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ABSTRACT
Owing to their low density, high porosity and unique micro-nanostructures, aerogels are attractive for
application in various fields; however, they suffer from shrinkage and/or cracking during preparation,
mechanical brittleness, low production efficiency and non-degradation. Herein, we introduce the concept of
dynamic covalent polymer chemistry to produce a new class of aerogels—referred to as DCPAs.The
resulting lightweight DCPAs have the potential to be prepared on a large scale and feature high porosity
(90.7%–91.3%), large degrees of compression (80% strain) and bending (diametral deflection of 30 mm)
without any cracks, as well as considerable tensile properties (an elongation with a break at 32.7%). In
addition, the DCPAs showcase the emergent characteristics of weldability, repairability, degradability and
closed-loop recyclability that are highly desirable for providing versatile material platforms, though hardly
achieved by traditional aerogels. Taking advantage of their robust porous structures, we demonstrate the
potential of DCPAs for applications in thermal insulation and emulsion separation.These findings reveal
that the dynamic covalent bond strategy would be generalized for the production of a new generation of
aerogels with customized features for functioning in the field of intelligent and sustainable materials.
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INTRODUCTION
Weight reduction, performance improvement, cost
reduction and sustainability have been the most sig-
nificant drives in the design of structural materials
[1,2]. Aerogels, which are porous sol–gel materi-
als, have been recognized as pivotal components for
advanced structural materials due to their fascinat-
ing characteristics of low density (0.001–0.3 g/cm3)
and high porosity (>80%) [3–5]. They have been
widely utilized in various fields, such as energy stor-
age [6], drugdelivery [7], sensors [8], soundabsorp-
tion [9], electromagnetic shielding [10], thermal in-
sulation [5] and water treatment [11]. However,
the inevitable shrinkage and/or cracking induced by
capillary force during the drying process together
with the brittle nature of most aerogels themselves,
have been long-standing and intractable issues [12].
To fabricate monolithic aerogels with desired per-
formance, special drying methods that can decrease

or eliminate the undesirable capillary force, such
as supercritical drying and freeze-drying, are always
considered; however, such methods require special-
ized drying devices that result in a low production
rate and high cost. Therefore, it is of great necessity
and importance to solve the above-mentioned issues
and simultaneously endow the aerogels with emer-
gent features and functionalities.

Dynamic covalent polymer networks (DCPNs)
[13,14],whichpossess thebenefits of thermosets yet
retain reprocessability resembling thermoplastics,
have been widely explored in synthetic chemistry
andmaterials science [15–22]. Under certain condi-
tions, the dynamic networks remain stable, though
polymer chains could depolymerize, or rearrange-
ment of the topological network structures could
occur once thedynamic covalent bonds are activated
[23–26]. For the construction of aerogels, DCPNs
would be great candidates when considering the

C©TheAuthor(s) 2022. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/9/9/nw

ac012/6516960 by guest on 24 July 2023

https://doi.org/10.1093/nsr/nwac012
https://orcid.org/0000-0002-6114-5743
mailto:xzyan@sjtu.edu.cn
mailto:wei.zhang@colorado.edu
https://creativecommons.org/licenses/by/4.0/


Natl Sci Rev, 2022, Vol. 9, nwac012

followingmerits: (i)The dynamic nature of DCPNs
would endow the aerogels with repairability and
chemical recyclability, which are scarcely attainable
by traditional aerogels (e.g. inorganic silica aerogels
and organic resorcinol–formaldehyde aerogels);
(ii) The reversible cross-linked DCPNs are able
to generate robust skeletons that would prevent
gel shrinkage and/or cracking during the drying
process and simultaneously ensure the mechanical
performance of the resultant aerogels; (iii) The
family of aerogels would be significantly enriched
due to the variety of DCPNs. As such, we envision
that DCPNs will be able to take the development of
aerogels to the next level of simplicity, practicality
and sustainability. Nevertheless, dynamic covalent
polymer chemistry has remained unexploited in the
fabrication of monolithic aerogels.

