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ABSTRACT.

It is proved that a language is a coding (a letter—to-letter homomor-

phism) of a OL language, if, and only if, it is an EOL language.



0. INTRODUCTION.

Developmental systems and languages are under active investigation
and they are the subject of quite a large number of papers in both formal
language theory and theoretical biology (see, e.g., [Herman and Rozenberg],
[Lindenmayer], [Lindenmayer and Rozenberg], and their references).

EOL systems and languages form an interesting and intensively studied
class within this theory (see, e.g., [Herman], [Herman and Rozenberg],
[Rozenberg]).

An EOL system consists of:

(i) the finite alphabet % divided into the terminal (ZT) and nonter-
minal (ZN) alphabets,

(i1) the distinguished word, ®w, over I,

(iii) the finite set of productions P,
which tell us by what string over I an occurrence of a symbol in a word
may be replaced to get the ''mext word".

The language of an EOL system consists of all these strings over
o which can be '"derived" in a finite number of steps from w in such a
way that to get the next string (y) from the given one (x) one replaced
each occurrence of each symbol in x according to a production from P.

A OL system (see, e.g., [Rozenberg and Doucet]) is such an EOL system
in which the alphabet of nonterminals is the empty set (ZN = @¢). Thus
the only difference between the 'generation of languages' by EOL and OL
systems is the use of nonterminal symbols.

The OL systems are very natural models of biological development
of some classes of organisms (for a discussion see [Lindemmayer]). The main

reason for which EOL systems are interesting, as far as their biological



motivation is concerned, is the fact that the class of languages generated
by EOL systems contain the homomorphic images of the class of languages
generated by OL systems (for a detailed discussion see, e.g., [Herman],
[Lindenmayer and Rozenberg]).From the formal language theory point of
view the question whether defining languages by EOL systems (thus using
nonterminals) is equivalent to defining languages by EOL systems without
nonterminals but, instead, taking homomorphic images of resulting languages,
is very interesting on its own. An answer to this question would contri-
bute to our understanding of the role different components of ''grammar-
like systems" play in defining languages.

For these reasons the problem of the relationship between the class
of languages generated by EOL systems and the class of languages which
are homomorphic images of languages generated by OL systems has been under
active investigation in the theory for quite a long time.

In this paper we prove that the class of languages which are codings
(letter-to-letter honomorphisms) of languages generated by OL systems
‘is identical to the class of languages generated by EOL systems.

In other words, rather than to use nonterminal symbols (which, e.g.,
rarely have any biological interpretation) it is sufficient to generate
a language by a OL system and then "tramnslate' each word in this language
using (only once) a coding table which is simply a letter-to-letter corres-
pondence.

A number of applications of this result are also given.



1. PRELIMINARIES,

We assume the reader to be familiar with the basics of formal language
theory, e.g., in the scope of [Ginsburg], whose notation and terminology we
shall mostly follow. In addition to this we shall use the following nota-
tion:

(i) N denotes the set of non-negative integers and N = N - {0}.

(ii) If x is a word, then lx{ denotes its length and Min{x} denotes
‘the set of letters which occur in x.

(iii) If A is a set then ZA denotes the set of subsets of A and,
in the case when A is finite, f/A denotes its cardinality.

(iv) If A is an ultimately periodic set of non-negative integers
then thres (A) denotes the smallest integer j for which there exists a
positive integer q such that, for every i > j, if i is in A then (i + q)
is in A. The smallest positive integer p such that, for every i > thres (4),
whenever i is in A then also i + p is in A, is denoted by per (A).

(v) @ denotes the empty set and A denotes the empty word.

(vi) If A is a finite automaton, then L(A) denotes its language.

(vii) A coding is a letter-to-letter homomorphism.



2. DEFINITIONS.

In this section we give basic definitions concerning developmental

languages, which are relevant for this paper.

