VERY SPECIAL LANGUAGES AND
REPRESENTATIONS OF RECURSIVELY
ENUMERABLE LANGUAGES
VIA COMPUTATION HISTORIES
by
David Haussler
and

H. Paul Zeiger
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado

CU-CS-177-80 April, 1980

This work supported in part by NSF grant MCS79-08338

1. Running head is "Very Special lLanguages."
2. Article Tength is 22 pages, no tables, no fiqgures.
3. Special symbols used are:
O, T, T, Ay, 8, Ay €5 =5, ©, @y D, Dy N, U, >, ¥, H, L, P.

Also used as subscript or superscript are: I, A, I', *. Letters and
subscripts may appear overbarred as in a or underbarred as in a or

both as in a.

ABSTRACT

A method of encoding the computation histories of a wide class
of machines is introduced and used to derive several representation
theorems for the class of recursively enumerable languages. In
particular it is demonstrated that any recursively enumerable language

2
fixed semi-Dyck languages, || is the shuffle operation, R is a

K ¢ £* can be represented as K = @7(Rf1D1I|D2) where Dl and D, are

regular language depending on K and P is a weak identity homomorphism.
This result is the natural analog for the recursively enumerable
languages of the Chomsky-Shutzenberger representation of the context

free languages.

I INTRODUCTION

Recently, [ENG,R0Z 79], an elegant representation of the recursively

enumerable languages over a finite alphabet has been discovered which
is analogous to the Chomsky-Shutzenberger representation of the
context-free languages. One fixed language of remarkable simplicity,
the complete twin shuffle, is presented,which through intersection
with regular sets followed by a weak identity homomorphism, generates
all the recursively enumerable languages over a fixed alphabet.

A. Ehrenfeucht has proposed that a language capable of representing
the recursively enumerable languages in the above sense be called a
very special language or VSL. Our major result is the discovery

of another very special Tanguage which is the shuffle of two
semi-Dyck Tanguages. This result yields the natural analog for

the recursively enumerable Tanguages of the Chomsky-Shutzenberger

theorem.

The technique used in proving this and other results in this
paper involves a method of representing histories of read and write
actions of a finite automaton on a set of potentially infinite data
structures (i.e., queues, stacks, etc.) as words in a regular Tanguage.
Then either the application of a fixed mapping or an intersection
with a fixed "checking" language serves to sort out the words
representing valid computation histories from those in which the
data structures were accessed incorrectly. This is in essence the
technique used in [GIN 70] and [GIN 73]. One of the authors learned
it from Robert Floyd in 1975. The power of this technique is demonstrated
in the derivations of several representation theorems, some of which are

new, while others have been previously derived by different methods.

IT DEFINITIONS
Here we give formal definitions of the terminology used
throughout this paper.

DEFINITION: Given a machine A, L(A) denotes the language accepted by A.

DEFINITION: Given two finite alphabets A and » such that A - ¥, the

weak identity o5 A* » 3% is defined by

a if a e ¢

S
™
—~
[o3]
~—r
il

S
]
—~
jst]
~—
1

Aoifa¢ .

DEFINITION: Given a finite alphabet £, we denote the semi-Dyck language
generated by

5-+aSES{x:aez}asDY

DEFINITION: Given two languages L and M, contained in I*, we denote the

shuffle of L and M as L||M where

= * IR 1 <
LM iUy oW U WU e n® for 1< 4 <, W

0 Yn w e L and

1 "%

U, ...u_eM},
n

1

DEFINITION: The complete twin shuffie over the alphabet I, denoted Lss
is defined by

Lo = {w.U,...w u :wi,uigzz* for 1<iz<n, and w

z 171 nn 177

DEFINITION: The bar right twin shuffle over the alphabet I, denoted
BRLZ is defined by

= i . - * ¥
BRLZ {wlul...wnun.wi,uicZL for 1<i<n, Wy oW

and Vi lc<i <n,u1...uiis a prefix of w

1

DEFINITION: The class of recursively enumerable languages over the

finite alphabet = will be denoted REX.

DEFINITION: Given a word w ¢ o*, wR will denote the reversal of w.

