
Pointer Analysis in the Presence of Dynamic Class Loading

Martin Hirzel
University of Colorado

Boulder, CO 80309

hirzel@cs.colorado.edu

Amer Diwan
University of Colorado

Boulder, CO 80309

diwan@cs.colorado.edu

Michael Hind
IBM Watson Research Center

Hawthorne, NY 10532

hind@watson.ibm.com

ABSTRACT
Many compiler optimizations and software engineering tools
need precise pointer analyses to be effective. Unfortunately,
many Java features, such as dynamic class loading, reflec-
tion, and native methods, make pointer analyses difficult to
develop. Hence, prior pointer analyses for Java either ignore
those features or are overly conservative. We describe and
evaluate a pointer analysis that deals with all Java language
features.

Our analysis is based on Andersen’s inclusion-constraint
based pointer analysis. For statically-linked languages, An-
dersen’s analysis finds constraints based on a static whole-
program analysis of the code, and then propagates the con-
straints to obtain points-to information. Our version of
Andersen’s analysis handles features such as dynamic class
loading by generating constraints at runtime and propagat-
ing the constraints whenever a client of the analysis needs
points-to information. We evaluate the correctness of our
analysis by comparing its results with pointers created at
runtime. We evaluate its performance by running it on a
number of Java programs and measuring metrics such as
propagation time.

1. INTRODUCTION
Pointer analyses benefit many optimizations, such as vir-

tual method resolution, and software engineering tools, such
as program slicers. Despite its benefits, we are not aware of
a pointer analysis that works for all of Java. Prior work on
pointer analysis for Java [46, 40, 57, 39] handles only a sub-
set of the language, ignoring features such as dynamic class
loading, native methods, or reflection. These features cre-
ate challenges for program analyses because: (i) a program
analysis cannot assume that it has seen the whole program:
new code may be loaded at any time during program execu-
tion (dynamic class loading); 1 and (ii) some code may not

1This challenge is not unique to Java. Microsoft’s CLI
(Common Language Infrastructure) also has this feature,
and DLLs and shared libraries pose similar problems.

University of Colorado at Boulder
Technical Report CU-CS-966-03
This work is suported by NSF ITR grant CCR-0085792,
NSF Career award CCR-0133457, an IBM faculty partner-
ship award, and an IBM graduate student fellowship. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the authors’ and do not neces-
sarily reflect those of the sponsors.
December 10, 2003.

be easily amenable to analysis because it is written in a low-
level language (native methods called via JNI, the Java Na-
tive Interface) or circumvents the type system (reflection).
This paper describes, to our knowledge, the first pointer
analysis that works for all of Java. Our analysis is based
on Andersen’s pointer analysis [5] and handles the complete
Java language, including dynamic class loading, reflection,
and native methods.

Andersen’s analysis [5] has two parts: constraint genera-
tion and constraint propagation. Our algorithm separates
these two parts: (i) When certain events occur (e.g., execut-
ing a method for the first time) our analysis generates new
constraints; (ii) When a client (e.g., an optimization) needs
points-to information, it propagates constraints to arrive at
the points-to sets. These points-to sets are conservative un-
til another event generates new constraints. Each constraint
propagation uses the previous solution as a starting point,
which is cheaper than doing a full propagation.

We have implemented our analysis in the context of
Jikes RVM, an open source research virtual machine from
IBM [4]. Because Jikes RVM is itself written in Java, any
pointer analysis in this system must consider not just the
application code, but also Jikes RVM’s own code for the
JIT compilers, garbage collector, and other runtime ser-
vices. Our analysis handles all the intricacies of Java and
Jikes RVM.

Since pointer analyses are difficult to write and debug, we
carefully validated the results of our analysis. Each garbage
collection uses information about actual pointers in mem-
ory to check the points-to sets generated by our analysis. A
pointer that exists between actual objects, but is not repre-
sented in the points-to sets, indicates a bug in our analysis.
This validation methodology was essential in reaching a high
level of confidence in the correctness of our pointer analysis.
We evaluated the performance of our analysis using a num-
ber of Java programs, including the SPECjvm98 benchmark
suite. We found that our analysis yields propagation times
of a few seconds, making it practical, particularly for long
running applications.

2. MOTIVATION
Static whole-program analyses are not applicable to the

full Java language because of dynamic features, such as class
loading, reflection, and native methods. It is hard or even
impossible to determine the impact of these runtime features
statically. This section illustrates the difficulties that class
loading poses for static whole-program analyses.

1



It is not known staticallywhere a class will be loaded
from.
Java allows user-defined class loaders, which may have
their own rules for where to look for the bytecode, or
even generate it on the fly. A static analysis cannot an-
alyze those classes. User-defined class loaders are widely
used in production-strength commercial applications, such
as Eclipse and Tomcat.

It is not known staticallywhich class will be loaded.
Even an analysis that restricts itself to the subset of
Java without user-defined class loaders cannot be fully
static, because code may still load statically unknown
classes with the system class loader. This is done by
Class.forName(String name), where name can be com-
puted at runtime. For example, a program may compute
the calendar class name by reading an environment variable
that specifies its location.

One approach to dealing with this issue would be to as-
sume that all calendar classes may be loaded. This would
result in a less precise solution, if, for example, at each cus-
tomer’s site, only one calendar class is loaded. Even worse,
the relevant classes may be available on the executing ma-
chine, but not in the development environment. Only an
online analysis could analyze such a program.

