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Delay-coordinate embedding is a powerful, time-tested mathematical framework for recon-

structing the dynamics of a system from a series of scalar observations. Most of the associated

theory and heuristics are overly stringent for real-world data, however, and real-time use is out

of the question due to the expert human intuition needed to use these heuristics correctly. The

approach outlined in this thesis represents a paradigm shift away from that traditional approach.

I argue that perfect reconstructions are not only unnecessary for the purposes of delay-coordinate

based forecasting, but that they can often be less effective than reduced-order versions of those

same models. I demonstrate this using a range of low- and high-dimensional dynamical systems,

showing that forecast models that employ imperfect reconstructions of the dynamics—i.e., models

that are not necessarily true embeddings—can produce surprisingly accurate predictions of the

future state of these systems. I develop a theoretical framework for understanding why this is so.

This framework, which combines information theory and computational topology, also allows one

to quantify the amount of predictive structure in a given time series, and even to choose which

forecast method will be the most effective for those data.
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Chapter 1

Overview and Motivation

Complicated nonlinear dynamics are ubiquitous in natural and engineered systems. Methods

that capture and use the state-space structure of a dynamical system are a proven strategy for

forecasting the behavior of systems like this, but use of these methods is not always straightforward.

The governing equations and the state variables are rarely known; rather, one has a single (or

perhaps a few) series of scalar measurements that can be observed from the system. It can be a

challenge to model the full dynamics from data like this, especially in the case of forecast models,

which are only really useful if they can be constructed and applied on faster time scales than those

of the target system. While the traditional state-space reconstruction machinery is a good way to

accomplish the task of modeling the dynamics, it is problematic in real-time forecasting because it

generally requires input from and interpretation by a human expert. This thesis argues that that

roadblock can be sidestepped by using a reduced-order variant of delay-coordinate embedding to

build forecast models: I show that the resulting forecasts can be as good as—or better than—those

obtained using complete embeddings, and with far less computational and human effort. I then

explore the underlying reasons for this using a novel combination of techniques from computational

topology and information theory.

Modern approaches to modeling a time series for forecasting arguably began with Yule’s work

on predicting the annual number of sunspots [122] through what is now known as autoregression.

Before this, time-series forecasting was done mostly through simple global extrapolation [119].

Global linear methods, of course, are rarely adequate when one is working with nonlinear dynamical
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systems; rather, one needs to model the details of the state-space dynamics in order to make

accurate predictions. The usual first step in this process is to reconstruct that dynamical structure

from the observed data. The state-space reconstruction techniques proposed by Packard et al. [89]

in 1980 were a critical breakthrough in this regard. In 1981, Takens showed that this method,

delay-coordinate embedding, provides a topologically correct representation of a nonlinear dynamical

system if a specific set of theoretical assumptions are satisfied. I discuss this in detail in Section 2.1.1

alongside the appropriate citations.

A large number of creative strategies have been developed for using the state-space structure

of a dynamical system to generate predictions, as discussed in depth in Section 2.3.3. Perhaps the

most simple of these is the “Lorenz Method of Analogues” (LMA), which is essentially nearest-

neighbor prediction [72]. Even this simple strategy, which builds predictions by looking for the

nearest neighbor of a given point and taking that neighbor’s observed path as the forecast—works

quite well for forecasting nonlinear dynamical systems. LMA and similar methods have been used

successfully to forecast measles and chickenpox outbreaks [112], marine phytoplankton populations

[112], performance dynamics of a running computer(e.g., [36,37]), the fluctuations in a far-infrared

laser [98,119], and many more.

The reconstruction step that is necessary before any of these methods can be applied to

scalar time-series data, however, can be problematic. Delay-coordinate embedding is a powerful

piece of machinery, but estimating good values for its two free parameters, the time delay τ and

the dimension m, is not trivial. A large number of heuristics have been proposed for this task,

but these methods, which I cover in depth in Sections 2.1.2 and 2.1.3, are computationally inten-

sive and they require input from—and interpretation by—a human expert. This can be a real

problem in a prediction context: a millisecond-scale forecast is not useful if it takes seconds or

minutes to produce. If effective forecast models are to be constructed and applied in a manner

that outpaces the dynamics of the target system, then, one may not be able to use the full, tra-

ditional delay-coordinate embedding machinery to reconstruct the dynamics. And the hurdles of

delay-coordinate reconstruction are even more of a problem in nonstationary systems, since the
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reconstruction machinery is only guaranteed to work for an infinitely long noise-free observation

of a single dynamical system. This means that no matter how much effort and human intuition

is put into estimating m, or how precise a heuristic is developed for that process, the theoretical

constraints of delay-coordinate embedding can never be satisfied in practice. This means that an

experimentalist can never guarantee, on any theoretical basis, the correctness of their embedding,

no matter their choice of m. In Section 2.1, I provide an in-depth discussion of these issues.

The conjecture that forms the basis for this thesis is that a formal embedding, although

mandatory for detailed dynamical analysis, is not necessary for the purposes of prediction—in

particular, that reduced-order variants of delay-coordinate reconstructions are adequate for the

purposes of forecasting, even though they are not true embeddings [38]. As a first step towards

validating that conjecture, I construct two-dimensional time-delay reconstructions from a number

of different time-series data sets, both simulated and experimental, and then build forecast models

in those spaces. I find that forecasts produced using the Lorenz method of analogues on these

reduced-order models of the dynamics are roughly as accurate as—and often even more accurate

than—forecasts produced by the same method working in the complete embedding space of the

corresponding system. This exploration is detailed in Chapter 4.

Figure 1.1 shows a quick proof-of-concept example: a pair of forecasts of the so-called

“Dataset A,” a time series from a far-infrared laser from the Santa Fe Institute prediction compe-

tition [119]. Even though the low-dimensional reconstruction used to generate the forecast in the

right panel of the figure is not completely faithful to the underlying dynamics of this system, it

appears to be good enough to support accurate short-term forecast models of nonlinear dynamics.

While this example is encouraging, Dataset A is only one time series and it was drawn from a

comparatively simple system—one that is well-described by a first-return map (or, equivalently, a

one-dimensional surface of section). The examples presented in Chapter 4 offer a broader validation

of this thesis’s central claim by constructing forecasts using two-dimensional delay reconstructions

of ensembles of data sets from a number of different systems whose dynamics are far more complex

than the time series in Figure 1.1. Uniformly, the results indicate that the full complexity (and
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(b) LMA on a two-dimensional delay reconstruction

Figure 1.1: Forecasts of SFI Dataset A using Lorenz’s method of analogues in (a) a delay-coordinate
embedding of the state-space dynamics and (b) a 2D delay reconstruction of those dynamics. Blue
os are the true continuation cj of the time series and red xs (pj) are the forecasts; black error bars
are provided if there is a discrepancy between the two. Reconstruction parameter values for (a) were
estimated using standard techniques: the first minimum of the average mutual information [33] for
the delay in both images and the false-near neighbor (FNN) method of Kennel et al. [62], with a
threshold of 10%, for the dimension in the left-hand image. Even though the 2D reconstruction
used in (b) is not faithful to the underlying topology, it enables successful forecasting of the time
series.

effort) of the delay-coordinate ‘unfolding’ process may not be strictly necessary to the success of

forecast models of real-world nonlinear dynamical systems. Finally, I want to emphasize that this

reduced-order strategy is intended as a short-term forecasting scheme. Dimensional reduction is

a double-edged sword; it enables on-the-fly forecasting by eliminating a difficult estimation step,

but it effects a guaranteed memory loss in the model. I explore this limitation experimentally in

Section 4.3 and theoretically in Section 5.1.3.

While the results in Chapter 4 are interesting from a practical perspective, in that they allow

delay-coordinate reconstruction to be used in real time, they are perhaps even more interesting

from a theoretical perspective. The central premise of this thesis is a heresy, according to the

dogma of delay-coordinate embedding, but regardless, it works. This naturally leads to the need

for a deeper exploration into why such a deviation from theory provides so much practical traction.

That exploration is precisely the focus of Chapter 5, where I provide two disjoint explana-

tions of why prediction in projection—my reduced-order strategy—works. The first is from an
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information theoretic perspective; the second utilizes computational topology. These two disjoint

branches of mathematics offer two very different, but quite complementary, tools for exploring

this discontinuity between theory and practice. The prior, the subject of Section 5.1, provides a

framework for understanding how information is stored and transmitted from past to future in

delay-coordinate reconstructions. Building upon ideas from this field, I develop a novel method

called time-delayed active information storage (Aτ ) that can be used to select forecast-optimal pa-

rameters for delay-coordinate reconstructions [42]. Using Aτ , I show that for noisy finite length time

series, a two-dimensional projection (i.e., m = 2) often provides as much—or more—information

about the future than a traditional embedding. This further corroborates the central premise of

this thesis. This counter-intuitive result, its source, and its implications are discussed in depth in

Section 5.1.3. Section 5.2 offers an alternative view of the reconstruction process—one based on

topology. As I discuss in Section 2.1.1, the theoretical restrictions of delay-coordinate embedding

are intended to ensure a diffeomorphic reconstruction, something that is required for analysis of

dynamical invariants but that is excessive for reconstruction of topology. I conjecture that one of

the reasons prediction in projection works is that topology (which is preserved by a homeomor-

phism) becomes correct at much lower embedding dimensions than what one would expect from the

associated theorems. The results in Section 5.2 confirm this, providing insight into the mechanics of

prediction in projection, explaining why this approach exhibits so much accuracy while being the-

oretically wrong, and offering a deeper understanding into delay-coordinate reconstruction theory

in general.

Of course, no forecast model will be ideal for every task. In fact, as a corollary of the

undecidability of the halting problem [117], no single forecasting schema is ideal for all noise-free

deterministic signals [119]—let alone all real-world time-series data sets. I do not want to give the

impression that this reduced-order model will be effective for every time series, but I have shown

that it is effective for a broad spectrum of signals. Following this line of reasoning, it is important

to be able to determine when prediction is possible at all, and, if so, what forecast model is the

best one to use. To this end, I have developed a Shannon information-theory based heuristic for
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quantifying precisely when a given time-series is predictable given the correct model [41]. This

heuristic—the focus of Chapter 6—allows for a priori evaluation of when prediction in projection

will be effective.

The rest of this thesis is organized as follows. Chapter 2 reviews all the necessary background

and related work, including the theory and practice of delay-coordinate embedding, information

theory, and the forecast methods, as well as the figure of merit that I use for assessing forecast

accuracy. In Chapter 3, I introduce the case studies used in this thesis. In Chapter 4, I demonstrate

the effectiveness of this reduced order forecast strategy on a range of different examples, comparing

it to traditional linear and nonlinear forecasting strategies, and exploring some of its limitations.

In Chapter 5, I provide a mathematical foundation for why prediction in projection works. In

Chapter 6, I describe a measure for quantifying time-series predictability to understand when my

reduced-order method—or any forecasting strategy—will be effective. At the end of Chapters 4-6

I discuss specialized avenues of future research directly associated with the specific contribution

of that chapter. In Chapter 7, I conclude and outline the next frontier of this work: developing

strategies for grappling with nonstationary time series in the context of delay coordinate based

forecasting—which, I believe, will require a combination of all aspects of this thesis to solve.



Chapter 2

Background and Related Work

2.1 Reconstructing Nonlinear Deterministic Dynamics

The term nonlinear deterministic dynamical system describes a set X combined with a deter-

ministic nonlinear evolution or update rule Φ, also called the generating equations. The set X could

be as simple as Rn or a similar geometric manifold, or as abstract as a set of symbols [79]. Elements

of the set X are referred to as states of the dynamical system; the set X is generally referred to as

the state space. The update or evolution rule is a fixed mapping that gives a unique image to any

particular element of the set. In the problems treated in this thesis, this update rule is deterministic

and fixed: given a particular state, the next state of the system is completely determined. The

theory of dynamical systems is both vast and rich. This section of this dissertation is intended to

review the subset of this field that is needed to understand the core ideas of my thesis. It is not

intended as a general review of this field. For more complete reviews, see [14,59,79].

Dynamical systems can be viewed as falling into one of two categories: those that are discrete

in time and those that are continuous in time. The former are referred to as maps and denoted by

~yn+1 = Φ(~yn), n ∈ N (2.1)

The latter are referred to as flows and are represented by a system of first-order ordinary differential

equations

d

dt
~y(t) = Φ(~y(t)), t ∈ R+ (2.2)
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When the generating equations Φ of a dynamical system are known, the future state of any par-

ticular initial condition can be completely determined. Unfortunately, knowledge of the generating

equations (or even the state space) is a luxury that is very rarely afforded to an experimentalist. In

practice, the dynamical system under study is a black box that is observed at regular time intervals.

In such a situation, one can reconstruct the underlying dynamics using so-called delay-coordinate

embedding, the topic of the following section.

2.1.1 Delay-Coordinate Embedding

The process of collecting a time series {xj}Nj=1 or trace is formally the evaluation of an

observation function [99] h : X → R at the true system state ~y(tj) at time tj for j = 1, .., N , i.e.,

xj = h(~y(tj)) for j = 1, . . . , N . Specifically, h smoothly observes the path of the dynamical system

through state space at regular time intervals, e.g., measuring the angular position of a pendulum

every 0.01 seconds or measuring the average number of instructions executed by a computer per

cycle [6, 83]. Provided that the underlying dynamics Φ and the observation function h—are both

smooth and generic, Takens [113] formally proves that the delay coordinate map

F (h,Φ, τ,m)(~y(tj)) = ([xj xj−τ . . . xj−(m−1)τ ]) = ~xj (2.3)

from an d-dimensional smooth compact manifold M to Rm is almost always a diffeomorphism on

M whenever τ > 0 and m is large enough, i.e., m > 2d.

Definition (Diffeomorphism, Diffeomorphic). A function f : M → N is said to be a diffeomor-

phism if it is a C1 bijective correspondence whose inverse is also C1. Two manifolds M and N are

said to be diffeomorphic if there exists a diffeomorphism F that maps M onto N .

What all of this means is that, given an observable deterministic dynamical system—a com-

puter for example, a highly complex nonlinear dynamical system [83] with no obvious (X,Φ)—I

can measure a single quantity (e.g., instructions executed per cycle or L2 cache misses) and use

that time series to faithfully reconstruct the underlying dynamics up to diffeomorphism. In other
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words, the true unknown dynamics (X,Φ) and the dynamics reconstructed from this scalar time

series have the same topology. Though this is less information than one might like, it is still very

useful, since many important dynamical properties (e.g., the Lyapunov exponent that parametrizes

chaos) are invariant under diffeomorphism. It is also useful for the purposes of prediction—the goal

of this thesis.

The delay-coordinate embedding process involves two parameters: the time delay τ and the

embedding dimension m. For notational convenience, I denote the embedding space with dimension

m and time delay τ as E[m, τ ]. To assure topological conjugacy, the Takens proof [113] requires

that the embedding dimension m must be at least twice the dimension d of the ambient space; a

tighter bound of m > 2dcap, the capacity dimension of the original dynamics, was later established

by Sauer et al. [99].

Definition (Capacity Dimension [79]). Let N(ε) denote the minimum number of open sets (ε-balls)

of diameter less than or equal to ε that form a finite cover of a compact metric space X. Then the

capacity dimension of X is a real number dcap such that: N(ε) ≈ ε−dcap as ε→ 0, explicitly

dcap ≡ − lim
ε→0+

lnN(ε)

ln ε
(2.4)

if this limit exists.

Operationalizing either of these theoretical constraints can be a real challenge. d is not known

and accurate dcap calculations are not easy with experimental data. And besides, one must first

embed the data before performing those calculations.

Apropos of the central claim of this thesis, it is worth considering the intention behind these

bounds on m. The worst-case bound of m > 2dcap is intended to eliminate all projection-induced

trajectory crossings in the reconstructed dynamics. For most systems, and most projections, the

dimensions of the subspaces occupied by these false crossings are far smaller than those of the

original systems [99]; often, they are sets of measure zero. For the delay-coordinate map to be a

diffeomorphism, all of these crossings must be unfolded by the embedding process. This is necessary
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if one is interested in calculating dynamical invariants like Lyapunov exponents. However, the

near-neighbor relationships that most state-space forecast methods use in making their predictions

are not invariant under diffeomorphism, so it does not make sense to place that strict condition

on a model that one is using for those purposes. False crossings will, of course, cause incorrect

predictions, but that is not a serious problem in practice if the measure of that set is near zero,

particularly when one is working with noisy, real-world data.

My reduced-order strategy explicitly fixes m = 2. This choice takes care of one of the two free

parameters in the delay-coordinate reconstruction process, but selection of a value for the delay,

τ , is still an issue. The theoretical constraints in this regard are less stringent: τ must be greater

than zero and not a multiple of the period of any orbit [99, 113]. In practice, however, the noisy

and finite-precision nature of digital data and floating-point arithmetic combine to make the choice

of τ much more delicate [59]. It is to this issue that I will turn next.

2.1.2 Traditional Methods for Estimating the Embedding Delay τ

The τ parameter defines the amount of time separating each coordinate of the delay vectors:

~xj = [xj , xj−τ , . . . , xj−(m−1)τ ]T . The theoretical constraints on the time delay are far from

stringent and this parameter does not—in theory [99, 113]—play a role in the correctness of the

embedding. However, that assumes an infinitely long noise-free time series [99, 113], a luxury that

is rare in practice. As a result of this practical limitation, the time delay τ plays a crucial role in

the usefulness1 of the embedding [17,18,33,59,67,68,95].

The fact that the time delay does not play into the underlying mathematical framework is

a double-edged sword. Because there are no theoretical constraints, there is no practical way to

derive an “optimal” lag or even know what criterion an “optimal” lag would satisfy [59]. Casdagli

et al. [24] provide a theoretical discussion of this, together with some treatment of the impacts

of τ on reconstructing an attractor using a noisy observation function. Unfortunately no practi-

1 Here by usefulness I mean that not only are the dynamical invariants (e.g., Lyapunov exponents and fractal
dimension) and topological properties, (e.g., neighborhood relations) preserves, but also that those quantities are
attainable from the reconstructed dynamics.
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cal methods for estimating τ came from that discussion, but it does nicely outline a range of τ

between redundancy and irrelevance. For very small τ , especially with noisy observations, xj and

xj−τ are effectively indistinguishable. In this situation, the reconstruction coordinates are highly

redundant [24,46], i.e., they contain nearly the same information about the system.2 This is not a

good choice for τ because additional coordinates add almost nothing new to the model. Choosing

an arbitrarily large τ is undesirable as well. On this end of the spectrum, the coordinates of the

reconstruction become causally unrelated, i.e., the measurement of xj−τ is irrelevant in under-

standing xj [24]. Useful τ values lie somewhere between these two extrema. In practice, selecting

useful τ values can be quite challenging, as demonstrated in the following example.

Example 1. To explore the effects of τ on an embedding, I first construct an artificial time series

by integrating the Rössler system [96]

ẋ = −y − z (2.5)

ẏ = x+ ay (2.6)

ż = b+ z(x− c) (2.7)

with a = 0.15, b = 0.20, and c = 10.0, using a standard fourth-order Runge-Kutta integrator starting

from [x(0), y(0), z(0)]T = [10, 0, 0]T for 100,000 time steps with a time step of π/100. This results

in a trajectory of the form ~y(tj) = [x(tj), y(tj), z(tj)]
T , where tj = j(π/100) for j = 1, . . . , 100, 000.

This trajectory is plotted in Figure 2.1(a). To discard transient behavior, I remove the first 1,000

points of this trajectory. I define the observation function as h(~y(tj)) = x(tj) = xj, resulting in the

time series: {xj}100,000j=1001. The first 5,000 points of this time series can be seen in Figure 2.1(b).

To illustrate the role of τ in the delay-coordinate embedding process, I embed {xj}100,000j=1001 using

m = 2 and several different choices of τ . These embeddings are shown in Figure 2.2. In theory, each

of the choices of τ in Figure 2.2 should yield correct, topologically equivalent embeddings—given the

right choice of m. In practice, however, that is not the case.

First consider the top-left panel of Figure 2.2 where τ = 1. Here, the axes are spread apart

so little that the embedding appears to be a noisy line. This is because xj and xj−τ are effectively

2 This is made more rigorous in Section 2.2, where I discuss information theory.
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(a) Rössler trajectory (b) Rössler time series.

Figure 2.1: The Rössler attractor and a segment of the time series of its x coordinate.

indistinguishable at this small τ . In the embedding in the bottom-right panel of Figure 2.2, the

reconstruction appears to be a ball of noise with only traces of underlying structure. At this large

τ , the coordinates of the reconstruction are causally unrelated. This is known as “overfolding.”

To visualize this concept, consider the progression in Figure 2.2 from τ = 30 to τ = 341. As τ

increases, the reconstruction expands away from the diagonal and begins to resemble the original

attractor. However, as τ increases past this point, the top corner of the reconstruction is slightly

folded over.

This “melting” effect is called folding in the literature. “Overfolding” occurs when the recon-

structed attractor folds back on itself, completely collapsing back to the diagonal, (as can be seen for

τ = 101) and then re-expanding away from the diagonal, (as can be seen for τ = 341). Overfold-

ing produces an unnecessarily (and in the case of noise, often incorrect) reconstruction [24,59,95].

Compare, for example, the bottom-left panel of Figure 2.2 with the actual attractor in Figure 2.1(a).

From a theoretical standpoint, given the right choice of m, these two objects are topologically equiv-

alent; from a practical standpoint, however, the embedding is overly complex.

If the time series were noisy, this overfolding would likely introduce additional error. With

knowledge of the true attractor, it is easy to say that the τ = 30 and τ = 46 embeddings most

closely match its shape; without that knowledge, however, the choice is not obvious. The situation



13

xj

-10 0 10

x
j
−
1

-10

-5

0

5

10

15

xj

-10 0 10

x
j
−
3
0

-10

-5

0

5

10

15

xj

-10 0 10

x
j
−
4
6

-10

-5

0

5

10

15

xj

-10 0 10

x
j
−
1
0
1

-10

-5

0

5

10

15

xj

-10 0 10

x
j
−
3
4
1

-10

-5

0

5

10

15

xj

-10 0 10

x
j
−
5
0
0
0

-10

-5

0

5

10

15

Figure 2.2: Delay-coordinate reconstruction of the Rössler time series in Figure 2.1(b) with m = 2
and varying τ .

is even more delicate than this. If one knew, somehow, that τ = 30 and τ = 46 were both good

reconstructions, how would one know which of these two choices was optimal? With τ = 30, no

folding has occurred, which is beneficial because with noisy or projected dynamics (choosing m too
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small), foldings may cause false crossings.3 But the trajectory in E[m, 30] is not as “space filling”

as τ = 46 or as spread apart from the diagonal, so the coordinates are most likely more redundant.

Weighing the importance of these kinds of criteria is non-trivial and, I believe, application specific.

In the rest of this section, I review heuristics aimed at optimizing the estimation of τ by weighing

these different attributes against one another.

There are dozens of methods for estimating τ—e.g., [17,18,33,42,46,59,67,68,88,95]. This is

a central issue in my thesis, so the following section surveys this literature in some depth. Choice

of τ is application- and system-specific [17, 59, 95]; a τ that works well for Lyapunov exponent

calculation may not work well for forecasting. For this reason, Kantz & Schreiber [59] suggest

that it may be necessary to perform additional system- and application-specific tuning of τ after

using any generic selection heuristic. In my first set of examples, I use the method of mutual

information [33, 68]—described below in detail. While this is the standard τ -selection method, I

will show in Section 4.3.1 that this choice is almost always suboptimal for forecasting. In Section 5.1,

I provide a solution to this: an alternative τ selection method that leverages “active information

storage” to select a τ that is optimal for forecasting specific reconstructions [42].

2.1.2.1 Linear Independence and Autocorrelation

A näıve strategy for selecting the time delay would be to choose a τ that forces the coordinates

of the delay vectors to be linearly independent. This is equivalent to choosing the first zero of the

autocorrelation function R(τ)

R(τ) =
1

N − τ

∑
j(xj − µx)(xj−τ − µx)

σ2x
(2.8)

where N , µx and σx are respectively the length, average and standard deviation of the time se-

ries [33, 59] . Several other methods have been proposed that suggest instead choosing τ where

the autocorrelation function first drops to a particular fraction of its initial value, or at the first

3 A false crossing is when two trajectories intersect due to projection or measurement error, a phenomenon that
cannot happen in a theoretical deterministic dynamical system.
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inflection point of that function [59,95].

An advantage to this class of methods is that its members are extremely computationally

efficient; the autocorrelation function, for instance, can be calculated with the fast Fourier trans-

form [95]. However, autocorrelation is a linear statistic that ignores nonlinear correlations. This

often yields τ values that work well for some systems and not well for others [33,59,95].

2.1.2.2 General Independence and Mutual Information

Instead of seeking linear independence between delay coordinates, it may be more appro-

priate to seek general independence—i.e., coordinates that share the least amount of information

(also called “redundancy”) with one another. The following discussion requires some methods from

information theory; for a review of these concepts, please refer to Section 2.2. Fraser & Swin-

ney argue that selecting the first minimum of the time-delayed mutual information will minimize

the redundancy of the embedding coordinates, maximizing the information content of the over-

all delay vector [33]. In that approach, one obtains generally independent delay coordinates by

symbolizing the two time series Xj = {xj}Nj=1 and Xj−τ = {xj−τ}Nj=1+τ by binning, discussed in

Section 2.2.5.1, and then computes the mutual information between Xj and Xj−τ for a range of

τ , call this I[Xj , Xj−τ ; τ ]. Then for each τ , I[Xj , Xj−τ ; τ ] is the amount of information shared

between the coordinates xj and xj−τ , i.e, I[Xj , Xj−τ ] quantifies how redundant the second axis

is [33]. According to [33], choosing a τ that minimizes I[Xj , Xj−τ ], results in generally independent

delay coordinates, i.e, delay coordinates that are minimally redundant.

The argument for choosing τ in this way applies strictly to two-dimensional embeddings [33,

59], but was extended to work in m dimensions in [68]. To accomplish this, Liebert & Schuster

rewrote mutual information in terms of second-order Renýı entropies. This transformation allowed

them to show that the minima of I[Xj , Xj−τ ; τ ] agreed with the minima of the correlation sum [49],

C(ε;m, τ), defined as
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C(ε;m, τ) =
1

N2

N∑
i,j=1

i 6=j

Θ[ε− ||~xi − ~xj ||] (2.9)

where N is the length of the time series, Θ is the Heavyside function, and ~xi, ~xj are the ith and

jth delay vectors in E[m, τ ]. In addition to extending the argument of [33] to m dimensions, the

modification of [68] allowed for much faster approximations of τ by simply finding the minimum of

C(ε;m, τ), which can be done quickly with the Grassberger-Procaccia algorithm [49,68].

The choice of the first minimum of I[Xj , Xj−τ ; τ ] is intended to avoid the kind of overfold-

ing of the reconstructed attractor and irrelevance between coordinates that was demonstrated in

Figure 2.2. This choice is discussed and empirically verified in [68] by showing that the first mini-

mum of C(ε;m, τ) (so in turn I[Xj , Xj−τ ; τ ]) corresponded to the most reliable calculations of the

correlation dimension [49].

Definition (Correlation Dimension). If the correlation sum, C(ε), decreases like a power law,

C(ε) ∼ εD, then D is called the correlation dimension. Formally

D = lim
ε→0

logC(ε)

log ε
(2.10)

if this limit exists. The Grassberger-Procaccia algorithm4 [49] allows the correlation dimension to

be approximated for E[m, τ ] as

D = lim
ε→0

logC(ε;m, τ)

log ε
(2.11)

It was not shown in [68], however, that this choice corresponds to the best choice of τ for the

purposes of forecasting. In Section 4.3.1 I show that this is in fact not the case for all time series.

Even so, it is a reasonable starting point, as this method is the gold standard in the associated

literature. In my first round of experiments, and as a point of comparison, I select τ at the first

minimum of the mutual information [33, 68] as calculated by mutual in the TISEAN package [53].

4 The term Grassberger-Procaccia algorithm is used generically for any algorithm that estimates the correlation
dimension (and more generally the correlation integral) from the small-ε behavior of the correlation sum C(ε;m, τ).
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There are a few possible drawbacks to this method. For example, there is no guarantee that

I[Xj , Xj−τ ; τ ] will ever achieve a minimum; a first-order autoregressive process, for example, does

not [59]. Rosenstein et al. [95] argue that calculating mutual information is too computationally

expensive. Several papers [51,75] have argued that mutual information can give inconsistent results,

especially with noisy data.

2.1.2.3 Geometric and Topological Methods

There are several geometric and topological methods for approximating τ that address some

of the shortcomings of mutual information, including: wavering product [67], fill factor, integral

local deformation [18], and displacement from diagonal [95], among others. Most of these methods

have the distinct advantage of attempting to solve for both m and τ simultaneously, albeit at the

cost of being more complicated and less computationally efficient. (This additional computational

overhead is not a factor in my reduced-order framework as I explicitly fix m = 2.)

2.1.2.4 Wavering Product

The wavering product of Liebert et al. [67] is a topological method for simultaneously de-

termining embedding dimension and time delay. This approach focused on detecting when the

attractor is properly unfolded, i.e., the situation in which projection-induced overlap disappears.

Liebert et al. focused on preserving neighborhood relations of points in E[m, τ ]. When

transitioning from E[m, τ ] to E[m+ 1, τ ], an embedding preserves neighborhood relations of every

point in E[m, τ ], i.e., inner points remain inner points, and analogously with the boundary points.

If these neighborhood relations are preserved, then m is a sufficient embedding dimension. The

so-called “direction of projection” [67] that mitigates false crossings is associated with the best

choice of τ , i.e., the τ that yields (for a fixed dimension) the smallest amount of overlap. To this

end, they defined two quantities

Q1(i, k,m, τ) =
distτm+1(i, j(k,m))

distτm+1(i, j(k,m+ 1))
, Q2(i, k,m, τ) =

distτm(i, j(k,m))

distτm(i, j(k,m+ 1))
(2.12)
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where, distτm+1(i, j(k,m)) is the standard Euclidean distance measured in E[m + 1, τ ] between

an ith reference point ~xi in E[m, τ ] and its kth nearest neighbor ~xj(k,m) in E[m, τ ] or similarly

for distτm+1(i, j(k,m + 1)), the kth nearest neighbor of ~xi in E[m + 1, τ ]. To determine if the

neighborhood relations are preserved in the embedding, they defined the wavering product

Wi(m, τ) =

(
(

Nnb∏
k=1

Q1(i, k,m, τ)Q2(i, k,m, τ)

)1/(2Nnb)

(2.13)

where Nnb is the number of neighbors used in each neighborhood. If Wi(m, τ) ≈ 1, then the

topological properties are preserved locally by the embedding [67]. In order to compute this globally,

Liebert et al. defined the average wavering product as

W (m, τ) = ln

 1

Nref

Nref∑
i=1

Wi(m, τ)

 (2.14)

where Nref is the number of reference points, typically chosen to be about 10% of the signal. A

minimum of W (m, τ)/τ as a function of τ yields an optimal τ for that choice of m. They also

showed that a sufficient embedding dimension can be found when W (m, τ)/τ converged to zero.

Choosing the embedding parameters in this way guarantees that the embedding faithfully pre-

serves neighborhood relations. This is particularly important when forecasting based on neighbor

relations.

This technique works very well on many systems, including the Rössler system and the

Mackey-Glass system. In particular, Liebert et al. showed that choosing m and τ in this way

allowed for accurate estimation of the information dimension [49]. Noise, however, is a serious

challenge for this heuristic [62], so it may not be useful for real-world datasets.

