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Atmospheric aerosols are known to affect health, weather, and climate, but their impacts on

regional scales are uncertain due to heterogeneous source, transport, and transformation mecha-

nisms. The Weather Research and Forecasting model with chemistry (WRF-Chem) can account

for aerosol-meteorology feedbacks as it simultaneously integrates equations of dynamical and chem-

ical processes. Here we develop and apply incremental four dimensional variational (4D-Var) data

assimilation (DA) capabilities in WRF-Chem to constrain chemical emissions (WRFDA-Chem).

We develop adjoint (ADM) and tangent linear (TLM) model descriptions of boundary layer mix-

ing, emission, aging, dry deposition, and advection of black carbon (BC) aerosol. ADM and TLM

model performance is verified against finite difference derivative approximations. A second or-

der checkpointing scheme is used to reduce memory costs and enable simulations longer than six

hours. We apply WRFDA-Chem to constraining anthropogenic and biomass burning sources of

BC throughout California during the 2008 Arctic Research of the Composition of the Troposphere

from Aircraft and Satellites (ARCTAS) field campaign. Manual corrections to the prior emissions

and subsequent inverse modeling reduce the spread in total emitted BC mass between two biomass

burning inventories from a factor of ×10 to only ×2 across three days of measurements. We quantify

posterior emission variance using an eigendecomposition of the cost function Hessian matrix. We

also address the limited scalability of 4D-Var, which traditionally uses a sequential optimization

algorithm (e.g., conjugate gradient) to approximate these Hessian eigenmodes. The Randomized

Incremental Optimal Technique (RIOT) uses an ensemble of TLM and ADM instances to perform a

Hessian singular value decomposition. While RIOT requires more ensemble members than Lanczos

requires iterations to converge to a comparable posterior control vector, the wall-time of RIOT is

×10 shorter since the ensemble is executed in parallel. This work demonstrates that RIOT im-



iv

proves the scalability of 4D-Var for high-dimensional nonlinear problems. Overall, WRFDA-Chem

and RIOT provide a framework for air quality forecasting, campaign planning, and emissions con-

straint that can be used to refine our understanding of the interplay between atmospheric chemistry,

meteorology, climate, and human health.
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Chapter 1

Introduction

Through science, humans have harnessed empirical knowledge to predict natural phenomena

that influence life on earth. Tracking the lunar cycle was one of the earliest attempts at using long-

term average weather statistics, or climate, to time the annual planting of crops. Wildfires and

volcanoes, which remain difficult to predict today, thwarted those early almanacs through natural

air pollution and climate forcing. Though humans had burned biomass fuel for centuries, population

growth and urbanization during the Roman Empire, Middle Ages, and Renaissance reduced forest

resources near cities. The higher energy density and availability of coal in Britain popularized its

use for domestic heating. In 1306, Parliament petitioned King Edward I to outlaw the burning of

seacoal in response to the buildup of atmospheric pollutants (Commission and Argyll, 1871). The

industrial revolution increased dependence on coal around the word, thus enabling humans to exert

major feedbacks on both air quality and climate. In response to over 4,000 deaths during London’s

Great Smog of 1952, parliament passed the 1956 Clean Air Act, the first modern and substantial

air pollution control legislation. Around the same time, numerical weather prediction (NWP) with

computers became feasible (Charney, 1955). NWP was one of the first important steps leading to

quantitative predictions of anthropogenic influences on air quality and climate.

Over the following decades, the United States enacted its own Clean Air Act (1963) with

amendments (1970, 1977, 1990) and the Air Quality Act (1967). Among other provisions, the laws

authorized: research into techniques for monitoring and controlling air pollution, as well as studies

of air pollutant emission inventories; the establishment of National Ambient Air Quality Standards
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(NAAQS); increased authority to regulate air pollutants; programs for acid deposition control; and

regulation of chemicals that deplete the ozone layer. The U.S. Environmental Protection Agency

(EPA) was established in 1970. One of the EPA’s primary responsibilities is to ensure state, tribal,

and local agencies monitor their own air quality and adhere to the NAAQS. Atmospheric chemistry

models can be used to forecast regional haze and ozone exceedance events as well as to attribute

past events to specific types of human or natural activity. In addition to reliable NWP, air quality

forecasts and hindcasts require descriptions of emissions, chemical transformation, and removal

(Carmichael et al., 2008).

Weather forecasting is an initial value problem, where the specified initial conditions have

a strong influence on the quality of the forecast. Early weather forecasts were initialized with

whatever atmospheric observations were available at the time. Charney et al. (1950) manually in-

terpolated sparse observations to a model grid. Although more sophisticated interpolation schemes

became available (e.g., Gilchrist and Cressman, 1954; Barnes, 1964), modern global NWP models

have 107 degrees of freedom to describe with only 104 to 105 non-uniformly distributed observations

for a given 6 hour period (Kalnay, 2003). The observation deficiency is greater for finer resolution

mesoscale models used to predict the passage of fronts and storms across continents. With certain

regions of the globe lacking observations, it became apparent that one could propagate observations

from locations of abundance to those of scarcity using the models themselves. Present-day oper-

ational forecasts perform a new one week or longer forecast every 6 hours. The initial conditions

are found by simulating the previous 6 hours, called the “analysis cycle,” using some form of data

assimilation (DA) algorithm.

There are several approaches to DA, including Optimal Interpolation (OI) (Gandin, 1966), 3D

variational (3D-Var) (Sasaki, 1970), Kalman filter (KF) (e.g., Ghil et al., 1981), ensemble Kalman

filter (EnKF) (Evensen, 1994), ensemble Kalman smoother (EnKS) (Evensen and Van Leeuwen,

2000), and 4D variational (4D-Var) (Marchuk, 1974; Penenko and Obraztsov, 1976; Dimet and

Talagrand, 1986). In general, 4D DA methods (including EnKS) account for time-varying model-

observation mismatch throughout the analysis cycle. Typically, 4D-Var uses the model as a strong
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constraint (Sasaki, 1970), but a weak-constraint approach that accounts for model error is also

possible (Trémolet, 2006). Alternatively, the flawed perfect model assumption can be corrected

by testing multiple initial guesses of control variables or using multiple model configurations. The

strong constraint is provided by the forward model equations, while the tangent linear (TLM) and

adjoint (ADM) models are used to calculate the influence of a set of control variables on the sum

of squared residual errors between model and observation, weighted by the model-observation error

covariance matrix. This process is described in Chapters 2 and 3 for the special case of incremental

4D-Var as proposed by Courtier et al. (1994). While the model forecast error starts out large and is

reduced, a second measure of error is the residual between the initial set of control variables and the

optimized ones, weighted by the inverse of the background error covariance matrix. The benefit of

this approach is to devise a solution for the forecast initial conditions that is physically consistent

with the model physics and that accounts for the full-rank covariance between the variables in the

state vector. The disadvantages of 4D-Var are that it requires developing an ADM and that it relies

on a time-consuming iterative optimization. The need for an adjoint model can not be avoided,

but the iterative process might be improved through algorithmic creativity.

In contrast to 4D-Var, ensemble-DA (e.g., Ensemble Kalman Filter (EnKF) and many vari-

ations (e.g. Evensen, 1994; Houtekamer et al., 1996; Anderson, 2003)) carries out multiple forward

model simulations in parallel. Each additional ensemble increases the number of model modes that

can be constrained while only adding wall-time in the form of gathering and distribution of data.

Due to the random nature of the ensembles, which are much less numerous than the dimension

of the state vector, ensemble methods require localization strategies to eliminate spurious state

variable correlations outside a specified lengthscale. Hybrid methods that incorporate a full-rank

background covariance matrix with the ensemble technique have improved ensemble-based forecasts

(e.g. Hamill and Snyder, 2000; Lorenc, 2003; Buehner, 2005), but they also require a deterministic

variational DA system running in tandem (Auligné et al., 2016). Hybrid methods have also been

developed to incorporate stochastic information into adjoint-based deterministic forecast systems

(e.g. Clayton et al., 2013), and more recently to meld stochastic and deterministic DA systems
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seamlessly (Auligné et al., 2016). The attention paid to avoiding adjoint-based DA while reaping

the benefits of deterministic methods stems from the incongruence of 4D-Var and short forecast

turnaround times.

National forecast centers around the world perform six-hourly operational forecasts for up to

a week or more ahead. Within that short six hour window, a fraction of the computational time

is dedicated to using some form of DA to derive the best global and regional initial conditions and

regional boundary conditions. If 4D-Var is used, the TLM and ADM integrations account for more

than ∼ 95% of the wall-time in each of ∼ 100 sequential iterations in an optimization algorithm.

The model resolution is often reduced in the TLM and ADM integrations (Zhang et al., 2014b) to

reduce the single iteration wall-time, but doing so also reduces the amount of information that can

be gleaned at fine scales. As the number of observations available to operational centers increases

(e.g., from satellites), so does the potential for DA to constrain more modes of model variability.

Just as additional ensembles in EnKF characterize additional modes, so do additional iterations in

4D-Var. Recent years have seen available computing resources moving toward increasing processor

counts without increasing processor speeds, which does not bode well for sequential algorithms.

In Ch. 4, we review some recent efforts to solve this problem, including a saddle formulation of

weak-constraint 4D-Var (Fisher et al., 2011) and novel preconditioning strategies (e.g., Desroziers

and Berre, 2012; Gürol et al., 2014) to reduce the number of iterations required. None of these has

provided the same type of parallelism to 4D-Var that ensemble-DA enjoys.

While NWP has benefitted from a boon in observations, and continued development of more

advanced DA methods, because of the large influence of weather on day-to-day life, atmospheric

chemistry observations and modeling have lagged behind. The chemical observing network is not

comprehensive, because of the vast number of chemical species to observe that have appreciable

impacts on air quality and climate, and the higher cost of measuring pollutants as compared to

wind, temperature, pressure, and water vapor. Particulate and ozone surface monitoring networks

in major U.S. cities are used to enforce NAAQS. They are supplemented by columnar ozone and

aerosol products from polar-orbiting satellite instruments (e.g., the Ozone Monitoring Instrument
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(OMI) (Levelt et al., 2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) (King

et al., 1992), and the Multi-Angle Imaging SpectroRadiomenter (MISR) (Diner et al., 1998)). In

addition to their use in operational monitoring, these observations and additional annual field

campaigns are used to identify weaknesses in model and emission inventory descriptions. The

latter is crucial since annual primary and precursor aerosol emissions have uncertainties anywhere

between 7% and a factor of four, with larger variation on seasonal to diurnal scales for particular

sectors (Streets et al., 2003; Suutari et al., 2001). Although in the case of operational forecasting

the control variables are the initial conditions to the analysis cycle, in practice they can be any

user-specified variable that influences the model forecast, such as boundary conditions, or surface

fluxes of chemical species in the case of an atmospheric chemistry model.

As chemical observations become more readily available, Carmichael et al. (2008) suggested

an increasing role for DA in solving the major problems facing air quality forecasting, including

improving understanding of interactions between aerosols, dynamics, and clouds. Aerosols are

liquid or solid particles suspended in a gas, which is the Earth’s atmosphere for this application.

There have been numerous studies identifying aerosols as short-term climate forcers through the

semi-direct (Hansen et al., 1997; Koch and Del Genio, 2010) and indirect (Twomey, 1977; Lohmann

and Feichter, 2005) cloud effects. These processes, in addition to direct radiative forcing, garner fine

particulate matter a large, but uncertain impact on climate (Myhre et al., 2013). Modeling aerosol

cloud interactions requires an online NWP-Chem model that integrates dynamic and chemical

equations simultaneously. Chapter 2 lists several NWP-Chem models that might be used to predict

aerosol-cloud feedbacks, and Appendix F includes a schematic of the typical processes described

by them. The alternative, a chemical transport model (CTM), interpolates three to six hour

meteorological fields from a separate NWP model. Grell et al. (2004) showed that vertical mass

transport of chemical tracers is highly sensitive to the choice of online versus offline modeling

methodologies due to variations in boundary layer mixing strength.

Using the Weather Research and Forecasting model with chemistry (WRF-Chem, Skamarock

et al. (2008); Grell et al. (2005)), Saide et al. (2015a) showed that including the radiative and
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microphysical effects of wildfire smoke in an NWP model could improve the forecasting of severe

storm events. However, monthly regional fire emissions of both gas and aerosol mass remain

uncertain by a factor of 10 or more around the world (e.g., Southeast/East Asia: Fu et al. (2012);

Subharan Africa: Zhang et al. (2014a); California: Ch. 3). As model resolution goes up and the

model domain gets smaller, the uncertainty of grid-scale emissions goes up even more. Using

highly uncertain inventories in regional forecasting of concentration requires constant corrections to

chemical initial conditions and/or surface fluxes through DA. Operationally, this requires expansive

observational coverage that is only available from satellites. DA can also be used in research to

diagnose the underlying errors in inventories using data from satellites or from a specific campaign,

as we do in Ch. 3. Chemical DA in an online model is valuable for improving predictions of the

aerosol impacts on health, regional climate, and weather.

WRF-Chem includes simultaneous (i.e., “online”) simulation of gas and aerosol-phase chemi-

cal and thermodynamic processes alongside the atmospheric dynamics. WRF-Chem has been used

to model aerosol-cloud interactions (e.g., Yang et al. (2011); Saide et al. (2012a); Makar et al.

(2015)). Significant work has been done to provide a 4D-Var framework in WRFDA (Barker et al.,

2005; Huang et al., 2009; Zhang et al., 2014b), and ADM and TLM versions of the NWP model

components already exist (Zhang et al., 2013). Although WRF-Chem has already been used in

sequential DA studies (see Ch. 2) to improve chemical initial conditions, these approaches have

two limitations: (1) there are not enough observations, (2) chemical concentrations decay back

to the emissions-driven values following the characteristic loss rate of each species. WRF-Chem

has also been used in top-down emission studies through Lagrangian Particle Dispersion Modeling

(LPDM) (see Ch. 3), which is useful when in-situ observations from surface sites or aircraft are

available during periods of consistent convective boundary layer mixing. Several offline CTM-based

inverse models can be used for constraining primary and precursor aerosol emissions (see references

in Ch. 2) from in-situ or daily satellite observations, but they lack the necessary online feedbacks

and spatial resolution necessary to predict total aerosol radiative forcing. Saide et al. (2015b)

used WRF-Chem in an adjoint-free 4D variational method to constrain temporally varying smoke
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emissions from a single fire. That method has also been used in operational smoke forecasting

(personal communication, Pablo Saide), but is limited computationally to only solving for a small

number of spatially aggregated source regions. Adjoint-based 4D-Var does not have the limitations

of sequential DA, LPDM, or adjoint-free variational methods. To the author’s knowledge, adjoint-

based 4D-Var still has not been used in a regional NWP-chemistry model with online coupling to

constrain grid-scale aerosol precursor emissions.

In order to answer the call to action by Carmichael et al. (2008) and to address processor

scalability issues in adjoint-based DA, this work enables randomized incremental chemical 4D-Var

in an NWP model with online chemistry (NWP-Chem). First, we create the foundation for a

4D-Var system that can probe the feedbacks between aerosols, dynamics, and microphysics, as

well as constrain highly uncertain primary and precursor chemical emissions. Second, we apply

the recently proposed Randomized Incremental Optimal Technique (RIOT) (Bousserez and Henze,

2016) in that same framework. WRF-Chem is selected for the NWP-Chemistry model, because of

its widespread use, diverse options available for forward modeling, and existing NWP incremental

4D-Var capability. In this work, we create (Ch. 2) WRFPLUS-Chem and WRFDA-Chem, and use

these tools to evaluate black carbon aerosol (BC) emission inventories. BC is used as a starting point

for three reasons: (1) it is relatively inert, (2) it has highly uncertain natural and anthropogenic

sources, and (3) its potential influence on climate covers a wide range, from large and warming to

small and cooling (Bond et al., 2013). Ch. 2 describes the chemical TLM and ADM in WRFPLUS-

Chem and an initial emission sensitivity study. Ch. 3 describes the specific steps of adapting

incremental 4D-Var from NWP to gridded emission control variables. That chapter also includes

a first application of WRFDA-Chem to the determination of optimal emissions of BC aerosol

throughout California during the Arctic Research of the Composition of the Troposphere from

Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB)

field campaign. Finally in Ch. 4, we apply RIOT in WRFDA-Chem to that same problem and

assess its ability to reduce the wall-time of incremental 4D-Var and generate the optimal posterior

control vector and posterior variance. We compare the results with an existing and widely used
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sequential optimization algorithm.



Chapter 2

Development and application of the WRFPLUS-Chem online chemistry adjoint

and WRFDA-Chem assimilation system

2.1 Introduction

Fine particulate matter impacts human health (Schwartz et al., 2007; Krewski et al., 2009)

and climate (Myhre et al., 2013). Atmospheric climate forcing from aerosols is potentially large,

but also highly uncertain owing to a complex spatial-temporal distribution of concentration, mixing

state, and particle size for multiple species, each emitted from varying precursor sources, both

anthropogenic and natural (Textor et al., 2006; Schulz et al., 2006). Depending on the species and

quality of records, a nation’s annual aerosol precursor and primary emissions have uncertainties

anywhere between 7% and a factor of four, with larger variation on seasonal to diurnal scales for

particular sectors (Streets et al., 2003; Suutari et al., 2001). Over these shorter time scales, aerosols

impact meteorology through the semi-direct (Hansen et al., 1997; Koch and Del Genio, 2010) and

indirect (Twomey, 1977; Lohmann and Feichter, 2005) cloud effects, which are both dependent on

aerosol vertical profiles (e.g., Samset et al., 2013) governed by mixing.

Atmospheric models are used to improve our understanding of aerosol sources, distributions,

and processes. Online numerical weather prediction and chemistry (NWP-chemistry) models inte-

grate dynamic and chemical equations simultaneously, whereas offline chemical transport models

(CTMs) interpolate meteorological fields from 3 to 6 hour reanalyses. Grell et al. (2004) showed

that vertical mass transport of chemical tracers is highly sensitive to the choice of online versus

offline modeling methodologies due to variations in boundary layer mixing strength. Additionally,
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NWP-chemistry models account for moisture and temperature perturbations to dynamics due to

aerosol microphysics and radiative forcing, while CTMs can not account for these feedbacks.

There are numerous online models with aerosol-meteorology feedbacks (e.g., WRF-Chem

(Skamarock et al., 2008; Grell et al., 2005), COSMO-ART (Vogel et al., 2009), GEM-AQ (Kamin-

ski et al., 2008),and IFS-MOZART (Kinnison et al., 2007; Flemming et al., 2009; Morcrette et al.,

2009)). Better descriptions of sources, loss mechanisms, and vertical transport in coupled mod-

els are needed to increase accuracies in short-term climate modeling (Baklanov et al., 2014). To

address this, chemical data assimilation can be used to improve short-term forecasts. In WRF,

three-dimensional variational data assimilation (3D-Var) (Pagowski et al., 2010; Liu et al., 2011;

Schwartz et al., 2012; Saide et al., 2012b, 2013), ensemble Kalman filter (EnKF) (Pagowski and

Grell, 2012), and hybrid approaches (Schwartz et al., 2014) have all been used to improve chemical

initial conditions. The limitation of these studies, using sequential methods, has been the decay of

chemical concentrations back to the emissions-driven values following the characteristic loss rate

of each species, necessitating periodic reinitialization with new observations. Using data assimila-

tion solely to perturb initial conditions leaves behind underlying deficiencies in model description,

emissions, or other input parameters.

In contrast to 3D approaches, 4D data assimilation attempts to minimize the discrepancy

between model predicted values and observations at the same time observations are acquired.

Variational 4D data assimilation (4D-Var) requires an adjoint, which calculates the sensitivity of a

model metric to all input parameters, such as resolved aerosol precursor emissions. Several offline

CTMs already have adjoints for constraining aerosol and aerosol precursor emissions, including

GEOS-Chem (Henze et al., 2007), STEM (Sandu et al., 2005; Hakami et al., 2005), CMAQ (Turner

et al., 2015), GOCART (Dubovik et al., 2008), and LMDz (Huneeus et al., 2009). Inverse modeling

has been used to constrain aerosol emissions with 4D-Var, but only in offline models (e.g., Hakami

et al., 2005; Dubovik et al., 2008; Henze et al., 2009; Wang et al., 2012). In addition to inverse

modeling, derivatives calculated from CTM adjoints have been used to analyze sensitivities of model

estimates to emissions (e.g., Turner et al., 2012). Online chemical 4D variational data assimilation
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(4D-Var) has been performed with the global IFS-MOZART model, although without two-way

coupling, to improve aerosol (Benedetti et al., 2009) and gas-phase (Inness et al., 2013) initial

conditions. To our knowledge, 4D-Var still has not been used in a regional NWP-chemistry model

with online coupling to constrain aerosol precursor emissions or other important model parameters,

such as vertical mixing coefficients.

Here we present the first such system, building on existing capabilities of the WRF data assim-

ilation (WRFDA) framework. WRFDA includes both 3D-Var (Barker et al., 2004) and incremental

4D-Var (Barker et al., 2005; Huang et al., 2009) algorithms, which are designed for constraining

meteorological initial conditions (e.g., wind fields, temperature, moisture). For WRFDA v3.2 and

later, WRF-4DVar requires calling the WRFPLUS forward (FWM), tangent linear (TLM) and

adjoint (ADM) models. These models include adiabatic WRF dynamics, along with simplified sur-

face friction (i.e., boundary layer), cumulus, and microphysics packages (Zhang et al., 2013). Here

we integrate aerosol chemistry and vertical mixing from WRF-Chem into WRFPLUS, including

complementary TLM and ADM components. While existing CTMs are capable of aerosol emission

inversions, this development promises to introduce new insights into meteorology-chemistry cou-

plings. We apply this system to black carbon (BC) aerosol, because of its important implications

for climate (Bond et al., 2013) and health (Grahame et al., 2014). Additionally, the widespread use

and development of WRF furthers the potential for continued model improvement and a community

of future users.

BC is emitted from incomplete combustion of fuels. Major anthropogenic sources include

residential cookstoves in developing countries, open crop burning, diesel transportation, and coal

power plants with poor emission controls. Wildfires, or biomass burning, are the largest natural

source. The major limitations to devising accurate bottom-up emissions inventories are poor ac-

tivity data in developing countries and difficulty parameterizing complex biomass burning sources.

Even in developed countries, changing economic landscapes affect real year-to-year emissions. Black

carbon (BC) is unique among atmospheric aerosols as being radiatively absorptive, relatively in-

ert, primary emitted, and having potentially complex cloud interactions. BC is possibly the second
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most important human emitted pollutant in terms of climate forcing in the present-day atmosphere,

with a net forcing of +1.1Wm−2, but with 90% uncertainty (+0.17 to +2.1Wm−2) (Bond et al.,

2013). Also, reductions in BC emissions have been shown to reduce fine particulate health impacts

(e.g., Anenberg et al., 2011).

The new TLM and ADM – referred to collectively herein as ”AD/TL models” – aerosol

treatments lay the groundwork for constraining aerosol precursor emissions using 4D-Var in a

NWP-chemistry model. In Sect. 2.2, we describe the WRFPLUS-Chem and WRFDA-Chem model

architectures. In Sect. 2.3, we describe the construction and verification of the AD/TL models of

specific WRF-Chem forward model components. In Sect. 2.4, we describe a special checkpointing

scheme that enables adjoint and tangent linear simulations longer than 6 hours, which are required

for accumulating sensitivities of sparse chemical observations with respect to emissions. In Sect. 2.5,

we demonstrate the capability of the adjoint model to calculate sensitivities of BC observation errors

in WRFDA-Chem. Finally, we discuss future developments for WRFPLUS-Chem and WRFDA-

Chem.

2.2 Methods

Creating the foundation for WRFDA-Chem required managing relationships between five

related, but separate models. These include the (1) Weather Research and Forecast Model (WRF),

(2) its “-Chem” variant, and the (3,4) WRFPLUS AD/TL models. Finally, (5) WRFDA 4D-Var

requires communication of critical namelist and state variables to the FWM, TLM, and ADM.

Figure 2.1 shows the relationships between these different models, including all AD/TL code that

was previously developed, and code that we have added, modified, or plan to add.

2.2.1 Forward model

For this work, we use WRF version 3.6. The WRFPLUS-Chem code repository (https:

//svn-wrf-model.cgd.ucar.edu/branches/WRFPLUSV3-Chem) contains the most current version.

Interested users can contact NCAR to request user access to the code. WRF contains multi-
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Figure 2.1: Dependencies between WRF, WRF-Chem, WRFPLUS AD/TL, and WRFDA. AD/TL
development status is also noted.

ple non-hydrostatic dynamic cores and parameterization options for modeling unresolved physical

processes. The FWM is identical in WRF and WRFPLUS, though typically only very simple

unresolved physics are applied in WRFPLUS. In addition, WRF-Chem simulates the emission, de-

position, transport, turbulent and cumulus mixing, wet scavenging, cloud interactions, and chemical

transformation of trace gasses and aerosols. All of these processes are modeled at the same spa-

tial and temporal resolution, which enables coupling WRF radiation and microphysics calculations

directly with chemical processes.

The forward model configuration for which we have developed the corresponding TLM and

ADM will be referred to as the “adjoint model configuration,” because we use the same settings

when running the adjoint. We use GOCART aerosols (chem opt=300), wherein the chem array

has 19 aerosol (e.g., SO2, sulfate, black carbon, dust, sea salt) and zero gas-phase members. This

option includes bulk mass sulfate chemistry and black carbon oxidative aging. We employ combined

local and non-local ACM2 PBL mixing (Pleim, 2007a,b), with surface interactions handled by the

Pleim-Xiu (PX) LSM (Xiu and Pleim, 2001; Pleim and Xiu, 2003; Pleim and Gilliam, 2009) and
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surface layer (Pleim, 2006) mechanisms (all options seven). Soil moisture and temperature nudging

are not used within the PXLSM. Prior to version 3.6, the WRF-Chem vertical mixing scheme solely

carried out PBL mixing and dry deposition for chemical species. That vertical mixing depended on

a (local) turbulent eddy mixing coefficient from a user-selected PBL scheme and a dry deposition

velocity. There is new capability to calculate tracer turbulent mixing and dry deposition within the

ACM2 subroutine itself, enabling non-local mixing. Trace gas and particle deposition velocities are

calculated using characteristic resistances found using methods from Wesely (1989). Microphysics

and radiation AD/TL models with aerosol feedbacks have not been incorporated into WRFPLUS-

Chem yet. These crucial components will be partially adapted from previous work (e.g. Saide et al.,

2012b, 2013), while others still need to be developed. Both microphysics and radiation are turned

off for Sect. 2.3.3 verification simulations. In order to ensure appropriate radiative fluxes at the

land-air boundary, the GSFCSW and Goddard LW radiation compute ground-incident radiation

for the Sect. 2.5 adjoint sensitivity demonstration. However, online coupling between radiation and

chemical species is deactivated.

2.2.2 Incremental 4D-Var

WRFDA uses an incremental 4D-Var method (Courtier et al., 1994) for finding the minimum

of the cost function, J , by adjusting control variables (CV), x. As described by Huang et al. (2009),

the WRFDA cost function has three terms

J = Jb + Jo + Jc, (2.1)
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where Jb, Jo, and Jc are the background, observation, and balancing cost functions, respectively.

Jc is not relevant to the current work. The background and observation cost functions are

Jb =
1

2

[(
xn − xn−1

)
+

n−1∑
i=1

(
xi − xi−1

)]>
B−1

[(
xn − xn−1

)
+

n−1∑
i=1

(
xi − xi−1

)]
(2.2a)

and

Jo =
1

2

K∑
k=1

{Hk [Mk (xn)]− yk}>R−1
k {Hk [Mk (xn)]− yk}

≈ 1

2

K∑
k=1

[
HkMk

(
xn − xn−1

)
− dk

]>
R−1
k

[
HkMk

(
xn − xn−1

)
− dk

]
. (2.2b)

The background cost function is a penalty term, which ensures the departure of the posterior, xn,

from the prior, x0 = xb, remains within the bounds justified by the background error covariance,

B. The observation cost function measures the distance between the 4D-Var model solution, xn,

and the observations, y. M and H are the nonlinear model and observation operators, while M

and H are their linearized forms, or tangent linear operators, used to propagate analysis increments

δx = xn − xn−1 from the earliest emission time to the kth observation. R is the observation error

covariance matrix. The innovation,

dk = yk −Hk

[
Mk

(
xn−1

)]
, (2.3)

is the residual error between the real and modeled observations k at the end of 4D-Var iteration

n−1. This notation slightly differs from Huang et al. (2009), who employed K observation windows,

each containing multiple observations.

For each iteration of incremental 4D-Var, the model is linearized about a trajectory, which

is a collection of stored values of all model state variables at all time steps within the assimilation

window. This trajectory enables propagation of sensitivities forward and backward in time within

the TLM and ADM. Each of these models are called in an inner loop to calculate the gradient of

the observation cost function, ∇xJo. An optimization algorithm uses the gradients to calculate

optimal analysis increments to the CVs, which minimize the observation cost function. If the CVs,

xn, depart too much from the initial guess for the current outer loop iteration, xn−1, the model
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must be relinearized about the new state, xn, using M . The purpose of the two-level optimization

is that approximating M with M transforms the cost function from a nonlinear to a quadratic form,

and guarantees a unique solution x∗ to the minimization (Courtier et al., 1994). Refer to Huang

et al. (2009) for more details on the WRFDA incremental method, including a full expression for

∇xJ given by Eqn. 7 of that article. The main purpose of this work is to introduce the AD/TL

model components of WRFPLUS-Chem.

2.3 Tangent linear and adjoint model construction and verification

We have developed and tested adjoint and tangent linear code to represent aerosol-relevant

processes in WRFPLUS-Chem. This development required a four step process:

(1) Automatically differentiate specific WRF-Chem modules using TAPENADE (Hascoet and

Pascual, 2013) version 3.6.

(2) Verify standalone TLM and ADM derivatives against finite difference approximations; de-

bug as necessary.

(3) Incorporate code manually into WRFPLUS.

(4) Repeat step 2 for fully integrated WRFPLUS-Chem model.

TAPENADE takes discrete Fortran or C source code as input, then generates either TLM or ADM

code using a user-generated list of independent and dependent parameters. In addition to creating

the differential code, TAPENADE reduces adjoint computational cost by eliminating unnecessary

lines of code. Similar to Xiao et al. (2008) and Zhang et al. (2013), integrating the automatically

differentiated adjoint code into WRFPLUS required significant manual intervention and debugging.

Methods for constructing discrete adjoints are well-documented (Giering and Kaminski, 1998; Has-

coet and Pascual, 2013). For the remainder of this section, we discuss the particular mechanisms

for which we have created AD/TL models, and then we provide verification results for WRFPLUS-

Chem.