Definition 1. An ETOL system is a construct G = (V R VT’ P,w) such

that

VN is a finite alphabet (of nonterminal letters or symbols),

VT is a finite nonempty alphabet (of terminal letters or symbols), such

that Vi N Vp = @,

w is an element of (VN U VT)+ (called the axiom of G),
P is a finite nonempty family, each element of which a finite nonempty set
of the form {a -~ o : a is in VN V] VT and o is in (VN v VT)*}(where we assume
that the symbol -+ is not in Vg U VT).
Each element P of P (called a table of G) satisfies the condition:

for every a in VN V) VT there exists at least one o in (VNIJ VT)* such
that a > o is in P.
(If P is in P, and a » o is in P then a » o is called a production in P, or

a production of G. We often write a —= o for "a - o is in P).
P

Definition 2. Let G = {Vy, Vj, P, w) be an ETOL system.

(1) A production a » o of G such that o = A is called an erasing production.

G 1s called propagating if no production of G is an erasing production.

(11) G is called deterministic if, for every P in P and every a in

VN &IVT, there exists exactly one o in (VN v VT)* such that a » qa.

P
(We shall use letters P and D to denote the propagating and deterministic
restrictions, respectively. For example, "an EDTOL system" means a deter-

ministic ETOL system, and "an EDPTOL system' means a deterministic, propa-

gating ETOL system.)



(1ii) G is called an EOL system, if #P = 1. (In this case, if

P = {P} , then we often write G as <VN, V., P,w).)

T’
(iv) G is called a OL system, if #P = 1 and VN = (). (In this case,

if P = {P}, then we often write G as <VT’ P, @})

Definition 3. Let G = (V s VT’ P, m) be an ETOL system.

9 2,...,bt in

VN U VT’ and let y € (VN V) VT)*. We say that x directly derives y (in G),

(i) Let x ¢ (VN V] VT)+, say x = blb ...bt for some bz,b

denoted as x=>y, if there exist P in P and a sequence MiseeesT of produc-—
G

tions from P such that, for every i‘in'{l,...,t}, M= bi - o and y = a

t

1°° .O(.t.

(In this case we also write Xx==y, and we say that x directly derives y (in G)
P

using P.)

(ii) 1let x ¢ (VN U VT)+ and y € (VN&J VT)*. We say that x derives
y in G, denoted as x:i?y, if,

either x = vy, °

or, for some n > 0, there exists a sequence KgoXyseeesX of words in
N

* = = < 4 <
(VN\J VT) » such that x) = x, x =y and xi_l=§>xi for 1 <4 <nm.

. + .
(If the latter holds then we also write X=j?>y} Also, if T = Tl...Tn
1ST§ sequence of tables from P and XO=;%>x1=§é§x2...=;%>xn, then we write
1
el C

(iii) For x in (VN V] VT)+ and v in (VN U’VT)*, a derivation of y

from x (in G) is a sequence D = (Xo,xl,...,xn) of words in (VN V] VT)* such

that, for 1 <i <n, Xi_l=%>xi. If x = w, then D is called a derivation of
G

y (ig_G), and if x = wand y € VT* then D is called a terminal derivation

(in G). If D is terminal, then we say that x is derived in G in n steps,
n 0
and we write x0=§>xn. (By definition x=§>x, for every x in (VN V) VT)*),

(iv) If G is an EOL system, say P = {P}, and D = (XO,...,xn) is a

P of subsets of P

derivation of X from X in G, then the sequence Pl,..., 0



such that, for 1 < i < n, x f==?x. "using" all and only productions from
SR

Pi is called a control sequence of D.

ETOL systems are used to define languages as follows.

Definition 4. Let G = (V._, V., P, wybe an ETOL system. The language
N T. Language
%

%
T W=PX}.

