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Abstract. Glyoxal (CHOCHO) is produced in the atmo-
sphere by the oxidation of volatile organic compounds
(VOCs). Like formaldehyde (HCHO), another VOC oxida-
tion product, it is measurable from space by solar backscat-
ter. Isoprene emitted by vegetation is the dominant source
of CHOCHO and HCHO in most of the world. We use
aircraft observations of CHOCHO and HCHO from the
SENEX campaign over the southeast US in summer 2013
to better understand the CHOCHO time-dependent yield
from isoprene oxidation, its dependence on nitrogen oxides
(NOx ≡NO+NO2), the behavior of the CHOCHO–HCHO
relationship, the quality of OMI CHOCHO satellite observa-
tions, and the implications for using CHOCHO observations
from space as constraints on isoprene emissions. We sim-
ulate the SENEX and OMI observations with the Goddard

Earth Observing System chemical transport model (GEOS-
Chem) featuring a new chemical mechanism for CHOCHO
formation from isoprene. The mechanism includes prompt
CHOCHO formation under low-NOx conditions following
the isomerization of the isoprene peroxy radical (ISOPO2).
The SENEX observations provide support for this prompt
CHOCHO formation pathway, and are generally consistent
with the GEOS-Chem mechanism. Boundary layer CHO-
CHO and HCHO are strongly correlated in the observations
and the model, with some departure under low-NOx condi-
tions due to prompt CHOCHO formation. SENEX vertical
profiles indicate a free-tropospheric CHOCHO background
that is absent from the model. The OMI CHOCHO data pro-
vide some support for this free-tropospheric background and
show southeast US enhancements consistent with the iso-
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prene source but a factor of 2 too low. Part of this OMI bias
is due to excessive surface reflectivities assumed in the re-
trieval. The OMI CHOCHO and HCHO seasonal data over
the southeast US are tightly correlated and provide redundant
proxies of isoprene emissions. Higher temporal resolution
in future geostationary satellite observations may enable de-
tection of the prompt CHOCHO production under low-NOx
conditions apparent in the SENEX data.

1 Introduction

Glyoxal (CHOCHO) and formaldehyde (HCHO) are short-
lived products of the atmospheric oxidation of volatile or-
ganic compounds (VOCs). Both are detectable from space
by solar backscatter (Chance et al., 2000; Wittrock et al.,
2006). Isoprene emitted by terrestrial vegetation accounts
for about a third of the global source of non-methane VOCs
(NMVOCs Guenther et al., 2012) and drives large enhance-
ments of CHOCHO and HCHO in the continental boundary
layer (Palmer et al., 2003; Fu et al., 2008). Satellite obser-
vations of HCHO have been widely used as a proxy to esti-
mate isoprene emissions (Abbot et al., 2003; Palmer et al.,
2006; Millet et al., 2008; Curci et al., 2010; Barkley et al.,
2013), but there are uncertainties related to the HCHO yield
from isoprene oxidation (Marais et al., 2012) and the role
of other NMVOCs as HCHO precursors (Fu et al., 2007).
CHOCHO observations from space could provide a comple-
mentary constraint (Vrekoussis et al., 2009, 2010; Alvarado
et al., 2014; Chan Miller et al., 2014). Here we use CHO-
CHO and HCHO aircraft observations over the southeast
US from the summer 2013 Southeast Nexus (SENEX) cam-
paign (Warneke et al., 2016), interpreted with the Goddard
Earth Observing System chemical transport model (GEOS-
Chem), to test understanding of the CHOCHO yield from
isoprene oxidation, its dependence on nitrogen oxide rad-
icals (NOx ≡NO+NO2), and the combined value of the
CHOCHO–HCHO pair measured from space to constrain
isoprene emissions and chemistry.

Isoprene impacts air quality and climate as a precursor
to ozone (Geng et al., 2011) and secondary organic aerosol
(SOA Carlton et al., 2009), and also affects concentrations
of hydrogen oxide radicals (HOx ≡OH+HO2; Peeters and
Muller, 2010) and NOx (Mao et al., 2013; Fisher et al.,
2016). Atmospheric oxidation of isoprene by OH takes place
on a timescale of less than an hour to produce organic per-
oxy radicals (ISOPO2). Reaction of ISOPO2 with NO drives
production of ozone and of organic nitrates that serve as
a reservoir for NOx (Browne and Cohen, 2012). At lower
NOx levels, ISOPO2 reacts dominantly with HO2 to pro-
duce isoprene epoxydiols (IEPOX) via isoprene peroxides
(ISOPOOH; Paulot et al., 2009b), and from there isoprene
SOA (Marais et al., 2016). ISOPO2 can also isomerize to

generate HOx radicals (Peeters et al., 2009, 2014; Crounse
et al., 2011).

The fate of ISOPO2 determines the production rates and
overall yields of CHOCHO and HCHO. Several studies have
provided insight on the time- and NOx-dependent yield of
HCHO (Palmer et al., 2003; Marais et al., 2012; Wolfe et al.,
2016). Under high-NOx conditions, HCHO production is
sufficiently prompt that observed HCHO columns can be lo-
cally related to isoprene emission rates (Palmer et al., 2006).
This assumption is the basis of many studies that have used
satellite HCHO observations to constrain isoprene emissions
(Palmer et al., 2006; Fu et al., 2007; Millet et al., 2008; Curci
et al., 2010). HCHO production is much slower under low-
NOx conditions, spatially “smearing” the local relationship
between isoprene emissions and HCHO columns. This has
been addressed by using concurrent satellite data for NO2
columns to correct the isoprene–HCHO relationship (Marais
et al., 2012) or by using adjoint-based inverse modeling to
relate HCHO columns to isoprene emissions including the
effect of transport (Fortems-Cheiney et al., 2012).

Isoprene is estimated to account for about ∼ 50 % of
global CHOCHO production (Fu et al., 2008), but there is
large uncertainty regarding the yield of CHOCHO from iso-
prene oxidation. Open fires and aromatic VOCs can also
be major sources of CHOCHO (Volkamer et al., 2001; Fu
et al., 2008; Chan Miller et al., 2016). Several studies have
used the measured CHOCHO–HCHO concentration ratio
RGF = [CHOCHO]/[HCHO] as an indicator of the dominant
VOC precursors. Vrekoussis et al. (2010) found higher RGF
values (> 0.04) from GOME-2 satellite observations in re-
gions where biogenic VOCs are dominant, and lower val-
ues where anthropogenic VOCs are dominant. However, the
opposite behavior is observed in ground-based studies (Di-
Gangi et al., 2012). Our recent CHOCHO retrieval from the
OMI satellite instrument (Chan Miller et al., 2014) is in bet-
ter agreement with surface observations of CHOCHO and
RGF (Kaiser et al., 2015) compared to those from GOME-2
(Vrekoussis et al., 2010) and SCIAMACHY (Wittrock et al.,
2006) as a result of improved background corrections and re-
moval of NO2 interferences. There remains the question of
how observed CHOCHO–HCHO relationships are to be in-
terpreted.

