral, A, is constant, 4,,, over width w only and has the behavior
given by the expansion in (34) beyond that. If A, is approximated by

Au(pd) ~ Ao+ Clﬁsin(i;i) (55)

in the region 0 < r < 6w, § = 0, which is also éw > p > 0, ¢ = 7, and it is the
constant A,, over the remainder of the strip, then

_ _ _ _ Sw ¢ _
]4 A, (p, )T s-dl = f Ao Hs-dl42 / (Crv/psin(S)I[Hs-d7). (56)
wtbw wtbw 0
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Here the factor of two arises from integration of the top and bottom of the
extra length of strip 6w. Recognizing the right-hand side contour integral as
the current I; and substituting from (36) an approximation for H,s

Hys(r,8) = S~ cos(3), (5)

the expression becomes

}{C A (p, ) Hs-dl = A, I5+2 / [les1n( )l ér"%cos(g)] dp. (58)

In the region of integration, ¢ = m, § =0, and r = éw — p, so

Sw
CICM Clcus Tow
= Aols + 2 —_— d 20l _—
5+ /0 5 ‘/6w pp Azols + ( ) (59)

0101671’511)

= LI + == (60)
Equating the integrals (52) and (60) by (53),
6
L1z + 998 _ g, (61)
2
and rearranging, the result is
6
II(Ls— L) = 9—1—0—21—;—”——“1 (62)

Taking the limiting case 6w — 0, Is — I, C15 — Ci, and £=£ — 2L the
constant C; in terms of the inductance derivative is then

2uI?gL
Ci = *“7‘;@“ (63)
Using (40) in (63), it is found that
98L
K?= ?@7‘:— (64)

the desired expression of K in terms of an incremental inductance. When the
right edge is incremented in a similar derivation, then, using (41), the identical
result (64) is obtained. Therefore,

98L
K} =K?=K?= 82 (65)
ur
Substituting back into (29), the final result for two general strips is
REL A Ay,
a2 = ae + B ln(T) + (5] (66)

This amounts to a kind of incremental inductance rule analogous to Wheeler’s
[11] for the change in . due to edge shape.
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3 Numerical results

3.1 A survey of microstrip conductor loss methods based
on the surface impedance condition

In formula (66), the attenuation factor ¢, is necessary as a standard, and must
be accurately determined if .4, the attenuation for a strip with other edges, is
to be meaningful. Various methods may be used to find «.;, such as numerical
computation, accurate experiment, or analytical approximations. A comparison
of those methods based on the surface impedance boundary condition is done
here for a rectangular-edged microstrip. Among those are the Lewin/Vainshtein
current integration method of section 2.1, using the integration stopping point
of Avect = 35365; approximate analytical loss formulas of Pucel [3], Schneider
(4], and Kaden [5]; and numerical results given by Spielman [6] and Wiesbeck
[7). Pucel’s commonly accepted results are based on Wheeler’s incremental in-
ductance rule [11], which is derived from the surface impedance condition, and
on approximate closed form expressions for the inductance of nonzero-thickness,
rectangular-edged microstrips. The formulas in Pucel’s paper include ground
plane loss but can be altered to consider only the strip conductor. The method
of Schneider [4] is similar to Pucel’s in that it also is based on Wheeler’s rule,
and the ground plane loss contribution can be extracted. However, Schneider’s
formulas use different closed formed results, in this case approximations for the
microstrip characteristic impedance. Kaden [5] uses the conformal transforma-
tion technique on thin microstrips, and derives loss formulas for both ground
plane and strip from approximations of the resulting hyperelliptic integrals. A
program for moment method solution of a general microstrip configuration with
ground plane loss is given in Spielman [6] (errors exist in the program listing in
(6], and were corrected by H. George Oltman of Tecom Industries in a private
communication). Another numerical method by Wiesbeck [7] implementing the
moment method is used to give results with and without ground plane loss for
three specific microstrip substrate heights.