2.1.2.5 Integral Local Deformation

Integral local deformation, introduced by Buzug & Pfister in [18], attempts to maintain

continuity of the dynamics on the reconstructed attractor: viz., neighboring trajectories remain

close for small evolution times. The underlying rationale is that false crossings will cause what
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look like neighboring trajectories to separate exponentially in very short evolution time. Integral

local deformation quantifies this. Buzug & Pfister show that choosing m and τ to minimize this

quantity gives an approximation of τ that minimizes false crossings created by projection.

In my work, I rely strongly on the continuity of the reconstructed dynamics, since I use the

image of neighboring trajectories for forecasting. Integral local deformation seems useful at first

glance for choosing a τ that helps to preserve the continuity of the underlying dynamics in the

face of projection. However, the computational complexity of this measure makes it ineffective for

on-the-fly adaptation or selection of τ .

2.1.2.6 Fill Factor

In [18], Buzug & Pfister introduced a purely geometric heuristic for estimating τ . This

method attempts to maximally fill the embedding space by spatially spreading out the points as far

as possible. To accomplish this, Buzug & Pfister calculate the average volume of a large number of

m-dimensional parallelepipeds, spanned by a set of m + 1 arbitrarily chosen m-dimensional delay

vectors. They then show that the first maximum of the average of these volumes as a function of

τ (for a fixed m) maximizes the distance between trajectories. This method is computationally

efficient, as no near-neighbor searching is required. However, for any attractor with multiple un-

stable foci, there is no significant maximum of the fill factor as a function of τ [18,95]. In addition,

this method cannot take into account overfolding, as an overfolded embedding may be more space-

filling than the “properly” unfolded counterpart [95]. This consideration is corrected (at the cost

of additional computational complexity) in the method described next.

2.1.2.7 Average Displacement / Displacement from Diagonal

The average displacement method introduced by Rosenstein et al. [95], which is also known as

the displacement from diagonal method [59], also seeks a τ that causes the embedded attractor to

fill the space as much as possible, while mitigating error caused by overfolding and also addressing

some other concerns [18]. Rosenstein et al. define the average displacement (from diagonal) for
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E[m, τ ] as

〈Sm(τ)〉 =
1

N

N∑
i=1

√√√√m−1∑
j=1

(xi+jτ − xi)2 (2.15)

For a fixed m, 〈Sm(τ)〉 increases with increasing τ (at least initially; the attractor may collapse for

large τ due to overfolding). Rosenstein et al. suggest choosing τ and m where the slope between

successive 〈Sm(τi)〉 drops to around 40% of the slope between 〈Sm(τ1)〉 and 〈Sm(τ2)〉, where τ1 and

τ2 are the first and second choices of τ . In noisy data sets, this leads to consistent and accurate

computation of the correlation dimension. However, this—like most heuristics—was developed

to correctly approximate dynamical invariants (e.g., correlation dimension), and comes with no

guarantees about forecast accuracy.

Remark. Several papers (e.g., [64,77,85,95,105]) have claimed that the emphasis should be placed

on the window size τw = τm rather than τ or m independently. The basic premise behind this idea

is that it is more important to choose τw to span an important time segment (e.g., mean orbital

period) than the actual choice of either τ or m independently. This is something I have not found

to be the case when choosing parameters for delay reconstruction-based forecasting.

2.1.3 Traditional Methods for Estimating the Embedding Dimension m

As the embedding dimension m is not a parameter in my reduced-order algorithm, I only

review a few important methods for estimating it. This discussion is important mainly because

these conventions are the point of departure (and comparison) for my work.

A scalar time series {xj}Nj=1 measured from a dynamical system is a projection of the orig-

inal state space onto a one-dimensional sub-manifold. A fundamental concern in the theoretical

embedding dimension requirement m > 2dcap is to ensure that the embedding has enough dimen-

sions to “spread out” and thus avoid false crossings. Such crossings violate several properties of

deterministic dynamical systems, e.g., determinism, uniqueness and continuity. In Figure 2.3(a),

for example, the E[2, 45] embedding of the x-coordinate of the Rössler system contains trajectory
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(a) Rössler time series in E[2, 45] (b) Rössler time series in E[3, 45]

Figure 2.3: An illustration of the utility of higher embedding dimensions to eliminate false crossings
in the dynamics.

crossings. In Figure 2.3(b), however, the top-right region of Figure 2.3(a) has folded under the

attractor and the intersections on the top left of Figure 2.3 have become a “tunnel.” The issue

here is that the dynamics do not have enough space to spread apart in two dimensions. However

when this dimension is increased, the attractor can spread out and the intersections disappear.

According to [99], choosing m > 2dcap ensures that the attractor has enough space to spread out

and false crossings will not occur. More precisely, the probability of a crossing occurring in a ball

of size ε is pc ∝ εm−2dcap . Recall from Section 2.1.1, however, that this is for an infinitely long

noise free time series and may not hold in practice, as noise can easily cause false crossings and

violate the assumptions that went into this estimation. It should also be noted that, even if I knew

the capacity dimension dcap of the system—which is generally not the case—I do not necessarily

want to choose m to be 2dcap + 1. This is a (generally loose) sufficient bound that should ensure

the correctness of the embedding. But it is often the case that the embedding unfolds completely

before m = 2dcap + 1. The Lorenz system [71] has dcap = 2.06 ± 0.01, for example. [99] would

suggest using m = 5, but in fact this system can be embedded properly using m = 3 [62].

Näıvely, it may seem that simply choosing an “extremely large” m would be a simpler and

completely reasonable choice. This is not true, in practice. First, the complexity of many of

the algorithms that deduce information about dynamical systems scale exponentially with m [68].
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Worse yet, each noisy data point creates m noisy embedding points in the reconstruction [24].

This amplification of noise quickly destroys the usefulness of an embedding. In light of both of

these concerns, good values for the minimal m are highly sought after. For a noisy real-valued

time series, this is still an open problem, but there exist several heuristic approximations (e.g.,

[18,20,53,59,62,64,67]). Recall, too, that several of the methods presented in the previous section

for estimating τ—e.g.,wavering product [67] and integral local deformation [18]—simultaneously

estimate both the delay and the dimension, m—the other free parameter in the embedding process.

There are two standard classes of methods for estimating the minimal m, the method of

dynamical invariants and the method of false neighbors. In the following sections, I review the

basics of these two families.

2.1.3.1 Method of Dynamical Invariants

Dynamical invariants, such as correlation dimension, are topological measures of a system

that persist under diffeomorphism. In theory, this means that once a particular choice of embedding

dimension, say m̂, yields a topologically valid reconstruction, increasing m should have no impact

on these dynamical invariants. This is the case because in theory every E[m > m̂, τ ] will be

topologically conjugate, to one another and to the original dynamics. This implies that dynamical

invariants will become persistent for increasing m, once m̂ has been reached. Hence, choosing

the first m for which dynamical invariants stop changing is a good way to estimate the minimal

dimension needed to obtain a topologically valid reconstruction. The class of methods that is the

topic of this section follows directly from this logic: to choose m, one approximates some dynamical

invariant (e.g., dominant Lyapunov exponent or correlation dimension) for a range of embedding

dimensions, choosing the first embedding dimension for which it becomes persistent, and then

corroborates with other dynamical invariants.

For example, one can approximate the correlation dimension for a range of embedding di-

mensions using the Grassberger & Procaccia algorithm [49], choosing the first m for which that

approximation stops changing. Then one corroborates this choice by approximating the dominant
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Lyapunov exponent for a range of m (using for example the algorithm in [120]), then choosing

the first m where this result stops changing. Finally, one ensures these two estimates of m are

consistent with each other.

Recall, though, that noise in the data can impact any dynamical invariant calculation, and

that that impact increases with m [24]. It is more often the case that there is a range of embedding

dimensions for which the dynamical invariant being approximated stays “fairly consistent.” Ascer-

taining this is computationally expensive and requires time-intensive post processing and human

interpretation. For these reasons, it is common to use an alternative heuristic, such as those covered

in the next section, to narrow down the search to a smaller range of embedding dimensions and

then select from this range using the method of dynamical invariants.

2.1.3.2 The Method of False Neighbors

The method of false neighbors was proposed by Kennel et al. in [62]. This heuristic searches

for points that appear close only because the embedding dimension is too small. Consider a point

on the top of the tunnel in Figure 2.3(b) and a point directly below this point on the planar

part of the Rössler attractor. These two points are near neighbors in E[2, 45] because the tunnel

collapses down on the planar region; however, they are not near neighbors in E[3, 45] because the

embedded attractor inflates, separating points on the top of the tunnel from the points on the

planar region. Since these two points are neighbors in E[2, 45] and not neighbors in E[3, 45], they

are false near(est) neighbors at m = 2. Consider, in contrast, two neighboring points on the top

of the tunnel in E[3, 45]. If the space is projected down to E[2, 45], these points would still be

neighbors.

More formally, Kennel et al. define the kth nearest neighbor ~xj(k,m) ∈ E[m, τ ] of ~xi ∈ E[m, τ ]

as a false near(est) neighbor if

(
distτm+1(i, j(k,m))2 − distτm(i, j(k,m))2

distτm(i, j(k,m))2

)1/2

> Rtol (2.16)

where Rtol is some tolerance. Recall that the distτm(i, j(k,m)) is the distance between the ith point
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~xi ∈ E[m, τ ] and its kth nearest neighbor ~xj(k,m) ∈ E[m, τ ]. But notice for delay vectors that

distτm+1(i, j(k,m))2 = |xi−mτ − xj(k,m)−mτ |2 + distτm(i, j(k,m))2, so this condition simplifies to

|xi−mτ − xj(k,m)−mτ |
distτm(i, j(k,m))

> Rtol (2.17)

In particular, a neighbor is a false neighbor if the distance between the two points in E[m + 1, τ ]

is significantly more (viz., Rtol) than the distance between the two neighbors in E[m, τ ]. Kennel et

al. claim that choosing a single nearest neighbor is sufficient (i.e., k = 1) [62]. In addition, they

claim that empirically Rtol ≥ 10 seems to give robust results. This tolerance can be interpreted as

defining false neighbors as points that are 10 times farther apart in E[m+ 1, τ ] than in E[m, τ ].

This heuristic alone is not enough to distinguish chaos from uniform noise and can in-

correctly classify time series constructed from a uniform distribution as having low-dimensional

dynamics. Kennel et al. found that for a uniformly distributed random time series, on aver-

age, the nearest neighbor of a point is not near at all. Rather, distτm(i, j(k,m)) ≈ RA, where

RA =
√

1
N

∑N
j=1(xj − µx)2. That is, the average distance to the nearest neighbor is the size of

the attractor. To handle this, they defined a secondary heuristic
distτm+1(i,j(k,m))

RA
> Atol, where Atol

is another free parameter chosen as 2.0 without justification. I want to note that this heuristic is

added to distinguish pure-uniform noise from chaotic dynamics, not to aid in estimating embedding

dimension for noisy observations of a chaotic system.

For a time series with noise, near-neighbor relations—which are the basis for this class of

heuristics—can cause serious problems in practice. For well-sampled, noise-free data, it makes

sense to choose m as the first embedding dimension for which the ratio of true to false neighbors

goes to zero [62]. For noisy data however, this is unrealistic; in practice, the standard approach

is to choose the first m for which the percentage of false near(est) neighbors drops below 10%. If

topological correctness is vitally important for the application, a range of embedding dimensions

for which the percentage of false near(est) neighbors drops to around ≈ 10% is typically chosen

and then this range is refined using the method of dynamical invariants described above. This 10%

is an arbitrary threshold, however; depending on the magnitude of noise present in the data, it
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may need to be adjusted, as may Rtol and Atol. For example, in the computer performance data

presented in Section 3.2.1.2, the percentage of false near(est) neighbors rarely dropped below even

20%.

Recently an extension of the false near(est) neighbor method was proposed by Cao [20],

which attempts to get around the three different tolerances (Rtol, Atol and the percentage of false

neighbors) in [62]. Cao points out that the tolerances—in particular, Rtol—need to be specified on a

per-time-series and even per-dimension basis. Assigning these tolerances universally is inadvisable

and in many cases will lead to inconsistent estimates. In [20], he illustrates that different choices

of these three tolerances result in very different estimates for m. To get around this, he defines an

alternative heuristic that is tolerance free

E(m) =
1

N −mτ

N−mτ∑
i=1

distτm+1(i, j(k,m))

distτm(i, j(k,m))
(2.18)

While the inside of the sum is very similar to Equation 2.17 of [62], the numerator is slightly

different: distτm+1(i, j(k,m)) instead of |xi−mτ − xj(k,m)−mτ |. That is, the former measures the

distance between an element and its kth-nearest neighbor in E[m, τ ] measured in E[m + 1, τ ],

whereas the latter measures the change in distance between ~xi, ~xj(k,m) ∈ E[m, τ ], and the same

vectors extended in E[m + 1, τ ]. Cao then defines E1(m) = E(m+1)
E(m) and shows that when E1(m)

stops changing, a sufficient embedding dimension has been found. He also claims that if E1(m)

does not stop changing, then one is observing noise and not deterministic dynamics [20]. Cao does

admit that it is sometimes hard to determine if the E1(m) curve is just slowly growing but will

plateau eventually (in the case of high dimensional dynamics) or just constantly growing (in the

case of noise). To deal with this, he defines a secondary heuristic to help distinguish these two

cases. As this method has been shown to give more consistent m, I hoped that this method could

provide a more accurate comparison point. However, I was never able to successfully replicate the

results in [20] on any experimental data, so I chose to use the traditional version of this algorithm

proposed by Kennel et al. in [62].

The astute reader may have noticed a similarity between the method of false neighbors [62],
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the method of wavering products [67], and the methods of Cao [20]. It is true that these methods

are quite similar. In fact, almost all the methods for determining minimum embedding dimension

[18,20,53,59,62,64,67] are based in some way on minimizing the number of false crossings. As this

parameter is not important in my work, I do not go into all of these nuances but simply use the

standard false near(est) neighbor approach to which the rest of these methods are fundamentally

related. In particular, I use the TISEAN [53] implementation of this algorithm (false_nearest) to

choose m with a ≈ 20% threshold on the percentage of neighbors and the Rtol and Atol selected by

the TISEAN implementation. In my later discussion, I refer to the reconstruction produced in this

manner as an embedding of the data. This is by no means perfect, but since it is the most widely

used method for estimating m, it is the most useful for the purposes of comparison.

2.1.4 Delay-Coordinate Embedding Reality Check

As discussed in Section 2.1.1, the theory of delay-coordinate embedding [99, 113] outlines

beautiful machinery to reconstruct—up to diffeomorphism—the dynamics of a system from a scalar

observation. Unfortunately this theoretical machinery requires both infinitely-long and noise-free

observations of the dynamical system: luxuries that are never afforded to a time-series analyst

in practice. While there has been a tremendous amount of informative literature on estimating

the free parameters of delay-coordinate embedding, at the end of the day these heuristics are

just that: empirical estimates with no theoretical guarantees. This means that, even if the most

careful rigorous in-depth analysis is used to estimate τ and m, there is no way to guarantee, in the

experimental context, that the reconstructed dynamics are in fact diffeomorphic to the observed

dynamics.

Even worse, overestimating m has drastic impacts on the usefulness of the embedding, as it

exponentially amplifies the noise present in the reconstruction. If little usable structure is present in

a time series in the first place, perverting this precious structure by amplifying noise is something a

practitioner can ill afford to do. Moreover, the methods that are most commonly used for estimating

m are based on neighbor relations, which are easily corrupted by noisy data. As a result, these
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heuristics tend to overestimate m.

In addition to noise amplification concerns and the lack of theoretical guarantees, the methods

for estimating minimal embedding dimension are highly subjective, dependent on the estimate of

τ , and require a great deal of human intuition to interpret correctly. This time-consuming, error-

prone human-intensive process makes it effectively impossible to use delay-coordinate embedding

for automated or ‘on-the-fly’ forecasting. As stated in Chapter 1, this is unfortunate because delay-

coordinate embedding is such a powerful modeling framework. My reduced-order framework—the

foundation of this thesis—will, I hope, at least partially rectify this shortcoming.

2.2 Information Theory Primer

In this section, I provide a basic overview of notation and concepts from Shannon information

theory [103], as well as a review of some more-advanced topics that are utilized throughout the

thesis. I will first cover the basics; an expert in this field can easily skip this part. I will then

move on to non-traditional topics viz., multivariate information theory (Section 2.2.3), methods

for computing information measures on real-valued time series (Section 2.2.5), and measures to

quantify the predictability of a real-valued time series (Section 2.2.6).

2.2.1 Entropy

Perhaps the most fundamental concept or building block in information theory is the concept

of Shannon Entropy.

Definition ((Shannon) Entropy [103]). Let Q be a discrete random variable with support {q1, ..., qn}

and a probability mass function p that maps a possible symbol to the probability of that symbol

occurring, e.g., p(qi) = pi, where pi is the probability that an observation q is measured to be qi.

The average amount of information gained by taking a measurement of Q and thereby specifying

an observation q is the Shannon Entropy (or simply entropy) H of Q, defined by
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H[Q] = −
n∑
i=1

p(qi) log(p(qi)) (2.19)

Throughout this thesis, log is calculated with base two, so that the information is in bits. The

entropy H[Q] can be interpreted as the amount of “surprise” in observing a measurement of a

discrete random variable Q, or equivalently the average uncertainty in the outcome of a process, or

the amount of “information” in each observation of a process.

Example 2 (Entropy of fair and biased coins). First consider a fair coin: Q = {h, t} and p(h) =

p(t) = 1/2.

H[Q] = −[p(h) log(p(h)) + p(t) log(p(t))] (2.20)

= −[
1

2
log(

1

2
) +

1

2
log(

1

2
)] (2.21)

= −(
−1

2
+
−1

2
) = 1 (2.22)

At every flip of the coin there is one bit of “new” information, or one bit of surprise. In contrast,

consider an extremely biased coin with heads on both sides: Q = {h, t} and p(h) = 1, p(t) = 0.

Then H[Q] = 0, i.e., there are zero bits of “new” information at each toss, as the coin always gives

heads.

To gain an intuitive understanding of what phrases like ‘one bit of “new” information’, or

‘one bit of surprise’ mean, it is sometimes easier to interpret Equation (2.19) as the average number

of (optimal) yes-no questions one needs to ask in order to determine what the outcome of observing

a system will be. Returning to the coin-flip example above, since the fair coin had H[Q] = 1, on

average, one (optimal) question needs to be asked to determine the outcome of the coin flip: “Was

the coin a head?” With the biased coin, however, the entropy was zero, which means on average

no questions were needed in order to infer the observation was a head (it always is!). The following

example clarifies this.

Example 3 (Entropy of Animal-Vegetable-Mineral [28]). You may have, at some point during

your childhood, played the game “Animal-Vegetable-Mineral.” If not, the rules are simple: player
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one thinks of an object, and by a series of yes-no questions, and the other players attempt to guess

the object. “Is it bigger than a breadbox?” No. “Does it have fur?” Yes. “Is it a mammal?” No.

This continues until the players can guess the object.

As anyone who has played this game will attest, some questions are better than others—for

example, you usually try to focus on general categories first (hence, the name of the game itself—

is it an animal?) then get more specific within that category. Asking on the first round “is it a

dissertation?” is likely to waste time—unless, perhaps, you are playing with a graduate student who

is about to defend.

If a game lasts too long, you may begin to wonder if there exists an optimal set of questions to

ask. “Could I have gotten the answer sooner, if I had skipped that useless question about the fur?”

A moment’s reflection shows that, in fact, the optimal set of questions depends upon the player: if

someone is biased towards automobiles, it would be sensible to focus on questions that specify make,

model, year, etc. You could then imagine writing down a script for this player: “first ask if it is a

car; then if yes, ask if it is domestic, if no, ask if it is a Honda...;” or for my nieces: “first ask if

it’s Elsa from Frozen.” (It almost always is.)

For each player and their preferences (i.e., for every probability distribution over the things

that player might choose), there is an optimal script. And for each optimal script for a given person,

the game will last five rounds, or ten rounds, or seven, or twenty, depending on what they choose

that time. Profoundly, the number of questions you have to ask on average for a particular person

and optimal script pair is given by Equation (2.19). In particular, we are measuring information

(and uncertainty): the average number of yes-no questions we’ll need to ask to find out an answer.

Understanding entropy is important to the rest of the discussion in this chapter as it is the

fundamental building block of all other information-theoretic quantities.

2.2.2 Mutual Information

It is often interesting to consider how knowledge about something informs us about something

else. People carrying umbrellas, for example, tells us something about the weather; it is not perfect
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but (informally) if you tell me something about the weather, you also reduce my uncertainty about

umbrella-carrying [28]. To constructively introduce the so-called mutual information, I will adapt

the next example from [28].

How can we quantify the information between the weather W and umbrella-carrying U? For

simplicity, I will assume you only get to see one person—who is either carrying (u1) or not carrying

(u2) an umbrella, i.e., U = {u1, u2} with probability p(ui).

Now assume that there are some finite number of weather types (say “rain”, “cloudy”,

“windy” etc., labeled with wj), each with a probability of occurring, p(wj). Then from Section 2.2.1,

the uncertainty in the weather is simply

H[W ] = −
N∑
i=1

p(wj) log(p(wj)) (2.23)

We are interested in the probability of seeing a particular weather type given that we see the person

carrying an umbrella. For this, consider the conditional probability of weather type i given that

you see someone carrying an umbrella—p(wi|u1). Generally, p(wi|u1) will be higher than p(wj |u1)

when i is labeling weather with precipitation and j is not, so the uncertainty of the weather given

that someone is carrying an umbrella is then

H[W |u1] = −p(u1)
∑
j

p(wj |u1) log(p(wj |u1)) (2.24)

or in words, “the uncertainty about the weather, given that the person who walked in was carrying

an umbrella.” Similarly, for the reverse case, we could compute the associated uncertainty H[W |u2],

to determine “the uncertainty about the weather, given that the person who walked in was not

carrying an umbrella.” Combining (summing) these two we get the conditional entropy between

two variables (weather type and state of umbrella-carrying in this example).

Definition (Conditional Entropy [103]). Define Q and R to be discrete random variables with

support {q1, ..., qn} and {r1, ..., rm} respectively. Then the conditional entropy is defined as

H[Q|R] = −
∑
i

p(ri)
∑
j

p(qj |ri) log(p(qj |ri)) (2.25)
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where p(qj |ri) is the conditional probability of qj given ri.

We can then quantify the “reduction in uncertainty” in the weather given that someone is

carrying an umbrella by H[W ]−H[W |u1], and the reverse with H[W ]−H[W |u2]. Note that the

reduction can be positive or negative—in some climates, seeing your colleague not carrying an

umbrella will make you more uncertain about the weather. Consider, for example, an extremely

rainy climate; it is either sunny, cloudy, or rainy, but most often rainy. You are generally quite

certain about the weather before you see your colleague (it is raining). So when they walk through

the door without their umbrella, you think it is less likely to be raining, and so you are more

uncertain (the options sunny, cloudy, or rainy are now more evenly balanced).

Now consider the “average reduction in uncertainty” of the weather given the state of umbrella

carrying

I[W,U ] = p(u1)(H[W ]−H[W |u1]) + p(u2)(H[W ]−H[W |u2]) (2.26)

= H[W ]− (p(u1)H[W |u1] + p(u2)H[W |u2]) (2.27)

= H[W ]−H[W |U ] (2.28)

This is called the mutual information; it tells us how much less uncertain we are, on average, about

W given that we know U .

Definition (Mutual Information). Define Q and R to be discrete random variables with support

{q1, ..., qn} and {r1, ..., rm} respectively, and let H(Q) be the entropy of Q and H(Q|R) be the

conditional entropy. Then the mutual information I between Q and R is defined as

I[Q,R] = −
∑
i,j

p(qj , ri) log
p(qj , ri)

p(qj)p(ri)
(2.29)

= H[Q]−H[Q|R] (2.30)

Note: I[Q,R] = I[R,Q] [33].

In the next section, I extend this discussion to information shared between more than two

variables. In the language of this section, that is equivalent to the situation where I have two or more

colleagues with umbrellas UC1 and UC2 and I want to know the average reduction in uncertainty
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of the weather given the state of UC1 and UC2, i.e., I[W,UC1, UC2]. This is unfortunately not a

straightforward generalization and there is little agreement in the literature about interpreting or

even defining multivariate mutual information.

2.2.3 I-Diagrams and Multivariate Mutual Information

The mathematical definitions of multivariate mutual information can get quite confusing to

interpret, especially when comparing and contrasting the difference in these definitions. To clarify

this discussion, I will use I-Diagrams of Yeung [121]—a highly useful visualization technique for

interpreting information theoretic quantities.

2.2.3.1 I-Diagrams

Figure 2.4 shows I-diagrams of some of the important quantities introduced in Sections 2.2.1

and 2.2.2: (a) entropy H[Q], (b) joint entropy H[Q,R] (c) conditional entropy H[Q|R] and (d)

mutual information I[Q,R]. In I-Diagrams, each circle represents the uncertainty in a particular

variable and the shaded region is the information quantity of interest, e.g., in (a) we are interested

in H[Q]—the uncertainty in Q—so the entire circle is shaded. Figure 2.4(b) introduces a new

measure: joint entropy H[Q,R] =
∑

q,r p(q, r) log(p(q, r)). H[Q,R] is uncertainty about processes

Q and R; this is easily depicted in an I-Diagram by simply shading both circles.

The real magic of I-Diagrams comes from their ability to depict more-complex information

theoretic measures by simply manipulating shaded regions. For example, recall from Section 2.2.2

that conditional entropy H[Q|R]—Figure 2.4(b)—is the uncertainty about process Q given knowl-

edge of R. One way of writing this is H[Q|R] = H[Q,R] − H[Q]: i.e., subtracting the shaded

regions in (a) and (b) produces the shaded region in (c). The same can be done with mutual

information. Recall from Section 2.2.2 that I[Q,R] is the shared uncertainty between Q and R or

I[Q,R] = H[Q]−H[Q|R]: i.e., subtracting the shaded region in (a) from the shaded region in (c)

produces the shaded region in (d). While obviously not a proof, this kind of approach allows us

to easily build intuition about more complicated identities, e.g., symmetry of mutual information:
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H[Q]

(a) An I-diagram of entropy, H[Q].

H[Q] H[R]

(b) An I-diagram of the joint entropy, H[Q,R].

H[Q] H[R]

(c) An I-diagram of the conditional entropy, H[Q|R].

H[Q] H[R]

(d) An I-diagram of mutual information, I[Q,R].

Figure 2.4: I-Diagrams of H[Q], H[Q,R], H[Q|R] and I[Q,R]

I[Q,R] = H[Q]−H[Q|R] = H[R]−H[R|Q] = I[R,Q].

In the next section, I will use I-diagrams to explore three common interpretations of multivari-

ate mutual information, interaction information [76] (also commonly called the co-information [10]),

the binding information [87] (also called the dual total correlation [50]), and total correlation [118]

(also commonly called multi-information [111]).

2.2.4 Multivariate Mutual Information

When interpreting I[Q,R] using I-Diagrams, the situation is quite simple, as there is exactly

one region of “shared uncertainty;” when generalizing even to three variables I[Q,R, S], the sit-

uation becomes much more confusing—and this is reflected in the mathematical uncertainties as

well. Consider the generic three-variable I-Diagram in Figure 2.5. Instead of having one region

of overlap as in Figure 2.4(d), there are now four. There are three standard ways of shading each
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H[Q]

H[R] H[S]

(a) Generic three-variable I-Diagram.

H[Q]

H[R] H[S]

(b) The interaction information (or coinformation),
C[Q,R, S].

H[Q]

H[R] H[S]

(c) The binding information, B[Q,R, S] (or dual total
correlation).

H[Q]

H[R] H[S]

(d) The total correlation (or multi-information),
M[Q,R;S]. The centermost region is more darkly
shaded here to reflect the extra weight that that re-
gion carries in the calculation.

Figure 2.5: Generalizations of the mutual information to the multivariate case.

these regions to quantify I[Q,R, S].

One interpretation is the so-called interaction information [10, 76]

C[Q,R, S] ≡ I[Q,R, S] ≡− (H[Q] +H[R] +H[S])

+ (H[Q,R] +H[Q,S] +H[R,S])

−H[Q,R, S] (2.31)
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As depicted in Figure 2.5(b), this is the intersection of H[Q], H[R] and H[S]. It describes the

reduction in uncertainty that any two processes (e.g., Q and R), together, provide regarding the

third process (e.g., Q and R). While this may seem like the natural extension of mutual information,

it does not take into account the information that is shared between the two process but not with

the third. One common criticism of this interpretation is that C[Q,R, S] is quite often negative.

For example, when the shared information between {Q,R} is due entirely to information in S,

the interaction information can be negative as well as positive. Many interpretations of negative

information have been provided—e.g., that the variable S inhibits (i.e., accounts for or explains

some of) the correlation between {Q,R}—but in general negative information is frowned upon [1].

The next obvious step is to take into account the information that is shared between any two

process but not shared with the third, as well as the information shared between all three processes.

This is called the binding information [50,87]

B[Q,R, S] ≡ I[Q,R, S] ≡ H[Q,R, S] +

[
3∑
i=1

H[X(i−1)%3, X(i+1)%3])−H[Q,R, S]

]
(2.32)

where X0 = Q, X1 = R, and X2 = S, and % is the modulus operator. This quantity is de-

picted in Figure 2.5(c). B[Q,R, S] has the nice feature that it is always positive, but it equally

weights information contained in two variables as information contained in all three. The total

correlation [111,118]

M[Q,R, S] ≡ I[Q,R, S] ≡ I[X0, X1, X2] ≡
2∑
i=0

(H[Xi])−H[X0, X1, X2] (2.33)

depicted in Figure 2.5(d) addresses this shortcoming, but is equally criticized for over emphasizing

information that is shared by all three variables.

The total correlation and binding information are both always positive but their relative

merits are a subject of contention. For a nice comparison of these and discussion of the associated

issues, please see [1]. The takeaway of this section should be that extending mutual information

as defined in Section 2.2.2 to even the three-variable case, let alone beyond that, is non-trivial and
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not well understood at all. This will become very important in Section 5.1, where I propose a new

information-theoretic method for selecting delay reconstruction parameters.

2.2.5 Estimating Information from Real-Valued Time-Series Data

Note that all the information theory discussed thus far has been on discrete random variables.

The topic of this thesis, however, involves real-valued time series. To compute any information

measure on real-valued time series, one must “symbolize” that data, i.e., map the real values to a

set of discrete symbols. Ideally, this symbolization should preserve the information and/or dynamics

of the original time series, but this can be hard to accomplish in practice. The processes by which

this is accomplished, and the issues that make it difficult, are the focus of this section.

2.2.5.1 Simple Binning

A common (and by far the simplest) symbolization method is binning. To symbolize a real-

valued time series {xj}Nj=1 by binning, one breaks the time series support into n bins, which need

not be equally spaced. Then one defines a discrete random variable Q to have a symbol for each bin

bi, i.e., Q has support {bi}ni=1. The associated probability mass function is then computed using

p(bi) =
|{j|xj ∈ bi}|

N
(2.34)

For example, consider a time series with support on [0, 1] and bins b1 = [0, 0.5) and b2 = [0.5, 1].

Then one simply estimates the probability mass function associated with b1 and b2 by counting the

number of time-series elements that appear in each subinterval [0, 0.5) and [0.5, 1].