The Southeast Nexus (SENEX) aircraft campaign was
conducted over the southeast US in June–July 2013. The air-
craft had a detailed chemical payload including in situ CHO-
CHO (Min et al., 2016) and HCHO (Cazorla et al., 2015).
Thirteen daytime flights were conducted over the campaign
with extensive boundary layer coverage. Li et al. (2016)
recently used the SENEX observations to evaluate CHO-
CHO formation from isoprene in the AM3 chemical trans-
port model (CTM). They found that the AM3 mechanism
had closer agreement with observations than the explicit
Master Chemical Mechanism v3.3.1 (MCMv3.3.1; Jenkin
et al., 2015), and suggested that CHOCHO yields from iso-
prene epoxydiols are underestimated in MCMv3.3.1. Here
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we take a more rigorous look at potential missing pathways
in MCMv3.3.1. In doing so, we present an improved chem-
ical mechanism for CHOCHO formation from isoprene for
the GEOS-Chem CTM, and evaluate it against the SENEX
observations, including the time and NOx dependence of the
CHOCHO yield from isoprene. We discuss the implications
of the new mechanism for the interpretation of satellite ob-
servations, and present a first validation of the CHOCHO re-
trieval from the OMI satellite instrument (Chan Miller et al.,
2014).

2 GEOS-Chem model description

2.1 General description

We use the same version of GEOS-Chem v9.2 (http://www.
geos-chem.org) that has been used previously to interpret
chemical observations from the NASA SEAC4RS aircraft
campaign conducted in the same southeast US region in
August–September 2013 (Travis et al., 2016; Fisher et al.,
2016). The model is driven by assimilated meteorologi-
cal data with 0.25◦× 0.3125◦ horizontal resolution from
the Goddard Earth Observing System (GEOS-FP) reanaly-
sis product (Molod et al., 2012). The native 0.25◦× 0.3125◦

resolution is retained in GEOS-Chem over the North Ameri-
can domain (130–60◦W, 9.75–60◦ N), nested within a global
simulation at 2◦× 2.5◦ resolution (Kim et al., 2015). Iso-
prene chemistry in GEOS-Chem v9.2 is as described by Mao
et al. (2013), but the SEAC4RS simulation includes a number
of updates described by Travis et al. (2016) and Fisher et al.
(2016). The simulation presented here includes further modi-
fications relevant to CHOCHO, listed in the Supplement (Ta-
ble S1) and summarized below. Evaluation of the model with
SEAC4RS observations has been presented by Kim et al.
(2015) for aerosols, Travis et al. (2016) for ozone and NOx ,
Fisher et al. (2016) for organic nitrates, Marais et al. (2016)
for isoprene SOA, and Zhu et al. (2016) for HCHO including
satellite validation.

Isoprene emissions in the model are from MEGANv2.1
(Guenther et al., 2012) with a 15 % reduction (Kim et al.,
2015), and NOx emissions are as described by Travis et al.
(2016) including a 50 % decrease in the anthropogenic source
relative to the 2011 National Emission Inventory of the US
Environmental Protection Agency. Yu et al. (2016) pointed
out that isoprene and NOx emissions in the southeast US are
spatially segregated and show that the 0.25◦× 0.3125◦ reso-
lution of GEOS-Chem is adequate for separating the popu-
lations of high- and low-NOx conditions for isoprene oxida-
tion.

2.2 CHOCHO formation from isoprene and loss

Figure 1 shows the CHOCHO formation pathways from iso-
prene oxidation by OH (the main isoprene sink) as imple-
mented in this work. Oxidation is initiated by OH addition

to the terminal carbons of the isoprene double bonds (po-
sitions 1 and 4, Fig. 1). Isoprene peroxy radicals (ISOPO2)
are formed by O2 addition to the carbon either in β or δ to
the hydroxyl carbon. ISOPO2 reacts with NO and HO2, and
also isomerizes. Together these pathways represent 92 % of
ISOPO2 loss, with the remainder due to reactions with or-
ganic peroxy radicals.

Under high-NOx conditions, CHOCHO is produced
promptly via products of the δ isomers (HC5, DIBOO; Paulot
et al., 2009a; Galloway et al., 2011). CHOCHO production
via the β isomers is slower, due to the intermediary produc-
tion of methylvinylketone (MVK) followed by glycolalde-
hyde (GLYC). GEOS-Chem originally had a fixed δ vs. β
branching ratio of 24 % for the reaction of ISOPO2+NO,
based on the chamber experiments of Paulot et al. (2009a).
However recent work has shown that O2 addition to the
isoprene–OH adducts is reversible (pink pathway, Fig. 1),
allowing interconversion between β and δ ISOPO2 isomers
(Peeters et al., 2009, 2014; Crounse et al., 2011). Isomers of
β are heavily favored at equilibrium, accounting for ∼ 95 %
of ISOPO2 (Peeters et al., 2014). The experimental condi-
tions in Paulot et al. (2009a) used high NOx concentrations
(∼ 500 ppbv). This implies short ISOPO2 lifetimes, and thus
may not reflect the degree of isomer interconversion seen at
ambient oxidant levels. Here we adopt a δ-ISOPO2 branch-
ing ratio of 10 %, following Fisher et al. (2016), to match
SEAC4RS observations of organic nitrates produced through
the δ-ISOPO2+NO pathway.

CHOCHO forms under low-NOx conditions through iso-
prene epoxydiols (IEPOX) and through the ISOPO2 iso-
merization pathway. IEPOX forms as a second-generation
non-radical product of isoprene oxidation via ISOPOOH,
and thus represents a slow CHOCHO formation pathway.
IEPOX isomer fractions in GEOS-Chem are based on equi-
librium δ /β ISOPO2 branching ratios (Bates et al., 2014;
Travis et al., 2016). At low NOx levels the ISOPO2 lifetime
is sufficiently long for equilibrium to be reached (Peeters
et al., 2014). ISOPO2 isomerization in the previous GEOS-
Chem mechanism of Travis et al. (2016) produced solely
hydroperoxyaldehydes (HPALDs), but here we also include
the formation of dihydroperoxy α-formyl peroxy radicals
(di-HPCARPs; Peeters et al., 2014) following MCMv3.3.1.
di-HPCARPs in MCMv3.3.1 have a low CHOCHO yield,
but here we introduce a (1,5)H-shift isomerization of di-
HPCARPs that could be competitive with the (1,4)H-shift
isomerization due to the presence of the terminal-peroxide
functional group (Crounse et al., 2013). The resulting
di-hydroperoxide dicarbonyl compound (DHDC) product
quickly photolyzes to produce CHOCHO, analogous to the
mechanisms proposed for HPALDs (Peeters et al., 2014) and
carbonyl nitrates (Müller et al., 2014). As shown below, we
find that this pathway can explain SENEX observations of
prompt CHOCHO production under low-NOx conditions.

