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Abstract

We propose a compositional approach for constructing abstractions of general
Markov decision processes using approximate probabilistic relations. The
abstraction framework is based on the notion of δ-lifted relations, using
which one can quantify the distance in probability between the intercon-
nected gMDPs and that of their abstractions. This new approximate relation
unifies compositionality results in the literature by incorporating the depen-
dencies between state transitions explicitly and by allowing abstract models
to have either finite or infinite state spaces. Accordingly, one can leverage
the proposed results to perform analysis and synthesis over abstract models,
and then carry the results over concrete ones. To this end, we first propose
our compositionality results using the new approximate probabilistic relation
which is based on lifting. We then focus on a class of stochastic nonlinear
dynamical systems and construct their abstractions using both model order
reduction and space discretization in a unified framework. We provide con-
ditions for simultaneous existence of relations incorporating the structure of
the network. Finally, we demonstrate the effectiveness of the proposed results
by considering a network of four nonlinear dynamical subsystems (together
12 dimensions) and constructing finite abstractions from their reduced-order
versions (together 4 dimensions) in a unified compositional framework. We
benchmark our results against the compositional abstraction techniques that
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construct both infinite abstractions (reduced-order models) and finite MDPs
in two consecutive steps. We show that our approach is much less conserva-
tive than the ones available in the literature.

Keywords: Compositional Abstraction-based Synthesis; General Markov
Decision Processes; Approximate Probabilistic Relations; Abstract Models;
Policy Refinement.

1. Introduction

Motivations. Control systems with stochastic uncertainty can be mod-
eled as Markov decision processes (MDPs) over general state spaces. Syn-
thesizing policies for satisfying complex temporal logic properties over MDPs
evolving on uncountable state spaces is inherently a challenging task due to
the computational complexity. Since closed-form characterization of such
policies is not available in general, a suitable approach is to approximate
these models by simpler ones possibly with finite or lower dimensional state
spaces. A crucial step is to provide formal guarantees during this approxima-
tion phase, such that the analysis or synthesis on the simpler model can be
refined back over the original one. In other words, one can first abstract the
original model by a simpler one, and then carry the results from the simpler
model to the concrete one using an interface map, by providing quantified
errors on the approximation.

One of the main challenges in the construction of finite abstractions for
large-scale complex systems is the curse of dimensionality: the complexity
grows exponentially with the dimension of the state set. Then compositional
abstraction-based techniques are essential to alleviate this complexity. In this
respect, one needs to consider the large-scale system as an interconnected
system composed of several smaller subsystems, and provide a compositional
framework for the construction of finite abstractions for the given system
using the abstractions of smaller subsystems.

Related Literature. Similarity relations over finite-state stochastic sys-
tems have been studied, either via exact notions of probabilistic (bi)simulation
relations [1], [2] or approximate versions [3], [4]. Similarity relations for mod-
els with general, uncountable state spaces have also been proposed in the
literature. These relations either depend on stability requirements on model
outputs via martingale theory or contractivity analysis [5], [6] or enforce
structural abstractions of a model [7] by exploiting continuity conditions

2



on its probability laws [8], [9]. These similarity relations are then used to
relate the probabilistic behavior of a concrete model to that of its abstrac-
tion. There have been also several results on the construction of (in)finite
abstractions for stochastic systems. Construction of finite abstractions for
formal verification and synthesis is presented in [10]. Extension of such tech-
niques to infinite horizon properties and automata-based controller synthesis
are proposed in [11] and [12], respectively. The abstraction algorithms are
improvement in terms of scalability in [13] with available toolbox [14].

In order to make the techniques applicable to networks of interacting
systems, compositional abstraction and policy synthesis are studied in the
literature. Compositional construction of finite abstractions using dynamic
Bayesian networks and dissipativity conditions is discussed in [15] and [16],
respectively. Compositional construction of infinite abstractions (reduced-
order models) is proposed in [17, 18] using small-gain type conditions and
dissipativity-type properties of subsystems and their abstractions, respec-
tively. Compositional construction of (in)finite abstractions via max-type
small-gain conditions is proposed in [19, 20]. Compositional construction of
finite abstractions for networks of stochastic systems via relaxed small-gain
and dissipativity approaches is respectively presented in [21, 22]. Composi-
tional verification of large-scale stochastic systems via relaxed small-gain con-
ditions is proposed in [23]. Compositional construction of finite abstractions
for networks of stochastic switched systems accepting multiple Lyapunov
functions with dwell-time conditions is presented in [24, 25] via respectively
small-gain and dissipativity approaches.

An (in)finite abstraction-based technique for synthesis of continuous-time
stochastic control systems is discussed in [26]. The proposed results are then
extended in [27, 28] to compositional synthesis of stochastic systems using
respectively small-gain and dissipativity conditions. Compositional model-
ing and analysis for the safety verification of stochastic hybrid systems are
investigated in [29] in which random behaviour occurs only over the discrete
components – this limits their applicability to systems with continuous prob-
abilistic evolutions. Compositional modeling of stochastic hybrid systems is
discussed in [30] using communicating piecewise deterministic Markov pro-
cesses that are connected through a composition operator. Compositional
construction of infinite and finite abstractions for large-scale discrete-time
stochastic systems via different novel compositionality conditions is widely
discussed in [31].

Our Contributions. In our proposed framework, we consider the class
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of general Markov decisions processes (gMDPs), which evolves over contin-
uous or uncountable state spaces, equipped with an output space and an
output map. We encode interaction between gMDPs via internal inputs, as
opposed to external inputs which are used for applying the synthesized poli-
cies enforcing some complex temporal logic properties. We provide conditions
under which the proposed similarity relations between individual gMDPs can
be extended to relations between their respective interconnections. These
conditions enable compositional quantification of the distance in probability
between the interconnected gMDPs and that of their abstractions. The pro-
posed notion has the advantage of encoding prior knowledge on dependencies
between uncertainties of the two models. Our compositional scheme allows
constructing both infinite and finite abstractions in a unified framework.
We benchmark our results against the compositional abstraction techniques
of [18, 16] which are based on dissipativity-type reasoning and provide a com-
positional methodology for constructing both infinite abstractions (reduced-
order models) and finite MDPs in two consecutive steps. We show that our
approach is much less conservative than the ones proposed in [18, 16].

Recent Works. Similarities between two gMDPs have been recently
studied in [32] using a notion of δ-lifted relation, but only for single gMDPs.
The result is generalized in [33] to a larger class of temporal properties and
in [34] to synthesize policies for robust satisfaction of specifications. One
of the main contributions of this paper is to extend this notion such that
it can be applied to networks of gMDPs. This extension is inspired by the
notion of disturbance bisimulation relation proposed in [35]. In particular,
we extend the notion of δ-lifted relation for networks of gMDPs and show
that under specific conditions systems can be composed while preserving
the relation. This type of relations enables us to provide the probabilistic
closeness guarantee between two interconnected gMDPs (cf. Theorem 3.5).
Furthermore, we provide an approach for the construction of finite MDPs in
a unified framework for a class of stochastic nonlinear dynamical systems,
considered as gMDPs, whereas the construction scheme in [32] only handles
the class of linear systems.