17

2.3.1 Transport mechanisms

PBL physics and dry deposition in a column are handled by ACM2. The simple surface

friction previously developed for WRFPLUS does not perform vertical mixing of tracers, which is

a minimum requirement of any PBL scheme used in WRFPLUS-Chem. The ACM2 PBL depends

on ground-atmosphere interactions that necessitate additional surface layer and land surface model

(LSM) AD/TL code. For example, the ACM2 PBL scheme depends on the friction velocity U∗

calculated in a surface layer scheme, which itself depends on wind speed, and the state variables

u and v. ACM2 also depends on surface heat (HFX) and moisture (QFX) fluxes, which can be

calculated within the surface layer or LSM code, but also depend on U∗. The dependence of HFX

and QFX on ground-incident shortwave radiation (GSW) is calculated in the LSM. GSW is calcu-

lated in the radiation scheme, and depends on the aerosol composition and atmospheric moisture

phase and distribution. Because we have not developed radiation AD/TL code, this coupling is

not represented in WRFPLUS-Chem yet. The dependencies themselves are illustrative of how

ACM2, and indeed most any other PBL scheme available in WRF, is appropriate for represent-

ing chemistry-meteorology interactions critical to understanding short-term climate impacts from

aerosols. ACM2 is compatible with the Monin-Obukhov and PX (options 91 and 7) surface layer

options, as well as the SLAB and PX (options 1 and 7) LSM options. TLM and ADM code is de-

veloped for all of these choices, and have been tested in standalone verification tests. In the interest

of brevity, complete model verification in Sect. 2.3.3 has been limited to the two PX options.

Advection of inert tracers was added to WRFPLUS by X. Zhang (2012, personal communi-

cation). The same treatment has been applied to the “chem” array, with additional checkpointing

and parallel communications. We generated standalone TLM and ADM code for deep cumulus

convection as handled by the Grell-Freitas cumulus scheme (Grell and Freitas, 2014). One of the

major benefits of this cumulus scheme is the ability to use online calculated cloud condensation

nuclei (CCN) to account for the effect of aerosols on liquid and vapor water mass fractions. These

parameters directly impact convection, including tracer transport. The ability of the standalone
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AD/TL codes to produce the relevant members of the Jacobian has been verified for a single set

of column conditions using similar methods as described in subsection 2.3.3. However, the FWM,

TLM, and ADM do not yet account for vertical transport of chemical tracers, and thus have not

been integrated into WRFPLUS-Chem.

2.3.2 Aerosol-specific components

GOCART is a bulk aerosol scheme that treats reactive species (BC, OC, sulphate) using

a total mass approach and divides non-reactive species (dust, sea salt) into multiple size bins

(Chin et al., 2000). Oxidative aging for both BC and OC is handled by a first-order decay from

hydrophobic to hydrophilic forms using a time constant of 2.5 days. Sulphate (SO2−
4 ) is produced

from SO2 and dimethyl sulfide precursor gases in GOCART. Sulphate chemistry also requires

offline-calculated values for nitrate and OH radical, which are taken from climatologies available

from the PREP-CHEM-SRC preprocessor (Freitas et al., 2011). WRFPLUS-Chem includes both

the carbon and sulfate chemistry AD/TL codes, but only the BC component is tested and applied

here.

Emissions of aerosol precursors in WRF-Chem is a linear process corresponding to specific

chemistry and emission inventory options. Emission magnitudes are calculated, then distributed

spatially and temporally, in offline preprocessors. Typically, emissions are read in hourly following

some diurnal pattern. In order to make the emissions code easily differentiable, scaling factors are

added to the emissions such that

Ec,isc = αc,iscẼc. (2.4)

At any simulation time, Ẽc are the emissions most recently read in from file for chemical species c.

αc,isc and Ec,isc are the emission scaling factors and effective emissions, respectively, during scaling

period isc. For emission inversions, the CVs, x, are spatial-temporal resolved emission scaling

factors. At the beginning of 4D-Var or during an adjoint sensitivity study, the scaling factors are

set to unity. The scaling factors are applied in the FWM if environment option WRFPLUS==1 is

set during compilation.
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Dry deposition velocities are calculated in WRF-Chem within the dry deposition driver. In

order to ease adjoint code construction and reduce checkpointing requirements, the dry deposition

velocity calculation is moved to immediately precede the PBL driver as depicted in Fig.2.1. The

new source code is similar to the dry deposition driver, except that only code corresponding to

the GOCART aerosol option remains. The dry deposition AD/TL code accounts for dependencies

of the dry deposition velocity on physical parameters (e.g., temperature, water vapor, U∗). As

mentioned previously, the chemical concentrations are sensitive to dry deposition velocity within

the PBL scheme.

2.3.3 Verification and linearity test

WRFPLUS FWM, TLM, and ADM performance were previously verified by Zhang et al.

(2013). Here we use an alternative verification approach similar to that used by Henze et al.

(2007). We use the TLM, ADM, and a centered finite difference approximation from the FWM to

evaluate derivatives

χp,q =
∂Jp,f
∂xq,0

, (2.5)

of some cost function at location p and time step f with respect to some CV at location q and the

initial time 0. The finite difference derivatives are calculated from

χNLp,q ≈
Jp,f (xq,0 + δx)− Jp, f (xq,0 − δx)

2δx
, (2.6)

where each evaluation of J results from a FWM evaluation with some perturbed value of xq,0. δx

varies between 0.1% and 10% of the value of xq,0. The adjoint and tangent linear derivatives are

found by forcing the model gradient fields, λ∗ and λ, at Jp and xq, respectively. The tangent linear

gradient and adjoint gradient variables are analogous to state variables in the FWM. We force

gradients of 1.0, indicating a 100% perturbation of the variable, and the resulting derivatives are

retrieved from the model output gradient fields, such that

χTLp,q = λp,f = M (λq,0) (2.7)
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and

χADp,q = λ∗q,0 = M> (λ∗p,f) , (2.8)

where M> is the adjoint operator.

In order to evaluate our additions to WRFPLUS-Chem, we test cost functions equal to

hydrophobic (BC1) and hydrophilic (BC2) black carbon concentrations in 100 different grid cells.

We evaluate derivatives with respect to five state variables at three initial locations for each of

those 200 cost functions. The CVs include initial conditions for BC1, U , T , and Qv, and also

BC emission scaling factors, αBC . All sensitivities apply over a 3 hour duration for a domain

covering the southwest United States. For a full domain and model setup description refer to

Sect. 2.5.1.1. Figure 2.2 shows that the maximum relative error between the TLM and ADM is in

the 8th significant digit. Thus we only need to compare the nonlinear model to the TLM to verify

both the TLM and ADM. Those results are given in Fig. 2.3. The slope and R2 statistic for a linear

fit of those comparisons are very nearly unity for all CVs tested. Each of the plots in Fig(s). 2.2

and 2.3 depicts 600 derivative evaluations. A range of finite difference perturbations δx is used for

U , T , and Qv control variables in order to find a value of χNL with the best compromise between

truncation and roundoff error. We test derivatives with respect to meteorological variables in order

to show the AD/TL models will be functional in a setting with coupled chemistry and physics.

In such a system, the emissions will impact meteorology, which in turn impacts concentrations.

These results illustrate the capability of the AD/TL models to represent the latter part of that

relationship. All of the verification results apply to a three hour simulation period, but longer

simulations are needed to calculate the average influence of emissions on the modeled state-space.

2.4 Second order checkpointing

As discussed in Sect. 2.2.2, the nonlinear model trajectory is an integral component for prop-

agating gradients in the AD/TL models. As one might imagine, the trajectory contains a large

amount of information. WRFPLUS stores the entire double precision trajectory in memory in
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order to eliminate expensive I/O time. This is very helpful with regards to storage, but presents

a challenge in terms of memory. The system is designed for 6 hour operational assimilation win-

dows. In a typical WRFPLUS-Chem simulation there are at least twenty-eight 3-dimensional state

variables (8 physical, 1 to 3 moisture, and 19 GOCART species), and numerous other 2- and 1-

dimensional state variables that must be included in the trajectory. For an illustrative domain,

simulating 3 hours with a 90 second time step (18 km resolution), 79x79 columns, 42 levels, and

a 5 cell boundary width, the trajectory would require 1.46GB per core on 64 cores. This final

cost per core includes a 50% storage growth per doubling of the number of cores. Because the

trajectory is stored for all time steps, required memory scales linearly with simulation duration and

the number of simulated chemical species. For multi-day and multi-week inversions, as is typical in

non-operational chemical data assimilation, the memory requirements become impractical for most

cluster computing systems.

To solve this problem we implement a second order checkpointing scheme that shares the

storage burden between the hard disks and memory. In a standard WRFPLUS adjoint simulation,

the FWM is called first in order to calculate the trajectory. The FWM integrates the nonlinear

equations from the initial to the final time, and stores the model trajectory at each time step.

The ADM integrates the transpose of the linearized model equations backward in time, and at each

time step reads the trajectory previously stored by the FWM. This process is depicted as “1st-order

checkpoint” in Fig. 2.4. Since the storage limitation is driven by the duration of a simulation, we

break the simulation into smaller segments, while maintaining continuity in the adjoint derivatives.

The checkpointed adjoint simulation begins with a full FWM simulation beginning at the initial

time, t0, and ending at the final time, tf . WRF restart files are written at time intervals equal to

the checkpoint interval, ∆tc. Once the simulation is completed, the FWM is restarted at initial time

equal to tf − ∆tc. During that simulation, the trajectory is stored in memory. The trajectory is

then recalled in an adjoint simulation that proceeds backward toward the current initial time. The

checkpoint system alternately calls the FWM and ADM until returning to t0. The major hurdle

to integrating this second order checkpointing system into WRF-4DVar is that the trajectory is no
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Figure 2.4: Second order checkpointing scheme implemented in WRFPLUS-Chem.

longer readily available to WRFDA for calculating modeled observations, Hk [Mk (xn)], between

the calls to the forward and adjoint models. Instead, these values must be calculated during either

the full FWM (Step 1) or checkpoint FWM (Steps 2, 4, 6, etc.) simulations. We take the former

approach. A similar checkpointing system is also implemented for the TLM in order to enable long

duration incremental 4D-Var.

In order to ensure the checkpointing method delivers consistent derivatives to the non-

checkpointed version, we again compare AD/TL derivatives to finite difference approximations.

Because of the wall time required to calculate derivatives across extended time periods, we limit

our tests to fourteen pairs of initial and final locations, q and p. For all of the J and x pairs tested

in Sect. 2.3.3, the ADM and TLM agree to 13 or more digits over a 9 hour test. The improved

performance relative to the previous 3 hour test came about after a few minor bug fixes. Because

of this machine precision AD/TL agreement, we only compare the finite difference approximations

to the TLM. For these checkpointed simulations, we analyze the derivative of a time variant cost

function with respect to multiple control variables

χp,q (t) =
∂Jp (t)

∂xq,0
. (2.9)

Doing so ensures that the derivatives are continuous across multiple checkpoint intervals and we

are able to see the transient behavior of multiple finite difference perturbation sizes at times when
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there are large discrepancies with the TLM. The finite difference approximations of derivatives of

BC with respect to the physical variables grow more unstable with time. Thus, we calculate those

derivatives only for a 6 hour period, while we test derivatives with respect to emissions for 48 hours.

Here we also include derivatives of U , T and Qv with respect to U and Qv to ensure that those

relationships are represented properly in the surface layer, LSM, and PBL AD/TL schemes, so that

they may be used in a meteorological 4D-Var setting.

Figure 2.5 shows the resulting derivatives for nine different pairs of J and x for a single

pair of q and p. Most importantly for multi-day 4D-Var emissions inversions, BC concentrations

respond linearly to a 1% perturbation of emissions for at least 48 hours. Next, it becomes apparent

why derivatives with respect to U and Qv require multiple finite difference perturbation sizes to

ensure one of them matches the TLM at a particular cost function evaluation time. There are times

when either the smallest, largest, or no value for δx agrees with the TLM. However, the TLM has

inflection points at the same times as the finite difference approximations, including during periods

of intense oscillation, such as for ∂U
∂U and ∂U

∂Qv
. The chemical concentrations respond nonlinearly

to all U and Qv perturbation sizes for periods longer than 1 hour in the plots shown, and longer

than 3 hours for all test scenarios considered. Further testing of these coupled derivatives will be

necessary to determine over what time period they are suitable for inverse modeling, and under

what conditions the model nonlinearities cease to be a limiting factor. Future emission inversion

work with coupled physics and chemistry will need to verify that ∂J
∂α has a near linear response over

the time frame considered. The behaviors noted here are consistent across the other thirteen pairs

of q and p.

2.5 Sensitivities to BC emissions in California

Here we demonstrate the new WRFPLUS-Chem capabilities in an adjoint sensitivity study.

For the present example, the 4D-Var cost function is the model response metric and the biomass

burning, and weekday and weekend anthropogenic emissions are the model parameters of interest.

This framework is used to analyze where and when these parameters most impact the model
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27

performance and are thus in need of improvement.

2.5.1 Approach

For this demonstration, we calculate the sensitivity of the 4D-Var cost function in the first

iteration. The background term is zero and there has been no prior CV increment (i.e., δx = 0).

Therefore, the cost function, Eq. 2.1, simplifies to

J =
1

2

K∑
k=1

{Hk [Mk (xb)]− yk}>R−1
k {Hk [Mk (xb)]− yk}, (2.10)

All off-diagonal covariances in R are assumed to be zero in order to enable timely matrix inversion.

2.5.1.1 Model configuration

The model domain encompasses California and other southwest U.S. states from 20 June

2008, 00:00:00 UTC to 27 June 2008, 09:00:00 UTC. We generated chemical initial conditions by

running WRF-Chem for five days prior to the adjoint time period. We used the default WRF-

Chem boundary condition for BC concentration of 0.02 µg kg−1. This is consistent with a single

upwind Pacific ocean transect taken during the June 22 flight. Meteorological initial and boundary

conditions are interpolated from 3 hour, 32 km North American Regional Reanalysis (NARR)

fields. The horizontal resolution is 18 km throughout, and there are 42 vertical levels between the

surface and model top at 100 hPa. The eta levels are 1.000, 0.997, 0.993, 0.987, 0.977, 0.967, 0.957,

0.946, 0.934, 0.921, 0.908, 0.894, 0.880, 0.860, 0.840, 0.820, 0.800, 0.780, 0.750, 0.720, 0.690, 0.660,

0.620, 0.570, 0.520, 0.470, 0.430, 0.390, 0.350, 0.310, 0.270, 0.230, 0.190, 0.150, 0.115, 0.090 , 0.07

, 0.052, 0.035, 0.020, 0.010, and 0.000. For a column where the ground is at sea level, there are 13

levels below 1 km and an additional 5 levels below 2 km. The subgrid physics options used are

described in Sect. 2.2.1.

Anthropogenic emissions are taken from the U.S. EPA’s 2005 National Emissions Inven-

tory (NEI2005). Fire emissions are provided by the Fire INventory from NCAR (FINN Version

1) (Wiedinmyer et al., 2011, 2006). FINN uses Moderate Resolution Imaging Spectroradiometer
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(MODIS) active fire locations and radiative power from NASA Terra and Aqua satellites, as well

as speciated emission factors for four vegetation types, to calculate daily total 1 km resolution

emissions. Burned areas are scaled to the combined fractional coverage of each 1 km2 fire pixel by

tree and herbaceous vegetation types assigned by the MODIS Vegetation Continuous Fields prod-

uct (Hansen et al., 2003). Repeated fire detections in a single fire pixel are removed according to

Al-Saadi et al. (2008). Plume rise injection heights are calculated in WRF-Chem by an embedded

one-dimensional cloud-resolving model (Freitas et al., 2007, 2010; Grell et al., 2011).

2.5.1.2 Model-observation comparison

We compare the model to observations in individual time steps, which differs from previous

data assimilation approaches with WRF. In the standard WRFDA 4D-Var architecture, observa-

tions are binned over intervals, or windows, typically of one hour or longer duration. Whereas

WRFDA typically has k observation windows, here WRFDA-Chem and WRFPLUS-Chem handle

k observations possibly each at a different time. In order to reduce memory requirements, the ad-

joint forcing is stored in a column array, instead of the 2D and 3D arrays that were required for each

state variable for each window, k in WRFDA. Also, while WRFDA includes meteorological obser-

vation operators to be called offline, a fine temporal resolution observation operator must be called

directly within WRFPLUS. The traditional approach made communication between WRFDA and

WRFPLUS less cumbersome, but also limited the ability to use dynamic observations recorded

across broad temporal scales in an inversion.

In-situ observations were collected throughout California during the June 2008 portion of the

Arctic Research of the Composition of the Troposphere from Aircraft and Satellites field campaign

in collaboration with the California Air Resources Board (ARCTAS-CARB) (Jacob et al., 2010).

Instruments aboard the DC-8 aircraft measured trace gas and aerosol concentrations over four days,

including elemental carbon (EC) from the single particle soot photometer (SP2) at 10s intervals

(Sahu et al., 2012). Additionally, 41 Interagency Monitoring of Protected Visual Environments

(IMPROVE) sites measured daily average surface light absorbing carbon (LAC) on June 20, 23,
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and 26 by thermal/optical reflectance (TOR) analysis of quartz filters (Malm et al., 1994). Surface

and aircraft observation locations during the campaign are indicated in Fig(s). 2.6 and 2.7. The

aircraft trajectories are overlaid on MODIS Aqua true color images (Gumley, 2008), and locations

of MODIS active fires (NASA).
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Figure 2.6: Surface site residual model error, rk, overlaid on MODIS Aqua true color images and
active fire retrievals. Observations with a bias less than one standard deviation are also indicated.

The observation operators for aircraft and surface observations require temporal averaging.

The 10s resolution ARCTAS observations of BC concentration, pressure, latitude, and longitude

are averaged to the 90 sec model time step, which is approximately the time the DC-8 would take to

traverse a single 18x18 km2 column. However, the 10s resolution ARCTAS BC concentrations are

revision 2 (R2), while a later revision 3 (R3) product was released at 60s resolution only. The later

revision includes additional mass in the 50-900nm size range as a result of applying a lognormal

fit. In order to utilize this improved product, as well as leverage the finer resolution observations,

the 10s BC mass is scaled by the mass ratio between the 60s R3 and the 60s average R2 datasets.

The scaled 90s average observations are compared directly with the nearest model grid cell so

that the model values are not interpolated. The pressure measurements are compared to online

model pressures to determine the model level of each observation. For 24-hour average surface

measurements from IMPROVE, the observation operator averages the nearest model surface grid

cell concentration over all time steps within the observation period. For the few surface sites that

have two air samplers simultaneously measuring, they are averaged together to prevent nonzero



30

Bakersfield

Fresno

L.A.

Sacramento

S.F.

S.J.

Tahoe City

Bakersfield

Fresno

L.A.

Sacramento

S.F.

S.J.

Tahoe City

[a] June 20

123.0° W 121.0° W 119.0° W 117.0° W

 34.0° N

 36.0° N

 38.0° N

 40.0° N

Bakersfield

Eureka

Fresno

L.A.

Redding

Sacramento

S.D.

S.F.
S.J.

Tahoe City

Bakersfield

Eureka

Fresno

L.A.

Redding

Sacramento

S.D.

S.F.
S.J.

Tahoe City

[b] June 22

125.0° W 123.0° W 121.0° W 119.0° W 117.0° W

 33.0° N

 36.0° N

 39.0° N

 42.0° N

Bakersfield

L.A.

S.D.

Bakersfield

L.A.

S.D.

[c] June 24

121.0° W 119.0° W 117.0° W 115.0° W

 32.0° N

 34.0° N

 36.0° N

Bakersfield

Eureka

Fresno

L.A.

Redding

Sacramento

S.D.

S.F.
S.J.

Tahoe City

Bakersfield

Eureka

Fresno

L.A.

Redding

Sacramento

S.D.

S.F.
S.J.

Tahoe City

 

 

[d] June 26

124.0° W 120.0° W 116.0° W 112.0° W

 33.0° N

 36.0° N

 39.0° N

 42.0° N

HOBS < HP BL

HOBS > HP BL

| rk| < σk

MODIS Fi re s

rk (µgm−3)

 < −1.5

   −1  

   −0.5

   0   

   0.5 

   1   

 > 1.5 

Figure 2.7: Aircraft residual model error, rk, with indication for the observation height relative
to the model PBL height overlaid on MODIS Aqua true color images and active fire retrievals.
Observations with a bias less than one standard deviation are also indicated.
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correlation in the cost function (i.e., off-diagonal terms in R). After all averaging, there are 995

aircraft observations and 107 surface observations.

As depicted in Fig. 2.8, the WRF-Chem simulation is, on average, biased low for both the

surface and aircraft observations. The lowest biased aircraft observations tend to be at higher

altitudes, although this is not true in all cases. There are many high biased observations, and they

tend to be at lower altitudes and to occur earlier in the simulation period when anthropogenic

emissions dominate. Both surface and aircraft model predictions exhibit a wide spread of positive

and negative errors. In order to determine potential causes for bias in specific locations, we consider

the model residual errors, or simply “residuals,”

rk = Hk [Mk (xb)]− yk, (2.11)

for each aircraft observation k. Fig. 2.7 shows the statistically significant (p < 0.32) residuals for

observations above and below the top of the model PBL. Section 2.5.1.3 describes relevant measures

of observation variance and statistical significance.
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Figure 2.8: Linear fits between model BC concentrations with slope m and coefficient of determina-
tion R2 for (a) IMPROVE surface and (b) ARCTAS-CARB aircraft observations colored by model
height above mean sea level (AMSL) and above ground level (AGL).

Negative residuals, and hence low model bias, are most prevalent in northern California on
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June 22 and 26, most likely due to under prediction of biomass burning sources. There is also low

bias above the PBL in the southern San Joaquin Valley on June 20 and below the PBL inland from

San Diego on June 24. Although neither case has visual smoke in the MODIS images, there were

fires detected within 300 km. The largest positive residual occurs in Palmdale, CA close to landing

on June 24. It could be indicative of either an emission error or the coarse horizontal resolution

that collocates the airport with other significant nearby sources. Other notable high model biases

aloft occur near cities during the flights on June 20, 22, and 24. Similarly, surface site biases are

higher near cities, and along the coast. As might be expected, proximity to sources is a strong

indicator of error magnitude, as that is where the highest concentrations occur. The error sign

appears to be consistent above and below the PBL where such observations are collocated. Still,

the spatial error pattern could reflect some combination of meteorology and emissions deficiencies.

For the positive residuals off the coast of Los Angeles on June 22 and 24, there could be errors in

predicting vertical mixing associated with the land-sea circulation or predominant near-surface wind

direction. Discerning errors caused by emissions from those caused by meteorological mechanisms

would require a separate in-depth study.

2.5.1.3 Variance and residual error significance

When R is assumed to be diagonal, each residual in the 4D-Var cost function is weighted

inversely proportional to the observation error variance. The form of the cost function is based

in Bayesian statistics, with an aim of converging on posterior control variables in a maximum-

likelihood sense. However, using the variance alone to weight the residuals may result in very large

cost function terms for relatively small residual errors. As our interest in this study is to determine

how errors in emission estimates may be leading to model bias, we wish to ensure the largest

residuals have the greatest weight, while also accounting for differences in statistical significance of

particular errors. Thus we define the diagonal terms of R as

Rk,k =
wk
σ2
k,k

, (2.12)
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where wk is an additional weighting term and σ2
k,k is the variance.

The variance is comprised of components due to both observation and model uncertainty as

σ2
k,k = σ2

k = σ2
k,m + σ2

k,o. (2.13)

The model variance at each observation location is found from an ensemble of Nc=156 WRF-

Chem configurations during the modeling period. Each ensemble member, c, uses a different

combination of PBL, surface layer, LSM, and longwave and shortwave radiation options. Also,

there are configurations both with and without microphysics and cumulus convection. From the

ensemble, we use the population of residuals at each observation, k, to calculate the model variance

σ2
k,m = MAX

(
Nc∑
c=1

(rk,c)
2

Nc − 1
,MML2

)
, (2.14)

where MML is the minimum model limit. The minimum possible modeled BC concentration is

limited by the boundary condition, which fills the entire model domain during the five day warm-

up simulation. The MML is simply taken as the minimum model concentration for all observation

locations and all model configurations, and is found to be 0.01 µg m−3 and 0.02 µg m−3 for aircraft

and surface measurements, respectively, after rounding to the observation precision.

The IMPROVE instrument variance combines both relative and absolute uncertainties, the

latter of which arises due to the minimum detection limit (MDL) (UC-Davis, 2002). For a single

filter analysis, the variance (in µg2 m−6) is

σ2
lk,inst.

=


√

342 + [(1000) (0.07) ylk ]2

1000

2

. (2.15)

The sub-observation index lk is useful at sites with more than one air sampler. When a site has

data from multiple instruments in a single day, we take their average and combine their instrument

variances as

σ2
k,o =

Lk∑
lk

σ2
lk,inst.

L2
k

, (2.16)

where Lk is the observation count. We assume the IMPROVE measurements fully represent the

encompassing grid cell, since all sites are in remote locations and the samples are averaged over a

24 hour period.
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In contrast, the aircraft variance must capture the representativeness uncertainty associated

with comparing the average of an entire model grid cell with an average of multiple short duration

segments of a sparse aircraft transect. According to commercial literature for the SP2 device, it

has an MDL of 0.01 µg m−3, which we assume applies over the 10 sec observation interval used

during the ARCTAS campaign. The observations available through the NASA ARCTAS data

archive have a BC mass concentration uncertainty of ±30%. Although Sahu et al. (2012) report

±10% BC mass uncertainty, that range is given by Kondo et al. (2011), who state their results

are applicable in regions not impacted by refractory organic compounds, such as from biomass

burning sources. Because there are significant burning sources in this domain, we adopt the more

conservative range. We utilize the instrument uncertainties in a definition for total observation

variance with components due to both averaging and representativeness, such that for each average

aircraft measurement,

ȳk =

Lk∑
lk=1

ylk
Lk
, (2.17)

the total variance is

σ2
k,o = MDL2 + σ2

k,avg. + σ2
k,rep.. (2.18)

Adding the minimum variance associated with the MDL prevents the total variance from trending

toward zero for any particular observation. This is important when using the variance in the cost

function to ensure that near zero observations–which have low variances–with small residuals do

not dominate the inversion. The averaging variance is the variance of the ylk ’s that makeup ȳk,

which is an attempt to capture the spread of true concentrations in a model grid cell. In the case

that there is only a single observation, the averaging uncertainty is taken as double the instrument

uncertainty. Thus,

σ2
k,avg. =


∑Lk

lk=1

[
(ylk−ȳk)

2

Lk−1

]
if Lk > 1;

(2σk,inst.)
2 if Lk = 1

(2.19)

For any time step where Lk < Lmax = 9, there is an additional variance penalty proportional to
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the sum of the individual instrument variances,

σ2
k,rep. =

√
Lmax − Lk
Lmax

Lk∑
lk=1

σ2
lk,inst.

L2
k

, (2.20)

where

σlk,inst. = MAX (MDL, 0.3 · ylk) . (2.21)

In order to motivate the weight, wk, applied to each residual model error, let us consider the

primary inputs to the adjoint simulation, which are the adjoint forcings

λ∗k,m =
∂J

∂ck

= H>k σ
−2
k {Hk [Mk (xb)]− yk}

= H>k λ
∗
k,o. (2.22)

ck is any state variable on which Hk depends and which Mk (xb) predicts. For our purposes,

the state variables are modeled BC concentrations. The adjoint of the observation operator, H>k

transforms the forcing from observation space (λ∗k,o) back to model space (λ∗k,m). Thus, the forcing

in observation space is

λ∗k,o =
rk
σ2
k

. (2.23)

Observations with significant model bias would require the largest perturbation in control

variables to alleviate, and would seem to inform the inversion process the greatest. However, they

must also have low total variance to contribute to an inversion. Figure 2.9 shows the surface and

aircraft standard deviations plotted versus residual error. Also plotted in that figure are one and

two standard deviation zones, as well as lines of constant λ∗k,o for all wk = 1. Any residual falling

outside the 2σ zone is one where the combined model and observation standard deviation is small

enough to say with 95% confidence (p < 0.05) that the residual error deviates from zero (i.e., the

model and observation disagree). These statistically significant model errors indicate that some

kind of inversion is worthwhile. The relative contributions of observation and model variances is

in general proportional to the relative magnitudes of observed and modeled concentration. Thus,
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model (observation) variation contributes to a large fraction of uncertainty in positive (negative)

residuals.
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Figure 2.9: Model and total observation error standard deviation (σk,m, σk) versus model residual
error (rk) with adjoint forcing (λ∗k,o) contours corresponding to wk = 1 for (a) surface and (b)
aircraft observations. 1σ and 2σ zones reflect regions of increasing statistical significance.

There are several outlier negative residuals with magnitudes much larger than the remainder

of the population. A large portion of these have large enough uncertainty that their adjoint forcing

is much less than that of other lower magnitude residuals. Consider the region where |rk| <0.5

µg m−3 and σk <0.3 µg m−3. The adjoint forcing magnitude is between 10 and 200 µg−1m3, varying

the mean forcing magnitude to the maximum for any observation in the whole population. The

residual errors within the 1σ and 2σ zones are not statistically significant, yet they might have larger

adjoint forcing than observations with larger residual error at higher significance levels. Applying

these adjoint forcings as-is could drive the inversion to fitting data points with small absolute

residual error. This adjoint forcing imbalance between high and low significance observations can

be alleviated by a counteracting weighting scheme. In order to devise such a scheme, we consider

which forms of statistical significance are important to this inverse problem.

Because our goal in an emission inversion is to reduce model bias by perturbing emissions,

model bias is itself an important characteristic. We use the ensemble of model configurations to
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calculate the variance in all residual errors, that is

σ2
r =

Nc∑
c=1

K∑
k=1

r2
k,c

NcK − 1
. (2.24)

The residual standard deviations, σr, are 0.69 µg m−3 and 0.29 µg m−3 for surface and aircraft

observation populations, respectively. After confirming that the residual errors are approximately

normally distributed, the significance of the bias of a single observation relative to the entire

population is

fPOP,k = erf

(
|r̃k|√
2σ2

r

)
. (2.25)

In statistics, the ratio of |r̃k|σr is called the z-value, and denotes the number of standard deviations

between r̃k and the expected value of zero. The variable r̃k indicates the user must select a specific

form of residual error. Two examples are the mean or median of rk. A third approach, and

the one taken here is to use the residual found in the first 4D-Var iteration, rk,n=0. fPOP,k is a

continuously variable p-value, or the percentage of the population of all rk,c that is less significant

than r̃k. Another measure of significance is visualized in the σ zones of Fig. 2.9, and was discussed

previously. That is, for an individual residual error and variance, what is the probability that there

will always be mismatch between the model and observation? The individual error significance is

fIND,k = erf

 |r̃k|√
2σ2

k

 . (2.26)

The population and individual error significances are combined to derive the adjoint forcing weight,

wk =
[
(fPOP,k)

γ (fIND,k)
1−γ
]β
. (2.27)

The weighting scheme can be tuned for a specific application using the γ and β parameters to

reshape the adjoint forcing contours. However, care must be taken when selecting γ, β, and r̃k to

ensure convergence in 4D-Var to the mean of the Gaussian distribution of residual errors. Here we

only introduce the weighting scheme and use it in a demonstration, but do not verify its validity.