All of the other techniques were compared for one of the specific microstrip
configurations used by Wiesbeck. Computation with these methods was done
over a range of strip width from 0.1 < w < 1.8mm, while all other parameters
were held constant at A = 0.254mm, ¢ = 18.19um, ¢, = 1, 0 = 4.9 x 10'7%,
and f = 1GHz. Results of the total conductor loss including the ground plane
are given in Table 1 for the methods of Pucel, Schneider, Kaden, Spielman, and
Wiesbeck. Table 2 compares strip loss only for Pucel, Schneider, Kaden, Wies-
beck, and Lewin/Vainshtein. All entries are given in the form of a percentage
difference from Pucel p, or

__ Q¢ other — Q¢ Pucel % 100 (67)

Q¢ Pucel
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Width Loss calculation method

(mm) || Schneider | ...Kaden | .Spielman | .Wiesbeck
0.1 22.0 -29.5 -0.9 14.3
0.2 10.9 -20.0 -3.3 9.0
0.2540 9.1 -16.9 -3.0 11.5
0.2541 18.2 -16.9 -3.0 11.5
0.3 10.5 -14.9 -2.5 8.9
0.4 7.7 -9.1 1.6 11.2
0.5 15.2 -0.5 9.5 18.7
0.5080 16.2 0.4 10.6 19.6
0.5081 4.0 -10.2 1.0 7.0
0.6 3.8 -9.9 -1.6 6.3
0.8 3.9 -9.1 -1.3 4.2
1.0 3.3 -8.4 -1.2 2.3
1.2 2.5 -7.7 -0.5 1.4
14 1.7 -7.2 0.1 0.4
1.6 1.2 -6.6 0.1 0.2
1.8 0.9 -6.0 0.3 0.3

Table 1: Percent difference in four different methods for total conductor losses
in microstrip (including ground plane) from the Pucel formulas. h = 0.254mm,
1=1819um, e, =1,0=4.9%x 10772 and f = 1GHz.
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Width Loss calculation method

(mm) || Schneider | ...Kaden [ ...Lewin | .Wiesbeck
0.1 23.7 -41.5 294 20.4
0.2 12.0 -32.7 19.3 19.3
0.2540 10.2 -29.7 17.5 23.6
0.2541 19.3 -29.7 177 23.7
0.3 11.5 -27.5 15.6 22.0
0.4 8.5 -22.0 15.0 26.4
0.5 16.1 -13.9 20.6 36.7
0.5080 17.0 -13.2 21.6 37.7
0.5081 4.6 -22.4 8.6 23.1
0.6 4.5 -21.4 3.7 23.4
0.8 4.3 -19.8 -2.4 21.9
1.0 3.6 -18.3 -4.7 20.1
1.2 2.8 -17.0 -6.0 19.1
1.4 2.0 -15.8 -7.2 174
1.6 14 -14.6 -8.2 16.6
1.8 1.0 -13.7 -8.6 15.6

Table 2: Percent difference in four different methods for strip conductor loss
in microstrip from the Pucel formulas. h = 0.254mm, ¢t = 18.19um, ¢, = 1,
c=49x10""8 and f = 1GH=.

m
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Several observations can be made from the results. First, as the width
gets narrower to 0.1mm, the thin strip approximation upon which each of the
analytical formulas is founded starts to fail. This results in larger differences
from Pucel, one of those analytical methods, at that width. Second, there is
a sharp discontinuity in Pucel’s loss at ¥ = 2, or w = 0.508mm. This is
where the two closed formed inductance approximations used by Pucel meet,
resulting in a discontinuity of 9.0% for ¢ — 0 and slightly worse for the nonzero
thickness here. Judging from the comparisons, it appears that the ¥ < 2
approximation is at fault, giving losses which are too low. A similar discontinuity
appears for Schneider at the junction of two closed form approximations of
characteristic impedance, % = 1 or w = 0.254mm. The third analytical result,
by Kaden, appears to be consistently lower than other results, but improves
as the strip width becomes wide. Spielman’s numerical code shows excellent
agreement with Pucel, but the issue of discretization error should be mentioned.
In this application, the finite substrate and ground plane width was assigned
a value of I = 10w. When this ratio was changed, conductor loss was altered
significantly, especially for very large ?L' ratios. Thus, discretization in numerical
methods can drastically alter results. Wiesbeck also compared reasonably with
Pucel in total loss, particularly for wider strips, but the contribution of sirip
loss varied much differently with substrate height h than Pucel. Finally, the
Lewin/Vainshtein current integration method predicted higher strip loss than
Pucel for narrow strips and lower strip loss for wider strips. For the following
numerical comparisons, the attenuation from the Lewin/Vainshtein method,
Q¢ Lewin/Vainshtein, Will be used as o, keeping in mind that the ground plane
loss contribution becomes more important with increasing strip width.