DEFINITION: Given a word w ¢ (Zuz)*, w" will denote the complement
of w, i.e., w° is obtained from w by the mapping c(a) = a, c(a) = a

for a e 1.
Finally our fundamental definition:

OEFINITION: Given two finite alphabets A and & such that a - 3,
a language L < A* is a very special lanquage for 3, abbreviated
L e VSLZ, iff for any recursively enumerable Tanguage K ¢ 3* there

exists a regular language R < A* such that

K = @Z(RHL).

ITT MAIN RESULTS

Our first theorem will be our natural analog for the recursively

enumerable languages of the Chomsky-Shutzenberger theorem.

THEOREM I: For any finite alphabet I, we can define two semi-Dyck

languages D1 and D2 on disjoint alphabets Aq and b such that T « A4
and for any recursively enumerable lanauage K < L* there exists a

regular language R c (AILJAZ)* such thet

K= . (RaDy[[D,)
i.e., D [[D,eVsL. .

PROOF: Let us represent the class RE. as the class of languages
accepted by finite automata with one way read only input and two push
down stores P1 and PZ’ each with read-write alphabet T distinct from

% (see [HOP,ULL 79]). Using this representation (with some additional

stipulations on the machines to be mentioned Tlater), we will show that

Dy, pll By e VSLy.

Our first step is to define a scheme for encoding the computation
histories of these machines as words over the alphabet A u A where
A= ZuTul. For reasons which will become apparent later, we will

choose the following encoding:

fora e a will encode "push a on Pl“

a will encode "pop a from Pl”
a will encode "push a on Py
a will encode "pop a from P,"

2

and for a e £ a will encode "read a from the read only input"
a will have no significance in terms of computation.
It will only be used to maintain the semi-Dyck

character of the computation histories.

Instead of having special encodings of "test for empty stack," we will
assume that one of the letters of I is used exclusively as a bottom of

stack marker.

Using this encoding, we then assume that an automaton A of the

type we are considering is given as a sextuple <Q, =z, T, 6, qO,F:> where

Q is the set of states,

» and T are as given above,

a, is the initial state,

F is the set of final states and

§, the transition function, is a mapping

§:(2urTul) x Q»P((ZuTur)xQ).

Thus, given a letter from the alphabet of read actions and a state,
§ defines a set of pairs, each consisting of a string of write actions

and a next state.

Now, given any automaton A represented in the above manner, we
associate a regular Tanguage HA defined by the right Tinear grammar

<Q,A{)K,qO,P:> where
a +~a\vqj e P iff <\M,qj > e 6 <a,qi>)
g, »aw e P iff W, 057 e §(< a, q; >) and 9; = F.

The language HA represents all sequences of actions taking the finite

control from its initial state to a final state. However, most of

these sequences are not valid computation histories because nothing

in the definition of HA insures us that a symbol popped from a stack
at a particular point in the sequence of actions is actually the symbol
that should be at the top of the stack at this point, in view of the
preceding sequence of actions. We will use the semi-Dyck Tanguages

DZur and Dr to sort out those computation histories of HA in which

the stacks are handled correctly from those in which they are not. To

implement this strategy, let us stipulate that:

1. The automaton begins by pushing the bottom of stack marker on

each stack.

2. Every time a Tetter a e r is read from the read only input, the
next write action is a and in no other case is an action from %

performed.

3. Before accepting, the automaton empties both stacks completely,

including their bottom of stack markers. Thus, the automaton accepts

by simultaneously entering into a final state and emptying both stacks.
With these stipulations, it is apparent that any w ¢ HA for which

) - {w)e D

P uT will be a valid computation history

- UF'(W) € DF and o r

for some word v = P (w). Further, since the pairs corresponding to

read-only input actions are all simple, unnested strings of the form
aa for a e r, these pairs may be taken as embedded in one of the
semi-Dyck languages DT or DF. Thus w will be a valid computation

history if

Woe Hyon (DZLJTH QE).

On the other hand, by our stipulations, every valid computation

-10-

history is in this set. Thus,
L(A) = 2, (HAnDZ urikDg)

where L(A) is the language accepted by A. This shows that

- DE.C VSL. as desired. O

As the reader has undoubtedly already noticed, not only is this
result a direct analog of the Chomsky-Shutzenberger theorem, but the
proof itself can easily be adapted to a proof of the Chomsky result

by allowing the automaton A only one stack.

