Design Possibilities for Zeus:
The Tool/Object Manager for Arcadia

Deborah A. Baker and Dennis Heimbigner

CU-CS-318-86 February 1986

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Design Possibilities for Zeus:

The Tool/Object Manager for Arcadia

Deborah Baker
and
., Dennis Heimbigner

Department of Computer Science
University of Colorado
Boulder, Colorado

4 February 1986

Arcadia Document: CU-86-01

Table of Contents
1. Introduction
2. A Review of Odin
3. Design Issues

3.1. Management Issues

3.1.1. Tool management
3.1.2. Object management

3.2. Flow of Control Issues

3.2.1. Lazy evaluation

3.2.2. Inferencing

3.2.3. Passive versus active objects
3.2.4. Constraints

3.2.5. Daemons

3.3. Modeling Issues

3.3.1. Typing

3.3.2. Meta-data

3.3.3. Extended history

3.3.4. Support for user-defined relationships
3.3.5. Granularity of objects

[R

-

=~ =1 =1 O U Ut Ut

w G0 G &

1. Introduction

Zeus is the software that manages tools and objects in Arcadial . This report is
intended to outline some of the design issues for Zeus. Some alternatives are discussed
for each design issue. In each case, one of the alternatives is the Odin approach. We
begin with a review of Odin to establish a common vocabularv and a common

understanding of the basic Odin philosophy.

2. A Review of Odin

An understanding of Odin hinges on understanding the concept of derivation. The
user must understand that some objects (in Odin, objects are synonymous with files)
can be automatically constructed from other objects by using some specific tool(s). To
the user, then, Odin appears to be a large database of all the possible objects that one
might ever want to construct by the repeated application of some programs starting
with some set of typed (atomic) objects. The principal user operation is to ask for the

presentation of objects.

Assuming this, there are a number of other capabilities and properties that may be

used to describe Qdin:

L. Inferencing: Given a user request such as X:Y, Odin infers a sequence of
tool invocations that form a path in the database from object type X to the
object type Y.

(3]

. Side-effect free: In Odin, no tool invocation can have side-effects (i.e., it
cannot read and then modify any object). ‘

3. Unique derivations: Since Odin will find a unique derivation path
between any two object types, the possible sequence of tool applications
must be completely determined by the endpoints of the path.

4. Retrieval only: Odin acts as if all requested objects already exist and that
it is therefore only retrieving that object for presentation to the user. Odin
has a simple form of update operation, but the updating mechanism is
disjoint from the main part of Odin (file retrieval).

Actually Zeus is more than just the object manager, but it serves as a convenient name for the object

manager.

5. Simple data model and database: The persistent store of Odin may be
usefully viewed as a set of relations over objects. There is one relation for
each tool. For example, given a tool R that takes in an object of type X and
produces an object of type Y, there is effectively a relation R(x:X,y:Y) in this
database. This set of relations naturally form a (hyper-)graph with a node
for each object type, and an edge for each relation. It is assumed that there
Is a unique path in this hypergraph between any two nodes.

6. Objects are passive: In simple Odin, it is the case that the tool is given
the object as input and the tool interprets the contents of that object. This
contrasts with the usual Smalltalk view in which the object interprets any
actions requested of it.

7. Lazy: Odin does not reconstruct any object unless some object from which
it is derived has changed.

8. Type constructors: Odin has some simple type constructors corresponding
to vectors, pointers, and records. :

9. Sentinels: Odin has a simple form of constraint checker in the form of
sentinels. Sentinels are objects that are retrieved periodically to see if they
are still valid objects.

3. Design Issues

The design issues related to Zeus can be loosely divided into three categories. The
management issues are concerned with what fools and objects can and should be under
the control of Zeus. Flow of control issues determine when Zeus will activate tools.
Modeling issues concern the extent to which Zeus keeps information about its
constituent tools and objects. The design issues that are discussed are interrelated to

such an extent that it is difficult to discuss any one in isolation.

3.1. Management Issues

Zeus, like Odin. is intended to be a general purpose object manager. Two issues stand
out in the design of Zeus: (1) what tools should Zeus manage, and (2) what objects
should Zeus manage? For tools and objects that are outside of Zeus management, users
will need to deal with a non-Arcadian interface. In addition. Zeus will be compromised

in its ability to record the history of objects that it does not manage, or that are

modified by rools that it does not manage. Thus, there should be a bias in Zeus

towards inclusion rather than exclusion of tools and objects.

3.1.1. Tool management
The question here is: what tools should be managed by Zeus? There seems no doubt
that simple, side-effect free tools should be included. Odin demonstrates that such tools

can be managed very effectively.

There are several classes of tools with side-effects that it would seem natural to

include in Zeus in some fashion:

1. Some tools may directly modify objects as side-effects of their operation.
For example, a unique name generator might have a file containing the
current sequence number. Invocation of the name generator has the side
effect of modifying the sequence counter file.