It is not known staticallywhen a given class will be
loaded.
If the classes to be analyzed are only available in the execu-
tion environment, one could imagine avoiding static analysis
by attempting a whole-program analysis during JVM start-
up, long before the analyzed classes will be needed. The
Java specification says it should appear to the user as if
class loading is lazy, but a JVM could just pretend to be
lazy by showing only the effects of lazy loading, while ac-
tually being eager. This is difficult to engineer in practice,
however. One would need a deferral mechanism for various
visible effects of class loading. An example for such a visible
effect would be a static field initialization of the form

static HashMap hashMap=
new HashMap(Constants.CAPACITY);

Suppose that for some reason, Constants.CAPACITY has
an illegal value, such as −1. The effect (IllegalArgumentEx-
ception) should only become visible to the user when the
class containing the static field is loaded. Furthermore, the
class should be loaded after the class Constants, to ensure
that CAPACITY already has the right value. It is difficult
to be eager about class loading while pretending to be lazy
and getting the order of loaded classes right.

It is not known staticallywhether a given class will be
loaded.
Even if one ignores the order of class loading, and handles
only a subset of Java without explicit class loading, implicit
class loading still poses problems for static analyses. A JVM
implicitly loads a class the first time it executes code that
refers to it, for example, by creating an instance of the class.
Whether a program will load a given class is undecidable,
as Figure 1 illustrates.

A run of “java Main” does not load class C; a run of “java
Main anArgument” loads class C, because line 5 creates an
instance of C. We can observe this by whether line 10 in the

1: class Main {
2: public static void main(String[] argv) {
3: C v = null;
4: if (argv.length > 0)
5: v = new C();
6: }
7: }
8: class C {
9: static {

10: System.out.println(”loaded class C”);
11: }
12: }

Figure 1: Class loading example.

static initializer prints its message. In this example, a static
analysis would have to conservatively assume that class C
will be loaded, and to analyze it. In general, a static whole-
program analysis would have to analyze many more classes
than necessary, making it inefficient (analyzing more classes
costs time and space) and less precise (the code in those
classes may exhibit behavior never encountered at runtime).

3. RELATED WORK
This paper shows how to enhance Andersen’s pointer anal-

ysis to analyze the full Java programming language. Sec-
tion 3.1 puts Andersen’s pointer analysis in context. Sec-
tion 3.2 discusses related work on online, interprocedural
analyses. Section 3.3 discusses related work on using Ander-
sen’s analysis for Java. Finally, Section 3.4 discusses work
related to our validation methodology.

3.1 Static Pointer Analyses
The body of literature on pointer analyses is vast [29].

At one extreme, exemplified by Steensgaard [52] and type-
based analyses [18], the analyses are fast, but imprecise.
At the other extreme, exemplified by the work on shape
analysis [28, 48], the analyses are slow, but precise enough
to discover the shapes of many data structures. In between
these two extremes there are many pointer analyses, offering
different cost-precision tradeoffs.

The goal of our research was to pick an existing analysis
and to extend it to handle features of Java. This goal was
motivated by our need to build a pointer analysis to support
CBGC (connectivity-based garbage collection) [31]. To pick
an existing analysis that would be suitable for our needs, we
took advice from prior work. First, our own prior work in-
dicated that a type-based analysis would be inadequate for
CBGC [31]. Second, Shapiro and Horwitz [49] and Hind and
Pioli [30] found that subset-based pointer analyses, such as
Andersen’s [5], produce results superior to unification-based
pointer analyses, such as Steensgaard’s [52]. Third, Liang
et al. [41] report that it would be very hard to significantly
improve the precision of Andersen’s analysis without bit-
ing into the much more expensive shape analysis. Fourth,
Lhoták and Hendren [39] report that they could improve
the speed of Andersen’s analysis by using filtering based on
programming language types. Thus, we decided to base our
analysis on Andersen’s analysis and to employ type filtering
to improve performance.

3.2 Online Interprocedural Analyses

2



An online interprocedural analysis is an interprocedural
analysis that deals correctly with dynamic class loading.

Demand-driven interprocedural analyses. A number of
pointer analyses are demand-driven, but not online [11, 12,
26, 55, 3, 37]. All of these build a representation of the static
whole program, but then compute exact solutions only for
parts of it, which makes them more scalable. None of these
papers discuss specific issues arising with online analyses
that deal with dynamic class loading.

Incremental interprocedural analyses. Another related
area of research is incremental interprocedural analysis [15,
10, 24, 23]. The goal of this line of research is to avoid a
reanalysis of the complete program when a change is made
after an interprocedural analysis has been performed. Our
work differs from these works in that we focus on the dy-
namic semantics of the Java programming language, not pro-
grammer modifications to the source code.

Sreedhar, Burke, and Choi [50] describe extant analysis,
which finds parts of the static whole program that can be
safely optimized ahead of time, even when new classes may
be loaded later. It is not an online analysis, but reduces
the need for one in settings where much of the program is
available statically.

Pechtchanski and Sarkar [44] present a framework for in-
terprocedural whole-program analysis and optimistic opti-
mization. They discuss how the analysis is triggered (when
newly loaded methods are compiled), and how to keep track
of what to de-optimize (when optimistic assumptions are
invalidated). They also present an example online interpro-
cedural type analysis. Their analysis does not model value
flow through parameters, which makes it less precise, as well
as easier to implement, than Andersen’s analysis.

Bogda and Singh [9] adapt Ruf’s escape analysis [47] to
deal with dynamic class loading. They discuss tradeoffs of
when to trigger the analysis, and whether to make optimistic
or pessimistic assumptions for optimization. Ruf’s analysis
is unification-based, similar to Steensgaard’s analysis, and
thus, less precise than Andersen’s analysis.