The mechanism presented here differs substantially from
the AM3 mechanism previously used by Li et al. (2016)
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Figure 1. Pathways for glyoxal (CHOCHO) formation from isoprene oxidation in GEOS-Chem as implemented in this work. Only species
relevant to CHOCHO formation are shown. Branching ratios, species lifetimes, and contributions to glyoxal and glycolaldehyde (GLYC)
formation from each boxed species are mean values over the southeast US (96.25–73.75◦W, 29–41◦ N) during the SENEX campaign (1 June–
10 July 2013). Species lifetimes are shown for an OH concentration of 4× 106 molecules cm−3.

to analyze the SENEX observations. Li et al. (2016) tested
branching ratios of 22 and 0 % for δ-ISOPO2+NO, with
the latter intended to reflect ISOPO2 isomer interconversion.
The 10 % branching ratio in this study is constrained by
SEAC4RS organic nitrate observations (Fisher et al., 2016).
Li et al. (2016) report a CHOCHO yield from GLYC oxida-
tion (Sect. S1 in the Supplement), which is mainly due to a
lower CHOCHO yield from GLYC+OH (13 % vs. 20 %).
Their yield of CHOCHO from IEPOX is 28 %, much higher
than can be accommodated by yields of hydroxyacetone de-
rived from IEPOX oxidation chamber experiments (Bates
et al., 2014) (the expected coproduct of CHOCHO via this
pathway, Sect. S2). Following Travis et al. (2016), we set the
CHOCHO yield from IEPOX to the corresponding hydroxy-
acetone yields reported by Bates et al. (2014) (8.5 % via HO2
and 8.8 % via NO). Finally AM3 assumes 25 % CHOCHO
yield from HPALD photolysis following Stavrakou et al.
(2010), which has been used in many past studies (Mao et al.,

2013; Marais et al., 2016). However HPALD photolysis is
not expected to yield CHOCHO (Sect. S3). The CHOCHO
formation pathway via DHDC proposed here can be justified
from existing literature (Sect. S3). Inclusion of DHDC in-
creases the yield of CHOCHO via ISOPO2 isomerization by
18 %, which is comparable to the AM3 yield.

Li et al. (2016) found that CHOCHO concentrations are
sensitive to aerosol reactive uptake. Our standard model sim-
ulation does not include this uptake, but we conducted a
sensitivity simulation with a reactive uptake coefficient γ =
2× 10−3 from Li et al. (2016). We find that CHOCHO con-
centrations decrease by only 10 % on average (Sect. S4) be-
cause competing CHOCHO sinks from reaction with OH and
photolysis are fast.
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Figure 2. Cumulative time- and NOx -dependent molar yields of CHOCHO and HCHO from isoprene oxidation in the GEOS-Chem and
MCM3.3.1 chemical mechanisms. Results are from box model simulations with fixed NOx concentrations as described in the text, and are
presented as functions of the imposed NOx concentration (vertical axis). Panel (a) shows the isoprene peroxy radical (ISOPO2) branching
ratios for reaction with NO, HO2, and isomerization. Panels (b, c) show the time-dependent cumulative yields of CHOCHO and HCHO,
where time is normalized by OH exposure (Eq. 1). “OH exposure time” is equivalent to time for a constant [OH]= 4×106 molecules cm−3.

2.3 Time- and NOx-dependent CHOCHO and HCHO
yields from isoprene

Understanding the time- and NOx-dependent yields of CHO-
CHO and HCHO from isoprene oxidation is critical for in-
terpreting observed CHOCHO and HCHO columns from
space in terms of isoprene emissions. Here we examine
time-dependent CHOCHO and HCHO molar yields in the
GEOS-Chem and MCMv3.3.1 chemical mechanisms using
the Dynamically Simple Model of Atmospheric Chemical
Complexity (DSMACC) box model (Emmerson and Evans,
2009). Simulations are initiated at 09:00 LT with 1 ppbv iso-
prene, 40 ppbv O3, and 100 ppbv CO. NOx concentrations
are held at fixed values. Photolysis rates are calculated for
clear sky with the TUV radiative transfer model (Madronich,
1987). To correct for differences in time-dependent yields as-
sociated with differences in OH concentrations, we reference
GEOS-Chem and MCMv3.3.1 results to a common “OH ex-
posure time” variable (tOH):

tOH =
1

[OH]ref

t∫
0

[OH](t ′)dt ′. (1)

Here [OH](t) is the OH concentration simulated in the
box model, and [OH]ref = 4× 106 molecules cm−3 is a ref-
erence OH concentration representative of summer daytime
conditions over the southeast US (Wolfe et al., 2016). For a
fixed [OH] = 4×106 molecules cm−3, tOH represents the ac-
tual time.

Figure 2 shows the time- and NOx-dependent cumulative
molar yields of CHOCHO and HCHO in GEOS-Chem and
MCMv3.3.1. The branching ratio of ISOPO2 as a function
of NOx is also shown. The time-dependent HCHO yields
in both mechanisms are similar under high-NOx conditions.
Additional confidence in the HCHO yield under these condi-
tions is offered by the ability of GEOS-Chem to reproduce

the observed correlation between HCHO and isoprene or-
ganic nitrates (Mao et al., 2013; Fisher et al., 2016). The
HCHO yield is lower under low-NOx conditions in both
mechanisms, and overall the difference between them is mi-
nor.

There is far more disagreement between the two mech-
anisms for CHOCHO yields. Under high-NOx conditions,
GEOS-Chem produces CHOCHO rapidly in the first 2 h due
to its higher δ-ISOPO2+NO branching ratio (10 % in GEOS-
Chem vs. 3.4 % in MCMv3.3.1). This is compensated at
longer OH exposure times by higher GLYC yields from iso-
prene in MCMv3.3.1. GEOS-Chem produces higher ultimate
yields of CHOCHO under low-NOx conditions mainly due
to DHDC formation and subsequent photolysis, neither of
which are included in MCMv3.3.1. The NOx-dependence
of the CHOCHO yield in MCMv3.3.1 is similar to that of
HCHO, implying that CHOCHO and HCHO observations
would provide redundant information on isoprene emissions.
The SENEX observations indicate that CHOCHO yields un-
der low-NOx conditions are too low in MCMv3.3.1, as dis-
cussed below. In GEOS-Chem, by contrast, the CHOCHO
and HCHO yields show opposite dependences on NOx , im-
plying that they could provide complementary information
on isoprene emissions.

3 Constraints from SENEX observations

Figure 3 shows the observed and simulated median verti-
cal profiles of CHOCHO, HCHO, and NOx concentrations
along the SENEX flight tracks. Figure 4 shows maps of con-
centrations below 1 km altitude (above ground level) taken
as the mixed layer. Here and elsewhere we only include
daytime observations (10:00–17:00 LT) and exclude targeted
sampling of biomass burning plumes (diagnosed by ace-
tonitrile concentrations above 200 pptv). CHOCHO, HCHO,
and NOx were measured by the Airborne Cavity Enhanced

www.atmos-chem-phys.net/17/8725/2017/ Atmos. Chem. Phys., 17, 8725–8738, 2017
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Spectrometer (ACES; Min et al., 2016), In Situ Airborne
Formaldehyde (ISAF) instrument (Cazorla et al., 2015), and
the NOAA chemiluminescence instrument (Ryerson et al.,
1999; Pollack et al., 2010), with stated accuracies of 6, 10,
and 5 %, respectively.