We use γ = 0.5 to provide some balance between the two measures of significance and β = 2 to

ensure the weighting has a large impact. After calculating the wk’s according to Eqn. 2.27, the new
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effective adjoint forcings are compared to the original values in Fig. 2.10. The weighting scheme is

successful at reducing the impact of observation errors with low significance on the cost function.
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Figure 2.10: Adjoint forcing (λ∗k,o) versus residual error (rk) for ARCTAS and IMPROVE obser-
vations using weights of (a) wk =1 and (b) wk from Eqn. 2.27.

After applying the new weighting scheme, the λ∗k,o contours no longer converge on the y-axis

as depicted in Fig.2.9. Instead, they exit radially from the origin in all directions. As both the

population and individual z-values approach zero, the adjoint forcing converges toward

λ∗k,o ≈
rk
σ2
k

(
0.8

|r̃k|
σγr σ

1−γ
k

)β
= 0.64

rkr̃
2
k

σrσ3
k

. (2.28)

For our specific values of σr, all residual errors within the 2σ zone satisfy |λ∗k,o| . 5 µg−1m3 for

surface, and |λ∗k,o| . 10 µg−1m3 for aircraft observations.

2.5.2 Results and discussion

With the weighting function applied, we calculate sensitivities of the 4D-Var cost function

with respect to emissions for determining potential sources of model bias. The weights reduce the

cost function from 5374 to 3784, which increases the normalized cost function sensitivity to emission
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perturbations. Figure 2.11 shows fully normalized sensitivities,

∂ln J

∂ln Ei,j,d
=

24∑
n=1

∂ln J

∂ln Ei,j,d,n
, (2.29)

for six days of the simulation. The sensitivity in a particular grid cell is summed over the local

diurnal cycle for hours n = [1, ..., 24] on day d. For anthropogenic emissions, the local time is

calculated for discrete 15◦ time zones, whereas for biomass burning emissions, local time corresponds

to the continuous sun cycle. Undoubtedly, there are locations with positive and negative sensitivities

at different times of day that will cancel, but this temporally aggregated sensitivity is an attempt to

obtain average daily relationships across the domain. Although the color bar has been saturated at

±5·10−3, the full range of sensitivities are from −2.7·10−3 to +5.6·10−3 and −5.4·10−3 to +6.3·10−3

for anthropogenic and biomass burning emissions, respectively.

 33.0° N

 36.0° N

 39.0° N

 42.0° N

 

 

[a] FRI, June 20

[b] SUN, June 22

 

 
[c] MON, June 23

[d] TUE, June 24

124.0° W 120.0° W 116.0° W 112.0° W

 33.0° N

 36.0° N

 39.0° N

 42.0° N
[e] WED, June 25

124.0° W 120.0° W 116.0° W 112.0° W

[f] THU, June 26

124.0° W 120.0° W 116.0° W 112.0° W

Anthropogenic
Biomass Burning

∂ ln J

∂ ln E i , j , d

x 10−3

 < −5

   −4

   −3

   −2

   −1

    0

    1

    2

    3

    4

 >  5

Figure 2.11: Normalized sensitivities ( ∂ln J
∂ln Ei,j,d

) of the 4D-Var cost function (for surface and air-

craft observations) with respect to anthropogenic and burning emission scaling factors overlaid on
MODIS Aqua true color images for six days during the simulation. Anthropogenic sensitivities
with magnitudes less than 1% of the maximum anthropogenic sensitivity magnitude are removed.
There is a marker for all grid cells with non-zero burning emissions.

The magnitude of a normalized sensitivity corresponds to the fractional response in the cost

function given a 100% perturbation of emissions in a grid cell. If the model were perfect, the
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sensitivity magnitudes would be proportional to the difference between the background emission

estimate and the true value. Thus a negative sensitivity indicates a location where estimated

sources are too low, and vice versa. Because the sensitivities themselves depend on the emission

magnitudes, they will change in each 4D-Var iteration, eventually converging on a minimum of the

cost function where the sensitivities are zero. We use the sensitivities here as a qualitative indicator

of emission errors, and not a quantitative conclusion as might be provided with a complete inversion.

The sensitivities exhibit a similar spatial-temporal pattern as the residual errors in Fig(s). 2.6

and 2.7, in general indicating that estimated anthropogenic emissions are too high, and that esti-

mated fire emissions are too low. A more complex depiction of all BC emission errors arises in the

sensitivities than the residuals alone might reveal. While most non-negligible burning sensitivities

are negative, emissions from the Los Padres National Forest and northern redwoods on June 23 are

potentially too high. The relative contributions of those fire estimates and simultaneous anthro-

pogenic sources to positive coastal surface residuals near L.A. on June 23 are difficult to disentangle.

However, the June 24 positive residuals from ARCTAS are more likely due to the anthropogenic

sources. That is because the model transports smoke into the flight path of the DC-8 south of San

Pedro, where BC concentrations are under predicted. Still, some anthropogenic source regions are

under predicted as well.

The spatial variations in sensitivities are indicative of two phenomena. First, appreciable

sensitivities will only arise in emissions that influence the particular observations available. Thus,

full observation coverage is imperative to a successful inversion. Second, emission errors are het-

erogeneous in space and time. For biomass burning sources, heterogeneity arises due to missed

detections in the MODIS active fire product, as well as potential errors in vegetation classification

or attribution of a particular vegetation class to one of four land cover types used in FINN. An-

thropogenic source error heterogeneity could be due to a static inventory from 2005 being used to

describe emissions in 2008, or to spatial variations in BC emission factors for a particular source

sector.

Comparative adjoint sensitivities are calculated using the SLAB LSM scheme (option 1) in
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place of the PX option. In these results, the same positive coastal sensitivities are even more

pronounced and widespread on June 23 and 24. Negative sensitivities to fires in the Sequoia and

Inyo National Forests are larger in magnitude than those in the Sierras on June 23, but the spatial

sensitivity patterns between SLAB and PX options are consistent on June 25. The differences are

presumably due to changes in the residual error between the two configurations, since the weights

and variances used are identical. r̃k was not recalculated for the SLAB case. The differing spatial

sensitivity patterns indicate that the surface heat and moisture fluxes calculated by each LSM

scheme contributes non-negligibly to the vertical mixing of BC to aircraft measurement altitudes.
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Figure 2.12: Diurnal normalized sensitivities ( ∂ln J
∂ln En

) of the 4D-Var cost function with respect to
emissions scaling factors for (a, b, and c) wk = 1 and (d, e, and f) wk from Eqn. 2.27. Also plotted
are diurnal emission fractions. Sensitivities were calculated for two different WRF LSM options
and are shown separately for biomass burning, and weekend and weekday anthropogenic emissions.

We also consider temporal sensitivity patterns to compare the two LSM schemes. Figure 2.12

shows the diurnal distribution of biomass burning, and weekday and weekend anthropogenic BC

emission sensitivities for both of the LSM configurations, and for unity weights, wk = 1 and wk

from Eqn. 2.27. Each bar in that plot represents a summation of sensitivities across the whole

domain from 20 June 00:00:00 UTC to 26 June 23:00:00 UTC (d = [1, ..., 7]) within a particular
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local hour, n, such that

∂ln J

∂ln En
=

nx∑
i=1

ny∑
j=1

7∑
d=1

∂ln J

∂ln Ei,j,d,n
. (2.30)

The signs and magnitudes of sensitivities fit the previous description for the spatially distributed

temporal aggregation. The time period of emissions to which an observation is most sensitive

depends on the altitude of that observation and the flow mechanisms that transport emitted aerosol

mass to that observation. Thus, any conclusions drawn could be biased if observations do not have

full temporal coverage, especially near sources. Since normalized sensitivities are proportional to

emissions, it is to be expected that sensitivities at peak emission hours are magnified. Also, each

hour of sensitivity is a sum of many diverse source locations. So while the net sensitivity in a single

hour may be positive, the spatial distribution of sensitivities is much more varied, as was previously

discussed.

The FINN biomass burning inventory applies an identical diurnal emission apportionment

for all fires, regardless of vegetation, shading due to slopes, wind speed, or relative humidity. This

scaling is applied in preprocessing. Both the PX and SLAB LSM setups seem to agree that the

timing of the FINN burning emissions peak is correct within ±1 hour, and that the peak should

be sharper. Without the weighting scheme, the PX configuration indicates that burning emissions

are too low in peak hours, while the SLAB configuration concludes that burning emissions are

too high in off-peak hours. With the weighting scheme applied, both configurations agree that

fire emissions need to be increased to reduce the cost function. The increased burning sensitivity

magnitudes indicate the weighting scheme is successful at generating a cost function that is more

robustly sensitive to emission perturbations. The relative disagreement in sensitivity magnitude

between the two LSM configurations is attributable to differences in residual errors, rk, and the

resulting adjoint forcings, λ∗k,o. Both configurations seem to agree that the timing of emissions is

correct, and in fact the midday peak should be sharpened. However, the normalized sensitivities

are proportional to emissions, meaning an emission peak should correspond to a sensitivity peak.

Some work still needs to be done to interpret diurnal sensitivity patterns for use in a full inversion.
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In contrast to FINN, NEI applies a variety of diurnal patterns to point, area, and traffic

sources. The weekend and weekday emission profiles shown in Fig. 2.12 are the emission weighted

averages for the entire domain. Individual sources may have a profile closer to flat, or alternatively

zero overnight, and flat during daylight hours. The weighted average profile shown is close to

the one used for commercial diesel traffic, since that is the largest BC source within the domain.

Attributing sensitivities, or errors, to specific sectors is not straight-forward and doing so may

require a smaller horizontal grid spacing to reduce the number of sectors per grid cell. Results for

the weighted and unweighted cost functions are very similar. In general, anthropogenic emissions are

too high throughout all times of the day on both weekdays and weekends. Both LSM configurations

indicate the weekday profile peak should be sharper near 14:00LT, and not at 16:00LT, but also

that emissions from 6:00LT to 16:00LT should be closer to the late evening and early morning

magnitudes. The weekend sensitivities indicate the evening and morning emissions are too high,

and that the daytime peak is timed about right, with the exception of the 18:00 LT spike. However,

the relatively small magnitude of weekend sensitivities could also indicate there were not enough

observations of anthropogenic sources on June 21 (SAT) and 22 (SUN) to draw definitive conclusions

about emission timing.

Results for the two LSM options reveal the potential for model configuration to introduce bias

in a 4D-Var inversion. For these particular observations, the posterior emissions from the PX option

would likely be higher than those from the SLAB option, because of their relative sensitivity values.

Model variability must be taken into consideration in 4D-Var sensitivity studies of high resolution

emissions, because model variation represents a large fractional contribution to observation error

variance for positive residuals, as shown in Fig. 2.9.

2.6 Conclusions

We have implemented, verified, and demonstrated the WRFPLUS-Chem coupled meteorology

and chemical adjoint and tangent linear models for PBL mixing, emission, aging, dry deposition,

and advection of BC aerosol. A second order checkpointing scheme enables tangent linear and
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adjoint model runs longer than six hours. The adjoint was used in the first iteration of a 4D-Var

inversion within WRFDA-Chem, where model-observation residual errors are compared for low-

and high-temporal resolution IMPROVE surface and ARCTAS-CARB aircraft observations during

one week of June 2008. A novel cost function weighting scheme was devised to increase the impact

of high significance observations in future 4D-Var inversions. Results indicate that the weighting

scheme is effective at generating robust sensitivities of the cost function to emissions. The adjoint

sensitivities also indicate that anthropogenic emissions are over predicted and burning emissions are

under predicted for the domain and time period considered. The diurnal sensitivities would seem

to indicate that burning emission profiles should be steeper midday, while anthropogenic emission

profiles should be flattened on weekdays and sharpened on weekends. A full inversion is necessary

to quantify the magnitude of the errors in the emissions. Additionally, adjoint sensitivities found

using two different LSM options indicate that the results of such inversions will be sensitive to the

choice of model configuration.

The next steps are as follows. We intend to incorporate tangent linear and adjoint observation

operators for useful remote sensing products (e.g., aerosol optical depth (Saide et al., 2013) and

absorbing aerosol optical depth). This addition will enable WRFDA-Chem to be applied to a wider

range of domains and time periods and operationally. The WRFDA-Chem optimization algorithm

still needs to be applied to control variables for chemical species initial conditions and emission

scaling factors. Future development and incorporation of radiation and microphysics adjoints (e.g.

Saide et al., 2012b) will provide coupling between aerosols and meteorology, and provide new

insights into sensitivities of direct, indirect, and semi-direct radiative forcing to emission sectors

and locations. In addition to the aerosol applications discussed, WRFDA-Chem 4D-Var will also

be suited to emission inversions for green house gases and other chemical tracers.



Chapter 3

Four dimensional variational inversion of black carbon emissions during

ARACTAS-CARB with WRFDA-Chem

3.1 Introduction

Black carbon (BC) makes significant contributions to short term climate (Bond et al., 2013)

and human health (Janssen et al., 2012) as a component of aerosolized fine particulate matter

(PM2.5) in the atmosphere. BC is emitted through incomplete combustion from natural and an-

thropogenic burning of biomass and fossil fuels. Open biomass burning (BB), which includes

natural wild fires, deforestation, and agricultural waste and prescribed burning, accounts for 40%

of total global BC emissions, while anthropogenic energy related sources (e.g., on- and off-road

diesel and gasoline engines, industrial coal, residential cooking and heating) make up the remaining

60% (Bond et al., 2013). Future climate conditions that increase drought and fire prevalence (e.g.,

Spracklen et al., 2009) and increasingly regulated anthropogenic sources might lead to a reversal

of these ratios in California (Mao et al., 2011) and globally (Jolly et al., 2015). In California, BB

events have been shown to increase surface PM2.5 concentrations by ×3 to ×5, compared to non-fire

periods (Wu et al., 2006). The heterogeneity in BC emission and loss patterns and difficulty in

replicating transport contribute to prediction uncertainty.

Despite the recognized importance of biomass emissions, large discrepancies remain in inven-

tories in terms of biomass consumed and emitted chemical species. Zhang et al. (2014a) considered

seven different inventories during February 2010 over Africa, which gave a range of ×12 in total

emitted OC and BC throughout the month. Fu et al. (2012) found similar variability between only
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two inventories in Southeast and East Asia during January and April 2006. Zhang et al. (2014a)

concluded that diffusion and loss mechanisms limit the effect of the monthly emission variability to

only a ×2-3 range of monthly average domain-wide burden, AOD, and 2 m temperature. However,

the inventory spread of emission magnitudes from larger sources led to column burden ranges of

×16-30 at the hourly to daily grid scales.

The large range in inventories at small scales results from the differing ways in which they are

built. In order to be globally applicable, fire locating algorithms use remotely sensed hot spots from

polar-orbiting satellites. Some provide additional regional locational and diurnal information with

geostationary instruments. In all cases, daily emissions in a grid cell are calculated as the product

of activity ( kg burned) and emission factors for each species and vegetation class combination

( kg emitted (kg burned)−1). Bottom-up inventories combine rough estimates of burned area with

vegetation densities and percent biomass burned associated with different Land Cover Types (LCT)

to determine fire activity (e.g., Wiedinmyer et al., 2011; Reid et al., 2009; van der Werf et al., 2010).

Top-down approaches use fire radiative power (FRP) measured by polar-orbiting or geostationary

satellites and the LCT-specific energy content (e.g., Kaiser et al., 2012; Zhang et al., 2012), which

circumvents using uncertain estimates of burned areas (Boschetti et al., 2004). A third approach

combines the FRP with top-down constraints of aerosol optical depth (AOD) (e.g., Ichoku et al.,

2012; Darmenov and da Silva, 2013). All three of these approaches cross reference fire locations

with biome lookup tables to obtain the species-specific emission factors for each fire.

Improving short-term, local BC concentration predictions requires characterizing fine-scale

spatial and diurnal patterns of BB emissions. The weakness of using only polar-orbiting data

(e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and

Aqua) in bottom-up fire inventories is that there are nominally four overpasses per day, often with

missed detections due to cloud- and smoke-cover or fire sizes beyond the instrument detection

limits. Thus, these observations provide little information about the diurnal pattern of fire counts

and FRP. Zhang et al. (2012) and Andela et al. (2015) devise methods for deriving climatological

diurnal FRP patterns using geostationary observations. Both provide new information to modelers,
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but the former is not generalizable to grid-scale diurnal variability and the latter precludes the

possibility that diurnal FRP (Zhang et al., 2012) and emissions (Saide et al., 2015b) patterns may

be bimodal for specific LCT’s and fire regimes, or due to local meteorology.

In contrast to their BB counterparts, anthropogenic emissions of BC are periodic across

weekly and annual time scales. Their spatial distributions are relatively well-known in developed

countries, and less so in developing countries (Bond et al., 2013). Global estimates of annual an-

thropogenic BC emissions vary by ×2 (Bond et al., 2013), national annual BC emissions in Asian

countries and regions have uncertainties from ×2 to ×5 (Streets et al., 2003). In North America,

including in California, uncertainties still persist in terms of characterizing the magnitude of emis-

sions in a particular year, seasonal variability, and long term trends in activity and control strategies

(Grieshop et al., 2006; McDonald et al., 2015). Bond et al. (2013) cite several inventories that give

a range of ×1.7 for annual U.S. anthropogenic BC emissions. However, like many other inventories,

the U.S. EPA National Emission Inventory (Reff et al., 2009) does not specify uncertainty bounds

either for the whole country or at state and county levels.

These challenges in characterization of both BB and anthropogenic emissions of BC and co-

emitted species have led to the proliferation of top-down constraint methods of varying complexity

and utility. Several studies have used adjoint-free methods for anthropogenic emissions in Los

Angeles, California using aircraft measurements during the 2010 California Research at the Nexus

of Air Quality and Climate Change (CalNex) campaign. Brioude et al. (2012) constrained CO, NOx,

and CO2, and Cui et al. (2015) constrained CH4; both applied a Lagrangian Particle Dispersion

Model (LPDM). Peischl et al. (2013) constrained CH4 using a mass balance approach and light

alkane signatures from multiple sectors. LPDM benefits from being able to resolve sources on as

fine of a grid resolution as is used in the underlying model. Both LPDM and mass balance are

limited to linear tracer problems where observations are recorded under specific meteorological

conditions. Wecht et al. (2014) used GEOS-Chem in an analytical inversion to compare constraints

from the CalNex aircraft measurements with those from present and future satellite observations

of CH4 throughout California. Although an analytical inversion does not require an adjoint, the
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approach is limited, computationally, to constraining only a few sources, which imposes aggregation

error (Mao et al., 2015). Adjoint-based four-dimensional variational data assimilation (4D-Var) is

able to account for nonlinear behavior between the emission sources and observation receptors

by calculating exact gradients across physical processes. Such an approach does not have the

limitations imposed by mass balance, LPDM, or analytical inversions, but does require development

of an adjoint. The gradients are usually calculated through an adjoint model, although recent work

(Saide et al., 2015b) performs 4D-Var on a limited area fire without an adjoint. That new approach,

while easier to implement, is limited to solving for only a few spatially-distributed sources due to

computational limitations.

In this study, we adapt the adjoint-based incremental four dimensional variational data as-

similation (incremental 4D-Var) used in the WRFDA weather forecasting system (Barker et al.,

2005; Huang et al., 2009) to solution of tracer surface flux estimation problems. We apply the result-

ing tool, WRFDA-Chem, to constrain anthropogenic and BB sources of BC throughout California

during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in

collaboration with the California Air Resources Board (ARCTAS-CARB) field campaign. In June

2008, ARCTAS-CARB characterized aerosols and trace gases throughout California with DC-8

aircraft flights on 20 (Friday), 22 (Sunday), 24 (Tuesday), and 26 (Wednesday) June (Jacob et al.,

2010). Sahu et al. (2012) used BC total mass measurements from a single-particle soot photometer

(SP2) and other simultaneous gas-phase measurements to identify and characterize anthropogenic

and BB plumes in California. We assess the capability of these same observations and every-

3rd-day surface measurements from the Interagency Monitoring of PROtected Visual Environment

(IMPROVE) network to constrain errors in BC surface fluxes when used in 4D-Var. As described

in (Guerrette and Henze, 2015), this approach of assimilating chemical tracer observations in a

regional numerical weather prediction and chemistry model is unique in the context of previous

4D-Var flux constraints. We also estimate emissions, their associated uncertainties, and provide

diagnostics for observing system evaluation at high spatio-temporal resolution (hourly, 18 km ×

18 km). The approach taken in this work is described in Sec. 3.2, including the forward, adjoint,
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and tangent linear models, the prior inventories and domain, and the incremental 4D-Var method

implemented in WRFDA-Chem. Section 3.3 describes the application of WRFDA-Chem to the

BB and anthropogenic emission inversion problem during ARCTAS-CARB. We conclude with a

summary and recommendations for future measurement campaigns and emission inversion research.

3.2 Method

3.2.1 Nonlinear, adjoint, and tangent linear models

Incremental 4D-Var requires forward nonlinear (NLM), adjoint (ADM), and tangent linear

(TLM) models. The NLM is nearly identical to WRF-Chem (Grell et al., 2005) with the addition

of emission scaling factors. The GOCART option facilitates 19 species, including 4 gas and aerosol

species for sulfate chemistry, hydrophobic and hydrophilic BC and organic carbon, 5 size bins for

dust, 4 bins for sea salt, and 2 diagnostic species for PM2.5 and PM10. While we use GOCART, the

results presented are limited to BC. The model configuration is the same as was used in Guerrette

and Henze (2015), and is summarized as follows: ACM2 PBL mixing (Pleim, 2007a,b), Pleim-Xiu

land surface model (Xiu and Pleim, 2001; Pleim and Xiu, 2003; Pleim and Gilliam, 2009) and

surface layer (Pleim, 2006) mechanisms without soil moisture and temperature nudging, Wesely

dry deposition velocities (Wesely, 1989), GSFC shortwave and Goddard long wave radiation, and

microphysics turned off. Microphysical and radiative responses to online aerosols are also turned

off, because they are not included in WRF-Chem for GOCART.

We utilize the recently developed WRFPLUS-Chem (Guerrette and Henze, 2015), which

contains ADM and TLM code extending the original WRFPLUS software (Zhang et al., 2013).

WRFPLUS-Chem describes chemical tracers in the context of planetary boundary layer (PBL)

mixing, emissions, dry deposition, and GOCART aerosols. ADM and TLM gradients have been

verified against finite difference approximations. Second-order checkpointing reduces the memory

footprint to a feasible level for ADM and TLM simulations over longer durations (>∼ 6 hr) and/or

that use many chemical tracers (>∼ 10). Guerrette and Henze (2015) applied the ADM in calculat-
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ing sensitivities relevant to the emission inversion carried out here. Sec. 3.3.5 includes a comparison

of the results of that study with the posterior emissions here.

The model domain is similar to that used by Guerrette and Henze (2015). The spatial extent

encompasses California and other southwest U.S. states. We conduct two emission inversions, the

first on 22 June with a focus on biomass burning sources, and the second on 23-24 June with a

focus on anthropogenic sources. We generated chemical initial conditions by running WRF-Chem

from 15 June 2008, 00:00:00 up until the beginning of each inversion period. We used the default

WRF-Chem boundary condition for BC concentration of 0.02 µg kg−1, which was found to be

consistent with observations with an upwind flight on 22 June. Meteorological initial and boundary

conditions are interpolated from 3 h, 32 km North American Regional Reanalysis (NARR) fields.

The horizontal resolution is 18 km throughout 80×80 columns, and there are 42 vertical levels

between the surface and model top at 100 hPa.

3.2.2 Prior emission inventories

The prior includes sources of BC from anthropogenic activity and natural wild fires. Anthro-

pogenic emissions are taken from the U.S. EPA’s 2005 National Emissions Inventory (NEI05) for

mobile and point sources, including for example diesel on-road and power production from coal.

The individual sectors are lumped together for each grid cell. We represent BB emissions using

three different wild fire inventories, FINNv1.0 and v1.5 both at 1 km × 1 km resolution (Wied-

inmyer et al., 2011, 2006), and QFEDv2.4r8 at 0.1◦ × 0.1◦ resolution (Darmenov and da Silva,

2013). FINNv1.5 is readily available through NCAR (http://bai.acom.ucar.edu/Data/fire/)

to WRF-Chem users, while FINNv1.0 is no longer supported. However, we include FINNv1.0 in

this study, because it shows equivalent value as a prior. FINN and QFED fall into the first (bottom-

up) and third (top-down constraint with AOD) category of BB inventories described in Sec. 3.1,

respectively. QFED scales global aerosol emissions from four biome types through multiple linear

regression between observed MODIS aerosol optical depth (AOD) and modeled GEOS-5 AOD dur-

ing the years 2004-2009. For temperate forests, which produce 80% of the wild-fire BC in California
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during this modeling study (June 2008), QFED scales aerosols by ×4.5 throughout the world. This

global scaling is problematic for the California fires, because the GEOS-5 AOD is biased high in

the Western U.S. during the summer fire seasons of 2006-2008 (Fig. C14 of Darmenov and da Silva,

2013). In order to match the regional climatological AOD scaling factors for the Western U.S., we

scale all QFED BC sources by ×1
3 . This scaling is already taken into account in the prior emissions

shown in Sec. 3.3.3.

The WRF preprocessor distributed with the FINN inventory is used to distribute ASCII

formatted lists of both FINN and QFED daily speciated fire emissions to hourly netcdf files readable

by WRF. The diurnal profile follows the Western Regional Air Partnership profile WRAP (2005),

and is defined by a flux peak from 13:00 to 14:00 Local Time (LT), and flat fluxes equal to 2.5%

of the peak value between 19:00 LT and 09:00 LT. Through modeling experience, we found two

bugs with how the FINN preprocessor interprets the WRAP profile and have fixed them for this

case study. The total FINNv1.0 emissions across the model domain before and after fixing these

bugs are plotted in Fig. 3.1 along with MODIS active fire counts (NASA). The first bug relates

to how the timezone of a particular fire is calculated from longitude. The preprocessor converts a

decimal longitude to integer time zone bins; this allows a fire at 120.1◦W to be an hour earlier in

the diurnal profile than a fire at 119.9◦W, even though they should be at nearly identical positions

in the WRAP profile. Such behavior might apply to anthropogenic emissions, where cities near

time zone borders follow different daily cycles of activity, but not to natural activity related to the

15◦ per hour cycle of the sun.

The second bug, and the one most visible in Fig. 3.1, is in the redistribution of UTC fire

detections in to LT emissions. MODIS Terra and Aqua overpass times are distributed around noon

and midnight LT globally, with some adjustment as the image capture location moves farther from

the equator. The fire hot spots are detected in UTC days, and their emissions are profiled according

to LT periods corresponding to the same UTC day as the detection. In California, where the LT

is UTC minus 8 hours, the noon overpass corresponds to 20:00 UTC, and 00:00 UTC corresponds

to 16:00 LT on the previous day (sun cycle). Therefore, when a fire is detected during nearly
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Figure 3.1: MODIS fire hot spot detections, excluding those with confidence less than or equal
to 20% and double detections within 1.2 km of each other (left axis) and domain-wide FINNv1.0
BB emissions during the ARCTAS-CARB campaign, with and without fixes described in Sec. 3.2.2
(right axis).

peak heat and emission fluxes at noon, a large fraction of the flux is apportioned to the previous

afternoon. For locations east of the International Date Line, the LT reallocation is in the opposite

direction. In either case, some portion of the profile is shifted by 24 hours. This error is apparent as

a temporal discontinuity in the case of transient fires that vary significantly in magnitude from one

day to the next, especially after a recent ignition. Since the domain used here is nearly confined to

a single time zone, we simply move the emissions forward one day for times between 16:00-23:00 LT

(00:00-07:00 UTC). A more robust fix will need to be implemented in a future preprocessor.

Another error in the prior BB emissions is less easily resolved. Figure 3.2 shows where

the MODIS active fires are located relative to the inventory fire locations. Since QFED fires are

provided on a LAT-LON grid, the fire centers do not coincide with its grid centers. When the

inventory is distributed to the 18 km model grid, some emissions are shifted over by one column

relative to the FINN locations. There are several additional spurious emission locations in QFED,

where no active fires were detected on either 21 or 22 June. In a month-long simulation, differences

in fire gridding between several inventories can be averaged out. In the shorter term inversions over
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Figure 3.2: Land category types, MODIS fire hot spot detections on 21 and 22 June, 2008, sized
by FRP, and 18 km×18 km gridded FINNv1.0 and QFED emission locations.

California presented in Sec. 3.3, the locational differences do affect the results.

3.2.3 WRFDA-Chem inversion system

The aim of data assimilation (DA) is to optimally combine uncertain observations with un-

certain model predictions to provide an improved estimate of the state of a system than either

gives alone. In Bayesian statistics, the probability distribution of a set of control variables (CV),

x ∈ Rn, conditional on available observations, yo, is proportional to the product of two known

distributions,

P (x|yo) ∝ P (x)P (yo|x) . (3.1)

The first distribution on the right hand side is called the prior, background, or first guess; the second

is the likelihood of model-observation mismatch, where here both are assumed to be Gaussian. They

are found through the solution of the minimization problem

min
x

J (x) =
1

2
(x− xb)>B−1 (x− xb)

+
1

2
(G (x)− yo)>R−1 (G (x)− yo) , (3.2)
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where xb is the vector of prior CVs, B is the background covariance matrix, and R is the model-

observation error covariance matrix. The nonlinear operator,

G (x) =



H1 (x)

...

Hi (x)

...

HN (x)


, (3.3)

is similar to that applied by Weaver et al. (2005) and Tshimanga et al. (2008), and is composed of

the model-observation operators, with each Hi mapping x to observation time i. The measurements

at each acquisition time, yoi ∈ Rmi , are expressed independently for N acquisition times by

yo =
[
yo>1 , . . . ,yo>N

]>
∈ Rm, (3.4)

where
∑N

i=1mi = m. The o superscript denotes that yo are observations.