Herein, we present a straightforward one-pot,
mild and catalyst-free polycondensation strategy via
dynamic imine chemistry, with the combination of
low-cost and promising ambient pressure drying,
to construct monolithic dynamic covalent polymer
aerogels (DCPAs).The chemistry involved is simple
and practical. Specifically, we first synthesized a
polyimine oligomer using terephthalaldehyde (TA)
and diethylenetriamine (DETA). Subsequently,
tris(2-aminoethyl)amine (TREN) as a cross linker
was applied to induce the formation of highly
cross-linked but dynamic polyimine gels. After
solvent exchanges and ambient pressure drying,
the resulting DCPAs exhibited low shrinkage that
was comparable to that of the aerogels prepared by
supercritical drying and freeze-drying. Benefiting
from the reversible dynamic covalent bonds, as well
as the robust gel skeletons, the DCPAs simultane-
ously exhibit flexibility, weldability and repairability.
Moreover, the DCPAs could be readily depolymer-
ized into soluble oligomers and/or monomers by
introducing an excess of free amine groups. Impres-
sively, newmonolithic aerogels couldbe regenerated
from the recyclable solution after the free amine
groups were consumed, thereby achieving a closed-
loop chemical recyclability. Finally, we exploited the
porous structures and robust skeletons to demon-
strate the multifunctionality of the DCPAs, in areas
such as thermal insulation and emulsion separation.

RESULTS AND DISCUSSION
Design, fabrication, structural
characterization and basic properties
of the DCPAs
To improve the fabrication of the DCPAs, we abide
by three criteria: (i) the preparation process should

be simple and suitable for large-scale production;
(ii) the lightweight DCPAs should possess quali-
fied mechanical properties to enhance practicabil-
ity; (iii) the skeletons of the DCPAs should con-
tain abundant dynamic bonds to realize chemical
recyclability. To meet the first requirement, ambi-
ent pressure drying, which avoids the use of special
equipment such as a supercritical dryer or a freeze
dryer, is adopted. Polyimine, prepared from com-
mercially available dialdehyde, diamine and triamine
with a readily controllable polycondensation pro-
cess, represents an ideal candidate.On the one hand,
the high cross-linking density can ensure the me-
chanical property requirement of the second crite-
rion. On the other hand, plenty of reversible imine
bonds are able to satisfy the third requirement.

The chemical structures of the compounds used
in this study and the fabrication process of DC-
PAs are illustrated in Fig. 1a and b. TA and
DETA were firstly chosen to synthesize a polyimine
oligomer (Fig. 1b). After prepolymerization, TREN
was added as a cross linker (Fig. 1b). Due to the
high reactivity between the aldehyde and amine
groups, the sol–gel transition was observed ∼3 min
prior to the macroscopic phase separation at 25◦C
(Fig. 1b). The aged gel (aging time = 48 h) ex-
perienced eight sequential solvent exchanges using
a dimethylsulfoxide (DMSO)/anhydrous ethanol
mixture (4 : 1, 1 : 1, 1 : 4 and 0:4, v/v) and an an-
hydrous ethanol/n-hexane mixture (4 : 1, 1 : 1, 1 : 4
and 0 : 4, v/v) within a period of 36 h at room
temperature. Once the solvent exchanges and sub-
sequent ambient pressure drying process (at room
temperature for 12 h)were complete, DCPAswith a
good appearance were obtained. On the one hand,
the addition of TREN into the oligomer solution
led to the formation of a 3D cross-linked network
as a gel skeleton that could withstand capillary force
during the drying process. On the other hand, the
abundant imine bonds in the gel skeleton are able to
undergo dynamic and reversible transimination re-
actions, thereby reinforcing the possibility of weld-
ability, repairability and recyclability of the DCPAs.
Under the constant 1 : 0.3 : 0.47 stoichiometry but
variable concentrations of TA, DETA and TREN,
we constructed monolithic DCPA-1, -2 and -3,
respectively (Table S1).