Simulated median NOx concentrations in the mixed layer
are within 10 % of observations, supporting the 50 % reduc-
tion in EPA NEI NOx emissions previously inferred from the
analysis of SEAC4RS observations by Travis et al. (2016),
also included here (Sect. 2.1). Half of isoprene oxidation in
the model under the SENEX conditions takes place by the
low-NOx pathways (Fig. 1). Simulated median CHOCHO
and HCHO concentrations in the mixed layer are within 20 %
of observations, but the model is too low at higher altitudes.
During SENEX the mixed layer was typically capped by a
neutrally stable transition layer of shallow cumulus convec-
tion which extended up to 3 km (Wagner et al., 2015), which
could suggest that the model underestimates transport via
this mechanism. However, the model does not underestimate
other isoprene oxidation products in the transition layer, such
as MVK+methacrolein (Fig. S8 in the Supplement). An-
other possible source of CHOCHO in the transition layer is
via heterogeneous aerosol oxidation (Volkamer et al., 2015).
However, specific aerosol precursors that produce CHOCHO
at yields required to match the SENEX observations are cur-
rently unknown (Kaiser et al., 2015).

The CHOCHO observations in the free troposphere
(> 3 km) have to be treated with caution since they are be-
low the reported instrument precision (32 pptv, Kaiser et al.,
2015). It is therefore difficult to determine whether the bias is
due to a missing CHOCHO source in the model or instrument
artifact. Elevated CHOCHO concentrations above the bound-
ary layer have also been observed in previous campaigns over
the southeast US (Lee et al., 1998), California (Baidar et al.,
2013), and the remote Pacific (Volkamer et al., 2015). There
could be a free-tropospheric source missing in the model,
but it is unclear what this source could be, and correlative
analysis of observed free-tropospheric CHOCHO with other
species measured in SENEX offer no insight (r < 0.3 for all
observed VOCs).

The mixed layer concentrations maps in Fig. 4 show that
the model captures some of the horizontal variability in
the observations. The spatial correlation for HCHO is high
(r = 0.75) as in SEAC4RS (r = 0.64, Zhu et al., 2016), and
reflects isoprene emission patterns. Correlation for CHO-
CHO is also relatively strong (r = 0.51). Temporally aver-
aged CHOCHO and HCHO concentrations simulated by the
model for the SENEX period (background in Fig. 4) are
much more uniform than those sampled along the SENEX
flight tracks because of day-to-day variability in isoprene
emissions, mostly driven by temperature (Zhu et al., 2016).

Figure 5 compares simulated and observed CHOCHO vs.
HCHO relationships in the mixed layer, color coded by
NOx concentrations. Correlation between the two species is
strong. The model better captures the observed slope (0.028
modeled vs. 0.024 observed) compared to the AM3 CTM
(0.045 and 0.035 with and without CHOCHO production
from δ-ISOPO2+NO, respectively; Li et al., 2016). Inclu-
sion of aerosol uptake further reduces the bias to the observed
slope (0.026, Fig. S10). On average, CHOCHO is produced
more promptly in AM3 compared to GEOS-Chem, which
may lead to the higher slope. In the first few hours of oxi-
dation this is due to a higher CHOCHO yield from ISOPO2
isomerization. Beyond the initial stages of isoprene oxida-
tion, CHOCHO is produced faster in AM3 because of the
increased fraction of CHOCHO produced from IEPOX over
GLYC oxidation (Fig. 1).

The strong correlation between CHOCHO and HCHO
might suggest that they provide redundant information for
constraining isoprene emissions. However, examination of
Fig. 5 indicates higher observed CHOCHO-to-HCHO ratios
(RGF) at low-NOx concentrations, not captured by GEOS-
Chem. Figure 6 shows the RGF ratio as a function of
NOx below 1 km in the SENEX observations and as sim-
ulated by GEOS-Chem. Points are color coded by OH ex-
posure time tOH (Eq. 1), derived from PTR-MS observa-
tions of the methylvinylketone+methacrolein-to-isoprene
ratio (de Gouw and Warneke, 2007) following Wolfe et al.
(2016). The median and interquartile RGF values binned in
250 pptv NOx increments are also shown. The observed me-
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Figure 4. CHOCHO, HCHO, and NOx concentrations below
1 km a.g.l. during SENEX (1 June–10 July 2013). The grid squares
show daytime aircraft observations compared to the colocated
GEOS-Chem model values on the 0.25◦× 0.3125◦ model grid.
Background contours in the right panels show the average model-
simulated concentrations at 13:00–14:00 LT for the SENEX period.
Comparison statistics between model and observation grid squares
are shown as the correlation coefficient r and the normalized mean
bias (NMB). Correlation statistics for NO2 exclude urban plumes in
the observations ([NOx ]> 4 ppb) as these would not be resolved at
the scale of the model.

dian RGF values (0.02 to 0.024 mol mol−1) show no signifi-
cant dependence on NOx , while GEOS-Chem shows a weak
dependence.

The observations contain a subset of low-NOx points with
higher RGF values (0.03–0.06). The model also produces a
subset of enhanced RGF values under low-NOx conditions,
although peak RGF values are lower than the observations.
In both cases, the enhanced RGF values coincide with short
OH exposure times, which are caused by OH titration by iso-
prene. The high RGF reflects the relatively faster production
of CHOCHO than HCHO in the early stage of isoprene ox-
idation under low-NOx conditions as shown by Fig. 2. The
presence of that population in the observations provides sup-
port for fast glyoxal production from the isomerization path-
way of isoprene oxidation (Fig. 1) that is present in GEOS-
Chem but not in MCMv3.3.1. The model may not capture
the highest observed RGF values due to uncertainties in the
yield of DHDC from isoprene and its photolysis rate, both
of which have been estimated based on literature proxies
(Sect. S3).

Figure 6 also shows that there is a small subset of points
in GEOS-Chem with RGF values less than 0.01, reflecting

low CHOCHO values in the model that are not found in
the observations where the concentration floor is 0.05 ppbv
(Fig. 5). There may be a CHOCHO background miss-
ing from the model, possibly contributed by monoterpenes;
MCMv3.3.1 predicts that the total CHOCHO yield from
common monoterpenes is high (Kaiser et al., 2015), and that
they produce CHOCHO over a timescale of days (Fig. S11).

4 Implications for satellite observations

Knowledge gained from SENEX enables an improved in-
terpretation of CHOCHO and HCHO column observations
from space in isoprene dominated environments. We use for
this purpose June–August in 2006 and 2007 observations of
CHOCHO, HCHO, and tropospheric NO2 columns from the
Ozone Monitoring Instrument (OMI). OMI was launched on-
board the NASA Aura satellite in July 2004, and provides
daily global coverage in sun-synchronous orbit with an equa-
torial crossing time of 13:40 LT. The CHOCHO data are from
the Smithsonian Astrophysical Observatory (SAO) retrieval
described in Chan Miller et al. (2014) and hereby referred to
as OMI SAO. The HCHO and NO2 data are from the OMI
Version 3 product release (González Abad et al., 2015; Buc-
sela et al., 2013). Retrievals are in the 435–461 nm spectral
range for CHOCHO, 328.5–356.5 nm for HCHO, and 405–
465 nm for NO2. We use 2006–2007 data because 2013 data
for CHOCHO are very noisy (Fig. S12), possibly because
of sensor degradation. The OMI observations are compared
to a GEOS-Chem simulation covering the same period, at
2◦× 2.5◦ horizontal resolution.