Before continuing on to our next theorem, let us mention a few
corollaries of Theorem I. The following is a fairly well known result

which already has two very different derivations (see [SAL 73] and

[FIS,RAN 69]).

Corollary I: For any finite alphabet 1 we can define a finite alphabet
A > L and two fixed deterministic context free languages (DCFL's)

Ll and L2 such that for any recursively enumerable set K < u* there
exists a regular Tanguage R < A* such that

K = @Z(R(le an). |

. * . *
1< Al and D2 IS A2

where Bynby = ¢ asserted to exist by Theorem I, let

Proof: Given the semi-Dyck languages D

= .‘1 =
L1 ®A1 (Dl) and L2 o

-1
by

: A1 uA2->A2. Then both L1 and L2

(0,)

where @Al : Al U A2 > Al and ¢

are DCFL's and

by

DIH D2=L1 nLZ. , 0

-11-

Using a technique developed by G. Rozenberq [EHR,ROZ 79a],

[EHR,ROZ 79b] it is not hard to show that the languages L1 and L? of

Corollary I may be replaced by 2 fixed DOS Tanguages at the cost of

further enlarging the alaphabets AI and AZ' This yields an analogous

representation theorem for REZ in terms of the intersection of two

fixed DOS Tlanguages.

For the purposes of our next theorem, let us introduce the

following definition:

Definition: Given a1phabets_A,‘zl and I, such that A > & and

7 1Y%

Iy n I, = ¢, the mapping CANCEL, s (Auna)* > (Aua)* is the mapping

1°77

that results from exhaustive application of the rule

uavaw->uvw
aezx; and v e((a uZ?~(XfJE&))*
where either(or

a e, andv e((a UZ}‘(ZQUEE))*

Theorem II: For any finite alphabet & vie can define a finite alphabet

r disjoint from & such that for any recursively enumerable language

K e £* there exists a regular language Rc 2 uT uT UT uT

such that K = CANCELF (R) n z*,

»L

Proof: We use the same automata and encoding scheme used in Theorem I
except that we do not follow letters a ¢ » with a. A and H, are
defined accordingly and it is easy to see that w ¢ HA is a valid
computation iff CANCELF,F(W) c *, j.e., iff all stack letters are

canceled. From this it follows that L(A) = CANCELF (HA) n L*,

Sy
which yields our representation. 0

One of the classical results in computability theory is that

the finite automata with one potentially infinite queue are equivalent

-12-

to the Turing machines in computational power L[SHE,STU 63]. 1In our next
theorem we will apply the techniques used in Theorem I to this class

of machines and introduce a different very special language, called

the bar right twin shuffle, which characterizes the valid computation

histories on a queue.

Definition: BRLE, the bar right twin shuffle over the alphabet z,
is defined as

= “.‘. Vo LU, e Nk
BRL, = {wy vy WoVp @ WU eI for T<i<n, w

177" n 17" "n

and ¥i:1 <1 <n,v v. is a prefix of w

17 Yy 1"

Theorem IIT: Given a finite alphabet £, we can define a finite
alphabet 4 > 1 such that for any recursively enumerable language
K < t* there exists a regular language R < (A ua)* such that

K= @Z(Rr\BRLA), i.e., BRLA £ VSLZ.

Proof: We will assume K is given as the 1angua§e accepted by a finite
automaton A with a potentially infinite queue with read alphabet

A =7ZzuTl and write alphabet T where snT = ¢. Initially, a word

w e 5* will appear on the queue to be tested. A will accept by
simultaneously emptying the queue and entering into a final state.

The actions of A are encoded as follows:

for a ¢ A, a will encode "pop a off the front of the queue"

for a e I', a will encode "write a on the end of the queue."
We will have no special action "test for empty queue" but rather assume
that one symbol p e ' is used exclusively as a place holder. Thus,
initially p will be written on the end'of the queue and every time p

is popped from the front of the queue it will be replaced on the end

-13-~

of the queue until A enters a "final sequence" in which the queue is
completely emptied prior to A's acceptance. An "empty" queue can then

be detected as two successive pops of p from the front of the queue.