Taking DCPA-3 as an example, in the Fourier-
transform infrared (FT-IR) spectrum, the charac-
teristic peak of the C=N stretch at 1640 cm–1 was
prominent but the peak of the C=O stretch at
1690 cm–1 became very weak, suggestive of the for-
mation of imine bonds (Fig. S1). The lightweight
DCPA-3 (119 mg/cm3) is able to rest on a fresh
gypsophila bud (Fig. 1c). It can also support over
3300 times its ownweight (300mg, 17.8mm (D)×
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Figure 1. Illustrations of the preparation and performances of DCPAs. (a) Chemical structures of compounds used in this study. (b) Schematic illustration
of the formation of DCPAs via ambient pressure drying. (c) Photograph showing DCPA-3 resting on a gypsophila. (d) Photograph demonstrating the
strength of DCPA-3, which is supporting over 3300 times its own weight. (e) Photographs of various shapes made from DCPA-3. (f) Processability of
DCPA-3 shown by cutting it into a butterfly with scissors. (g) Photograph of a piece of DCPA-3 holding a 100 g load. (h) Photographs demonstrating the
flexibility of DCPA-3 by bending and knotting tests. (i) Photographs showing the rebound elasticity of DCPA-3 in a free-falling process. The scale bars
are 1 cm in (c) and (h), 5 cm in (e) and 4 cm in (f).

10.0 mm (H)) without obvious crack, demonstrat-
ing resistance capacity to compression (Fig. 1d).
Due to the moderate reaction conditions of imine
chemistry, great versatility in controlling the shapes
of theDCPAsbecomes possible.MonolithicDCPA-
3 samples of different shapes, such as a house, duck,
horse and different letters, were readily prepared
(Fig. 1e). Intriguingly, the desired shape, such as a
butterfly, was readily made without any fractures by
cuttingwith scissors (Fig. 1f), which reflects the pro-
cessability of the DCPAs. Notably, most aerogels
prepared by the sol–gel method are brittle and un-
machinable [27–29]. A piece of DCPA-3 (50 mg,
23 mm (L)× 7.0 mm (W)× 2.5 mm (H)) can sus-
tain a load of 100 g without cracking, showing good
tensile strength (Fig. 1g). In addition, DCPA-3 dis-
played great flexibility (Fig. 1h). It not only could be
folded in half, but it could also be knotted. Interest-
ingly, DCPA-3 can rebound without cracking after
being released from a height of 25 cm and the re-
bound height was able to reach ∼9.0 cm (Fig. 1i).
With these demonstrations, stereotypical character-
istics regarding their lack of outstanding mechanical
properties can be dismissed.

The basic properties of the DCPAs, including
bulk density, porosity and shrinkage, are summa-
rized in Table S1. The densities of the DCPAs
ranged from 112.5 ± 2.6 to 121.4 ± 11.2 mg/cm3.
The skeleton density of the polyimine wasmeasured

by a densimeter to be 1.30 g/cm3, resulting in high
porosities of the DCPAs in the range of 90.7% to
91.3%. The shrinkage was evaluated by the linear
shrinkage ratio (LSR). DCPA-1 showed the most
severe shrinkage (LSR = 22.8 ± 1.5%). This could
be ascribed to the relatively weak gel skeleton
caused by the low reactant concentration that failed
to withstand the capillary force during the drying
process. With the increase of the reactant concen-
tration, the LSR of the DCPAs reduced accordingly.
For example, DCPA-3 showed the lowest LSR of
∼10.5 ± 2.8%, which was as good as those of
aerogels (Fig. S2) prepared by supercritical drying
and freeze-drying, in which the capillary force
had been largely eliminated [30]. It is worth
noting that no special treatments, such as hy-
drophobic modification, and no high-pressure or
vacuum conditions were applied to the ambient-
dried DCPAs to weaken the capillary force
during the drying process [12]. Hence, the DC-
PAs have great potential to be fabricated on a
large scale without any technological or device
limitations.

Morphologies and pore structures
of the DCPAs
The morphologies and specific surface areas of the
DCPAs were investigated by scanning electron
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Figure 2. Structural characterization of the DCPAs. SEM images of (a and b) DCPA-1, (c and d) DCPA-2 and (e and f) DCPA-3.
TEM images of (g) DCPA-1, (h) DCPA-2 and (i) DCPA-3.

microscopy (SEM), transmission electron mi-
croscopy (TEM) and Brunauer-Emmett-Teller
(BET) analysis, respectively. As shown in the SEM
images, DCPA-1 (Fig. 2a and b), DCPA-2 (Fig. 2c
and d) and DCPA-3 (Fig. 2e and f) all displayed
bi-continuous configurations consisting of poly-
imine gel skeletons and interconnected pores. On
the one hand, the skeleton was constructed by
interfused micro-nanostructured particles with
well-dispersed sizes ranging from 400 to 800 nm
(Fig. S3), indicative of typical pearl-necklace-like
aerogel structures. On the other hand, the stacked
micro-nanostructured particles formed the in-
terconnected pores, ranging from hundreds of
nanometers to a few microns (Fig. 2a–f). These
results were further demonstrated by their TEM
images (Fig. 2g–i). In the BET measurements, all
of the nitrogen adsorption–desorption curves of
the DCPAs showed a type III isotherm (Fig. S4).
The specific surface areas (SBET) were measured to
be 11.9 m2/g for DCPA-1, 11.7 m2/g for DCPA-2
and 13.5 m2/g for DCPA-3 (Table S1), which are
similar to those of reported aerogels with similar
morphologies [31].