This method is extremely simple, but simplicity is often a double-edged sword. Binning is

a very fast and efficient symbolization, but it is known to introduce severe biasing and spurious

dynamics if the bin boundaries do not happen to create a so called generating partition of the

dynamics [13,63].

Definition (Generating Partition). Given a dynamical system f : M → M on a measure space

(M, F, µ), a finite partition P = {bi}ni=1 is said to be generating if the union of all images and
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preimages of P gives the set of all µ-measurable sets F . In other words, the “natural” tree of

partitions always generates some sub-σ-algebra, but if it gives the full σ-algebra of all measurable

sets F , then P is called generating [97].

Unfortunately, even for most canonical dynamical systems, let alone all real-valued time

series, the generating partition is not known or computable. Even when the partition is known it

can be fractal, as is the case with the Hénon map, for example, and thus useless for creating a finite

partition. For a good review of the difficulties in finding a generating partition see [26]. I review

this in more detail in Section 2.2.6.

2.2.5.2 Kernel estimation methods

A useful alternative to simple binning is a class of methods known as kernel estimation

[34, 100], in which the relevant probability density functions are estimated via a function Θ with

a resolution or bandwidth ρ that measures the similarity between two points in Q × R space.5

Given points {qi, ri} and {q′i, r′i} in Q×R, one can define

p̂ρ(qi, ri) =
1

N

N∑
i′=1

Θ

(
qi − q′i
ri − r′i

− ρ
)

(2.35)

where Θ(x > 0) = 0 and Θ(x ≤ 0) = 1. That is, p̂ρ(qi, ri) is the proportion of the N pairs of

points in Q × R space that fall within the kernel bandwidth ρ of {qi, ri}, i.e., the proportion of

points similar to {qi, ri}. When | · | is the max norm, this is the so-called box kernel. This too,

however, can introduce bias [70] and is obviously dependent on the choice of bandwidth ρ. After

these estimates, and/or the analogous estimates for p̂(q), are produced, they are then used directly

to compute local estimates of entropy or mutual information for each point in space, which are

then averaged over all samples to produce the entropy or mutual information of the time series.

For more details on this procedure, see [70].

A less biased method to perform kernel estimation when one is interested in computing

mutual information is the Kraskov-Stügbauer-Grassberger (KSG) estimator [63]. This approach

5 In the case of delay-coordinate reconstruction, Q×R = Xj ×Xj−τ
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dynamically alters the kernel bandwidth to match the density of the data, thereby smoothing out

errors in the probability density function estimation process. In this approach, one first finds the

kth nearest neighbor for each sample {q, r} (using max norms to compute distances in q and r), then

sets kernel widths ρq and ρr accordingly and performs the pdf estimation. There are two algorithms

for computing I[Q,R] with the KSG estimator [70]. The first is more accurate for small sample

sizes but more biased; the second is more accurate for larger sample sizes. I use the second of the

two in the results reported in this dissertation, as I have fairly long time series. This algorithm

sets ρq and ρr to the q and r distances to the kth nearest neighbor. One then counts the number of

neighbors within and on the boundaries of these kernels in each marginal space, calling these sums

nq and nr, and finally calculates

I[Q,R] = ψ(k)− 1

k
− 〈ψ(nq) + ψ(nr)〉+ ψ(n) (2.36)

where ψ is the digamma function6 . This estimator has been demonstrated to be robust to variations

in k as long as k ≥ 4 [70].

In this thesis, I employ the Java Information Dynamics Toolkit (JIDT) implementation of

the KSG estimator [70]. The computational complexity of this implementation is O(kN logN),

where N is the length of the time series and k is the number of neighbors being used in the

estimate. While this is more expensive than traditional binning (O(N)), it is bias corrected, allows

for adaptive kernel bandwidth to adjust for under- and over-sampled regions of space, and is both

model and parameter free (aside from k, to which it is very robust).

2.2.6 Estimating Structural Complexity and Predictability

An understanding of the predictive capacity of a real-valued time series—i.e., whether or

not it is even predictable—is essential to any forecasting strategy. In joint work with Ryan James,

I propose to quantify the complexity of a signal by approximating the entropy production of the

system that generated it. In general, estimating the entropy (production) of an arbitrary, real-

6 The formula for the other KSG estimation algorithm is subtly different; it sets ρq and ρr to the maxima of the
q and r distances to the k nearest neighbors.
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valued time series is a challenging problem, as discussed above, but recent advances in Shannon

information theory—in particular, permutation entropy [9, 32]—have reduced this challenge. I

review this class of methods in this section.

For the purposes of this thesis, I view the Shannon entropy—in particular, its growth rate

with respect to word length (the Shannon entropy rate)—as a measure of the complexity and hence

the predictability for a time series. Time-series data consisting of i.i.d. random variables, such as

white noise, have high entropy rates, whereas highly structured time-series—for example, those that

are periodic—have very low (or zero) entropy rates. A time series with a high entropy rate is almost

completely unpredictable, and conversely. This can be made more rigorous: Pesin’s relation [91]

states that in chaotic dynamical systems, the Kolmogorov-Sinai (KS) entropy is equal to the sum

of the positive Lyapunov exponents λi. These exponents directly quantify the rate at which nearby

states of the system diverge with time: |∆x(t)| ≈ eλt |∆x(0)|. The faster the divergence, the larger

the entropy. The KS entropy is defined as the supremum of the Shannon entropy rates of all

partitions—i.e., all possible choices for binning [92]. As an aside, an alternative definition of the

generating partition defined above is a partition that achieves this supremum.

From a different point of view, I can consider the information (as measured by the Shannon

entropy) contained in a single observable of the system at a given point in time. This information

can be partitioned into two components: the information shared with past observations—i.e., the

mutual information between the past and present—and the information in the present that is not

contained in the past (viz., “the conditional entropy of the present given the past”). The first

part is known as the redundancy; the second is the aforementioned Shannon entropy rate. Again

working with R. G. James, I establish that the more redundancy in a signal, the more predictable

it is [40, 41]. This is discussed in more detail in Chapter 6.

Previous approaches to measuring temporal complexity via the Shannon entropy rate [74,102]

required categorical data: xi ∈ S for some finite or countably infinite alphabet S. Data taken from

real-world systems are, however, effectively7 real-valued. So for this reason I need to symbolize

7 Measurements from finite-precision sensors are discrete, but data from modern high-resolution sensors are, for
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the time series, as discussed above. The methods discussed above however, are generally biased or

fragile in the face of noise.

Bandt and Pompe introduced the permutation entropy (PE) as a “natural complexity mea-

sure for time series” [9]. Permutation entropy involves a method for symbolizing real-valued time

series that follows the intrinsic behavior of the system under examination. This method has many

advantages, including robustness to observational noise, and its application does not require any

knowledge of the underlying mechanisms of the system. Rather than looking at the statistics of

sequences of values, as is done when computing the Shannon entropy, permutation entropy looks

at the statistics of the orderings of sequences of values using ordinal analysis. Ordinal analysis of

a time series is the process of mapping successive time-ordered elements of a time series to their

value-ordered permutation of the same size. By way of example, if (x1, x2, x3) = (9, 1, 7) then its

ordinal pattern, φ(x1, x2, x3), is 231 since x2 ≤ x3 ≤ x1. The ordinal pattern of the permutation

(x1, x2, x3) = (9, 7, 1) is 321.

Definition (Permutation Entropy). Given a time series {xi}i=1,...,N , define S` as all `! permuta-

tions π of order `. For each π ∈ S`, define the relative frequency of that permutation occurring in

{xi}i=1,...,N

p(π) =
|{i|i ≤ N − `, φ(xi+1, . . . , xi+`) = π}|

N − `+ 1
(2.37)

where p(π) quantifies the probability of an ordinal and |·| is set cardinality. The permutation entropy

of order ` ≥ 2 is defined as

PE(`) = −
∑
π∈S`

p(π) log2 p(π) (2.38)

Notice that 0 ≤ PE(`) ≤ log2(`!) [9]. With this in mind, it is common in the literature to

normalize permutation entropy as follows: PE(`)
log2(`!)

. With this convention, “low” PE is close to 0 and

“high” PE is close to 1. Finally, it should be noted that the permutation entropy has been shown

to be identical to the Kolmogorov-Sinai entropy for many large classes of systems [7], as long as

the purposes of entropy calculations, effectively continuous.



41

observational noise is sufficiently small. As mentioned before, PE is equal to the Shannon entropy

rate of a generating partition of the system. This transitive chain of equalities, from permutation

entropy to Shannon entropy rate via the KS entropy, allows one to approximate the redundancy of

a signal—being the dual of the Shannon entropy rate—by 1− PE(`)
log2(`!)

.

In this thesis, I utilize a variation of the basic permutation entropy technique, the weighted

permutation entropy (WPE), which was introduced in [32]. The intent behind the weighting is

to correct for observational noise that is larger than the trends in the data, but smaller than the

larger-scale features. Consider, for example, a signal that switches between two fixed points and

contains some additive noise. The PE is dominated by the noise about the fixed points, driving it

to ≈ 1, which in some sense hides the fact that the signal is actually quite structured. To correct

for this, the weight of a permutation is taken into account

w(x`i+1) =
1

`

i+∑̀
j=i

(
xj − x̄`i+1

)2
(2.39)

where x`i+1 is a sequence of values xi+1, . . . , xi+`, and x̄`i+1 is the arithmetic mean of those values.

The weighted probability of a permutation is defined as

pw(π) =

∑
i≤N−`

w(x`i+1) · δ(φ(x`i+1), π)∑
i≤N−`

w(x`i+1)
(2.40)

where δ(x, y) is 1 if x = y and 0 otherwise. Effectively, this weighted probability emphasizes

permutations that are involved in “large” features and de-emphasizes permutations that are small

in amplitude, relative to the features of the time series. The standard form of weighted permutation

entropy is

WPE(`) = −
∑
π∈S`

pw(π) log2 pw(π), (2.41)

which can also be normalized by dividing by log(`!), to make 0 ≤WPE(`) ≤ 1.

In practice, calculating permutation entropy and weighted permutation entropy involves

choosing a good value for the word length `. The primary consideration in that choice is that
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the value be large enough that forbidden ordinals are discovered, yet small enough that reasonable

statistics over the ordinals are gathered. If an average of 100 counts per ordinal is considered

to be sufficient, for instance, then ` = argmaxˆ̀{N ' 100ˆ̀!}. In the literature, 3 ≤ ` ≤ 6 is a

standard choice—generally without any formal justification. In theory, the permutation entropy

should reach an asymptote with increasing `, but that can require an arbitrarily long time series.

In practice, what one should do is calculate the persistent permutation entropy by increasing ` until

the result converges, but data length issues can intrude before that convergence is reached. I use

this approach to choose ` = 6 for the experiments presented in this thesis. This value represents a

good balance between accurate ordinal statistics and finite-data effects.

2.3 Forecast Methods

Any discussion of new prediction technology is incomplete, of course, without a solid com-

parison to traditional techniques. In this section, I describe the four different forecasting methods

used in my thesis as points of comparison. These forecast methods include:

• The random-walk method, which uses the previous value in the observed signal as the

forecast,

• The näıve method, which uses the mean of the observed signal as the forecast,

• The ARIMA (auto-regressive integrated moving average) method, a common linear forecast

strategy for scalar time-series data, instantiated via the ARIMA procedure [56], and

• The LMA (Lorenz method of analogues) method, which uses a near-neighbor forecast strat-

egy on a delay-coordinate reconstruction of the signal.

ARIMA, as its name suggests, is based on standard autoregressive techniques. LMA, introduced

in Chapter 1, is designed to capture and exploit the deterministic structure of a signal from a

nonlinear dynamical system. The näıve and random-walk methods, somewhat surprisingly, often
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outperform these more-sophisticated prediction strategies in the case of highly complex signals, as

discussed briefly below and in depth in Chapter 6.

2.3.1 Simple Prediction Strategies

A random-walk predictor simply uses the last observed measurement as the forecast: that is,

the predicted value pi at time i is calculated using the relation

pi ≡ xi−1 (2.42)

where {xj}Nj=1 is the time-series data. The prediction strategy that I refer to using the term “näıve”

averages all prior observations to generate the forecast

pi ≡ µx,i−1 =

i−1∑
j=1

xj
i− 1

(2.43)

While both of these methods are simplistic, they are not without merit. For a time series that

possess very little predictive structure (WPE ≈ 1), these two methods can actually be the best

choice. In forecasting currency exchange rates, for instance, sophisticated econometrics-based pre-

diction models fail to consistently outperform the random-walk method [78, 82]. These signals are

constantly changing, subject to jump processes, noisy, and possess very little predictive structure,

but their variations are not—aside from jump processes—very large, so the random-walk method’s

strategy of simply guessing the last known value is not a bad choice. If a signal has a unimodal

distribution with low variance, the näıve prediction strategy will perform quite well, even if the

signal is highly complex, simply because the mean is a good approximation of the future behavior.

Moreover, the näıve prediction strategy’s temporal average effects a low-pass filtering operation,

which mitigates the complexity in signals with very little predictive structure.

Both of these methods have significant weaknesses, however. Because they do not model the

temporal patterns in the data, or even the distribution of its values, they cannot track changes

in that structure. This causes them to fail in a number of important situations. Random-walk

strategies are a particularly bad choice for time series that change significantly at every time



44

step. In the worst case—a large-amplitude square wave whose period is equivalent to twice the

sample time—a random-walk prediction would be exactly 180 degrees out of phase with the true

continuation. The näıve method would be a better choice in this situation, since it would always

predict the mean. It would, however, perform poorly when a signal had a number of long-lived

regimes that have significantly different means. In this situation, the inertia of the näıve method’s

accumulating mean is a liability and the agility of the random-walk method is an advantage, since

it can respond quickly to regime shifts.

Of course, methods that can capture and exploit the geometry of the data, or its temporal

patterns, can be far more effective in the situations described in the previous two paragraphs. The

ARIMA and LMA methods covered in the following sections are designed to do exactly that. How-

ever, if a signal contains little predictive structure, forecast strategies like ARIMA and LMA have

nothing to work with and thus will often be outperformed by the two simple strategies described

in this section. This contrast is explored further in Sections 2.4 and 4.2.

2.3.2 (ARIMA) A Regression-Based Prediction Strategy

A simple and yet powerful way to capture and exploit the structure of data is to fit a hy-

perplane to the dataset and then use it to make predictions. The roots of this approach date back

to the original autoregressive schema of Yule [122], which forecasts the value at the next time step

through a weighted average of the past q observations

pi ≡
i−1∑
j=i−q

ajxj (2.44)

The weighting coefficients aj are generally computed using either an ordinary least-squares ap-

proach, or with the method of moments using the Yule-Walker equations. To account for noise in

the data, one can add a so-called “moving average” term to the model; to remove nonstationarities,

one can detrend the data using a differencing operation. A strategy that incorporates all three of

these features is called a nonseasonal ARIMA model. If evidence of periodic structure is present in

the data, a seasonal ARIMA model, which adds a sampling operation that filters out periodicities,



45

can be a good choice.

There is a vast amount of theory and literature regarding the construction and use of models

of this type; please see [15] for an in-depth exploration. For the purposes of this thesis, I choose

seasonal ARIMA models to serve as a good exemplar for a broad class of linear predictors and a

useful point of comparison for my work. Fitting such a model to a time series involves choosing

values for the various free parameters in the autoregressive, detrending, moving average, and fil-

tering terms. I employ the automated fitting techniques described in [56] to accomplish this. This

procedure uses sophisticated methods—KPSS unit-root tests [65], a customization of the Canova-

Hansen test [19], and the Akaike information criterion [2], conditioned on the maximum likelihood

of the model fitted to the detrended data—to select good values for these free parameters.

ARIMA forecasting is a common and time-tested procedure. Its adjustments for seasonality,

nonstationarity, and noise make it an appropriate choice for short-term predictions of time-series

data generated by a wide range of processes. If information is being generated and/or transmitted in

a nonlinear way, however, a global linear fit is inappropriate and ARIMA forecasts can be inaccurate.

Another weakness of this method is prediction horizon: an ARIMA forecast is guaranteed to

converge to a constant or linear trend after some number of predictions, depending on model order.

To sidestep this issue, and make the comparison as fair as possible, I build ARIMA forecasts in

a stepwise fashion: i.e., fit the model to the existing data, use that model to perform a one-step

prediction, rebuild it using the latest observations, and iterate until the desired prediction horizon

is reached. For consistency, I take the same approach with the other models in this proposal as

well, even though doing so amounts to artificially hobbling LMA, the method that is the topic of

the next section.

2.3.3 Lorenz Method of Analogues

The dynamical systems community has developed a number of methods that leverage delay-

coordinate reconstruction for the purposes of forecasting dynamical systems (e.g., [23,72,93,107,112,

119]). Since the goal of this thesis is to show that incomplete reconstructions—those that are not
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true embeddings—can give these kinds of methods enough traction to generate useful predictions,

I choose one of the oldest and simplest members of that family to use in my analysis: Lorenz’s

method of analogues (LMA), which is essentially nearest-neighbor forecasting in reconstruction

space.

To apply LMA to a scalar time-series data set {xj}nj=1, one begins by performing a delay-

coordinate reconstruction to produce a trajectory of the form

{~xj = [xj xj−τ . . . xj−(m−1)τ ]T }nj=1−(m−1)τ (2.45)

using one or more of the heuristics presented in Sections 2.1.2 and 2.1.3 to choose m and τ .

Forecasting the next point in the time series, xn+1, amounts to reconstructing the next delay

vector ~xn+1 in the trajectory. Note that, by the form of delay-coordinate vectors, all but the first

coordinate of ~xn+1 are known. To choose that first coordinate, LMA finds the nearest neighbor of

~xn in the reconstructed space8 —namely ~xj(1,m)—and maps that vector forward using the delay

map, obtaining

~xj(1,m)+1 = [xj(1,m)+1 xj(1,m)+1−τ . . . xj(1,m)+1−(m−1)τ ]T (2.46)

Using the image of the neighbor, one defines

~pn+1 ≡ [xj(1,m)+1 xn+1−τ . . . xn+1−(m−1)τ ]T (2.47)

The LMA forecast of xn+1 is then pn+1 ≡ xj(1,m)+1. If performing multi-step forecasts, one appends

the new delay vector

~pn+1 = [xj(1,m)+1 xn+1−τ . . . xn+1−(m−1)τ ]T (2.48)

to the end of the trajectory and repeats this process as needed.

In my work, I use the LMA algorithm in two ways: first—as a baseline for comparison

purposes—on an embedding of each time series, with m chosen using the false near(est) neighbor

8 ~xn should not be chosen as its own neighbor as it has no forward image. In some cases, a longer Theiler exclusion
may be useful [115].
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method [62]; second, with m fixed at 2. In the rest of this thesis, I will refer to these as fnn-LMA

and ro-LMA, respectively. The experiments reported in Chapter 4, unless stated otherwise, use the

same τ value for both fnn-LMA and ro-LMA, choosing it at the first minimum of the time-delayed

mutual information of the time series [33]. In Section 4.3, I explore the effects of varying τ on the

accuracy of both methods. In Section 5.1, I show that a time-delayed version of the so-called active

information storage is a highly effective method for selecting τ , and m as well, when forecasting is

the end goal.

Dozens—indeed, hundreds—of more-complicated variants of the LMA algorithm have ap-

peared in the literature (e.g., [23, 107, 112, 119]), most of which involve building some flavor of

local-linear model around each delay vector and then using it to make the prediction of the next

point. For the purposes of this thesis, I chose to use the basic original LMA because it is dynami-

cally the most straightforward and thus provides a good baseline assessment. While I believe that

the claims stated here extend to other state space-based forecast methods, the pre-processing steps

involved in some of those methods make a careful analysis of the results somewhat problematic.

One can use GHKSS-based techniques, for instance, to project the full dynamics onto linear sub-

manifolds [48] and then use those manifolds to build predictions. While it might be useful to apply

a method like that to an incomplete reconstruction, the results would be some nonlinear conflation

of the effects of the two different projections and it would be difficult to untangle and understand

the individual effects. (Note that the careful study of the effects of projection in forecasting that

are undertaken in this thesis may suggest why GHKSS-based techniques work so well; this point is

discussed further in Chapter 4.)

Since LMA does not rest on an assumption of linearity (as ARIMA models do), it can handle

both linear and nonlinear processes. If the underlying generating process is nondeterministic,

however, it can perform poorly. For an arbitrary real-valued time series, without any knowledge of

the generating process and with all of the attendant problems (noise, sampling issues, and so on),

answers to the question as to which forecast model is best should, ideally, be derived from the data,

but that is a difficult task. By quantifying the balance between redundancy, predictive structure,
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and entropy for these real-valued time series—as I describe in Chapter 6—I can begin to answer

these questions in an effective and practical manner.

2.4 Assessing Forecast Accuracy

To assess and compare the prediction methods studied here, I calculate a figure of merit in

the following way. I split each N -point time series into two pieces: the first 90%, referred to as

the “initial training” signal and denoted {xj}nj=1, and the last 10%, known as the “test” signal

{cj}(k+n+1)=N
j=n+1 . Following the procedures described in Section 2.3, I build a model from the initial

training signal, use that model to generate a prediction pn+1 of the value of xn+1, and compare

pn+1 to the true continuation, cn+1. I then rebuild the model using {cn+1}∪{xj}nj=1 and repeat the

process k times, out to the end of the observed time series. This “one step prediction” process is

not technically necessary in the fnn-LMA or ro-LMA methods, which can generate arbitrary-length9

predictions, but the performance of the other three methods used here will degrade severely if the

associated models are not periodically rebuilt. In order to make the comparison fair, I use the

iterative one-step prediction schema for all five methods. This has the slightly confusing effect of

causing the “test” signal to be used both to assess the accuracy of each model and for periodic

refitting.

As a numerical measure of prediction accuracy, for each h-step forecast, I calculate the h-step

mean absolute scaled error (h-MASE) between the true and predicted signals, defined as

h−MASE =
k+n+1∑
j=n+1

|pj − cj |
k

n−h
∑n

i=1

√∑h
ι=1(xi−xi+ι)2

h

(2.49)

h-MASE is a normalized measure: the scaling term in the denominator is the average h-step in-

sample forecast error for a random-walk prediction over the initial training signal {xi}ni=1. That is,

h-MASE< 1 means that the prediction error in question was, on the average, smaller than the error

of an h-step random-walk forecast on the same data. Analogously, h-MASE> 1 means that the

9 Although the accuracy of these predictions will degrade with prediction horizon, in the presence of positive
Lyapunov exponents.
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corresponding prediction method did worse, on average, than the random-walk method. I choose

this error metric because it allows for fair comparison across varying methods, prediction horizons,

and signal scales, and is a standard error measure in the forecasting literature [57].

To provide insight into interpreting h-MASE values, I will refer back to the proof-of-concept

example presented in Chapter 1. The one-step forecasts in Figure 1.1, for instance, had 1-MASE

values of 0.117 and 0.148—i.e., the fnn-LMA and ro-LMA forecasts of the SFI dataset A were,

respectively 1
0.117 = 8.5 and 1

0.148 = 6.5 times better than a one-step random-walk forecast of the

initial training portion of the same signal.

For any non-constant signal, h-step forecasting with random walk will degrade as h increases.

In general, then, it is to be expected that h-MASE will decrease drastically with increasing predic-

tion horizon. Thus, h-MASE scores should not be compared for different h. For example, 10-MASE

can be compared to 10-MASE for two different methods or signals but should not be compared

to 1-MASE or 100-MASE, even on the same signal. While its comparative nature may seem odd,

this error metric allows for fair comparison across varying methods, prediction horizons, and signal

scales, making it a standard error measure in the forecasting literature—and a good choice for this

thesis, which involves a number of very different signals.



Chapter 3

Case Studies

I use several different dynamical systems as case studies throughout this thesis, both real and

synthetic. Two of them—the Lorenz 96 model and sensor data from a laboratory experiment on

computer performance dynamics—persist across all chapters of this document; I use a number of

others as well to drive home different points in different chapters. Each is described in more depth

in the following sections.

3.1 Synthetic Case Studies

When developing any new mathematical theory or method it is important to first explore

it in the context of well-understood synthetic examples. This gives me a controlled environment

where I can test the boundaries of my theory, e.g., increasing data length or adding a (controlled)

signal-to-noise ratio.

3.1.1 The Lorenz-96 Model

The Lorenz-96 model was introduced by Edward Lorenz in [73] to study atmospheric pre-

dictability. Lorenz-96 is defined by a set of K first-order differential equations relating the K state

variables ξ1 . . . ξK

ξ̇k = (ξk+1 − ξk−2)(ξk−1)− ξk + F (3.1)

for k = 1, . . . ,K, where F ∈ R is a constant forcing term that is independent of k. In this model,
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each ξk is some atmospheric quantity (such as temperature or vorticity) at a discrete location on

a periodic lattice representing a latitude circle of the earth. Following standard practice [61], I

enforce periodic boundary conditions and solve Equation (3.1) from several randomly chosen initial

conditions using a standard fourth-order Runge-Kutta solver for 60,000 steps with a step size of 1
64

normalized time units. I then discard the first 10,000 points of each trajectory in order to eliminate

transient behavior. Finally, I create scalar time-series traces by individually “observing” each of

the K state variables of the trajectory: i.e., hi(ξi(tj)) = xj,i for j ∈ {10, 000, . . . , 60, 000} and for

i ∈ {1, . . . ,K}. I repeat all of this from a number of different initial conditions—seven for the

K = 47 Lorenz-96 system and 15 for the K = 22 case—producing a total of 659 traces for my

forecasting study.

In [61], Karimi & Paul studied this model extensively, performing and analyzing numerous

parameter sweeps showing that it exhibits a vast array of possible dynamics: everything from fixed

points and periodic attractors to low- and high-dimensional chaos. One particularly interesting

feature of this dynamical system is the relationship between state-space dimension and how much

Figure 3.1: The Lorenz 96 attractor (F = 5) with (left) K = 22 and (right) K = 47. Since 22 and
47 dimensional plots are not possible, I plot 3D projections of these systems. In particular, each
differently colored trajectory represents different projections or equivalently choices of k: k=2 is
aqua, k = 6 is blue and k = 18 is red.
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Grid Points m-fnn τ m-Embedology m-Takens

K = 22 8 26 ≈ 7 45
K = 47 10 31 ≈ 41 95

Table 3.1: Estimated and theoretical embedding parameter values for the Lorenz-96 model. m-fnn
is the embedding dimension produced by the false-nearest neighbor method. τ is chosen as the first
minimum of the mutual information curve. m-Embedology is derived following [99] and m-Takens
is derived from [113].

of that space is occupied by dynamics. For different choices of the parameter values, the Lorenz-96

system yields dynamics with low fractal dimensions in large state spaces as well as large fractal

dimensions in large state spaces. All of these features make this model an ideal candidate for

testing and evaluating ro-LMA. For my initial investigation, I fix F = 5 and choose K = 22 and

K = 47—choices that yield chaotic trajectories with low and high [61] Kaplan-Yorke (Lyapunov)

dimension [60] respectively: dKY / 3 for the K = 22 dynamics and dKY ≈ 19 for K = 47.

Projections of trajectories on these attractors can be seen in Figure 3.1.

For each of these time series, I use the procedures outlined in Section 2.1.1 to estimate values

for the free parameters of the embedding process, obtaining m = 8 and τ = 26 for all traces in the

K = 22 case, and m = 10 and τ = 31 for the K = 47 traces. Table 3.1 tabulates the estimated and

theoretical embedding parameter values for these two test cases, derived using the methodologies

described in Sections 2.1.1-2.1.3.

It has been shown in [109] that dKY ≈ dcap for typical chaotic systems. This suggests that

embeddings of the K = 22 and K = 47 time series would require m ' 6 and m ' 38, respectively.

The values suggested by the false-near neighbor method for the K = 22 traces are in line with

this, but the K = 47 false-near neighbor values are far smaller than 2dKY . For K = 47 there are

two potential causes for this disparity. First, the false-near neighbor method does not guarantee

m > 2dKY , it is simply a heuristic to mitigate false crossings in the dynamics. Second m > 2dKY

is a sufficient bound—it could very well be the case that false crossings are eliminated before this

bound is reached.
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Figure 3.2: Classic Lorenz attractor (σ = 10, ρ = 28, β = 8/3): (a) A 50,000-point trajectory in
R3 generated using fourth-order Runga-Kutta with a time step of 1

64 . (b) A time-series trace of
the x coordinate of that trajectory. (c) A 3D projection of a delay-coordinate embedding of the
trajectory in (b) with dimension m = 5 and delay τ = 12.

3.1.2 Lorenz 63

The now canonical Lorenz-63 model was introduced by Lorenz in 1963 as a first example of

“Deterministic Nonperiodic Flow,” what is now known as chaos.1 Lorenz 63 is defined by a set of

three first-order differential equations system [71]

ẋ = σ(y − x) (3.2)

ẏ = x(ρ− z)− y (3.3)

ż = xy − βz (3.4)

with the typical chaotic parameter selections: σ = 10, ρ = 28, and β = 8/3. Figure 3.2(a) shows a

50,000-point trajectory in R3 generated using fourth-order Runga-Kutta on those equations with

a time step of T = 1
64 , as well as a time-series trace of the x coordinate of that trajectory—

Figure 3.2(b)—and a 3D projection of a delay-coordinate embedding of that trace with dimension

m = 5 and delay τ = 12, Figure 3.2(c). This canonical example is used in Chapter 5 to establish

an explanation of why ro-LMA is able to get traction even though it works with a reconstruction

that does not meet the theoretical conditions of an embedding. Table 3.2 tabulates the estimated

and theoretical embedding parameter values for this system.

1 Although Lorenz did not coin this term.
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m-fnn τ m-Embedology m-Takens

5 174 ≈ 5 7

Table 3.2: Estimated and theoretical embedding parameter values for the Lorenz 63 model, chosen
as described in the caption of Table 3.1.

3.2 Experimental Case Studies

Validation with synthetic data is an important first step in evaluating any new theory, as it

provides a controlled, well-defined and well-understood environment. However, these are luxuries,

rarely if ever afforded to an experimentalist. Furthermore, experimental data often misbehaves

more—and in different ways—than synthetic data. For these reasons, it is vital to test a method

with experimental time-series data if one is interested in real-world applications.

3.2.1 Computer Performance

As has been established in prior work by our group, it is highly effective to treat computers

as nonlinear dynamical systems [6,36–38,40–42,83,84]. In this view, register and memory contents

and physical variables like the temperature of different regions of the processor chip define the state

of the system. The logic hardwired into the computer, combined with the software executing on

that hardware, defines the dynamics of the system. Under the influence of these dynamics, the state

of the processor moves on a trajectory through its high-dimensional state space as the clock cycles

progress and the program executes. Like Lorenz-96, this system has been shown to exhibit a range

of interesting deterministic dynamical behavior, from periodic orbits to low- and high-dimensional

chaos [6,83], making it a good test case for this thesis. It also has important practical implications;

these dynamics, which arise from the deterministic, nonlinear interactions between the hardware

and the software, have profound effects on execution time and memory use.
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3.2.1.1 Theoretical Description

For the purposes of this thesis, I will consider a “stored-program computer,” i.e., a standard

von Neumann architecture, as a deterministic nonlinear dynamical system. In a stored-program

computer, the current state—both instructions and data—are stored in some form of addressable

memory. The contents of this memory are, as established in [83], the state space X of the computer.