The cost function in Eq. 3.2 is derived for unbiased Gaussian statistics in both the back-

ground errors and model-observation errors. When grid-scale CV uncertainties are greater than

100%, as is often the case for chemical emissions, that assumption allows the posterior to be either

positive or negative. While net surface flux rates can be negative when accounting for upward

and downward rates together, emission rates are themselves positive. To ensure this, the ratio of

modeled (posterior, Ea) to tabulated inventory (prior, Eb) emissions in all grid cells are gathered

into a vector, β = exa , such that

Ea,j = Eb,jβj , (3.5)

for CV member j. Each βj is a linear scaling factor, while exponential scaling factors comprise

the posterior CV vector, xa. Fletcher and Zupanski (2007) showed that this approach – which was

previously utilized in emission inversions by, e.g., Müller and Stavrakou (2005), Elbern et al. (2007),

and Henze et al. (2009) – converges toward the median of a multivariate log-normal distribution

for β. Although other emission scaling forms have proven effective (Bergamaschi et al., 2009; Jiang
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et al., 2015), we stick with exponential scaling factors here both as a first demonstration, and to be

consistent with log-normal statistics for emission rates. x is resolved on the grid scale and across

hourly discretized emission rates; the temporal resolution is customizable.

3.2.3.1 Incremental 4D-Var

Here we apply incremental 4D-Var as first introduced by Courtier et al. (1994), utilizing

the existing software architecture in WRFDA, and extended to accommodate exponential emission

scaling factor CVs. Incremental 4D-Var starts from the assumption that model evaluations of

perturbed CVs at observation time k can be expressed by

G (x+ δx) ≈ G (x) + Gδx, (3.6)

where G is the Jacobian. The full matrix is too large to store in memory, but the product Gδx

is found through the TLM, transforming increments in CV space to perturbations in observation

space. With the assumption, Eq. 3.6, the linearized problem is

min
δxk

J
(
δxk

)
=

1

2

[
δxk +

(
xk−1 − xb

)]>
B−1

[
δxk +

(
xk−1 − xb

)]
+

1

2

(
Gk−1δxk − do,k−1

)>
R−1

(
Gk−1δxk − do,k−1

)
. (3.7)

Each increment, δxk, is found in sequential outer loop iterations, where the inner loop solves the

quadratic cost function in Eq. 3.7 using linear optimization. k is the number of the current outer

loop. The superscript on Gk−1 denotes that it is linearized around the state from the previous
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iteration, i.e.,

Gk−1 =



H1|xk−1

...

Hi|xk−1

...

HN |xk−1


. (3.8)

do,k−1 is the innovation between observations and model values in the previous iteration:

do,k−1 = yo −G
(
xk−1

)
. (3.9)

In an emission inversion for a single chemical species, n = nxnynt = O
(
105 − 106

)
, depending

on the domain size and temporal aggregation. Since the number of members in B is equal to n2,

finding its inverse is computationally infeasible. To circumvent that challenge, Barker et al. (2004)

implemented a control variable transform (CVT) through a square root preconditioner, U, in

WRFDA. The increment is transformed as δxk = Uδvk, where B = UU>, U>B−1U = In, and

In ∈ Rn×n is the identity matrix. The transformed minimization problem is

min
δvk

J
(
δvk
)

=
1

2

(
δvk − db,k−1

)> (
δvk − db,k−1

)
+

1

2

(
Gk−1Uδvk − do,k−1

)>
R−1

(
Gk−1Uδvk − do,k−1

)
, (3.10)

where the background departure, summed over all previous outer iterations, is

db,k−1 = −
k−1∑
ko=1

δvko . (3.11)

In addition to circumventing calculating B−1, the preconditioner reduces the condition number of

the problem, speeding up the minimization process.

3.2.3.2 Error covariance

WRFDA-Chem utilizes a very similar CVT as WRFDA, with some modification for the

scaling factor control variables. The transform δxk = Uδvk is performed through two separate
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operations as U = UtUh. Although the horizontal transform (Uh) only deals with correlations in

the x and y directions, and the temporal transform (Ut) only does so in the temporal dimension,

they are both n × n, with sub-matrices along the diagonal of dimension (nxny) × (nxny) and

(nt)× (nt), respectively. The computational overhead of multiplying by either transform is reduced

by only handling the non-zero elements. Uh is carried out using recursive filters (Barker et al., 2004)

and the scalar correlation length scale, Lh. Ut is constructed in a similar fashion as the vertical

transform in WRFDA (Barker et al., 2004), except that herein we use all of its eigenmodes. The user

specifies the duration of emission scaling factor bins (in minutes), the temporal correlation timescale

(Lt, in hours), and the grid-scale relative emission uncertainty, σx. WRFDA-Chem converts these

selections to a covariance sub-matrix Bt = ΣCΣ ∈ Rnt×nt , where C is the temporal correlation

matrix and Σ = σxInt . Bt is square, symmetric, and positive-definite. Similar to Saide et al.

(2015b), C is defined using an exponential decay,

Cij = e
−∆t
Lt , (3.12)

where ∆t is the time elapsed between the beginning of two particular emission steps. The covari-

ance is decomposed into eigenmodes as Bt = EtΛtE
>
t ; these are readily calculated, because the

dimension of Bt is the square of the number of emission time steps (e.g., 24 steps for hourly scaling

factors in a single day inversion). Throughout the optimization, the temporal transform is carried

out through multiplication by

Ut =


EtΛ

1/2
t . . . 0

...
. . .

...

0 . . . EtΛ
1/2
t

 (3.13)

and its transpose.

In general, the prior variances are estimated in the form of multiplicative emission uncertainty

in β space (e.g., “factor of 2, 3, 4, etc.”), not in the exponential CV (x) space. The covariances (off-

diagonal terms of B) defined previously are assumed to be applicable in CV space. Transformations

between the expectations and covariances of a multivariate log-normal (β ∼ LN
(
µβ0 ,Bβ0

)
) and
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a Gaussian distribution (i.e., x ∼ N (xb,Bx)) are derived by, e.g., Halliwell (2015), as

E
[
β0
]
i

= µβ0 = exp

(
xb,i +

1

2
Bx,ii

)
(3.14)

and

Bβ0,ij = exp

[
xb,i + xb,j +

1

2
(Bx,ii + Bx,jj)

]
(exp Bx,ij − 1) , (3.15)

respectively, where i and j are general indices coinciding with individual CV members, E is the

expectation operator and exp is the natural exponential function. The subscript β0 indicates a

variable is evaluated in lognormal space in the previous iteration, when k = 0, and the subscript

x indicates an evaluation in CV space. Since the CVs are normally distributed, xb is the mean,

median, and mode. As Eq. 3.14 shows, the expected value, or mean, of β0 is not equal to its

median, expxb,i, the latter being the characteristic we use here. The prior linear scaling factor

variances are

σβ0,i = exp

[
xb,i +

1

2
(σxb,i)

2

] [
exp (σxb,i)

2 − 1
] 1

2
. (3.16)

This is identical to the variance transformation between univariate log-normal and Gaussian dis-

tributions. With an initial guess of σxb,i = 0, the recursive inverse relation,

σxb,i =

√√√√log

[
1 +

(
σβ0,i

)2(
µβ0,i

)2
]

=

√√√√√log

1 +

(
σβ0,i

)2
exp

(
2xb,i + (σxb,i)

2
)
. (3.17)

converges for reasonable ranges of σβ0,i, which is the additive uncertainty in β. Earlier emission

inversion works (e.g., Elbern et al., 2007) assume that

(
σβ0,i + 1

)2 ≈ exp (xb,i + σxb,i)

exp (xb,i − σxb,i)
= (expσxb,i)

2 ,

which is equivalent to

σβ0,i + 1 ≈ expσxb,i, (3.18)
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and its inverse

σxb,i ≈ log
(
σβ0,i + 1

)
. (3.19)

(σβ0 + 1) is the multiplicative error in emissions. For example, σβ0 = 2 gives a factor of three

(×3) uncertainty. In our case xb,i = 0 and Eq. 3.18 gives an error in σβ0,i + 1 less than 3% for

σxb ∈ [0, log(2)], but reaches 100% mismatch at σxb = log(4.2). Previous works that use Eq. 3.19

with relative emission errors less than ×3 do not warrant corrections. However, utilizing Eq. 3.17 is

important for high-resolution inversions of BB sources, where grid-scale uncertainties are probably

above that threshold. Sections 3.3.3 and 3.4 include further discussion of emission uncertainty.

The observation-model covariance matrix, R, is assumed diagonal. For each p measurement,

the total variance is defined as the sum of observation
(
σ2
p,o

)
and model

(
σ2
p,m

)
components, fol-

lowing the approach by Guerrette and Henze (2015). σp,m is determined from an ensemble of 156

WRF-Chem model configurations. Each member uses a unique combination of options for PBL

mixing, surface layer, LSM, and longwave and shortwave radiation options, as well as includes or

excludes microphysics and subgrid cumulus convection. σp,o accounts for instrument precision, rep-

resentativeness error, and averaging of measurements to the model resolution. We do not use the

weighting term previously defined by Guerrette and Henze (2015), because small residuals with low

uncertainty do not appear to hinder the inversion process. Refer to that work for more particular

details of how σ2
p,m and σ2

p,o are calculated.

3.2.3.3 Linear optimization

With all of the terms in Eq. 3.10 defined, the linear optimization proceeds as follows. The

inner loop seeks the optimal δvk, at which point

∇δvJ =
(
δvk − db,k−1

)
+ U>Gk−1>R−1

(
Gk−1Uδvk − do,k−1

)
= 0. (3.20)
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The action of Gk−1> on a vector is calculated with the ADM. Solving for the CVT increment,

δvk =
(
In + U>Gk−1>R−1Gk−1U

)−1 (
db,k−1 + U>Gk−1>R−1do,k−1

)
= − [Hδv]−1∇δvJ |δvk=0, (3.21)

where Hδv = ∇2
δvJ is the Hessian of Eq. 3.10. Hδv and its inverse are too large to store and

calculate explicitly. Through an iterative process, the inner loop linear optimization estimates the

product of the inverse Hessian with the initial cost function gradient. Finite precision and the

problem dimension, n, prevent Eq. 3.20 from being exactly equal to zero. Increasing the number

of inner loop iterations to approach such an objective does not necessarily speed up convergence in

the nonlinear problem of Eq. 3.2. Large innovations, do,k, may remain after relinearization around

the new state xk.

The two linear optimization algorithms available in WRFDA are Conjugate Gradient and

the Lanczos recurrence described on p. 493 of Golub and Van Loan (1996). We use Lanczos, which

aids the estimation of posterior error as described in Sec. 3.2.3.4. Linear optimization strategies

are designed to solve a quadratic problem

min
x̂

F (x̂) =
1

2
x̂>Ax̂− x̂>b+ c

Ax̂ = b. (3.22)

The equivalence of incremental 4D-Var (Eqs. 3.10) and Gauss Newton (GN) to solve Eq. 3.22 is

demonstrated in Appendix A; there, we repeat some derivations by Lawless et al. (2005), Gratton

et al. (2007), and Tshimanga et al. (2008) using the notation defined herein. The advantage of this

equivalence is that any studies pertaining to issues and advances with GN have the potential to

inform incremental 4D-Var; we exploit this in Sec. 3.2.3.5 to improve the relinearization behavior

for nonlinear CVs.

3.2.3.4 Posterior Error

Posterior uncertainty is a useful measure to diagnose the value of an emission inversion. In

a region of linear behavior of the full cost function, Eq. 3.2, and when δx is normally distributed,
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the posterior covariance, Pa, is equal to the inverse Hessian of Eq. 3.7 (e.g., Thacker, 1989; Fisher

and Courtier, 1995):

Pa = [Hδx]−1 , (3.23)

where

Hδx = B−1 + Gk−1>R−1Gk−1. (3.24)

Combining this with the expression for the Hessian of Eq. 3.10 we used in Eq. 3.21 gives a conversion

from the transformed variable space

Hδv = U>HδxU. (3.25)

Using a Lanczos recurrence to solve the inner loop optimization problem in Eq. 3.10 has the benefit

of producing the means to approximate [Hδv]−1, which we demonstrate in Appendix A. The final

result of that derivation is the posterior error,

Pa = U [Hδv]−1 U>

≈B +

l∑
ki=1

(
λ−1
ki
− 1
)

(Uν̂ki) (Uν̂ki)
> , (3.26)

in terms of the eigenvectors ofHδv, ν̂ki = Qlŵlki . Each inner iteration, ki, leading up to the current

iteration l of the Lanczos optimization, produces (1) a new Lanczos vector in the orthonormal

matrix Ql = [q̂1, .., q̂l] and (2) a new row and column in a tridiagonal matrix Tl, whose ki
th

eigenpair is (λki ; ŵlki). Pa is a low-rank update to B, because l << n due to the wall-clock

requirements of running the TLM and ADM once per iteration. Equation 3.26 is consistent with

earlier publications (Fisher and Courtier, 1995; Meirink et al., 2008).

3.2.3.5 Damped Gauss Newton

Each CV increment, δxk, must be small enough to keep the error associated with the tangent

linear assumption, Eq. 3.6, below some threshold. However, the nonlinearity of the log-normal prior
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emission errors contributes to failures in that respect. For demonstration, we consider the treatment

of β ∈ β and x ∈ x associated with a single grid cell. At the end of an outer loop, x is updated,

and β is relinearized using

βk = ex
k−1+δxk = βk−1eδx

k
. (3.27)

Thus, the increment in β is

δβk = βk − βk−1 = βk−1
(
eδx

k − 1
)
, (3.28)

which reveals the nonlinear nature of the emission increment. This contrasts with the TLM version

of the transform in Eq. 3.5, which states

δβ′ = ex
k−1

δx = βk−1δx′. (3.29)

The ratio of δβk/δβ′ gives the multiplicative error in the tangent linear assumption during relin-

earization:

εTL =
eδx

k − 1

δxk
. (3.30)

Around δxk = 0, the tangent linear relationship very closely matches the nonlinear equation,

giving εTL ≈ 1. For δxk > 0, εTL grows nearly exponentially toward∞, reaching ×2 at δxk ≈ 1.26.

When δxk < 0, εTL shrinks asymptotically toward zero, reaching ×0.5 at δxk ≈ −1.59. As εTL is

farther from unity, it is more likely that the linear optimization will generate J
(
xk
)
> J

(
xk−1

)
.

Not only do we never want that to happen, but we would prefer to advance toward a more optimal

solution as quickly as possible.

Violation of the TL assumption and potential solutions are discussed in several DA works.

The prevailing strategy in chemical 4D-Var is to apply a non-incremental nonlinear optimiza-

tion strategy (e.g., Henze et al., 2009; Bergamaschi et al., 2009), eliminating the inner-outer loop

structure. Implementing this approach in WRFDA with posterior error estimation would be a

considerable additional effort. The use of the tangent linear model in the inner loop also presents

computational advantages for dual resolution multi-incremental 4D-Var (e.g., Zhang et al., 2014b).
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Alternatively, Gratton et al. (2013) discuss application of GN in a trust region framework, which

has the limitation that a portion of the computationally expensive outer loop increments will be re-

jected. Some authors have successfully applied the Levenberg-Marquardt algorithm in EnKF (e.g.,

Chen and Oliver, 2013; Mandel et al., 2016) by adding a regularization term to the cost function.

A simpler approach yet is damped GN (DGN), which changes the inner loop increment in

Eq. 3.21 to

δvk = − ηk [Hδv]−1∇δvJ |δvk=0, (3.31)

and uses a line search to find an optimal scalar ηk ∈ (0, 1] at the completion of each outer loop

iteration (Kelley, 1999). DGN is based on the Armijo rule, which states that the increment found

by GN points toward a direction of lower J ; if the step size terminus is outside the linear behavior

of the model, decrease the step size. WRFDA-Chem uses a non-optimal variant we call heuristic

DGN, that requires user intervention to determine ηk. Results with a simplified test problem in

MATLAB indicate that the resultant CV’s near the optimum are nearly identical either with the

line search or heuristic damping. However, heuristic DGN likely increases the number of outer

iterations required to converge, and motivates implementing the line search in future work. The

same MATLAB tests showed that applying a range of damping coefficient values before the Lanczos

process has no impact on the estimated H−1
δv .

The heuristics to determine ηk are a function of the prior covariance. As the uncertainty

increases, ηk should be smaller, because the initial gradient and resulting increments will be larger

in magnitude. Additionally, ηk should increase in each subsequent outer loop iteration as the

nonlinear optimum is approached, since the diminishing increment magnitude will eventually satisfy

the tangent linear assumption. We found that a prior multiplicative emission uncertainty of ×3.8,

coinciding with CV uncertainty of σx = 1.099, requires η0 = 0.4 in the first outer loop iteration. η0

should be adjusted in inverse proportion to σx. Presumably there is some lower limit of σx where

no damping is required. In WRFDA-Chem, the damping ramps linearly back to 1 in the final outer

loop.
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3.3 ARCTAS-CARB Case Study

3.3.1 Inversion setup

From late May until 20 June 2008, the southwest U.S. experienced a very dry period with

little to no cloud cover appearing in MODIS true color imagery, and no recorded rainfall for most

of California. On 21 June, the Aqua and Terra satellites recorded cloud cover for much of Northern

California, south of San Francisco, and along the Sierra Nevada mountain range, and there were

wide-spread lightning strikes over night. As is shown in Fig. 3.1, there was a spike in fire detections

during the night between 21 and 22 June. Thus, from the morning through evening of 22 June,

California experienced a transient fire initiation event. The wild fires burned well into July, exacer-

bating poor air quality throughout the state. The 22 June flight of ARCTAS-CARB disembarked

from Los Angeles, swept out over the ocean, flew directly through smoke from forest fires in North-

ern California, then returned down the coastline. That flight encountered anthropogenic sources of

BC in the morning, and BB sources for the remainder after returning to land. The 24 June flight

passed back and forth in the downwind region between Los Angeles and San Diego, measuring the

outflow from those cities and the transportation lines between them. A third flight on 26 June flew

in the free troposphere from Los Angeles, north over the fires, and exited the model domain to the

east.

We use WRFDA-Chem 4D-Var to constrain BB and anthropogenic aerosols on three days

during ARCTAS-CARB using aircraft and IMPROVE surface observations. We utilize aircraft

measurements of absorbing carbonaceous aerosol at 10 s intervals from the single particle soot

photometer (SP2) on 22, 24, and 26 June (Sahu et al., 2012). For this study, we assume equivalency

between the SP2 measurement and modeled BC, and re-average to the 90 s model time step using

the revision 3 product, a process described in Guerrette and Henze (2015). We also use 24-hour

average surface observations of light absorbing carbon (LAC) on 23 and 26 June (Malm et al.,

1994), assuming an equivalence with modeled BC, and ignoring the 7% high bias relative to the

SP2 found by Yelverton et al. (2014). All treatments of observations are identical to those described
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in Guerrette and Henze (2015), including an analysis of model-observation BC mismatch that feeds

into the inverse modeling study.

Using measurements from 22, 23, and 24 June, the 4D-Var system constrains anthropogenic

and BB sources simultaneously. Data collected between 07:00:00-16:00:00 LT on 22 June is used in

an inversion from 22 June, 00:00:00 UTC to 23 June, 00:00:00 UTC, during which time WRF-Chem

is run freely, without nudging. The emission scaling factors for this 24-hour time period for both

source types are applied to subsequent days from 23-26 June in a cross validation experiment. The

24 and 26 June aircraft and 23 and 26 June surface observations are used to analyze the utility

of observationally constrained scaling factors found on one day to fix source errors on subsequent

days. The 23 and 24 June surface and aircraft data is used in a 48-hour inversion from 23 June,

00:00:00 UTC to 25 June, 00:00:00 UTC, also without nudging. Cross validation is performed for

these source estimates using 26 June surface and aircraft data.

Through preliminary testing, we found that horizontal correlation length scales on the order of

the grid spacing provides the lowest posterior cost function. For both time periods, this length scale

is set to twice the grid scale, Lh = 36 km. The emission scaling factors are aggregated in each hour,

which coincides with the emission file reading interval for both source types. The correlation scale

is set to Lt = 4 h, following Saide et al. (2015b). In addition to spreading error information across

adjacent grid cells, the correlation scales reduce the effective number of CVs. Through sensitivity

tests where we considered the smoothness of the posterior and the stationary posterior cost function

value, and after consulting published values for regional emission uncertainties (see Sec. 3.1) in

different global settings, we use a grid-scale BB uncertainty of ×3.8. The BB uncertainty might also

be approximated from the ratio of prior domain-wide total emissions between FINNv1.0 and QFED,

which is given in Table 3.1 as ×3.5. If the median emission strength lies in the middle of QFED

and FINNv1.0, then the prior domain-wide relative uncertainty is ×
√

3.5 = ×1.8. The uncertainty

would then need to be inflated further to account for spatial and temporal disaggregation and the

possibility that grid-scale sources from the two inventories do not bound the true value. The prior

anthropogenic grid-scale uncertainty is set to ×2, which is within the reasonable bounds discussed
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in Sec. 3.1.

Table 3.1: Total BB emissions for EA’s and domain-wide during 22 and 23/24 June inversions
(averaged for 24 hour period). Absolute units are in Mg. Note, the differences (∆) may not sum
due to rounding.

FINN STD QFED STD
ΣEQFED

ΣEFINN

ΣEb ΣEa ∆ ΣEb ΣEa ∆ b a

22
J
u

n
e EA1 14 4 -10 82 26 -55 ×5.8 ×6.4

EA2 6 30 +24 9 15 +6 ×1.5 ×0.5
EA3 6 4 -2 29 7 -22 ×4.5 ×1.6
EA4 18 22 +4 52 83 +31 ×2.8 ×3.8

DOMAIN 59 83 +34 209 171 -38 ×3.5 ×2.1

23
+

24
J
u

n
e EA1 20 5 -15 70 12 -58 ×3.5 ×2.5

EA2 28 11 -16 96 29 -67 ×3.5 ×2.6
EA3 17 12 -5 37 20 -17 ×2.2 ×1.7
EA4 32 108 +77 107 107 0 ×3.4 ×1.0

DOMAIN 138 249 +111 471 354 -117 ×3.4 ×1.4

In addition to these standard settings, several sensitivity scenarios are used to gauge the

sensitivity of the posteriors during two time periods to alternative inversion settings. The full set

of scenarios are summarized in Table 3.2, and are as follows. FINNv1.0 is used as the default

BB inventory in a scenario called FINN STD for both inversion periods. QFED STD uses the

QFEDv2.4r8 BB inventory. Both FINN L18 and QFED L18 use Lh = 18 km. FINN V1.5 utilizes

the FINNv1.5 BB inventory. For the 23/24 June inversion, we show results for both QFED STD

and FINN STD, the latter of which includes variations where either surface or aircraft observations

are excluded. The number of aircraft observations is Nobs = 241 on 22 June and Nobs = 302 on

24 June. There were Nobs = 35 active surface sites on 23 June, 13 of them within California. We

use six outer iterations consisting of 10 inner iterations each. Given the number of inner iterations

used, and the wall-time of the tangent linear plus the adjoint ( 10× the nonlinear model), the cost

of incremental 4D-Var is approximately 600 × that of a single forward simulation, which is much

cheaper than using finite difference methods to approximate derivatives instead of the linearized

models whenn∼105.
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Table 3.2: Emission inversion scenarios.

Scenario BB Inventory Lh Obs. Used (day)

22
J
u

n
e

FINN STD FINNv1.0 36 km ARCTAS-CARB (22)
FINN L18 FINNv1.0 18 km ARCTAS-CARB (22)

QFED STD QFEDv2.4r8 36 km ARCTAS-CARB (22)
QFED L18 QFEDv2.4r8 18 km ARCTAS-CARB (22)
FINN V1.5 FINNv1.5 36 km ARCTAS-CARB (22)

23
/
24

J
u

n
e

FINN STD FINNv1.0 36 km IMPROVE (23) &
ARCTAS-CARB (24)

QFED STD QFEDv2.4r8 36 km IMPROVE (23) &
ARCTAS-CARB (24)

ACFT FINNv1.0 36 km ARCTAS-CARB (24)
SURF FINNv1.0 36 km IMPROVE (23)

3.3.2 Posterior model performance

The convergence properties of the 22 and 23/24 June inversion scenarios are shown in the

outer loop cost function progression in Fig. 3.3. All of the 22 June scenarios led to comparable

cost function values at numerical convergence, as shown in Fig. 3.3. The gradient norms are also

reduced by nearly two orders of magnitude in all cases. The χ2 criteria states that the posterior cost

function should be equal to 1
2NOBS. In all of the scenarios, J converges to approximately NOBS,

indicating that a portion of the model errors are not fully spanned by prior emission errors. For the

23/24 June inversion, QFED STD reaches a lower cost function value, and both scenarios achieve

similar χ2 values as the 22 June cases. Scrutinizing other sources of error (e.g., initial and boundary

conditions for BC and meteorological variables, transport, BB plumerise, and model discretization)

either independent from source strengths or simultaneously in the inversion framework should elicit

further cost function reductions.

The non-emission sources of error for 22 June are evident in the time series in Fig. 3.4. The

posterior is within the combined model/observation uncertainty (see Sec. 3.2.3.2) much more often

than the prior. The only time during the inversion when the forecast degrades is for an observed

peak at 22 June, 08:00 LT. Model uncertainty is higher in locations where the prior concentration
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Figure 3.3: Outer loop cost function and gradient norm evaluations for the June 22 (left column)
and 23/24 June (right column) inversions.
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is higher, due to variability in the configuration ensemble boundary layer heights (Guerrette and

Henze, 2015). This high prior uncertainty in R allows the stronger constraint at 08:30 LT to domi-

nate the morning anthropogenic emissions, since this flight portion was confined to Los Angeles. In

the afternoon, when the DC-8 passed over the wildfires, an increase in posterior emissions captures

several of the observed BC peaks. The posterior is able to match the high-resolution variability of

the observations at 13:30 LT, which may support the validity of the temporal averaging scheme.

The R2 coefficients and slopes for linear fits between the prior and posterior and both aircraft

and surface observations are summarized in Tables 3.3 and 3.4. Those results include cross-

validation data on non-inversion days, which is discussed in Sec. 3.3.5. For both inversion periods,

there are considerable model performance improvements for observations that are used in the

inversion. FINN STD improves R2 from 0.11 to 0.82 and slope from 0.26 to 0.8 on 22 June.

QFED STD improves R2 from 0.03 to 0.73 and slope from 0.34 to 0.71. Similar improvements

occur for 23 June surface observations during the 23/24 June inversion. The posterior match to 24

June aircraft observations is improved, but not nearly as much as the other two data sets. The 22

June inversion results are also shown in the first row of Fig. 3.5, where the progression of the fit

parameters is shown for the multiple scenarios. While all scenarios show similar improvements, the

FINN STD and QFED STD results indicate the posteriors are still underpredicting many low and

high concentrations. Overprediction seems to be less of a problem. A similar phenomenon occurs for

the 24 June observations in Fig. 3.6 in the inversion that uses both surface and aircraft observations.

On both 22 and 24 June, the remaining low bias is either due to large prior observation and model

error (diagonal of R) or due to the prior errors not being sensitive to emission increments.

3.3.3 Posterior emissions

Figure 3.8 shows the prior and posterior BB emissions for FINN STD and QFED STD during

both simulation periods. In that figure there are several outlined emission areas (EAs); each EA

was chosen to identify regions where a subset of the grid-scale analysis increment (δxEAX ⊂ δx)

from both prior inventories is of similar sign. The coordinates of the EAs are listed in Table 3.5.
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Figure 3.4: Temporal variation of observed, prior, and posterior BC concentrations during
ARCTAS-CARB. The model values are obtained with the FINN STD inversion scenario. The
shaded area encompasses 2 standard deviations around the observations, which includes both model
and observation uncertainty.
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Table 3.3: Aircraft observation linear regression characteristics for the prior (background, b) and
posterior (analysis, a).

Obs. Date → 22 June, Nobs = 241 24 June, Nobs = 301 26 June, Nobs = 117
Inversion Scenario

↓
R2 slope R2 slope R2 slope

b a b a b a b a b a b a

22
J
u

n
e FINN STD 0.11 0.82 0.26 0.80 0.18 0.15 0.38 0.25 0.56 0.52 0.15 0.49

QFED STD 0.03 0.73 0.34 0.71 0.15 0.23 0.43 0.37 0.59 0.53 0.39 0.43

23
/2

4
J
u

n
e FINN STD - - - - 0.17 0.52 0.35 0.56 0.59 0.16 0.15 0.11

QFED STD - - - - 0.11 0.52 0.36 0.55 0.63 0.44 0.41 0.15
ACFT - - - - 0.17 0.53 0.35 0.57 0.59 0.29 0.15 0.08
SURF - - - - 0.17 0.17 0.35 0.40 0.59 0.13 0.15 0.17

distinct improvement; distinct degradation; cross validation

The two inversions do not reach identical total posterior BC emissions, but they do converge in

certain aspects. Table 3.1 gives the emission subtotals for the EAs. During both inversions, each

EA has emission increments of the same sign for both scenarios. Therefore, while domain-wide

sources seem to be bounded by the two priors (as evidenced by their convergence), the same might

not be true within the individual EAs. EA3, which accounts for the smallest average posterior

total, is the only region where the magnitude of the log-ratio between QFED and FINN is smaller

in the posterior on 22 June. The ratio is reduced in EA2, but there the FINN posterior is ×2 larger

than that for QFED. On 23/24 June, the two scenarios have less posterior spread in all of the EAs.

Although Table 3.1 indicates large changes in source strengths across the EAs, Figure 3.7 reveals

that a majority of the absolute emission increment (posterior minus prior) in both FINN STD and

QFED STD arose in only a few grid cells, often where the prior has the largest magnitude. The

linear scaling factor pattern is similar between the two scenarios, with those for QFED STD shifted

toward decreases due to the high prior bias.

The temporal distribution of prior and posterior BB emissions within the four EAs are shown

in Fig. 3.9 across all inversion scenarios on 22 June. The FINNv1.5 prior is an extreme outlier on

the local afternoon of 21 June for EA1, EA2, and EA4. The same is true all day on 22 June for

EA2, where the posteriors from other scenarios adjust toward the FINNv1.5 prior. Meanwhile, in
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Figure 3.7: BB analysis increment (posterior minus prior) per 24 hours and posterior linear scaling
factor (β) for the two primary BB scenarios on 22 June 00Z-23Z and 23 June, 00Z - 24 June 23Z.
EA1-4 are outlined with black boxes. [NOTE on Figures 2, 7 and 8: we are waiting on results from
QFED STD with IMPROVE obs included.]
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Figure 3.8: Prior and posterior grid-scale BB emissions of BC per 24 hours for FINN STD and
QFED STD on 22 June, 00Z-23Z and 23 June, 00Z - 24 June 23Z. All emissions are expressed for
a 24 h average. EA1-4 are outlined with black boxes.[NOTE on Figures 2, 7 and 8: we are waiting
on results from QFED STD with IMPROVE obs included.]
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Table 3.4: Surface observation linear regression characteristics for the prior (background, b) and
posterior (analysis, a).