King [35] also adapts Ruf’s escape analysis [47] to deal
with dynamic class loading. He focuses on a specific client,
a garbage collector with thread-local heaps, where local col-
lections require no synchronization. Whereas Bogda and
Singh use a call-graph based on capturing call edges at their
first dynamic execution, King uses a call-graph based on
rapid type analysis [8].

All of the online analyses discussed above [44, 9, 35] deal
with dynamic class loading, but are weaker than Ander-
sen’s analysis. Moreover, many of them are escape analyses
and not pointer analyses. Choi et al. [13] note that escape
analysis is an easier problem than pointer analysis. In ad-
dition, none of them handle reflection or JNI (Java Native
Interface). Our contribution is to make a stronger analysis
support dynamic class loading, as well as reflection and JNI.

3.3 Andersen’s Analysis for Static Java
A number of papers describe how to use Andersen’s anal-

ysis for Java [46, 40, 57, 39]. None of these deal with dy-
namic class loading. Nevertheless, they do present solutions
for various other features of Java that make pointer analyses
difficult (object fields, virtual method invocations, etc.).

Rountev, Milanova, and Ryder [46] formalize Andersen’s
analysis for Java using set constraints, which enables them
to solve it with Bane (Berkeley ANalysis Engine) [19].

Liang, Pennings, and Harrold [40] compare both Steens-
gaard’s and Andersen’s analysis for Java, and evaluate
trade-offs for handling fields and the call graph. Whaley
and Lam [57] improve the efficiency of Andersen’s analy-
sis by using implementation techniques from CLA [27], and
improve the precision by adding flow-sensitivity for local
variables. Lhoták and Hendren [39] present Spark (Soot
Pointer Analysis Research Kit), an implementation of An-
dersen’s analysis in Soot [54], which provides precision and
efficiency tradeoffs for various components.

Prior work on implementing Andersen’s analysis differs in
how it represents constraint graphs. There are many alter-
natives, and each one has different cost/benefit tradeoffs.
We will discuss these in Section 4.1.

3.4 Validation Methodology
Our validation methodology compares points-to sets com-

puted by our analysis to actual pointers at runtime. This is
similar to limit studies that other researchers have used to
evaluate and debug various compiler analyses [36, 18, 41].

4. ALGORITHM
To analyze Java programs, analyses need to handle fea-

tures such as dynamic class loading, reflection, and native
methods. Our algorithm extends Andersen’s pointer analy-
sis [5] and handles all the challenges introduced by Java. We
implemented and evaluated our analysis in Jikes RVM, an
open source research virtual machine for Java developed at
IBM [4]. Section 4.1 describes how we use techniques from
prior work to implement Andersen’s analysis. Section 4.2
describes our own contributions that make it work for all of
Java.

4.1 Overview
At a high level, inclusion-constraint based pointer anal-

ysis consists of two steps. First, the constraint finder ana-
lyzes the static program code, building a representation that
models the constraints inherent in the data flow of the pro-
gram. Second, the propagator processes the representation,
producing points-to sets. In an online setting, the points-
to sets conservatively describe the pointers in the program
until there is an addition to the constraints (Section 4.2).

Representation.
Our representation has four kinds of nodes that participate
in the constraints. The constraints themselves are stored as
sets at the nodes. Table 1 describes the nodes, introducing
the notation that we use in the remainder of the paper, and
shows which sets are stored at each node. The node kinds
in “[· · · ]” are the kinds of nodes in the set.

The constraint finder models program code by v-nodes,
v.f -nodes, and their flow sets. Based on these, the propa-
gator computes the points-to sets of v-nodes and h.f -nodes.
For example, if a client of the pointer analysis is interested
in whether a variable p may point to objects allocated at an
allocation site a, it checks whether the h-node for a is an
element of the points-to set of the v-node for p.

Each h-node can be efficiently mapped to its h.f -nodes
(i.e., the nodes that represent the instance fields of the ob-
jects represented by the h-node). In addition to language-
level fields, for each h-node, there is a special node h.ftd
that represents the field that contains the reference to the
type descriptor for the heap node. A type descriptor is just

3



Table 1: Constraint graph representation.
Node kind Represents concrete entities Flow sets Points-to sets

h-node Set of heap objects, e.g., all objects allocated
at a particular allocation site

none none

v-node Set of program variables, e.g., a static vari-
able, or all occurrences of a local variable

flowTo[v],
flowTo[v.f ]

pointsTo[h]

h.f -node Instance field f of all heap objects represented
by h

none pointsTo[h]

v.f -node Instance field f of all h-nodes pointed to by v flowFrom[v],
flowTo[v]

none

like any other object in our system, and thus, must be mod-
eled by our analysis. For each h-node representing arrays of
references, there is a special node h.felems that represents
all of their elements. Thus, our analysis does not distinguish
between different elements of an array.

Points-to sets represent the set of objects (r-values) that a
pointer (l-value) may point to, and are stored with v-nodes
and h.f -nodes. Storing points-to sets with h.f -nodes instead
of v.f -nodes makes our analysis field sensitive [39].

Flow-to sets represent a flow of values (assignments, pa-
rameter passing, etc.), and are stored with v-nodes and
v.f -nodes. For example, if v′.f ∈ flowTo(v), then v’s
pointer r-value may flow to v′.f . Flow-from sets are the
inverse of flow-to sets. In the example, we would have
v ∈ flowFrom(v′.f).

There are many alternatives for where to store the flow
and points-to sets. For example, we represent the data flow
between v-nodes and h.f -nodes implicitly, whereas Bane
represents it explicitly [22, 46]. Thus, our analysis saves
space compared to Bane, but may have to do some more
work at propagation time. As another example, CLA [27]
stores reverse points-to sets at h-nodes, instead of storing
forward points-to sets at v-nodes and h.f -nodes. The for-
ward points-to sets are implicit in CLA and must therefore
be computed after propagation to obtain the final analy-
sis results. These choices affect both the time and space
complexity of the propagator. As long as it can infer the
needed sets during propagation, an implementation can de-
cide which sets to represent explicitly. In fact, a represen-
tation may even store some sets redundantly: for example,
the flow-from sets are redundant in our representation, to
help efficient propagation.