Slant columns along the optical path of the backscattered
solar radiation are fitted to the observed spectra and con-
verted to vertical columns by division with an air mass factor
(AMF) that accounts for the viewing geometry, atmospheric
scattering, and the vertical profile of the gas (Palmer et al.,
2001):

AMF=

∞∫
0

w(z)s(z)dz. (2)

Here w(z) is the scattering weight measuring the sensitiv-
ity of the retrieval to the gas concentration at altitude z, and
s(z) is a normalized vertical profile of gas number density.
Here we recomputed the AMFs for the three retrievals us-
ing vertical profiles from GEOS-Chem, as it is necessary for
comparing simulated and observed vertical columns (Duncan
et al., 2014).

We remove observations impacted by the row
anomaly (http://www.knmi.nl/omi/research/product/
rowanomaly-background.php), and those with cloud
fractions over 20 %. Previous validation of the OMI HCHO
retrievals with SEAC4RS aircraft observations revealed a
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43 % uniform low bias (Zhu et al., 2016), corrected in the
data shown here.

Figure 7 compares CHOCHO and HCHO vertical columns
from GEOS-Chem and OMI, and Fig. 8 shows spatial corre-
lations over the eastern US. Excellent agreement is found for
HCHO, providing an independent test of the correction to
the OMI HCHO retrieval inferred from the SEAC4RS data
(Zhu et al., 2016). Since GEOS-Chem can also replicate the
CHOCHO–HCHO correlation in the SENEX data, the sim-
ulated CHOCHO columns can be used to indirectly validate
the OMI CHOCHO observations. CHOCHO from OMI is
highly correlated with GEOS-Chem (r = 0.81), indicative
of the isoprene source. However OMI CHOCHO shows a
higher continental background and a factor of 2 weaker en-
hancement over the southeast US.

Zhu et al. (2016) suggested that errors in the assumed
surface reflectivities affecting the AMFs were an important
source of the bias in the OMI HCHO retrievals. CHOCHO
retrievals are even more sensitive to surface reflectivity be-
cause of the longer wavelengths. Russell et al. (2011) previ-
ously pointed out that the OMI surface reflectivities used in
the standard NO2 retrievals (Kleipool et al., 2008) were too
high and replaced them with high-resolution (0.05◦× 0.05◦)
reflectivity observations from MODIS (Schaaf and Wang,
2015) to produce the Berkeley High-Resolution (BEHR)
OMI NO2 retrieval. CHOCHO and NO2 are retrieved at

similar wavelengths so the sensitivity to surface reflectivity
should be similar. Figure 7 (bottom right) shows the mean
CHOCHO scattering weights computed from the OMI-SAO
and BEHR. The lower BEHR surface reflectivity values re-
sult in a lower AMF and hence a higher vertical column
(Fig. 7, bottom left panel). The slope of the regression be-
tween GEOS-Chem and OMI CHOCHO columns increases
from 0.48 to 0.62, improving but not reconciling the differ-
ences.

As pointed out above, SENEX and other observations
suggest that GEOS-Chem may be missing a background
source of CHOCHO. Integration of the median CHOCHO
profile above 2 km in Fig. 3 shows a negative model bias
of 1.3×1014 molecules cm−2, comparable to the continental
background intercept in Fig. 8 (1.9× 1014 molecules cm−2).
The nonzero intercept may in part reflect an underesti-
mate of CHOCHO concentrations caused by a missing
CHOCHO source over the southeast US, such as monoter-
penes (Sect. 3). The presence of free-tropospheric CHOCHO
would further impact the AMF calculation under continen-
tal background conditions since the retrieval sensitivity as
measured by the scattering weights increases with altitude.
Thus the retrieved continental background would be overes-
timated.

Figure 9 shows CHOCHO vs. HCHO relationships for
OMI (using the BEHR scattering weights) and GEOS-Chem,
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Figure 8. Scatterplots of OMI vs. GEOS-Chem CHOCHO and
HCHO columns over the eastern US (75–100◦W, 29.5–45◦ N). Val-
ues are seasonal means for JJA 2006–2007 as plotted in Fig. 7. OMI
observations for CHOCHO are from the standard SAO retrieval
(Chan Miller et al., 2014) and using BEHR scattering weights (Rus-
sell et al., 2011; Laughner et al., 2016). Correlation coefficients and
reduced-major-axis (RMA) regressions are shown.

color coded by tropospheric NO2 columns. Individual points
are seasonal averages (data points from Fig. 7) in order to
limit noise. The slope is steeper in GEOS-Chem because
the CHOCHO columns are higher. Since GEOS-Chem re-
produces the aircraft CHOCHO–HCHO relationship with-
out bias (Fig. 5), this is further evidence of bias in the
OMI CHOCHO observations. The CHOCHO–HCHO rela-
tionship is tight in both OMI (r = 0.86) and GEOS-Chem
(r = 0.99), with no indication of a separate population of
low-NOx points with high RGF as there was in the SENEX
data. It thus appears from the OMI data that satellite obser-
vations of CHOCHO and HCHO in isoprene-dominated en-
vironments are redundant. This may reflect the higher NOx
levels in 2006–2007 compared to 2013 (Russell et al., 2012).
However since median RGF shows no significant variation
with NOx in the SENEX data (Fig. 6), the required temporal
averaging of satellite observations is a more likely explana-
tion for the tight correlation. Finer-scale and more temporally
resolved data, as will be available from the TEMPO geo-
stationary instrument to be launched in the 2018–2020 time
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frame (Zoogman et al., 2016), may provide new perspectives
of the utility of the CHOCHO retrieval.

5 Conclusions

We have used aircraft observations of glyoxal (CHOCHO),
formaldehyde (HCHO), and related species from the SENEX
aircraft campaign over the southeast US together with OMI
satellite data to better understand the CHOCHO yield from
isoprene and the complementarity of CHOCHO and HCHO
observations from space for constraining isoprene emissions.
This work includes a first validation of the CHOCHO re-
trieval from the OMI satellite instrument.

We began with an analysis of the time- and NOx-
dependent CHOCHO and HCHO yields from isoprene ox-
idation in the GEOS-Chem chemical transport model and in
the Master Chemical Mechanism (MCMv3.3.1). The GEOS-
Chem mechanism features several updates relevant to CHO-
CHO formation. These include a decrease in the δ-ISOPO2+

NO branching ratio leading to prompt CHOCHO production
under high-NOx conditions, and a proposed low-NOx path-
way for prompt CHOCHO formation by photolysis of a di-
hydroperoxide dicarbonyl compound (DHDC) product from
(1,5)H-shift isomerization of dihydroperoxy α-formyl per-
oxy radicals in the ISOPO2 isomerization pathway (Fig. 1).
GEOS-Chem and MCMv3.3.1 show similar HCHO yields
from isoprene, increasing with increasing NOx . CHOCHO
yields from isoprene in MCMv3.3.1 show behavior similar
to HCHO but GEOS-Chem has a higher yield at low NOx
from the ISOPO2 isomerization pathway.