3.2 Results from the modified incremental inductance method

Formula (66) has been applied to microstrip lines of varying geometries com-

paring losses from the rectangular and semi-circular edges (see Figure 4), using

the conductor loss a, of the rectangular-edged strip above. The microstrip in-

ductance for an infinitely thin strip was taken from [3], with the thickness cor-

rection terms set equal to zero. Finally, the stopping points for the two edges,

Avect = 59—6—3— and Agpe = iﬁ.ﬁ’ were taken from Lewin{l] and Vainshtein[2].
An approximate expression for the inductance of the microstrip is ([3])

_Bop 8h 1 w.,
for ¥ <2, and
st 1 w -1
=555+ ln[27re(2,1 + 0.94)]) (69)
for % > 2. The required derivative 2—5 is found to be

oL _  p, [h w

3% = orhlw  T6h) (70)
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(b) t

Figure 4: (a) Rectangular-edged strip; (b) circular-edged strip.

for <2, and

oL _ g vt os )
Ow  2mh (%L + ZIn[27me(X +0.94)))2

for ¥ > 2.

In Figure 5 the results of the loss comparison over a large range of strip
widths and thicknesses are given. It is seen that the circular-edged microstrip
produces appreciably smaller loss than the rectangular-edged lines, especially
as the strip gets narrower. As expected, edge shape becomes unimportant for
very wide strips, since less of the total current is concentrated in the edges of
the strip. Again, in that extreme, ground plane loss grows significantly and can
no longer be ignored. Another observation is that as the strip grows thicker,
the dependence on edge shape increases as well.

3.3 Results from the Lewin/Vainshtein method

The effect of circular edges on loss was examined according to the modified incre-
mental inductance method in Figure 5. To compare the results from this method
with the Lewin/Vainshtein current integration results, the current integrations
were carried out to both the circular and rectangular stopping points A.;.. and
Ayee and compared. Results for a single normalized thickness, ;— = 0.01, are
shown in Figure 6, along with the results from (66) in Figure 5 for the same
thickness. An analysis of the results indicates that the two contrasting methods
have roughly the same edge shape dependence over a wide range of strip widths.
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Figure 5: Percent difference in loss between circular and rectangular edges over
a wide range of microstrip width and thicknesses using the modified incremental

inductance method.
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Figure 6: Percent difference in loss between circular and rectangular edges over
a wide range of microstrip widths and + = 0.01 using both (a) the perturba-
tional loss integrals of Lewin and Vainshtein and (b) the modified incremental
inductance method.
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4 Conclusion and future directions

The development of the result (66) was done to further the work of Lewin [1]
and Vainshtein [2] with specific emphasis on the effect of different strip edge
shapes on conductor loss of planar transmission lines. A modified incremental
inductance method can be used to compare loss for strips with diflerent edges.
Thus, once a result is obtained for a specific edge by other methods, as surveyed
above, loss can be found for any strip edge shape if the stopping point A and the
zero-thickness system inductance is known. This method holds for any planar
line where quasi-TEM approximations can be used, so that the inductance is
still a sensible quantity and the strip transverse current can be ignored. In an
asymmetric system such as microstrip, the loss integration becomes complicated
by the division of an ideal, zero-thickness current expression into the currents
on the top and bottom of the strip. This method avoids that problem, although
those loss integrations were developed and done here for comparison.

It has been shown that the effect of edge shape can be appreciable and should
be considered. Some future work might include a more extensive list of edge
shape stopping points A, especially for the trapezoidal edge, a common con-
sequence of the fabrication process. An experimental verification with feasible
edge shapes would be possible, especially with the trapezoidal and rectangular
edges. Finally, the surface impedance boundary condition, used here and in
many analyses on conductor loss, should be thoroughly examined for validity
near the edge, where much of the conductor loss takes place.
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