With this encoding A can be given as a sextuple <Q, 1, T, 540 F>
as in Theorem I, this time with 6 : 4 x Q=P(r*xQ). The regular set
HA of sequences of actions leading from 9 to an element of F is defined
as in the proof of Theorem I as well. We will use the Tanguage BRLA
to check if a word w ¢ HA represents a valid computation history 1in
which a word v e ©* is accepted. To this end we consider the
language E*}U\ fofmed by concatenating all possible input words with
all possible computation sequences from H

X A word u e Z*HA is a

valid computation history for its prefix v e o* iff

1. each Tetter popped from the front of the queue (i.e., appearing
barred) had previously been written or placed on the queue (i.e.,

appears previously unbarred) and

2. the letters are popped off the queue in exactly the same order
that they were placed or written on the queué (i.e., the barred subword
reads the same as the unbarred).

Thus u is a valid computation history iff u e s*H nBRLA. It follows

A

that L(A) = @Z(Z*HA‘wBRLA), which implies that BRLA e VSL,

as desired. L
Using the technique of this proof, we can also derive the result

from [ENG,ROZ 79] that the complete twin shuffle ié a very snecial Tanguage.

The bar right twin shuffle is just a restricted version of the comnlete

twin shuffle in which barred letters must always appear to the right of

their corresponding unbarred symbols. This is, of course, a natural

-14-

restriction when modelling computations on a queue, unless one wants

to consider a sort of debtor's queue, in which nonexistant Tetters may
be popped off with the proviso tﬁat they must be written back in the
same order at some Tater time. Words in the complete twin shuffle

may be Tooked upon as computation histories on such debtors queues but it
should be noted that the structure of the complete twin shuffle
dictates that the queue be emptied before the computation goes into
debt to it. Since the convention of usinc a place holder p used in

the proof of Theorem III prevents the queue from becoming empty until
the end of the computation, We can just as well use LA, the complete
twin shuffle over A, in place of BRLA with no fear of allowing spurious
debtor's queue computation histories to enter into our representation.
This yields an alternate proof that LA € VSLZ, one which is quite

different from the proof in [ENG,R0Z 79]7.

One of the remarkable corollaries of these representation
theorems follows from the fact that each of the languages BRLA and
LA is recognized by a one-way, two headed &eterministic finite automaton
(2DFA). To be specific, BRLA is recognized by a non-crossing 2DFA, i.e.,
one in which one head must always remain to the right of the other,
and LA is recognized by a blind 2DFA, i.e., one in which the heads

are allowed to cross, but coincidence of the heads is not detectable.

(see [ROS A.L. 661, [YAO,RIV 78]).

Corollary II: For any recursively enumerable Tanquage K ¢ r* there

exists a language L1 accepted by a non-crossing 2DFA and a langquage

L., accepted by a blind 2DFA such that

2

~15-

Proof: Follows directly from the fact that BRLA and LA are in VSLE
since the class of langquages accepted by 2DFA's is closed under inter-

section with regular languages. 0

Our final theorem is a result aralogous to Theorem II, this time

considering a natural cancellationmappingon the Tanguage BRL, .

Definition: Given an alphabet z, KANCEL, c{ZuD)* > (uT)* is the
mapping that results from exhaustive application of the rule

avaw > vVvw where a ¢ ¥ and v ¢ 5%,

Theorem IV: Given a finite alphabet © we can define a finite alphabet
A > T such that for any recursively enumerable language K < £* there
exists a regular language R < (A uA)* such that

K = KANCELA(R)rwx*.