Comparison of GEOS-Chem to the SENEX observations
of CHOCHO and HCHO shows good agreement in the
boundary layer but a negative CHOCHO model bias in the
free troposphere. This could reflect an instrument artifact
but may also imply a missing background source in the
model. Mixed layer (< 1 km) observations show a strong
CHOCHO–HCHO relationship that is reproduced in GEOS-
Chem and is remarkably consistent across all conditions ex-

cept at very low NOx where the [CHOCHO] / [HCHO] ratio
(RGF) can be unusually high. This reflects prompt formation
of CHOCHO under low-NOx conditions, which was miss-
ing from MCMv3.3.1 and is now simulated in our updated
GEOS-Chem mechanism by DHDC photolysis. A previous
model comparison to SENEX showed that MCMv3.3.1 un-
derestimates the CHOCHO yield from isoprene (Li et al.,
2016). Our work shows the missing DHDC production path-
way can explain approximately 60 % of this underestimate,
with the remainder caused by an underestimate of the δ-
ISOPO2 branching ratio (3.4 % in MCMv3.3.1 vs. 10 % in
GEOS-Chem).

The SENEX observations enable indirect validation of the
OMI CHOCHO satellite data using GEOS-Chem as an in-
tercomparison platform. The OMI data show a continen-
tal background that is consistent with the SENEX free-
tropospheric observations, and an enhancement over the
southeast US that is consistent with the isoprene source.
However this enhancement is a factor of 2 too low in the
OMI data. A partial explanation is that surface reflectivi-
ties assumed in the standard OMI retrieval are too high. The
satellite data show strong CHOCHO–HCHO correlation con-
sistent with the model and imply that the two gases pro-
vide redundant information for constraining isoprene emis-
sions in regions where isoprene is their dominant precursor.
This redundancy may reflect the seasonal averaging in the
OMI data required to reduce noise. Recent validation of the
HCHO satellite data revealed negative retrieval biases (Zhu
et al., 2016), which can be corrected using spatially uniform
scaling factors (as done in this study). Since similar biases
may exist for the CHOCHO retrieval, the scaled HCHO data
should at present be preferentially used as proxy for isoprene
emissions. Future geostationary observations from TEMPO
(Zoogman et al., 2016) will require less temporal averag-
ing and this may reveal the utility of CHOCHO observations
for estimating isoprene emissions under low-NOx conditions
when isoprene oxidation is titrated.

Data availability. The SENEX observations used in this paper are
publicly accessible online (https://esrl.noaa.gov/csd/groups/csd7/
measurements/2013senex/). OMI CHOCHO, HCHO and NO2 ob-
servations can be obtained from the Aura Validation Data Center
(https://avdc.gsfc.nasa.gov/). Details on how to download GEOS-
Chem source code can be found at http://www.geos-chem.org.
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Table S1: Summary of the suggested changes to the GEOS-Chem chemical mechanism
inferred from our analysis of SENEX observations.
Reaction Base Model Prod-

ucts
Revised Model
Products

Base & Revised Reaction
Rates

RIO2→ HPALD 0.5HPALD +
0.5DHPCARP

k = 4.07× 108exp
(−7694

T

)
DHPCARP+NO→ no reaction GLYX + MGLY +

NO2 + OH
k = 2.7× 10−12exp

(
360
T

)
DHPCARP+HO2→ no reaction RCOOH k = 2.05× 10−13exp

(
1300
T

)
DHPCARP→ no reaction RCOOH + CO +

OH
k = 2.9× 107exp

(−5300
T

)
DHPCARP→ no reaction DHDC k = 1.28× 107exp

(−5300
T

)
DHDC+hν → no reaction MGLY + GLYX +

2OH
JHPALD

HPALD+OH→ MGLY + CO +
CH2O + OH

0.365HPC52O2
+ 0.085GLYX
+ 0.085MCO3
+ 0.55MGLY
+ 0.55CO +
0.55CH2O +
0.635OH

k = 5.11× 10−11

HPALD+hν → 0.25GLYX +
0.25MGLY
+ 0.5HAC +
0.5GLYC + CH2O
+ HO2 + OH

0.5MGLY +
0.39HAC +
0.11GLYC +
0.11MCO3 +
1.89CO + 0.89HO2
+ 2OH

JHPALD

HPC52O2+NO→ no reaction GLYX + MGLY +
NO2 + HO2

k = 2.7× 10−12exp
(
360
T

)
HPC52O2+HO2→ no reaction RCOOH k = 2.05× 10−13exp

(
1300
T

)
RIO2+NO→ 0.93NO2 +

0.855HO2 +
0.71CH2O +
0.414MVK +
0.296MACR +
0.023ISOPND
+ 0.047ISOPNB
+ 0.145HC5 +
0.075DIBOO

0.91NO2 +
0.82HO2 +
0.82CH2O +
0.476MVK +
0.344MACR +
0.009ISOPND
+ 0.081ISOPNB
+ 0.058HC5 +
0.03DIBOO †

k = 2.7× 10−12exp
(
350
T

)

GLYC+OH→ f( 0.732CH2O +
0.5CO + 0.227OH
+ 0.773HO2 +
0.134GLYX +
0.134HCOOH) +
(1-f)( HCOOH +
OH + CO)

0.676CH2O +
0.466CO + 0.21OH
+ 0.79HO2 +
0.2GLYX +
0.124HCOOH

k = 8× 10−12

f = 1− 11.0729exp
(−T

73

)

†The revised mechanism has been updated to include the isoprene nitrate yield recommendation by
Fisher et al. [2016]. The reaction used in this study preserved the ISOPNB and ISOPND yields from the
GEOS-Chem mechanism ( RIO2+NO→0.936NO2 + 0.904HO2 + 0.844CH2O + 0.493MVK + 0.351MACR
+ 0.01ISOPND + 0.056ISOPNB + 0.06HC5 + 0.03DIBOO). The difference CHOCHO production from
isoprene over the southeast US due to this change is less than 2%, howeer it is important for isoprene organic
nitrates.
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S1 Production of CHOCHO from glycolaldehyde

The main two sinks of glycolaldehyde in the atmosphere are via photolysis and OH, with the
latter oxidation pathway yielding CHOCHO. Reported yields of CHOCHO via OH initiated
GLYC oxidation range from 14 - 29% [Magneron et al., 2005, Butkovskaya et al., 2006,
Chan et al., 2009, Galloway et al., 2011]. Here we use a yield of 20%, following MCMv3.3.1,
whose yield value is from Magneron et al. [2005]. Li et al. [2016] set the yield in AM3 to
13% citing Butkovskaya et al. [2006], and report an absolute yield from GLYC oxidation of
7.2%. If this yield is constant, this implies that 45% of GLYC in AM3 is lost to photolysis.
However photolysis is generally a minor GLYC sink. Figure S1 shows the fraction of GLYC
lost to OH simulated by GEOS-Chem over the SENEX period (June 1-July 10 2013). This
simulation is from the model as described in the main text, except that it was performed
globally at 2◦ × 2.5◦ degree resolution. The model suggests approximately 20% of GLYC
is lost to photolysis over the Southeast US, a factor of 2.5 smaller than suggested by the
absolute yield from Li et al. [2016].