Finally, there are many choices for how to implement the
sets. The Spark paper evaluates various data structures
for representing points-to sets [39]. In their paper, hybrid
sets (using lists for small sets, and bit-vectors for large sets)
yielded the best results. We found the shared bit-vector
implementation from CLA [25] to be even more efficient than
the hybrid sets used by Spark.

Constraint finder.
Table 2 shows the various places in the runtime system
where our online analysis finds constraints. Here, we look
only at intraprocedural constraint finding during JIT com-
pilation of a method; Section 4.2 discusses interprocedural
constraint finding, as well as constraint finding for the vari-
ous other places in the runtime system.

The intraprocedural constraint finder analyzes the code
of a method, and models it in the constraint representation.
We implemented it as a flow-insensitive pass of the optimiz-

Table 2: Points in the runtime system where new
constraints may arise, ordered from least dynamic
to most dynamic.

Runtime system action Page

Virtual machine build and start-up 7
Class loading 8
Type resolution 6
JIT compilation of a method 4
Reflection 7
Execution of native code 7

ing compiler of Jikes RVM, operating on the high-level reg-
ister based intermediate representation (HIR). HIR breaks
down access paths by introducing temporaries so that no
access path contains more than one pointer dereference.

Column “Actions” in Table 3 gives the actions of the con-
straint finder when it encounters the statement in Column
“Statement”. Column “Represent constraints” shows the
constraints implicit in the actions of the constraint finder
using mathematical notation.

Propagator.
The propagator propagates points-to sets following the con-
straints implicit in the flow sets until nothing changes any-
more. In formal terminology, it finds the least fixed-point of
a system of subset constraints. We implemented this step
with the algorithm in Figure 2, which is a modified version
of the worklist propagation algorithm from Spark [39].

The propagator puts a v-node on the worklist when its
points-to set changes (the constraint finder also puts a v-
node on the worklist when its points-to or flow sets change,
so when the propagator starts, the worklist already con-
tains all relevant nodes). Lines 4-10 propagate the v-node’s
points-to set to nodes in its flow-to sets. Lines 11-19 up-
date the points-to set for all fields of objects pointed to by
the v-node. This is necessary because for the h-nodes that
have been newly added to v’s points-to set, the flow to and
from v.f carries over to the corresponding h.f -nodes. Line
12 relies on the redundant flow-from sets.

The propagator sets the isCharged-bit of an h.f -node to
true when its points-to set changes. To discharge an h.f -
node, the algorithm needs to consider all flow-to edges from
all v.f -nodes that represent it (lines 20-24). This is why it
does not keep a worklist of charged h.f -nodes: to find their
flow-to targets, it needs to iterate over v.f -nodes anyway.
This is the only part of our algorithm that iterates over
all (v.f -) nodes: all other parts of our algorithm attempt
to update points-to sets while visiting only nodes that are

4



Table 3: Intraprocedural constraint finder
Statement Actions Represent constraints

v′ = v (move v → v′) flowTo(v).add(v′) pointsTo(v)⊆ pointsTo(v′)
v′ = v.f (load v.f → v′) flowTo(v.f).add(v′) ∀h ∈ pointsTo(v) :

pointsTo(h.f)⊆ pointsTo(v′)
v′.f = v (store v → v′.f) flowTo(v).add(v′.f), ∀h ∈ pointsTo(v′) :

flowFrom(v′.f).add(v) pointsTo(v)⊆ pointsTo(h.f)
`: v = new . . . (alloc h` → v) pointsTo(v).add(h`) {h`} ⊆ pointsTo(v)

1: while worklist not empty, or isCharged(h.f) for any h.f -node
2: while worklist not empty
3: remove first node v from worklist
4: for each v′ ∈ flowTo(v) // move v → v′

5: pointsTo(v′).add(pointsTo(v))
6: if pointsTo(v′) changed, add v′ to worklist
7: for each v′.f ∈ flowTo(v) // store v → v′.f
8: for each h ∈ pointsTo(v′)
9: pointsTo(h.f).add(pointsTo(v))

10: if pointsTo(h.f) changed, isCharged(h.f)← true
11: for each field f of v,
12: for each v′ ∈ flowFrom(v.f) // store v′ → v.f
13: for each h ∈ pointsTo(v)
14: pointsTo(h.f).add(pointsTo(v′))
15: if pointsTo(h.f) changed, isCharged(h.f)← true
16: for each v′ ∈ flowTo(v.f) // load v.f → v′

17: for each h ∈ pointsTo(v)
18: pointsTo(v′).add(pointsTo(h.f))
19: if pointsTo(v′) changed, add v′ to worklist
20: for each v.f
21: for each h ∈ pointsTo(v), if isCharged(h.f)
22: for each v′ ∈ flowTo(v.f) // load v.f → v′

23: pointsTo(v′).add(pointsTo(h.f))
24: if pointsTo(v′) changed, add v′ to worklist
25: for each h.f
26: isCharged(h.f)← false

Figure 2: Constraint propagator

relevant to the points-to sets being updated.
To improve the efficiency of this iterative part, we use a

cache that remembers the charged nodes in shared points-to
sets (and thus speeds up Line 21). The cache speeds up the
loops at Lines 20 and 21 by an order of magnitude.