Fundamental mechanical properties
of the DCPAs
Aerogels frequently show a trade-off between
low density and high mechanical performance.
To explore whether the DCPAs were capable of
circumventing this inherent drawback, a series of
compressive and three-point bending tests were
performed. In sharp contrast to the brittle nature of
most aerogels withmorphological characters similar
to the DCPAs [32,33]—for example, the mundane
yet promising resorcinol–formaldehyde aerogels
that opened the door to organic aerogels [27]—the
DCPAs exhibited unexpected mechanical perfor-
mance, including compressibility and flexibility.

The compressive stress–strain curves of the DC-
PAs at a strain of 80% are plotted in Fig. 3a. All of the
DCPAs not only tolerated a high compressive strain
without any cracks (Fig. S5), but also exhibited a
nearly 10% recovery capacity after the pressure was
released. Two characteristic deformation regimes,
similar to other aerogels [34], were observed in the
curves: an elastic regime with a linearly increased
stress (<50% strain) and a densification regimewith
an exponentially increased stress (>50% strain).
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Figure 3. Mechanical properties of the DCPAs. (a) Compressive stress–strain curves of DCPAs at a strain of 80% with
a deformation rate of 5.0 mm/min. (b) Maximum stress and Young’s moduli of DCPAs. (c) Specific moduli and dissipated
energy of DCPAs. (d) Compressive stress–strain curves of DCPA-3 at strains of 5, 10, 20, 30 and 50%. (e) Cyclic compressive
curves of DCPA-3 at a strain of 30%. (f) Dynamic compressive behavior of DCPA-3 with an oscillatory ε of 5% from 0.01 to
100 Hz. (g) Three-point bending curves of DCPAs and (h) corresponding bending images of DCPA-3 with a deformation rate
of 1.0 mm/min. (i) Schematic representation of the bending-induced deformation of the aerogel skeleton and corresponding
polyimine networks.

The maximum stress and Young’s moduli of
DCPAs at a strain of 80% were obtained via their
compressive curves (Fig. 3b). DCPA-2 exhibited
the greatest maximum stress of 2.92MPa; the values
of DCPA-1 and DCPA-3 were 0.98 and 1.80 MPa,
respectively. This may be ascribed to the varying
densities of these DCPAs (Table S1). Nevertheless,
the Young’s moduli of DCPA-2 (0.287 MPa) and
DCPA-3 (0.267 MPa) are quite similar, which may
be due to their similar gel skeletons. Subsequently,
the specific modulus, defined as the ratio of the
Young’s modulus to the density, was calculated
(Fig. 3c), and represents a significant parameter for
light materials. The specific moduli of DCPA-2 and
DCPA-3were 2.30 and2.45 kN ·m/kg, respectively,
demonstrating that the DCPAs possess a good anti-
compression capacity (Figs 1d and S6). Moreover,
we calculated the energy dissipation of the DCAPs
based on the area of the hysteresis loop and the
values were 0.11 MJ/m3 for DCPA-1, 0.25 MJ/m3

for DCPA-2 and 0.19MJ/m3 for DCPA-3 (Fig. 3c).
This indicates that the DCPAs are promising

candidates for cushioning materials [10]. We
also fabricated the aerogel under highly humid
conditions (RH 95%) and the resultant aerogel was
denoted as DCPA-2 (RH 95%) (Fig. S7). With the
exception of the lowered maximum stress derived
from the influence of the high humidity on the
imine bonds, DCPA-2 (RH 95%) was the same
as the original DCPA-2 in terms of its appearance
and microstructure. In consideration of DCPA-3
with more balanced properties, the following tests
focused on further investigation of the mechanical
properties of the DCPAs.