Obs. Date → 23 June, Nobs = 35 26 June, Nobs = 36
Inversion Scenario

↓
R2 slope R2 slope

b a b a b a b a

22
J
u

n
e FINN STD 0.06 0.04 0.26 0.21 0.03 0.05 0.10 0.13

QFED STD 0.16 0.14 0.44 0.41 0.10 0.11 0.20 0.21

23
/
24

J
u

n
e FINN STD 0.04 0.75 0.25 1.04 0.03 0.28 0.10 0.28

QFED STD 0.09 0.74 0.39 1.01 0.09 0.15 0.20 0.16
ACFT 0.04 0.05 0.25 0.27 0.03 0.03 0.10 0.09
SURF 0.04 0.74 0.25 1.02 0.03 0.35 0.10 0.35

distinct improvement; distinct degradation; cross validation

other times when FINNv1.5 appears to converge toward the posteriors found using the other two

priors, the prior uncertainty of ×3.8 is too restrictive to allow full convergence, since the priors

differ by ×10. EA1 is characterized by decreases for all scenarios at all times. EA2, EA3, and

EA4 exhibit early morning peaks between 03:00 and 06:00 LT that were not captured in the prior.

In separate sensitivity tests, these peaks only appear when Lt > 1 h, and become more prevalent

as Lt is increased. Saide et al. (2015b) attributed similar behavior in posterior estimates of the

2013 Rim Fire to persistent large scale burning. Zhang et al. (2012) found similar, less pronounced

bimodal behavior for all of North America, which could be more noticeable in a regional inversion.

Another possibility on 22 June 2008 is that the early morning burning is caused by the transient

fire initiation event, which would explain the ramping of emissions for the QFED and FINNv1.5

posteriors in EA2. For both QFED and FINNv1.0, reducing the correlation length to Lh = 18 km

reduces the analysis increment in all EAs. This is especially apparent in EA4 for FINN L18, where

the increment is negligible.

The differing diurnal patterns in EA2 across scenarios could be attributed to variation in

plume heights, QFED regridding errors, and the regularization term of the cost function. The

observations most sensitive to EA2 sources were captured within or very near fire plumes. Plume

heights are calculated hourly in an online 1D vertical mixing scheme in WRF-Chem (Freitas et al.,
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Table 3.5: Emission area coordinates. EA1-4 are used for BB totals and EA5-9 are used for
anthropogenic totals.

LONmin LONmax LATmin LATmax

EA1 122.5◦W 120.5◦W 35.7◦N 38.5◦N
EA2 123.8◦W 122.1◦W 38.9◦N 40.4◦N
EA3 124.3◦W 122.9◦W 40.4◦N 41.7◦N
EA4 122.1◦W 120.0◦W 38.5◦N 40.4◦N

EA5 117.8◦W 116.9◦W 32.1◦N 33.4◦N
EA6 121.0◦W 117.8◦W 33.4◦N 34.6◦N
EA7 123.0◦W 121.0◦W 36.6◦N 38.8◦N
EA8 120.6◦W 118.6◦W 35.2◦N 37.0◦N
EA9 118.0◦W 116.5◦W 34.0◦N 36.0◦N
EA10 116.9◦W 115.0◦W 32.1◦N 33.4◦N

2007, 2010; Grell et al., 2011), which depends strongly on burned areas. With FINN, the areas are

provided for each fire independently, while for QFED the areas use a default value of 0.25 km2 per

fire. In both cases, the maximum area burned per grid cell per day is 2 km2. The regridding error

discussed in Sec. 3.2.2 introduces fire locational errors, especially in EA2. A small error in vertical

or horizontal mapping of a discrete point source on the model grid could hinder the optimization in

distinguishing it from others. The uniform relative uncertainty in the prior inhibits consolidation of

multiple posteriors when the prior spread is heterogeneous and sometimes very large. Quantifying

the heterogeneity of uncertainty could contribute to posterior agreement between inversions using

different priors, as well as to reducing the cost function.

The spread of local emissions provide some sense of that heterogeneity. Each EA covers a

region approximately the size of a grid box in a global simulation with a chemical transport model.

Due to the nature of variance aggregation, uncertainty grows as the grid scale gets smaller. In

individual EAs, the spread between FINNv1.0 and QFED priors is ×2-×6 for both hourly (Fig. 3.9)

and daily (Table 3.1) strength on 22 June. If the median emission strength lies in the middle, then a

proxy for prior EA relative uncertainty is ×
√

2−×
√

6 = ×1.4−×2.4. Since the two inventories use

identical diurnal patterns, the hourly estimate is missing information about uncertainties in daily

emission timing. Using the posterior spread in a similar way gives approximate EA uncertainties of
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×
√

3−×
√

10 = ×1.7−×3.2 on hourly scales and ×
√

2−×
√

7 = ×1.4−×2.6 on daily scales. This

posterior estimate accounts for contributions in the prior definitions, including regridding, plume

rise, and diurnal patterns. These ranges provide much more detail estimates than simply taking

the domain-wide ratio of total emissions for the campaign period. However, the spread is itself

missing information about uncertainty that could be found through carrying out similar inversions

across an ensemble of model configurations and meteorological initial and boundary conditions

(e.g., Lauvaux et al., 2016), or by comparing many more inventory priors (e.g., Zhang et al., 2012)

and posteriors. All this is to say that the BB inventories used in this study are not provided with

analytical estimates of uncertainty, and a lack of information for deriving such values at hourly

grid-scales is a topic for future research.

Figure 3.11 shows the total prior and posterior anthropogenic emissions and Fig. 3.10 displays

the analysis increment and linear scaling factor for FINN STD on 22 June and separately on 23-24

June. The only difference in QFED STD, not shown here, is that anthropogenic scaling factors are

shifted in the negative direction in the posterior, likely due to the higher bias in that BB prior.

The increments found in a new set of EAs are presented in Table 3.6.

Table 3.6: Total anthropogenic emissions for EA’s and domain-wide during 22 and 23/24 June
inversions (averaged for 24 hour period). The posterior for 23/24 June is from an inversion using
both the IMPROVE and ARACTAS-CARB observations. Results shown are for the FINN STD
scenario. Absolute units are in Mg. Note, the differences (∆) may not sum due to rounding.

22 June 23/24 June
ΣE23+24 June

ΣE22 June

ΣEb ΣEa ∆ ΣEb ΣEa ∆ b a

EA5 5 5 0 7 3 -3 ×1.4 ×0.7
EA6 12 8 -4 17 9 -8 ×1.4 ×1.2
EA7 10 6 -5 16 8 -8 ×1.6 ×1.5
EA8 3 2 -1 5 25 +20 ×1.6 ×9.9
EA9 5 4 -1 6 11 +4 ×1.3 ×2.7
EA10 2 2 0 3 8 +5 ×1.4 ×3.7

DOMAIN 81 68 -13 114 123 +9 ×1.4 ×1.8

The 23 and 24 June observations provide much more detailed information about anthro-



78

Increment (kg BC)

 33.0° N

 35.0° N

 37.0° N

 39.0° N
(a)

Ea/Eb

EA5

EA6

EA7 EA8

EA9

EA10

124.0° W 121.0° W 118.0° W 115.0° W

 33.0° N

 35.0° N

 37.0° N

 39.0° N
(b)

-1000 -500 0 500 1000

EA5

EA6

EA7 EA8

EA9

EA10

124.0° W 121.0° W 118.0° W 115.0° W

1/8 1/4 1/2 2/3 1 3/2 2 4 8

Increment (kg BC)

(c)

Ea/Eb

EA5

EA6

EA7 EA8

EA9

EA10

124.0° W 121.0° W 118.0° W 115.0° W

(d)

-1000 -500 0 500 1000

EA5

EA6

EA7 EA8

EA9

EA10

124.0° W 121.0° W 118.0° W 115.0° W

1/8 1/4 1/2 2/3 1 3/2 2 4 8

Figure 3.10: Anthropogenic analysis increment (posterior minus prior) per 24 hours and posterior
linear scaling factor (β) for the (a) FINN STD (22), (b) FINN STD (23/24), (c) ACFT, and (d)
SURF inversion scenarios. EA5-9 are outlined with black boxes in the scaling factor plots.
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pogenic sources. The analysis increment reveals potentially misrepresented city-level emissions in

the NEI05 prior. Posterior BC near Barstow, Victorville/Hesperia, Fresno, Edwards Air Force

Base, and El Centro/Calexico are increased, while sources near the three coastal cities are de-

creased. Since Barstow is a crossroads for the BNSF and the Union Pacific railroads, and since

Fresno, Victorville/Hesperia, and El Centro/Calexico lie at switching locations for major rail lines,

it could be speculated that the prior is missing diesel rail sources of BC. Another possibility is that

low bias fire emissions north of Fresno are responsible for the prior underpredictions of 23 June

surface concentration measurements exceeding 2 µg m−3 (see Fig. 5 of Guerrette and Henze, 2015).

This is corroborated by the posterior BB emissions being scaled up near Fresno on 23 and 24 June,

and by the much smaller model bias for IMPROVE on 22 June before the fires started.

There are also small negative increments near Los Angeles (EA6) and San Francisco (EA7)

during both the 22 June and 23/24 June inversions, which are likely attributable to on-road mobile

sources. These results are consistent with model bias in surface and aircraft observations on 20

June near both of those cities (Guerrette and Henze, 2015). McDonald et al. (2015) found a

decreasing trend in ambient measurements of BC and in a fuel-based bottom-up inventory for

both Los Angeles and San Francisco from 1990 to 2010 that might not be captured for the 2008

model year by the snapshot in NEI05. Using a similar fuel-based approach, Kim et al. (2016)

derived 2010 CO emissions in the South Coast Air Basin surrounding Los Angeles that are ×1
2 the

magnitude of NEI05. On-road and other mobile sources make up 36% and 62% of that difference,

respectively, and their bottom-up inventory matches more closely with NEI 2011. While not a

perfect comparison to BC in 2008, the sign of error in NEI05 relative to the coastal posterior

and that study is consistent. An inventory with sector-specific break downs of BC emissions, and

additional inversions with more thorough speciated local observations, and higher resolution would

all be required to investigate sector-specific anthropogenic pollution.
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3.3.4 Error diagnostics

Analysis of posterior emissions uncertainties is useful for understanding the value of the

posterior emissions themselves. The diagonal terms of Pa are the posterior variances, σxa , which

are always smaller than prior variances. The variance reduction could instead be presented in β

space, by utilizing Eq. 3.16. However, σβk,i
2 < σβ0,i

2 is not guaranteed when xa,i > xb,i = 0, because

the posterior relative emission uncertainty depends on xa,i. For this work, the reductions in variance

are presented in CV space. The low-rank estimate of Pa is only valid for linear perturbations away

from xa. The final outer loop estimate of Pa is the most accurate, since it is linearized around the

state preceeding xa. A quantitative measure of error reduction in the kth
o outer loop in the ith CV

is

ρi,ko = 1−
(

Pa
i,i

Bi,i

)
ko

∈ [0, 1). (3.32)

Values of ρi,ko closer to 1 reflect locations where the observations provide a stronger constraint

than the prior. This estimate may not reflect the entire error reduction, since it does not capture

potential reductions in previous outer loops. Without propagating updated estimates for B to

subsequent outer loops (e.g., Tshimanga et al., 2008), we also define ρagg, a qualitative metric that

accounts for increases in curvature (decreases in error) in all outer loops:

ρi,agg = 1−
k∏

ko=1

(
Pa
i,i

Bi,i

)
ko

∈ [0, 1). (3.33)

ρi,agg reveals additional information about observation footprints not shown by ρi,ko=6. The non-

linear nature of the problem means ρi,agg is not quantitative.

Both (ρko=6) and ρagg are presented in Figs. 3.13 and 3.12 for the BB and anthropogenic

members of xa, respectively. 50 inner loop iterations were taken in the final outer loop to improve

ρ estimates. ρko=6 is < 45% across all scenarios, except for QFED STD BB sources near the

IMPROVE sites on 23/24 June. If the inner loop were halted at 10 iterations, the error reduction

estimates are reduced by up to ∼10% (i.e., 35% instead of 45%) in the darkest grid cells. Further

decreasing uncertainty would require observing the same phenomena more thoroughly, either for
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longer periods, with greater spatial coverage, or with more instruments. The BB error reduction

shown in Figure 3.13 has similar spatial distributions for FINN STD and QFED STD scenarios,

but differs significantly between the two time periods due to the different spatial coverage of the

observations. The reductions in the north on 22 June are more disperse for QFED STD, which

could be caused by the same regridding errors and plumerise differences that influence the posterior

emissions. There is also more error reduction in the south for the QFED STD emissions. In general,

the grid-scale uncertainty improvement is confined to sources close to the observations.

The most obvious application of ρ is to evaluate the footprint of a set of measurements.

For example, the large relative BB emission increments in EA1-EA3 on 23/24 June indicate that

distant observations can have a large impact on the posterior emissions magnitudes. However,

ρi,ko=6 in Fig. 3.13 indicates there is nearly zero uncertainty reduction for those emissions. Also,

upon considering the last two columns of Table 3.6, one might conclude that there is a missing

weekend (22 June) to weekday (23/24 June) variation in BC emissions within EA8-10. However,

Fig. 3.12 shows that the 22 June observations only weakly reduce uncertainty in emissions.

In a more tangible application, ρ can be used to assess existing and and future observing

strategies in a similar way to how Yang et al. (2014) used adjoint sensitivity information to plan

future meteorological observing sites to improve forecasts of extreme dust events in the Korean

peninsula. Fig. 3.12 presents anthropogenic ρ for different combinations of surface and aircraft

observations on 23/24 June. The surface observations primarily resolve sources near Fresno, and to

a lesser extent near Los Angeles. Since the purpose of the IMPROVE network is to measure back-

ground concentrations, it is mostly successful on 23 June in not being influenced by anthropogenic

sources of BC from the major cities. If the goal were to measure anthropogenic sources, inflows,

or domain-wide concentrations on daily time scales, then ρ would suggest using a different surface

network distribution. Such a conclusion does not conflict with the success of using IMPROVE

observations to provide top-down constraints on both BB and anthropogenic emissions on monthly

time scales (e.g., Mao et al., 2015).

Another piece of information useful for comparing observing configurations and inversion
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Figure 3.12: Anthropogenic error reduction in the final outer loop (ρko=6) and aggregated across
all outer loops (ρagg) for the (a) FINN STD (22), (b) FINN STD (23/24), (c) ACFT, and (d)
SURF inversion scenarios. The ARCTAS-CARB DC8 flightpath and IMPROVE sites at model
grid centers are overlaid.
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Figure 3.13: BB error reduction in the final outer loop (ρko=6) and aggregated across all outer loops
(ρagg) for the two primary BB scenarios on 22 June 00Z-23Z and 23 June, 00Z - 24 June 23Z. The
ARCTAS-CARB DC8 flightpath and IMPROVE sites at model grid centers are overlaid.
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scenarios is the trace of the resolution matrix, or degrees of freedom for signal, i.e.,

DOF = Tr
[
In −PaB−1

]
, (3.34)

which is equal to the number of modes of variability in the emissions that are resolved by the obser-

vations (Wahba, 1985; Purser and Huang, 1993; Rodgers, 1996). Substituting the approximation

for Pa from Eq. 3.26,

DOF ≈n− Tr

B + U

 l∑
ki=1

(
λ−1
ki
− 1
)
ν̂ki ν̂

>
ki

U>

B−1


≈ − Tr

U

 l∑
ki=1

(
λ−1
ki
− 1
)
ν̂ki ν̂

>
ki

U>B−1

 . (3.35)

Since U is square, U>B−1U = In, and Tr
[
ν̂ki ν̂

>
ki

]
= ν̂>ki ν̂ki = 1, the expression simplifies as

DOF =− Tr

 l∑
ki=1

(
λ−1
ki
− 1
)
ν̂ki ν̂

>
ki

U>B−1U


≈

l∑
ki=1

(
1− λ−1

ki

)
Tr
[
ν̂ki ν̂

>
ki

]

≈
l∑

ki=1

(
1− λ−1

ki

)
. (3.36)

Therefore, the only information needed to compute DOF are the eigenvalues of Tl. Each inner

loop, ki, has the potential for constraining one additional mode of variability in the emission scaling

factors. For all of our inversion scenarios, the leading eigenvalue is on the order of 102− 103, which

is equal to the condition number of the full-rank Hessian. As the Lanczos optimization proceeds,

each subsequent λki is smaller, asymptotically approaching unity, and each eigenmode provides less

information than the one preceding it about scaling factor variability.

Figure 3.14 gives three estimates of DOF at each level of truncation in the final outer loop,

that is if higher degrees of eigenvalues were ignored. In that figure, we plot eigenvalue spectra of

the FINN STD and QFED STD scenarios on 22 June. Similar to ρ, we use a 50 iteration linear

optimization to improve the bounds on DOF. The ki = l estimate of the eigenvalue spectrum at

each iteration is represented by a single colored line. Each member of the eigenvalue spectrum,
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represented by vertical grid lines in Fig. 3.14, converges toward an upper bound as more iterations

are taken. Initial guesses for the least dominant eigenvalues are less than 1 for ki ≥ 8 for FINN STD,

but they exceed 1 after an additional iteration, consistent with the properties of the Lanczos

sequence. The first DOF in parentheses adheres to the philosophy that only converged eigenvalues

should be used to estimate DOF; it excludes λki , . . . , λl such that λki is more than 5% changed

from the previous estimate. The second DOF in parentheses uses all of the current estimates of

the eigenvalues available in iteration l. This is still a conservative estimate of DOF, because the

true eigenvalues of the full-rank Tn are always larger than their current numerical estimate. After

enough iterations, the numerical growth in DOF is very small, and further computation is not

warranted. As the eigenvalue spectra in Figure 3.14 and the cost function reduction in Figure 3.3

show, this is long after the cost function is converged enough for practical purposes. The posterior

CVs, which are the primary result from inverse modeling, do not change significantly in the final

outer loop. Finally, the best estimates of DOF in red brackets are evaluated at different truncations

using the most-converged values of the eigenvalues found in the 22nd iteration.

Similar to ρ, the quantitative application of DOF is limited to the final outer loop, when

δxn is small enough that (Hδv)−1|xn−1 ≈ (Hδv)−1|xn . Absent the need to estimate the posterior

Hessian, the outer loop could be ended an iteration earlier. In the inner loop, truncated estimates of

H−1 and its eigenvalue spectrum at earlier iterations will provide conservative values for both DOF

and ρ. The actual DOF is higher than any value shown in Figs. 3.14 (22 June) and 3.15 (23/24

June). Therefore, the 22 June observations constrain >14 modes of hourly grid-scale variability

through 4D-Var in both the FINN STD and QFED STD scenarios. Just like for ρ, the optimization

constrains additional modes in the earlier outer loop iterations, but that quantification is not

straightforward since DOF is defined for linear behavior. If all outer loops were similar, then the

total DOF for the entire nonlinear optimization is on the order of 30 to 40.

As shown in Fig. 3.15, the DOF on 23 and 24 June after 50 iterations are 10, 17, and 23

for the SURF, ACFT, and FINN STD(23/24) scenarios, respectively. The relative magnitudes

show that using combined surface and aircraft observations provides an additional value over using
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Figure 3.14: Eigenvalue spectra for FINN STD and QFED STD in the final outer loop on 22 June.
The lines show the estimate of the spectrum [λ1, . . . , λki=l] in every fourth inner loop iteration, l.
The black numbers in parentheses are the estimates of DOF that include eigenvalues in the sets
(converged to within 5% of the previous estimate, all available). The red numbers in brackets are
the truncated estimates of DOF using the most completely converged set of eigenvalues available
in the 50th iteration.
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Figure 3.15: Eigenvalue spectra for SURF, ACFT, and SURF+ACFT in the final outer loop on 23
and 24 June. The lines show the estimate of the spectrum [λ1, . . . , λki=l] in every fourth inner loop
iteration, l. The black numbers in parentheses are the estimates of DOF that include eigenvalues
in the sets (converged to within 5% of the previous estimate, all available). The red numbers in
brackets are the truncated estimates of DOF using the most completely converged set of eigenvalues
available in the 50th iteration.
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either independently, although the two platforms might have some redundancy. This conclusion is

consistent with the maps of BB and anthropogenic ρ in Fig. 3.12, where the footprints of SURF

and ACFT have slight overlap near Los Angeles, but are otherwise independent. Additionally,

the higher DOF of ACFT is consistent with its more widespread and larger magnitude ρ values.

The slower eigenvalue convergence when both observing types are utilized means that additional

inner iterations could yield higher estimates for DOF in that case. What is even more clear, and

intuitive, is that ρ and DOF estimates require more iterations as the number of constrained CVs

increases, which is directly dependent on the number of observations. What might be of particular

interest to future measurement planning is that daily average surface data can provide a useful

constraint when captured near sources on the same day as the emission event, which is supported

by the sparse ρ map for SURF in Fig. 3.12, and the large spike near Fresno.

3.3.5 Cross Validation

As an additional evaluation of the robustness of the emission scaling factors, we apply them

in cross validation tests. In two separate evaluations, the 22 June scaling factors are applied to

23-26 June emissions, and the 23/24 scaling factors are applied to 25-26 June emissions. Even

before carrying out such a test, the heterogeneous adjoint sensitivity signs and magnitudes for each

source sector we found on each day of the campaign (Guerrette and Henze, 2015) are an indication

that corrective scaling factors in each day will be unique. In that work, we found that the 24

June observations were most sensitive to Southern California anthropogenic sources on 24 June

and to Northern and Southern California coastal sources of both sectors on 23 June. The 26 June

observations were most sensitive to Northern California fires, and the adjoint sensitivities were of

opposite sign than on 23 and 24 June.

As shown in Fig. 3.4, the cross validated 22 June scaling factors rarely generate improvements

to model performance, when compared to 24 and 26 June aircraft observations. On 24 June, some

of the high bias predictions are corrected, or even over-compensated, but the low bias prior locations

are unaffected. Table 3.3 shows the R2 and slope of the linear trend lines. The scatter of the fit
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for QFED STD on 24 June and the slope for FINN STD on 26 June are slightly improved, but all

other metrics degrade. The increase in slope for FINN STD comes as a result of better fit to very

large concentrations above the PBL associated with fire sources on multiple previous days. The

posterior scaling factors generated from the 23/24 June inversion degrade the forecast of aircraft

measurements on 26 June. Since the posterior primarily serves to reduce coastal anthropogenic

and BB emissions, it is not surprising that it does not improve a low bias prior two days later.

Table 3.4 includes cross-validated surface measurements on 23 June and 26 June. There is

very little change to the modeled surface concentrations as a result of posterior scaling factors in

any inversions that only use aircraft observations. Assimilating surface observations on 23 June

(Monday) does improve model comparisons to surface observations on 26 June (Thursday). Those

small improvements imply that errors are weakly correlated between weekdays. Although it is

beyond the information content provided by the observations used in this work, future studies

could compare the efficacy of using weak multiday correlation in B and the hard constraint of 24 h

periodic scaling factors used herein.

Given the differing flight tracks on multiple days, the cross validation results demonstrate

the need to repeat observations of similar phenomena. Such a strategy could help eliminate non-

emission related sources of uncertainty, and further characterize temporal heterogeneity of inventory

errors. Aircraft and surface observations do not appear to be useful for cross-validation of each

other over the short timescales and limited set of flights considered here. At least for this study

period, when they are not collocated, each provides some unique information to the inversion.

Cross-validation might be more successful when using measurements collected over a broader range

of prior error behaviors or by considering a less complex problem than California statewide BB

emissions.

3.4 Conclusions and future work

We have presented the implementation and an application of incremental chemical 4D-Var

using an atmospheric chemistry model with online meteorology in WRFDA-Chem. This work
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expands on our previous efforts to develop the ADM and TLM in WRFPLUS-Chem (Guerrette and

Henze, 2015). This new inversion tool takes advantage of previous developments of meteorological

data assimilation in WRFDA (Barker et al., 2005; Huang et al., 2009). That same framework

is applied to lognormally distributed emission scaling factors through an exponential transform.

We utilize the square root preconditioner for a CVT using horizontal and temporal scaling factor

correlations. The Lanczos linear optimization algorithm in the inner loop allows for estimation

of posterior error and DOF for objectively evaluating observing systems. Outer loop convergence

is improved with a heuristic DGN multiplier, which allows the incremental 4D-Var framework

to handle the nonlinearity of the lognormal cost function. While the optimizations herein focus

exclusively on emissions, which are known to be important drivers of model uncertainty in BC

estimates (e.g., Fu et al., 2012; Zhang et al., 2014a), other factors such as meteorology, plume rise

and deposition mechanisms may also affect the model’s predictions of BC concentrations.

When applied to the ARCTAS-CARB campaign period, it is not clear which prior emissions

perform better. If assessment by initial cost function value alone were meaningful, FINNv1.0

performs best. However, that could be due to FINNv1.0 being biased low combined with the

assumption of Gaussian distributed model-observation errors. Positive residuals are weighted higher

than negative ones, even when relative errors are equal. There could be some improvement to the

posterior emissions by implementing the incremental log-normal cost function framework derived

by Fletcher and Jones (2014). If the purpose of the inventory is to provide air quality warnings

to the major California cities, then FINNv1.0, FINNv1.5, and QFEDv2.4r8 all have some built-in

high bias that will err on the side of caution. Their inability to reproduce high concentrations near

sources either points to a deficiency in the inventories, vertical mixing processes, or the temporal

observation averaging procedure followed herein, diagnosis of which would require measurements of

plume injection heights and widths. The relative magnitudes of grid-scale fire and anthropogenic

emissions make it difficult to simultaneously constrain them without additional information. More

work should be done to improve both bottom-up and top-down estimates of anthropogenic emissions

outside of fire events. We also agree with Mao et al. (2015), who recommended multi-species
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inversions (e.g., BC and CO) to discern specific source sectors.

Through the setup and application of the 4D-Var system, we gained valuable knowledge to

guide future modeling and measurement efforts. We found two errors in the diurnal distribution of

BB emissions and identified a scaling necessary to apply QFED to the western U.S. Additionally,

the highly heterogenous posterior scaling factors during ARCTAS-CARB raise questions that the

limited BB observations during that time period do not answer. (1) Are BB emission errors always

heterogeneous, or only during a transient initiation stage like that observed in June 2008? If

heterogeneity is consistent outside initiation events, then inversions should apply weaker inter-

day correlation than the hard constraint used herein or have independent scaling factors for each

day. (2) Are the temporally bimodal posterior emissions realistic, or are they an artifact of the

correlation timescale used? (3) Are the BB plume heights reasonable, and should they follow

a diurnal pattern? The current 1D plume rise mechanism in WRF-Chem depends strongly on

specified burned areas, which are diurnally invariant and highly uncertain (e.g., Boschetti et al.,

2004). The last two questions indicate there is value in continuous night (between 20:00 and

06:00 LT) and day measurements of the same fire region. Since models poorly predict shallow

boundary layers, the use of night time observations in 4D-Var would require characterization and

subsequent model tuning of those vertical mixing processes. Furthermore, if it is accepted that high-

resolution models are required to accurately predict degraded air quality events, then high spatial

and/or temporal resolution concentration measurements from research campaigns or geostationary

satellites are necessary to provide the sufficient constraints on inventory errors. The error reduction

estimation method provided herein will be useful for planning these future missions.

Future applications of the WRFDA-Chem system developed here may consider improvements

such as the following. One possible way to reduce model uncertainty would be to extend the multi-

incremental 4D-Var available in WRFDA (Zhang et al., 2014b) to the new scaling factor CVs. Multi-

incremental chemical 4D-Var would use a high-resolution model forecast to generate trajectory

checkpoint files (see Guerrette and Henze (2015)), and could take advantage of improvements

to chemical transport at higher resolution realized by using online meteorology demonstrated by
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Grell et al. (2004) and Grell and Baklanov (2011). In addition, FDDA nudging has been shown to

improve wind fields and was used successfully in an LPDM emission inversion (Lauvaux et al., 2016).

Even after exhausting methods to improve the posterior, the error contributions from hard-coded

descriptions of meteorology can be bounded using ensemble and sensitivity tests (e.g., Angevine

et al., 2014; Lauvaux et al., 2016).



Chapter 4

A New Randomized Incremental Optimal Technique (RIOT) for Four

Dimensional Variational Data Assimilation

4.1 Introduction

Incremental four dimensional variational (4D-Var) data assimilation (DA) is used in opera-

tional numerical weather prediction (NWP) around the world (e.g., European Center for Medium-

Range Forecasts, UK Met Office, Meteo France, Panasonic Weather Solutions, U.S. Naval Research

Laboratory). In Chapter 3, we applied this method, with some modification, to the inversion of

chemical emissions. A defining drawback of 4D-Var relative to its ensemble-based counterparts

in atmospheric DA has been the necessity to integrate a forward model (FWM) and its adjoint

(ADM) repeatedly in a sequential algorithm. Each serial calculation is usually parallelized across

many processors; however, this type of parallelization is limited by communication bottlenecks

and hardware constraints. In contrast, ensemble approaches are embarrassingly parallel, as their

numerous forward model evaluations can be evaluated simultaneously and independently.

There have been several efforts to reduce the wall-time in 4D-Var either through reduction of

floating point operations or through parallelization. The wall-time for each sequential iteration can

be reduced through multi-incremental 4D-Var, which runs the expensive tangent linear (TLM) and

AD integrations on a lower resolution grid than the full model. Multi-incremental 4D-Var is used in

operational NWP, and produces comparable results to optimizations that use full-scale grids (e.g.,

Zhang et al., 2014b). Instead of reducing the time of a single iteration, advanced preconditioning

methods are aimed at reducing the number iterations required to converge (e.g., Desroziers and



93

Berre, 2012; Gürol et al., 2014). Trémolet (2006) introduced weak-constraint 4D-Var, in which a

temporally segmented analysis window accounts for model uncertainty at the segment boundaries.

This method lends itself to parallel integration in time, which was recently realized through a

saddle cost function formulation (Fisher et al., 2011). The saddle formulation also requires new

preconditioning methods to enable convergence and wall-time reductions in practical applications

(Fisher et al., 2011, 2016). Similar parallel-in-time integrations have been implemented in strong-

constraint 4D-Var by using an augmented Lagrangian version of the cost function (Rao and Sandu,

2016). Brown et al. (2016) enabled parallelism across spatial modes through multilevel 4D-Var

where Hessian modes at discrete spatial scales are computed simultaneously, but still through

iteration.