G

of G, denoted as L(G), is defined by L(G) = {x ¢V,

Definition 5. A nonempty language K different from {A} is called an

ETOL (EOL, OL, EDTOL, etc.) language if, and only if, there exists an ETOL

(EOL, OL, EDTOL, etc.) system G such that L(G) = K. A language K is called

a COL language (a HOL language) if, and only if, there exists a OL language

K and a coding h (a homomorphism h) such that h(K) = K.

In the sequel F and F will denote the classes of EOL,

EOL’ FCOL HOL

COL and HOL languages, respectively.

Remark 1. 1In the sequel, given an ETOL system G = <V R VT’ Ps “9’ we
shall sometimes consider P as a set of tables as defined in Definition 1,
and sometimes we shall consider P to be the set of symbols (''names" of
tables), but this should not lead to a confusion. (For example, we may talk

about an alphabet F words over P, etc.).

Remark 2., It is well-known (see, e.g., Rozenberg) that for every ETOL
system G there exists an ETOL system H = <V ’ VT,ll w)such that w is in VN.
Thus in the sequel we shall often assume that an ETOL system we deal with

is such that its axiom is a nonterminal symbol, and in this case the axiom

shall be denoted by the symbol S.



3. SPECTRA OF SYMBOLS IN EOL SYSTEMS

In this section we introduce the basic notion of the so-called spectrum
of a symbol in an EOL system and prove its basic property. (In this and the
next section we shall deal only with EPOL and EDPTOL systems, and although
most of the definitions would carry over to the more general classes of EOL
and EDTOL systems, for the sake of clarity, we state them in restricted ver-
sions only.)

We start with classifying symbols in ETOL systems.

Definition 6. Let G = (V > Vs P S> be an EPTOL system.

(i) A letter a in VNAU VT is called alive if there exists a positive

k
integer k and a word w in VT+ such that a=w.
G
(ii) An alive letter a is called vital if for every k in N+ there
A
exists an ¢ in N+ such that ¢ > k and a=w, for some w in VT+. (AG will
G

denote the set of all alive symbols from VN U VT)'

The next notion iz the central one for this paper.

Definition 7. Let G = <V s VT’ R S> be an EPTOL system and let a

be in VgV Vq. The spectrum of a inm G, denoted as Spec (G, a), is defined

T
by
+ n +
Spec (G, a) = {n € N : a=>w for some w in v 1.
G

Thus a positive integer n is in Spec (G, a) if, and only if, a can
derive (in G) in n steps a word consisting of terminal symbols only.
We shall prove now that spectra of letters in EOL systems are ulti-

mately periodic sets.



Lemma 1. If G = <V , VT’ B S> is an EDPTOL system, then, for every
a in VN v VT’ Spec (G, a) is an ultimately periodic set.

Proof.

Let G = <VN’ VT’ B S> be an EDPTOL system and let a be in VN\J VT'

Let A(G, a) = <Q, I, 6, dgs F) be a finite automaton such that

V. VYV
Q=2 N T - @

I is a one-letter alphabet, say I = {o},
qO ={a},
F={qeqQ: qEVT}, and

a'if, and only if, there exist P in P and X, y in

for every q,q in Q, &(q, 0)

+ —
(VN v VT) » such that Min(x) q, Min(y) = q and x=y.

1]

P n
From the construction of A(G, a) it immediately follows that a=—=>w,
G

for some n in N' and w in VT*’ if, and only if, o is in L(A(G, a)). Thus
Spec(G, a) = {n : & is in L(AGG, a))}.
But it is well-known (see, e.g., [Ginsburg], Theorem 2.1.2) that
if T is a finite automaton over a one~symbol alphabet, say'{g},then
{n : 0" is in L)} is an ultimately periodic set.
Consequently, Spec(G, a) is an ultimately periodic set, and Lemma 1

holds.

Lemma 2. For every EPOL system G = <VN’ Vo.s P, S} there exists an

T’

EDPTOL system H = {V_, Vs P S) such that, for every a in VU Vo, Spec(G, a)

Spec(H, a).
Proof.