Other components of the computer, such as external memory and video cards, also play roles in

its state. Those roles depend on the decisions made by the computer designers—how things are

implemented and connected—almost all of which are proprietary. In order to distinguish known

and unknown effects, I follow [83] and define the state space X as a composition of the addressable

memory elements ~m and the unknown implementation variables ~u:

X = {~ξ | ~ξ = [~m, ~u]} (3.5)

The distinction between ~m and ~u is important because the dynamics of a running computer have

two distinct sources: a map ~Fcode that acts on the addressable memory ~m directly, as dictated

by the program instructions, and a map ~Fimpl that captures how the implementation affects the

evolution of the computer state. The overall dynamics of the computer—that is, the mapping from

its state at the jth clock cycle to its state at the j + 1st clock cycle—is a composition of these two

maps:

~ξ(tj+1) = Φ(~ξ(tj)) = ~FP (~ξ(tj)) = ~Fimpl ◦ ~Fcode(~ξ(tj)) (3.6)

where ~FP is the performance dynamics of the computer. An improved design for the processor,

for instance—that is, a “better” ~FP—is a change in ~Fimpl. The form of the map ~Fcode is dictated

by the combination of the computer’s formal specification (x86 64, for the Intel i7 used in the

experiments here) and the software that it is running. Both ~Fimpl and ~Fcode are nonlinear and

deterministic, and their composed dynamics must be modeled together in order to predict future

computer performance.

The framework outlined in the previous paragraph lets me use the methods of nonlinear
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dynamics—in particular, delay-coordinate embedding—to model ~FP , as long as I observe those

dynamics in a way that satisfies the associated theorems (see Section 2.1.1). The hardware per-

formance monitor registers (HPMs) that are built into modern processors can be programmed to

count events on the chip: the total number of instructions executed per cycle (IPC), for instance,

or the total number of references to the data cache. These are some of the most widely used and

salient metrics in the computer performance analysis literature [3, 66, 81, 86, 104]. IPC is a good

proxy for processor efficiency because most modern microprocessors can execute more than one

instruction per clock cycle. While this metric may not be an element of the state vector ~ξ, the

fundamental theorems of delay-coordinate embedding only require that one measures a quantity

that is a smooth, generic function of at least one state variable. It was shown in [6] that the trans-

formation performed by the HPMs in sampling the state2 ~ξ is indeed smooth and generic unless

those registers overflow—an unlikely event, given that they are 64 bits long and that I read them

every 100, 000 instructions.

The choice of that sample interval is important for another reason as well. The HPMs are part

of the system under study, so accessing them can disturb the very dynamics that they are sampling.

This potential observer problem was addressed in [84] by varying the sample interval and testing

to make sure that the sampling was not affecting the dynamics. To further reduce perturbation,

the measurement infrastructure used to gather the data for the experiments reported here only

monitors events when the target program is running, and not when the operating system (or the

monitoring tool itself) have control of the microprocessor. I have completed a careful examination

of the impact of interrupt rate on prediction results that corroborates the discussion above; these

results are reported in [37]. Finally, I follow best practices from the computer performance analysis

community [43] when measuring the system: I only use local disks and limit the number of other

processes that are running on the machine (i.e., Linux init level 1).

The next section describes the experimental observation of this system and the different

choices of ~Fcode. For an in-depth description of this custom-measurement infrastructure, including

2 This process entails subtracting successive HPM readings, checking for overflow and adjusting accordingly.
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Figure 3.3: (Left) Time-series data from a computer performance experiment: processor load
traces, in the form of instructions executed per cycle (IPC) of a simple program (col major) that
repeatedly initializes a 256 × 256 matrix. Each point is the average IPC over a 100,000 instruction
period. (Right) A 3D projection of a 12D embedding of this time series.

a deeper discussion of the implications of the sampling interval, please see [6, 37,83,84].

3.2.1.2 Experimental methods

The computer performance time-series data sets for the experiments presented in this thesis

were collected on an Intel Core R© i7-2600-based machine running the 2.6.38-8 Linux kernel. I also

carried out experiments on an Intel Core2 Duo. Those Core2 results, reported in [36] but omitted

here, are consistent with the results reported in this dissertation. This i7 microprocessor chip has

eight processing units, a clock rate of 3.40 GHz, and a cache size of 8192 KB. The experiments in this

thesis involve performance traces gathered during the execution of several different programs, begin-

ning with the simple col major loop whose performance is depicted in the left panel of Figure 3.3,

as well as a more-complex program from the SPEC 2006CPU benchmark suite (403.gcc) [54]. In

addition, I also carried out careful analysis of standard computer performance benchmarks pro-

grams such as 482.sphinx [54], linear algebra software from LAPACK (Linear Algebra PACKage)

such as dgesdd and dgeev [8] and row major (the row-major analogue of col major). Many of

these experiments are omitted here for brevity; please see [36,37,40,41] for these companion results.

I select col major and 403.gcc from this larger constellation of experiments for the discussion in

my thesis because they are informative in their own right and representative of the other results I



58

encountered; col major is a simple highly-structured chaotic time series, while 403.gcc is a chaotic

time series where almost all structure has been consumed by noise.

In all of these experiments, the scalar observation xj is a measurement of the processor

performance at time j during the execution of each program. To record these measurements, I use

the libpfm4 library, via PAPI (Performance Application Programming Interface) 5.2 [16], to stop

program execution at 100,000-instruction intervals—the unit of time in these experiments—and

read off the contents of the CPU’s onboard hardware performance monitors, which I programmed

to count how many instructions are executed in each clock cycle(IPC). I also recorded and analyzed

other metrics including total L2 cache misses, missed branch predictions, and L2 instruction cache

hits. Description of these metrics, as well as corresponding analysis, are published in [36, 37]. In

this thesis, I only report results on IPC, as it is representative of all of these results. For statistical

validation, I collect 15 performance traces from each of the programs. These traces, and the

processes that generated them, are described in more depth in the rest of this section.

col major is a simple C program that repeatedly initializes the upper triangle of a 2048 ×

2048 matrix in column-major order by looping over the following three lines of code:

for ( i =0; i <2048; i++)

for ( j=i ; j <2048; j++)

data [ j ] [ i ] = 0 ;

As mentioned in Chapter 1 and shown in Figure 3.3, this simple program exhibits surprisingly

complicated behavior. I also collected data from the row-major analogue to col major. These

time series were very different than col major, but the forecasting results were largely the same,

so they are omitted here but can be found in [36,40].

The SPEC CPU2006 benchmark suite [54] is a collection of complicated programs that are

used in the computer-science community to assess and compare the performance of different com-

puters. 403.gcc is a member of that suite. It is a compiler: a program that translates code written

in a high-level language (C, in the case of 403.gcc) into a lower-level format that can be executed



59

time (instructions × 100,000) ×10
4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

in
st
ru
ct
io
n
s
p
er

cy
cl
e

0

0.5

1

1.5

2

2.5

3

0
1

xi+τ

2
0

1

xi

2

0

2

1

x
i+

2τ

Figure 3.4: Processor load traces (IPC) of the SPEC benchmark 403.gcc. Each point is the average
IPC in a 100,000 instruction period.

by the processor chip. Its behavior is far more complicated than that of col major, as is clear from

Figure 3.4. Unlike col major, where the processor utilization is quite structured, the performance

of 403.gcc appears almost random. In addition to 403.gcc, I also studied 482.sphinx from this

benchmark suite: a speech-recognition tool [54]. 482.sphinx and the associated results are covered

in more depth in [37,40].

Table 3.3 tabulates the estimated embedding parameters for col major and 403.gcc. Notice

that because these dynamical systems are not understood from a theoretical perspective, i.e., the

governing equations or knowledge of the state space dimension are unknown, I must rely on the

heuristics presented in Section 2.1.3. I should note that it has been estimated that the state space of

these systems is at least 232 dimensions [83], which would mean that m-Takens> 233. However, the

same paper suggests the actual fractal dimension of these dynamics are much smaller, due in part

to standard programming and design principles, which have the effect of reducing the dimension of

the dynamics, and that m-Embedology is probably less that ten.

m-fnn τ m-Embedology m-Takens

col major 12 2 ∗∗ **
403.gcc 13 10 ∗∗ **

Table 3.3: Estimated embedding parameter values for the computer performance experiments.
τ and m-fnn chosen as in Table 3.1. m-Embedology and m-Takens are not provided as these
dimensions are unknown for a experimental system like this one.



Chapter 4

Prediction in Projection

In this chapter, I demonstrate that the accuracies of forecasts produced by ro-LMA—Lorenz’s

method of analogues, operating on a two-dimensional time-delay reconstruction of a trajectory

from a dynamical system—are similar to, and often better than, forecasts produced by fnn-LMA,

which operates on an embedding of the same dynamics. While the brief example in Chapter 1

is a useful first validation of that statement, it does not support the kind of exploration that is

necessary to properly evaluate a new forecast method, especially one that violates the basic tenets

of delay-coordinate embedding. The SFI dataset A is a single trace from a single system—and a

low dimensional system at that. My goal in this chapter is to show that ro-LMA is comparable to or

better than fnn-LMA for a range of systems and parameter values—and to repeat each experiment

for a number of different trajectories from each system. This exploration serves as an experimental

validation of the central premise of this thesis. And of course, any discussion of new forecasting

strategies is incomplete without a solid comparison with traditional methods. To this end, I present

results for two dynamical systems, one simulated and one real: the Lorenz-96 model and sensor

data from a laboratory experiment on computer performance dynamics. I produce ro-LMA forecasts

of these systems and compare them to forecasts using the four traditional strategies presented in

Section 2.3.
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4.1 A Synthetic Example: Lorenz-96

In this example, I perform two sets of forecasting experiments with ensembles of traces from

the Lorenz-96 model [73], introduced in Section 3.1.1: one with K = 22 and the other with K = 47.

4.1.1 Comparing ro-LMA and fnn-LMA

As I will illustrate in the following discussion, both ro-LMA and fnn-LMA worked quite well

for the K = 22 dynamics. See Figure 4.1(a) for a time-domain plot of an ro-LMA forecast of a

representative trace from this system and Figures 4.1(b) and (c) for graphical representations of

the forecast accuracy on that trace for both methods. In Figures 4.1(b) and (c), the vertical axis

is the prediction pj and the horizontal axis is the true continuation cj . On this type of plot, a

perfect prediction would lie on the diagonal. The diagonal structure on the pj vs. cj plots in

the Figure indicates that both of these LMA-based methods perform very well on this trace. More

importantly—from the standpoint of evaluation of my primary claim—the LMA forecasting strategy

worked better on a two-dimensional reconstruction of these dynamics than on a full embedding,

and by a statistically significant margin: the 1-MASE scores1 of ro-LMA and fnn-LMA forecasts,

computed following the procedures described in Section 2.4, are 0.391 ± 0.016 and 0.441 ± 0.033,

respectively, across the 330 traces at this parameter value. This is somewhat startling, given that

the two-dimensional delay reconstruction used by ro-LMA falls far short of the requirement for

topological conjugacy [99] in this system. Clearly, though, it captures enough structure to allow

LMA to generate good predictions.

The K = 47 case is a slightly different story: here, ro-LMA still outperforms fnn-LMA, but not

by a statistically significant margin. The 1-MASE scores across all 329 traces were 0.985 ± 0.047

and 1.007 ± 0.043 for ro-LMA and fnn-LMA, respectively. In view of the higher complexity of the

state-space structure of the K = 47 version of the Lorenz-96 system, the overall increase in 1-

MASE scores over the K = 22 case makes sense. Recall that dKY is far higher for the K = 47 case:

1 one-step ahead Mean Absolute Scaled Error
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(a) 2,500-point forecast using the reduced-order forecast method ro-LMA. Blue circles and red ×s are the
true and predicted values, respectively; vertical bars show where these values differ.
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(b) ro-LMA forecast
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(c) fnn-LMA forecast

Figure 4.1: ro-LMA and fnn-LMA forecasts of a representative trace from the Lorenz-96 system with
K = 22 and F = 5. Top: a time-domain plot of the first 2,500 points of the ro-LMA forecast.
Bottom: the predicted (pj) vs true (cj) values for forecasts of that trace generated by (b) ro-LMA

and (c) fnn-LMA. On such a plot, a perfect prediction would lie on the diagonal. The 1-MASE
scores of the forecasts in (b) and (c) were 0.392 and 0.461, respectively.

this attractor fills more of the state space and has many more manifolds that are associated with

positive Lyapunov exponents.
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This has obvious implications for predictability. Since I use the same traces for both methods,

one might be tempted to think that the better performance or ro-LMA is a predictable consequence

of data length—simply because filling out a higher-dimensional object like the reconstruction used

by the fnn-LMA model requires more data. When I re-run the experiments with longer traces, the

1-MASE scores for ro-LMA and fnn-LMA did converge, but not until the traces are over 106 points

long, and at the (significant) cost of near-neighbor searches in a space with many more dimensions.

Note, too, that the longer delay vectors used by fnn-LMA span far more of the training set, which

at first glance would seem to be a serious advantage from an information-theoretic standpoint

(although, as shown later in Section 5.1, this is not always an advantage). In view of this, the

comparable performance of ro-LMA is quite impressive. All of these issues are explored at more

length in Section 4.3.

4.1.2 Comparing ro-LMA with Traditional Linear Methods

For the K = 22 time series, the LMA-based methods do significantly better than the näıve

and ARIMA methods and about twice as well as the random walk method and this makes sense.

Each point in the time series of Figure 4.1(a) is very close to its predecessor and successor, which

plays to the strengths of random walk. In contrast, the oscillations of the signal and the inertia of

the mean make the näıve method ineffective. The fact that the LMA-based methods outperform the

random walk at all, let alone twice as well, is quite impressive. Successive points of this signal are so

close together that it is really an ideal candidate for random walk forecasting, leaving little room for

another method to be more successful. However, both of the LMA-based techniques successfully

meet this challenge: about 2.5 times and 1.8 times better than random walk, respectively, for

ro-LMA and fnn-LMA. See Figures 4.1(b) and 4.1(c) for a visual comparison.

K = 47 is a very similar story; all of the LMA-based methods outperform näıve and ARIMA

by several orders of magnitude for the same reasons discussed in the previous paragraph. The

comparison between the LMA methods and random walk is more interesting. Both ro-LMA and

fnn-LMA MASE scores are almost identical to those of random walk forecasts. For the reasons
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Table 4.1: The average 1-MASE scores of all four forecast methods for the two ensembles of Lorenz-
96 time series.

Parameters ro-LMA fnn-LMA ARIMA näıve

{K = 22, F = 5} 0.391± 0.016 0.441± 0.033 17.031± 0.310 17.006± 0.233
{K = 47, F = 5} 0.985± 0.047 1.007± 0.043 18.330± 0.583 17.768± 0.765

discussed above, this is not surprising; random walk is very well suited for this signal leaving a very

small margin to be outperformed. Table 4.1 compares the forecast accuracy of all Lorenz-96 time

series with each of the methods discussed above.

4.2 Experimental Data: Computer Performance Dynamics

Validation with synthetic data is an important first step in evaluating any new forecast strat-

egy, but experimental time-series data are the acid test if one is interested in real-world applications.

My second set of tests of ro-LMA, and comparisons of its accuracy to that of traditional forecast

strategies, involves data from the laboratory experiment on computer performance dynamics that

was introduced in Section 3.2.1.

I have tested ro-LMA on traces of many different processor and memory performance metrics

gathered during the execution of a variety of programs on several different computers (see e.g.,

[35–37, 40, 41]). Here, for conciseness, I focus on processor performance traces from two different

programs, one simple (col major) and one complex (403.gcc), running on the same Intel i7-based

computer. As discussed in Section 3.2.1, computer performance dynamics result from a composition

of hardware and software. These two programs represent two different dynamical systems, even

though they are running on the same computer. The dynamical differences are visually apparent

from the traces in Figures 3.3 and 3.4; they are also mathematically apparent from nonlinear time-

series analysis of embeddings of those data [83], as well as in calculations of the information content

of the two signals. Among other things, 403.gcc has much less predictive structure than col major

and is thus much harder to forecast [41]. These attributes make this a useful pair of experiments



65

Figure 4.2: Predicted (pj) versus true values (cj) for col major and 403.gcc generated with four
of the forecast methods considered in this thesis.

for an exploration of the utility of reduced-order forecasting.

For statistical validation, I collect 15 performance traces from the computer as it ran each

program, calculated embedding parameters as described in Section 2.1.1, and generated forecasts

of each trace using ro-LMA and the traditional methods outlined in Section 2.3. Figure 4.2 shows

some representative examples. Recall that on such a plot, a perfect prediction would lie on the

diagonal. Horizontal lines result when a constant predictor (e.g., näıve) is used on a non-constant

signal. In the case of Figure 4.2, fnn-LMA and ro-LMA both generate very accurate predictions

of the col major trace, while ARIMA does not. Note that the shape of Figure 4.2(b) (ARIMA

on col major) is reminiscent of the projected embedding in the right panel of Figure 3.3. This

structure is also present in a pj vs. cj plot of a random-walk forecast (not shown) on this same

signal. Indeed, for a random-walk predictor, a pj vs. cj plot is technically equivalent to a two-

dimensional embedding with τ = 1. For ARIMA, the correspondence is not quite as simple, since

the pj values are linear combinations of a number of past values of the cj , but the effect is largely

the same.

The 1-MASE scores for ro-LMA and fnn-LMA across all 15 trials in this set of experiments
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Table 4.2: The average 1-MASE scores of all four forecast methods for the 15 trials of col major

and 403.gcc.

Signal fnn-LMA MASE ro-LMA MASE ARIMA MASE näıve MASE

col major 0.050± 0.002 0.0625± 0.0032 0.599± 0.211 0.571± 0.002
403.gcc 1.530± 0.021 1.4877± 0.016 1.837± 0.016 0.951± 0.001

were 0.050±0.002 and 0.063±0.003, respectively; ARIMA scored much worse (0.599±0.211). This

difference in performance is not surprising; the col major time series contains plenty of nonlinear

structure that the LMA-based methods can capture and utilize, whereas ARIMA can not. These

1-MASE scores mean that both fnn-LMA and ro-LMA perform roughly 20 times better on col major

than a random-walk predictor, while ARIMA only outperform random walk by a factor of 1.7. This

is in accordance with the visual appearance of the corresponding images in Figure 4.2. For 403.gcc,

however, ro-LMA is somewhat more accurate: 1-MASE scores of 1.488 ± 0.016 versus fnn-LMA’s

1.530±0.021. Note that the 403.gcc 1-MASE scores are higher for both forecast methods than for

col major, simply because the 403.gcc signal contains less predictive structure [41]. This actually

makes the comparison somewhat problematic, as discussed at more length in Section 4.3.

Comparing ro-LMA to the the näıve method is illustrative. ro-LMA does significantly better

on all signals but 403.gcc. This is reassuring as 403.gcc has very high complexity, almost no

redundancy, and very little predictive structure [41]. With signals like this, simple forecast methods

that do not rely on predictive structure tend to do very well; this is discussed in more depth in

Chapter 6.

Table 4.2 summarizes all of the computer performance experiments presented in this dis-

cussion. Overall, these results are consistent with the Lorenz-96 example in the previous section:

prediction accuracies of ro-LMA and fnn-LMA are quite similar on all traces, despite the former’s

use of a theoretically incomplete reconstruction. This amounts to a validation of the conjecture

on which this thesis is based. And in both numerical and experimental examples, ro-LMA actually

outperform fnn-LMA on the more-complex traces (403.gcc, K = 47). I believe that this is due to

the noise mitigation that is naturally effected by a lower-dimensional reconstruction.
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4.3 Time Scales, Data Length and Prediction Horizons

In this Section, I explore the effects of the values of the τ parameter (Section 4.3.1), predic-

tion horizon (Section 4.3.2) and data length (Section 4.3.3) on ro-LMA. For the remainder of this

chapter, I discontinue comparing ro-LMA to traditional linear methods, as that comparison would

not add anything to the discussion, and instead focus on the direct comparison between ro-LMA

and fnn-LMA.

4.3.1 The τ Parameter

The embedding theorems require only that τ be greater than zero and not a multiple of any

period of the dynamics. In practice, however, τ can play a critical role in the success of delay-

coordinate reconstruction—and any nonlinear time-series analysis that follows [33, 38, 59, 95]. It

follows naturally, then, that τ might affect the accuracy of an LMA-based method that uses the

structure of a time-delay reconstruction to make forecasts.

Figure 4.3 explores this effect in more detail. Across all τ values, the 1-MASE of col major

was generally lower than the other three experiments—again, simply because this time series has

more predictive structure. The K = 22 curve is generally lower than the K = 47 one for the

same reason, as discussed at the end of the previous section. For both Lorenz-96 traces, prediction

accuracy increases monotonically with τ . It is known that increasing τ can be beneficial for longer

prediction horizons [59]. The situation in Figure 4.3 involves short prediction horizons, so it makes

sense that my observations are consistent with the contrapositive of that result.

For the experimental traces, the relationship between τ and 1-MASE score is less simple.

There is only a slight upward overall trend (not visible at the scale of the Figure) and the curves

are nonmonotonic. This latter effect is likely due to periodicities in the dynamics, which are very

strong in the col major signal (viz., a dominant unstable period-three orbit in the dynamics,

which traces out the top, bottom, and middle bands in Figure 3.3). Periodicities can cause obvious

problems for delay reconstructions—and forecast methods that employ them—if the delay is a
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(a) ro-LMA on Lorenz-96 with K = 22.
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(b) ro-LMA on Lorenz-96 with K = 47.
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(c) ro-LMA on col major.
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(d) ro-LMA on 403.gcc.

Figure 4.3: The effect of τ on ro-LMA forecast accuracy. The blue dashed curves are the average
1-MASE of the ro-LMA forecasts; the red dotted lines show ± the standard deviation. The black
vertical dashed lines mark the τ that is the first minimum of the mutual information curve for each
time series.

harmonic or subharmonic of their frequencies, simply because the coordinates of the delay vector

are not independent samples of the dynamics. It is for this reason that Takens mentions this

condition in his original paper. Here, the effect of this is an oscillation in the forecast accuracy vs.

τ curve: low when it is an integer multiple of the period of the dominant unstable periodic orbit in

the col major dynamics, for instance, then increasing with τ as more independence is introduced

into the coordinates, then falling again as τ reaches the next integer multiple of the period, and so

on.

This naturally leads to the issue of choosing a good value for the delay parameter. Recall

that all of the experiments reported so far used a τ value chosen at the first minimum of the

mutual information curve for the corresponding time series. These values are indicated by the

black vertical dashed lines in Figure 4.3. This estimation strategy was simply a starting point,

chosen here because it is arguably the most common heuristic used in the nonlinear time-series
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(a) ro-LMA forecast (MASE = 0.985, default τ)
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(b) ro-LMA forecast (MASE = 0.115, best-case τ)

Figure 4.4: Time-domain plots of ro-LMA forecasts of a K = 47 Lorenz-96 trace with default and
best-case τ values: (a) the first minimum of the time-delayed average mutual information and (b)
the minimum of Figure 4.3(b).

analysis community. As is clear from Figure 4.3, though, it is not the best way to choose τ for

reduced-order forecast strategies. Only in the case of col major is the τ value suggested by the

mutual-information calculation optimal for ro-LMA—that is, does it fall at the lowest point on the

1-MASE vs. τ curve.

This suggests that one can often improve the performance of ro-LMA simply by choosing a

different τ—i.e., by adjusting the one free parameter of that reduced-order forecast method. In

all cases (aside from col major, where the default τ was the optimal value), adjusting τ allow

ro-LMA to outperform fnn-LMA. The improvement can be quite striking: for visual comparison,

Figure 4.4 shows ro-LMA forecasts of a representative K = 47 Lorenz-96 trace using default and

best-case values of τ . However, that comparison is not really fair. Recall that the embedding

that is used by fnn-LMA, as defined so far, fixes τ at the first minimum of the average mutual

information for the corresponding trace. It may well be the case that that τ value is suboptimal for

that method as well—as it was for ro-LMA. To test this, I perform an additional set of experiments

to find the optimal τ for fnn-LMA. Table 4.3 shows the numerical values of the 1-MASE scores,

for forecasts made with default and best-case τ values, for both methods and all traces. In the

two simulated examples, best-case ro-LMA significantly outperforms best-case fnn-LMA; in the two

experimental examples, best-case fnn-LMA is better, but not by a huge margin. That is, even if one
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Table 4.3: The effects of the τ parameter. The “default” value is fixed, for both ro-LMA and
fnn-LMA, at the first minimum of the average mutual information for that trace; the “best case”
value is chosen individually, for each method and each trace, from plots like the ones in Figure 4.3.

Signal ro-LMA ro-LMA fnn-LMA fnn-LMA

(default τ) (best-case τ) (default τ) (best-case τ)

Lorenz-96 K = 22 0.391± 0.016 0.073± 0.002 0.441± 0.033 0.137± 0.006
Lorenz-96 K = 47 0.985± 0.047 0.115± 0.006 1.007± 0.043 0.325± 0.020
col major 0.063± 0.003 0.063± 0.003 0.050± 0.002 0.049± 0.002
403.gcc 1.488± 0.016 1.471± 0.014 1.530± 0.021 1.239± 0.020

optimizes τ individually for these two methods, ro-LMA keeps up with, and sometimes outperforms,

fnn-LMA. Again, this supports the main point of this thesis: forecast methods based on incomplete

reconstructions of time-series data can be very effective—and much less work than those that require

a full embedding.

In view of my claim that part of the advantage of ro-LMA stems from the natural noise

mitigation effects of a low-dimensional reconstruction, it may appear somewhat odd that fnn-LMA

works better on the experimental time-series data, which certainly contain noise. Comparisons of

large 1-MASE scores are somewhat problematic, however. Recall that 1-MASE > 1 means that

the forecast is worse than an in-sample random-walk forecast of the same trace. The bottom row

of numbers in Table 4.3, then, indicate that both LMA-based methods—no matter the τ values—

generate poor predictions for 403.gcc: 24–53% worse, on the average, than simply predicting that

the next value will be equal to the previous value. There could be a number of reasons for this poor

performance. This signal has almost no predictive structure [41] and fnn-LMA’s extra axes may add

to its ability to capture that structure—in a manner that outweighs the potential noise effects of

those extra axes. The dynamics of col major, on the other hand, are fairly low dimensional and

dominated by a single unstable periodic orbit; it could be that the embedding of these dynamics

used in fnn-LMA captures its structure so well that fnn-LMA is basically perfect and ro-LMA cannot

do any better.

While the plots and 1-MASE scores in this section suggest that ro-LMA forecasts are quite
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good—better than traditional linear methods, and as good or better than LMA upon true embeddings—

it is important to note that both “default” and “best-case” τ values were chosen after the fact in

all of those experiments. This is not useful in practice. A significant advantage of a reduced-order

forecast strategy like ro-LMA is its ability to work ‘on the fly’ in situations where one may not have

the leisure to run an average mutual information calculation on a long segment of the trace and

find a clear minimum—let alone construct a plot like Figure 4.3 and choose an optimal τ from it.

(Producing that plot required 3,000 runs involving a total of 22,010,700 forecasted points, which

took approximately 44.5 hours on an Intel Core i7.)

The results that I report in Section 5.1 and in [42], however, suggest that it is possible to

estimate optimal τ values for delay reconstruction-based forecasting by calculating the value that

maximizes the information shared between each delay vector and the future state of the system.

For all of the examples in this thesis, that strategy produces the same τ value as found with the

exhaustive search mentioned above. This is a fairly efficient calculation: O(n log n) time where n

is the length of the time series. Even so, it can be onerous if n is very large. However, this measure

can be calculated on very small subsets of the time series and still produce accurate results, which

could allow τ to be selected adaptively for the purposes of forecasting nonstationary systems with

ro-LMA.

4.3.2 Prediction Horizon

There are fundamental limits on the prediction of chaotic systems. Positive Lyapunov ex-

ponents make long-term forecasts a difficult prospect beyond a certain point for even the most

sophisticated methods [41, 59, 119]. Note that the coordinates of points in higher-dimensional

delay-reconstruction spaces sample wider temporal spans of the time series. In theory, this means

that one should be able to forecast further into the future with a higher-dimensional reconstruction

without losing memory of the initial condition. This raises an important concern about ro-LMA:

whether its accuracy will degrade with increasing prediction horizon more rapidly than that of

fnn-LMA.
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Table 4.4: The h-step mean absolute scaled error (h-MASE) scores for different forecast horizons
(h). As explained in Section 2.4, h-MASE scores should not be compared for different h (i.e., down
the columns of this table).

Signal h ro-LMA ro-LMA fnn-LMA fnn-LMA

(default τ) (best-case τ) (default τ) (best-case τ)

Lorenz-96 K = 22 1 0.391± 0.016 0.073± 0.002 0.441± 0.003 0.137± 0.006
Lorenz-96 K = 22 10 0.101± 0.008 0.066± 0.003 0.062± 0.011 0.033± 0.002
Lorenz-96 K = 22 50 0.084± 0.007 0.074± 0.008 0.005± 0.002 0.004± 0.001
Lorenz-96 K = 22 100 0.057± 0.005 0.050± 0.004 0.003± 0.001 0.003± 0.001

Lorenz-96 K = 47 1 0.985± 0.047 0.115± 0.006 0.995± 0.053 0.325± 0.020
Lorenz-96 K = 47 10 0.223± 0.011 0.116± 0.005 0.488± 0.042 0.218± 0.012
Lorenz-96 K = 47 50 0.117± 0.011 0.112± 0.010 0.127± 0.011 0.119± 0.010
Lorenz-96 K = 47 100 0.075± 0.006 0.068± 0.005 0.079± 0.005 0.075± 0.004

col major 1 0.063± 0.003 0.063± 0.003 0.050± 0.002 0.049± 0.002
col major 10 0.054± 0.006 0.046± 0.003 0.021± 0.001 0.018± 0.001
col major 50 0.059± 0.009 0.037± 0.003 0.012± 0.003 0.009± 0.001
col major 100 0.044± 0.004 0.028± 0.006 0.010± 0.003 0.007± 0.001

403.gcc 1 1.488± 0.016 1.471± 0.014 1.530± 0.021 1.239± 0.020
403.gcc 10 0.403± 0.009 0.396± 0.009 0.384± 0.007 0.369± 0.010
403.gcc 50 0.154± 0.003 0.151± 0.005 0.143± 0.003 0.141± 0.003
403.gcc 100 0.101± 0.002 0.101± 0.003 0.095± 0.002 0.093± 0.002

Recall that the formulations of both methods, as described and deployed in the previous

sections of this chapter, assume that measurements of the target system are available in real time:

they “rebuild” the LMA models after each step, adding new time-series points to the embeddings

or reconstructions as they arrive. Both ro-LMA and fnn-LMA can easily be modified to produce

longer forecasts, however—say, h steps at a time, only updating the model with new observations

at h-step intervals. Naturally, one would expect forecast accuracy to suffer as h increased for any

non-constant signal. The question at issue in this section is whether the greater temporal span of

the data points used by fnn-LMA mitigates that degradation, and to what extent.

In Table 4.4, I provide h-MASE scores—with h ≥ 1 to reflect the increased prediction horizons

I am considering—for h-step versions of the different forecast experiments2 from Sections 4.1 and

4.2. The important comparisons here are, as mentioned above, across the rows of the table. The

2 For an explanation of h-MASE see Section 2.4.
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different methods “reach” different distances back into the time series to build the models that

produce those forecasts, of course, depending on their delay and dimension. At first glance, this

might appear to make it hard to sensibly compare, say, default-τ ro-LMA and best-case-τ fnn-LMA,

since they use different τs and different values of the reconstruction dimension and thus are spanning

different ranges of the time series. Because h is measured in units of the sample interval of the time

series, however, comparing one h-step forecast to another (for the same h) does make sense.