The compression tests of DCPA-3 at different
strains of 5, 10, 20, 30 and 50% were carried out
(Fig. 3d). When the strain was<20%, the curves al-
most overlapped, indicating that DCPA-3 had de-
cent elasticity in a certain range (Fig. 3d). Upon
increasing the strain to 50%, DCPA-3 still showed
considerable recovery capacity. Similar compressive
stress–strain curves were also observed for DCPA-1
and DCPA-2 (Fig. S8). Furthermore, the compres-
sion fatigue test of DCPA-3was carried out with five
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Figure 4. Weldability and recyclability of the DCPAs. (a) Photographs and schematic representation of the welding process of DCPA-3. (b) Tensile
stress–strain curves of the virgin and welded samples with a deformation rate of 5.0 mm/min. (c) SEM images of the fracture surface of the welded
sample. (d) Schematic representation of the recycling process of DCPA-3. (e) Compressive stress–strain curves of DCPA-3 and the recycled DCPA at
a strain of 80% with a deformation rate of 5.0 mm/min. (f) Three-point bending curves of DCPA-3 and the recycled DCPA with a deformation rate of
1.0 mm/min, and (g) corresponding bending photographs.

loading–unloading cycles at a 30% strain without an
interval (Fig. 3e). DCPA-3 could retain 95% of the
original maximum stress and the maximum volume
deformation was 9.2% (Figs 3e and S9), suggestive
of a certain degree of fatigue resistance. A dynamic
compressive test was further performed onDCPA-3
by dynamic mechanical analysis (DMA). The stor-
age modulus remained almost stable over four or-
ders of magnitude from 0.01 to 100 Hz, and the
loss modulus varied by only one order of magnitude
(Fig. 3f), indicating that an elastic response existed
in the DCPAs.

The three-point bending curves of diametral
deflection as a function of load force were measured
to showcase the flexibility of the DCPAs (Fig. 3g).
After a large diametral deflection of 30 mm with
a fixture span of 25 mm, all of the DCPAs nearly
recovered to their original states without any cracks
(Figs 3h and S10).Thebending flexibility of theDC-
PAs reached the level of the reported flexible aero-
gels [35]. Notably, flexibility in compression and
bending with large strains has rarely been realized
in aerogels prepared by the sol–gel method [35].
The mechanical performance of the DCPAs may

originate from two key aspects (Fig. 3i): (i) unlike
the traditional silica aerogels with rigid Si–O–Si
networks, and classic resorcinol–formaldehyde
aerogels with short aliphatic hydrocarbon chains
[36,37], theDCPAs contain relatively flexible chains
in the networks [35]; (ii) the interfused micro-
nanostructured polyimine particles are able to
evolve into fibriform gel skeletons that can promote
recovery after compression and bending tests.

Weldability, repairability
and recyclability of the DCPAs
Considering the abundant dynamic bonds in the
DCPAs, it was expected that the DCPAs would ex-
hibit emerging features that are rarely possessed by
traditional aerogels. As a first trial, the weldability of
the DCPAs was tested. By applying a small amount
of fresh polyimine sol at the cut DCPA-3, followed
by solvent exchange and ambient pressure drying,
the cut aerogel chips were welded (Fig. 4a). In the
welded area, the fracture surfacewas barely observed
from both the top and side views (Fig. 4a). To prove
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this effect, the tensile behaviors of DCPA-3 before
and after welding were studied (Fig. 4b). Com-
pared with the original tensile curve of DCPA-3,
thewelded specimen showedgood recovery efficien-
cies in terms of different parameters, including frac-
ture stress (97%) (Fig. S11), strain at break (60%)
(Fig. S12) and elastic modulus (80%) (Fig. S13).
Furthermore, the SEM image showed that the
welded surface formed similar morphologies to
those observed in DCPA-3 (Fig. 4c), thus facili-
tating the fusion between the fragmented aerogels
[19]. This can be explained by the fresh polyimine
growing across the fracture sites of the DCPA-3 via
dynamic imine bonds so as to promote the weld-
ing effect [38]. Furthermore, we demonstrated the
repairability of the DCPA-3 (Fig. S14). After be-
ing repaired using polyimine solution, the scratches
on the surface of the aerogel film disappeared (Fig.
S14a). Even in the SEM image, no obvious cracks or
scratches were observed (Fig. S14b).