Let G ={V, V., P, 8) be an EPTOL system, where Vg U Vo={oqseees0,}e

T
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Let H = (VN, Vs P, S> be an EDPTOL system, where a table
{Ul T 0gse..,0 > an} is in P if, and only if, it is a subset of P.

Let a be in VN\J VT'

It is clear that every derivation in H is also a derivation in G,
hence Spec(H, a) C Spec(G, a).

Let n be in Spec(G, a), D = (a,xl,...,xn) be a terminal derivation
1ol

be a sequence of tables from P such that, for every i in {1,...,n}, Pifz Zi'

from a in G and (Z Zn) be a control sequence of D. Let P

1200

If D' = (a, y,5+++,y_ ) i8 a derivation in H such that a==)y, and y,==>y., . for every
71 n P 1 i% 7 i+l
j in {1,...,n-1}, then obviously Min(yi) §§'Min(xi) for evéry i in {1,.7.,n}.

%
Consequently, y, is in V,

T and n is in Spec(H, a). Thus Spec(G, a) &

Spec(H, a).
Thus, for every a in VN v VT’ Spec(G, a) = Spec(H, a). As it is

also clear that H is propagating, Lemma 2 holds.

Lemma 3. If G = <VN’ Vps P, S) is an EOL system, then, for every a

in VN ¥} VT’ Spec(G, a) is an ultimately periodic set.

Proof.

This result follows immediately from Lemma 1 and Lemma 2.



-11-

4., THE CASE OF EPOL LANGUAGES.
In this section we show that every EPOL language is a coding of a
0L language.

First we need the following notion and a construct.

Definition 8. Let G = <V s V.., P, S> be an EPOL system. A uniform

T’

period of G, denoted as s is the smallest positive integer such that
k
(i) for every a in (V, U V) - A,, if a=>w for some k > m., and
N T G G - G
. % : s *
w in (VN V) VT) , then w is not in (VN v VT) s

(ii) for every a in A > thres(Spec(G, a)) and per(Spec(G, a))

e ™

G

divides m..

Construction. Let G = <V s V.., P, S) be an EPOL system and let k

T’

be a non-negative integer smaller than m.,. Let

» + e °
Ax(G, k) = {w e A, : S==w and, for every a in Min(w), m, + k is in
G

Spec(G, a)}.
If Ax(G, k) is not empty, then, for every w in Ax(G, k), we define a OL

system G(k, w) = (Zk w? Rk,w’ W> as follows:
b

|

i 5 = . ..
(1) K,w {a e AG m, + k is 1g.ipec(G, a) and, for some & > O,
a is in Min(y) for some y such that w::::ggy R
G

+
- in % . 5 > . .
(ii) for every a in K, w and o in kW’ a—>a is in Rk,w’ if and only

e
if, a===a.
G
We define M(G(k, w)) by

MGk, w)) ={x ¢ VT+ ¢ there exists a word y in L(G(k, w)) such that
mG+k
y=§x},
G

We shall show now that, for the given EPOL system G, the union of
M(G(k, w)) over all k < m, and w in Ax(G, k) is identical (modulo a finite
set) to L(G).



~12~

Lemma 4. Let G = (V , VT’ P, S> be an EPOL system,
A

Let F. = {w €V, + : S==3w for some L < 2m.}. Then
G T G G

Fo U U M(G(k, w)) = L(G).

k < m, We Ax(G, k)

Proof.
Obviously, E‘ k)\\\_/// \\\\_’,// MGk, w)) S L(G).

W € AX(G: k)

Now, let us assume that x is in L(G).

If x can be derived in G in less than 2m steps, then x is in F

and consequently x is in F U \\\_!/) . / MGk, w)).

w e Ax(G, k)

G

Thus, let us assume that x is in L(G) and x is derived in G in at least

2mG steps. Let D = (S, KyseeesX 5ece,X = x) be a derivation of x in G
G
+ .