Organization. The rest of the paper is organized as follows. Section 2
defines the class of general Markov decision processes with internal inputs
and output maps. Section 3 presents first the notion of δ-lifted relations
over probability spaces and then the notion of lifting for gMDPs. Section 4
provides compositional conditions for having the similarity relation between
networks of gMDPs based on relations between their individual components.
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Section 5 provides details of constructing finite abstractions for a network
of stochastic nonlinear control systems, which is based on both model order
reduction and space discretization in a unified framework, together with the
similarity relations. Finally, Section 6 demonstrates the effectiveness of our
approach on a numerical case study.

2. General Markov Decision Processes

2.1. Preliminaries and Notations

In this paper, we work on Borel measurable spaces, i.e., (X,B(X)), where
B(X) is the Borel sigma algebra on X, and restrict ourselves to Polish
spaces (i.e., separable and completely metrizable spaces). Given the measur-
able space (X,B(X)), a probability measure P defines the probability space
(X,B(X),P). We denote the set of all probability measures on (X,B(X)) as
P(X,B(X)). A map f : S → Y is measurable whenever it is Borel measur-
able.

For column vectors xi ∈ Rni , ni ∈ N≥1, and i ∈ {1, . . . , N}, we de-
note by x = [x1; . . . ;xN ] the corresponding column vector with dimension∑

i ni. Given a vector x ∈ Rn, ‖x‖ denotes the Euclidean norm of x.
The identity and zero matrices in Rn×n are denoted by In and 0n×n, re-
spectively. The symbols 0n and 1n denote the column vector in Rn with
all elements equal to zero and one, respectively. A diagonal matrix in
RN×N with diagonal entries a1, . . . , aN starting from the upper left cor-
ner is denoted by diag(a1, . . . , aN). Given functions fi : Xi → Yi, for any
i ∈ {1, . . . , N}, their Cartesian product

∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is de-

fined as (
∏N

i=1 fi)(x1, . . . , xN) = [f1(x1); . . . ; fN(xN)]. Given sets X and Y , a
relation R ⊆ X × Y is a subset of the Cartesian product X × Y that relates
x ∈ X with y ∈ Y if (x, y) ∈ R, which is equivalently denoted by xRy.

2.2. General Markov Decision Processes

In our framework, we consider the class of general Markov decision pro-
cesses (gMDPs) that evolves over continuous or uncountable state spaces.
This class of models generalizes the usual notion of MDP [36] by including
internal inputs that are employed for composition [16], and by adding an
output space over which properties of interest are defined [32].

Definition 2.1. A general Markov decision process (gMDP) is a tuple

Σ = (X,W,U, π, T, Y, h) (2.1)
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where

• X ⊆ Rn is a Borel space as the state space of the system. We denote
by (X,B(X)) the measurable space with B(X) being the Borel sigma-
algebra on the state space;

• W ⊆ Rp is a Borel space as the internal input space of the system;

• U ⊆ Rm is a Borel space as the external input space of the system;

• π : B(X)→ [0, 1] is the probability measure for the initial state;

• T : B(X) × X × W × U → [0, 1] is a conditional stochastic kernel
that assigns to any x ∈ X, w ∈ W , and ν ∈ U , a probability measure
T (·|x,w, ν) on the measurable space (X,B(X)). This stochastic kernel
specifies probabilities over executions {x(k), k ∈ N} of the gMDP such
that for any set A ∈ B(X) and any k ∈ N,

P(x(k + 1) ∈ A
∣∣∣x(k), w(k), ν(k)) =

∫
A
T (dx(k + 1)|x(k), w(k), ν(k)).

• Y ⊆ Rq is a Borel space as the output space of the system;

• h : X → Y is a measurable function that maps a state x ∈ X to its
output y = h(x).

A schematic representation of gMDP Σ is shown in Figure 1.

Σ

x(k + 1) ∼ T (· j x(k); w(k); ν(k)) h(·)

ν(k)

w(k)

x(0) ∼ π

x(k) y(k)

Figure 1: A schematic representation of gMDP Σ.

The external input ν(·) of the gMDP Σ is usually selected based on the
state x(·) using a policy. Next definition gives the class of Markov policies
where the external input ν(k) depends only on the state x(k) at time k.
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Definition 2.2. For the gMDP Σ in (2.1), a Markov policy is a sequence
ρ = (ρ0, ρ1, ρ2, . . .) of universally measurable stochastic kernels ρk [37], each
defined on the input space U given X such that for all x(k)∈X, ρk(U

∣∣x(k))=
1. The class of all such Markov policies is denoted by Mp.

Remark 2.3. In this work, we are interested in networks of gMDPs that are
obtained from composing gMDPs having both internal and external inputs and
are synchronized through their internal inputs. The resulting interconnected
gMDP will have only external input and will be denoted by the tuple Σ =
(X,U, π, T, Y, h) with stochastic kernel T : B(X)×X × U → [0, 1].

Evolution of the state of a gMDP Σ, can be equivalently described by
([38, Proposition 7.6, pp. 122])

Σ:

{
x(k + 1) = f(x(k), w(k), ν(k), ς(k)),
y(k) = h(x(k)),

k ∈ N, x(0) ∼ π, (2.2)

for input sequences w(·) : N→ W and ν(·) : N→ U , where ς := {ς(k) : Ω→
Vς , k ∈ N} is a sequence of independent and identically distributed (i.i.d.)
random variables on a set Vς with sample space Ω. Vector field f together
with the distribution of ς provide the stochastic kernel T .

The sets W and U are, respectively, associated to W and U , collections
of sequences {w(k) : Ω → W, k ∈ N} and {ν(k) : Ω → U, k ∈ N}, in
which w(k) and ν(k) are independent of ς(t) for any k, t ∈ N and t ≥ k.
For any initial state a ∈ X, w(·) ∈ W , ν(·) ∈ U , the random sequence
yawν : Ω× N → Y satisfying (2.2) is called the output trajectory of Σ under
initial state a, internal input w, and external input ν. We eliminate subscript
of yawν wherever it is known from the context. If X,W,U are finite sets,
system Σ is called finite, and infinite otherwise.

Next section presents approximate probabilistic relations that can be used
for relating two gMDPs while capturing probabilistic dependency between
their executions. This new relation enables us to compose a set of concrete
gMDPs and that of their abstractions while providing conditions for preserv-
ing the relation after composition.

3. Approximate Probabilistic Relations based on Lifting

In this section, we first introduce the notion of δ-lifted relations over
general state spaces. We then define (ε, δ)-approximate probabilistic rela-
tions based on lifting for gMDPs with internal inputs. Finally, we define
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(ε, δ)-approximate relations for interconnected gMDPs without internal in-
put resulting from the interconnection of gMDPs having both internal and
external inputs. First, we provide the notion of δ-lifted relation borrowed
from [32].

For a given relation Rx ⊆ X × X̂, the next definition specifies required
properties for lifting relation Rx to a relation R̄δ which relates probability
measures over X and X̂.

Definition 3.1. Let X, X̂ be two sets with associated measurable spaces
(X,B(X)) and (X̂,B(X̂)). Consider a relation Rx ⊂ X × X̂ that is mea-
surable on their product space, i.e., Rx ∈ B(X × X̂). We denote by R̄δ ⊆
P(X,B(X)) × P(X̂,B(X̂)), the corresponding δ-lifted relation if there exists
a probability space (X × X̂,B(X × X̂),L ) (equivalently, a lifting L ) such
that (Φ,Θ) ∈ R̄δ if and only if

• ∀A ∈ B(X), L (A× X̂) = Φ(A),

• ∀Â ∈ B(X̂), L (X × Â) = Θ(Â),

• for the probability space (X × X̂,B(X × X̂),L ), it holds that the set
{(x, x̂) ∈ X × X̂ | (x, x̂) ∈ Rx} has a probability of at least 1 − δ,
equivalently, L (Rx) ≥ 1− δ.