Proof: Let A and HA be as given in the proof of Theorem III. Consider

a computation history vxe Z*HAnBRLA in which a word v is accepted.

n C C
If we apply KANCEL, to the word w = ((vx)") = (xR) VR, then

KANCELA(W) = % and the last |v| steps of the cancellation process

cancel letters from v with their barred imaces. Thus, when we apply

KANCELA to the prefix (XR)C of w which does not include the barred and

reversed image of the initial input word v, the result is precisely

the unbarred reversed image of v, i.e., KANﬁELé(XR))= R on the

other hand, if we consider a word y ¢ HA such that vV u eI*,uy4 BRLA

C
R) contains some barred symbols, otherwise

then KANCEL(y
R.C
(KANCEL(y)) v € BRLA, contrary to our assumption. Thus, we may use

KANCELA to recover the language accepted by A in the following manner:

~16-

R _ R, C
L(A)" = KANCELA ((HA)) nT* .
Since RE? is closed under reversal, our result follows. 0

A similar result holds for the mapping REDUCT, which characterizes
cancellations on LA, defined in [HAU 79]. There, it is demonstrated that
despite the fact that any recursively enumerable Tanguage K c g* can
be represented as REDUCT(R) n z* for some regular language R, it is
decidable whether or not REDUCT(R) is finite for a regular language R.
From this result it follows that it is decidable whether or not two

DGSM mappings are equivalent on a regular set (see [BLA,HEA 797, [CUL,SAL 78]

It should also be noted that the mappings KANCEL and REDUCT can
each be achieved by a one-way, two-headed deterministic finite state
transducers similar to the recognizers of Corollary II. These results
then give some indication of the power of such transducers. In particular,
we have that the image of a regular set under such a transduction is not

necessarily recursive. In fact, we get the following stronger result.

Corollary IIl: For any finite alphabet = we can define an alphabet A o 3

such that for any recursively enumerable language K < ©* there exists

a partial mapping M, induced by a non-crossing 2DFA transducer and

1
a partial mapping M2 induced by a blind 2DFA transducer such that

K = Ml(A*) = MZ(A*).

Proof: We modify the transducers discussed above so that they

accept an input word w only if w is an element of the regular Tlanguage
R and if their output is entirely contained in =*. The mapping

Mi(w) for 1 e {1,2} is then defined on w only if the transducer
accepts. U

-17-

Added 1in Press

We have noted that Theorem III has several more important

corollaries.

DEFINITION: A single reversal stack is a stack with the following
additional access limitation: Once a Tetter has been popped from
the stack, no further letters may be pushed onto the stack. A single
reset queue is a queue such that once a letter is popped from the

queue, no further Tetters can be written onto the back of the queue.

Corollary IV: The non deterministic finite automata with one read

only input tape and two single reversal stacks (reset queues) which
accept by final state and empty stack (queue) are equivalent in

computing power to turing machines.

Proof: Given a recursively enumerable language k < ©* represented

as K = @Z(Rn!_yLJ we design a nondeterministic finite automaton

r)
which reads in a word w, nondeterministically expands it to a word

v in @él’(w), checks to see that v € R and stores the unbarred letters

from v in one stack (queue) and the barred letters in the other. Then

it simply checks to see if one stack (queue) is the barred image of

the other by popping off letters. a

DEFINITION: Given a finite alphabet & Tet

PALZ = hva Twe ¥} and

COPYZ = {ww:weI*},

Corollary V: PAL,. r” PALz 7 and COPY.. ; FH COPYs = are both in VSL,..

- 18-

Proof: Using the machines described in the proof of Corollary IV,

we represent a queue or stack access with the Tetter accessed, regard-
less of whether it was a pop or a push. Seguences df accesses permitted
by the automaton then form a regular set which when intersected with
PALZLJT I!PALE_UT-(COPYZ UF{ f\if)
computation histories of the automaton using the single reversal

| copy yields the set of all valid

stacks (reset queues). The set accepted is then recovered by

applying 9. 0

NOTE: Part of Corollary IV was proved using other methods in
[BAK,BOO 74] and the other part was announced in [B0O, GRE,WRA 78].
[BAK,B0074], [GIN,GRE 70], [GIN,GRE 737, [BRA 797 have considered
many of the very special Tanguages we have presented and demonstrated
them to be full semi-AFL generators of the recursively enumerable

languages.