Temporal parallelism holds promise for enabling longer analysis windows that account for

more observations simultaneously, but also poses challenges in implementation. It would be addi-

tionally beneficial to have an ensemble-like parallelism in adjoint integration where the computa-

tional scalability is dependent on the number of modes of variability constrained by the optimiza-

tion. Hypothetically, such parallelism is complementary to any of the other forms described above if

there are enough available processors. In this chapter we apply the recently developed Randomized

Incremental Optimal Technique (RIOT) (Bousserez and Henze (2016); hereafter BH16) to exploit

the computational advantages of ensemble calculations while maintaining the merits of 4D-Var.

4.1.1 Background

Here we present some mathematical preliminaries on optimization that are important to

understanding the contribution of this work. In Appendix A we demonstrated the equivalence

between the control variable steps from incremental 4D-Var and those from the Gauss-Newton

(GN) method. In GN, the cost function is linearized around a state, v0 ∈ Rn, i.e.,

J (v0 + δv) = δv>Aδv + δv>b+ J (v0) . (4.1)
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Its gradient,

∇J = Aδv + b, (4.2)

is set equal to zero to solve for an optimal increment,

δv∗ = −A−1b, (4.3)

in terms of the gradient and Hessian (second derivative) evaluated at v0, i.e., b = ∂J
∂v |v0 ∈ Rn and

A = ∂2J
∂v2 |v0 ∈ Rn×n, respectively. There are several methods to account for nonlinearities that

cause the increment to be non-optimal (e.g., Levenberg-Marquardt, Quasi-Newton methods, trust

region), but herein we apply a damping multiplier as

δv∗ = −ηA−1b. (4.4)

η ∈ R | 0 < η ≤ 1 is found by a line search, or 1-D optimization on values of J , once A−1 and b are

known. After updating vk+1 = vk + δvk, the system of equations is relinearized around the new

state and the iterative process continues until a convergence criteria is reached or until a specified

number of iterations, kf , are complete.

When GN is applied to large-scale atmospheric problems, there are n & 105 − 106 control

variables and m & 102 − 105 observations to constrain them, such that rank (A) ≤ min(m,n).

A is not represented explicitly, and finding its inverse is the crux of the problem. To do so, A

is approximated in terms of a low-rank eigendecomposition. Incremental 4D-Var uses symmetric

Krylov methods (i.e., conjugate gradient (CG), Lanczos recurrence), which require a second level

of iteration (inner loop) to perform the decomposition. Krylov methods require multiplying A to

increasing degrees by b; this is a sequential procedure comprised of l matrix vector multiplications,

where l is the desired rank of the approximation. As the rank of approximation, l, increases, the

error associated with representing A using only the leading eigenvalues may become smaller than

that associated with the GN linearization. Therefore, there is an inner iteration beyond which

there is no perceived improvement to the posterior state, vk+1, even as the approximation of A

improves.
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In machine learning, where the functional relationship that maps the control variables to

each observation in a training set is separable from the others, i.e.,

J (v) =
1

m

m∑
i=1

yi (v) , i = {1, 2, . . . ,m}, (4.5)

a recent solution is to subsample the Hessian by only using a subset of m (e.g., Byrd et al., 2011;

Roosta-Khorasani and Mahoney, 2016). Following such an approach in atmospheric problems would

be equivalent to using only a few observations in each iteration, which would likely lower the rank

of A and the number of Krylov iterations required. However, the 4D-Var Hessian is not separable

by observations, which precludes using this type of parallelism.

Recently, Woolfe et al. (2008) proposed and demonstrated a randomized singular value de-

composition (RSVD) method for approximating a high-dimensional matrix such as A. RSVD is a

block algorithm that begins by multiplying A by a matrix containing a set of vectors drawn from a

Gaussian distribution. RSVD is useful for matrix-free decompositions, where the matrix of interest

is represented by a set of equations, but its members are not explicitly represented. In general,

block algorithms are easily parallelized because each matrix-vector multiplication is independent.

Clarkson and Woodruff (2009) further decreased the wall-time of RSVD by introducing single-pass

methods that circumvents a second multiplication by A. Martinsson et al. (2011) showed the

importance of oversampling, or more random vectors (l + p) than the desired rank of the approxi-

mation, l. This is akin to Krylov algorithms that require additional iterations to converge on earlier

eigenmodes that are not fully constrained. Halko et al. (2011) (hereafter HMT11) reviewed and

synthesized many algorithmic variants of RSVD and gave error approximations for each one. Those

authors’ work is the basis for the methods applied herein.

There are several relevant studies that have applied RSVD or similar approaches, but which

are slightly different from the work herein. Liu et al. (2015) provided an alternative block algo-

rithm for finding the low-rank approximation of a non-square matrix. Those authors use a GN

optimization within that matrix approximation, but they do not apply the resulting low-rank ma-

trix in a GN procedure as we are intending to do. Hsieh and Olsen (2014) similarly use RSVD
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within their own Newton-based approach to matrix active subspace determination, i.e., low-rank

approximation, but do not conduct GN using their result. Kitanidis and Lee (2014) apply RSVD

to approximate the Hessian in a geostatistical GN algorithm that uses an adjoint-free ensemble

of FWM integrations. They stipulate that their algorithm is limited to applications where “the

measurements have limited information content,” which would be true when m is small or the

observations are highly correlated.

The underlying theory and algorithm for our work is given by BH16. BH16 applied adjoint-

based RSVD to approximate the incremental 4D-Var Hessian in the first GN iteration of an at-

mospheric surface flux inversion problem and compare the analysis increment to that from forty

iterations of BFGS. They also characterized the convergence of standard and optimal formulations

for the approximate Hessian. After these initial successes, they propose the Randomized Incre-

mental Optimal Technique (RIOT) to solve nonlinear optimization problems across multiple GN

iterations.

4.1.2 Summary of this work

Herein we implement RIOT, and apply it to a regional chemical source inversion problem

in the Weather Research and Forecasting Data Assimilation with chemistry (WRFDA-Chem) tool

(Chapter 3). We use a lognormal distribution for surface fluxes (described in Sec. 3.2.3.5), which

means it is important to account for nonlinearities through the multiple outer loop framework of

GN. We demonstrate that the parallelized Hessian approximation has computational and accuracy

benefits over traditional methods that will improve the competitiveness of adjoint-based DA. In

Sec. 4.2, we summarize how a Lanczos-GN minimization and RIOT approximate the Hessian of the

4D-Var cost function, and how these are used to calculate analysis increments and the posterior

covariance. We also describe two objective metrics for evaluating matrix approximations and their

implied analysis increments when an exact evaluation of the Hessian is available. In Sec. 4.3, we

compare eigenmodes and analysis increments in the first outer iteration of incremental 4D-Var using

(1) a truncated SVD of the exact Hessian, (2) the Lanczos recurrence, and (3) several variations of
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RIOT. We also evaluate converged states and posterior variance from a Lanczos-GN optimization

and RIOT after several outer iterations. In Sec. 4.4, we summarize the utility of RIOT and give

insight into it’s applicability in NWP.

4.2 Methods

4.2.1 Incremental 4D-Var

As we described in Sec. 3.2.3.1, and following the same notation, we apply GN to the incre-

mental 4D-Var using a square-root preconditioner, i.e.,

J
(
δvk
)

=
1

2

(
δvk − db,k−1

)> (
δvk − db,k−1

)
+

1

2

(
Gk−1Uδvk − do,k−1

)>
R−1

(
Gk−1Uδvk − do,k−1

)
. (4.6)

δv ∈ Rn is a preconditioned increment; U is the square-root preconditioner (δx = Uδv, B = UU>);

δx is an increment in the control variable (CV) space, x; G is the linearized model operator, or

Jacobian of the system of equations; R is the model-observation error covariance matrix; and B is

the prior error covariance of the CV, x. The observation and background innovations are

do,k−1 = yo −G
(
xk−1

)
, (4.7)

and

db,k−1 =
k−1∑
ko=1

δvko , (4.8)

respectively, where yo ∈ Rm is the set of observations. G and its transpose have superscripts of

k − 1 to indicate linearization about the CV from the previous outer iteration, which we will drop

from this point on for readability. The analysis increment calculated in the kth outer iteration of

incremental 4D-Var is

δvk =
(
In + U>G>R−1GU

)−1 (
db,k−1 + U>G>R−1do,k−1

)
= − [Hδv]−1∇δvJ |δvk=0, (4.9)
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in preconditioned CV space. The second term, a vector, in the product of Eq. 4.9 is the gradient

of the cost function evaluated at the most recent set of CVs, which requires an adjoint simulation.

We showed in Appendix B that the first term in the product of Eq. 4.9, the inverse of

the preconditioned Hessian, can be represented as a low-rank update (LRU) to the prior pre-

conditioned covariance (identity matrix, In) in terms of the leading l eigenmodes (eigenvalues,

Λl = diag(λ1, λ2, . . . , λl); eigenvectors,Wl = [ν̂1, ν̂2, . . . , ν̂l]) of the preconditioned Hessian, i.e.,

Hδv ≈ I +
l∑

ki=1

(λki − 1) ν̂ki ν̂
>
ki
,

and its inverse (see Eq. B.12)

[Hδv]−1 ≈ I +
l∑

ki=1

(
λ−1
ki
− 1
)
ν̂ki ν̂

>
ki
, (4.10)

or equivalently,

LRU: [Hδv]−1 ≈ I−
l∑

ki=1

(
λki − 1

λki

)
ν̂ki ν̂

>
ki
≡ Pa

v,U ≈ Pa
v, (4.11)

where l << n, and rank (Hδv) ≤ min (m,n). ki is the iterator across spectral modes. For sequen-

tial methods, this refers to the iterator, while for parallel methods, this refers to the counter of

ensemble members. As we discussed in Sec. 3.2.3.4, [Hδv]−1 is equivalent to the preconditioned

posterior covariance, Pa
v, near a stationary point in the optimization. BH16 state that without any

modification, CG and the Lanczos recurrence do not use an LRU, but instead intrinsically apply a

low-rank approximation (LRA) for the inverse Hessian, i.e.,

LRA: [Hδv]−1 ≈
l∑

ki=1

1

λki
ν̂ki ν̂

>
ki
≡ Pa

v,A ≈ Pa
v. (4.12)

In principle, the LRU can be used within the Lanczos recurrence if the standard increment algorithm

(e.g., Golub and Van Loan, 1996) is replaced with an explicit formulation that uses Λ and V. We will

show in Sec. 4.3.1 that when the Lanczos recurrence is used to calculate an analysis increment, there

is no distinction between the LRU and LRA. For further explanation of this issue, see Sec. 4.2.2.3.

Once δv is known, it is easily converted to CV space by applying the preconditioner, i.e.,

δxk = Uvk. Following from Eq. 3.26, and as we confirmed in Appendix C, the posterior covariance
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is converted to CV space through

Pa = UPa
vU>. (4.13)

The posterior variance is used in atmospheric chemistry modeling to decide whether observations

give statistically significant information about emission sources or initial states at varying temporal

and spatial scales (see Chapter 3 for an example). The practical differences for analysis increments

and posterior variance between the LRU and LRA are explored in Sec. 4.3.

Spantini et al. (2015) showed optimality results for analysis increments calculated using either

the LRU or the LRA. BH16 repeated those derivations and presented new optimality results for

the posterior covariance. We reiterate the analysis increment optimality conditions here, because

we use them later in the paper. Those results depends on two different matrix classes, as described

by BH16:

Al ≡ {M ∈Mn| rank (M) ≤ l}

Âl ≡
{

M ∈Mn|M = B−QQ> ≥ 0, rank (Q) ≤ l
}

Al is the class of n × n matrices which are referred to as LRA’s. Âl is the class of negative

semidefinite updates to the prior error covariance matrix B, where Q is a general low-rank matrix.

Approximations belonging to this class are referred to as LRU’s.

BH16 showed that the Bayes risk of the analysis increment calculated with the LRU and

LRA are

E‖xLRU − xa‖2(Pa)−1 = min
P̃∈Âl

E‖
(
P̃−Pa

)
G>R−1dk‖2

(Pa)−1 =
∑
i>l

(λi − 1)3 , (4.14)

and

E‖xLRA − xa‖2(Pa)−1 = min
K̃∈Al

E‖
(
K̃−K

)
dk‖2

(Pa)−1 =
∑
i>l

(λi − 1) , (4.15)

respectively. Pa is the true posterior covariance, xa is posterior mean that would be found by using

the exact Hessian, ‖ · ‖M is the weighted Euclidian norm with respect to the matrix M, and E(·)
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is the expectation operator. dk is a combined observation and background innovation evaluated

after k outer iterations, and is in observation space. In Eq. 4.15, K is the Kalman gain matrix,

K = BG>
(
GBG> + R

)−1
. As can be seen from Eqs. 4.14 and 4.15, there is an intersection at

λl+1 = 2 where the LRU becomes more optimal than the LRA for the analysis increment.

It should be noted that BH16 express the Bayes risk, increments, and posterior covariance of

the LRU and LRA in terms of the eigenmodes of the preconditioned observation Hessian,

Hδv,o = U>G>R−1GU, (4.16)

which only differ from those of the full preconditioned Hessian by ΛHδv = In + ΛHδv,o , where Λ

are the respective diagonal matrices of eigenvalues of either matrix. The elements of ΛHδv are all

≥ 1, whereas the elements of ΛHδv,o are all ≥ 0. We will be converting between these two Hessians

throughout Sec. 4.2.2.2.

BH16 evaluated RSVD approximations of the eigendecomposition of Hδv for a small problem

(n = 300), for which a direct SVD computation was possible through explicit construction of the

Hessian using finite-differences of adjoint sensitivities. Those authors also applied RSVD and BFGS

to a larger problem (n = 18271) to demonstrate the wall-time benefits of the former. Here we use

multiple methods to determine the eigendecomposition of Hδv for a relatively large problem with

few observations (n≈ 3 × 105, m = 241): the Lanczos recurrence, several forms of RSVD, and a

hybrid Krylov-RSVD variant. We assume that the desired rank of the Hessian approximation, l,

and the number of outer loops, kf , are specified. Here we give the details of each of these methods

to illustrate their theoretical differences.

4.2.2 Hessian Approximations

4.2.2.1 Lanczos recurrence

Desroziers and Berre (2012) give a thorough description of how the Lanczos algorithm is

applied to incremental 4D-Var. We give a summary here to illustrate its sequential nature. The

Lanczos recurrence determines a Krylov subspace of a Hermitian target matrix (A = A∗ ≡ Hδv)



101

by sequentially multiplying it by a test vector (b ≡ ∇δvJ |δvk=0) in increasing powers to determine

the range of the target matrix, i.e.,

Kl (A, b) = span
{
b,Ab,A2b, . . . ,Al−1b

}
. (4.17)

We focus on symmetric matrices here because of the inherent symmetry of A = Hδv, but the

Krylov subspace of non-symmetric matrices can be found by the Arnoldi algorithm. From here,

we assume that A is a real matrix, which allows us to use the transpose instead of the Hermitian

operator. The Lanczos vectors discussed in Sec. 3.2.3.4 and Appendix B form an orthonormal basis

for the Krylov subspace. Therefore, Ql = [q1, q2, . . . , ql] ∈ Rn×l forms a basis set for Hδv. It is

well-known that the Lanczos algorithm produces orthogonal qki ’s in exact arithmetic, but not in

finite precision. Modified Gram-Schmidt (MGS) is used for re-orthonormalization.

In Appendix B, we describe how the Lanczos recurrence builds the LRA of Hδv as

Hδv ≈ QlWlΛlW
>
l Q>l . (4.18)

Wl = [ŵ1, ŵ2, . . . , ŵl] and Λl = diag(λ1, λ2, . . . , λl) comprise the spectral decomposition of a

symmetric tridiagonal matrix, Kst,l ∈ Rl×l, which is an inherent component of Lanczos. Each

eigenvector of Hδv is ν̂ki = Qlŵki . The diagonal elements of Λl are called the Ritz eigenvalues,

and have been shown to approximate the extremal eigenvalues of A. Such approximation should

improve as l → rank (A), where in our case rank(A) = rank(Hδv) = n. That is to say, l iterations

of the Lanczos recurrence produces a rank-l approximation of Hδv, but one that is not identical

to the rank-l approximation that would result from an eigendecomposition of the explicitly formed

Hessian. The Lanczos recurrence requires p extra iterations, for a total of l + p, to match the best

possible rank-l approximation of A; p is the oversampling parameter.

4.2.2.2 Randomized SVD

Whereas Krylov subspace methods apply the target matrix in increasing degrees to form the

rank-l basis set, Ql, RSVD (Woolfe et al., 2008) multiplies the target matrix by a set of l randomly
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drawn column vectors, Ω = [ω1,ω2, . . . ,ωl] to form

Y = ÂΩ. (4.19)

When applied to incremental 4D-Var, Â is either m × n, n × n, or n ×m. In a method we refer

to as RIOT-56, Â is square, and we set the observation Hessian to Hδv,o = A = Â. In another

approach, RIOT-51, Â is non-square, and we will use Hδv,o = A = Â>Â. Herein, the members

of Ω are independent and identically distributed standard Gaussian variables with mean 0 and

standard deviation 1, but HMT11 note that other random matrices achieve similar results. All of

the matrix vector products, yki = Aωki , ki ∈ (1, 2, . . . , l), are computed in parallel. Although we

use the same subscript as we did for the Lanczos recurrence, now ki identifies a single ensemble

member, not an iteration. In this step, RSVD takes the bulk of the computational load from the

Lanczos recurrence and spreads it across a number of processes equal to the number of modes of

variability in A that the user would like to approximate. Once agaion, l corresponds to the rank

of the eventual matrix approximation, but that approximation will not be identical to the rank-l

decomposition that would result from an SVD of an explicit form of A. The solution is to increase

l by an oversampling parameter, p, except that now the additional computations are conducted in

parallel. From this point, we will assume that Napp = l + p random vectors are used, where Napp

is the number of approximated modes and l is the effective rank that those modes represent.

Once Y is found, we proceed with the randomized range finder, Algorithm 4.1 of HMT11.

Alternatively, HMT11 Algorithm 4.4 could be used, which we discuss later in this section. The

basis of Y, denoted Q, is found through some QR decomposition method (e.g., Gram-Schmidt

orthogonalization, Householder matrices, or by using the left singular vectors of Y). Following the

recommendation of HMT11, we carry out all QR decompositions using a twice repeated version of

MGS, as proposed by Björck (1994). The range of Q is an l-dimensional subspace that approximates

the range of Â. Therefore, one has the following bounded spectral norm:

‖
[
In −QQ>

]
Â‖2 ≤ ε. (4.20)
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HMT11 gives expected upper limits for ε achievable by RSVD for general matrices. As mentioned

previously, RSVD requires Napp realizations to achieve a true rank-l approximation of Â. HMT11

state that a oversampling of p = 5 or p = 10 should be sufficient, but also that in some rare cases

p = l may be necessary.

BH16 propose three different approaches to applying RSVD to the cost function Hessian, each

of which (1) defines a unique matrix Â of specific dimension, and (2) utilizes either Algorithms 5.1

or 5.6 from HMT11 to determine a low-rank representation of Â = QKQ>. That decomposition

is analogous to the Lanczos decomposition except that K is no longer tridiagonal. BH16 give a

complete description of the RIOT algorithm and how it would be used in operational forecasting.

We repeat some derivations here to clarify specific points about the different variations of RIOT. The

algorithm descriptions for RIOT using HMT11 Algorithm 5.1 (RIOT-51) or HMT11 Algorithm 5.6

(RIOT-56) are repeated in Appendix D. In all three approaches, we apply RSVD to the observation

Hessian, Hδv,o, and then transform to the full Hessian, Hδv. The three approaches are as follows:

(1) RIOT-56: Let Â ≡ Hδv,o = U>G>R−1GU ∈ Rn×n

Y ∈ Rn×Napp is found by multiplying Â by random vectors, ωi ∈ Rn, in preconditioned

CV space. Once Q ∈ Rn×l is known, it is used in the single-pass Algorithm 5.6 of HMT11,

and as proposed by Clarkson and Woodruff (2009), which applies to a symmetric Â. In

short, this algorithm takes utilizes the error bound in Eq. 4.20 to reach the expression

KQ>Ω ≈ Q>Y. (4.21)

A least-squares solver can be used to find a symmetric K ∈ RNapp×Napp . In the case when

U and H are perfectly modeled as symmetric, the spectral decomposition, K = WΛW,

yields the approximate decomposition of Â as

Â ≈ QKQ> = QWΛW>Q>. (4.22)

In our experience, numerical precision or some other error source (probably asymmetry

in the implementation of G and G>) leads to asymmetry in K that is detrimental to the
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Hessian approximation. To circumvent that issue, we take several steps. First we substitute

a positive definite form of K into Eq. 4.22,

Â ≈Q
(
KK>

) 1
2

Q>. (4.23)

After taking the SVD, K = WΛ1Z
>, we substitute it into Eq. 4.23 and simplify to deter-

mine a symmetric low-rank form for Â:

Â ≈Q
(
WΛ1Z

>ZΛ1W
>
) 1

2
Q>

Â ≈Q
(
WΛ2

1W
>
) 1

2
Q>

Â ≈QWΛ1W
>Q>. (4.24)

Hδv,o is transformed to Hδv by adding 1 to the eigenvalues. Algorithm 3 in Appendix D

summarizes the incremental 4D-Var procedure for RIOT-56.

(2) RIOT-51: Let Â ≡ H
1
2
δv,o = R−

1
2 GU ∈ Rm×n

In this case, we set Â equal to the right square-root of Hδv,o, where A = Â>Â. Y ∈ Rm×l

is found by multiplying Â by Napp = (l + p) random vectors, ωki ∈ Rn, in preconditioned

CV space. Once Q ∈ Rm×Napp is known, we apply the RSVD from Algorithm 5.1 of

HMT11 for non-square Â. The next step from that algorithm is to find K1 = Q>Â, but

we only have the ability to multiply Â or Â> by a vector, because they are not represented

explicitly. Therefore we instead find K>1 = Â>Q and take its transpose.

Next we take the SVD, K1 = WSZ>. HMT11 state that the wall-time of a standard

SVD algorithm operating on a rank-l matrix of dimension n×m scales as O(nml). Since

K1 ∈ Rl×n, this SVD should scale as O(nl2). Therefore, if this SVD takes less than 10

seconds for n = 3 × 105 using LAPACK on a single processor (which it does), it should

scale conveniently for larger problems (e.g., NWP and air quality forecasting).

With K1 known, the observation Hessian is decomposed as

Hδv,o = Â>Â ≈ ZSW>Q>QWSZ> = ZΛZ> (4.25)
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The eigenvalues, Λ = S2, are transformed to those of Hδv by adding 1. Algorithm 4 in

Appendix D summarizes the incremental 4D-Var procedure for RIOT-51.

(3) RIOT-51>: Let Â ≡ H
1
2
δv,o = U>G>R−

1
2 ∈ Rn×m

The process for this form of Â is similar to RIOT-51 except that ωi ∈ Rm, Y ∈ Rn×Napp ,

Q ∈ Rn×Napp , and Hδv,o = ÂÂ>.

The three different algorithmic approaches to RSVD use the same components, namely the

TLM, ADM, observation covariance, and a set of random vectors. In perfect arithmetic they should

all lead to the same answer for a low-rank approximation to the symmetric, positive definite Hδv.

Following from the summary of single-pass methods by HMT11, we expect RIOT-56 to be less

successful than RIOT-51 or RIOT-51>. In the event that there are scalability issues in RIOT-

51 with forming the SVD of K1, RIOT-56 is a usable alternative. We evaluate both RIOT-56,

RIOT-51, and RIOT-51> in Sec. 4.3 to characterize their differences in application to 4D-Var.

So far we assumed that the randomized range finder, HMT11 Algorithm 4.1, is used to

find the basis set, Q, of the target matrix, Â. Of the randomized range approximation schemes

described by HMT11, this one is the easiest to implement and has the shortest wall-time. However,

the basis approximation error in Eq. 4.20 can only be reduced by increasing the number of random

samples, Napp. In incremental 4D-Var this equates to additional TLM and ADM ensemble members,

which for a fixed wall-time could increase the number of processors needed beyond an acceptable

limit. Since the precision of Q will impact the optimality of the analysis increment or posterior

covariance, a range finder compatible with a fixed processor count could be advantageous, especially

if the eigenvalues of the Hessian decay slowly.

An alternative is to use power iterations, e.g., HMT11 Algorithms 4.3 and 4.4. The ran-

domized power iteration originates from Rokhlin et al. (2010) and is based on classical orthogonal

iteration methods (Golub and Van Loan (1996), p. 332). The power iteration derives its name
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from repeated multiplications by the target matrix and its transpose,

Y =
(
ÂÂ>

)q
ÂΩ. (4.26)

When q = 0, Eq. 4.26 simplifies to Eq. 4.19. Q is found from QR factorization of Y. The randomized

subspace iteration (RSI), HMT11 Algorithm 4.4, uses repeated orthonormalization in order to

preserve information about the weaker singular modes of Â in floating-point arithmetic. In contrast,

the randomized power iteration, HMT11 Algorithm 4.3, does not use orthonormalization. The

reorthonormalizaiton uses intermediate matrices Ỹj = Â>Qj−1 and Yj = ÂQ̃j , where Q̃j is the

orthonormalized Ỹj and Qj−1 is the orthonormalized Yj−1. This need for enforced orthogonality,

and the power iteration in general, resembles Krylov subspace methods. When q = 0, both power

iteration methods simplify to the randomized range finder described in the RIOT-56 or RIOT-51.

Herein, we will also refer to RIOT methods with q > 0, indicating that the RSI is used instead of

the randomized range finder.

4.2.2.3 RSVD with a hybrid basis

There are large differences between Krylov and randomized methods, and one of these is

in how the first column of Q is determined, which is the dominant basis vector, q1. One Krylov

method, CG, solves a problem, Aδv = b, where q1 = b̂ = b√
b>b

. b̂ is the steepest descent direction.

In RSVD, the randomized range finder and subsequent decomposition are aimed solely at Â without

regards for b. In the first iteration of RIOT-56, we found that the columns of Y are nearly (but

not perfectly) parallel or anti-parallel to b = U>G>R−1do. Therefore, in the incremental 4D-Var

problem, the range of the Hessian shares directional information with the steepest descent direction,

b̂. When applying RSVD to this problem it is beneficial to consider the system of equations,

Aδv = b (4.27)

ÂΩ = Y (4.28)

ÂQ = QK, (4.29)
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where Q comes from QR(Y). A is either equal to Â or a product of Â and Â>, depending on the

matrix decomposition method (see Sec. 4.2.2.2). For instructive purposes we continue the discussion

using the randomized range finder (i.e., q = 0) with RIOT-56 (i.e., A = Â). We will subsequently

discuss the application to RIOT-51 and RIOT-51> for q > 0.

For RIOT-56, Eq. 4.21 combines Eqs. 4.28 and 4.29. Utilizing A = Â, and the fact that b̂ is

to b as q1 is to y1, the system of equations can be represented as

K̂
[
b̂ Q

]>
[δv Ω] ≈

[
b̂ Q

]>
[b Y] , (4.30)

where K̂ ∈ RNapp+1×Napp+1 is a reduced form of A that also accounts for the least squares problem

at hand. We can also define Ŷ = [b Y] ∈ Rn×Napp+1, and if qi ⊥ b̂ for all the columns of Q, then

we have Q̂ =
[
b̂ Q

]
. The new problem is then

K̂Q̂> [δv Ω] ≈ Q̂>Ŷ, (4.31)

and this expands to the separable system of equations,

K̂Q̂>Ω ≈ Q̂>Y (4.32)

Aδv ≈ Q̂K̂Q̂>δv = b. (4.33)

Introducing a single new basis vector, b̂, may affect the approximation error of A ≈ QK̂Q>,

but it can never reduce that error below that of the rank-l truncated SVD. However, including

b̂ does change the analysis increment when a randomized power iteration is used, which we show

in Sec. 4.3. Eq. 4.26 requires multiplication by both Â and its transpose, which for RIOT-56 is

the full observation Hessian (i.e., Â> = Â = Hδv,o). We forgo a rigorous theoretical extension to

RIOT-51 and RIOT-51>, but infer that simply appending b̂ onto Q as the leading basis vector, q1,

is equivalent to solving for an increment that simultaneously solves the least-squares and RSVD

problems. Algorithms 1 and 2 describe the hybrid procedures for RIOT-51 and RIOT-51>, respec-

tively. The hybridization takes place in step 10 of Algorithm 1 and steps 5 and 15 of Algorithm 2.

Without the prepending by b̂ in these two steps, the algorithms are equivalent to using RIOT-51

and RIOT-51> with the range finder replaced by RSI.
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Algorithm 1 Hybrid RIOT-51

Require: Â ≡ H
1
2
δv,o = R−

1
2 GU ∈ Rm×n

and Ω ∈ Rn×Napp ∼ N (0, 1)
1: Start with xk=0 = xb, v0 = 0
2: for k = 1, 2, . . . , kf do
3: Steps 3 to 12 of Algorithm 4
4: Let Y0 = Y and find Q0 ∈ Rm×Napp from QR(Y0)
5: if q > 0 then
6: Let b̂ = b√

b>b
7: for j = 1, 2, . . . , q do
8: for all ki ∈ {1, 2, . . . , Napp} do in parallel

9: ỹki, j = Â>qki, j−1

10: end for
11: Calculate Q̃j ∈ Rn×Napp from QR(Ỹj)

12: Let Q̂j =
[
b̂ Q̃j (:, 1 : Napp − 1)

]
13: for all ki ∈ {1, 2, . . . , Napp} do in parallel

14: yki, j = Âq̂ki, j
15: end for
16: Calculate Qj ∈ Rm×Napp from QR(Yj)
17: end for
18: end if
19: Q = Qq

20: Steps 14 to 22 of Algorithm 4
21: end for
22: Pa = UPa

vU
>

In the incremental 4D-Var application, b ∈ Rn is always in the control vector space. Thus, b̂

can only be prepended to a matrix Q ∈ Rn×Napp . When the RSI is used with RIOT-51, that size

restriction is met by Q̃, while for RIOT-51>, it is met by Q. After several iterations of the RSI, one

can imagine that the leading basis vector would no longer be equal to b̂. Since that would violate

Eqs. 4.32 and 4.33, the basis vector b̂ is prepended to either Q or Q̃ during each iteration of RSI, and

the last column is truncated to maintain a constant width ensemble. The repeated multiplications

of b̂ by Â> and Â are identical to Krylov methods that find a basis for the set of vectors made

up of increasing powers of A multiplied by b̂. Thus, we now have a method that combines the

properties of Krylov and RSVD methods and uses a hybridized deterministic and stochastic basis Q̂
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to reduce the number of sequential iterations and/or ensembles required to converge on a solution

to the least-squares problem. This approach can scale to available computational resources of time

or processor count.