The third condition in Definition 3.1 requires that the probability mea-
sure L assigns a probability of at least 1− δ to the set of state pairs in the
relation Rx. Next definition gives conditions for having a stochastic simula-
tion relation between two gMDPs. Intuitively, the δ-lifted relation requires
that the state pairs remain in the relation Rx in the next time step with a
probability of at least 1 − δ if they are in the relation at the current time
step.

Definition 3.2. Consider two gMDPs Σ = (X,W,U, π, T, Y, h) and Σ̂ =

(X̂, Ŵ , Û , π̂, T̂ , Y, ĥ) with the same output space. System Σ̂ is (ε, δ)-stochastically

simulated by Σ, i.e. Σ̂ �δε Σ, if there exist relations Rx ⊆ X × X̂ and
Rw ⊆ W × Ŵ for which there exists a Borel measurable stochastic kernel
LT (· | x, x̂, w, ŵ, ν̂) on X × X̂ such that

• ∀(x, x̂) ∈ Rx, ‖h(x)− ĥ(x̂)‖ ≤ ε,
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• ∀(x, x̂) ∈ Rx, ∀ŵ ∈ Ŵ , ∀ν̂ ∈ Û , there exists ν ∈ U such that ∀w ∈ W
with (w, ŵ) ∈ Rw,

T (· | x,w, ν) R̄δ T̂ (· | x̂, ŵ, ν̂)

with lifting LT (· | x, x̂, w, ŵ, ν̂),

• π R̄δ π̂.

The second condition of Definition 3.2 implies implicitly that there exists
a function ν = νν̂(x, x̂, ŵ, ν̂) such that the state probability measures are
in the lifted relation after one transition for any (x, x̂) ∈ Rx, ŵ ∈ Ŵ , and
ν̂ ∈ Û . This function is called the interface function, which can be employed
for refining a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

Remark 3.3. Definition 3.2 extends the approximate probabilistic relation
in [32] by adding relation Rw to capture the effect of internal inputs. The
interface function ν = νν̂(x, x̂, ŵ, ν̂) is also allowed to depend on the internal

input of the abstract gMDP Σ̂.

Remark 3.4. Note that Definition 3.2 generalizes the results of [17], that
assumes independent noises in two similar gMDPs, and of [16], that assumes
shared noises, by making no particular assumption but requiring this depen-
dency to be reflected in lifting LT . We emphasize that this generalization
is considered only for a concrete gMDP and its abstraction. We still retain
the assumption of independent uncertainties between gMDPs in a network
(cf. Definition 4.1 and Remark 4.2).

Definition 3.2 can be applied to gMDPs without internal inputs that may
arise from composing gMDPs via their internal inputs. For such gMDPs,
we eliminate Rw and the interface function becomes independent of internal
inputs, thus the definition reduces to that of [32], provided in the Appendix
as Definition 7.1.

Figure 2 illustrates ingredients of Definition 3.2. As seen, relation Rw

and stochastic kernel LT capture the effect of internal inputs, and the rela-
tion of two noises, respectively. Moreover, interface function νν̂(x, x̂, ŵ, ν̂) is

employed to refine a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.
The following theorem shows the usefulness of approximate probabilistic

relations in Definition 3.2. This theorem quantifies the error in probability
between a concrete system Σ and its abstraction Σ̂ regarding the satisfaction
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Figure 2: Notion of lifting for specifying the similarity between gMDP and its abstraction.
Relations Rx and Rw are the ones between states and internal inputs, respectively. LT

specifies the relation of two noises, and interface function νν̂(x, x̂, ŵ, ν̂) is used for the
refinement policy.

of a specification. In particular, given a measurable set A over the output
trajectories of Σ, we first construct an ε-expansion and ε-contraction of A,
denoted by Aε and A−ε, respectively. The probabilities of having the output
trajectories of Σ̂ in Aε and A−ε can be used to give upper and lower bounds for
the probability of having the output trajectories of Σ in A. These inequalities
hold when Σ and Σ̂ are in an (ε, δ)-approximate probabilistic relation.

Theorem 3.5. If Σ̂ �δε Σ and (w(k), ŵ(k)) ∈ Rw for all k ∈ {0, 1, . . . , Tk},
then for all policies on Σ̂ there exists a policy for Σ such that, for all mea-
surable events A ⊂ Y Tk+1,

P{{ŷ(k)}0:Tk ∈ A−ε} − γ ≤ P{{y(k)}0:Tk ∈ A} ≤ P{{ŷ(k)}0:Tk ∈ Aε}+ γ,
(3.1)

with constant 1−γ := (1−δ)Tk+1, and with the ε-expansion and ε-contraction
of A defined as

Aε := {{y(k)}0:Tk ∈ Y Tk+1
∣∣∃{ȳ(k)}0:Tk ∈ A s.t. maxk≤Tk‖ȳ(k)− y(k)‖ ≤ ε},

A−ε := {{y(k)}0:Tk ∈ Y Tk+1
∣∣∀{ȳ(k)}0:Tk ∈ Y Tk+1\A, maxk≤Tk‖ȳ(k)− y(k)‖ > ε},

where {y(k)}0:Tk = [y(0); . . . ; y(Tk)],and Y Tk+1 is the Cartesian product of

the output set Y with itself Tk times (i.e., Y Tk+1 =
∏Tk

i=0 Y ).

The intuition behind the above theorem is that at each time step, the state
pairs of two systems Σ and Σ̂ have a probability of at most δ for leaving
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the relation xRxx̂ on the product state space associated with the relation
Σ̂ �δε Σ. When expanded on the trajectories {x(k)}0:Tk and {x̂(k)}0:Tk , the
two trajectories will remain in the relation within the time horizon Tk with a
probability of at least (1− δ)Tk+1. Therefore, γ is the probability bound for
having trajectories not in the relation for some time step in that horizon. The
ε-expansion and ε-contraction are needed to include the effect of error coming
from the maximum distance between outputs of the two gMDPs when the
states are in the relation.

We have adapted Theorem 3.5 from [32] and employ it to provide the
probabilistic closeness guarantee between interconnected gMDPs and that
of their compositional abstractions which is discussed in the sequel. In the
next section, we define composition of gMDPs via their internal inputs and
discuss how to relate them to a network of interconnected abstraction based
on their individual relations.

4. Interconnected gMDPs and Their Compositional Abstractions

4.1. Interconnected gMDPs

Let Σ be a network of N ∈ N≥1 gMDPs

Σi = (Xi,Wi, Ui, πi, Ti, Yi, hi), i ∈ {1, . . . , N}. (4.1)

We partition internal input and output of Σi as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], yi = [yi1; . . . ; yiN ], (4.2)

and also output space and function as

hi(xi) = [hi1(xi); . . . ;hiN(xi)], Yi =
N∏
j=1

Yij. (4.3)

The outputs yii are denoted as external ones, whereas the outputs yij with
i 6= j as internal ones which are employed for interconnection by requiring
wji = yij. This can be explicitly written using appropriate functions gi
defined as

wi = gi(x1, . . . , xN) :=
[
h1i(x1); . . . ;h(i−1)i(xi−1);h(i+1)i(xi+1); . . . ;hNi(xN)

]
.