There are a number of interesting questions to ask about the patterns in this table, beginning

with the one that set off these experiments: how do fnn-LMA and ro-LMA compare if one individually

optimizes τ for each method? The numbers indicate that ro-LMA beats fnn-LMA for h = 1 on the

K = 22 traces, but then loses progressively badly (i.e., by more σs) as h grows. col major follows

the same pattern except that ro-LMA is worse even at h = 1. For 403.gcc, fnn-LMA performs

better at both τs and all values of h, but the disparity between the accuracy of the two methods

does not systematically worsen with increasing h. For K = 47, ro-LMA consistently beats fnn-LMA

for both τs for h ≤ 10 but the accuracy of the two methods is comparable for longer prediction

horizons. These results suggest that optimizing τ can improve both fnn-LMA and ro-LMA and that,

depending on the signal, this optimization can change the relative accuracy of the two methods.

This finding catalyzed the development of the forecast-specific parameter selection framework that

is outlined in Section 5.1 and [42].

Another interesting question is whether the assertions in the previous section stand up to

increasing prediction horizon. Those assertions are based on the results that appear in the h = 1

rows of Table 4.4: ro-LMA was better than fnn-LMA on the K = 22 Lorenz-96 experiments, for

instance, for both τ values. This pattern does not persist for longer prediction horizons: rather,

fnn-LMA generally outperforms ro-LMA on the K = 22 traces for h = 10, 50, and 100. The h = 1

comparisons for K = 47 and col major do generally persist for higher h, however. As mentioned

before, 403.gcc is problematic because its 1-MASE scores are so high, but the accuracies of the

two methods are similar for all h > 1.

The fact that fnn-LMA generally outperforms ro-LMA for longer prediction horizons makes
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Figure 4.5: A best-case-τ ro-LMA forecast of a K = 47 Lorenz-96 trace for h = 50. The forecast
(red) follows the true trajectory (blue) for a while, falls off onto a shadow trajectory, then gets
recorrected when a new set of observations are incorporated into the model after h time steps.

sense simply because ro-LMA samples less of the time series and therefore has less ‘memory’ about

the dynamics. This is a well-known effect [119]. In view of the fundamental limits on prediction

of chaotic dynamics, however, it is worth considering whether either method is really making

correct long-term forecasts. Indeed, time-domain plots of long-term forecasts (e.g., Figure 4.5)

reveal that both fnn-LMA and ro-LMA forecasts have fallen off the true trajectory and onto shadow

trajectories—another well-known phenomenon when forecasting chaotic dynamics [98].

In other words, it appears that even a 50-step forecast of these chaotic trajectories is a

tall order: i.e., that I am running up against the fundamental bounds imposed by the Lyapunov

exponents. In view of this, it is promising that ro-LMA generally keeps up with fnn-LMA in many

cases—even when both methods are struggling with the prediction horizon, and even though the

model that ro-LMA uses has much less memory about the past history of the trajectory. An

important aspect of my future research on this topic will be developing efficient methods for deriving

bounds on reasonable prediction horizons purely from the time series, i.e., without using traditional

methods such as Lyapunov exponents, which are difficult to estimate from experimental data.

See [42] for some of my preliminary results on this line of research.



75

4.3.3 Data Length

Most real-world data sets are fixed in length and some are quite short. Moreover, many

of the dynamical systems that one might like to predict are nonstationary. For these reasons, it

is important to understand the effects of data length upon forecast methods that employ delay

reconstructions. For the reconstruction to be an actual embedding that supports accurate calcula-

tions of dynamical invariants, the data requirements are fairly dire. Traditional estimates (e.g., by

Smith [106] and by Tsonis et al. [116]) suggest that ≈ 1017 data points would be required to embed

the Lorenz-96 K = 47 data in Section 4.1, where the known dKY values [61] indicate that one might

need at least m = 38 dimensions to properly unfold the dynamics. As described in Section 2.1.1,

however, that is only truly necessary if one is interested in preserving the diffeomorphism between

true and reconstructed dynamics, down to the last detail. For the purposes of prediction, thank-

fully, one can make progress with far less data. For example, Sauer [98] successfully forecasted the

continuation of a 16,000-point time series using a 16-dimensional embedding; Sugihara & May [112]

used delay-coordinate embedding with m as large as seven to successfully forecast biological and

epidemiological time-series data as short as 266 points.

While the results in the previous sections are based on far longer traces than the examples

mentioned at the end of the previous paragraph, it is still worth exploring whether data-length

issues are affecting those results—and evaluating whether those effects differentially impact ro-LMA

because of its lower-dimensional model. This kind of test can be problematic in practice, of course,

since it requires varying the length of the data set. In a synthetic example like Lorenz-96, that is

not a problem, since one can just run the ODE solver for more steps.

Figure 4.6 shows 1-MASE scores for ro-LMA and fnn-LMA forecasts of the Lorenz-96 system

as a function of data length. For both K = 22 and K = 47, the fnn-LMA error is higher than

the ro-LMA error, corroborating the results in the previous sections. Both generally improve with

data length, as one would expect—but only up to a point. The 1-MASE scores of the ro-LMA

forecasts, in particular, reach a plateau at about 350,000 points in the K = 22 case and 150,000
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tions of the Lorenz-96 K = 47, F = 5 traces.

Figure 4.6: The effects of data length on forecast error for fixed prediction horizon h = 1. The
dashed lines show the mean forecast error for each method; the dotted lines indicate the range of
the standard deviation.

in the K = 47 case. fnn-LMA, on the other hand, keeps improving out to the end of the Figure.

Eventually, there is a crossover for K = 22, but not until 1.6 million points. For K = 47, the curves

are still converging out to 4 million points. The difference in crossover points is not surprising,

given that the dimension of the K = 47 dynamics is so much higher: dKY <≈ 3, versus ≈ 19. What

is surprising, and useful, is that for traces with 1 million points—far more data than a practitioner

can generally hope for—ro-LMA is still outperforming fnn-LMA. Moreover, it is doing so using fewer

dimensions, which makes it computationally efficient.

Plateaus in curves like the ones in Figure 4.6 suggest that the corresponding forecast method

has captured all of the information that it can use, so that adding data does not improve the forecast.

This effect, which is described at more length in Section 5.1, depends on dimension for the obvious

reason that filling out a higher-dimensional object requires more data. This suggests another piece

of forecasting strategy: when one is data-rich, it may be wise to choose fnn-LMA over ro-LMA. In

making this choice, though, one should also consider the added computational complexity, which

will be magnified by the longer data length. When data are not plentiful, though, or the system is

nonstationary, my results suggest that it is advantageous to ignore the theoretical bounds of [99]

and use low-dimensional reconstructions in forecast models.
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4.4 Summary

In summary, it appears that incomplete embeddings—time-delay reconstructions that do not

satisfy the formal conditions of the embedding theorems—are indeed adequate for the purposes of

forecasting dynamical systems. Indeed, they appear to offer simple state-space based methods even

more traction on this prediction task than full embeddings, with greatly reduced computational

effort.

The study in this thesis specifically focuses on the 2D instantiation of the claim above, for

two reasons. First, that is the extreme that, in a sense, most seriously violates the basic tenets of

the delay-coordinate embedding machinery; second, working in 2D enables the largest reduction

in the cost of the near-neighbor searches that are the bulk of the computational effort in most

state space-based forecast methods. A number of other issues arise when one considers increasing

the reconstruction dimension beyond two, besides raw computational complexity. Among other

things, that would introduce another free parameter into the method, thereby requiring some sort

of principled strategy for choosing its value (a choice that ro-LMA completely avoids by fixing

m = 2). In general, one would expect forecast accuracy to improve with the number of dimensions

in the reconstruction, but not without limit. Among other things, noise effects grow with that

dimension (simply because every noisy data point affects m points in the reconstructed trajectory).

And from an information-theoretic standpoint, one would expect diminishing returns when the

span of the delay vector (m× τ) exceeds the “memory” of the system. For all of those reasons, it

would seem that there should be a plateau beyond which increasing the reconstruction dimension

does not improve the accuracy of a forecast methods that use the resulting models. I explore

that issue further in [42] and synopsize the relevant material in Section 5.1. In that discussion, I

use the measure mentioned in the last paragraph of Section 4.3.1 to derive optimal reconstruction

dimensions for near-neighbor forecasting for a broad range of systems, noise levels, and forecast

horizons—all of which turn out to be m = 2. In the bulk of the dynamical systems literature

on forecasting, however, the optimal reconstruction dimension for the purposes of forecasting was
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thought to be near the value that provides a true embedding of the data. The results in this thesis

suggest, again, that this is not the case.

I chose the classic Lorenz method of analogues as a good exemplar of the class of state space-

based forecast methods, but I believe that my results will hold for other members of that class

(e.g., [23, 93, 98, 107, 112, 119]). Working with a low-dimensional reconstruction could potentially

reduce the computational search and storage costs of any such method, while also avoiding the

so-called “curse of dimensionality” and mitigating noise multipliers caused by extra embedding

dimensions [24]. Reduced-order reconstructions also reduces data requirements, since fewer points

are required to fill out a lower-dimensional object. And when one fixes m = 2, there is only a

single free parameter τ in the method—one that can be estimated effectively from a short sample

of the data set, allowing the reduced-order method to adapt to nonstationary dynamics. There may

be some limitations on the class of methods for which these claims hold, of course; matters may

get more complicated, and the results less clear, for forecast methods that perform other kinds of

projections. On the flip side, however, my results can be viewed as explaining why those methods

work so well.

Again, no forecast model will be ideal for all noise-free deterministic signals, let alone all real-

world time-series data sets. However, the proof of concept offered in this section is encouraging:

prediction in projection—a simple yet powerful reduction of a time-tested method—appears to

work remarkably well, even though the models that it uses are not necessarily topologically faithful

to the true dynamics.



Chapter 5

Why it Works: A Deeper Understanding of Delay-Coordinate Reconstruction

The experimental validation of ro-LMA provided in Chapter 4 is promising but that analysis

gave rise to several unanswered questions, e.g.,

• Why does ro-LMA work when it is effectively a heresy?,

• If m = 2 works so well, why not m = 3?,

• How much data is necessary before m > 2 is the clear winner over higher-dimensional

reconstructions?,

• If one wants to forecast two or three steps into the future, is m = 2 still efficient, or should

m be increased?,

• Can τ be chosen a priori to optimize the accuracy of ro-LMA?, and

• Can all of these questions be answered strictly by analyzing the data?

This chapter provides a two-part analysis that answers many of these questions. The first part

leverages information theory to select forecast-optimal parameters for delay-coordinate reconstruc-

tion. The second borrows methods from computational topology to gain new insight into the

delay-coordinate embedding theory and machinery.

These two theoretical frameworks—information theory and computational topology—are

mathematically disjoint but complementary in terms of developing a complete theory of reconstruction-

based forecasting. In particular, the combination of these two tools allows, for the construction of
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a new paradigm in delay-coordinate reconstruction. Section 5.1 offers a novel method, developed

in collaboration with R. G. James, for leveraging the information that is stored in delay vectors to

perform parameter selection that is tailored to the exact stipulations of the data set at hand (e.g.,

data length, signal-to-noise ratio and desired forecast horizon). The traditional approach to this is

based on the assumption that the diffeomorphism instantiated by the delay-coordinate map, which

is essential for dynamical invariant calculations, is also optimal for forecasting. As the results in

Chapter 4 suggest, however, this may not be the best approach. Section 5.1 further corroborates

these findings and suggests a reason why. Section 5.2 provides a deeper theoretical understand-

ing of delay-coordinate reconstruction through computational topology, offering yet another reason

why ro-LMA works. This exploration is based on the assumption that, when forecasting, one might

only require knowledge of the topology of the invariant set; in collaboration with J. D. Meiss, I

conjecture that the reconstructed dynamics might be homeomorphic to the original dynamics at a

lower dimension than that needed for a diffeomorphically correct embedding. This suggests why

ro-LMA gets traction despite its use of an incomplete reconstruction.

The combination of these powerful mathematical tools—information theory and computa-

tional topology—allows me to construct a deeper and more complete story of reduced-order fore-

casting with delay-coordinate reconstruction.

5.1 Leveraging Information Storage to Select Reconstruction Parameters

As has been discussed throughout this thesis, the task of choosing good values for the free

parameters in delay-coordinate reconstruction has been the subject of a large and active body of

literature over the past few decades. The majority of these techniques focus on the geometry of the

reconstruction, which is appropriate when one is interested in quantities like fractal dimension and

Lyapunov exponents. It is not necessarily the best approach when one is building a delay recon-

struction for the purposes of prediction, however, as I showed in Section 4.3.1. That issue, which is

the focus of this section, has received comparatively little attention in the extensive literature on

delay reconstruction-based prediction [23,72,93,107,112,119].



81

In this section, I propose a robust, computationally efficient method that I call time delayed

active information storage, Aτ , which can be used to select parameter values that maximize the

information shared between the past and the future—or, equivalently, that maximize the reduction

in uncertainty about the future given the current model of the past [42]. The implementation

details, and a complexity analysis of the algorithm, are covered in Section 5.1.1. In Section 5.1.2, I

show that simple prediction methods working with Aτ -optimal reconstructions—i.e., constructions

using parameter values that follow from the Aτ calculations—perform better, on both real and

synthetic examples, than those same forecast methods working with reconstructions that are built

using the traditional parameter selection heuristics (time-delayed mutual information for τ and

false-near neighbors for m). Finally, in Section 5.1.3 I explore the utility of Aτ in the face of

different data lengths and prediction horizons.

5.1.1 Shared Information and Delay Reconstructions

The information shared between the past and the future is known as the excess entropy [25].

I will denote it here by E = I[
←−
X,
−→
X ], where I is the mutual information [121] and

←−
X and

−→
X

represent the infinite past and the infinite future, respectively. E is often difficult to estimate from

data due to the need to calculate statistics over potentially infinite random variables [58]. While

this is possible in principle, it is too difficult in practice for all but the simplest of dynamics [110].

In any case, the excess entropy is not exactly what one needs for the purposes of prediction, since

it is not realistic to expect to have the infinite past or to predict infinitely far into the future. For

my purposes, it is more productive to consider the information contained in the recent past and

determine how much that explains about the not-too-distant future. To that end, I define the state

active information storage

AS ≡ I[Sj , Xj+h] (5.1)

where Sj is an estimate of the state of the system at time j and Xj+h is the state of the system

h steps in the future. In the special case where the state estimate S takes the form of a standard
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m-dimensional delay vector, I will refer to AS as the time delayed active information storage

Aτ ≡ I[[Xj , Xj−τ , . . . , Xj−(m−1)τ ], Xj+h] (5.2)

Aτ can be nicely visualized—and compared to traditional methods like time-delayed mutual

information—using the I-diagrams of Yeung, introduced in Section 2.2.3. Figure 5.1(a) shows an

I-diagram of time-delayed mutual information for a specific τ . Recall that in a diagram like this,

each circle represents the uncertainty in a particular variable. The left circle in Figure 5.1(a),

for instance, represents the average uncertainty in observing Xj−τ (i.e., H[Xj−τ ]); similarly, the

top circle represents H[Xj+h], the uncertainty in the hth future observation. Also recall that each

of the overlapping regions represents shared uncertainty: e.g., in Figure 5.1(a), the shaded region

represents the shared uncertainty between Xj and Xj−τ—more precisely, the quantity I[Xj , Xj−τ ].

Notice that minimizing the shaded region in Figure 5.1(a)—that is, rendering Xj and Xj−τ as

independent as possible—maximizes the total uncertainty that is explained by the combined model

[Xj , Xj−τ ] (the sum of the area of the two circles). This is precisely the argument made by

Fraser and Swinney in [33]; see Section 2.1.2 for a full explanation. However, it is easy to see

from the I-diagram that choosing τ in this way does not explicitly take into account explanations

of the future—that is, it does not reduce the uncertainty about Xt+h. Moreover, this approach

to selecting τ does not automatically extend to higher dimensional embeddings, e.g., minimizing

I[Xj , Xj−τ ], may or may not minimize I[Xj , Xj−τ , Xj−2τ ] and in fact this extension is non-trivial;

see Section 2.2.3 for a full discussion of why this is so. The obvious next step would be to explicitly

include the future in the estimation procedure. As I discussed in Section 2.2.3, however, explicitly

including the future in the calculation i.e., I[Xj , Xj−τ , Xj+h], is not straightforward. The rest of

this section discusses some of the common interpretations of this quantity and why they are not

appropriate for the task at hand.

The interaction information [10,76] is one such interpretation of I[Xj , Xj−τ , Xj+h] depicted in

Figure 2.5(b); this is the intersection of H[Xj ], H[Xj−τ ] and H[Xj+h]. It describes the reduction in

uncertainty that the two past states, together, provide regarding the future. While this is obviously
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(b) Aτ = I[[Xj , Xj−τ ];Xj+h]

Figure 5.1: (a) An I-diagram of the time-delayed mutual information. The circles represent un-
certainties (H) in different variables; the shaded region represents I[Xj ;Xj−τ ], the time-delayed
mutual information between the current state Xj and the state τ time units in the past, Xj−τ .
Notice that the shaded region is indifferent to H[Xj+h], the uncertainty about the future. (b) An
I-diagram of Aτ , the quantity proposed in this section: I[[Xj , Xj−τ ];Xj+h]. This quantity cap-
tures the shared information between the past, present, and future independently, as well as the
information that the past and present, together, share with the future.

an improvement over the time-delayed mutual information of Figure 5.1(a), it does not take into

account the information that is shared between Xj and the future but not shared with the past (i.e.,

Xj−τ ), and vice versa. The binding information and total correlation, depicted in Figures 2.5(c)

and (d), address this shortcoming, but both also include information that is shared between the

past and the present, but not with the future. This is not terribly useful for the purposes of

prediction. Moreover, the total correlation overweights information that is shared between all three

circles—past, present, and future—thereby artificially over-valuing information that is shared in all

delay coordinates. In the context of predicting Xt+h, the provenance of the information is irrelevant

and so the total correlation also seems ill-suited to the task at hand.

Note that the total correlation has been used in a similar manner to the time-delayed mu-

tual information method in estimating τ [33]: e.g., minimizing M[Xj ;Xj−τ ;Xj−2τ ] for a three-

dimensional embedding. Minimizing the total correlation is equivalent to maximizing the entropy,
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making the delay vectors maximally informative because dependencies among the dimensions have

been minimized. While on the surface this may seem a boon to prediction, consider the issue of

predicting the state of the system at time j+τ : if the coordinates of the delay vector are maximally

independent, they will also be independent of the value being predicted. In light of this, the minimal

total correlation approach is not well aligned with the goal of prediction.

Time-delayed active information storage addresses all of the issues raised in the previous para-

graphs. By treating the generic delay vector as a joint variable, rather than a series of single vari-

ables, Aτ captures the shared information between the past, present, and future independently—the

left and right colored wedges in Figure 5.1(b)—as well as the information that the past and present,

together, share with the future (the center wedge). By choosing delay-reconstruction parameters

that maximize Aτ , then, one can explicitly maximize the amount of information that each delay

vector contains about the future [42].

That property means that Aτ can be used to select τ for ro-LMA. Specifically, to estimate a

“forecast-optimal” τ value for ro-LMA usingAτ , one would simply calculateAτ = I[[Xj , Xj−τ ], Xt+h]

for a range of τ , choosing the first maximum (i.e., minimizing the uncertainty about the hth fu-

ture observation). In Section 5.1.2, I explore that claim using ro-LMA and fnn-LMA, but that

exploration can be easily extended to any time-delayed state estimator—such as the methods used

in [23,107,112,119]—by using the general form of Aτ , viz., the state active information storage, AS .

For example, if the time series is pre-processed (e.g., via a Kalman filter [108], a low-pass filter and

an inverse Fourier transform [98], or some other local-linear transformation [23, 59, 107, 112, 119],)

the state estimator simply becomes Sj = ~̂xj where ~̂xj is the processed m-dimensional delay vector.

5.1.2 Selecting “Forecast-Optimal” Reconstruction Parameters

This section demonstrates how to use Aτ to choose parameter values for delay-coordinate

reconstructions constructed specifically for the purposes of forecasting, using several of the case

studies presented in Chapter 3. For the discussion that follows, the term “Aτ -optimal” is used

to refer to the parameter values (m and τ) that maximize Aτ over a range of m and τ . The
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general parameter selection framework is presented at first, not assuming the use of either fnn-LMA

or ro-LMA, and then the Aτ -optimal reconstructions are compared to fnn-LMA and ro-LMA. For

simplicity, in this initial discussion, forecast horizons are fixed at h = 1 for each experiment. For the

Aτ calculations, this means that Aτ = I[Sj , Xj+1], with Sj = [Xj , Xj−τ , . . . , Xj−(m−1)τ)]
T . Recall

that with one-step forecasts, 1-MASE is the figure of merit. Section 5.1.3.2 considers increasing

the prediction horizon using h-MASE, with h > 1, to assess accuracy. Section 5.1.3.1 considers the

effects of the length of the traces.

5.1.2.1 Synthetic Examples

The first step in this demonstration uses some standard synthetic examples, both maps

(Hénon, logistic) and flows: the classic Lorenz 63 system [71] and the Lorenz 96 atmospheric

model [73]. The dynamics of each of these systems are reconstructed from the traces described in

Chapter 3 using different values m and τ . Aτ is computed for each of those reconstructed trajecto-

ries using a Kraskov-Stügbauer-Grassberger (KSG) estimator [63], as described in Section 2.2.5.2.

LMA is then used to generate forecasts of every trace using each {m, τ} pair, their 1-MASE scores

are computed as described in Section 2.4, and the relationship between the 1-MASE scores and the

Aτ values for the corresponding time series are discussed.

Flow Examples

Figure 5.2(a) shows a heatmap of the Aτ values for reconstructions of a representative tra-

jectory from the Lorenz 96 system with {K = 22, F = 5}, for a range of m and τ . Not surprisingly,

this image reveals a strong dependency between the values of the reconstruction parameters and the

reduction in uncertainty about the near future that is provided by the reconstruction. Very low τ

values, for instance, produce delay vectors that have highly redundant coordinates, and so provide

substantial information about the immediate future. Again, the standard heuristics only focus on

minimizing redundancy between coordinates, choosing the τ value that minimizes the mutual in-

formation between the first two coordinates in the delay vector. For this Lorenz 96 trajectory, that

approach [33] yields τ = 26, while standard dimension-estimation heuristics [62] suggest m = 8.
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Figure 5.2: The effects of reconstruction parameter values on Aτ and forecast accuracy for the
Lorenz 96 system. (a) Aτ values for different delay reconstructions of a representative trace from
that system with {K = 22, F = 5}. (b) 1-MASE scores for LMA forecasts on different delay
reconstructions of that trace.

The Aτ value for a delay reconstruction built with those parameter values is 3.471 ± 0.051. This

is not, however, the Aτ -optimal reconstruction; choosing m = 2 and τ = 1, for instance, results

in a higher value (Aτ = 5.301± 0.019)—i.e., significantly more reduction in uncertainty about the

future. This may be somewhat counter-intuitive, since each of the delay vectors in the Aτ -optimal

reconstruction spans far less of the data set and thus one would expect points in that space to

contain less information about the future. Figure 5.2(a) suggests, however, that this in fact not the

case; rather, the uncertainty increases with both dimension and time delay.

The question at issue in this section is whether that reduction in uncertainty about the future

correlates with improved accuracy of an LMA forecast built from that reconstruction. Since the Aτ -

optimal choices maximize the shared information between the state estimator and Xj+1, one would

expect a delay reconstruction model built with those choices to afford LMA the most leverage. To

test that conjecture, I perform an exhaustive search with m = 2, . . . , 15 and τ = 1, . . . , 50. For

each {m, τ} pair, I use LMA to generate forecasts from the corresponding reconstruction, compute
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their 1-MASE scores, and plot the results in a heatmap similar to the one in Figure 5.2(a). As

one would expect, the 1-MASE and Aτ heatmaps are generally antisymmetric. This antisymmetry

breaks down somewhat for low m and high τ , where the forecast accuracy is low even though the

reconstruction contains a lot of information about the future.

I suspect that this breakdown is due to a combination of overfolding (too-large values of τ)

and projection (low m). Even though each point in an overfolded reconstruction may contain a

lot of information about the future, the false crossings created by this combination of effects pose

problems for a near-neighbor forecast strategy like LMA. The improvement that occurs if one adds

another dimension is consistent with this explanation. Notice, too, that this effect only occurs far

from the maximum in the Aτ surface—the area that is of interest if one is using Aτ to choose

parameter values for reconstruction models.

In general, though, maximizing the redundancy between the state estimator and the future

does appear to minimize the resulting forecast error of LMA. Indeed, the maximum on the surface

of Figure 5.2(b) (m = 2, τ = 1) is exactly the minimum on the surface of Figure 5.2(a). The

accuracy of this forecast is almost six times higher (1-MASE = 0.074±0.002) than that of a forecast

constructed with the parameter values suggested by the standard heuristics (0.441± 0.033). Note

that the optima of these surfaces may be broad: i.e., there may be ranges of m and τ for which Aτ

and 1-MASE are optimal, and roughly constant. In these cases, it makes sense to choose the lowest

m on the plateau, since that minimizes computational effort, data requirements, and noise effects.

Notice that in this experiment, m = 2 was actually the Aτ -optimal reconstruction dimension, and

that correspondence let me calculate the forecast optimal τ for ro-LMA without exhaustive search.

While the results discussed in the previous paragraph do provide a preliminary validation

of the claim that one can use Aτ to select good parameter values for delay reconstruction-based

forecast strategies, they only involve a single example system. Similar experiments on traces from

the Lorenz 96 system with different parameter values {K = 47, F = 5} (not shown) demonstrate

identical results—indeed, the heatmaps are visually indistinguishable from the ones in Figure 5.2.

Furthermore, for {K = 47, F = 5}, m = 2 is again the Aτ -optimal reconstruction dimension,
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Figure 5.3: The effects of reconstruction parameter values on Aτ and forecast accuracy for the
Lorenz 63 system. (a) Aτ values for different delay reconstructions of a representative trace from
that system. (b) 1-MASE scores for LMA forecasts on different delay reconstructions of that trace.

and Aτ again estimates the forecast optimal τ for ro-LMA—quickly, without exhaustive search.

Figure 5.3 shows heatmaps of Aτ and 1-MASE for similar experiments on the canonical Lorenz 63

system [71]. As in the Lorenz 96 case, the heatmaps are generally antisymmetric, confirming that

maximizing Aτ is roughly equivalent to minimizing 1-MASE. Again, though, the antisymmetry

is not perfect; for high τ and low m, the effects of projecting an overfolded attractor cause false

crossings that trip up LMA. As before, adding a dimension mitigates this effect by removing these

false crossings. Both the Lorenz 63 and Lorenz 96 plots show a general decrease in predictability

for large m and high τ , with roughly hyperbolic equipotentials dividing the colored1 regions. The

locations and heights of these equipotentials differ because the two signals are not equally easy to

predict. This matter is discussed further at the end of this section.

Numerical Aτ and 1-MASE values for LMA forecasts on different reconstructions of both

Lorenz systems are tabulated in the top three rows of Table 5.1, along with the reconstruction

parameter values that produced those results. These results bring out two important points. First,

1 Note that the color map scales are not identical across all heatmap figures in this thesis; rather, they are chosen
individually, to bring out the details of the structure of each experiment.
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Table 5.1: 1-MASE values for various delay reconstructions of the different examples studied here.
1-MASEH is the representative accuracy of LMA forecasts that use delay reconstructions with
parameter values (mH and τH) chosen via standard heuristics for the corresponding traces. Simi-
larly, 1-MASEAτ is the accuracy of LMA forecasts that use reconstructions built with the m and
τ values that maximize Aτ , and 1-MASEE is the error of the best forecasts for each case, found
via exhaustive search over the m, τ parameter space. ∗∗: on these signals the standard heuristics
failed.

Signal 1-MASEH 1-MASEAτ 1-MASEE

Parameters {mH , τH} {mAτ , τAτ } {mE , τE}

Lorenz-96 K = 22
0.441± 0.033 0.074± 0.002 0.074± 0.002

{8, 26} {2, 1} {2, 1}

Lorenz-96 K = 47
1.007± 0.043 0.115± 0.006 0.115± 0.006

{10, 31} {2, 1} {2, 1}

Lorenz 63
0.144± 0.008 0.062± 0.006 0.058± 0.005

{5, 12} {3, 1} {2, 1}

Hénon Map
∗∗ 4.46× 10−4 ± 2.63× 10−5 4.46× 10−4 ± 2.63× 10−5

{∗∗, ∗∗} {2, 1} {2, 1}

Logistic Map
∗∗ 2.19× 10−5 ± 2.72× 10−6 2.19× 10−5 ± 2.72× 10−6

{∗∗, ∗∗} {1, 1} {1, 1}

as suggested by the heatmaps, the m and τ values that maximize Aτ (termed mAτ and τAτ in the

table) are close, or identical, to the values that minimize 1-MASE (mE and τE) for all three Lorenz

systems. This is notable because—as discussed in Section 5.1.3.1—the former can be estimated

quite reliably from a small sample of the trajectory in only a few seconds of compute time, whereas

the exhaustive search that is involved in computing mE and τE for Table 5.1 required close to 30

hours of CPU time per system/parameter set ensemble. A second important point that is apparent

from Table 5.1 is that delay reconstructions built using the traditional heuristics—the values with

the H subscript—are comparatively ineffective for the purposes of LMA-based forecasting. This

is notable because that is the default approach in the literature on state-space based forecasting

methods for dynamical systems. Moreover, in all cases mE and mAτ are far lower than what the

embedding theory would suggest, further corroborating the basic premise of this thesis.
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Figure 5.4: Histograms of Aτ and 1-MASE values for all traces from the Lorenz 96 {K = 22, F = 5}
and {K = 47, F = 5} systems for all {m, τ} values in Figures 5.2 and 5.3: (a) Aτ (b) 1-MASE.

A close comparison of Figures 5.2 and 5.3 brings up another important point: some time series

are harder to forecast than others. Figure 5.4 breaks down the details of the two suites of Lorenz

96 experiments, showing the distribution of Aτ and 1-MASE values for all of the reconstructions.

Although there is some overlap in the K = 22 and K = 47 histograms—i.e., best-case forecasts

of the former are better than most of the forecasts of the latter—the K = 47 traces generally

contain less information about the future and thus are harder to forecast accurately. As discussed

in Section 4.1, this is to be expected.

Map Examples

Delay reconstruction of discrete-time dynamical systems, while possible in theory, can be

problematic in practice. Although the embedding theorems do apply in these cases, the heuristics

for estimating m and τ often fail. The time-delayed mutual information of [33], for example, may

decay exponentially, without showing any clear minimum. And the lack of spatial continuity of the

orbit of a map violates the underlying idea behind the method of [62]. State space-based forecasting

methods can, however, be very useful in generating predictions of trajectories from systems like

this—if one selects the two free parameters properly.

In view of this, it would be particularly useful if one could use Aτ to choose embedding

parameter values for maps. This section explores that notion using two canonical examples, shown
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in the bottom two rows of Table 5.1. For the Hénon map

xn+1 = 1− ax2n + yn (5.3)

yn+1 = bxn (5.4)

with a = 1.4 and b = 0.3, the Aτ -optimal parameter values, m = 2 and τ = 1, occur at Aτ =

6.617±0.011, over the 15 trajectories generated from randomly-chosen initial conditions. As in the

flow examples, these are identical to the values that minimized 1-MASE (4.46×10−4±2.63×10−5).