2. Some tools {termed circular) may indirectly have side effects by producing
an output object that is to be deposited (immediately or after subsequent
tool invocations) into one of its input objects. For example, a deletion tool
may input an object, say a complete tree, delete a subtree, and produce a
new tree that is to replace the old one.

Circular tools also appear in the context of co-equal representations. A
program, for example, can be represented as either a piece of text or as a
flow graph. It is desirable for users to be able to manipulate either
representation and have the other representation automatically change to
maintain equivalence. This can be done if there are tools that can transform
between the two representations. However such tools are effectively circular.

The above two types are not entirely disjoint because a side-effect producing tool may
be viewed as a special case of the circular tool. Other examples of tools that have side

effects are database systems and editors.

Odin treats tools with side-effects as a special class collectively called editing tools.
Such tools are not included in the derivation database maintained for side-effect free

tools. Rather, the user is responsible for explicitly invoking such tools when required.

There seem to be three possible choices in the way that Zeus can manage such tools:

L. Such tools can be kept separate. This would continue the current Odin
practice. [t would preclude control of side-effect prodicing tools.

2. Such tools can be integrated into the current derivation structure by
extending that structure to contain cycles representing the side-effects. This
impacts both lazy evaluation and the unique derivation property.

3. Such tools can be handled by functional programming techniques in which
the "state" (i.e. the set of all objects modified by side-effect) is passed along
as an extra parameter for all tools. This seems cumbersome, and is certainly
an unnatural approach for programmers used to conventional programming
languages.
3.1.2. Object management
The issue of object management is the question of what objects are to be managed by

Zeus. Odin, for comparison, manages two sets of objects:

1. Atomic objects (i.e., non-derived objects) that are explicitly mentioned to
Odin. Such an object is usually mentioned as the initial object in a retrieval
request. '

2. Derived objects explicitly mentioned in the output interface specification of
some tool. ‘

Not all objects referenced by tools are included in their interface specifications, and so
they are not under Odin's management. As one example, consider compiling a C
program that implicitly references an include file. Odin will not know of this
dependenéy unless iﬁ is explicitly told of it. As a second example, the unique name

generator mentioned above will take the sequence number file as implicit input.

Odin also assumes that the objects output by tools are distinct from its input objects.

Circular tools, such as editors, must be specially handled by Odin.

Zeus may manage the same set of objects that Odin manages now. Alternatively,
Zeus may expand one or more of the classes of objects to be controlled. This would

mean extending one of the following classes:

1. The class of controlled atomic objects may be expanded. This would mean
that all atomic objects would be made known to Zeus upon creation.

2. The class of implicit input objects may be expanded. This would mean that
the input specifications for tools would need to bhe expanded to specify all

objects, including those modified by side-effect.

3. The class of overlapping input and output objects may be expanded. This
would mean that the class of editing tools would be integrated into Zeus.

3.2. Flow of Control Issues

3.2.1. Lazy evaluation

Lazy evaluation, as represented in Odin, is a very desirable feature. It avoids the need
for immediately rebuilding every object derived from some modified object. Instead,
objects are recreated only when necessary. Depending upon other design decisions, the
lazy evaluation policy may require some modification. For instance, if constraints are
added (see below), then certain computations cannot be deferred. Lazy evaluation has
worked well for Odin, and so it seems that it should be a Zeus policy to maintain lazy
evaluation to whatever degree possible. It is not of overriding importance, however.
Thus, if the addition of some feature requires a compromise with lazy evaluation, the

compromise will generally be resolved against lazy evaluation.

3.2.2. Inferencing

The use of automatic inferencing facilities in Zeus is an important issue. Given this
facility, users would not be required to explicitljstate all operations involved in
producing some object. Zeus would be able to automatically infer intermediate tool
invocations from imprecise user requests. Odin already does this, and it works there
because of the lack of side-effects, the relatively few object types, and the 1-1
correspondence between object types and tools. Some (possibly all) of these

assumptions might not be true for Zeus, and so the opportunities for inferencing would

be ressricted.

The alternative to automatic inferencing is algorithmic tool invocation. In this case,
someone (not necessarily the user) must specifically state which tools are to be invoked
and in what order. This in turn implies that Zeus would need some form of procedural

language (a programmable command language, in effect) so that users could build

procedures for invoking many tools in the correct order. Such a model is certainly

closer to the facilities provided by existing operating systems (e.g., Unix, VMS). It does
mean, however, that incorporating new tools is more difficult; existing command

procedures would need to be modified to make use of the new tools.

3.2.3. Passive versus active objects

Objects in Zeus can be expected to adhere to one of two paradigms: active or passive.
Smalltalk is a good representative of the active object paradigm. Active objects accept
requests (often termed messages) and interpret the request according to some internal
procedure. Thus, two separate objects might accept the same message but interpret it
quite differently. There is a cost for having objects be respounsible for interpreting their
actions; it is difficult to construct a global inferencing system that can determine what
sequence of tool invocations need to be performed in response to an imprecise user

request.