Algorithm 2 Hybrid RIOT-51>

Require: Â ≡ H
1
2
δv,o = U>G>R−

1
2 ∈ Rn×m

and Ω ∈ Rm×Napp ∼ N (0, 1)
1: Start with xk=0 = xb, v0 = 0
2: for k = 1, 2, . . . , kf do
3: Steps 3 to 12 of Algorithm 4
4: Let Y0 = Y and find Q0 ∈ Rn×Napp from QR(Y0)

5: Let b̂ = b√
b>b

6: Let Q̂0 =
[
b̂ Q0 (:, 1 : Napp − 1)

]
7: if q > 0 then
8: for j = 1, 2, . . . , q do
9: for all ki ∈ {1, 2, . . . , Napp} do in parallel

10: ỹki, j = Â>q̂ki, j−1

11: end for
12: Calculate Q̃j ∈ Rm×Napp from QR(Ỹj)
13: for all ki ∈ {1, 2, . . . , Napp} do in parallel

14: yki, j = Âq̃ki, j
15: end for
16: Calculate Qj ∈ Rn×Napp from QR(Yj)

17: Let Q̂j =
[
b̂ Qj (:, 1 : Napp − 1)

]
18: end for
19: end if
20: Q = Q̂q

21: Steps 14 to 18 of Algorithm 4
22: Form eigenmodes of Hδv: Λ = S2 + I and V = QW
23: Steps 20 to 22 of Algorithm 4
24: end for
25: Pa = UPa

vU
>

4.2.3 Evaluation Metrics

In this section, we derive two evaluation metrics that can be used to objectively compare

different Hessian approximation methods. Both of the metrics require having an exact evaluation

of either the left or right square-root of the Hessian.
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4.2.3.1 Exact Hessian

The TLM and ADM are able to evaluate multiplications of the model Jacobian or its adjoint

by vectors of size n or m, respectively. When the problem size is small enough, either m . 102 or

n . 102 for the relatively expensive model evaluations of atmospheric problems, a square-root of the

exact linearized Hessian (within machine precision) can be determined using an ensemble of TLM

or ADM integrations at moderate cost. This also requires knowing R−
1
2 , which is straightforward

in our test scenarios where R is assumed to be diagonal. In this work, we use a problem where m

is small enough to calculate the left square-root (LSR) of the observation Hessian, explicitly:

Hδv,o,LSR = H
1
2
δv,o = U>G>R−

1
2 Im. (4.34)

The multiplication by Im indicates that we independently evaluate each matrix-vector product with

the columns of the identity matrix. Just like for RSVD, the matrix-matrix multiplication is done

in parallel. Once H
1
2
δv,o is known, its SVD is taken as Hδv,o,LSR = WSZ>, and the observation

Hessian is expressed as

Hδv,o = WSZ>ZSW> = WΛW>, (4.35)

where Λ = S2. Once again Hδv is found by adding 1 to the eigenvalues.

4.2.3.2 Range approximation error

The norm declared in Eq. 4.20 indicates there is an upper limit on approximation error, ε, for

any low-rank basis, whether it is generated through the Lanczos recurrence or RSVD. The difficulty

is in evaluating this norm when n is very large, since A = Hδv,o can not be stored in memory, and

the number of computations is large. After carrying out the exact Hessian approximation, we have

an SVD,

Hδv,o,LSR = H
1
2
δv,o = U>G>R−

1
2 = WSZ>, (4.36)
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where Hδv,o,LSR is the LSR of the observation Hessian. Substituting the SVD into Eq. 4.20, we

find that the spectral norm, which we will call εQ, can be transformed to

εQ = ‖
[
In −QQ>

]
Hδv,o‖2 = ‖

[
WSZ> −QQ>WSZ>

]
ZSW>‖2. (4.37)

If Q is a full-rank basis for Hδv,o, then εQ = 0 in exact arithmetic. When Q = Wl, where Wl

contains the leading l left-singular vectors of U>G>R−
1
2 (equivalent to leading eigenvectors of

Hδv,o and Hδv), then εQ = λl+1, which corresponds to the best possible rank-l approximation of

the Hessian. The calculation of εQ can be further simplified by taking the SVD of the term in

brackets on the right-hand-side of Eq. 4.37,[
WSZ> −QQ>WSZ>

]
=
(
U1S1V

>
1

)
∈ Rn×m. (4.38)

εQ then simplifies to

εQ = ‖U1S1V
>
1 ZSW>‖2. (4.39)

Then take the SVD of

S1V
>
1 ZS =

(
U2S2V

>
2

)
∈ Rl×m, (4.40)

which gives

εQ = ‖U1U2S2V
>
2 W>‖2, (4.41)

and finally

εQ = max S2. (4.42)

With this method to find εQ, we can now objectively compare different approximations of Q. The

SVD of Hδv,o,LSR was found in MATLAB using the “svd” function.

4.2.3.3 Bayes risk

The Bayes risk is a wholistic metric that can be used to compare the analysis increments

associated with each Hessian approximation method. It is defined as

‖x− xa‖2
(Pa)−1 = (x− xa)> (Pa)−1 (x− xa) . (4.43)
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As shown in Eqs. 4.14 and 4.15, BH16 gave theoretical expectancy results for the Bayes risk asso-

ciated with the rank-l LRU and LRA approximations of the Hessian. Since the Lanczos recurrence

and RSVD do not produce identical increments to a truncated SVD, it would be useful to be able

to evaluate this same metric given a preconditioned analysis increment, δv, from either method and

the true increment, δva. δva is calculated using the full-rank inverse Hessian SVD from Sec. 4.2.3.1.

When the preconditioned inverse posterior covariance, (Pa
v)−1 = Hδv, is combined with

Eq. 3.25, we find that

(Pa
v)−1 = Hδv = U> (Pa)−1 U. (4.44)

Premultiplying by B−1U and postmultiplying by U>B−1, the posterior covariance is equal to

(Pa)−1 = B−1UHδvU>B−1. (4.45)

The difference between the posterior and the truth can also be simplified to

x− xa = U (v − va) = U (δv − δva) . (4.46)

Substituting Eqs. 4.45 and 4.46 into Eq. 4.43, the Bayes risk is

‖x− xa‖2
(Pa)−1 = (δv − δva)>U>B−1UHδvU>B−1U (δv − δva)

= (δv − δva)>Hδv (δv − δva) (4.47)

Using the eigendecomposition from Eq. 4.35, this simplifies to

‖x− xa‖2
(Pa)−1 = (δv − δva)>W (Λ + I) W> (δv − δva) . (4.48)

4.3 Results

There are four types of approximation errors we must account for when considering a partic-

ular Newton-based nonlinear optimization algorithm:

(1) The GN algorithm introduces error by linearizing the cost function. We mitigate that error

through DGN, and through successive relinearization of the the problem around new states.
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(2) When we assume that the Hessian can be approximated by its dominant eigenmodes, we

are discarding some information. The appropriate rank must balance the needs to resolve

fine scale information that is useful to the optimization, to avoid overfitting unrealistic

modes, and to utilize available computational resources.

(3) For a particular inner-loop method (Lanczos recurrence, RSVD), how close do l iterations

or ensembles come to being equivalent to a rank-l approximation of the Hessian? This error

source reflects the need for the oversampling parameter, p.

(4) Is the LRA or the LRU utilized, and what difference does it make?

The error, ε, from Eq. 4.20 is contained in items (2) and (3) above. We will explore the impacts of

each of these error sources through demonstrations on a problem with small m using the Hessian

approximation methods described in Sec. 4.2.

The test problem is described in detail in Chapter 3. We use aircraft observations of black

carbon (BC) throughout California, measured with a single particle soot photometer (SP2) (Sahu

et al., 2012) on board a DC-8 aircraft during the Arctic Research of the Composition of the Tro-

posphere from Aircraft and Satellites in collaboration with the California Air Resources Board

(ARCTAS-CARB) field campaign (Jacob et al., 2010). For the analysis herein, we focus on the

flight of 22 June, 2008 which characterized local emissions of trace gases and aerosols from an-

thropogenic and biomass burning (BB) sources as well as inflow from the Pacific Ocean. On that

day, there were m = 241 aircraft observations. A large portion of the flight time was spent char-

acterizing the Los Angeles boundary layer between 8:00 and 10:00 LT. Most of the remainder of

the flight was spent flying out over the ocean, up to Crescent City, and then returning down the

coast to Los Angeles. In Chapter 3, we assessed the utility of these observations in constraining

18 km2 gridded sources of BC from both anthropogenic and BB activity. Herein, the purpose is to

compare computational and accuracy metrics for the different methods of Hessian approximation

and posterior updates for this specific problem. The CV, x is comprised of the exponential emis-

sion scaling factors for 79×79 grid cells and 24 hourly emission bins. Since the domain includes
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the ocean and the fires are sparse, many of the grid cells (> 1
2) do not contain emissions for one

or both sectors. So although n = 299, 568, and the matrices we consider will have dimensions of n

and m, the effective problem size is neff = 121, 912.

4.3.1 First outer iteration

Before assessing the global convergence properties of a Lanczos-GN optimization and RIOT

across multiple outer iterations, it is instructive to start with a single outer iteration. For this

purpose, we apply the Lanczos recurrence, RSVD, and the exact Hessian method within the first

outer iteration of 4D-Var for the 22 June scenario. Over the course of this work, we found that

WRFDA-Chem does not have a perfectly symmetric preconditioned observation Hessian Hδv,o.

This is due to inconsistencies in the action on a vector between the TLM operator (Gδx) and

ADM operator (G>δy) or between the preconditioner (Uδv) and its transpose (U>δx). All of

the methods we are applying are meant for symmetric matrices, and the underlying theory of this

problem states that the Hessian should be symmetric.

Fortunately there is an objective way to evaluate the matrix approximation methods without

diagnosing the symmetry problem. We start by evaluating the LSR of Hδv,o using the adjoint

model as described in Sec. 4.2.3.1. Then we form a perfectly symmetric analogue of the Hessian by

multiplying,

Hδv,o,SYMM = Hδv,o,LSRH>δv,o,LSR, (4.49)

where Hδv,o,LSR = U>G>R−
1
2 . We apply the Lanczos recurrence, RIOT-56, RIOT-51, Hybrid

RIOT-51, and Hybrid RIOT-51> to the problem A ≡ In +Hδv,o,SYMM .

Figure 4.1 shows the resulting eigenspectra for the Lanczos recurrence, RIOT-56, and RIOT-

51, each of which converges toward the true eigenspectrum from below. Eigenvalues from RIOT-51

and RIOT-56 match to within 10 digits. The Lanczos recurrence exhibits long tails at the end of

each approximate spectrum, indicating that the trailing eigenvalues between l and the number of

approximate modes, Napp = l+p, are poorly estimated relative to the others. The tails are smaller
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for RIOT-51/56.

Figure 4.2 shows the absolute error between the eigenvalues of the exact Hessian and those

from three approximation methods. The Lanczos recurrence quickly converges to nearly machine

precision for the leading eigenvalues, with larger errors for the smallest 30-50% of eigenvalues. The

values for RIOT-51 when q = 0 should be identical to those from RIOT-56. When q = 0, the error

exhibits constant absolute accuracy but a stable decay in relative accuracy from the largest to

the smallest eigenvalues. Increasing q substantially reduces error in all eigenvalues, especially the

leading ones. This is consistent with the theory discussed by HMT11. Hybridization does not have

much impact on the eigen spectra for RIOT-51. Also, RIOT does not meet or exceed the precision

of the Lanczos recurrence until the final 20% of the spectrum, but shows marked improvement with

q > 0.

Figure 4.3(a) shows εQ for the truncated SVD and for several approximate bases. As predicted

by theory, εQ lines up very well with λl+1 when Q is equal to the left-singular-vectors of the

truncated SVD (p = 0). The other two lines in Fig. 4.3(a) correspond to the basis from the

Lanczos recurrence and the expected basis from 20 realizations of RIOT-56. Figure 4.3(d) includes

εQ for a single realization of RIOT-51 with the RSI and multiple values of q. When q = 0, RSI

collapses to the randomized range finder in the standard RIOT-51. We have found that with a

perfectly symmetric Â, the basis and eigenmodes produced from RIOT-51 and RIOT-56 with the

randomized range finder are identical for a given realization of Ω. For any q > 0, the spectral norm

is significantly reduced to values lower than those produced by the Lanczos recurrence, eventually

converging to the truncated SVD. This is consistent with the convergence of the power iteration

discussed by HMT11.

When a horizontal line is drawn from any of the colored lines in Figs. 4.3(a,d) to the black

line for the exact symmetric Hessian, the new x-value is equivalent to the effective rank, l, of the

approximation method. These rank values are plotted in Figs. 4.3(b,e). The effective oversampling,

p, is the vertical distance between each of the colored lines and the one-to-one line. For larger

ensemble and iteration counts, the effective rank becomes more deficient for the Lanczos recurrence,
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Figure 4.1: Approximate eigenvalue spectra of the perfectly symmetric observation Hessian,
Hδv,o,SYMM , for the Lanczos recurrence and RIOT-51/56 in the first outer iteration. The eigenval-
ues from RIOT-51 and RIOT-56 are nearly identical. Each colored line shows the estimate of the
spectrum [λ1, . . . , λki=l] for every eighth value of Napp. The black numbers on the plot are equal
to the number of iterations or ensembles in a given method, Napp. The exact eigenvalues of the
perfectly symmetric Hessian are also shown.
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different numbers of ensembles or iterations, Napp, and for different numbers of RSI iterations, q.
The exact eigenvalue is on the x-axis. Also plotted are lines of constant fractional error between
10−15 and 1
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RIOT-56, and RIOT-51 when q=0. Thus, as the desired rank, l, increases, more oversampling is

required and p should not be assumed constant. This deficiency is much less evident for q > 0.

Knowing the effective rank for each method enables the calculation of LAGLZ, or the rank

lag with respect to the Lanczos recurrence, shown in Figs. 4.3(c,f). LAGLZ indicates at specific

numbers of ensembles how many fewer iterations it took the Lanczos recurrence to reach the same

rank. LAGLZ is found by drawing a horizontal line from the RIOT methods in Figs. 4.3(b,e) back

to the line for the Lanczos recurrence, and then subtracting the Napp value on the x-axis from that

of RIOT. A negative lag indicates that RIOT required fewer ensemble members than the Lanczos

recurrence required iterations. For RIOT-56 and RIOT-51 (q = 0), this occurs randomly for small

Napp. LAGLZ never exceeds 12 for these two cases. When q > 0, RIOT can produce bases that

are significantly more accurate than the Lanczos recurrence at given values of Napp. These are not

exactly one-to-one comparisons since RIOT-51 takes ×2 as long when q = 1 and ×3 as long when

q = 2.

The lag is never known a priori, but characterizing a particular problem (i.e., BC source

inversion) ahead of time gives a rough idea of how many ensembles are required in RIOT to match

the effective basis rank of an equivalent implementation of the Lanczos recurrence. If a particular

application uses less than 20 Lanczos iterations, then five extra ensembles ought to be more than

enough to achieve a similar effective rank. With the parallelization in RIOT, these extra ensemble

members add some computational cost, but they add very little to the wall-time of the inversion

in the form of gathering/distributing data. In this application, the ADM and TLM simulations

account for a bulk of the wall-time.

Using the LRU and LRA in Eqs. 4.11 and 4.12 and the preconditioned update formula in

Eq. 4.9 we can calculate δv for all of the different methods, and use the truncated SVD of the exact

symmetric Hessian to calculate δva. Combined with the eigendecomposition of the symmetric

Hessian, we can calculate the Bayes risk of each method using Eq. 4.48. Figure 4.4 shows the Bayes

risk for multiple approximation methods. We focus first on Figure 4.4(a).

The Bayes risk from the truncated SVD of the exact Hessian matches very well with the
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LRA, Eq. (4.15)

LRU, Eq. (4.14)

LRA, Lanczos

LRU, Lanczos

LRA, E[RIOT, q =0]

LRU, E[RIOT, q =0]

0 10 20 30 40 50 60 70 80 90 100
10-6

10-4

10-2

100

102

104

106

(b) Non-hybrid RIOT-51 w/ RSI LRA, SVD of Â
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Figure 4.4: (a) Bayes risk for the truncated SVD, theoretical limits in Eqs. 4.14 and 4.15, the
Lanczos recurrence, and the expectation from RIOT with q = 0. Values are shown for increments
that use either the LRA or LRU form of the approximate Hessian. (b-d) Same as (a), but for three
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theoretical formulas derived by BH16, Eqs. 4.14 and 4.15. Although we do not show it here, the

agreement improves steadily for higher numbers of modes(Napp < 75). The Bayes risk for the LRA

and LRU with the exact SVD intersect near Napp = l = 14, which is slightly less than l = 19,

where an eigenvalue of Hδv first descends below 2; the theoretical Bayes risks for the LRU and

LRA intersect at the same rank, l = 14.

The expected increment from RIOT has a delayed intersection point between the LRA and

LRU Bayes risks, but nonetheless demonstrates that the LRA is superior when only a few modes

are available. As expected, RIOT is not as accurate as the truncated SVD; however, the latter

requires as many ensemble members as there are observations, which is prohibitive in operational

forecasting. The LRA and LRU with the Lanczos recurrence produce practically identical incre-

ments. Additionally, these increments exhibit much faster reduction in the norm than any other

approach, including the truncated exact eigenmodes. This seems counterintuitive since the Lanczos

recurrence produces a basis and eigenvalues that are inferior to the truncated SVD according to

Figs. 4.2 and 4.3. In Sec. 4.2.2.3, we hypothesized that this behavior is attributable to the combined

use of a power iteration and a simultaneous solution of the least squares and matrix decomposition

problems. To evaluate this, we analyze the behavior of the hybrid RIOT methods.

Figure 4.4(b) shows the Bayes risk for a single realization of RIOT-51 with RSI and q =

[0, 1, 3], but without hybridization. As might be expected, the improved basis (see Fig. 4.3) achieved

with higher RSI powers, q, reduces the norm for both LRA and LRU toward their respective limits

defined by the truncated SVD. For the few locations where the Bayes risk of the non-hybrid RIOT-

51 is lower than that of the truncated SVD, it is easily explained by the stochastic behavior of a

single RIOT realization. The expectation across multiple realizations was not calculated for values

of q > 0, due to the computational expense. We see in Fig. 4.4(c) that as q is increased for the

hybridized RIOT-51 with either the LRA or LRU, the Bayes risk converges to values that are

below the limits posed by the truncated SVD. In Fig. 4.4(d) the hybridized RIOT-51> exhibits

similar convergence. Additionally, the LRU and LRA give identical analysis increments for RIOT-

51>, similar to the behavior of the Lanczos recurrence. These results for non-hybrid and hybrid
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RIOT methods are compatible with the aforementioned hypothesis about the Lanczos recurrence.

Principally, the levels of increment accuracy found with the Lanczos recurrence are attributable to

the combined effects of a power iteration with q > 2 and a dominant basis vector equal to b̂.

Then the question remains, why do the LRU and LRA increments match for both the Lanczos

recurrence and RIOT-51>? The hybridization step prepends b̂ to the CV basis, and in hybrid

RIOT-51 that step is once-removed – by way of multiplication by the Â operator – from the final

basis in observation space. That is not the case for RIOT-51>. Having b̂ in the final basis is the

commonality between the Lanczos recurrence and hybrid RIOT-51>. When the LRU is used, the

analysis increment is calculated as a multiplication of Eq. 4.11 by b = ∂J
∂v |v0 , i.e.,

δv =

I−
Napp∑
ki=1

(
λki − 1

λki

)
ν̂ki ν̂

>
ki

 b. (4.50)

Multiplying the identity matrix by the gradient and then subtracting the complement of each

eigenmode admits that b is the most dominant component of the Hessian and that each other mode

introduces extra information on top of it. When b̂ is assumed to be the dominant basis vector of

the Hessian, as it is within the Lanczos recurrence and hybrid RIOT-51>, then its complement is

of zero length relative to the direction of the vector by which it is multiplied, b. Thus, in those two

methods, the differences between LRA and LRU are superficial. Including b̂ as the dominant basis

vector gives more efficient increments in terms of Bayes risk, because all other basis vectors are

calculated as orthogonal to it. There is less information remaining about the least squares solution

to resolve with the weaker modes. When the LRU is used without b̂ in the basis, the eigenvectors

can contain redundant directional information relative to Ib.

Since we will eventually apply DGN between the outer iterations, it is more important to

match the direction of δv with its true value than it is to match the magnitude of δv. Thus, the

Bayes risk in Figure 4.4 is more applicable to linear problems than nonlinear problems. Not only

does Bayes risk use the full increment, but it is also normalized by the posterior covariance evaluated

at xk. When xk is far from a stationary point for a nonlinear problem, this is not an accurate

measure of Pa. The preconditioned increment direction is simply the normalized increment, v
‖δv‖ .
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Figure 4.5 shows the Euclidian norm between the direction calculated from the full-rank SVD and

those of the same approximation methods as shown in Fig. 4.4. There is a clear benefit to using the

LRU across the entire envelope of Napp for the exact truncated SVD and all RIOT methods except

RIOT-51>. Thus, for nonlinear solvers that use, e.g., DGN or Levenberg-Marquardt type methods,

it may be beneficial to apply the LRU for all numbers of modes. As we described previously, the

Lanczos recurrence produces identical LRU and LRA increments, as does RIOT-51>. For a given

number of approximate modes, Napp ≥ 4, the increment direction from the Lanczos recurrence is

more accurate than any other approach. Once again, the hybridization improves the RSI-enabled

RIOT methods to an accuracy better than the truncated SVD.

Although we compared the error behavior of these various Hessian approximation methods,

the question of their computational efficiency remains. Figure 4.6 shows the wall-time and CPU time

of the three RSI enabled RIOT methods from Fig. 4.4 versus the Euclidian norm of the increment

direction error. These plots show the efficiency of each method and approximate mode count to

achieve a given error threshold. The times adhere to the assumption that the collective wall-times

of the TLM and ADM are approximately×10 of the NLM, which matches the computational scaling

in WRFDA-Chem. Therefore, the number of iterations used in the Lanczos recurrence is found by

multiplying its wall-time by 1/10. As indicated by Figs. 4.6(a-c), the increment direction remains

the same after approximately 30 Lanczos iterations. Problems that require more iterations to

converge will have larger wall-time efficiency improvements than the one tested here.

The hybrid RIOT methods are able to achieve significantly lower error within a given wall-

time than the non-hybrid method. Since we are evaluating increment direction, both non-hybrid

and hybrid RIOT-51 are more efficient with the LRU across all Napp in terms of both wall- and

CPU time. If we instead consider the Bayes risk of the full increment (including magnitude),

LRA would be more efficient for small Napp. RIOT achieves anywhere between a ×2 reduction

(q = 0, Napp = 10) and a ×10 (q = 0, Napp = 60) reduction in wall-time relative to the Lanczos

recurrence. To be clear, that scaling only accounts for time spent in ADM and TLM integrations.

As currently implemented in WRFDA-Chem, the DGN line search requires seven sequential NLM
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outer iteration relative to a single simulation of the NLM. All times are plotted versus the Euclidian
norm of the increment direction error. Each column is for a different RIOT-based method. Solid
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integrations, which is equivalent to a single call to the ADM. Figures 4.6(a-c) show that causing

a wall-time improvement at a specific error threshold requires a minimum number of ensembles

greater than ∼12 for RIOT-51, while RIOT-51> requires only ∼8. If computing resources allow, it

is always beneficial to increase the number of ensemble members. When the wall-time limits of an

application permit only a single RSI iteration (q = 0), RIOT-51 performs better than RIOT-51>.

In that instance, the hybrid and non-hybrid implementations are identical. Thus, hybridization is

only a benefit when q > 0. Figures 4.6(d-e) indicate that all RIOT methods consume at least ×5

as many CPU hours as the Lanczos recurrence in order to reach an equivalent increment direction.

When computing resources are limited in terms of CPU hours, and only an increment direction is

desired, the choice between RIOT and the Lanczos recurrence is less obvious.

In a perfectly symmetric first outer iteration, the Lanczos recurrence uses the fewest modes to

produce an increment at a given error threshold against that produced with the full-rank SVD of the

exact Hessian. Still, Bayes risk and direction norms of RIOT increments can be made equivalent by

either adding sufficient ensemble members (×2-×5 the number of Lanczos iterations) or utilizing the

power iteration and hybridization. While the computational efficiency of higher ensemble counts is

associated with higher CPU time, the wall-time gains can be an asset in time-sensitive applications.

In practice, the power iteration should only be used when there are not enough processors to run

the number of ensembles necessary to achieve a specific performance metric since doing so increases

the wall-time of RIOT. If RSI is used, utilizing the hybrid basis has no extra cost, and reduces the

number of ensembles needed to converge on an optimal analysis increment. We have not conducted

a thorough analysis of how hybridization affects the quality of the basis or the eigenmodes, which

are crucial for posterior covariance estimation. In fact, since posterior covariance is evaluated in

the last outer iteration of the GN optimization, when b ≈ 0, using b̂ as a basis vector could be

detrimental.

The wall-time benefits and CPU costs of posterior covariance estimation is much more bal-

anced between the Lanczos recurrence and RIOT. Pa typically requires many more sequential

Lanczos iterations to converge than the analysis increment. While it is true that methods that
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include b̂ in the basis require fewer modes than the truncated SVD to converge on optimal analysis

increments, the bases of the former remain deficient relative to those of the latter in terms of εQ.

The basis accuracy is especially crucial when calculating posterior variance, which depends solely

on the low-rank eigenmodes. Therefore the relatively small values for LAGLZ in Figs. 4.3(c,f) in-

dicate that RIOT can calculate equivalent posterior covariance with a similar number of modes as

the Lanczos recurrence. If the posterior covariance requires 40 to 50 iterations to converge, the

wall-time savings from RIOT are 40 to 50 fold, and the additional CPU cost is 5-15% for a standard

RIOT-56 or RIOT-51 setup with q = 0.

4.3.2 Converged state and posterior covariance

Up to this point we characterized eigenmodes, basis quality, and analysis increments found

from the Lanczos recurrence and RIOT for a single outer iteration of incremental 4D-Var. The

single outer iteration tests are informative for choosing equivalent numbers of approximate modes

between Lanczos and different RIOT configurations. The number of approximate modes is the

defining factor in terms of reaching optimality in terms of a convergence. The posterior covariance

can be evaluated at that converged state. Since the full emission constraint problem is nonlinear

and it is cumbersome to sample enough state vectors to find the global minimum, we do not know

the true optimal emissions, nor do we know the true posterior covariance. Instead, we can compare

the converged emissions from several scenarios of incremental 4D-Var that use different numbers of

inner iterations (Lanczos-GN minimization) or ensemble members (RIOT) in each outer iteration.

As a reminder, the focus of this work is to evaluate the equivalence between different inversion

methods, and not to provide information about posterior emissions that should be used in future

work.

Figure 4.7 shows the posterior BC emissions from wildfires for two emission areas (EA; see

Chapter 3 for definitions of specific EAs) where burning sources are significant. All methods are

evaluated across 6 outer iterations. As a baseline, the Lanczos recurrence is applied for 30 and

10 inner iterations per outer iteration. RIOT-56 and RIOT-51 (with q = 0) are applied with 20,
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30, and 60 ensembles. Additionally, we used the Lanczos recurrence, RIOT-56, RIOT-51, and the

SVD of the LSR of the Hessian to evaluate posterior variance at the posterior emission state found

after 5 outer iterations of Lanczos-GN with Napp = 30. The BB emissions start with a factor of

×3.8 uncertainty, which is consistent with the assumptions followed in Chapter 3. The reduction

in variance of the emission scaling factors, x, compared to the prior is shown in Fig. 4.8. Using the

posterior mean and variance together, we can evaluate the various methods.

In both EA2 and EA4, there is a large difference between the Lanczos-GN inversions with

either 10 or 30 inner iterations. For EA2, the 10 iteration case exhibits an earlier morning peak,

which is inconsistent with the 30 iteration case, as well as most of the RIOT cases. The 10 iteration

case also has a slower drop off in afternoon emissions than all other scenarios. Within EA2, RIOT-

51 and RIOT-56 match well with the 30 iteration Lanczos-GN case; however, the RIOT-56 case

with Napp = 60 diverges from the Lanczos-GN 30 iteration case for the early morning peak. The

variance reduction for EA2 lines up in time with the largest emission increments. The late morning

or early afternoon peak in variance reduction for EA2 is consistent with the fact that the DC-8

measurement platform flew through this region 1 to 2 hours later. In the final outer iteration, the

variance reduction of the Napp = 60 cases of both RIOT-56 and RIOT-51 agree closely with the

LSR SVD in both EA2 and EA4. RIOT-51 with Napp = 30 gives equal or higher variance reduction

estimates than the Lanczos recurrence, also with Napp = 30. Since variance reduction increases

monotonically as more modes are used, this could be an indication that RIOT-51 requires as many

or fewer modes than the Lanczos recurrence for posterior variance estimation. RIOT-56 may need

more approximating modes to converge on equivalent posterior variance to the Lanczos recurrence.

Although we enforced symmetry in RIOT-56 by using the SVD of K in step 16 of Algorithm 3, there

may be some impact from applying this algorithm to a Hessian that is not perfectly symmetric.

When RIOT-51 and RIOT-56 were applied to the perfectly symmetric Hessian in Sec. 4.3.1, they

gave identical results. In EA4, RIOT-56 converges on the same afternoon emission peak found from

the Lanczos-GN minimization, but predicts a lower early morning peak by 25%. RIOT-51 exhibits

the opposite behavior, exceeding the Lanczos-GN afternoon peak by 9-20%, and converging toward
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Figure 4.7: Posterior BB emissions of BC for two critical emission areas (EA) using RIOT-56 (top)
and RIOT-51 (bottom) compared to the Lanczos recurrence. Each method is applied at multiple
numbers of approximate modes (Napp) for six outer iterations (kf ).
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or slightly exceeding Lanczos-GN in the morning as Napp increases. The variance reduction in EA4

indicates that the early morning posterior from the Lanczos-GN minimization is of higher certainty

than the afternoon peak. Thus, RIOT-51 is consistent with Lanczos-GN where the observations

are most informative.

The posterior anthropogenic BC emissions and scaling factor variance reduction are shown

in Figs. 4.9 and 4.10, respectively. The emission area considered (EA6) is centered over Los Ange-

les, which is the only region where the 22 June flight conducted measurements dedicated to local

anthropogenic sources. For the inversion, the anthropogenic emissions start with a factor of ×2

uncertainty, which is consistent with the assumptions followed in Chapter 3. Therefore, the anthro-

pogenic sources have less potential to be adjusted or to have their variance reduced than the BB

sources. Additionally, anthropogenic emitters are much more disperse, so that each measurement

is much less sensitive to the anthropogenic BC flux in a particular grid cell than it would be to

a larger BB flux in the same region. Still, the posterior exhibits large emission increments during

the night. With Napp =60, both RIOT-56 and RIOT-51 converge close to the Lanczos-GN poste-

rior for anthropogenic emissions. While these increments are potentially influenced by nocturnal

boundary layer heights that are difficult to predict with WRF, that does not prevent a comparison

between inversion methods. As Napp is increased, both RIOT-56 and RIOT-51 converge on the

EA6 emissions. As we discussed earlier, the portion of the flight that characterized Los Angeles was

primarily in the mid-morning. This explains why EA6 has the largest variance reduction peak at

6:00 LT. RIOT-51 gives equivalent or larger variance reductions than the Lanczos recurrence when

both have Napp = 30 modes, which is consistent with the results with BB sources. When both use

Napp = 60 modes, RIOT-51 and RIOT-56 are consistent with the LSR SVD.