(4.4)
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Figure 3: Interconnection of two gMDPs Σ1 and Σ2 and that of their abstractions.

If there is no connection from Σi to Σj, then the connecting output function
is identically zero for all arguments, i.e., hij ≡ 0. In this section, we use
two indices i, j indicating respectively the current subsystem and the rest
of subsystems connected to the current subsystem in the interconnection
topology. Now, we define the interconnected gMDP Σ as follows.

Definition 4.1. Consider N ∈ N≥1 gMDPs Σi = (Xi,Wi, Ui, πi, Ti, Yi, hi), i ∈
{1, . . . , N}, with the input-output configuration as in (4.2) and (4.3). The
interconnection of Σi, i ∈ {1, . . . , N}, is a gMDP Σ = (X,U, π, T, Y, h),
denoted by I(Σ1, . . . ,ΣN), such that X :=

∏N
i=1Xi, U :=

∏N
i=1 Ui, Y :=∏N

i=1 Yii, and h =
∏N

i=1 hii, with the following constraints:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij, Yij ⊆ Wji. (4.5)

Moreover, one has conditional stochastic kernel T :=
∏N

i=1 Ti and initial

probability distribution π :=
∏N

i=1 πi.

An example of the interconnection of two gMDPs Σ1 and Σ2 and that of
their abstractions is illustrated in Figure 3.

Remark 4.2. Definition 4.1 assumes that uncertainties affecting individual
gMDPs in the network are independent which gives T and π as the products of
Ti and πi, respectively. If the uncertainties are dependent, the interconnected
system is still a gMDP but T should be constructed using the joint distribution
of the uncertainties (cf. the second part of Example 4.5).
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4.2. Compositional Abstractions for Interconnected gMDPs

We assume that we are given N gMDPs as in Definition 2.1 together
with their corresponding abstractions Σ̂i = (X̂i, Ŵi, Ûi, π̂i, T̂i, Yi, ĥi) such that

Σ̂i �δiεi Σi for some relation Rxi and constants εi, δi. Next theorem shows the
main compositionality result of the paper.

Theorem 4.3. Consider the interconnected gMDP Σ = I(Σ1, . . . ,ΣN) in-

duced by N ∈ N≥1 gMDPs Σi. Suppose Σ̂i is (εi, δi)-stochastically simulated
by Σi with the corresponding relations Rxi and Rwi

and lifting Li. If

gi(x)Rwi
ĝi(x̂), ∀(x, x̂) ∈ Rxi , (4.6)

with interconnection constraint maps gi, ĝi defined as in (4.4), then Σ̂ =

I(Σ̂1, . . . , Σ̂N) is (ε, δ)-stochastically simulated by Σ = I(Σ1, . . . ,ΣN) with
relation Rx defined asx1...

xN

Rx

 x̂1...
x̂N

⇔

x1Rx1x̂1,

...
xNRxN x̂N ,

and constants ε =
∑N

i=1 εi, and δ = 1−
∏N

i=1(1−δi). Lifting L and interface

ν are obtained by taking products L =
∏N

i=1 Li and ν =
∏N

i=1 νi, and then
substituting interconnection constraints (4.5).

The proof of Theorem 4.3 is provided in the Appendix.

Remark 4.4. The above theorem states that the lifting operation is invari-
ant w.r.t. the interconnecting operation provided that gi(x)Rwi

ĝi(x̂) for any
(x, x̂) ∈ Rx. This condition puts restriction on the structure of the network
and how the dynamics of gMDPs are coupled in the network. The condition
plays a similar role to the one imposed in disturbance bisimulation relation
proposed in [35].

We provide the following example to illustrate our compositionality re-
sults.

Example 4.5. Assume that we are given two linear dynamical systems as

Σi :

{
xi(k + 1) = Aixi(k) +Diwi(k) +Biνi(k) +Riςi(k),
yi(k) = xi(k), i ∈ {1, 2}, (4.7)
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where the additive noise ςi(·) is a sequence of independent random vectors
with multivariate standard normal distributions for i ∈ {1, 2}, and Ri, i ∈
{1, 2}, are invertible. Let Σ̂i be the abstraction of gMDP (4.7) as

Σ̂i :

{
x̂i(k + 1) = Âix̂i(k) + D̂iŵi(k) + B̂iν̂i(k) + R̂iς̂i(k),
ŷi(k) = x̂i(k).

Transition kernels of Σi and Σ̂i can be written as

Ti(·|xi, wi, νi) = N (·|Aixi +Diwi +Biνi, RiR
T
i ),

T̂i(·|x̂i, ŵi, ν̂i) = N (·|Âix̂i + D̂iŵi + B̂iν̂i, R̂iR̂
T
i ), ∀i ∈ {1, 2},

where N (· |m,D) indicates normal distribution with mean m and covariance
matrix D.
Independent uncertainties. If ςi(·) and ς̂i(·) in the concrete and abstract
systems are independent, a candidate for lifted measure is

LTi(·|xi, x̂i, wi, ŵi, ν̂i) = N (·|Aixi +Diwi +Biνi, RiR
T
i )

×N (·|Âix̂i + D̂iŵi + B̂iν̂i, R̂iR̂
T
i ).

Now we connect two subsystems with each other based on the interconnection
constraint (4.5) which are wi = x3−i and ŵi = x̂3−i for i ∈ {1, 2}. For any
x = [x1;x2] ∈ X, x̂ = [x̂1; x̂2] ∈ X̂, ν = [ν1; ν2] ∈ U, ν̂ = [ν̂1; ν̂2] ∈ Û , the
compositional transition kernels for the interconnected gMDPs are

T (· | x, ν) = N (· | Ax+Bν,RRT ), T̂ (· | x̂, ν̂) = N (· | Âx̂+ B̂ν̂, R̂R̂T ),

where ν := ν(x, x̂, ν̂) and

A =

[
A1 D1

D2 A2

]
, B = diag(B1, B2), R = diag(R1, R2),

Â =

[
Â1 D̂1

D̂2 Â2

]
, B̂ = diag(B̂1, B̂2), R̂ = diag(R̂1, R̂2). (4.8)

Then the candidate lifted measure for the interconnected gMDPs is

LT (·|x, x̂, ν̂) = N (·|Ax+Bν,RRT )N (·|Âx̂+ B̂ν̂, R̂R̂T ).