During propagation, we apply on-the-fly filtering by types:
we only add an h-node to a points-to set of a v-node or h.f -
node if it represents heap objects of a subtype of the declared
type of the variable or field. Lhoták and Hendren found
that this helps keep the points-to sets small, improving both
precision and efficiency of the analysis [39]. Our experiences
confirm this observation.

The propagator creates h.f -nodes lazily the first time it
adds elements to their points-to sets, in lines 9 and 14. It
only creates h.f -nodes if instances of the type of h have
the field f . This is not always the case, as the following
example illustrates. Let A, B, C be three classes such that
C is a subclass of B, and B is a subclass of A. Class B
declares a field f . Let hA, hB , hC be h-nodes of type A, B, C,
respectively. Let v be a v-node of declared type A, and let
v.pointsTo = {hA, hB , hC}. Now, data flow to v.f should
add to the points-to sets of nodes hB .f and hC .f , but there
is no node hA.f .

We also experimented with the optimizations partial on-
line cycle elimination [19] and collapsing of single-entry sub-
graphs [45]. They yielded only modest performance im-
provements compared to shared bit-vectors [25] and type
filtering [39]. Part of the reason for the small payoff may
be that our data structures do not put h.f nodes in flow-to
sets (á la Bane [19]).

4.2 Details
Section 4.1 presented an overview of our algorithm, which

is closely based on analyses in prior work. We now describe
our main contributions: how we solved issues arising from
handling all of Java, including dynamic class loading.

Our basic approach to handling dynamic class loading
is to run the intraprocedural constraint finder whenever
Jikes RVM compiles a method. Besides method compila-
tion, the other events from Table 2 may also lead to new
constraints. Whenever a client needs points-to information,
we run the propagator to obtain the points-to sets. When
propagating the constraints, we use the previous solution as
a starting point, and thus, do not need to solve the entire
constraint system from scratch every time.

Points-to sets are conservative at the time of the propa-

5



gation. In other words, if there is a pointer between con-
crete objects, then the points-to sets represent that pointer.
These points-to sets remain conservative until we find new
constraints. Since Java supports dynamic class loading, it is
not possible to have a non-trivial pointer analysis for Java
whose results will be conservative at all times (Section 2).
Prior pointer analyses get around this issue by analyzing
only a subset of Java, being less precise, or both.

Interprocedural constraints.
For each call-edge, our analysis generates constraints that
model the data flow through parameters and return values.
Parameter passing is modeled like a move from actuals (at
the call-site) to formals (of the callee). Each return state-
ment in a method m is modeled like a move to a special
v-node vretval(m). The data flow of the return value to the
call-site is modeled like a move to the v-node that receives
the result of the call.

We use CHA (Class Hierarchy Analysis) [20, 16] to find
call-edges. A more precise alternative to CHA is to construct
the call graph on-the-fly based on the results of the pointer
analysis. We decided against that approach because prior
work indicated that the modest improvement in precision
does not justify the cost in efficiency [39].

CHA is a static whole-program analysis, but we must per-
form CHA online to deal with dynamic class loading. The
key to our solution for this problem is the observation that
for each call-edge, either the call-site is compiled first, or the
callee is compiled first. We add the constraints for the call-
edge when the second of the two is compiled. This works as
follows:

• When encountering a method
m(vformal1(m), . . . , vformaln(m)),

the constraint finder

– creates a tuple
Im = 〈vretval(m), vformal1(m), . . . , vformaln(m)〉

for m as a callee;

– looks up all corresponding tuples for matching
call-sites that have been compiled in the past, and
adds constraints to model the moves between the
corresponding v-nodes in the tuples; and

– stores the tuple Im for lookup on behalf of call-
sites that will be compiled in the future.

• When encountering a call-site
c : vretval(c) = m(vactual1(c), . . . , vactualn(c)),

the constraint finder

– creates a tuple
Ic = 〈vretval(c), vactual1(c), . . . , vactualn(c)〉

for call-site c;

– looks up all corresponding tuples for matching
callees that have been compiled in the past, and
adds constraints to model the moves between the
corresponding v-nodes in the tuples; and

– stores the tuple Ic for lookup on behalf of callees
that will be compiled in the future.

Besides parameter passing and return values, there is one
more kind of interprocedural data flow that our analysis
needs to model: exception handling. Exceptions lead to

flow of values (the exception object) between the site that
throws an exception and the catch clause that catches the
exception. For simplicity, our initial prototype assumes that
any throws can reach any catch clause. Type filtering will
eliminate many of these possibilities later on.

Unresolved References.
The JVM specification allows a Java method to have unre-
solved references to fields, methods, and classes [42]. A class
reference is resolved when the class is instantiated, when a
static field in the class is used, or when a static method in
the class is called.

The unresolved references in the code (some of which may
never get resolved) create two main difficulties for our anal-
ysis.

First, the CHA (class hierarchy analysis) that we use to
map call-sites to callees and vice versa, does not work when
the class hierarchy of the involved classes is not yet known.
Our current approach to this is to be conservative: if, due
to unresolved classes, CHA cannot yet decide whether a call
edge exists, we assume it exists if the signatures match.

Second, the propagator uses types to perform type filter-
ing and also for deciding which h.f -nodes belong to a given
v.f -node. If the involved types are not yet resolved, this
does not work. We solve this problem by deferring the rep-
resentation of all flow sets and points-to sets involving nodes
of unresolved types, thus hiding them from the propagator.
This task is the responsibility of the resolution manager :

• When the constraint finder creates an unresolved node,
it registers the node with the resolution manager. A
node is unresolved if it refers to an unresolved type.
An h-node refers to the type of its objects; a v-node
refers to its declared type; and a v.f -node refers to the
type of v, the type of f , and the type in which f is
declared.