These parameter values make sense, of course; a first-return map of the x coordinate is effectively

the Hénon map, so [xj , xj−1] is a perfect state estimator (up to a scaling term). But in practice,

of course, one rarely knows the underlying dynamics of the system that generated a time series, so

the fact that one can choose good reconstruction parameter values by maximizing Aτ is notable—

especially since standard heuristics for that purpose fail for this system.

The same pattern holds for the logistic map, xn+1 = rxn(1− xn), with r = 3.65. Again, for

validation, I generate 15 trajectories from randomly-chosen initial conditions. For this ensemble of

experiments, the Aτ -optimal parameter values, which occur at Aτ = 9.057± 0.001, coincided with

the minimum of the 1-MASE surface (2.19× 10−5 ± 2.72× 10−6). As in the Hénon example, these

values (m = 1 and τ = 1) make complete sense, given the form of the map. But again, one does

not always know the form of the system that generated a given time series. In both of these map

examples, the standard heuristics fail, but Aτ clearly indicates that one does not actually need to

reconstruct these dynamics—rather, that near-neighbor forecasting on the time series itself is the

best approach.

5.1.2.2 Selecting Reconstruction Parameters of Experimental Time Series

The previous section provided a preliminary verification of the conjecture that parameters

that maximize Aτ also maximize forecast accuracy for LMA, for both maps and flows. While

experiments with synthetic examples are useful, it is important to show that Aτ is also a useful way

to choose parameter values for delay reconstruction-based forecasting of real-world data, where the

time series are noisy and perhaps short, and one does not know the dimension of the underlying
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Figure 5.5: The effects of reconstruction parameter values on Aτ and forecast accuracy for SFI
dataset A. (a) Aτ values for different delay reconstructions of that signal. (b) 1-MASE scores for
LMA forecasts of those reconstructions.

system—let alone its governing equations. This section extends the exploration in the previous

section, using experimental data from two different dynamical systems: a far-infrared laser and a

laboratory computer-performance experiment.

A Far-Infrared Laser

I begin this discussion by returning to the canonical test case from Chapter 1, SFI dataset

A [119], which was gathered from a far-infrared laser. As in the synthetic examples in Sec-

tion 5.1.2.1, the Aτ and 1-MASE heatmaps (Figure 5.5) are largely antisymmetric for this signal.

Again, there is a band across the bottom of each image because of the combined effects of overfolding

and projection. Note the similarity between Figures 5.5 and 5.3: the latter resemble “smoothed”

versions of the former. It is well known [119] that the SFI dataset A is well described by the Lorenz

63 system with some added noise, so this similarity is reassuring. An LMA forecast using the

Aτ -optimal reconstruction of this trace was more accurate2 than similar forecasts using reconstruc-

2 Note that the SFI dataset A 1-MASE values are not averages as there is only one trace.
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tions built using traditional heuristics—1-MASEAτ = 0.0592 versus 1-MASEH = 0.0733—and only

slightly worse than the optimal value 1-MASEE = 0.0538. However, the values of {mAτ , τAτ } and

{mE , τE} are not identical for this signal. This is because the optima in the heatmaps in Figure 5.5

are bands, rather than unique points—as was the case in the synthetic examples in Section 5.1.2.1.

In a situation like this, a range of {m, τ} values are statistically indistinguishable, from the stand-

point of the forecast accuracy afforded by the corresponding reconstruction. The values suggested

by the Aτ calculation (mAτ = 9 and τAτ = 1) and by the exhaustive search (mE = 7, τE = 1)

are all on this plateau, those suggested by the traditional heuristics (mH = 7, τH = 3) however

are not. Again, these results suggest that one can use Aτ to choose good parameter values for

delay reconstruction-based forecasting, but SFI dataset A is only a single trace from a fairly simple

system.

Computer Performance Dynamics

Finally, I will return to the computer performance dynamics of col major and 403.gcc:

experiments that involve multiple traces from each system, which allows for statistical analysis.

As in the previous examples (Lorenz 63, Lorenz 96, Hénon Map, Logistic Map, SFI dataset A),

heatmaps of 1-MASE and Aτ for a representative col major time series—Figure 5.6(b)—are largely

antisymmetric. And again, reconstructions using the Aτ -optimal parameter values allowed LMA

to produce highly accurate forecasts of this signal: 1-MASEAτ = 0.050 ± 0.002, compared to the

optimal 1-MASEE = 0.049 ± 0.002. There are several major differences between these plots and

the previous ones, though, beginning with the vertical stripes. These are due to the dominant

unstable periodic orbit of period 3 in the chaotic attractor in the col major dynamics. When τ is

a multiple of this period (τ = 3κ), the coordinates of the delay vector are not independent, which

lowers Aτ and makes forecasting more difficult. (There is a nice theoretical discussion of this effect

in [99].) Conversely, Aτ spikes and 1-MASE plummets when τ = 3κ − 1, since the coordinates in

such a delay vector cannot share any prime factors with the period of the orbit. The band along

the bottom of both images is, again, due to a combination of overfolding and projection. The other

14 traces in this experiment yield structurally identical heatmaps and the variance between these
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Figure 5.6: The effects of reconstruction parameter values on Aτ and forecast accuracy for a
representative trace of col major. (a) Aτ values for different delay reconstructions of that trace.
(b) 1-MASE scores for LMA forecasts on those reconstructions.

trials were only ±0.037 on average.

Another difference between the col major heatmaps and the ones in Figures 5.2, 5.3, and 5.5

is the apparent overall trend: the “good” regions (low 1-MASE and high Aτ ) are in the lower-left

quadrants of those heatmaps, but in the upper-right quadrants of Figure 5.6. This is partly an

artifact of the difference in the color-map scale, which is chosen here to bring out some important

details of the structure, and partly due to that structure itself. Specifically, the optima of the

col major heatmaps—the large dark red and blue regions in Figures 5.7(a) and (b), respectively—

are much broader than the ones in the earlier discussion of this section, perhaps because the signal

is so close to periodic. (This is also the case to some extent in the SFI Dataset A example, for

the same reason.) This geometry makes precise comparisons of Aτ -optimal and 1-MASE-optimal

parameter values somewhat problematic, as the exact optima on two almost-flat but slightly noisy

landscapes may not be in the same place. Indeed, the Aτ values at {mAτ , τAτ } and {mE , τE} are

within a standard error across all 15 traces of col major.

And that brings up an interesting tradeoff. For practical purposes, what one wants is
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Figure 5.7: 1-MASE and Aτ for ro-LMA forecasts of all 15 col major traces, plotted as a function of
τ . The blue dashed curves show the averages across all trials; the red dotted lines are that average
± the standard deviation. (a) Aτ values for delay reconstructions of these traces with m = 2 and
a range of values of τ . (b) 1-MASE scores for ro-LMA forecasts of those reconstructions.

{mAτ , τAτ } values that produce a 1-MASE value that is close to the optimum 1-MASEE . However,

the algorithmic complexity of most nonlinear time-series analysis and prediction methods scales

badly with m. In cases where the Aτ maximum is broad, then, one might want to choose the

lowest value of m on that plateau—or even a value that is on the shoulder of that plateau, if one

needs to balance efficiency over accuracy. As I showed in Chapter 4, using ro-LMA does just that,

and that appears to work quite well for the col major data. This amounts to marginalizing the

heatmaps in Figure 5.6 with m = 2, which produces cross sections like the ones shown in Figure 5.7.

The antisymmetry between Aτ and 1-MASE is quite apparent in these plots; the global maximum

of the former coincides with the global minimum (0.0649 ± 0.003) of the latter, at τ = 2. This is

not much higher than the overall optimum of 0.0496 ± 0.002—a value from forecasts whose free
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parameters requires almost six orders of magnitude more CPU time to compute. This result not

only corroborates the main premise of this thesis, but also suggests a more effective way to calculate

Aτ one simply fixes m = 2, as is done with ro-LMA, then selects τ by calculating Aτ across a range

of τs, rather than across a 2D {m, τ} space.

The correspondence between 1-MASE and Aτ also holds true for other marginalizations: i.e.,

the minimum 1-MASE and the maximum Aτ occur at the same τ value for all m-wise slices of the

col major heatmaps, to within statistical fluctuations. The methods of [33] and [62], incidentally,

suggest τH = 2 and mH = 12 for these traces; the average 1-MASE of an LMA forecast on such

a reconstruction is 0.0530± 0.002, which is somewhat better than the best result from the m = 2

marginalization, although still short of the overall optimum. The correspondence between τH

and τAτ is coincidence; for this particular signal, maximizing the independence of the coordinates

happens to maximize the information about the future that is contained in each delay vector. This

is most likely due to the strength of the unstable three cycle present in these dynamics. In this

case, the coordinates would be maximally independent and contain the most information about

the future when τ = ρ − 1, where ρ is the period of the dynamics. The m = 12 result is not

coincidence—and quite interesting, in view of the fact that the m = 2 forecast is so good. It is

also surprising in view of the huge number of transistors—potential state variables—in a modern

computer. As described in [83], however, the hardware and software constraints in these systems

confine the dynamics to a much lower-dimensional manifold.

The col major program is what is known in the computer-performance literature as a “micro-

kernel”—a extremely simple example that is used in proof-of-concept testing. The fact that its

dynamics are so rich speaks to the complexity of the hardware (and the hardware-software interac-

tions) in modern computers; again, see [83,84] for a much deeper discussion of these issues. Modern

computer programs are far more complex than this simple micro-kernel, of course, which begs the

question: what does Aτ tell us about the dynamics of truly complex systems like the memory or

processor usage patterns of sophisticated programs—which the computer performance community

models as stochastic systems?
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Figure 5.8: The effects of reconstruction parameter values on Aτ and forecast accuracy for a repre-
sentative trace from a computer-performance dynamics experiment using the 403.gcc benchmark.
(a) Aτ values for different delay reconstructions of this trace. (b) 1-MASE scores for LMA forecasts
on those reconstructions.

For 403.gcc, the answer is, again, that Aτ appears to be an effective and efficient way to

assess predictability. As shown in [41] and synopsized in Chapter 6, this time series shares little to no

information with the future: i.e., it cannot be predicted using delay reconstruction-based forecasting

methods, regardless of τ and m values. The experiments in [41] required dozens of hours of CPU

time to establish that conclusion; Aτ gives the same results in a few seconds, using much less data.

The structure of the heatmaps for this experiment, as shown in Figure 5.8, is radically different.

The patterns visible in the previous 1-MASE plots, and the antisymmetry between Aτ and 1-MASE

plots, are absent from this pair of images, reflecting the lack of predictive content in this signal.

Note, too, that the color map scales are different in this figure. This reflects the much-lower values

of Aτ for this signal: over all 15 experiments of 403.gcc, for the parameter range in Figure 5.8,

Aτ reached an absolute maximum of 0.7722, compared to the absolute maximum of 5.3026 for all

experiments of the Lorenz 96 with K = 22. Indeed, the 1-MASE surface in Figure 5.8(b) never dips

below 1.0, Figure 5.2, in contrast, never exceeds ≈ 0.6 and generally stays below 0.3. These results
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are consistent across all traces in these experiments, i.e., for all 15 traces of 403.gcc, 1-MASE

never drops below 1.0. That is, regardless of parameter choice, LMA forecasts of 403.gcc are no

better than simply using the prior value of this scalar time series as the prediction. In comparison,

with every experiment with Lorenz 96 K = 22—regardless of parameter choice—the 1-MASE for

LMA generally stays below 0.3—more than twice as good as a random walk. The uniformly low

Aτ values in Figure 5.8(a) are an effective indicator of this—and, again, they can be calculated

quickly, from a relatively small sample of the data. It is to that issue that I turn next.

5.1.3 Data Requirements and Prediction Horizons

In some real-world situations, it may be impractical to rebuild forecast models at every

step, as I have done in the previous sections of this thesis—because of computational expense, for

instance, or because the data rate is very high. In these situations, one may wish to predict h time

steps into the future, then stop and rebuild the model to incorporate the h points that have arrived

during that period, and repeat.

In chaotic systems, of course, there are fundamental limits on prediction horizon even if one

is working with infinitely long traces of all state variables. A key question at issue in this section is

how that effect plays out in forecast models that use delay reconstructions from scalar time-series

data. I explore that issue in Section 5.1.3.2. And since real-world data sets are not infinitely long,

it is also important to understand the effects of data length on the estimation of Aτ . I explore this

question in the following section, using one-step-ahead forecasts so that I can compare the results

to those in the previous sections.

5.1.3.1 Data Requirements for Aτ Estimation

The quantity of data used in a delay reconstruction directly impacts the usefulness of that

reconstruction. If one is interested in approximating the correlation dimension via the Grassberger-

Procaccia algorithm, for instance, it has been shown that one needs 10(2+0.4m) data points [106,116].

Those bounds are overly pessimistic for forecasting, however, as mentioned in Section 4.3.3. A key
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challenge, then, is to determine whether one’s time series really calls for as many dimensions and

data points as the theoretical results require, or whether one can get away with fewer dimensions—

and how much data one needs in order to figure all of that out.

Aτ is a useful solution to those challenges. As established in the previous sections, cal-

culations of this quantity can reveal what dimension is required for delay reconstruction-based

forecasting of dynamical systems. And, as alluded to there, Aτ can be estimated accurately from

a surprisingly small number of points. The experiments in this section explore that intertwined

pair of claims in more depth by increasing the length of the Lorenz 96 traces and testing whether

the information content of the state estimator derived from standard heuristics converges to the

Aτ -optimal estimator. (This kind of experiment is not possible in practice, of course, when the

time series is fixed, but can be done in the context of this synthetic example.)

Figure 5.9 shows the results. When the data length is short, the m = 2 state estimator has

the most information about the future. This makes perfect sense; a short time series cannot fully

sample a complicated object, and when an ill-sampled high-dimensional manifold is projected into

a low-dimensional space, infrequently visited regions of that manifold can act effectively like noise.

From an information-theoretic standpoint, this would increase the effective Shannon entropy rate of

each of the variables in the delay vector. In the I-diagram in Figure 5.1(b), this would manifest as

drifting apart of the two circles, decreasing the size of the shaded region that one needs to maximize

for effective forecasting.

If that reasoning is correct, longer data lengths should fill out the attractor, thereby mitigating

the spurious increase in the Shannon entropy rate and allowing higher-dimensional reconstructions

to outperform lower-dimensional ones. This is indeed what happens, as shown in Figure 5.9. For

both the K = 22 and K = 47 traces, once the signal is 2 million points long, the four-dimensional

estimator stores more information about the future than the two-dimensional case. Note, though,

that the optimal Aτ of the m = 8 reconstruction model is still lower than in the m = 2 or m = 4

cases, even at the right-hand limit of the plots in Figure 5.9. That is, even with a time series that

contains 4 × 106 points, it is more effective to use a lower-dimensional reconstruction to make an
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LMA forecast. But the really important message here is that Aτ allows one to determine the best

reconstruction parameters for the available data, which is an important part of the answer to the

challenges outlined at the beginning of this chapter.

Something very interesting happens in the m = 2 results for Lorenz 96 model with K = 47:

the Aτ curve reaches a maximum value around 100,000 points and stops increasing, regardless

of data length. What this means is that this two-dimensional reconstruction contains as much

information about the future as can be ascertained from the ro-LMA state estimator, suggesting
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Figure 5.9: Average optimal Aτ versus data length for all 15 traces from the Lorenz-96 system
using τ = 1 in all cases. Blue circles corresponds to m = 2, purple diamonds to m = 4, and red xs
to m = 8. (a) Optimal Aτ for traces from the {K = 22, F = 5} system. (b) Optimal Aτ for traces
from the {K = 47, F = 5} system.
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that increasing the length of the training set would not improve forecast accuracy. To explore this,

I construct LMA forecasts of different-length traces (100,000–2.2 million points) from this system,

then reconstruct their dynamics with different m values and the appropriate τAτ for each case,

and—again—repeat this full experiment 15 times for statistical validation. For m = 2, both Aτ

and 1-MASE results did indeed plateau at 200,000 points—at 5.736± 0.0156 and 0.0809± 0.0016,

respectively. As before, more data does afford higher-dimensional reconstructions more traction

on the prediction problem: the m = 4 forecast accuracy surpassed m = 2 at around 2 million

points. In neither case, by the way, did m = 8 catch up to either m = 2 or m = 4, even at 4

million data points. Of course, one must consider the cost of storing the additional variables in a

higher-dimensional model, particularly in data sets this long, so it may be worthwhile in practice to

settle for the m = 2 forecast—which is only slightly less accurate and requires only 200,000 points.

This has another major advantage as well. If the time series is non-stationary, a forecast strategy

that requires fewer points is particularly useful because it can adapt more quickly.

5.1.3.2 Choosing reconstruction parameters for increased prediction horizons.

So far in this section, I have considered forecasts that were constructed one step at a time

and studied the correspondence of their accuracy with one-step-ahead calculations of Aτ . Here, I

consider longer prediction horizons (h) and explore whether one can use a h-step-ahead version of

Aτ—i.e., I[Sj , Xj+h], with h > 1—to choose parameter values that maximize the information that

each delay vector contains about the value of the time series h steps in the future.

Of course, one would expect the Aτ -optimal {m, τ} values for a given time series to depend

on the prediction horizon. It has been shown, for instance, that longer-term forecasts generally do

better with larger τ [59], and conversely [38]. It also makes sense that one might need to reach

different distances into the past (via the span of the delay vector) in order to reduce the uncertainty

about events that are further into the future [119]. All of these effects are corroborated by Aτ .

Figure 5.10 demonstrates this with a representative trace of the K = 22 Lorenz 96 system, focusing

on m = 2 for simplicity. The topmost dashed curve in this figure is for the h = 1 case—i.e., a
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Figure 5.10: The effects of prediction horizon (h) on Aτ for a representative time series of the
K = 22 Lorenz 96 system for a fixed reconstruction dimension (m = 2). The curves in the image,
from top to bottom, correspond to prediction horizons of h = 1 to h = 100.

horizontal slice of Figure 5.2(a) made at m = 2. The maximum of this curve is the optimal τ value

(τAτ ) for this reconstruction. The overall shape of this curve reflects the monotonic increase in

the uncertainty about the future with τ that is noted on page 86. The other curves in Figure 5.10

show Aτ as a function of τ for h = 2, 3, . . . , down to h = 100. Note that the lower curves do not

decrease monotonically; rather, there is a slight initial rise. This is due to the issue raised above

about the span of the delay vector: if one is predicting further into the future, it may be useful to

reach further into the past. In general, this causes the optimal τ to shift to the right as prediction

horizon increases, going down the plot—i.e., longer prediction horizons require larger τs (cf. [59]).

For very long horizons, the choice of τ appears to matter very little. In particular, Aτ is fairly

constant (and quite low) for 5 < τ < 50 when h > 30—i.e., regardless of the choice of τ , there

is very little information about the h-distant future in any delay reconstruction of this signal for

h > 30. This effect should not be surprising, and is well corroborated in the literature. However,

it can be hard to know a priori, when one is confronted with a data set from an unknown system,

what prediction horizon makes sense. Aτ offers a computationally efficient way to answer that

question from not very much data.

Figure 5.11 shows a similar exploration but considers the effects of the reconstruction dimen-
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Figure 5.11: The effects of prediction horizon (h) on average Aτ (over 22 trials) of the K = 22
Lorenz 96 system for a fixed time delay (τ = 1) and two different reconstructions of the system.
The red line represents m = 2; the blue represents mH = 8, the value suggested for this signal by
the technique of false neighbors.

sion on Aτ as forecast horizon increases, this time fixing τ = 1 for simplicity. These results indicate

that the m = 2 state estimator contains more information about the future for short prediction

horizons. This ties back to a central theme of this thesis: low-dimensional reconstructions can work

quite well. Unsurprisingly, that does not always hold for arbitrary prediction horizons, Figure 5.11

shows that the full reconstruction is better for longer horizons. This is to be expected, since a

higher reconstruction dimension allows the state estimator to capture more information about the

past. Finally, note that Aτ decreases monotonically with prediction horizon for both m = 2 and

mH . This, too, is unsurprising. Pesin’s relation [91] says that the sum of the positive Lyapunov

exponents is equal to the entropy rate, and if there is a non-zero entropy rate, then generically

observations will become increasingly independent the further apart they are. This explanation

also applies to Figure 5.10, of course, but it does not hold for signals that are wholly (or nearly)

periodic.

Recall that the col major dynamics in Section 5.1.2.2 are chaotic, but with a dominant un-

stable periodic orbit—which have a variety of interesting effects on the results. Figure 5.12 explores

the effects of prediction horizon on those results. Not surprisingly, there is some periodicity in the

Aτ versus h relationships, but not for the same reasons that caused the stripes in Figure 5.6(b).

Here, the peaks in Aτ do occur at multiples of the period. That is, the m = 2 state estimator can
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Figure 5.12: The effects of prediction horizon (h) on average Aτ over the 15 trials of col major

for a fixed time delay (τ = 1) and two different reconstruction dimensions. The red line represents
m = 2; the blue represents mH = 12, the value suggested for this signal by the technique of false
neighbors.

forecast with the most success when the value being predicted is in phase with the delay vector.

Note that this effect is far stronger for m = 2 than mH , simply because of the instability of that

periodic orbit; the visits made to it by the chaotic trajectory are more likely to be short than long.

As expected, Aτ decays with prediction horizon—but only at first, after which it begins to rise

again, peaking at h = 69 and h = 71. This may be due to a second higher-order unstable periodic

orbit in the col major dynamics.

In theory, one can derive rigorous bounds on prediction horizon. The time at which Sj will

no longer have any information about the future can be determined by considering:

R(h) =
I[Sj , Xj+h]

H[Xj+h]
(5.5)

i.e., the percentage of the uncertainty in Xj+h that can be reduced by the delay vector. Generically,

this will limit to some small value equal to the amount of information that the delay vector contains

about any arbitrary point on the attractor. Given some criteria regarding how much information

above the “background” is required of the state estimator, one could use an R(h) versus h curve

to determine the maximum practical horizon.

In practice, one can select parameters for delay reconstruction-based forecasting by explicitly

including the prediction horizon in the Aτ function, fixing the horizon h at the required value,
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performing the same search as I did in earlier sections over a range of m and τ , and then choosing

a point on (or near) the optimum of that Aτ surface. The computational and data requirements

of this calculation, as shown in Section 5.1.3.1, are far superior to those of the standard heuristics

used in delay reconstructions.

5.1.4 Summary

Aτ is a novel metric for quantifying how much information about the future is contained

in a delay reconstruction. Using a number of different dynamical systems, I demonstrated a di-

rect correspondence between the Aτ value for different delay reconstructions and the accuracy

of forecasts made with Lorenz’s method of analogues on those reconstructions. Since Aτ can be

calculated quickly and reliably from a relatively small amount of data, without any knowledge

about the governing equations or the state space dynamics of the system, that correspondence is a

major advantage, in that it allows one to choose parameter values for delay reconstruction-based

forecast models without doing an exhaustive search on the parameter space. Significantly, Aτ -

optimal reconstructions are better, for the purposes of forecasting, than reconstructions built using

standard heuristics like mutual information and the method of false neighbors, which can require

large amounts of data, significant computational effort, and expert human interpretation. Perhaps,

most importantly Aτ allows one to answer other questions regarding forecasting with theoretically

unsound models—e.g., why it is possible to obtain a better forecast using a low-dimensional re-

construction than with a true embedding. It also allows one to understand bounds on prediction

horizon without having to estimate Lyapunov spectra or Shannon entropy rates, both of which are

difficult to obtain for arbitrary real-valued time series. That, in turn, allows one to tailor one’s

reconstruction parameters to the amount of available data and the desired prediction horizon—and

to know if a given prediction task is just not possible.

The experiments reported in this section involved a simple near-neighbor forecast strategy

and state estimators that are basic delay reconstructions of raw time-series data. The definition and

calculation of Aτ do not involve any assumptions about the state estimator, though, so the results
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presented here should also hold for other state estimators. For example, it is common in forecasting

applications to pre-process the time series: for example, low-pass filtering or interpolating to pro-

duce additional points. CalculatingAτ after performing such an operation will accurately reflect the

amount of information in that new time series—indeed, it would reveal if that pre-processing step

destroyed information. And I believe that the basic conclusions in this section extend to other state-

space based forecast schemas besides LMA, such as those used in [23, 98, 107, 112, 119]—although

Aτ may not accurately select optimal parameter values for strategies that involve post-processing

the data (e.g., GHKSS [48]).

There are many other interesting potential ways to leverage Aτ in the practice of forecasting.

If the Aτ -optimal τ = 1, that may be a signal that the time series is undersampling the dynamics

and that one should increase the sample rate. One could use the more general form AS at a finer

grain to optimizing τ individually for each dimension, as suggested in [85, 90, 105], where optimal

values are selected based on criteria that are not directly related to prediction. To do this, one

could define Sj = [Xj , Xj−τ1 , Xj−τ2 , . . . , Xj−τm−1 ] and then simply maximize AS using that state

estimator constrained over {τi}m−1i=1 .

5.2 Exploring the Topology of Dynamical Reconstructions

Topology is of particular interest in forecasting dynamics, since many properties—the exis-

tence of periodic orbits, recurrence, entropy, etc.—depend only upon topology. However, computing

topology from time series can be a real challenge—even with the aid of delay-coordinate reconstruc-

tion. As I have mentioned repeatedly throughout this thesis, success of this reconstruction proce-

dure depends heavily on the choice of the two free parameters, but the embedding theorems provide

little guidance regarding how to choose good values for these parameters. The delay-coordinate

reconstruction machinery (both theorems and heuristics) targets the computation of dynamical

invariants like the correlation dimension and the Lyapunov exponent. However, if one just wants to

extract the topological structure of an invariant set—as is the case with forecasting—a scaled-back

version of that machinery may be sufficient. In the following discussion, I adopt the philosophy
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that one might only desire knowledge of the topology of the invariant set. In collaboration with

J. D. Meiss, I conjecture that this might be possible with a lower reconstruction dimension than

that needed to obtain a true embedding. That is, the reconstructed dynamics might be homeomor-

phic to the original dynamics at a lower dimension than that needed for a diffeomorphically correct

embedding [39]. This is an alternative validation of the central premise of my thesis.

To compute topology from data, one can use a simplicial complex–e.g., the witness complex

of [27]. To construct such a complex, one chooses a set of “landmarks,” typically a subset of

the data, that become the vertices of the complex. The connections between the landmarks are

determined by their nearness to the rest of the data—the “witnesses.” Two landmarks in the

complex are joined by an edge, for instance, if they share at least one witness.

My initial work on this approach [39] suggests that the witness complex correctly resolves

the homology of the underlying invariant set—viz., its Betti numbers—even if the reconstruction

dimension is well below the thresholds for which the embedding theorems assure smooth conjugacy

between the true and reconstructed dynamics. This means that some features of the large-scale

topology are present even if the reconstruction dimension does not satisfy the associated theorems.

I conjecture that this structure affords ro-LMA the means necessary to generate accurate forecasts.

The witness complex is covered in more depth in Section 5.2.1, which also describes the notion

of persistence and demonstrates how that idea is used to choose scale parameters for a complex

built from reconstructed time-series data. In Section 5.2.2, I explore how the homology of such a

complex changes with reconstruction dimension.

5.2.1 Witness Complexes for Dynamical Systems

To compute the topology of data that sample an invariant set of a dynamical system, one

needs a complex that captures the shape of the data but is robust with respect to noise and

other sampling issues. A witness complex is an ideal choice for these purposes. Such a complex

is determined by the reconstructed time-series data, W ⊂ Rm—the witnesses—and an associated

set L ⊂ Rm, the landmarks, which can (but need not) be chosen from among the witnesses. The
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landmarks form the vertex set of the complex; the connections between them are dictated by the

geometric relationships between W and L. In a general sense, a witness complex can be defined

through a relation R(W,L) ⊂ W × L. As Dowker noted [29], any relation gives rise to a pair of

simplicial complexes. In the one used here, a point w ∈W is a witness to an abstract k-dimensional

simplex σ = 〈li1 , li2 , . . . lik+1
〉 ⊂ L whenever {w} × σ ⊂ R(W,L). The collection of simplices that

have witnesses is a complex relative to the relation R. For example, two landmarks are connected if

they have a common witness—this is a one-simplex. Similarly, if three landmarks have a common

witness, they form a two-simplex, and so on.

There are many possible definitions for a witness relation R; see [39] for a discussion. A

relation that is particularly useful for analyzing noisy real data [4, 39] is the ε-weak witness [21],

or what is called a “fuzzy” witness [4]: a point witnesses a simplex if all the landmarks in that

simplex are within ε of the closest landmark to the witness:

Definition (Fuzzy Witness). The fuzzy witness set for a point l ∈ L is the set of witnesses

Wε(l) = {w ∈W : ‖w − l‖ ≤ min
l′∈L
‖w − l′‖+ ε} (5.6)

In this case, the relation consists of the collections R = ∪l∈L(Wε(l)×{l}) and a simplex σ is in the

complex whenever ∩l∈σWε(l) 6= ∅—that is, when all of its vertices share a witness. This relation is

illustrated in Figure 5.13.

The fuzzy witness complex reduces to the “strong witness complex” of de Silva and Carlsson

[27] when ε = 0. In such a complex, an edge exists between two landmarks iff there exists a

witness that is exactly equidistant from those landmarks. This is not a practical notion of shared

closeness for finite noisy data sets. In this case, ε in Equation (5.6) allows for some amount of

immunity to finite data and noise effects, but must be chosen correctly as I discuss in the next

paragraph. A simpler implementation of the fuzzy witness complex consists of simplices whose

pairs of vertices have a common witness; this implementation gives a “clique” or “flag” complex,

analogous to the Rips complex [45]. This is called a “lazy” complex in [27] and instantiated as the
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Figure 5.13: Illustration of the fuzzy witness relation Equation (5.6). The closest landmark to
witness wa is l1, and since ‖wa − l2‖ < Da1 + ε, the simplex 〈l1, l2〉 is in the complex. Similarly wb
witnesses the edge 〈l2, l3〉.

LazyWitnessStream class in the javaPlex [114] software. In the notation introduced above, the

complex is

Kε(W,L) = {σ ⊂ L :Wε(l) ∩Wε(l
′) 6= ∅, ∀l, l′ ∈ σ} (5.7)

Following [4], I will use this particular construction in the following discussion. My goal is to study

the topology of witness complexes of delay-coordinate reconstructions and determine whether the

topology is resolved correctly when the reconstruction dimension is low.

Figure 5.14 shows four witness complexes built from the 100,000-point trajectory of the

Lorenz 63 system that is shown in Figure 3.2(a) for varying values of the fuzziness parameter, ε.