Figure 4.6(a-c) showed that the Lanczos recurrence requires 30 or fewer iterations to converge

on an increment direction at high precision. Separate tests were conducted with a full Lanczos-GN

minimization consisting of six outer iterations with 10 inner iterations each. Although not shown

here, the resulting posterior emissions coincided with higher posterior variance than when 30 inner

iterations are used. Due to wall-time limitations, we did not conduct Lanczos-based optimizations



130

0

10

20

30

40

50

60

70

1
−
P

a i,
i/
B

i,
i
(%

)

EA2LSR-SVD: Napp=241
Lanczos: Napp=30
RIOT-56: Napp=60
RIOT-56: Napp=30

0

5

10

15

20

25

30

EA4

15 18 21 0 3 6 9 12 15 18
Local Time

0

10

20

30

40

50

60

70

1
−
P

a i,
i/
B

i,
i
(%

)

EA2LSR-SVD: Napp=241
Lanczos: Napp=30
RIOT-51: Napp=60
RIOT-51: Napp=30

15 18 21 0 3 6 9 12 15 18
Local Time

0

5

10

15

20

25

30

EA4

Figure 4.8: Posterior variance reduction for biomass burning scaling factors (%), relative to the
prior variance for the same two emission areas as shown in Fig. 4.7.



131

0

0.5

1

1.5

2

2.5

3

3.5
B

C
 E

m
is

si
on

s 
(k

g)

EA6

Lanczos: kf=6 × Napp=30
Lanczos: 6 × 10
RIOT-56: 6 × 60
RIOT-56: 6 × 30
RIOT-56: 6 × 20
prior

15 18 21 0 3 6 9 12 15 18
Local Time

0

0.5

1

1.5

2

2.5

3

B
C

 E
m

is
si

on
s 

(k
g)

EA6

Lanczos: kf=6 × Napp=30

Lanczos: 6 × 10

RIOT-51: 6 × 60

RIOT-51: 6 × 30

RIOT-51: 6 × 20

prior

Figure 4.9: Same as Fig. 4.7, but for a single anthropogenic emission area.



132

0

2

4

6

8

10

12

14

16

18
1
−
P

a i,
i/
B

i,
i
(%

)
EA6

LSR-SVD: Napp=241
Lanczos: Napp=30
RIOT-56: Napp=60
RIOT-56: Napp=30

15 18 21 0 3 6 9 12 15 18
Local Time

0

2

4

6

8

10

12

14

16

18

1
−
P

a i,
i/
B

i,
i
(%

)

EA6

LSR-SVD: Napp=241
Lanczos: Napp=30
RIOT-51: Napp=60
RIOT-51: Napp=30

Figure 4.10: Same as Fig. 4.8, but for a single anthropogenic emission area.



133

for more than 30 iterations.

For the single outer iteration case (see Fig. 4.5), it appeared RIOT (with q = 0) required

more than ×5 the number of modes as the Lanczos recurrence with Napp = 10 to reach increment

directions of equal quality. When the Lanczos recurrence uses 30 modes, it appeared RIOT required

more than 100 modes with q = 3 to reach similar levels of increment direction error. Comparing

the final emissions increments on a linear scale yields more promising computational performance

for RIOT. The multiple outer iteration tests confirm that many fewer RIOT modes are needed,

even when q = 0. Contrary to the results shown in Fig. 4.5, 60 ensembles from RIOT and 30

iterations from the Lanczos recurrence produce posteriors that are more consistent with each other

than with the posterior produced from 10 Lanczos modes. While these posterior emissions are not

identical, their differences could be attributable to errors between the true Hessian of the nonlinear

problem and the linearized version used in the optimization. Therefore, when the full nonlinear

optimization is considered for this problem, RIOT gives a larger wall-time benefit over Lanczos-GN

than would be approximated from a single outer iteration. Furthermore, as was expected from

the basis quality produced by each method in Fig. 4.3, the posterior variance consistency between

RIOT and Lanczos is promising. Since RIOT with q = 0 requires ≤ ×2 as many modes as Lanczos

for increment and covariance estimation, the CPU cost of RIOT is overblown in Fig. 4.6(d-f). It

should be noted that the relative performance for different methods in WRFDA-Chem could be

influenced by the initial asymmetry of the Hessian. Although we have added specific algorithmic

solutions to enforce symmetry in RIOT, the influence of the initial asymmetry is difficult to assess

at this time.

4.4 Conclusions

In this work, we applied a recently proposed parallelized incremental 4D-Var approach, RIOT,

to solve for atmospheric chemical emissions. RIOT uses RSVD to approximate the inverse Hessian

of the DA cost function, as compared to traditional GN inner loop optimization methods that use

sequential iterations. We describe several variations of RIOT; the fastest of these (RIOT-56 and
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RIOT-51) only require a single sequential simulation of the adjoint and tangent models per outer

loop iteration. We introduce a hybrid stochastic-deterministic power iteration that combines the

advantages of RSVD and Krylov subspace methods (e.g., the Lanczos recurrence) by including Hes-

sian basis information contained in the right-hand-side of the least squares problem. RIOT-56 and

RIOT-51 were implemented with WRFDA-Chem, which makes the code adaptable to operational

weather and air quality forecasting.

We evaluated RIOT and the Lanczos recurrence against the SVD of an exact symmetric

Hessian during the first outer iteration of a representative 4D-Var scenario. The eigenspectra of

both RSVD and the Lanczos recurrence are greatly improved as more approximation modes are

used (i.e., RSVD ensemble members or Lanczos iterations). RSVD is able to produce a basis of

equivalent effective rank as the Lanczos recurrence given ten or fewer extra approximate modes.

The RSVD basis for a given number of approximate modes improves when the power iteration is

used, but so does the wall-time. Bayes risk was used to determine that the Lanczos recurrence

requires fewer approximate modes than a truncated SVD of the exact Hessian to converge on an

optimal analysis increment. While RIOT-51 and RIOT-56 require many more approximate modes

than the truncated SVD, they are also performed in parallel. The hybrid power iteration reduces

the mode-dependent error of RIOT to levels similar to those of the Lanczos recurrence.

At a given error threshold in the first outer iteration, the parallel nature of RIOT reduced

the wall-time spent in TLM and ADM integrations by ×3−×10 for the problem studied, but also

increases CPU time by ×5 − ×10. We also completed six outer iterations of incremental 4D-Var

until convergence was reached at a stationary point. There RIOT produced comparable posterior

mean and variance reduction to a Lanczos-GN minimization with as little as ×2 as many modes in

regions of high observation information content. Since we could only run the Lanczos-GN algorithm

with 30 inner iterations, we do not know for sure that it is at the most optimal local minimum,

and it is not necessarily the truth for this case.

At the outset of Sec. 4.3, we declared four sources of error in a GN minimization, which

were all discussed except for one: the need to strike a balance between the number of approximate
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modes, computational resource limitations, and resolving meaningful information contained in the

observations. If too few modes are used, then there is information remaining in the observations

that can still be transferred to the posterior. If too many modes are used, then the posterior may

contain too much information from the prior (BH16). Here we have characterized the number of

approximate modes required by randomized and deterministic in order to converge to an optimal

increment, as measured by that which would be given by a full-rank approximation of the Hessian.

What still remains is to evaluate exactly what rank of the linearized Hessian is optimal in a nonlinear

GN minimization, especially if it is less than rank-n. As discussed by BH16, combining RIOT with

preconditioning methods could further reduce the number of approximate modes. Both of these

problems emphasize a need to consider the nonlinear problem holistically, with a view beyond

independent treatment of each outer iteration.



Chapter 5

Conclusions

The original purpose of this thesis project was to enable 4D-Var in a coupled meteorology

and atmospheric chemistry model. The direction of the work evolved as the challenges of reaching

that goal presented themselves.

We started in Chapter 2 by developing and applying new tangent linear and adjoint code in

WRFPLUS-Chem that treats emissions, dry deposition, PBL mixing, and aging of black carbon

(BC) aerosol. These were the minimum pieces necessary to perform 4D-Var inversions for emissions

of BC or other nearly inert tracers. Through extensive comparison to finite difference approxima-

tions, we were able to debug and successfully implement these linearized models. The most difficult

aspect of that work was developing the TLM and ADM. Future work should be focused on adding

more linearized model capabilities for treatments of aerosol activation in clouds, wet removal, or

aerosol- and gas-phase reaction mechanisms.

One of the practical challenges we foresaw for performing emission inversion was the man-

agement of the model trajectory for longer simulations. WRFPLUS and WRFDA were designed to

operate in short operational weather forecasting windows of six or twelve hours. However, longer

simulations are needed for emission inversions. The existing WRFPLUS code was able to store

the model state variables at each time step either in memory or on hard disk. We implemented

a second-order checkpointing scheme that balances the I/O and memory requirements of running

the TLM and ADM.

With these initial pieces of software developed, we conducted a sensitivity study using the
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ADM. First we used WRF-Chem to predict black carbon (BC) aerosol concentrations during the

ARCTAS-CARB research campaign in California. We also predicted BC concentrations for an

ensemble of model configurations in order to characterize the uncertainty of the model at the times

and locations of measurements. We used observations from an SP2 device on a DC-8 aircraft

and from filter samples collected at IMPROVE surface sites. These ensemble uncertainties, the

instrument uncertainties, and the errors between the observed and predicted concentrations of BC

were used to drive the sensitivity tests. The gradients calculated were equivalent to those used

in the first stage of 4D-Var, and they are equivalent to the steepest descent direction used in

high-dimensional linear optimizations.

In Chapter 3, we modified the incremental 4D-Var framework in WRFDA to conduct inverse

modeling of chemical emissions. Incremental 4D-Var is intended to carry out a Gauss-Newton

optimization method on fairly linear systems, a limitation heeded in operational weather forecast-

ing. For the most part, the emission and transport mechanisms that affect BC concentrations

during dry periods are linear, possibly with the exception of boundary layer mixing. However, the

positive-definite nature of BC concentrations and sources means that their errors are lognormally

distributed, which required alterations from standard Gaussian assumptions applied in meteorolog-

ical DA. We treated this nuance with an established exponential emission scaling factor treatment

from the literature, which removed the need to use a bounded optimization method, and improved

the representativeness of the assumed probability distribution. In doing so, we introduced nonlin-

earity into an otherwise linear system of equations that caused divergence in the optimization. Then

we modified the analysis increment through a damped Gauss-Newton (DGN) line search, which

rendered incremental 4D-Var convergent for these unique control variables. We also extended the

treatments of control variable covariance from the meteorological variables to the emission scaling

factors, which are distributed in space and time. These pieces together combined with the available

minimization framework in WRFDA, comprise a new tool, WRFDA-Chem.

WRFDA-Chem was applied during the ARCTAS-CARB period to assess the utility of the

surface and aircraft observations in constraining biomass burning and anthropogenic sources of BC
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on 22-24 June, 2008. We found that observations on multiple days resulted in temporally and

spatially heterogenous emission scaling factors. One reason for this is that the aircraft flew very

different flightpaths on the two days, each having a different region of influence in the posterior

emissions. Therefore, finding posterior emissions was only the first half of the problem, and we

needed to assess the uncertainty reduction relative to the prior that was achievable by using these

observations. The posterior variance was calculated using eigenmodes of the cost function Hessian.

With these values, we determined that the surface observations had very little information about

emissions at the temporal and spatial scales we were trying to constrain, except for in a few model

grid cells near Los Angeles and Fresno. We also confirmed that the information content of an

observation disperses as it is traced backwards in time through the ADM. In order to perform

cross validation of posterior emissions, measurements need to be repeated near the same sources

on multiple days, and at multiple times throughout the day.

Due to the wall-time requirements of WRFDA-Chem, we were only able to conduct 4D-Var

across 1 to 3 day periods in a single inversion. By exploring this particular period, and with the

limitation of a few days of simulation, we suffered a common problem in atmospheric chemical DA,

the sparsity of observations. The solution is often to move to longer simulation periods, over which

multiple days of wide-coverage satellite measurements can be used. Additionally, through the diag-

nosis of the trajectory memory constraints in Chapter 2, and subsequent modeling, we determined

that simulations with very high resolution or large numbers of chemical species and reactions would

have much longer run times that make sequential optimization algorithms intractable. This was a

problem that needed to be solved before TLM and ADM treatments of complex chemistry could

be worthwhile. All of three of these problems, (1) longer simulation periods, (2) using higher res-

olution, and (3) treating complex chemical-meteorological interactions, would increase wall-time

excessively. In numerical modeling, it is in the interest of the user to push wall-times to their lim-

its, whether those limits are based on monetary costs or turnaround for time-sensitive operational

applications. The potential for meaningful results from a simulation increase when we brush those

invisible barriers.
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In Chapter 4, we aimed at reducing the wall-time of atmospheric 4D-Var inversions to extend

the boundary. We applied RIOT in WRFDA-Chem to parallelize the traditionally sequential

inner loop of a Gauss Newton optimization procedure. Following recent work in the applied math

community, RIOT utilizes independent ensembles of TLM and ADM model evaluations to perform

a stochastic approximation of the cost function Hessian. We used a randomized SVD of the Hessian

to calculate analysis increments and posterior variance, and compared the results to a sequential

Hessian decomposition performed with the Lanczos recurrence. We found wall-time decreases of up

to ×10 in the first outer iteration of incremental 4D-Var for equivalent analysis increments. For the

full nonlinear optimization consisting of five outer iterations to find the posterior and one to estimate

the posterior covariance, the computational scaling improved further. RIOT converged to similar

posterior emissions and covariance as the Lanczos-based Gauss Newton optimization. Although

this work is ongoing, the implementation of RIOT in WRFDA-Chem is essentially complete. This

implementation can be used in research or operationally to reduce 4D-Var wall-times.

Much of this work entailed modifying weather forecasting DA capabilities to suit the needs of

atmospheric chemical inverse modeling. At the outset, I expected that all the theory and methods

were in place to accomplish the goals of the thesis, and it was my mission to apply them in a new

tool. As daunting as that task may have been, there remained a research frontier that needed

to be explored in order to enable 4D-Var in a coupled meteorology and atmospheric chemistry

model. There are mutual needs across the these two branches of research; this is but one work that

attempts to bridge a gap between them.
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Å. Björck. Numerics of Gram-Schmidt orthogonalization. Linear Algebra and its Applications,
197:297–316, January 1994. ISSN 0024-3795. doi: 10.1016/0024-3795(94)90493-6. URL http:

//www.sciencedirect.com/science/article/pii/0024379594904936.

T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G.
Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. G.
Schultz, M. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K.
Hopke, M. Z. Jacobson, J. W. Kaiser, Z. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell,
T. Storelvmo, S. G. Warren, and C. S. Zender. Bounding the role of black carbon in the climate
system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM. Journal
of Geophysical Research: Atmospheres, 118(11):5380–5552, June 2013. ISSN 2169897X. doi:
10.1002/jgrd.50171. URL http://doi.wiley.com/10.1002/jgrd.50171.

L. Boschetti, H. D. Eva, P. A. Brivio, and J. M. Grégoire. Lessons to be learned from the comparison
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Appendix A

Relating DA and optimization formulations

The linear optimization in the inner loop solves a system

min
x̂

F (x̂) =
1

2
x̂>A′x̂− x̂>b+ c

A′x̂ = b. (A.1)

In our case, x̂ ≡ δvk. The equivalence of Eq. 3.10 and Eq. A.1 is apparent in Tshimanga et al.

(2008), who provide a notational translation between publications on DA and those on minimiza-

tion algorithms and preconditioners. We repeat their translation to account for the differences in

formulation of Eq. 3.10 and Eq. 5 in Tshimanga et al. (2008).

The process starts by considering Lawless et al. (2005) and Gratton et al. (2007), who show

that incremental 4D-Var is equivalent to a truncated Gauss-Newton (TGN) optimization algorithm.

The incremental 4D-Var cost function is condensed to:

min
δv

J (δv) =
1

2
f (δv)> f (δv) , (A.2)

where

f
(
δvk
)
≡

 δvk − db,k−1

R−
1
2

(
Gk−1Uδvk − do,k−1

)
 . (A.3)

This definition of f is what enables incremental 4D-Var to be characterized as TGN. The remainder

of the derivation amounts to substitutions. GN approximates Newton’s method in each quadratic

minimization problem, k, to solve for the increment δvk in the linearized system

Hδvδvk = −∇J. (A.4)
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This form is equivalent to multiplying Eq. 3.21 by the Hessian on both sides. In our case, the

right-hand side is b ≡ −∇J = −Fk−1>f
(
δvk−1

)
, where

f
(
δvk−1

)
≡ −

 db,k−1

R−
1
2do,k−1

 , (A.5)

and

Fk−1 ≡ ∇δvk−1f
∣∣
δvk−1 =

 In

R−
1
2 Gk−1U

 . (A.6)

f
(
δvk−1

)
and its Jacobian are fixed for each outer loop by the k−1 trajectory. Completing the GN

algorithm, the Hessian (Hδv) is approximated by A′ ≡ Fk−1>Fk−1, after ignoring mixed partial

derivatives of f . The Hessian of Eq. A.2 matches that of Eq. 3.10, namely

Hδv = In + U>Gk−1>R−1Gk−1U. (A.7)

After substitutions, Eq. A.4 becomes

Fk−1>Fk−1δvk = − Fk−1>f
(
δvk−1

)
, (A.8)

which expands to

(
In + U>Gk−1>R−1Gk−1U

)
δvk =db,k−1 + U>Gk−1>R−1do,k−1. (A.9)

Solving for δvk gives the same update formula that would result from setting Eq. 3.20 equal to

zero,

δvk =
(
In + U>Gk−1>R−1Gk−1U

)−1 (
db,k−1 + U>Gk−1>R−1do,k−1

)
. (A.10)

Thus, by defining f appropriately, the eqivalence between GN and incremental 4D-Var is veri-

fied.
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Derivation of the truncated inverse Hessian

After l inner iterations, the Lanczos vectors form an orthogonal matrix, Ql = [q̂1, .., q̂l],

which satisfies

HδvQl = QlTl. (B.1)

The extremal eigenvalues of Tl are good approximations to Hδv’s extremal eigenvalues (Golub and

Van Loan, 1996). Tl can be decomposed as

Tl = WlΛlW
−1
l . (B.2)

If we were to carry out the minimization for n steps, we would find all the Lanczos vectors, and

would be able construct the full T and Q matrices. In that case, the orthogonal Lanczos vectors

admit QQ> = I. When combined with Eq. B.1,

Hδv = QWΛW−1Q> (B.3)

Because the eigenvectors are orthonormal,

Hδv = (QW) Λ (QW)> . (B.4)

Thus, the eigenvectors of Hδv are approximately equal to the normalized eigenvectors of T, pre-

multiplied by the matrix of Lanczos vectors, i.e.,

Hδv = ν̂Λν̂>, (B.5)
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where the ki
th eigenvector of Hδv is

ν̂ki = Qŵki . (B.6)

The Hessian is constructed by

Hδv = ν̂Λν̂> =

n∑
ki=1

λki ν̂ki ν̂
>
ki
. (B.7)

Since the Hessian and its inverse have identical eigenvectors and reciprocal eigenvalues, the inverse

is

[Hδv]−1 =
n∑

ki=1

λ−1
ki
ν̂ki ν̂

>
ki
. (B.8)

Although this expression is usable, computational resource limitations require l << n. Truncating

the sum yields a low rank estimate for the inverse, and for the posterior error which it estimates.

A more robust estimate of the posterior error is a low-rank update to the full-rank prior

covariance, B. To pursue that goal, first we return to the linear algebra formula, then add and

subtract the identity matrix to get

Hδv = I + ν̂Λν̂> − I

= I + ν̂Λν̂> − ν̂Iν̂>

= I +

n∑
ki=1

(λki − 1) ν̂ki ν̂
>
ki

(B.9)

Now we repeat the truncation,

Hδv ≈ I +

l∑
ki=1

(λki − 1) ν̂ki ν̂
>
ki
, (B.10)

where ν̂ki is constructed from the partial set of Lanczos vectors as

ν̂ki = Qlŵlki . (B.11)

Next we apply the Sherman-Morrison formula to recursively build the inverse for each term in the

sum. Throughout, we will take advantage of the following two relationships for orthogonal vectors

ν̂>j ν̂j = 1

and

ν̂>j ν̂i = 0; j 6= i.
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Starting with the first term,

N−1
1 =

[
I + (λ1 − 1) ν̂1ν̂

>
1

]−1

= I−1 − I−1 (λ1 − 1) ν̂1ν̂
>
1 I−1

1 + (λ1 − 1) ν̂>1 I−1ν̂1

= I− (λ1 − 1) ν̂1ν̂
>
1

λ1

= I +
(
λ−1

1 − 1
)
ν̂1ν̂

>
1 .

This result fits our desired proof. Now for the second term,

N−1
2 =

{
N1 + (λ2 − 1) ν̂2ν̂

>
2

}−1

= N−1
1 −

N−1
1 (λ2 − 1) ν̂2ν̂

>
2 N−1

1

1 + (λ2 − 1) ν̂>2 N−1
1 ν̂2

= I +
(
λ−1

1 − 1
)
ν̂1ν̂

>
1 −[

I +
(
λ−1

1 − 1
)
ν̂1ν̂

>
1

]
(λ2 − 1) ν̂2ν̂

>
2

[
I +

(
λ−1

1 − 1
)
ν̂1ν̂

>
1

]
1 + (λ2 − 1) ν̂>2

[
I +

(
λ−1

1 − 1
)
ν̂1ν̂>1

]
ν̂2

= I +
(
λ−1

1 − 1
)
ν̂1ν̂

>
1 +

(
λ−1

2 − 1
)
ν̂2ν̂

>
2 .

The dot products of orthogonal vectors cancels all terms in the numerator and denominator except

the ones multiplied by the identity matrix. The same simplification applies to each additional sum,

where the full sum can be expressed as

N−1
l = I +

(
λ−1

1 − 1
)
ν̂1ν̂

>
1 −

l∑
ki=2

[
I +

∑ki−1
r=1

(
λ−1
r − 1

)
ν̂rν̂

>
r

]
(λki − 1) ν̂ki ν̂

>
ki

[
I +

∑ki−1
r=1

(
λ−1
r − 1

)
ν̂rν̂

>
r

]
1 + (λki − 1) ν̂>ki

[
I +

∑ki−1
r=1

(
λ−1
r − 1

)
ν̂rν̂>r

]
ν̂ki

Here, again, all of the terms where r 6= ki cancel. What remains is similar to Eq. B.8, but slightly

modified.

[Hδv]−1 ≈ I +
l∑

ki=1

(
λ−1
ki
− 1
)
ν̂ki ν̂

>
ki
. (B.12)

After a left-side multiplication by U and a right-side multiplication by U>, we achieve the desired

low rank update to B found in Eq. 3.26.
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Inverse Hessian conversion

It is easy enough to derive the expression in Eq. 3.25,

Hδv = U>HδxU,

by starting from Eq. 3.24, then pre-multiplying by U> and post-multiplying by U, and using the

relationship U>B−1U = I. If U and U> are invertible, then it is also easy to derive the expression

H−1
δx = UH−1

δv U>. (C.1)

In the case that U is not invertible (e.g., singular), some relationship like Eq. C.1 must hold to be

able to calculate the posterior covariance in x space, Pa, as opposed to in v space, Pa
v.

To do so we start from the increment formulae in x space

δxk = −H−1
δx∇δxJ |δxk=0, (C.2)

and v space

δvk = −H−1
δv∇δvJ |δvk=0. (C.3)

Knowing that δxk = Uδvk, then the following equality holds

H−1
δx∇δxJ |δxk=0 = UH−1

δv∇δvJ |δvk=0. (C.4)
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Therefore,

H−1
δx

B−1
k∑

ko=1

δxk
o

+ G>R−1do,k−1

 = UH−1
δv

(
db,k−1 + U>G>R−1do,k−1

)
H−1
δx

(
B−1Udb,k−1 + G>R−1do,k−1

)
= UH−1

δv

(
db,k−1 + U>G>R−1do,k−1

)
.

(C.5)

To confirm that Eq. C.1 is true, we substitute it into this relationship and simplify as follows

UH−1
δv U>

(
B−1Udb,k−1 + G>R−1do,k−1

)
= UH−1

δv

(
db,k−1 + U>G>R−1do,k−1

)
,

UH−1
δv

(
db,k−1 + U>G>R−1do,k−1

)
= UH−1

δv

(
db,k−1 + U>G>R−1do,k−1

)
. (C.6)

The two sides are equivalent and we can use Eq. C.1, as well as

Pa = UPa
vU>, (C.7)

where Pa = H−1
δx and Pa

v = H−1
δx .



Appendix D

RIOT Algorithms

Algorithm 3 RIOT-56

Require: Â ≡ Hδv,o = U>G>R−1GU ∈ Rn×n

and Ω ∈ Rn×Napp ∼ N (0, 1)
1: Start with xk=0 = xb, v0 = 0
2: for k = 1, 2, . . . , kf do
3: Calculate J(xk−1) and
4: store trajectory for G and G>

5: for all ki ∈ {1, 2, . . . , Napp + 1} do in parallel
6: if ki = Napp then
7: b = −∇J |δv=0 = −db,k−1 −U>G>R−1do,k−1

8: else
9: ωki = Ω(:, ki)

10: yki = Âωki
11: end if
12: end for
13: Y = [y1,y2, . . . ,yki ]
14: Calculate Q ∈ Rn×Napp from QR(Y)
15: Solve for K in KQ>Ω ≈ Q>Y.
16: Form SVD, K = WΛ1Z

>

17: Form eigenmodes of Hδv: Λ = Λ1 + I and V = QW
18: δv = −H−1

δv∇J |δv=0

19: vk = vk−1 + δv
20: xk = xk−1 + Uδv
21: end for
22: Pa = UPa

vU
>

Algorithm 4 RIOT-51

Require: Â ≡ H
1
2
δv,o = R−

1
2 GU ∈ Rm×n

and Ω ∈ Rn×Napp ∼ N (0, 1)
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1: Start with xk=0 = xb, v0 = 0
2: for k = 1, 2, . . . , kf do
3: Calculate J(xk−1) and
4: store trajectory for G and G>

5: for all ki ∈ {1, 2, . . . , Napp + 1} do in parallel
6: if ki = (Napp + 1) then
7: b = −∇J |δv=0 = −db,k−1 −U>G>R−1do,k−1

8: else
9: ωki = Ω(:, ki)

10: yki = Âωki
11: end if
12: end for
13: Calculate Q ∈ Rm×Napp from QR(Y)
14: for all ki ∈ {1, 2, . . . , Napp} do in parallel
15: qki = Q(:, ki)

16: K1(:, ki) = (Â>qki)
>.

17: end for
18: Form SVD, K1 = WSZ>

19: Form eigenmodes of Hδv: Λ = S2 + I and V = Z
20: δv = −H−1

δv∇J |δv=0

21: vk = vk−1 + δv
22: xk = xk−1 + Uδv
23: end for
24: Pa = UPa

vU
>



Appendix E

LRA versus LRU increment and posterior covariance

We discussed the using b̂ as one of the basis vectors of the Hessian in Sec. 4.2.2.3, and in

Sec. 4.3.1 we demonstrated that doing so removes any perceptible difference between the LRA and

LRU analysis increments. In this appendix, we will show why that happens, and also discuss other

effects of using b̂. First, we start with the inverse of the preconditioned Hessian in matrix-form

from the LRA

[Hδv]−1
LRA ≈ QWΛ−1W>Q>, (E.1)

and the LRU

[Hδv]−1
LRU ≈ In −QW

(
Il −Λ−1

)
W>Q>. (E.2)

For these approximations, Q ∈ Rn×l and W ∈ Rl×l. The difference between the two approximations

of the inverse Hessian is

∆[Hδv ]−1 = [Hδv]−1
LRA − [Hδv]−1

LRU

= QWΛ−1W>Q> −
[
In −QW

(
Il −Λ−1

)
W>Q>

]
= QW

(
Λ−1 + Il −Λ−1

)
W>Q> − In

= QWW>Q> − In

= QIlQ
> − In

= QQ> − In. (E.3)
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Therefore, the difference between the LRA and LRU approximations of the inverse Hessian, and

thus the posterior covariance, is equal to the deficiency of the basis Q relative to the identity matrix.

There will always be rank deficiency in Q, so long as l < n. This is not a surprising outcome since

the point of using the LRU is to prevent that exact issue.

The analysis increment is calculated from either the LRU or LRA by multiplying their

respective inverse Hessian approximations by the right-hand-side of the least-squares problem,

b ≡ ∇δvJ |δvk=0. The difference between those increments is

∆δv = δvLRA − δvLRU

=
(
QQ> − In

)
b. (E.4)

When the first basis vector is equal to the normalized gradient (i.e., Q̂ =
[
b̂ Q

]
), the LRA-LRU

increment difference simplifies to

∆δv =
(
Q̂Q̂> − In

)
b

= Q̂Q̂>b− b. (E.5)

Since

Q̂>b =



‖b‖

0

...

0


l×1

, (E.6)

and

Q̂Q̂>b = Q̂



‖b‖

0

...

0


= b, (E.7)

the increment difference further simplifies to

∆δv = b− b = 0. (E.8)
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Therefore, when b̂ is used as the leading basis vector, the difference between LRU and LRA analysis

increments is always zero, and not only for this application.

Still, there is no particular reason why Q̂ would be a better (or worse) basis of the Hessian

than Q. We also have yet to demonstrate why an eigendecomposition produced with Q̂ would

require fewer modes to converge on the increment produced with the full-rank Hessian than the

truncated SVD.



Appendix F

Important processes in an NWP-Chemistry Model

NWP$Chem)Processes:)
•  Advec2on)and)Diffusion)
•  Surface$air)interac2ons)(LSM))
•  Turbulent)Mixing)(PBL))
•  Cumulus)Convec2on)
•  Emissions))
• Wet)and)Dry)Deposi2on)
•  Chemistry)
•  Aerosol)Ac2va2on)
•  Aerosol)Thermodynamics)
•  Radia2on)
• Microphysics)

U, V, T, qv, [C]!

~4)to)100)km)