• When the constraint finder would usually add a node
to a flow set or points-to set of another node, but one
or both of them is unresolved, it defers the informa-
tion for later instead. Table 4 shows the deferred sets
stored at unresolved nodes. For example, if the con-
straint finder finds that v should point to h, but v
is unresolved, it adds h to v’s deferred pointsTo set.
Conversely, if h is unresolved, it adds v to h’s deferred
pointedToBy set. If both are unresolved, the points-to
information is stored twice.

• When a type is resolved, the resolution manager no-
tifies all unresolved nodes that have registered for it.
When an unresolved node is resolved, it iterates over
all deferred sets stored at it, and attempts to add the
information to the real model that is visible to the
propagator. If a node stored in a deferred set is not
resolved yet itself, the information will be added in the
future when that node gets resolved.

With this design, some constraints will never be added
to the model, if their types never get resolved. This saves
unnecessary propagator work.

Before becoming aware of the subtleties of the problems
with unresolved references, we used an overly conservative
approach: we added the constraints eagerly even when we
had incomplete information. This imprecision led to very

6



Table 4: Deferred sets stored at unresolved nodes.
Node kind Flow Points-to

h-node none pointedToBy[v]
v-node flowFrom[v], flowFrom[v.f ], flowTo[v], flowTo[v.f ] pointsTo[h]
h.f -node there are no unresolved h.f -nodes
v.f -node flowFrom[v], flowTo[v] none

large points-to sets, which in turn slowed down our analysis
prohibitively. Our current approach is both more precise
and more efficient. On the other hand, with a less precise
approach, the points-to sets may remain correct for longer,
since resolving a class cannot cause them to go out of date.

Reflection.
Java programs can invoke methods, access and modify fields,
and instantiate objects using reflection. When compiling
code that uses reflection, there is no way of determining
which methods will be called, which fields manipulated, or
which classes instantiated at runtime.

One solution is to assume the worst case. We felt that
this was too conservative and would introduce significant
imprecision into the analysis for the sake of a few opera-
tions which were rarely executed. Other pointer analyses
for Java side-step this problem by requiring users of the
analysis to provide hand-coded models describing the effect
of the reflective actions [57, 39].

Our approach for handling reflective actions is to instru-
ment the virtual machine service that handles reflection with
code that adds constraints when they execute. For example,
if reflection is used to store into a field, we observe the ac-
tual source and target of the store and generate a constraint
that captures the semantics of the store.

This strategy for handling reflection introduces new con-
straints when the reflective code does something new. Fortu-
nately, this does not happen very often. When reflection has
introduced new constraints and we need up-to-date points-
to results, we must rerun the propagator.

Native Code.
The Java Native Interface (JNI) allows Java code to in-
teract with dynamically loaded native code. Usually, a
JVM cannot analyze that code. Thus, an analysis does not
know (i) what values may be returned by JNI methods and
(ii) how JNI methods may manipulate data structures of the
program.

An elegant solution to this would be to analyze the native
code as it gets loaded into the virtual machine. In order
to do this, the JVM needs to include an infrastructure for
analyzing machine code. To date, the only virtual machine
we are aware of that offers this functionality is Whaley’s
Joeq [56], and even Whaley and Lam do not use it to deal
with native code in their pointer analysis [57].

Our approach is to be imprecise, but conservative, for re-
turn values from JNI methods, while being precise for data
manipulation by native methods. If a native method re-
turns a heap allocated object, we assume that it could re-
turn an object from any allocation site. This is imprecise,
but easy to implement. Recall that the constraint propaga-
tion uses type filtering, and thus, will filter the set of heap
nodes returned by a native method based on types. If a na-
tive method manipulates data structures of the program,

the manipulations must go through the JNI API, which
Jikes RVM implements by calling Java methods that use
reflection. Thus, native methods that make calls or manip-
ulate object fields are handled precisely by our mechanism
for reflection.

Other Challenges.
In addition to the challenges mentioned above, there were a
number of other, smaller challenges that we had to handle:

• Pre-allocated data structures. Jikes RVM itself is writ-
ten in Java, and starts up by loading a boot image
(a file-based image of a fully initialized VM) of pre-
allocated Java objects for the JIT compilers, GC, and
other runtime services. These objects live in the same
heap as application objects, so our analysis must model
them. Modeling them by analyzing the Java code that
builds the boot image is insufficient, since that risks
missing build-time reflection and native code. Instead,
our analysis directly models the snapshot of the objects
in the boot image.

• Non-JIT-compiled Code. Our intraprocedural con-
straint finder is a pass of the Jikes RVM optimizing
compiler. However, Jikes RVM compiles some meth-
ods only with a baseline compiler, and other virtual
machines may even not compile them at all, but inter-
pret them instead. The baseline compiler does not use
a representation that is amenable to constraint finding,
thus we just fire up a truncated optimizing compila-
tion to run the intraprocedural constraint finder for
baseline-compiled methods.

• Recompilation of methods. Many JVMs, including
Jikes RVM, may recompile a method, for example
based on its execution frequency. The recompiled
methods may have new variables or code introduced
by optimizations (such as inlining). Since we model
each inlining context of an allocation site by a sepa-
rate h-node, we need to generate the constraints for
the recompiled methods and integrate the constraints
with the constraints for any previously compiled ver-
sions of the method.

• Magic. Jikes RVM has some internal operations (col-
lectively called “Magic”), which are expanded in spe-
cial ways directly into low level code (e.g., write barri-
ers to support garbage collection). We added models
for these magic methods that generate the appropriate
constraints.