The landmarks (red dots) consist of ` = 201 points equally spaced along the trajectory, i.e., every

∆t = 500th point of the time series. There are many ways to choose3 landmarks; this particular

strategy distributes them according to the invariant measure of the attractor. One could also choose

landmarks randomly from the trajectory or using the “max-min” selector4 of [27]; each of these

gives results similar to those shown. When ε is small, very few witnesses fall in the thin regions

required by Equation (5.6), so the resulting complex does not have many edges and is thus not a

good representation of the shape of the data. As ε grows, more witnesses fall in the “shared” regions

3 For a deeper discussion of the number of landmarks to use and landmark selection choice see [39].
4 Choose the first landmark at random, and given a set of landmarks, choose the next to be the data point farthest

away from the current set.
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Figure 5.14: “One-skeletons” of witness complexes constructed from the trajectory of Figure 3.2(a)
using the fuzzy witness relation depicted in Figure 5.13. In each one-skeleton, the red dots are
the ` = 201 equally-spaced landmarks. A black edge between two landmarks li and lj signifies the
existence of a one simplex 〈li, lj〉 in the complex, i.e., li and lj shared at least one witness. As ε
increases, more landmarks will satisfy ‖wa − lk‖ < Da1 + ε for each wa and the one complex will
fill in.

and the complex fills in, revealing the basic homology of the attractor of which the trajectory is a

sample. There is an obvious limit to this, however: when ε is very large, even the largest holes in

the complex are obscured.

In order to evaluate the topology of incomplete reconstructions, one needs to ensure the cor-

rectness of the topology. However, as Figure 5.14 illustrates, the simplex, from which one estimates

the topology, depends on the choice of ε, and choosing the right ε for that job is non-trivial. One

can do so using the progression of images in Figure 5.14 and the notion of persistence. Studying the

change in homology under changing scale parameters is a well-established notion in computational

topology. The underlying idea of persistence [30,94,123] is that any topological property of physical

interest should be (relatively) independent of parameter choices in the associated algorithms.
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One useful way to represent information about the changing topology of a complex is the

barcode persistence diagram [45]. Figure 5.15 shows barcodes of the first two Betti numbers for

the witness complexes of Figure 5.14. Each horizontal line in the barcode is the interval in ε for

which there exists a particular non-bounding cycle, thus the number of such lines is the rank of the

homology group—a Betti number. The values for β0 and β1 are computed using javaPlex [114]

over the range 0.017 ≤ ε ≤ 1.7, using the ExplicitMetricSpace to choose the equally spaced points

and the LazyWitnessStream to obtain a clique complex from the ` = 201 landmarks. There are

no three-dimensional voids in the results, i.e., β2 was always zero for this range of ε—a reasonable

implication for this 2.06-dimensional attractor. When ε is very small, as in Figure 5.14(a), the

witness complex has many components and the β0 barcode shows a large number of entries. As

ε grows, the spurious gaps between these components disappear, leaving a single component that

persists above ε ≈ 0.014. That is, witness complexes constructed with ε > 0.014 correctly capture

the connectedness of the underlying attractor. The β1 barcode plot shows a similar pattern: there

are many holes for small ε that are successively filled in as that parameter grows, leaving the two

main holes (i.e., β1 = 2) for ε > 1.01. Above ε > 3.2 (not shown in Figure 5.15), one of those holes

disappears; eventually, for ε > 4.05, the complex becomes topologically trivial. Above this value,

the resulting complexes—recall Figure 5.14(d)—have no non-contractible loops and are homologous

to a point (acyclic).

As alluded to above, this notion of persistence can be turned around and used to select

good values for the parameters that play a role in topological data analysis—e.g., looking for the

ε value at which the homology stabilizes or selecting the number of landmarks that are necessary

to construct a topologically faithful complex. However, definitions of what constitutes stabilization

are subjective and can be problematic. Even so, persistence is a powerful technique and I make

use of it in a number of ways in the rest of this section.

The examples in Figures 5.14 and 5.15 involve a full trajectory from a dynamical system.

This thesis focuses on reconstructions of scalar time-series data—structures whose topology is

guaranteed to be identical to that of the underlying dynamics if the reconstruction process is carried
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Figure 5.15: Persistence barcodes computed using javaPlex for a ` = 201 witness complex of the
trajectory of Figure 3.2(a). Each plot tabulates the two lowest Betti numbers of the complex for
100 values of the scale parameter ε. The left panel shows the behavior when 0.001 ≤ ε ≤ 0.1, the
right panel zooms out to the range 0.017 ≤ ε ≤ 1.7.

out properly. But what if the dimension m does not satisfy the requirements off the theorems? Can

one still obtain useful results about the topology of that underlying system, even if those dynamics

are not properly unfolded in the sense of [89,99,113]? Throughout this thesis, I have argued that in

the context of forecasting, the answer to that question is yes. In the next section, I take a step away

from forecasting and examine whether the answer is also yes in the case of topology—specifically

homology—and discuss the implications of that answer for the central theme of this thesis.

5.2.2 Topologies of Reconstructions

As discussed in Section 2.1.1, a scalar time series of a dynamical system is a projection of

the d-dimensional dynamics onto R1—an action that does not automatically preserve the topology

of the object. Delay-coordinate embedding allows one to reconstruct the underlying dynamics,

up to diffeomorphism, if the reconstruction dimension is large enough. The question at issue

in this section is whether one can use the witness complex to obtain a useful, coarse-grained

description of the topology from lower-dimensional reconstructions, namely the homology—e.g.,

the basic connectivity of the invariant set, or the number of holes in it that are larger than a

certain scale. The answer to this question can provide a deeper understanding of the mechanics of

ro-LMA.
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Figure 5.16: One-skeletons of the witness complexes (top row) and barcode diagrams for β1 (bottom
row) of the Lorenz system. The plots in the left-hand column are computed from the three-
dimensional (x, y, z) trajectory of Figure 3.2(a); those in the right-hand column are computed from
a two-dimensional (m = 2) delay-coordinate reconstruction from the x coordinate of that trajectory
with τ = 174. In both cases, ` = 201 equally spaced landmarks (red ×s) are used. Both complexes
have two persistent nonbounding cycles (green and blue edges) but the 2D reconstruction requires
only ≈ 1900 simplices to resolve those cycles (at ε = 0.2), while the full 3D trajectory requires
≈ 7000 simplices (at ε = 1.2) to eliminate spurious loops.

The short answer is yes. Figure 5.16 shows a side-by-side comparison of witness complexes and

barcode diagrams for the Lorenz 63 trajectory of Figure 3.2(a) and a two-dimensional reconstruction

(m = 2) using the x coordinate of that trajectory. The full 3D trajectory on the left and the 2D

reconstruction on the right have the same homology. In other words, the correct large-scale homology

is accessible from a witness complex of a 2D reconstruction, even though the reconstruction does

not satisfy the conditions of the associated theorems.

And that leads to a fundamental question for this thesis: how does the homology of a delay-

coordinate reconstruction change with the dimension m? The standard answer to this in the delay-
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coordinate embedding literature is that the topology should change at first, then stabilize when

m became large enough5 to correctly unfold the topology of the underlying attractor. In practice,

however, a too-large m will invoke the curse of dimensionality and destroy the fidelity of the

reconstruction. Moreover, increasing m exacerbates both noise effects and computational expense.

For all of these reasons, it would be a major advantage if one could obtain useful information about

the homology of the underlying attractor—even if not the full topology—from a low-dimensional

delay-coordinate reconstruction.

Again, it appears that this is possible. Figure 5.17 shows witness complexes for m = 2

and m = 3 reconstructions of the Lorenz time series of Figure 3.2(b). The barcodes for the first

two Betti numbers of these two complexes, as computed using javaPlex, have similar structure:

the complexes become connected (β0 = 1) at a small value of ε, and the dominant, persistent

homology corresponds to the two primary holes (β1 = 2) in the attractor. Note, by the way, that

Figure 5.17(a) is not simply a 2D projection of Figure 5.17(b); the edges in each complex reflect

the geometry of the witness relationships in different spaces, and so may differ. Higher-dimensional

reconstructions—not easily displayed—have the same homology for suitable choices of ε, though

for m > 5, it is necessary to increase the number of landmarks to obtain a persistent β1 = 2.

That brings up an important point: if one wants to sensibly compare witness complexes

constructed from different reconstructions of a single data set, one has to think carefully about the

` and ε parameters. Here, I use persistence to choose a good value of `. I find that the results

are robust with respect to changes in that value, across all reconstruction dimension values in this

study, so I fix ` ≈ 200 for all the experiments reported in this section.6

In the experiments in the previous section, the scale parameter ε was given in absolute units.

To generalize this approach across different examples and different reconstruction dimensions, it

makes sense to compare reconstructions with ε chosen to be a fixed fraction of the diameter,

5 For example, recall the method of dynamical invariants.
6 The precise value varies slightly because the length of a trajectory reconstructed from a fixed-length data set

decreases with increasingm (since one needs a full span ofm×(τ) data points to construct a point in the reconstruction
space).
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Figure 5.17: The effects of reconstruction dimension: One-skeletons of witness complexes of different
reconstructions of the scalar time series of Figure 3.2(b). Both reconstructions use τ = 174, the
first minimum of the average time-delayed mutual information, ` = 198 equally spaced landmarks
(red dots), and ξ = 0.54%, as defined in Equation (5.8).

diam(W ), of the set W

ε = ξ diam(W ) (5.8)

For example, for the full 3D attractor in Figure 3.2(a)

diam(Wxyz) =
√

(xmax − xmin)2 + (ymax − ymin)2 + (zmax − zmin)2 = 75.3 (5.9)

so the ε values used in Figure 5.15—0.017 ≤ ε ≤ 1.7 in absolute units—translate to 2.3 × 10−4 ≤

ξ ≤ 0.023 in this diameter-scaled measure.

The diameter of the reconstruction varies in a natural way with the dimension m. Since

delay-coordinate reconstruction of scalar data unfolds the full range of those data along every

added dimension, the diameter of an m-dimensional reconstruction will be

diam(Wm) =
√
m(xmax − xmin)2 = 37.0

√
m (5.10)

for this dataset, where x represents the scalar time-series data. Since this unfolding will change the

geometry of the reconstruction, I need to scale ε accordingly. The witness complexes in Figure 5.17

are constructed with a fixed value of ξ = 0.54%. That is, for Figure 5.17(a), ε = 37.0
√

2(0.0054) =

0.283 in absolute units, while for Figure 3.2(b), diam(W3) = 37.0
√

3 and ε = 0.346. This scaling
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of ε—which is used throughout the rest of this section—should allow the witness complex to adapt

appropriately to the effects of changing reconstruction dimension and finite data.

To formalize the exploration of the reconstruction homology and extend that study across

multiple dimensions, one can use a variant of the classic barcode diagram that shows, for each

simplex, the reconstruction dimension values at which it appears in and vanishes from the complex.

Figure 5.18(a) shows such a plot for edges that involve l0, the first landmark on the reconstructed

trajectory. A number of interesting features are apparent in this image. Unsurprisingly, most of

the one-simplices that exist in the m = 1 witness complex—many of which are likely due to the

strong effects of the projection of the underlying Rd trajectory onto R1—vanish when one moves to

m = 2. There are other short-lived edges in the complex as well: e.g., the edge from l0 to l120 that

is born at m = 2 and dies at m = 3. The sketch in Figure 5.18(b) demonstrates how edges can be

born as the dimension increases: in the m = 2 reconstruction, `1 and `3 share a witness (the green

square); when one moves to m = 3, spreading all of the points out along the added dimension,

that witness is moved far from `3—and into the shared region between `1 and `2. There are also

long-lived edges in the complex of Figure 5.18(a). The one between l0 and l140 that persists from

m = 1 to m = 8 is particularly interesting: this pair of landmarks has shared witnesses in the scalar

data and in all reconstructions. Possible causes for this are explored in more depth below. All of

these effects depend on ξ, of course; lowering ξ will decrease both the number and average length

of the edge persistence bars.

While this ∆m barcode image is interesting, the amount of detail that it contains makes it

somewhat unwieldy. To study the m-persistence of all of `×` edges in a witness complex, one would

need to examine ` of these plots—or condense them into a single plot with `2 entries on the vertical

axis. Instead, one can plot what I call an edge lifespan diagram: an `× ` matrix whose (i, j)th pixel

is colored according to the maximum range of m for which an edge exists in the complex between

the ith and jth landmarks; see Figure 5.19. If the edge {li, lj} existed in the complex for 2 ≤ m < 3

and 5 ≤ m < 8, for instance, ∆m would be three and the i, jth pixel would be coded in cyan. Edges

that do not exist for any dimension are coded white.



117

20

40

60

80

100

120

140

160

180

200

1→2 2→3 3→4 4→5 5→6 6→7 7→8m = 1
Transitions

La
nd

m
ar

k 
In

de
x

(a)

x(t)

x(t
–τ)

x(
t–

2τ
)

l1

l1

l3

l3

l2

l2

w

w

(b)

Figure 5.18: (a) Dimension barcode for edges in the witness complex of the reconstructed scalar
time series of Figure 3.2(b) that involve l0, the first landmark, for reconstructions with m = 1, . . . , 8.
The vertical axis is labeled with the indices of the remaining 197 landmarks in the complex; a circle
at the m−1→ m tickmark on the horizontal axis indicates the transition at which an edge between
l0 and li is born; a square indicates the transition at which that edge vanishes from the complex. An
arrow at the right-hand edge of the plot indicates an edge that was still stable when the algorithm
completed. For all reconstructions, τ = 174, ` = 198, and ξ = 0.54%. (b) Sketch of the birth and
death of edges at the m = 2→ 3 transition.
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Figure 5.19: Edge lifespan diagram: pixel i, j on this image is color-coded according to the maximum
range ∆m of dimension for which an edge exists between landmarks li and lj in the witness complex
of the reconstructed scalar time series of Figure 3.2(b) for m = 1, . . . , 8. For all reconstructions,
τ = 174, ` = 198, and ξ = 0.54%.

A prominent feature of Figure 5.19 is a large number (683) of edges with a lifespan 1 (blue).

Of these edges, 463 exist for m = 1, but not for m = 2, and thus reflect the anomalous behavior
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of projecting a 2.06 dimensional object onto a line. This is also seen, as described above, in the

barcode of Figure 5.18.

Another interesting set of features in the lifespan diagram is the diagonal line segments.

Note that the color of the pixels in these segments varies, though most of them correspond

to edges with longer lifespans. These segments indicate the existence of ∆m-persistent edges

{li, lj}, {li+1, lj+1}, {li+2, lj+2} . . .. This is likely due to the continuity of the dynamics [5]. Recall

that the landmarks are evenly spaced in time, so li+1 is the ∆t-forward image of li. Thus a diagonal

segment may indicate that the ∆t-forward images of (at least one) witness that is shared between

li and lj is shared between li+1 and lj+1, and so on. The lengths of the longer line segments suggest

that that continuity fails after 5-10 ∆t steps, probably because of the positive Lyapunov exponents

on the attractor. As a simple check on this reasoning, one can compute an edge lifespan diagram

for a dynamical system with a limit cycle. The structure of such a plot (not shown) is dominated

by diagonal lines of high ∆m-persistence, with a few other scattered one-persistent edges.

The rationale behind studying the maximal m-lifespan goes back to one of the basic premises

of persistence: that features that persist for a wide range of parameter values are in some sense

meaningful. To explore this, Figure 5.20 shows the witness complex of Figure 5.17(a), highlighting

the ∆m ≥ 2-persistent edges: those that exist at m = 2 and persist at least to m = 4. There

exists a fundamental core to the complex that persists as the dimension grows and thus is robust

to geometric distortion, but there are also short-lived edges that fill in the complex in accord with

the local geometric structure of the reconstruction. Indeed, when m = 2, the projection artificially

compresses near the origin; small simplicies fill in this region due to the landmark clustering there.

However, in the transition to m = 3—viz., Figure 5.17(b)—this region stretches away from the

origin, spreading the landmarks out. There is a similar cluster of “fragile” edges near the lower left

corner of the complex.

Even though geometric evolution with increasing reconstruction dimension leads to the death

of many local edges, the large-scale homology is correct in both complexes of Figure 5.17, although

the fine-scale topology is resolved differently by the dimension-dependent geometry. So while the
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Figure 5.20: Witness complex of Figure 5.17(a) with ∆m ≥ 2-persistent edges shown as thick
(black) lines, and the ∆m = 1 edges as (red) dashed lines.

edges with longer lifespan are indeed more important to the core structure, the short-lived edges are

also important because they allow the complex to adapt to the geometric evolution of the attractor

and fill in the details of the skeleton that are necessary and meaningful in that dimension.

In the spirit of the false near-neighbor method [62], one might be tempted to take the short-

lived edges as an indication that the reconstruction dimension is inadequate. However, one com-

putes homology from the overall complex. As the example above shows, homology is relatively

robust with respect to individual edges. The moral of this story is that the lifespan of an edge

is not necessarily an obvious indication of its importance to the homology of the complex; ∆m-

persistence plays a different role here than the abscissa of traditional barcode persistence plots.

The results in this section show that it is possible to compute the homology of an invariant

set of a dynamical system using a simplicial complex built from a low-dimensional reconstruction of
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a scalar time series. These results have a number of interesting implications. Among other things,

they suggest that the traditional delay-coordinate reconstruction process may be excessive if one is

only interested in large-scale topological structure such as the homology. This is directly apropos

of the central claim of this thesis, as it explains why it is possible to construct accurate predic-

tions of the future state of a high-dimensional dynamical system using a two-dimensional delay-

coordinate reconstruction. The delay-coordinate machinery strives to obtain a diffeomorphism—not

a homeomorphism—between the true and reconstructed attractors. However, many of the prop-

erties of attractors that are important for forecasting (continuity, recurrence, entropy, etc.) are

topological, so requiring only a homeomorphism is not only natural, but also more efficient [80].

This section uses a single example—the Lorenz 63 system—but I believe that the approach

will work on other dynamical systems and I plan in the future to do a careful exploration of

additional systems, both maps and flows.

5.3 Summary

Chapter 4 offered experimental validation of my proposed paradigm shift in the practice of

delay-coordinate reconstruction, but left many unanswered questions about the theoretical under-

pinnings (and implications) of this approach. This chapter answered those questions by drawing on

the complementary theoretical frameworks of information theory and computational topology. The

novel computationally-efficient metric (Aτ ) explicitly leveraged information stored in a delay vector

to select forecast-optimal parameters for delay coordinate reconstruction. This metric allowed for

tailoring of reconstruction parameters to available data length, the signal-to-noise ratio in the time

series, and the desired prediction horizon. In addition, this information-theoretic approach gave

me the language and methods to answer difficult questions like the ones posed on page 79. Perhaps

most importantly, the results in Section 5.1 validated that the state estimator of ro-LMA often has

more information about the near future than a traditional embedding—a fact that is completely

counter to all the current theory.

Section 5.2 deviated significantly from the tone of the rest of this thesis. Instead of discussing
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delay-coordinate reconstruction purely from a forecasting perspective, it turned a critical eye toward

the theoretical foundation and assumptions of this powerful framework, which is the basis for

all of nonlinear time-series analysis. The consistent story throughout the previous chapters is

that the theoretical requirements of delay-coordinate reconstruction are not necessary—and can

indeed be overkill—when one wishes to use it for the purposes of short-term forecasting. But,

why is this the case? Is it simply because more information is present in lower-dimensional state

estimators, as established in Section 5.1, or is there something deeper underpinning this method

from a theoretical perspective? In Section 5.2, I used the canonical Lorenz 63 system to argue that

large-scale homology can be attainable at much lower dimensions than the theory might suggest. I

believe this in turn suggests that a homeomorphism, in the form of the delay-coordinate map, can

be achieved at lower dimensions than what is needed for a diffeomorphism. This insight suggested

an alternative explanation as to why ro-LMA gets traction before it should: specifically, that a

homeomorphic reconstruction of a dynamical system may be sufficient for short-term forecasting of

dynamical systems. However, further work will be required to rigorously prove this broader claim.



Chapter 6

Model-Free Quantification of Time-Series Predictability

Time-series data can span a wide range of complexities and no single forecast algorithm can

be expected to handle this entire spectrum effectively. This poses an interesting problem when one

is developing any new forecasting technology, such as the reduced order framework outlined in this

thesis. In particular, given an arbitrary time series—with an undefined level of complexity—can

one expect that method to be effective? The first step to answering this question is to define a

spectrum of predictive complexity [41].

On the low end of this spectrum are time series that exhibit perfect predictive structure, i.e,

signals whose future values can be perfectly predicted from past values. Signals like this can be

viewed as the product of an underlying process that generates information and/or transmits it from

the past to the future in a perfectly predictable fashion. Constant or periodic signals, for example,

fall in this class. On the opposite end of this spectrum are signals that are—from a forecasting

perspective—fully complex, where the underlying generating process transmits no information at

all from the past to the future. White noise processes fall in this class. In fully complex signals,

knowledge of the past gives no insight into the future, regardless of what model one chooses to use.

Signals in the midrange of this spectrum, e.g., deterministic chaos, pose interesting challenges from

a modeling perspective. In these signals, enough information is being transmitted from the past to

the future that an ideal model—one that captures the generating process—can forecast the future

behavior of the observed system with high accuracy.

This leads naturally to an important and challenging question to which I alluded in the first
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paragraph of this chapter: given a noisy real-valued time series from an unknown system, does

there exist any forecast model that can leverage the information (if any) that is being transmitted

forward in time by the underlying generating process? A first step in answering this question is

to reliably quantify where on the complexity spectrum a given time series falls; a second step is to

determine how complexity and predictability are related in these kinds of data sets. With these

answers in hand, one can develop a practical strategy for assessing appropriateness of forecast

methods for a given time series. If the forecast produced by ro-LMA is poor, for example, but the

time series contains a significant amount of predictive structure, one can reasonably conclude that

ro-LMA is inadequate to the task and that one should seek another method.

The goal of this chapter is to develop effective heuristics to put that strategy into practice.

Recall that Chapter 4 of this thesis demonstrated that ro-LMA can be effective, and Chapter 5

provided reasons why and how this is the case. The heuristic proposed in this chapter goes one

step further and addresses when ro-LMA—and indeed any forecast algorithm—can be expected to

be effective.

The information in an observation can be partitioned into two pieces: redundancy and entropy

generation [25]. The approach exploits this decomposition in order to assess how much predictive

structure is present in a signal—i.e., where it falls on the complexity spectrum mentioned above.

I define complexity as a particular approximation of Kolmogorov-Sinai entropy [69]. That is, I

view a random-walk time series (which exhibits high entropy) as purely complex, whereas a low-

entropy periodic signal is on the low end of the complexity spectrum. This differs from the notion of

complexity used by e.g., [101], which would consider a time series without any statistical regularities

to be non-complex. In collaboration with R. G. James, I argue that an extension of permutation

entropy [9]—a method for approximating the entropy through ordinal analysis—is an effective way

to assess the complexity of a given time series. Permutation entropy, introduced in Section 2.2.6,

is ideal for this purpose because it works with real-valued data and is known to converge to the

true entropy value. Other existing techniques either require specific knowledge of the generating

process or produce biased values of the entropy [13].
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I focus on real-valued, scalar, time-series data from physical experiments. I do not assume

any knowledge of the generating process or its properties: whether it is linear, nonlinear, deter-

ministic, stochastic, etc. To explore the relationship between complexity, predictive structure, and

actual predictability, I generate forecasts for several experimental computer performance time-series

datasets using the five different prediction strategies discussed in this thesis, then compare the ac-

curacy of those predictions to the permutation entropy of the associated signals. This results in

two primary findings:

(1) The permutation entropy of a noisy real-valued time series from an unknown system is

correlated with the accuracy of an appropriate predictor.

(2) The relationship between permutation entropy and prediction accuracy is a useful empirical

heuristic for identifying mismatches between prediction models and time-series data.

There has, of course, been a great deal of good work on different ways to measure the complexity

of data, and previous explorations have confirmed repeatedly that complexity is a challenge to

prediction. It is well known that the way information is generated and processed internally by

a system plays a critical role in the success of different forecasting methods—and in the choice

of which method is appropriate for a given time series. This constellation of issues has not been

properly explored, however, in the context of noisy, poorly sampled, real-world data from unknown

systems. That exploration, and the development of strategies for putting its results into effective

practice, is the primary contribution of this chapter. The empirical results in Section 6.2 not

only elucidate the relationship between complexity and predictability, but also provide a practical

strategy to aid practitioners in assessing the appropriateness of a prediction model for a given

real-world noisy time series from an unknown system—a challenging task for which little guidance

is currently available. In the context of this thesis, the value of this is that it provides a general

framework for assessing whether or not ro-LMA is an appropriate choice for a given time series, or

if a more sophisticated or even a simpler strategy is required.

The rest of this chapter is organized as follows. Section 6.1 discusses previous results on
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generating partitions, local modeling, and error distribution analysis, and situates this work in that

context. In Section 6.2, I estimate the complexity of a number of time-series traces and compare

that complexity to the accuracy of various predictions models operating on that time series. In

Section 6.3, I discuss these results and their implications, and consider future areas of research.

6.1 Traditional Methods for Predicting Predictability

Hundreds, if not thousands, of strategies have been developed for a wide variety of prediction

tasks. The purpose of this chapter is not to add a new weapon to this arsenal, nor to do any

sort of theoretical assessment or comparison of existing methods. In the spirit of this thesis,

the goals here are focused more on the practice of prediction: (i) to empirically quantify the

predictive structure that is present in a real-valued scalar time series and (ii) to explore how the

performance of prediction methods is related to that inherent complexity. It would, of course,

be neither practical nor interesting to report results for every existing forecast strategy; instead,

I use the same representative set of methods that appear throughout this thesis, as described in

Section 2.3.

Quantifying predictability, which is sometimes called “predicting predictability,” is not a

new problem. Most of the corresponding solutions fall into two categories that I call model-based

error analysis and model-free information analysis. The first class focuses on errors produced by

a specific forecasting schema. This analysis can proceed locally or globally. The local version

approximates error distributions for different regions of a time-series model using local ensemble

in-sample1 forecasting. These distributions are then used as estimates of out-of-sample forecast

errors in those regions. For example, Smith et al. make in-sample forecasts using ensembles around

selected points in order to predict the local predictability of a time series [107]. This approach can

be used to show that different portions of a time series exhibit varying levels of local predictive

1 The terms “in sample” and “out of sample” are used in different ways in the forecasting community. Here, I
distinguish those terms by the part of the time series that is the focus of the prediction: the observed data for the
former and the unknown future for the latter. In-sample forecasts—comparisons of predictions generated from part
of the observed time series—are useful for assessing model error and prediction horizons, among other things.
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uncertainty.

Local model-based error analysis works quite well, but it only approximates the local predic-

tive uncertainty in relation to a fixed model. It cannot quantify the inherent predictability of a time

series and thus cannot be used to draw conclusions about predictive structure that other forecast

methods may be able to leverage. Global model-based error analysis moves in this direction. It uses

out-of-sample error distributions, computed post facto from a class of models, to determine which

of those models was best. After building an autoregressive model, for example, it is common to

calculate forecast errors and verify that they are normally distributed. If they are not, that suggests

that there is structure in the time series that the model-building process was unable to recognize,

capture, and exploit. The problem with this approach is lack of generality. Normally distributed

errors indicate that a model has captured the structure in the data insofar as is possible, given the

formulation of that particular model (viz., the best possible linear fit to a nonlinear dataset). This

gives no indication as to whether another modeling strategy might do better.

A practice known as deterministic vs. stochastic modeling [22, 44] bridges the gap between

local and global approaches to model-based error analysis. The basic idea is to construct a series

of local linear fits, beginning with a few points and working up to a global linear fit that includes

all known points, and then analyze how the average out-of-sample forecast error changes as a

function of number of points in the fit. The shape of such a “DVS” graph indicates the amounts

of determinism and stochasticity present in a time series.

The model-based error analysis methods described in the previous three paragraphs are based

on specific assumptions about the underlying generating process and knowledge about what will

happen to the error if those assumptions hold or fail. Model-free information analysis moves

away from those restrictions. My approach falls into this class: I wish to measure the inherent

complexity of an arbitrary empirical time series, then study the correlation of that complexity with

the predictive accuracy of forecasts made using a number of different methods.

I build on the notion of redundancy that was introduced on page 123, which formally quantifies

how information propagates forward through a time series: i.e., the mutual information between
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the past n observations and the current one. The redundancy of i.i.d. random processes, for

instance, is zero, since all observations in such a process are independent of one another. On the

other hand, deterministic systems, including chaotic ones, have high redundancy—in fact, maximal

redundancy in the infinite limit—and thus they can be perfectly predicted if observed for long

enough [44]. In practice, it is quite difficult to estimate the redundancy of an arbitrary, real-valued

time series. Doing so requires knowing either the Kolmogorov-Sinai entropy or the values of all

positive Lyapunov exponents of the system. Both of these calculations are difficult, the latter

particularly so if the data are very noisy or the generating system is stochastic.

Using entropy and redundancy to quantify the inherent predictability of a time series is not

a new idea. Past methods for this, however, (e.g., [74, 102]) have hinged on knowledge of the

generating partition of the underlying process, which lets one transform real-valued observations

into symbols in a way that preserves the underlying dynamics [69]. Using a partition that is

not a generating partition—e.g., simply binning the data—can introduce spurious complexity into

the resulting symbolic sequence and thus misrepresent the entropy of the underlying system [13].

Generating partitions are luxuries that are rarely, if ever, afforded to an analyst, since one needs

to know the underlying dynamics in order to construct one. And even if the dynamics are known,

these partitions are difficult to compute and often have fractal boundaries [31]. (See Section 2.2.5.1

for a review of these issues.)

In the development described in the following section, I sidestep these issues by using a variant

of the permutation entropy of Bandt and Pompe [9] to estimate the value of the Kolmogorov-Sinai

entropy of a real-valued time series—and thus the redundancy in that data, which my results confirm

to be an effective proxy for predictability. This differs from existing approaches in a number of

ways. It does not rely on generating partitions—and thus does not introduce bias into the results

if one does not know the dynamics or cannot compute the partition. Permutation entropy makes

no assumptions about, and requires no knowledge of, the underlying generating process: whether

it is linear or nonlinear, what its Lyapunov spectrum is, etc. These features make my approach

applicable to noisy real-valued time series from all classes of systems, deterministic and stochastic.
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6.2 Predictability, Complexity, and Permutation Entropy

In this section, I offer an empirical validation of the two findings introduced on page 124,

namely:

(1) The weighted permutation entropy (WPE) of a noisy real-valued time series from an un-

known system is correlated with prediction accuracy—i.e., the predictable structure in an

empirical time-series data set can be quantified by its WPE.

(2) The relationship between WPE and mean absolute scaled error (1-MASE) is a useful empir-

ical heuristic for identifying mismatches between prediction models and time-series data—

i.e., when there is structure in the data that the model is unable to exploit.

The experiments below involve four different prediction methods: fnn-LMA, näıve, ARIMA

and random walk, applied to time-series data from eight different experimental systems: col major,

403.gcc, and six different segments of a computer performance experiment that I have not yet dis-

cussed in this thesis called dgesdd, a Fortran program from the LAPACK linear algebra package [8]

that calculates the singular value decomposition of a rectangular M by N matrix with real-valued

entries. For my experiments, I choose M = 750 and N = 1000 and generate the matrix entries

randomly.

The behavior of this program as it computes the singular values of this matrix is complex

and interesting, as is clearly visible in Figure 6.1. As the code moves though its different phases—

diagonalizing the matrix, computing its transpose, multiplying, etc.—the processor utilization pat-

terns change quite radically. For the first ∼21,000 (in units of 100,000 instructions) measurements,

roughly 1.8 instructions are executed per cycle, on the average, by the eight processing units on

this chip. After that, the IPC moves through a number of different oscillatory regimes, which I

have color-coded in the figure in order to make textual cross-references easy to track.