Note that after connecting the subsystems with each other using the pro-
posed interconnection constraint in (4.5), the internal inputs will disappear.
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Dependent uncertainties. Suppose Σi and Σ̂i share the same noise ςi(·) =
ς̂i(·). In this case, the candidate lifted measure for i ∈ {1, 2} is obtained by

LTi(dx
′
i × dx̂′i |xi, x̂i, wi, ŵi, ν̂i) = N (dx′i |Aixi +Diwi +Biνi, RiR

T
i )

× δd(dx̂′i | Âix̂i+D̂iŵi+B̂iν̂i+R̂iR
−1
i (x′i−Aixi−Diwi−Biνi)),

where δd(·|a) indicates Dirac delta distribution centered at a. Now we connect
two subsystems with each other. For any x = [x1;x2] ∈ X, x̂ = [x̂1; x̂2] ∈
X̂, ν = [ν1; ν2] ∈ U, ν̂ = [ν̂1; ν̂2] ∈ Û , the candidate lifted measure for the
interconnected gMDPs is

LT (dx′ × dx̂′|x, x̂, ν̂) = N (dx′|Ax+Bν,RRT )× δd(dx̂′|Ax̂+Bν̂−Āx+Ãx′−B̄ν),

where A,B,R, Â, B̂ are defined as in (4.8), and

Ā =

[
R̂1R

−1
1 A1 R̂1R

−1
1 D1

R̂2R
−1
2 D2 R̂2R

−1
2 A2

]
, Ã =

[
R̂1R

−1
1 0

0 R̂2R
−1
2

]
,

B̄ =

[
R̂1R

−1
1 B1 0

0 R̂2R
−1
2 B2

]
.

In the next section, we focus on a particular class of stochastic nonlinear
systems, and construct its infinite and finite abstractions in a unified frame-
work. We provide explicit inequalities for establishing Theorem 4.3, which
gives a probabilistic relation after composition and enables us to get guaran-
tees of Theorem 3.5 on the closeness of the composed system and that of its
abstraction.

5. Construction of Abstractions for Nonlinear Systems

Here, we focus on a specific class of stochastic nonlinear control systems
as

Σnl :

{
x(k + 1) = Ax(k) + Eϕ(Fx(k)) +Dw(k) +Bν(k) +Rς(k),
y(k) = Cx(k),

(5.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rn×p, E ∈ Rn×1, F ∈ R1×n, and
R ∈ Rn×n. Moreover, ς(·) ∼ N (0, In), and ϕ : R→ R satisfies

a ≤ ϕ(c)− ϕ(d)

c− d
≤ b, ∀c, d ∈ R, c 6= d, (5.2)
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for some a ∈ R and b ∈ R>0 ∪ {∞}, a ≤ b.
Systems of the form (5.1) are widely used to model many physical systems

including active magnetic bearing [39], flexible joint robot [40], and under-
water vehicles [41]. Note that (5.1) is a stochastic dynamical system in the
form of (2.2) which is a gMDP with the stochastic kernel

T (dx′|x, ν, w) ∼ N (Ax+ Eϕ(Fx) +Dw +Bν,RRT ).

We use the tuple Σnl = (A,B,C,D,E, F,R, ϕ), to refer to the class of non-
linear systems of the form (5.1).

Remark 5.1. If E is a zero matrix or ϕ in (5.1) is linear including the
zero function (i.e. ϕ ≡ 0), one can remove or push the term Eϕ(Fx) to
Ax, and consequently the nonlinear tuple reduces to the linear one Σ =
(A,B,C,D,R). Then, every time we mention the tuple Σnl =(A,B,C,D,E, F,
R, ϕ), it implicitly implies that ϕ is nonlinear and E is nonzero.

Existing compositional abstraction results for this class of models are
based on either model order reduction [17], [18] or finite MDPs [16], [19]. Our
proposed results here combine these two approaches in one unified framework.
In other words, our abstract model is obtained by discretizing the state space
of a reduced-order version of the concrete model.

5.1. Construction of Finite Abstractions

Consider a nonlinear system Σnl = (A,B,C,D,E, F,R, ϕ) and its reduced-

order version Σ̂nlr = (Âr, B̂r, Ĉr, D̂r, Êr, F̂r, R̂r, ϕ). Note that index r in the
whole paper signifies the reduced-order version of the original model. We
discuss the construction of Σ̂nlr from Σnl in Theorem 5.3 of the next sub-
section. Construction of a finite gMDP from Σ̂nlr follows the approach of
[42, 13]. Denote the state and input spaces of Σ̂nlr respectively by X̂r, Ŵr, Ûr.
We construct a finite gMDP by selecting partitions X̂r = ∪iXi, Ŵr = ∪iWi,
and Ûr = ∪iUi, and choosing representative points x̄i ∈ Xi, w̄i ∈ Wi, and
ν̄i ∈ Ui, as abstract states and inputs. The finite abstraction of Σnl is a
gMDP Σ̂nl = (X̂, Ŵ , Û , π̂, T̂ , Y, ĥ), where

X̂ = {x̄i, i = 1, . . . , nx}, Û = {ūi, i = 1, . . . , nu}, Ŵ = {w̄i, i = 1, . . . , nw}.

Transition probability matrix T̂ is constructed according to the dynamics
x̂(k + 1) = f̂(x̂(k), ŵ(k), ν̂(k), ς(k)) with

f̂(x̂, ν̂, ŵ, ς) := Πx(Ârx̂+ Êrϕ(F̂rx̂) + D̂rŵ + B̂rν̂ + R̂rς), (5.3)
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where Πx : X̂r → X̂ is the map that assigns to any x̂r ∈ X̂r, the representative
point x̂ ∈ X̂ of the corresponding partition set containing x̂r. The output
map ĥ(x̂) = Ĉx̂. The initial state of Σ̂nl is also selected according to x̂0 :=

Πx(x̂r(0)) with x̂r(0) being the initial state of Σ̂nlr .

Remark 5.2. Abstraction map Πx satisfies the inequality ‖Πx(x̂r)− x̂r‖ ≤ β
for all x̂r ∈ X̂r, where β is the state discretization parameter defined as
β := sup{‖x̂r − x̂′r‖, x̂r, x̂′r ∈ Xi, i = 1, 2, . . . , nx}.

5.2. Establishing Probabilistic Relations

In this subsection, we provide conditions under which Σ̂nl is (ε, δ)-stochastically
simulated by Σnl, i.e. Σ̂nl �δε Σnl, with relations Rx and Rw. Here we candi-
date relations

Rx =
{

(x, x̂)|(x− Px̂)TM(x− Px̂) ≤ ε2
}
, (5.4a)

Rw =
{

(w, ŵ)|(w − Pwŵ)TMw(w − Pwŵ) ≤ ε2w

}
, (5.4b)

where P ∈ Rn×n̂ and Pw ∈ Rm×m̂ are matrices of appropriate dimensions
(potentially with the lowest n̂ and m̂), and M,Mw are positive-definite ma-
trices.

Next theorem gives conditions for having Σ̂nl �δε Σnl with relations (5.4a)
and (5.4b).

Theorem 5.3. Let Σnl =(A,B,C,D,E, F,R, ϕ) and Σ̂nlr =(Âr, B̂r, Ĉr, D̂r, Êr,
F̂r, R̂r, ϕ) be two nonlinear systems with the same additive noise. Suppose Σ̂nl

is a finite gMDP constructed from Σ̂nlr according to Subsection 5.1. Then Σ̂nl

is (ε, δ)-stochastically simulated by Σnl with relations (5.4a)-(5.4b) if there
exist matrices K, Q, S, L1, L2 and R̃ such that

M � CTC, (5.5a)

Ĉr = CP, (5.5b)

F̂r = FP, (5.5c)

E = PÊr −B(L1 − L2), (5.5d)

AP = PÂr−BQ, (5.5e)

DPw = PD̂r−BS, (5.5f)

P{(H + PG)TM(H + PG) ≤ε2} � 1− δ, (5.5g)
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where

H = ((A+BK) + δ̄(BL1 + E)F )(x− Px̂) +D(w − Pwŵ) + (BR̃− PB̂r)ν̂

+ (R− PR̂r)ς,

G = Ârx̂+Êrϕ(F̂rx̂)+D̂rŵ+B̂rν̂+R̂rς−Πx(Ârx̂+Êrϕ(F̂rx̂)+D̂rŵ+B̂rν̂+R̂rς).