-19-~

IV CONCLUSION

A powerful method of obtaining representation theorems of
classes of Tanguages has been presented using the computation histories
of automata which read and write to and from various potentially
infinite data structures. One direction to go from here is to try
to represent classes of languages properly contained in the class of
recursively enumerable Tanguages with this method. If a class of

languages L has the property that

1. L is closed under homomorphism and intersection with regular
languages and
2. L is determined by a class of machine acceptors of the type

described above whose checking language is itself a member of L,

then we are assured a represéntation for L in the form of the
Chomsky—Shutzenbefger theorem. Can we find appropriate machine
acceptors for the EOL, ETAG or ETOL languages? (See [HER,R0Z 757,
[ROZ 80].

The other direction is to explore the class VSLZ of its own
accord. What properties must a languaae have to be in VSLE? What
properties guarantee that a language will be in VSLZ? It is our
hope that the theory of very special lanquages will shed new Tiaght
on the structure of sets generated by finite procedures, as do the

specific examples of very special lanauages we have presented here.

-20-

ACKNOWLEDGMENT

We would 1ike to thank Andrzej Ehrenfeucht and Gregorz Rozenberg

for many helpful discussions concerning this material.

-21-

REFERENCES

[BAK,B0OO 74] Baker, B. and Book, R.V. (1974), Reversal-Bounded
Multipushdown Machines, JCSS 8, pp. 315-352.

[BLA,HEA 79] Blattner, M. and Head T., (1979), "The Decidability of

Equivalence for Deterministic Finite Transducers,"
JCSS 19, pp. 45-49.

[BOO,GRE,WRA 78] Book, R.V., Greibach, S.A., Wrathall, C. (1978),
Comparison and reset machines, in "Proc. 5th Colloquium
on Automata, Languages and Programming, Lecture Notes
in Comp. Sci.", Vol. 62, pp. 113-124.

[BRA 79] Brandenburg, F. J. (1979), "Analogies of certain families
of languages arising from PAL and COPY," presented at
the ACM Symposium on Formal Language Theory, Santa
Barbara, Calif., Dec. 1979.

[CUL,SAL 78] Culik, K. and Salomaa A., "On the Decidability of
pp. 163-175.

[EHR,R0Z 79a] Ehrenfeucht, A. and Rozenberg, G., 1979, "On the
Emptiness of the Intersection of Two DOS Languages
Problem," Technical Report CU-~CS-159-79, Dept. of
Computer Science, Univ. of Colo., Boulder, Colo.

[EHR,R0Z 79] Ehrenfeucht, A., Rozenberg, G., 1979, "Representation Theorems
Using DOS Languages," Technical Report CU-CS-161-79,

Dept. of Computer Science, Univ. of Colo., Boulder, Colo.

[ENG

[FIS

[HAU

[HER

[HOP

[ROS

[ROZ

[SAL

[SHE

[YAO

ROZ 80]

RAN 69]

79]

ROZ 75]

ULL 79]

66]

80]

73]

STU 63]

RIV 78]

20

Engelfriet, J and Rozenberg, G. (1980), "Fixed Point
Languages, Equality Languages and Representations of
Recursively Enumerable Languages," JACM (27), pp. 499-518.
Fisher, G. and Raney, G., "On the Representation of Formal

Languages using Automata on Networks," IEEE Conference

Record, 10th Annual Symposium on Switching and Automata
Theory, pp. 157-165.

Haussler, D., 1979, "Some Results on Symmetric DGSM's and
DGSM Equivalence," TechnicalReport CU-CS-199-79, Dept. of
Computer Science, Univ. of Colo., Boulder, Colo.

Herman, G.T., Rozenberg, G., 1975, Developmental Systems

and Languages, North-Holland.

Hopcroft and Ullman, 1979, Introduction to Automata Theory,

Languages and Computation, Addison-Wesley, p. 171.

Rosenberg, A.L.1966, "On Multi-head Finite Automata," IBM

Journal of Research and Development, 10, 1966, pp. 388-394

Rozenberg, G., Personal communication.

Salomaa, A., Formal Languages, Academic Press, pp. 107-109.

Shepherdson, J.C. and Sturgis, H.E., 1963, "Computability
of Recursive Functions," JACM 10, (2) 1963, pp. 217255.
Yao, A. and Rivest, R., "K+1 Heads are Better Than K,"
JACM 25 (2), pp. 337-340.