Subsequently,we explored the recyclability of the
DCPA-3 by adding an excess of free amine groups to
disrupt the stoichiometric balance between the alde-
hyde and the amine groups and induce transimina-
tion reactions, which could decrease the molecular
weight and solubilize the polymer network. Specif-
ically, a certain amount of diamine and/or triamine
monomers in DMSO as the recycling solution (see
Supplementary Data for details) was mixed with the
debris of DCPA-3 (Fig. 4d). After heating and ultra-
sonic treatments, the DCPA degraded into soluble
oligomers/monomers, which could regenerate the
polyimine gel upon the addition of the dialdehyde
monomer in proportion (Fig. 4d). Subsequently,
the recycled DCPA was obtained via ambient pres-
sure drying.TheLSRof the recycledDCPAwas only
15.9 ± 1.4% (Table S1), representing a satisfactory
result. The morphology of the recycled DCPA
retained the same pearl-necklace-like structure
formed by the interfused micro-nanostructured
particles (Figs S3 and S15). The mechanical prop-
erties of the recycled DCPA were also explored.
The compressive strain–stress curve of the recycled
DCPA almost overlapped with that of the original
DCPA-3 (Fig. 4e). Compared with DCPA-3,
the maximum stress (Fig. S16) and compres-
sion moduli (Fig. S17) of the recycled DCPA
recovered to 92% and 73%, respectively. The
three-point bending curve further proved that the
recycled DCPA maintained desirable mechanical
performance (Fig. 4f and g). The emerging features
of weldability, repairability and recyclability have
potential value with regard to sustainable develop-
ment, and add a new research perspective for both
aerogels and dynamic covalent polymers.

Multifunctionality of the DCPAs
In the preceding sections, we focused on the basic
properties, mechanical properties and emerging fea-
tures, includingweldability, repairability and closed-
loop recyclability, of the DCPAs. In this section, we
will explore themultifunctionality of theDCPAs, in-
cluding thermal insulation and oil–water separation,
by taking advantage of their inherent porous struc-
tures and robust skeletons.

First of all, we measured the thermal conductiv-
ities of DCPA-1, DCPA-2 and DCPA-3 as 41.6 ±
2.3, 41.8 ± 1.0 and 40.9 ± 1.0 mW/(m · K), re-
spectively (Fig. 5a). These values are comparable or
even superior to those of most aerogels (Fig. 5b).
The total thermal conductivity (λtotal) of the aero-
gel is the arithmetic sumof the radiative heat transfer
coefficient (λr), solid thermal conductivity (λs) and
gas thermal conductivity (λg), which reflects the real
thermal transfer coefficient [39,40]. The low densi-
ties lead to a low λs and the small pore size results in
the decrease of λg, which jointly accounted for the
low thermal conductivities of the DCPAs (see Sup-
plementary Data for a detailed discussion).

Given the good performance of thermal conduc-
tivity, we proceeded to probe the real thermal insu-
lation of DCPA-3with an infrared camera and com-
pared it with other common thermal insulating ma-
terials, including commercial cotton and melamine
sponge, with the same thickness (5.0 mm). The
measured samples were placed on a 75oC heating
stage. As shown in the time–temperature curves
and the thermal infrared images, the far-end surface
temperatures of the commercial thermal insulating
cotton and melamine sponge rose quickly within
25 s and the thermal equilibrium time was <50 s
(Fig. 5c and e). In contrast, the far-end surface
temperature of DCPA-3 increased more slowly and
the thermal equilibrium time extended to ∼144 s
with a lower equilibrium temperature (Fig. 5d).
Furthermore, the samples were placed on a cold
stage (<50oC) to study the thermal insulation in a
low-temperature environment (Fig. 5d and f). The
far-end surface temperature of themelamine sponge
decreased rapidly to−25oCwithin 8 s. ForDCPA-3,
it took a longer time (85 s) to reach the lowest tem-
perature of only −13.5oC. The thermal insulation
performance of the DCPAs at both high and low
temperatures was consistent with their low thermal
conductivities.