The proof of Theorem 5.3 is provided in the Appendix.

Remark 5.4. Note that condition (5.5g) is a chance constraint. We satisfy
this condition by selecting constant cς such that P{ςT ς ≤ c2ς} ≥ 1 − δ, and
requiring (H + PG)TM(H + PG) ≤ ε2 for any ς with ςT ς ≤ c2ς . Since
ς ∼ N (0, In), ςT ς has chi-square distribution with n degrees of freedom. Thus,
cς = X−1n (1 − δ) with X−1n being chi-square inverse cumulative distribution
function with n degrees of freedom.

6. Case Study

In this section, we demonstrate the effectiveness of the proposed results
on a network of four stochastic nonlinear systems (totally 12 dimensions),
i.e. Σnl = I(Σnl1 ,Σnl2 ,Σnl3 ,Σnl4). We want to construct finite gMDPs from
their reduced-order versions (together 4 dimensions). The interconnected
gMDP Σnl is illustrated in Figure 4 such that the output of Σnl1 (resp. Σnl2)
is connected to the internal input of Σnl4 (resp. Σnl3), and the output of Σnl3

(resp. Σnl4) connects to the internal input of Σnl1 (resp. Σnl2).
The matrices of the system are given by

Ai =

0.7882 0.3956 0.8333
0.7062 0.7454 0.9552
0.6220 0.3116 0.4409

, Bi =

0.7555 0.1557 0.3487
0.1271 0.9836 0.2030
0.4735 0.4363 0.4493

, Ci = 0.011T3 ,

Ei=
[
0.6482; 0.6008; 0.6209

]
, Fi=

[
0.5146; 0.8756; 0.2461

]T
,

Ri=
[
0.4974; 0.3339; 0.4527

]
, (6.1)

for i ∈ {1, 2, 3, 4}. The internal input and output matrices are also given by

C14 =C23 =C31 =C42 =0.011T3, D13 = D24 =D32 =D41 =
[
0.074; 0.010; 0.086

]
.

We consider ϕi(x) = sin(x), ∀i ∈ {1, . . . , 4}. Then functions ϕi satisfy
condition (5.2) with b = 1. In the following, we first construct the reduced-
order version of the given dynamic by satisfying conditions (5.5a)-(5.5f).
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Figure 4: The interconnected gMDP Σnl = I(Σnl1 ,Σnl2 ,Σnl3 ,Σnl4).

We then establish relations between subsystems by fulfilling condition (5.5g).
Afterwards, we satisfy the compositionality condition (4.6) to get a relation
on the composed system, and finally, we utilize Theorem 3.5 to provide the
probabilistic closeness guarantee between the interconnected model and its
constructed finite MDP.

Conditions (5.5a)-(5.5f) are satisfied by, ∀i ∈ {1, 2, 3, 4},

Qi =
[
−1.6568; −1.2280; 1.9276

]
, Si =

[
0.0775; 0.0726; −0.1759

]
,

Pi =
[
0.5931; 0.3981; 0.5398

]
, L1i =

[
−0.6546; −0.4795; −0.2264

]
,

L2i =
[
−0.1713; −0.0777; −0.1044

]
, Pwi = 1,Mi = I3.

Accordingly, matrices of reduced-order systems can be obtained as ,∀i ∈
{1, 2, 3, 4},

Âri = 0.5127, Êri = 0.3, F̂ri = 0.7866, Ĉri = 0.0371, D̂ri = 0.1403, R̂ri = 0.8386.

Moreover, we compute R̃i = (BT
i MiBi)

−1BT
i MiPiB̂ri, i ∈ {1, 2, 3, 4}, to

make chance constraint (5.5g) less conservative. By taking B̂ri = 2, we
have R̃i = [1.1418; 0.5182; 0.6965]. The interface functions for i ∈ {1, 2, 3, 4}
are acquired by (7.3) as

νi =

−0.6665 −0.3652 −0.9680
−0.4372 −0.5536 −0.5781
−0.4012 −0.1004 −0.2612

(xi−Pix̂i) +Qix̂i + R̃iν̂i + Siŵi

+ L1iϕi(Fixi)− L2iϕi(FiPix̂i).

We proceed with showing that condition (5.5g) holds as well, using Re-
mark 5.4. This condition can be satisfied via the S-procedure [43], which
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enables us to reformulate (5.5g) as existence of λ ≥ 0 such that matrix in-
equality

λi

[
F̃1i g̃1i
g̃T1i h̃1i

]
−
[
F̃2i g̃2i
g̃T2i h̃2i

]
� 0, (6.2)

holds. Here, F̃1i and F̃2i are symmetric matrices, g̃1i and g̃2i are vectors,
h̃1i and h̃2i are real numbers. We first bound the external input of abstract
systems as ν̂2i ≤ cν̂i and select cςi = X−1(1− δi), for all i ∈ {1, 2, 3, 4}, where
X−1 is the chi-square inverse cumulative distribution function with 1 degree
of freedom. Then matrices, vectors and real numbers of inequality (6.2),
∀i ∈ {1, 2, 3, 4}, can be constructed as in (7.1) and (7.2) provided in the
Appendix. By taking εi = 1.25, εwi

= 0.05, cν̂i = 0.25, δi = 0.001, βi = 0.1,
λi = 0.347, for all i ∈ {1, 2, 3, 4}, one can readily verify that the matrix

inequality (6.2) holds. Then Σ̂nli is (εi, δi)-stochastically simulated by Σnli

with relations

Rxi =
{

(xi, x̂i) | (xi − Pix̂i)TMi(xi − Pix̂i) ≤ ε2i

}
,

Rwi =
{

(wi, ŵi) | (wi − ŵi)2 ≤ ε2wi

}
,

for i ∈ {1, 2, 3, 4}. We proceed with showing that the compositionality con-
dition in (4.6) holds, as well. To do so, by employing S-procedure, one should
satisfy the matrix inequality in (6.2) with the following matrices:

F̃1i=

[
Mi −MiPi
∗ P T

i MiPi

]
, F̃2i=

[
CT
i MwiCi −CT

i MwiPwiĈri

∗ ĈT
riP

T
wiMwiPwiĈri

]
,

g̃1i = g̃2i = 04, h̃1i = −ε2i , h̃2i = −ε2wi,

for i ∈ {1, 2, 3, 4}. This condition is satisfiable with λi = 0.001 ∀i ∈
{1, 2, 3, 4}, thus Σ̂nl is (ε, δ)-stochastically simulated by Σnl with ε = 6, and
δ = 0.003. According to (3.1), we guarantee that the distance between out-

puts of Σnl and of Σ̂nl will not exceed ε = 6 during the time horizon Tk = 10
with probability at least 96% (γ = 0.04).