> = g -m, + i in {0,...,m -1}.
where p __?.mG and p Qp m, kp for some zp in N and kp in {0, >T 13}

If % is in {1,...,% -1} and a is in Min(x ), then

p £ 2-mG
+
(i) a is vital because a=3x for some word x in VT , where
G

= (!2,p~m.G + kp) - Z-mG is not smaller than m.

(ii) (Zp - SL)mG + kp is in Spec(G, a) and so (because Spec(G, a)

is an ultimately periodic set with period m, and threshold smaller than mG)

m, + kp is also in Spec(G, a).

G
Consequently, x is in M(G(k_, x_)) and so it is in F_ k\s‘/)
P’ Tmg G

k < m, We Ax(G, k)
M(G(k s W)

Thus F v \\\_,// \. /' M(G(k, w)) = L(G), and Lemma 4 holds.

k < m, W€ Ax(G, k)
Now we shall prove that each component language in the "union formula
for L(G)" as given in the statement of Lemma 4 is a finite union of codings

of OL languages.
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Lemma 5. Let G be an EPOL system k < m,, Ax(G, k) # & and let w

G’
be in Ax(G, k). Then there exist a finite setv{Hl,...,Hf} of 0L systems

and a coding h such that

£
MGk, w) = UJ n@m.

i=1
Proof.

Let ¢ ={V_, Voo P, S) be an EPOL system, k < m, and Ax(G, k) # 0.

Let w be in Ax(G, k), w = b ..,bt where b, is in Aj for 1 <1 <t and let

1°°

G(k, W) = <Zk,W’ Rk,w, W>. mG+k

w let UCa, k) = {w e VT+ : a===>3w},say
G

}.

For every a in I
k,

Ula, 1 = o, 1 15 @ 4 9000 % 1 u(a,k)
Let Zk,w ={la, i, b] ¢ a ¢ Zk,w’ ie{1,...,u(a, k)} and b ¢ VT} v,

{[a, i, b] : a ¢ Zk,w’ ige {1,...,u(a, k)} and b € VT}.

Let W(w) = {[bl’ il’ Cll][bl’ 11, ClZ]"'[bl’ il, Clr ][bZ’ i29 CZl]---

1
[bz, iy, c2r2]...[bt, i ctl]...[bt, i Ctrt] : lj € {l,...,u(bj, k)} for
1<3j<¢t, c Coneeel = q \ c Chhpessl = 0. : s
=I = C ey T %k, 1 %21 %220, T %, Ky 1,00
C,q CineeetC = s 1 T
tl “t2 tr, O‘bt S

Let ﬁ#,w = {[a, 1, D] > At ae , i‘é{l,...,u(a, k)} and b € VT} U

k,w
{[a, i, b] +-[cl, il, dll][cl’ il’ d12]"'[cl"il’ dlvl][CZ’ iZ’ d21]...

...sz, i, dzvz]...[cs, i, dsll...[cs, i dsvs] fa¥cg...c  is in
: ‘ < 4 < = O =
Rk,w’ lje {l,...,u(cj,k)} for 1 < j <s, dll...dlvl ey K, il, d21...d2V2
ceesd oo = I
OL(:Z, k, iz’ ’ds dsv (%s’ k, i

Let, for each z in W(w), G(k, w, z) be a OL system such that G(k, w, z) =

<§£,W’ §£,w’~z>'

Finally, let h be a coding from Zk w into VT such that h([a, i, b]) =
b

h([a, is b]) = b.
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We leave to the reader the obvious, but tedious, proof of the fact

M(G(k, W) = U h(L(G(k, w, 2))).

z e W

that

Thus Lemma 5 holds.

The following two results are obvious, so we give them without proofs.

Lemma 6. If K is a finite language, then there exists a OL system G

and a coding h such that K = h(L(G)).