 

     0.00 0.25 0.50 0.75 1.00

 Fraction of glycolaldehyde lost to OH 

Figure S1: The fraction of GLYC lost to oxidation by OH for the period 1 June - 10 July
2013, simulated by GEOS-Chem.

Butkovskaya et al. [2006] observed that the yield of CHOCHO from OH initiated GLYC
oxidation decreased with decreasing temperature. Both our GEOS-Chem mechanism and
the AM3 mechanism derive from the mechanism presented by Mao et al. [2013]. Here, the
CHOCHO yield from GLYC + OH was calculated from a temperature dependent param-
eterization of the yields from Butkovskaya et al. [2006] (Table S1). Figure S2 shows the
CHOCHO yield from OH initiated GLYC oxidation as a function of temperature in the orig-
inal and revised GEOS-Chem mechanisms. The parameterization tends to underestimate the
CHOCHO yield compared to the chamber study it was based on (e.g. 296K Butkovskaya
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et al. [2006] report a 14% yield, compared to 10.8% in the parameterization). The yield from
the parameterization is approximately half that from the MCMv3.3.1 reaction implemented
in this study, and thus could explain the difference in GLYC yields shown here and for AM3,
if this is the actual reaction implemented.

CHOCHO Yield from GLYC+OH

200 220 240 260 280 300 320
Temperature (K)

0.00

0.05

0.10
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Yi
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d

MCMv3.3.1
GEOS-Chem (revised)

GEOS-Chem
(original)

Figure S2: CHOCHO yield from the reaction of GLYC with OH as a function of temperature,
from the original and revised GEOS-Chem mechanism presented in Table S1

3



S2 Production of CHOCHO from Isoprene epoxydiols

β−isoprene epoxydiols (IEPOXB, Figure S3) account for ∼ 95% of total IEPOX [Jenkin
et al., 2015]. The IEPOXB pathways pertinent to CHOCHO production from MCMv3.3.1
are shown in Figure S3. The H-abstraction pathway leading to CHOCHO production via
C58AO2 accounts for 37% of IEPOXB loss to OH, and is based on IEPOX chamber ex-
periements [Bates et al., 2014]. CHOCHO forms as a coproduct to hydroxyacetone (ACE-
TOL) via reaction with NO. In MCMv3.3.1 the reaction between C58AO2 and HO2 leads
to the generation of the assocated hydroperoxide (C58AOOH). Li et al. [2016] suggest that
MCMv3.3.1 underestimates the CHOCHO yield from this pathway because it does not as-
sume full radical chain propogation (dashed blue arrow, Figure S3), and set a total CHOCHO
yield from IEPOX oxidation at 28%.
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O
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(m/z 189)

Figure S3: Left: Pathways of CHOCHO formation from the oxidation of IEPOX in
MCMv3.3.1 [Jenkin et al., 2015]. Species are labeled with their names in MCMv3.3.1.
The dashed blue arrow indicates the CHOCHO formation pathway from the reaction of the
IEPOX peroxy radical (C58AO2) with HO2 in AM3 [Li et al., 2016]. Right: Branching ratio
between the reaction of the C58AO2 with HO2 and isomerization, at a HO2 concentration
of 1× 109 molecules cm−3

However MCMv3.3.1 does not produce CHOCHO in high yield via this pathway as there
is a competing (1,4) H-shift isomerization (red arrow, Figure S3), forming MACROH. The
branching ratio as a function of temperature between HO2 and the isomerization is shown in
Figure S3 (right). This has been calculated with a HO2 concentration of 1 × 109 molecules
cm−3. HO2 concentrations simulated by GEOS-Chem over the Southeast US during SENEX
were never above this concentration, so the plot in Figure S3 can be regarded as an upper
limit for the HO2 pathway. MCMv3.3.1 suggests that at 296K, HO2 reactions with C58AO2
account for at most 3% of total loss.

The chamber experiments reported by Bates et al. [2014] also suggest that the majority of
C58AO2 is lost via isomerization. The sum of products of the (1,4) H-shift isomerizations of
IEPOXB peroxy radicals (including MACROH) were detected using chemical ionization mass
spectrometry (CIMS), by monitoring the signal at m/z = 189. Bates et al. [2014] oxidized
cis-IEPOXB under low-NOx conditions and inferred yields of the m/z = 189 products that
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were approximately 4 times higher than those formed via the HO2 pathway (ACETOL and
GLYC). Since ACETOL is a coproduced with CHOCHO, we set the yield of CHOCHO from
IEPOX + HO2 equal to the ACETOL yield derived from the low-NOx cis-IEPOXB oxidation
experiment (8.5%). The observed ACETOL yields cannot accomodate the 28% yield assumed
in AM3, even when factoring in the reported 30% uncertainty in the measurements.

0 5 10 15 20 25
OH Exposure time (h)

0.0

0.1

0.2

0.3
C

um
ul

at
iv

e 
Yi

el
d AM3

MCMv3.3.1

GEOS-Chem

1.0 ppb NOx
0.1 ppb NOx 

CHOCHO Yield from Isoprene Epoxydiols

Figure S4: Cumulative time-dependent molar yields of CHOCHO from IEPOX oxidation in
the GEOS-Chem, AM3 and MCMv3.3.1 chemical mechanisms. Results are from box model
simulations described in the main text, calculated at two imposed NOx concentrations (0.1
and 1 ppbv). The AM3 yield does not include contribution from GLYC oxidation. ”OH
exposure time” is equivalent to time for a constant [OH]=4× 106 molecules cm−3

Bates et al. [2014] also derived ACETOL yields from experiments involving the oxidation
of cis- and trans-IEPOXB under high-NOx (∼ 570 ppb NO) conditions. At these NO levels,
the (1,4) H-shift isomerization pathway should be minor. We combine the observed ACETOL
yields with the measured yields of cis- and trans-IEPOXB and estimate a CHOCHO yield
of 8.8% for the reaction of IEPOX+NO.

Figure S4 compares the cumulative CHOCHO yield from IEPOX in GEOS-Chem, MCMv3.3.1,
and AM3, as a function of OH exposure time (Equation 3, main text). The GEOS-Chem
yields are within the range simulated by MCMv3.3.1, however the NOx-dependence of the
yield is weaker. The yield realized by AM3 is approximately 2.5 times higher than GEOS-
Chem after 25 hours of OH exposure time.
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S3 Production of CHOCHO via isoprene peroxy radi-

cal isomerization
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Figure S5: Main pathways to CHOCHO formation from the ISOPO2 isomerization in
MCMv3.3.1 [Jenkin et al., 2015]. Only species relevant to CHOCHO formation are shown.
Key reactions for determining the CHOCHO yield are highlighted in red.

.