6.1. Comparison

To demonstrate the effectiveness of the proposed approach, let us now
compare the guarantees provided by our approach and by [18, 16]. Note that
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our result is based on the δ-lifted relation while [18, 16] employ dissipativity-
type reasoning to provide a compositional methodology for constructing both
infinite abstractions (reduced-order models) and finite MDPs in two consec-
utive steps. Since we are not able to satisfy the proposed matrix inequalities
in [16, Ineqality (22)], and [18, Inequality (5.5)] for the given system in (6.1),
we change the system dynamics to have a fair comparison. In other words, in
order to show the conservatism nature of the existing techniques in [16, 18],
we provide another example and compare our techniques with the existing
ones in great detail.

The matrices of the new system are given by

Ai = I5, Bi = I5, Ci = 0.051T5 , Ri = 15,

for i ∈ {1, 2, 3, 4}, where matrices Ei, Fi are identically zero. The internal
input and output matrices are also given by:

C14 = C23 = C31 = C42 = 0.051T5 , D13 = D24 = D32 = D41 = 0.115.

Conditions (5.5a),(5.5b),(5.5e),(5.5f) are satisfied by:

Mi = I5, Pxi = 15, Pwi = 1, Qi = 15, Si = 0.115,

for i ∈ {1, 2, 3, 4}. Accordingly, the matrices of reduced-order systems are
given as:

Âri = 2, Ĉri = 0.25, D̂ri = 0.2, R̂ri = 0.97, ∀i ∈ {1, 2, 3, 4}.

Moreover, by taking B̂ri = 1, we compute R̃i, i ∈ {1, 2, 3, 4}, as R̃i = 15.
The interface function for i ∈ {1, 2, 3, 4} is computed as:

νi = −0.95I5(xi − 15x̂i) + 15x̂i + 15ν̂i + 0.115ω̂i.

We proceed with showing that condition (5.5g) holds, as well. By taking

εi = 5, εwi
= 0.75, cν̂i = 0.25, δi = 0.001, βi = 0.1, λi = 0.825,∀i ∈ {1, 2, 3, 4},

and by employing S-procedure, one can readily verify that condition (5.5g)

holds. Then Σ̂i is (εi, δi)-stochastically simulated by Σi, for i ∈ {1, 2, 3, 4}.
Additionally, by applying S-procedure, one can readily verify that Σ̂ is (ε, δ)-
stochastically simulated by Σ with ε = 20, and δ = 0.005. According to (3.1),
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we guarantee that the distance between outputs of Σ and of Σ̂ will not
exceed ε = 20 during the time horizon Tk = 5 with probability at least 97%
(γ = 0.03).

Now we apply the proposed results in [18, 16] for the same matrices of the
new system and also employ the same ε and the discretization parameter β.
Since the proposed approaches in [18, 16] are presented in two consecutive
steps, we employ the next proposition which provides the overall error bound
in two-step abstraction scheme.

Proposition 6.1. Suppose Σ1, Σ2, and Σ3 are three stochastic systems with-
out internal signals. For any external input trajectories ν1, ν2, and ν3 and
for any a1, a2, and a3 as the initial states of the three systems, if

P
{

sup
0≤k≤Tk

‖y1a1ν1(k)− y2a2ν2(k)‖ ≥ ε1 | [a1; a2]
}
≤ γ1,

P
{

sup
0≤k≤Tk

‖y2a2ν2(k)− y3a3ν3(k)‖ ≥ ε2 | [a2; a3]
}
≤ γ2,

for some ε1, ε2 > 0 and γ1, γ2 ∈]0 1[, then the probabilistic mismatch between
output trajectories of Σ1 and Σ3 is quantified as

P
{

sup
0≤k≤Tk

‖y1a1ν1(k)− y3a3ν3(k)‖ ≥ ε1 + ε2 | [a1; a2; a3]
}
≤ γ1 + γ2.

The proof is provided in the Appendix.
By applying the proposed results in [18] to construct the infinite abstrac-

tion Σ̂r, one can guarantee that the distance between outputs of Σ and of Σ̂r

will exceed ε1 = 15 during the time horizon Tk = 5 with probability at most
87.94%, i.e.,

P(‖yaν(k)− ŷrârν̂r(k)‖ ≥ 15, ∀k ∈ [0, 5]) ≤ 87.94 .

After applying the proposed results in [16] to construct the finite abstraction

Σ̂ from Σ̂r, one can guarantee that the distance between outputs of Σ̂r and
of Σ̂ will exceed ε2 = 5 during the time horizon Tk = 5 with probability at
most 0.0117%, i.e.,

P(‖ŷrârν̂r(k)− ŷâν̂(k)‖ ≥ 5, ∀k ∈ [0, 5]) ≤ 0.0117.

22



By employing Proposition 6.1, one can guarantee that the distance between
outputs of Σ and of Σ̂ will exceed ε = 20 during the time horizon Tk = 5
with probability at most 0.8911%, i.e.

P(‖yaν(k)− ŷâν̂(k)‖ ≥ 20, ∀k ∈ [0, 5]) ≤ 0.8911.

This means that the distance between outputs of Σ and of Σ̂ will not exceed
ε = 20 during the time horizon Tk = 5 with probability at least 0.1089%.
As seen, our provided results dramatically outperform the ones proposed
in [18, 16]. More precisely, since our proposed approach here is presented
in a unified framework than two-step abstraction scheme which is the case
in [18, 16], we only need to check our proposed conditions one time, and
consequently, our proposed approach here is much less conservative.

7. Discussion

In this paper, we provided a unified compositional scheme for construct-
ing both finite and infinite abstractions of gMDPs with internal inputs. We
defined (ε, δ)-approximate probabilistic relations that are suitable for con-
structing compositional abstractions of gMDPs. We focused on a specific
class of nonlinear dynamical systems, and constructed both infinite (reduced-
order models) and finite abstractions in a unified framework, using quadratic
relations on the space and linear interface functions. We then provided con-
ditions for composing such relations. Finally, we demonstrated the effec-
tiveness of the proposed results by considering a network of four nonlinear
systems (totally 12 dimensions) and constructing finite gMDPs from their
reduced-order versions (together 4 dimensions) with guaranteed bounds on
their probabilistic output trajectories. We benchmarked our results against
the compositional abstraction techniques of [18, 16], and showed that our pro-
posed approach is much less conservative than the ones proposed in [18, 16].
The theoretical results presented in this paper remain valid for systems with
hybrid state spaces. A future research direction is to find efficient com-
putational algorithms for establishing simulation relations between hybrid
systems.
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Appendix

Definition 7.1. ([32]) Consider two gMDPs without internal inputs Σ =

(X,U, π, T, Y, h) and Σ̂ = (X̂, Û , π̂, T̂ , Y, ĥ), that have the same output spaces.