The alternative, passive objects, assumes that a tool is given an object as input and
the tool interprets the contents of that object. This mézms that any tool invocation can
have only one meaning: that specified by the corresponding tool. This is the Odin
paradigm. It allows for global inferencing, but it does not allow for multiple

interpretations of tool requests.

3.2.4. Constraints

[t may be desirable to allow Zeus users to define powerful constraints on the leg‘ai '
states for a given collection of objects. Some constraints can be handled by the use of
derivation dependencies, but it may be more natural to separate derivations from
constraints. For example, one might want to enforce a constraint that no procedure can
be integrated into a larger module unless it has successfully been tested. This could be
handled by requiring the module to depend on both the procedure and the test output.
This seems unnatural, however, because the module does not really use the test output,
only its success or failure. [t would seem more appropriate to allow the user to establish
a constraint between successful test output and the module. Generalizing, such

constraints might be used to enforce specific object flow within a project structure.

3.2.5. Daemons

In order to enforce constraint checking and to implement Critics, Zeus may need an
active component, which we can generically term daemons. By a daemon we mean an
activity that Zeus can perform on its own initiative. One of the common problems with
daemons is that the Iinitiation of activities may come at inopportune times. For
example, multiple daemon activations may so overload a workstation that they can
prevent a user from performing any useful work. As another example, a daemon may

be initiated at the wrong time and complain about a transient inconsistency.

3.3. Modeling Issues

3.3.1. Typing
The current expectation is that all objects in Zeus will be strongly typed. The

alternative is to have untyped (or mono-typed) objects as is found in Lisp.

An untyped object system has the advantage that it is often possible to build powerful
tools that are useful in manipulating many kinds of objects. In a typed Zeus, by
contrast, these powerful operators would have to be replicated for various object types.

Of course, an Ada-like generic facility would simplify the replication process.

Strong typing presumably would be carried out in accordance with data abstraction
principles. This means that each tool must specify the types of its inputs and outputs.
Of course, this will not preclude type conversions where appropriate. [t can be expected
that a strongly typed Zeus would also have a general set of type constructors. An
obvious set corresponds to those found in various programming languages: records,
scalars, vectors, pointers, graphs, arrays, lists, functionals (for tool-generating tools),

and user defined primitive types.

[n the case that strong typing is chosen, another issue arises: should tools and object
types be in one-to-one correspondence?’ Odin assumes this in order to Ffacilitate

automatic inferencing. The price is a proliferation of types and type conversions.

3.3.2. Meta-data

Zeus will maintain its own internal database. Depending upon other design decisions,
it will record at least information concerning types, derivations, and histories.
Collectively, this database may be said to contain meta-data (data about the structure
of other data). Should this meta-data be accessible to users’ If the answer is no, then
it may be hard to ask questions about the state of Zeus: questions such as "what is the
history of object X?" [f the answer is yes, then it is not clear how to present this
information to the user; should it be consistent with the normal user view of non-meta-
data? Should the user be able to do things such as derive types from other types and

keep histories of the changes to meta-data?

3.3.3. Extended history

Some history information is implicit in the derivation information kept by Odin. It
may be desiréble for Zeus to keep additional histories of modifications performed
outside the derivation structure. This might correspond, loosely, to the information
maintained by tools like SCCS or RCS. Given that extended histories are maintained,
then Zeus should provide mechanisms for manipulating histories. This would, for

example, provide undo-redo facilities.

3.3.4. Support for user-defined relationships

I[f Zeus is to be extensible, it seems that it must allow users to define their own
relationships among objects. As a corollary, Zeus will also need a complete set of
operations for managing such relationships. They might be built-in, or they might be
provided by tools. In either case, they should allow users to ask questions such as:
"where are all references to object X", or "what other object has relationship R to

object X"

3.3.5. Granularity of objects

The Arcadia consortium has already debated the issue of object granularity. In the
following discussion, the terms large and small do not refer to the physical size of
objects, but rather to the number of relationships between objects. It might be more

accurate to refer to coarse grain objects or fine grain objects. There are three obvious

choices:

1.

|0V

Zeus might restrict itself to only manage "large" objects. This is in line
with Odin. The obvious consequence is that Zeus might not be able to
represent certain kinds of tools and objects representing abstract data types
(e.g., a collection of objects and tools representing a stack or queue). This is
because the tools correspond to the operations of the abstract data type, and
they typically have side-effects.

. Zeus might allow only "small" objects. This would mean that large objects

must be explicitly broken up into the smallest possible objects. As a result
of maintaining small objects, there will be an increase in the number of
explicit relationships. For example, when an IRIS tree is split into many
small node objects, the connections (the edges) among the nodes become
explicit relationships among the node objects. They are no longer hidden
inside the single [RIS tree object.

. Zeus might manage objects of varying granularity. This might be done in

two ways. In the first way, objects could be of any size, but all would be
disjoint. In the second way, objects might be dynamically decomposed into
smaller objects, or dynamically grouped into larger objects. Thus objects
might not be disjoint over time. For example, at some time, a whole IRIS
tree might be treated as one object by Zeus. At another time, the tree
might be treated as individual nodes and edges.