5. VALIDATION
A pointer analysis for a complicated language and en-

vironment such as Java and Jikes RVM is a difficult task

7



indeed: the pointer analysis has to handle numerous cor-
ner cases, and missing any of the cases results in incorrect
points-to sets. To help us debug our pointer analysis (to a
high confidence level) we built a validation mechanism.

5.0.1 Validation Mechanism.
We validate the pointer analysis results at GC (garbage

collection) time. As GC traverses each pointer, we check
whether the points-to set captures the pointer: (i) When
GC finds a static variable p holding a pointer to an object
o, our validation code finds the nodes v for p and h for o.
Then, it checks whether the points-to set of v includes h.
(ii) When GC finds a field f of an object o holding a pointer
to an object o′, our validation code finds the nodes h for
o and h′ for o′. Then, it checks whether the points-to set
of h.f includes h′. If either check fails, it prints a warning
message.

To make the points-to sets correct at GC time, we prop-
agate the constraints (Section 4.1) just before GC starts.
However, at this time, there is no memory available to grow
points-to sets, so we modified Jikes RVM’s garbage collector
to set aside some extra space for this purpose.

Our validation methodology relies on the ability to map
concrete heap objects to h-nodes in the constraint graph.
To facilitate this, we added an extra header word to each
heap object that maps it to its corresponding h-node in the
constraint graph. For h-nodes representing allocation sites,
we install this header word at allocation time.

5.0.2 Validation Anecdotes.
Our validation methodology helped us find many bugs,

some of which were quite subtle. Here are two examples.
Anecdote 1. In Java bytecode, a field reference consists of

the name and type of the field, as well as a class reference to
the class or interface “in which the field is to be found” ([42,
Section 5.1]). Even for a static field, this may not be the
class that declared the field, but a subclass of that class.
Originally, we had assumed that it must be the exact class
that declared the field, and written our analysis accordingly
to maintain separate v-nodes for static fields with distinct
declaring classes. When the bytecode wrote to a field using
a field reference that mentions the subclass, the v-node for
the field that mentions the super-class ended up missing
some points-to set elements. That showed up as warnings
from our validation methodology. Upon investigating those
warnings, we became aware of the incorrect assumption and
fixed it.

Anecdote 2. In Java source code, a static field declaration
has an optional initialization, for example, “final static

String s = "abc";”. In Java bytecode, this usually trans-
lates into initialization code in the class initializer method
<clinit>() of the class that declares the field. But some-
times, it translates into a ConstantValue attribute of the
field instead ([42, Section 4.5]). Originally, we had assumed
that class initializers are the only mechanism for initializing
static fields, and that we would find these constraints when
running the constraint finder on the <clinit>() method.
But our validation methodology warned us about v-nodes
for static fields whose points-to sets were too small. Know-
ing exactly for which fields that happened, we looked at the
bytecode, and were surprised to see that the <clinit>()

methods didn’t initialize the fields. Thus, we found out
about the ConstantValue bytecode attribute, and added

constraints when class loading parses and executes that at-
tribute.

In both of these examples, there was more than one way
in which bytecode could represent a Java-level construct.
Both times, our analysis dealt correctly with the more com-
mon case, and the other case was obscure, yet legal. Our
validation methodology showed us where we missed some-
thing; without it, we might not even have suspected that
something was wrong.

6. CLIENTS
This section investigates two example clients of our anal-

ysis, and how they can deal with the dynamic nature of our
analysis.

Method inlining, which is perhaps the most important op-
timization for object-oriented programs, can benefit from
pointer analysis: if the points-to set elements of v all have
the same implementation of a method m, the call v.m()
has only one possible target. Modern JVMs [43, 53, 6, 14]
typically use a dual execution strategy, where each method
is initially executed in an unoptimized manner (either in-
terpreter or non-optimizing compiler). For such methods,
inlining is not performed. Later, an optimizing compiler is
used for the minority of methods that are determined to
be executing frequently. In some systems methods may be
re-optimized if an additional inlining candidate is found. Be-
cause inlining is not performed during the initial execution,
our analysis does not need to perform constraint propaga-
tion until the optimizing compiler needs to make an inlining
decision.

Since the results of our pointer analysis may be invalidated
by any of the events in Table 2, we need to be prepared to
invalidate inlining decisions. There are many techniques for
doing this in prior work, e.g., code patching [14] and on-
stack replacement [33, 21]. If instant invalidation is needed,
our analysis must re-propagate every time it finds new con-
straints. There are also techniques for avoiding invalidation
of inlining decisions, such as pre-existence based inlining [17]
and guards [34, 7]. These would allow our analysis to be lazy
about re-propagating after it finds new constraints.

CBGC (connectivity-based garbage collection) is a new
garbage collection technique that requires pointer analy-
sis [31]. CBGC uses pointer analysis results to partition
heap objects such that connected objects are in the same
partition, and the pointer analysis can guarantee the ab-
sence of certain inter-partition pointers. CBGC exploits the
observation that connected objects tend to die together [32],
and certain subsets of partitions can be collected while com-
pletely ignoring the rest of the heap.

CBGC must know the partition of an object at allocation
time. However, CBGC can easily combine partitions later if
the pointer analysis finds that they are strongly connected
by pointers. Thus, there is no need to perform a full prop-
agation at object allocation time. However, CBGC does
need full conservative points-to information when perform-
ing a garbage collection; thus, CBGC needs to request a full
propagation before collecting. Between collections, CBGC
does not need conservative points-to information.

7. PERFORMANCE
This section evaluates the time efficiency of our pointer

analysis. We implemented our analysis in Jikes RVM 2.2.1.