As they benefited from plenty of micro-
nanostructured particles in the aerogel frameworks,
we conjectured that the DCPAs could be mod-
ified readily into hydrophobic materials by low
surface energy chemicals [48]. The modification of
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Figure 5. Thermal insulation of the DCPAs. (a) Thermal conductivities of DCPAs mea-
sured at room temperature by the transient plane source method. (b) Ashby plot of
the thermal conductivity and density of DCPAs and other reported aerogels, includ-
ing PMSQ aerogel [41], PVA aerogel [42], PU/alumina aerogel [43], MXene/PI aerogel
[10], 3D ordered nanofiber aerogel [44], polymeric woods [45], CNF aerogel [46] and
polyamide aerogel [47]. (c) Temperature variation curves of the back side of the com-
mercial thermal insulting cotton, melamine sponge with high porosity, and DCPA-3 on
a 75oC stage for 300 s. (d) Temperature variation curves of the back side of commercial
thermal insulting cotton, melamine sponge with high porosity, and DCPA-3 on a cold
stage (<−50oC) for 300 s. Corresponding infrared images of the three samples on
(e) a 75oC stage and (f) a cold stage (<−50oC).

DCPA-3was achievedby introducing thehydropho-
bic surface via the condensation of fluoroalkyl silane
(FAS 13) on the aerogel skeleton, which was de-
noted as DCPA-3-F (Fig. 6a).The energy dispersive
spectroscopy (EDS) mapping images clearly show
that the Si and F elements were well dispersed in the
aerogelmatrix (Fig. S18). Before hydrophobicmod-
ification, the water droplet was adsorbed rapidly by
the hydrophilic DCPA-3 during the water contact
angle (WCA)measurement (Fig. 6b). In sharp con-
trast, theWCAofDCPA-3-F could reach up to 134o

(Fig. 6c). More intuitively, the near-spherical water
droplets (0.3 mL/droplet) were capable of being
supported by DCPA-3-F (Fig. 6d) and DCPA-3-F
could keep afloat in the water (Fig. 6e), exhibiting
the hydrophobicity of the modified DCPA. In light
of its high porosity and lipophilicity, DCPA-3-Fwas
then exploited to separate the immiscible oil–water

mixtures. As shown in Fig. S19, DCPA-3-F could
rapidly remove both the light oil on top of the water
(n-hexane dyed with oil red) and the heavy oil
under the water (dichloromethane dyed with oil
red). The success led us to attempt the separation
of a surfactant-stabilized emulsion, which is more
valuable and challenging for aerogels. As such,
DCPA-3-F was equipped with a peristaltic pump
to construct a simple and continuous separation
device by the pumping method (Fig. 6f). When
DCPA-3-F was added to the surfactant-stabilized
W/O emulsion (water/n-hexane), the turbid
emulsion was purified into a clear oil (Fig. 6f and
Movie S1), which was further confirmed by the
corresponding optical images (Fig. 6g and h).
Moreover, the surfactant-stabilized water/toluene
and water/petroleum ether emulsions were also
successfully separated by DCPA-3-F (Fig. S20 and
Movie S1). Such a simple and continuous pumping
method for emulsion separation implies that the
DCPAs have potential application in pollution
control and environmental protection fields [49].

CONCLUSION
In summary, we demonstrated that DCPNs, an in-
creasingly important research topic, can be em-
ployed to fabricate monolithic DCPAs with newly
developed features, such as weldability, repairabil-
ity, degradability and closed-loop recyclability. The
mild and catalyst-free sol–gel process via dynamic
imine chemistry and the simple ambient pressure
drying method make it possible to fabricate DCPAs
in large quantities with arbitrary models. Further-
more, the DCPAs not only possessed a low density
of ∼119 mg/cm3 and a suppressed linear shrinkage
rate of∼10.5%, but also showcased a basketball-like
rebound ability, large degrees of compression (80%
strain) andbending (diametral deflectionof 30mm)
without any cracks, and a decent tensile strain of
32.7%. In addition, on account of their closed-loop
chemical recyclability and robust porous structures,
the DCPAs can be developed into green, low-cost
and multifunctional materials for thermal insulation
and water treatment. This straightforward princi-
ple would also be suitable for other dynamic cova-
lent bonds, to enrich the library of DCPAs. We ex-
pect that this work will facilitate the development of
both dynamic covalent chemistry and aerogels for
applications as smart and environmentally friendly
materials.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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Figure 6. DCPAs for emulsion separation. (a) Schematic representation of the hydrophobic modification process of DCPA-3.
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