Lemma 7. If K is a language such that there exists a finite set {Hl,...,Hf}
f

of OL systems and a finite set of codings {hl,...,hf}'such that K = J hi(L(Hi)),
i=1

then there exist a OL system G and a coding h such that K = h(L(G)).
Now we can show that each EPOL language is a coding of a OL language.

Lemma 8. For every EPOL language K there exist a OL language L and

a coding h such that K = h(L).

Proof.

This result follows directly from Lemmata 4 through 7.
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5. THE MAIN RESULT AND ITS APPLICATIONS.

In this section we prove that the classes F and FHOL are identi-

Fror cor
cal.
We start with the following result, the obvious proof of which is left

to the reader.

Lemma 9. If a language L is a coding of a OL language, then also

the language L U {A} is a coding of a OL language.
Now we can prove the following result.

Theorem 1. For every EOL language K there exist a OL language L
and a coding h such that K = h(L).

Proof.

This theorem follows from Lemma 9 and from the known fact (see, e.gz.,

[Herman]) that for each EOL system G there exists an EPOL system H such that

L(G) - {A} = L(@H).

This result together with previously known results gives us the main

theorem of this paper.

Theorem 2 (the main result). FEOL = FCOL = FﬁOL'

Proof.
This follows from Theorem 1, from the known fact (see, e.g., [Herman])
that the class of EOL languages is closed with respect to homomorphic

mappings and from the fact that each coding is a homomorphism.

It is interesting to observe that the above result is an "algorithmic"
result in the following sense (the next result is a sample of the three

possible results of the same character).
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Proposition 1. The classes FE [, and F are effectively equal mean-

0 COL

ing that

(1) there exists an algorithm which, given an arbitrary EOL system G
produces a OL system H and a coding h such that L(G) = h(L(H)), and

(i1) there exists an algorithm which, given an arbitrary OL system G
and a coding h produces an EOL system H such that L(H) = h(L(G)).

Proof.

This follows from the fact (the straightforward but tedious proof of
which we leave to the reader) that the proof of Theorem 2 is effective,

meaning that all constructions involved may be effectively performed.

Theorem 2 has a number of interesting corrollaries and applications.
We will now give three of them,

As the first one we discuss a result relating to the sets of lengths
of words of EOL and OL languages. Investigations of lengths of words
generated by different classes of developmental systems is a well-motivated
and an active research area in the theory of developmental systems and
languages (see, e.g.,[Paz and Salomaal]). The following theorem is a new

result in this area.

Definition 9. If G is an EIOL system then the length set of G, denoted

as Lg(G), is defined by Lg(G) = {n e N : [w] = n for some w in L(G)}.

Theorem 3. A subset U of nonnegative integers is the length set of an

EOL system if, and only if, it is the length set of a OL system.

Proof.
This result follows from Theorem 1, from the fact that every OL language

is, by definition, an EOL language and from the fact that coding is a "'length
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reserving mapping', meaning that if x is a word and h is a coding such that
P g PP g

h(x) is defined, then |x| = |h(x)

.

As the second application of the main result we get the following
(rather "technical"™) theorem which is a solution to an open problem stated
in [Herman, Lindenmayer and Rozenberg]. (The familiarity with this paper

is assumed now.)

Theorem 4. For every recurrence system S there exists a recurrence

system S such that S is in nearly standard form and L(S) = L(S).

Proof.

It is proven in [Herman, Lindenmayer and Rozenberg], that a language
is generated by a recurrence system in nearly standard form if, and only
if, it is a homomorphic image of a OL language. Thus Theorem 4 follows

now from Theorem 2.

Finally we have a very simple proof of the following result due to

K. Culik II (personal communications).
Theorem 5. Every context—free language is a coding of a OL language.

Proof.
It is well-known (see, e.g., [Herman and Rozenbergl], Theorem 4.6) that
every context-free language is an EOL language, and so, by Theorem 1, every

context~free language is a coding of a OL language.
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