Figure S5 shows the pathways to CHOCHO formation via ISOPO2 isomerization in
MCMv3.3.1 [Jenkin et al., 2015]. ISOPO2 isomerization yields dihydroperoxy-formyl peroxy
radicals (di-HPCARPs) in addition to HPALDs [Peeters et al., 2014]. In general, yields
of CHOCHO via ISOPO2 isomerization in MCMv3.3.1 are negligable, as its formation
via di-HPCARPs and HPALDs require NO. In contrast, CHOCHO production in AM3
is much stronger, as HPALD photolysis produces yields 25% CHOCHO. This yield is based
on Stavrakou et al. [2010], however no mechanism for CHOCHO formation was provided.
As such, we regard the MCMv3.3.1 protocol as more reliable. Nevertheless, analysis of the
SENEX observations suggested that MCMv3.3.1 was missing a prompt source of CHOCHO
under low-NOx conditions. This lead to our further examination of the MCMv3.3.1 ISOPO2

pathways for missing reactions.
The (1,4) H-shift di-HPCARP isomerization was included in the MCMv3.3.1 protocol to

be consistent with the updated chemistry of the methacrolein-derived α-formyl peroxy radical
(MACRO2) [Crounse et al., 2012]. Chamber experiments suggest MACRO2 isomerization
rates of ∼ 0.5 s−1 [Crounse et al., 2012]. A (1,5) H-shift isomerization of the di-HPCARP
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Figure S6: Transition states for the (1,4) and (1,5) H-shift isomerizations of the di-HPCARP
leading to CHOCHO formation. These are compared to the proxy compounds used to deter-
mine their rates [Crounse et al., 2012, 2013]. The subsequent steps to CHOCHO formation
from the (1,5) H-shift are also shown.

.

is also possible. Generally (1,5) H-shift isomerization rates are expected to be three orders
of magnitude slower then the (1,4) H-shift. However recent work has shown that it can be
strongly enhanced by the presence of functional groups with oxygen moities [Crounse et al.,
2013], such as the terminal peroxide group in di-HPCARP. The closest structural proxy
for the di-HPCARP from Crounse et al. [2013] (CH3CH(OO.)CH2CH(OOH)CH3, Figure
S6) is predicted to have a isomerization rate of 0.22 s−1, suggesting that the (1,5) H-shift
isomerization of the di-HPCARP is competitive with the (1,4) H-shift. Here we include the
di-HPCARP (1,5)H-shift in our revised mechanism, scaling the rate to 44% of the (1,4) H-
shift, based on the ratio of the MACRO2 (1,4)H-shift and CH3CH(OO.)CH2CH(OOH)CH3

(1,5)H-shift rates.
The di-hydroperoxide dicarbonyl compound (DHDC) produced from the (1,5) H-shift

isomerization can potentially lead to the production of CHOCHO via photolysis. Recent
studies of the photolysis of HPALDs [Peeters et al., 2014], and carbonyl nitrates [Müller et al.,
2014] have suggested mechanisms by which photon absorption on carbonyl chromophores
can lead to dissociation of weaker bonds (e.g. O−OH) at near unity quantum yields. The
same mechanisms are possible for DHDC. Assuming no interaction between the carbonyl
chromophores, we estimate the cross section of DHDC to be twice the value of butenal,
available from the 2006 IUPAC recommendations [Atkinson et al., 2006]. Combined with
unity quantum yields, this yields a lifetime of ∼ 2.8 hours at midday. The actual photolysis
rate may be faster than this estimate, as interactions between the peroxide and carbonyl
groups may enhance the cross section analagous to the effect of nitrate groups adjacent to

7



carbonyl chromophores [Müller et al., 2014]. In the revised mechanism we set the DHDC
photolysis rate equal to the HPALD photolysis rate. DHDC accounts for 26% of CHOCHO
production from isoprene over the Southeast US in our simulations.
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S4 Sensitivity to aerosol reactive uptake

Li et al. [2016] showed that CHOCHO concentrations are sensitive to aerosol reactive uptake.
Although we only simulate CHOCHO loss to OH and photolysis, a reasonable estimate of
the CHOCHO concentration with aerosol loss ([CHOCHO]a) can be made assuming steady
state;

[CHOCHO]a =
kOH [OH] + J

kaer + kOH [OH] + J
[CHOCHO] (S1)

where [CHOCHO], kaer, kOH , and J are the simulated concentration, aerosol loss rate
to reactive uptake, OH reaction rate, and photolysis rate of CHOCHO respectively. kaer is
calculated following Jacob [2000];

kaer =

(
a

Dg

+
4

νγ

)−1
A (S2)

a is the effective aerosol radius, Dg is the gas phase diffusion constant, ν is the mean
molecular speed of CHOCHO, γ is the reactive uptake coefficient, and A is the aerosol surface
area. We test the sensitivity with γ = 2× 10−3 from Li et al. [2016].

Figure S7 shows the observed and simulated median vertical profiles of CHOCHO (with
and without aerosol uptake) along the SENEX flight tracks. Inclusion of aerosol reactive
decreases the median mixed layer (< 1 km) CHOCHO concentration by ∼ 10%. The differ-
ence between observed and simulated median mixed layer CHOCHO concentrations is -13%
with the aerosol sink, comparable to that of HCHO (-14%).
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Figure S7: Median vertical profiles of CHOCHO concentrations during SENEX (June 1
- July 10 2013). Observed concentrations [Min et al., 2016] are compared to GEOS-Chem
model values with and without aerosol uptake (Equation S1), sampled along the flight tracks.
Horizontal bars indicate interquartile range. Altitudes are above ground level (AGL).
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S5 Additional Supporting Figures
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Figure S8: Median vertical profiles of isoprene, methylvinylketone+methacrolein
(MVK+MACR), CO, and O3 concentrations during SENEX (June 1 - July 10 2013). Ob-
served concentrations are compared to GEOS-Chem model values sampled along the flight
tracks. Horizontal bars indicate interquartile range. Altitudes are above ground level (AGL)
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Figure S9: Isoprene, methylvinylketone+methacrolein (MVK+MACR), CO, and O3 concen-
trations below 1 km AGL during SENEX (June 1 - July 10 2013). The grid squares show
daytime aircraft observations compared to the colocated GEOS-Chem model values on the
0.25circ × 0.3125◦ model grid. Background contours in the right panels show the average
model-simulated concentrations at 13 - 14 local time for the SENEX period. Comparison
statistics between model and observation grid squares are shown as the correlation coefficient
r and the normalized mean bias (NMB).
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Figure S10: Relationship between CHOCHO and HCHO concentrations in the mixed layer
(< 1 km AGL during SENEX (June 1 - July 10 2013). Observed values are compared to
GEOS-Chem model values that have been rescaled to account for aerosol uptake (Equation
S1). Lines and reported slopes are from reduced major axis regressions.
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Figure S11: Cumulative time-dependent molar yields of CHOCHO from the oxidation of
isoprene and monoterpenes. Results are from box model simulations described in the main
text, calculated at two imposed NOx concentrations (0.1 and 1 ppbv). The isoprene mecha-
nism is from GEOS-Chem and the α-pinene and β-pinene mechanisms are from MCMv3.3.1.
”OH exposure time” is equivalent to time for a constant [OH]=4× 106 molecules cm−3
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Figure S12: Mean CHOCHO and HCHO columns in summer (JJA) 2013. OMI satellite
observations (top) are compared to GEOS-Chem model values (bottom). The OMI HCHO
observations have been scaled up by a factor of 1.67 to correct for retrieval bias [Zhu et al.,
2016]. The normalized mean bias (NMB) and spatial correlation (r) between GEOS-Chem
and OMI in the eastern US (75◦ − 100◦W, 29.5◦ − 45◦N) is shown within the GEOS-Chem
panels.
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