Σ̂ is (ε, δ)-stochastically simulated by Σ, i.e. Σ̂ �δε Σ, if there exists a relation
Rx ⊆ X × X̂ for which there exists a Borel measurable stochastic kernel
LT (· | x, x̂, ν̂) on X × X̂ such that

• ∀(x, x̂) ∈ Rx, ‖h(x)− ĥ(x̂)‖ ≤ ε,

• ∀(x, x̂) ∈ Rx,∀ν̂ ∈ Û , ∃ν ∈ Usuch that T (· | x, ν(x, x̂, ν̂)) R̄δ T̂ (· | x̂, ν̂)
with LT (· | x, x̂, ν̂),

• π R̄δ π̂.
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Matrices appeared in (6.2):

F̃1i =


Mi 03×3 03 03 03 03

03×3 03×3 03 03 03 03

∗ ∗ Mwi 0 0 0
∗ ∗ ∗ 1 0 0
∗ ∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ ∗ 1

,

F̃2i =



F̃11i F̃12i F̃13i F̃14i F̃15i F̃16i

∗ F̃22i F̃23i F̃24i F̃25i F̃26i

∗ ∗ F̃33i F̃34i F̃35i F̃36i

∗ ∗ ∗ F̃44i F̃45i F̃46i

∗ ∗ ∗ ∗ F̃55i F̃56i

∗ ∗ ∗ ∗ ∗ F̃66i


, (7.1)

where

F̃11i=(Ai+BiKi)
TMi(Ai+BiKi), F̃12i=(Ai+BiKi)

TMi(BiL1i+Ei)Fi,

F̃13i=(Ai+BiKi)
TMiDi, F̃14i=(Ai+BiKi)

TMi(BiR̃i−PiB̂ri),

F̃15i=(Ai +BiKi)
TMiPi, F̃16i=(Ai+BiKi)

TMi(Ri−PiR̂ri),

F̃22i=F T
i (BiL1i+Ei)

TM(BiL1i+Ei)Fi, F̃23i=F T
i (BiL1i+Ei)

TMiDi,

F̃24i=F T
i (BiL1i+Ei)

TMi(BiR̃i−PiB̂ri), F̃25i=F T
i (BiL1i+Ei)

TMiPi,

F̃26i=F T
i (BiL1i+Ei)

TMi(Ri−PiR̂ri), F̃33i=D
T
i MiDi, F̃34i=D

T
iMi(BiR̃i−PiB̂ri),

F̃35i=DT
i MiPi, F̃36i=D

T
iMi(Ri−PiR̂ri), F̃44i=(BiR̃i−PiB̂ri)

TMi(BiR̃i−PiB̂ri),

F̃45i=(BiR̃i−PiB̂ri)
TMiPi, F̃46i=(BiR̃i−PiB̂ri)

TMi(Ri−PiR̂ri), F̃55i=P T
i MiPi,

F̃56i=P T
i Mi(Ri−PiR̂ri), F̃66i=(Ri−PiR̂ri)

TMi(Ri−PiR̂ri).

Vectors and real numbers appeared in (6.2):

g̃1i= g̃2i=010, h̃1i=−(ε2i +ε
2
wi+cν̂i+cςi+βi), h̃2i=−ε2i . (7.2)

Proof. (Theorem 4.3) We first show that the first condition in Definition 7.1
holds. For any x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂ with xRxx̂,
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one gets:

‖h(x)− ĥ(x̂)‖ = ‖[h11(x1); . . . ;hNN(xN)]− [ĥ11(x̂1); . . . ; ĥNN(x̂N)]‖

≤
N∑
i=1

‖hii(xi)− ĥii(x̂i)‖ ≤
N∑
i=1

‖hi(xi)− ĥi(x̂i)‖ ≤
N∑
i=1

εi.

As seen, the first condition in Definition 7.1 holds with ε =
∑N

i=1 εi. The

second condition is also satisfied as follows. For any (x, x̂) ∈ Rx, and ν̂ ∈ Û ,
we have:

L
{
x′Rxx̂

′ |x, x̂, ν̂
}

= L
{
x′iRxix̂

′
i, i ∈ {1, 2, . . . , N} |x, x̂, ν̂

}
=

N∏
i=1

Li

{
x′iRxix̂

′
i, | gi(x), ĝi(x), ν̂i

}
≥

N∏
i=1

(1− δi).

The second condition in Definition 7.1 also holds with δ = 1−
∏N

i=1(1− δi)
which completes the proof.

Proof. (Theorem 5.3) First, we show that the first condition in Defini-
tion 3.2 holds for all (x, x̂) ∈ Rx. According to (5.5a) and (5.5b), we have

‖Cx− Ĉrx̂‖2 = (x− Px̂)TCTC(x− Px̂) ≤ (x− Px̂)TM(x− Px̂) ≤ ε2,

for any (x, x̂) ∈ Rx. Now we proceed with showing the second condition.
This condition requires that ∀(x, x̂) ∈ Rx, ∀(w, ŵ) ∈ Rw,∀ν̂ ∈ Û , the next
states (x′, x̂′) should also be in relation Rx with probability at least 1− δ:

P{(x′ − Px̂′)TM(x′ − Px̂′) ≤ ε2} ≥ 1− δ.

Given any x, x̂, and ν̂, we choose ν via the following interface function:

ν =νν̂(x, x̂, ŵ, ν̂) := K(x− Px̂) +Qx̂+ R̃ν̂ + Sŵ + L1ϕ(Fx)− L2ϕ(FPx̂).
(7.3)

By substituting dynamics of Σ and Σ̂, employing (5.5c)-(5.5f), and the defi-
nition of the interface function (7.3), we simplify

x′ − Px̂′ = Ax+ Eϕ(Fx) +Dw +Bνν̂(x, x̂, ŵ, ν̂) +Rς

− P (Ârx̂+ Êrϕ(F̂rx) + D̂rŵ + B̂rν̂ + R̂rς) + PG,
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to

(A+BK)(x− Px̂) +D(w − Pwŵ) + (BR̃− PB̂r)ν̂

+ (BL1 + E)(ϕ(Fx)− ϕ(FPx̂r)) + (R− PR̂r)ς + PG, (7.4)

with G = Ârx̂+ Êrϕ(F̂rx̂) + D̂rŵ+ B̂rν̂ + R̂rς −Πx(Ârx̂+ Êrϕ(F̂rx̂) + D̂rŵ+
B̂rν̂ + R̂rς). From the slope restriction (5.2), one obtains

ϕ(Fx)− ϕ(FPx̂) = δ̄(Fx− FPx̂) = δ̄F (x− Px̂), (7.5)

where δ̄ is a function of x and x̂, and takes values in the interval [0, b].
Using (7.5), the expression in (7.4) reduces to

((A+BK) + δ̄(BL1 + E)F )(x− Px̂) +D(w − Pwŵ) + (BR̃− PB̂r)ν̂

+ (R− PR̂r)ς + PG.

This gives condition (5.5g) for having the probabilistic relation.

Proof. (Proposition 6.1) By defining

A = {‖y1a1ν1(k)− y2a2ν2(k)‖ < ε1 | [a1; a2; a3]},
B = {‖y2a2ν2(k)− y3a3ν3(k)‖ < ε2 | [a1; a2; a3]},
C = {‖y1a1ν1(k)− y3a3ν3(k)‖ < ε1 + ε2 | [a1; a2; a3]},

we have P{Ā} ≤ γ1 and P{B̄} ≤ γ2, where Ā and B̄ are the complement of
A and B, respectively. Since P{A ∩ B} ≤ P{C}, we have

P{C̄} ≤ P{Ā ∪ B̄} ≤ P{Ā}+ P{B̄} ≤ γ1 + γ2.

Then

P
{

sup
0≤k≤Tk

‖y1a1ν1(k)− y3a3ν3(k)‖ ≥ ε1 + ε2 | [a1; a2; a3]
}
≤ γ1 + γ2.
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