The wide range of behaviors in Figure 6.1 provides a distinct advantage, for the purposes of

this chapter, in that a number of different generating processes—with a wide range of complexities—
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Figure 6.1: A processor performance trace of instructions per cycle (IPC) during the execution of
dgesdd. The colors (also separated by vertical dashed lines) identify the different segments of the
signal that are discussed in the text.

are at work in different phases of a single time series. The col major and 403.gcc traces in

Figures 3.3 and 3.4, in contrast, appear to be far more consistent over time—probably the result of

a single generating process with consistent complexity. dgesdd, has multiple regimes, each probably

the result of different generating processes. To take advantage of this rich experimental data set, I

split the signal into six different segments, thereby obtaining an array of examples for the analyses

in the following sections. For notational convenience, I refer to these 90 time-series data sets2 as

dgesddi, with i ∈ {1 . . . 6} where i corresponds to one of the six segments of the signal, ordered

from left to right. These segments, which were determined visually, are shown in different colors

in Figure 6.1. Visual decomposition is subjective, of course, particularly since the regimes exhibit

some fractal structure. Thus, it may be the case that more than one generating process is at work

in each of our segments. This is a factor in the discussion that follows.

The objective of these experiments is to explore how prediction accuracy is related to WPE.

Working from the first 90% of each signal, I generate a prediction of the last 10% using all four

2 15 runs, each with six regimes
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Figure 6.2: Weighted permutation entropy versus 1-MASE of the best prediction of a number of
different time series. The solid curve is a least-squares log fit of these points. The dashed curves
reflect the standard deviation of the model in its parameter space. Points that lie below and to
the right of the shaded region indicate that the time series has more predictive structure than the
forecast strategy is able to utilize.

prediction methods, then calculate the 1-MASE value of those predictions. I also calculate the

WPE of each time series using a wordlength chosen via the procedure described at the end of

Section 2.2.6. In order to assess the run-to-run variability of these results, I repeat all of these

calculations on 15 separate trials: i.e., 15 different runs of each program.

Figure 6.2 plots the WPE values versus the corresponding 1-MASE values of the best pre-

diction for each of the 120 time series in this study. The obvious upward trend is consistent with

the notion that there is a pattern in the WPE-MASE relationship. However, a simple linear fit is

a bad idea here. First, any signal with zero entropy should be perfectly predictable (i.e., 1-MASE

≈ 0), so any curve fitted to these data should pass through the origin. Moreover, WPE does not

grow without bound, so one would expect the patterns in the WPE-MASE pairs to reach some sort
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of asymptote. For these reasons, I choose to fit a function3 of the form y = a log(bx + 1) to these

points, with y = WPE and x = 1-MASE. The solid curve in the figure shows this fit; the dashed

curves show the standard deviation of this model in its parameter space: i.e., y = a log(bx + 1)

with ± one standard deviation on each of the two parameters. Points that fall within this deviation

volume (light grey) correspond to predictions that are comparable to the best ones found in this

study; points that fall above that volume (dark grey) are better still. I choose to truncate the

shaded region because of a subtle point regarding the 1-MASE of an ideal predictor, which should

not be larger than 1 unless the training and test signals are different. This is discussed at more

length below.

The curves and regions in Figure 6.2 are a graphical representation of the first finding in-

troduced on page 124. This representation is, I believe, a useful heuristic for determining whether

a given prediction method is well matched to a particular time series. If your point is outside

the grey region, then that particular model is not capturing all the available structure of the time

series. This is not, of course, a formal result. The forecast methods and data sets used here were

chosen to span the space of standard prediction strategies and the range of dynamical behaviors,

but they do not cover those spaces exhaustively. My goal here is an empirical assessment of the

relationship between predictability and complexity, not formal results about a “best” predictor for

a given time series. There may be other methods that produce lower 1-MASE values than those

in Figure 6.2, but the sparseness of the points above and below the one-σ region about the dashed

curve in this plot strongly suggests a pattern of correlation between the underlying predictability

of a time series and its WPE. The rest of this section describes these results and claims in more

detail—including the measures taken to assure meaningful comparisons across methods, trials, and

programs—elaborates on the meaning of the different curves and limits in the figure, and ties these

results into the overall thesis goals.

Figure 6.3 shows WPE vs. 1-MASE plots for the full set of experiments; Table 6.1 contains

all the associated numerical values. There are 15 points in each cluster, one for each trial. (The

3 The specific values of the coefficients are a = 7.97 × 10−2 and b = 1.52 × 103.
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Table 6.1: 1-MASE scores and weighted permutation entropies for all eight examples studied in
this chapter. LMA = Lorenz method of analogues; RW = random-walk prediction.

Signal RW 1-MASE näıve 1-MASE ARIMA 1-MASE fnn-LMA 1-MASE WPE

col major 1.001± 0.002 0.571± 0.002 0.599± 0.211 0.050± 0.002 0.513
403.gcc 1.138± 0.011 1.797± 0.010 1.837± 0.016 1.530± 0.021 0.943
dgesdd1 0.933± 0.095 2.676± 4.328 0.714± 0.075 0.827± 0.076 0.957
dgesdd2 1.125± 0.012 3.054± 0.040 2.163± 0.027 1.279± 0.020 0.846
dgesdd3 0.707± 0.009 31.386± 0.282 0.713± 0.010 0.619± 0.021 0.716
dgesdd4 1.034± 0.035 2.661± 0.074 0.979± 0.032 0.779± 0.036 0.825
dgesdd5 1.001± 0.047 20.870± 0.192 2.370± 0.051 0.718± 0.048 0.678
dgesdd6 1.060± 0.055 2.197± 0.083 1.438± 0.061 0.739± 0.068 0.748

points in Figure 6.2 are the leftmost of the points for the corresponding trace in any of the four

plots in Figure 6.3.) The WPE values do not vary very much across trials. For most traces,

the variance in 1-MASE scores is low as well, resulting in small, tight clusters. In some cases—

ARIMA predictions of col major, for instance—the 1-MASE variance is larger, which spreads out

the clusters horizontally. The mean 1-MASE scores of predictions generated with fnn-LMA are

generally closer to the dashed curve; the ARIMA method clusters are more widely spread, the

näıve clusters even more so. A few of the clusters have very high variance; these are discussed later

in this section.

The main thing to note here, however, is not the details of the shapes of the clusters, but rather

their positions in the four plots: specifically, the fact that many of them are to the right of and/or

below the dashed curve that identifies the boundary of the shaded region. These predictions are not

as good as my heuristic suggests they could be. Focusing in on any single signal makes this clear:

fnn-LMA works best for dgesdd6, for instance, followed by the random-walk prediction method,

then ARIMA and näıve. Again, this provides some practical leverage: if one calculates an WPE vs.

1-MASE value that is outside the shaded region, that suggests that the prediction method is not

well matched to the task at hand—that is, the time series has more predictive structure than the

method is able to use. The results of ARIMA on dgesdd6, for instance, suggest that one should try
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Figure 6.3: WPE vs. 1-MASE for all trials, methods, and systems—with the exception of dgesdd1,
dgesdd3, and dgesdd5, which are omitted from the top-right plot for scale reasons, as described in
the text. Numerical values, including means and standard deviations of the errors, can be found in
Table 6.1. The curves and shaded regions are the same as in the previous figure.

a different method. The position of the fnn-LMA cluster for dgesdd6, on the other hand, reflects

the ability of that method to capture and exploit the structure that is present in this signal. WPE

vs. 1-MASE values like this, which fall in the shaded region, indicate to the practitioner that the

prediction method is well-suited to the task. The following discussion uses a number of examples

to lay out the details that underlie these claims.

Though col major is a very simple program, its dynamics are actually quite complicated,
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as discussed in Section 3.2.1.2. Recall from Figure 4.2 and Table 4.2 that the näıve, ARIMA, and

(especially) random-walk prediction methods do not perform very well on this signal. The 1-MASE

scores of these predictions are 0.571± 0.002, 1.001± 0.002, and 0.599± 0.211, respectively, across

all 15 trials. That is, näıve and ARIMA perform only ≈ 1.7 times better than the random-walk

method, a primitive strategy that simply uses the current value as the prediction. However, the

WPE value for the col major trials is 0.513 ± 0.003, which is in the center of the complexity

spectrum described on page 122.

This disparity—WPE values that suggest a high rate of forward information transfer in the

signal, but predictions with comparatively poor 1-MASE scores—is obvious in the geometry of

three of the four images in Figure 6.3, where the col major clusters are far to the right of and/or

below the dashed curve. Again, this indicates that these methods are not leveraging the available

information in the signal. The dynamics of col major may be complicated, but they are not

unstructured. This signal is nonlinear and deterministic [83], and if one uses a prediction technique

that is based a nonlinear model (fnn-LMA)—rather than a method that simply predicts the running

mean (näıve) or the previous value (random walk), or one that uses a linear model (ARIMA)—the

1-MASE score is much improved: 0.050± 0.001. This prediction is 20 times more accurate than a

random-walk forecast, which is more in line with the level of predictive structure that the low WPE

value suggests is present in the col major signal. The 1-MASE scores of random-walk predictions

of this signal are all ≈ 1—as one would expect—pushing those points well below the shaded region.

Clearly the stationarity assumption on which that method is based does not hold for this signal.

The col major example also brings out some of the shortcomings of automated model-

building processes. Note that the + points are clustered very tightly in the lower left quadrant

of the näıve, random-walk, and fnn-LMA plots in Figure 6.3, but spread out horizontally in the

ARIMA plot. This is because of the way the auto.arima process—the fitting procedure that I use

for ARIMA models—works [56]. If a KPSS test4 of the time series in question indicates that it is

4 A Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [65]—one of many tests performed by auto.arima to chose
the ARIMA parameters—is used for testing that an observable time series is stationary around a deterministic trend.
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nonstationary, the ARIMA recipe adds an integration term to the model. This test gives mixed

results in the case of the col major process, flagging five of the 15 trials as stationary and ten

as nonstationary. I conjectured that ARIMA models without an integration term perform more

poorly on these five signals, which increases the error and thereby spreads out the points. I tested

this hypothesis by forcing the inclusion of an integration term in the five cases where a KPSS test

indicated that such a term was not needed. This action removes the spread, pushing all 15 of the

col major ARIMA points in Figure 6.3 into a tight cluster.

The discussion in the previous paragraph highlights the second finding of this chapter: the

ability of the graphical heuristic of Figure 6.2 to flag inappropriate models. auto.arima is an

automated, mechanical procedure for choosing modeling parameters for a given data set. While

the tests and criteria employed by this algorithm (Section 2.3.2) are sophisticated, the results can

still be sub-optimal—if the initial space of models being searched is not broad enough, for instance,

or if one of the preliminary tests gives an erroneous result. Moreover, auto.arima always returns

a model, and it can be very hard to detect when that model is bad. The results discussed in this

chapter suggest a way to do so: if the 1-MASE score of an auto-fitted model like an auto.arima

result is out of line with the WPE value of the data, that can be an indication of inappropriateness

in the order selection and parameter estimation procedure.

The WPE of dgesdd5 (0.677±0.006) is higher than that of col major. This indicates that the

rate of forward information transfer of the underlying process is lower, but that observations from

this system still contain a significant amount of structure that can, in theory, be used to predict

the future course of the time series. The 1-MASE scores of the näıve and ARIMA predictions for

this system are 20.870± 0.192 and 2.370± 0.051, respectively: that is, 20.87 and 2.37 times worse

than a simple random-walk forecast5 of the training set portions of the same signals. As before, the

positions of these points on a WPE vs. 1-MASE plot—significantly below and to the right of the

shaded region—should suggest to a practitioner that a different method might do better. Indeed,

5 The näıve 1-MASE score is large because of the bimodal nature of the distribution of the values of the signal,
which makes guessing the mean a particularly bad strategy. The same thing is true of the dgesdd3 signal.
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for dgesdd5, fnn-LMA produces a 1-MASE score of 0.718±0.048 and a cluster of results that largely

within the shaded region on the WPE-MASE plot. This is consistent with the second finding of

this chapter: the fnn-LMA method can capture and reproduce the way in which the dgesdd5 system

processes information, but the näıve and ARIMA prediction methods cannot.

The WPE of 403.gcc is higher still: 0.943 ± 0.001. This system transmits very little in-

formation forward in time and provides almost no structure for prediction methods to work with.

Here, the random-walk predictor is the best of the methods used here. This makes sense; in a fully

complex signal, where there is no predictive structure to utilize, methods that depend on exploiting

that structure—like ARIMA and fnn-LMA—cannot get any traction. Since fitting a hyperplane us-

ing least squares should filter out some of the noise in the signal, the fact that fnn-LMA outperforms

ARIMA (1.530± 0.021 vs. 1.837± 0.016) may be somewhat counterintuitive. However, the small

amount of predictive structure that is present in this signal is nonlinear (cf., [83]), and fnn-LMA

is designed to capture and exploit that kind of structure. Note that all four 403.gcc clusters in

Figure 6.3 are outside the shaded region; in the case of the random-walk prediction, for instance,

the 1-MASE value is 1.1381 ± 0.011. This is due to nonstationarity in the signal: in particular,

differences between the training and test signals. The same effect is at work in the dgesdd2 results,

for the same reasons—and visibly so, judging by the red segment of Figure 6.1, where the period

and amplitude of the oscillations are decreasing.

dgesdd1—the dark blue (first) segment of Figure 6.1—behaves very differently than the other

seven systems in this study. Though its weighted permutation entropy is very high (0.957± 0.016),

three of the four prediction methods do quite well on this signal, yielding mean 1-MASE scores of

0.714 ± 0.075 (ARIMA), 0.827 ± 0.076 (fnn-LMA), and 0.933 ± 0.095 (random walk). This pushes

the corresponding clusters of points in Figure 6.3 well above the trend followed by the other seven

signals. The reasons for this are discussed below. The 1-MASE scores of the predictions that are

produced by the näıve method for this system, however, are highly inconsistent. The majority of the

blue diamond-shaped points on the top-right plot in Figure 6.3 are clustered near a 1-MASE score

of 0.6, which is better than the other three methods. In five of the 15 dgesdd1 trials, however, there
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Figure 6.4: A small portion of the dgesdd1 time series

are step changes in the signal. This is a different nonstationarity than in the case of col major—

large jump discontinuities rather than small shifts in the baseline—and not one that I am able to

handle by simply forcing the ARIMA model to include a particular term. The näıve method has

a very difficult time with signals like this, particularly if there are multiple step changes. That

raised the 1-MASE scores of these trials, pushing the corresponding points6 to the right, and in

turn raising both the mean and variance of this set of trials.

The effects described in the previous paragraph are also exacerbated by the way 1-MASE is

calculated. Recall that 1-MASE scores are scaled relative to a random-walk forecast. This creates

several issues. Since random-walk prediction works very badly on signals with frequent, large,

rapid transitions (even simple periodic signals) this class of signals can exhibit low WPE, and high

1-MASE. This is because the random-walk forecast of this signal will be 180 degrees out of phase

with the true continuation. This effect can shift points leftwards on a WPE vs. 1-MASE plot, and

that is exactly why the dgesdd1 clusters in Figure 6.3 are above the dashed curve. This time series,

part of which is shown in closeup in Figure 6.4, is not quite the worst-case signal for a random-

walk prediction, but it still poses a serious challenge. It is dominated by a noisy regime (between

6 This includes the cluster of three points near 1-MASE ≈ 2.5, as well as two points that are beyond the domain
of the graph, at 1-MASE ≈ 11.2 − 14.8.
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≈1.86 and ≈1.88 on the vertical scale in Figure 6.4), punctuated by short excursions above 1.9.

In the former regime, which makes up more than 80% of the signal, there are frequent dips to

1.82 and occasional larger dips below 1.8. These single-point dips are the bane of random-walk

forecasting. In this particular case, roughly 40% of the forecasted points are off by the width of the

associated dip, which skews the associated 1-MASE scores. Signals like this are also problematic

for the näıve prediction strategy, since the outliers have significant influence on the mean. This

compounds the effect of the skew in the scaling factor and exacerbates the spread in the dgesdd1

1-MASE values.

The second effect that can skew 1-MASE scores is nonstationarity. Since this metric is

normalized by the error of a random-walk forecast on the training signal, differences between the

test signal and training signal can create issues. This is why the 1-MASE values in Table 6.1

are not identically one for every random-walk forecast of every time series: the last 10% of these

signals is significantly different from the first 90%. The deviation from 1.00 will depend on the

process that generated the data—whether it has multiple regimes, what those regimes look like,

and how it switches between them—as well as the experimental setup (e.g., sensor precision and

data length). For the processes studied here, these effects do not cause the 1-MASE values to

exceed 1.15, but pathological situations (e.g., a huge switch in scale right at the training/test

signal boundary, or a signal that simply grows exponentially) could produce higher values. This

suggests another potentially useful heuristic: if the 1-MASE of a random-walk prediction of a time

series is significantly different from 1, it could be an indication that the signal is nonstationary.

The curves in Figures 6.2 and 6.3 are determined from finite sets of methods and data. I put

a lot of thought and effort into making these sets representative and comprehensive. The forecast

methods involved ranged from the simple to the sophisticated; the time-series data analyzed in this

section are sampled from systems whose behavior spans the dynamical behavior space. While I

am cautiously optimistic about the generality of my conclusions, more exploration will be required

before I can make definitive or general conclusions. However, my preliminary exploration shows

that data from the Hénon map [55], the Lorenz 63 system [71], the SFI dataset A [119], and a
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random-walk process all fall within the one-σ volume of the fit in Figures 6.2 and 6.3 region, as do

various nonlinear transformations of dgesdd2, dgesdd5 and dgesdd6, so I am optimistic.

In this chapter I strictly used fnn-LMA as the nonlinear exemplar to explore how prediction

accuracy is related to WPE. With this relationship established, applying this heuristic to assessing

the appropriateness of ro-LMA for a given signal is quite trivial: one simply compares the accuracy

of ro-LMA, tabulated in Tables 4.1 and 4.2, with the WPE of that signal, given in Table 6.1, using

the graphical heuristic in Figure 6.2.

Note that there has been prior work under a very similar title to our paper on this topic [41],

but there are only superficial similarities between the two research projects. Haven et al. [52]

utilize the relative entropy to quantify the difference in predictability between two distributions:

one evolved from a small ensemble of past states using the known dynamical system, and the other

the observed distribution. My work quantifies the predictability of a single observed time series

using weighted permutation entropy and makes no assumptions about the generating process.

More closely related is the work of Boffetta et al. [12], who investigated the scaling behavior

of finite-size Lyapunov exponents (FSLE) and ε-entropy for a wide variety of deterministic systems

with known dynamics and additive noise. While the scaling of these measures acts as a general

proxy for predictability bounds, this approach differs from my work in a number of fundamental

ways. First, [12] is a theoretical study that does not involve any actual predictions. I focus on

real-world time-series data, where one does not necessarily have the ability to perturb or otherwise

interact with the system of interest, nor can one obtain or manufacture the (possibly large) number

of points that might be needed to estimate the ε-entropy for small ε. Second, I do not require a

priori knowledge about the noise and its interaction with the system. Third, I tie information—in

the form of the weighted permutation entropy—directly to prediction error via calculated values

of a specific error metric. Though FSLE and ε-entropy allow for the comparison of predictability

between systems, they do not directly provide an estimate of prediction error. Finally, my approach

also holds for stochastic systems, where neither the FLSEs nor their relationship to predictability

are well defined.
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6.3 Summary

Forecast strategies that are designed to capture predictive structure are ineffective when

signal complexity outweighs information redundancy. This poses a number of serious challenges

in practice. Without knowing anything about the generating process, it is difficult to determine

how much predictive structure is present in a noisy, real-world time series. And even if predictive

structure exists, a given forecast method may not work, simply because it cannot exploit the

structure that is present (e.g., a linear model of a nonlinear process). If a forecast model is not

producing good results, a practitioner needs to know why: is the reason that the data contain no

predictive structure—i.e., that no model will work—or is the model that s/he is using simply not

good enough?

In this chapter, I have argued that redundancy is a useful proxy for the inherent predictability

of an empirical time series. To operationalize that relationship, I used an approximation of the

Kolmogorov-Sinai entropy, estimated using a weighted version of the permutation entropy of [9].

This WPE technique—an ordinal calculation of forward information transfer in a time series—is

ideal for my purposes because it works with real-valued data and is known to converge to the

true entropy value. Using a variety of forecast models and more than 150 time-series data sets

from experiments and simulations, I have shown that prediction accuracy is indeed correlated with

weighted permutation entropy: the higher the WPE, in general, the higher the prediction error.

The relationship is roughly logarithmic, which makes theoretical sense, given the nature of WPE,

predictability, and 1-MASE.

An important practical corollary to this empirical correlation of predictability and WPE is a

practical strategy for assessing appropriateness of forecast methods. If the forecast produced by a

particular method is poor but the time series contains a significant amount of predictive structure,

one can reasonably conclude that that method is inadequate to the task and that one should seek

another method. fnn-LMA, for instance, performed better in most cases because it is more general.

(This is particularly apparent in the col major and dgesdd5 examples.) The näıve method, which
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simply predicts the mean, can work very well on noisy signals because it effects a filtering operation.

The simple random-walk strategy outperforms fnn-LMA, ARIMA, and the näıve method on the

403.gcc signal, which is extremely complex—i.e., extremely low redundancy.

The curves and shaded regions in Figures 6.2 and 6.3 operationalize the discussion in the

previous paragraph. These geometric features are a preliminary, but potentially useful, heuristic

for knowing when a model is not well-matched to the task at hand: a point that is below and/or

to the right of the shaded regions on a plot like Figure 6.3 indicates that the time series has more

predictive structure than the forecast model can capture and exploit—and that one would be well

advised to try another method. In the context of this thesis, this heuristic allows a practitioner

to know if ro-LMA is capturing all the available predictive structure in a time series or if another

method such as fnn-LMA should be used instead.

These curves were determined empirically using a specific error metric and a finite set of

forecast methods and time-series traces. If one uses a different error metric, the geometry of the

heuristic may be different—and may not even make sense, if one uses a metric that does not support

comparison across different time series. And while the methods and traces used in this study were

chosen to be representative of the practice, they are of course not completely comprehensive. It

is certainly possible, for instance, that the nonlinear dynamics of computer performance is subtly

different from the nonlinear dynamics of other systems. My preliminary results on other systems,

not shown here, e.g., Hénon, Lorenz 63, a random-walk process, SFI dataset A, and more, lead me

to believe that the results of this chapter will generalize beyond the examples presented.



Chapter 7

Conclusion and Future Directions

Delay-coordinate embedding, the bedrock of nonlinear time-series analysis, has been the

foundation of forecasting techniques for nonlinear dynamical systems. A significant hurdle in the

application of these techniques in a real-time fashion or for nonstationary systems is proper es-

timation of the embedding dimension. The source of this difficulty is rooted in trying to obtain

a diffeomorphic reconstruction of the observed system, i.e., a topologically perfect representation.

This thesis presented a paradigm shift away from that traditional approach, showing that for short-

term delay-coordinate based forecasting of limited noisy data, perfection is not necessary, and can

even be detrimental.

As a first step along this path, I introduced a novel forecasting schema, ro-LMA, that sidesteps

the difficult parameter estimation step by simply fixing m = 2. For a range of low- and high-

dimensional synthetic and experimental systems, I showed that ro-LMA produced short-term pre-

dictions on par with or exceeding the accuracy of traditional embeddings even though ro-LMA

employed incomplete reconstructions of the dynamics—i.e, models that are not necessarily true

embeddings. This effected an experimental validation of the central premise of this thesis, viz., the

current paradigm in delay-coordinate embedding may be overly stringent for short-term forecasts

of real-world data.

The utility of incomplete reconstructions is in stark contrast to traditional views of delay-

coordinate embedding, so experimental validation of this bold claim is insufficient. In order to

present a complete validation of this methodology, I provided two complementary theoretical
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frameworks, based in information theory and computational topology, to explain why and how

this reduced-order modeling strategy works.

The information-theoretic analysis focused on understanding how information about the

future is stored in delay-coordinate vectors. Leveraging this knowledge, in collaboration with

R. G. James, I constructed a novel metric, time-delayed active information storage (Aτ ), for select-

ing forecast-specific reconstruction parameters. This approach to parameter selection is drastically

different than standard approaches. Instead of focusing on the calculation of dynamical invariants

as the end goal, Aτ maximizes the information about the future stored in each delay vector—

explicitly optimizing the reconstruction for the purposes of forecasting. Aτ allows one to select

parameter values that are tailored specifically to the quantity of data available, the signal-to-noise

ratio of the time series and the required forecast horizon—and does so quickly, efficiently and di-

rectly from the data. Aτ independently corroborated the central claims of this thesis, showing that

for noisy, limited datasets, often the state estimator used in ro-LMA contained as much—or more—

information about the near future as a full embedding. This result is counter-intuitive; one would

think, up to some limit, each new dimension would add information to the model. The fact that

more information is not necessarily gained in each new dimension changes the way delay-coordinate

based forecasting should be approached, and offers a fundamental explanation of why prediction in

projection is effective in practice.

The topological analysis in Section 5.2 questioned the fundamental need for a diffeomorphic

reconstruction—especially when one is not interested in calculating dynamical invariants. In col-

laboration with J. D. Meiss, I conjectured that it may be possible to ascertain information about

the large-scale topology of the invariant set—specifically, the homology—with a lower reconstruc-

tion dimension than that needed to obtain an embedding. Using a simple canonical example, I

showed that the witness complex correctly resolved the homology of the underlying invariant set,

viz., its Betti numbers, even if the reconstruction dimension was well below the thresholds for which

the embedding theorems assure smooth conjugacy between the true and reconstructed dynamics.

Since many properties that one cares about for forecasting—the existence of periodic orbits, re-
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currence, entropy, etc.—depend only upon topology, the stabilization of large-scale topology at

low dimensions effects an alternative validation of the central premise of this thesis. I further

conjectured—but did not prove—that this unexpected resolution of large-scale topology at low di-

mensions may be due to the existence of a homeomorphism between the original and reconstructed

dynamics. Proving the broader claim that the delay-coordinate map is a homeomorphism at lower

embedding dimensions than required for a diffeomorphism and that a homeomorphic reconstruction

is sufficient for short-term forecasting will be a key future direction of research.

While I illustrated that ro-LMA works for a broad spectrum of signals and provided sound

theoretical evidence supporting why it works, it is important to remember that ro-LMA—or any

forecast model for that matter—will not be ideal for all tasks. Following this line of reasoning it

was vital to understand when ro-LMA would be effective. In this capacity, again in collaboration

with R. G. James, I developed a model-free framework for quantifying when a time-series exhibits

predictable features, viz., bounded information production. This heuristic allows one to know a

priori whether ro-LMA—or any forecast method—is appropriate for forecasting a given time series.

There are a number of important avenues for future work associated with each topic proposed

in this thesis; those avenues were all discussed individually in their respective chapters. However,

the next frontier of this work, which draws upon all aspects of the research described in this dis-

sertation, is developing strategies for grappling with nonstationary time series—a serious challenge

in any time-series modeling problem—in the context of delay coordinate based forecasting. We

live in a nonlinear and nonstationary world. Real-world systems change over time: bearings break

down, computer systems get updated, transistors wear out, the climate moves between glacial and

interglacial periods, etc. The nonlinear and nonstationary nature of systems like these highlights

the need for adaptive models, built on the fly, that require little to no human interaction.

My first experience with nonstationarity involved a performance trace of row major running

on an Intel Core Duo that exhibited an interesting phenomenon termed “ghost triangles” (as

can be seen in Figure 7.1) [5]. After a routine (automatic) operating system update, not only

were the “ghost triangles” gone, but the entire triangular structure present in the two-dimensional
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Figure 7.1: A two-dimensional reconstruction of L2 cache-misses of row major on an Intel Core
Duo with τ = 100, 000 instructions.

reconstruction had been lost. I thought I had learned my lesson the hard way with unforeseen

change, but the dynamics were even more sensitive than I originally thought. As a result of

the auto-update fiasco, our group purchased a new computer and disabled its update scheduler.

However, I soon learned this was not enough. When I went back to repeat some experiments, the

computer crashed with a standard kernel panic() halt. After this, the traces were never the same:

the system halt caused a bifurcation in the performance dynamics. Figure 7.2 shows a before-

and-after example involving another SPEC benchmark, 482.sphinx. According to computer design

theory, this halt should not have changed anything. Nonetheless, it actually caused a fundamental

shift in the performance and a change in the dynamical structure.

These examples drive home the fact that real-world nonlinear systems routinely undergo

bifurcations in their dynamics. This means that a forecast model should not be trained once and

then used for all time. Instead, it should be constantly adapted to the current dynamics. For the

fnn-LMA method, this is next to impossible due to the human-intensive parameter selection process.

The agility of ro-LMA (no need to estimate m) should make it possible to tackle delay-coordinate

based forecasting of nonstationary time series. Detecting regime shifts—and adapting the time

delay accordingly—is the first step in this important area of future work.
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Figure 7.2: Processor load (IPC) traces [Top] and 3D projections of the respective reconstructed
dynamics [Bottom] of 482.sphinx before [(a),(c)] and after [(b,d)] a kernel panic() halt.

To accomplish this, I plan to study whether the methods described in this thesis can signal

regime shifts in a time series. Fuzzy witness complexes may be a useful strategy in this vein of

research by detecting and characterizing bifurcations [11]. Suppose that, for example, the first

part of the data set corresponds trivially to an equilibrium—that is, to a set with βk = 0 for all

k > 0—but that this equilibrium undergoes a bifurcation to an oscillatory regime midway through

the data set. In this case, a shift in β1 signals a regime change.

Not all regime shifts are the result of a bifurcation, however. In cases like that, a change

in information mechanics, e.g., information storage (Aτ ) or information production (WPE), could

signal a regime shift—even if the topology of the new regime was too similar (or identical) to the old
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regime. My WPE vs. 1-MASE results could be particularly powerful in this scenario, as their values

could not only help with regime-shift detection, but also suggest what kind of model might work

well in each new regime. Similarly, changes in information storage could also be quite useful. A

change in Aτ suggests a regime shift has occurred and simultaneously suggests a forecast-optimal

parameter set for the new regime. Even more importantly, it indicates whether new parameter

values are even necessary in the new regime!

Of particular interest in this new frontier of research will be the class of so-called hybrid

systems [47], which exhibit discrete transitions between different continuous regimes—e.g., a lathe

that has an intermittent instability or traffic at an internet router, whose characteristic normal

traffic patterns shift radically during an attack. Traded financial markets, too, are highly susceptible

to jump processes. Effective modeling and prediction of these kinds of systems is quite difficult;

doing so adaptively and automatically is an important and interesting challenge.

The elements of this thesis could be combined to form a complete nonstationary forecasting

framework that could address that challenge. The method would work as follows: use Aτ to select

forecast-optimal parameters and start forecasting using ro-LMA. While forecasting on a small buffer

of new data, monitor information production (WPE), information propagation and storage (Aτ )

and the homology (witness complex). If any of these drastically change, a regime shift has occurred

and the model should be rebuilt. Nicely, as Aτ and WPE are already being monitored on the new

data buffer, the new regime is already modeled and forecasting can begin immediately.

This thesis bridged the gap between rigorous nonlinear mathematical models—which are

ineffective in real-time—and näıve methods that are agile enough for adaptive modeling of non-

stationary processes. This in and of itself has real practical utility for a wide spectrum of forecasting

tasks as a simple, agile, noise-resilient, forecasting strategy for nonlinear systems, but this thesis

went far beyond practical optimizations at the sacrifice of theoretical rigor. Specifically, the the-

oretical analysis outlined here offered a deeper understanding of delay-coordinate embedding—an

understanding that suggests (and justifies) the need for a new paradigm in delay-reconstruction

theory that was the overall goal of this research project.
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