8



Table 5: Benchmark programs.
Program Analyzed Methods Loaded Classes

null 14,782 1,244
compress 14,912 1,273
db 14,930 1,267
mtrt 15,037 1,286
mpegaudio 15,084 1,311
jack 15,146 1,316
jess 15,342 1,409
javac 15,648 1,408
xalan 16,241 1,597

In addition to the analysis itself, our modified version of
Jikes RVM includes the validation mechanism from Sec-
tion 5. Besides the analysis and validation code, we also
added a number of profilers and tracers to collect the results
presented in this section. For example, at each yield-point
(method prologue or loop back-edge), we walk up the stack
to determine whether the yield-point belongs to analysis or
application code, and count it accordingly. We performed all
experiments on a 2.4GHz Pentium 4 with 2GB of memory
running Linux, kernel version 2.4.

7.1 Benchmark Characteristics
Our benchmark suite (Table 5) includes the SPECjvm98

benchmarks [51], null (a benchmark with an empty main
method), and xalan, an XSLT processor [2, 1]. We use the
size “100” inputs for the SPECjvm98 benchmarks and the
input “1 1” for xalan. To gather data for this table, we
enabled aggressive compiler optimizations (-O2) except for
inlining.

Column “Analyzed Methods” gives the total number of
methods we analyze in these benchmark programs. We ana-
lyze a method when it is part of the boot image, or when the
program executes it for the first time. The analyzed methods
include not just methods of the benchmark, but any library
methods called by the benchmarks, and any methods called
as part of optimizing compilation, analysis (including our
pointer analysis), and system bootup. The null benchmark
provides a baseline: its data represents approximately the
amount that Jikes RVM adds to the size of the application.
This data is approximate because, for example, some of the
methods called by the optimizing compiler may also be used
by the application (e.g., methods on container classes). Col-
umn “Loaded Classes” gives the number of classes loaded by
the benchmarks. Once again, the number of loaded classes
for the null benchmark provides a baseline. Since our anal-
ysis also analyzes the runtime system code, our benchmarks
are potentially much larger than the same benchmarks in
prior work.

Figure 3 shows how the number of analyzed method in-
crease over a run of mpegaudio. The x-axis represents time
measured by the number of thread yield points encountered
in a run. There is a thread yield point in the prologue of
every method and in every loop. We ignore yield points
that occur in our analysis code (this would be hard to do
if we used real time for the x-axis). The y-axis starts at
14,750: all methods analyzed before the first method in this
graph are in the boot image and are thus analyzed once for
all benchmarks. The graphs for other benchmarks have a
similar shape, and therefore we omit them.

14,750

14,800

14,850

14,900

14,950

15,000

15,050

15,100

0 200,000,000 400,000,000 600,000,000 800,000,000

Yield points

A
na

ly
ze

d 
m

et
ho

ds

Figure 3: Yield points versus analyzed methods for
mpegaudio. The first shown data point is the main()

method.

From Figure 3, we see that the analysis encounters new
methods throughout program execution (except for mostly
brief periods, most notably around the 600,000,000 yield
point mark, where the application is executing only meth-
ods that it has encountered before). We were expecting
the number of analyzed methods to stabilize early in the
run, so we were surprised to see the number climb until the
very end of the program run. The reason for this is that the
SPECjvm98 benchmarks are all relatively short running: for
example, if we had a webserver that ran for days, we would
indeed see the number of analyzed methods stabilize after a
few minutes. That point may be an ideal time to propagate
the constraints and use the results to perform optimizations.

7.2 Analysis Cost
Our analysis has two main costs: constraint finding and

constraint propagation. Constraint finding happens when-
ever we analyze a new method, load a new class, etc. Con-
straint propagation happens whenever a client of the pointer
analysis needs points-to information. The remainder of this
section presents data on the performance of our pointer anal-
ysis. Since our analysis is based on Andersen’s analysis,
whose precision has been evaluated in prior work (e.g., [39]),
we focus only on the cost of our analysis. Unless otherwise
indicated, all our experiments used the -O2 optimization flag
of Jikes RVM with inlining explicitly disabled.

7.2.1 Cost of Constraint Finding.
Table 6 gives the percentage of overall execution time

spent in generating constraints from methods (Column “An-
alyzing methods”) and from resolution events (Column “Re-
solving classes and arrays”). For these executions we did
not run any propagations. From this table, we see that
while the cost of generating constraints for methods is up to
11.3%, the cost for generating constraints due to resolution
of classes and arrays is insignificant. When a long-running
application, such as a web server, reaches its steady state,
no new methods will be analyzed, and thus the cost of the
constraint finder would go down to unnoticeable levels. It
is still significant for our benchmarks, since even the longest

9



Table 6: Percent of execution time in constraint
finding

Program Analyzing methods Resolving classes and arrays

compress 11.3% 0.2%
db 10.0% 0.2%
mtrt 8.9% 0.2%
mpegaudio 6.7% 0.6%
jack 4.7% 0.2%
jess 3.3% 0.2%
javac 2.3% 0.2%
xalan 1.6% 0.2%

0

10

20

30

40

50

60

0 200 400 600 800 1,000

Number of propagations

Ti
m

e 
(s

ec
on

ds
)

Figure 4: Propagation times for javac (eager).

running benchmark (javac) runs for merely 33 seconds.

7.2.2 Cost of Propagation.
Table 7 shows the cost of eager propagation (after every

event from Table 2, if it generated new constraints), prop-
agation at GC (before every garbage collection), and lazy
propagation (just once at the end of the program execution).

Columns “Count” give the number of propagations that
occur in our benchmark runs. Columns “Time” give the
arithmetic mean ± standard deviation of the time (in sec-
onds) it takes to perform each propagation. We included
the lazy propagation data to give an approximate sense for
how long the propagation would take if we were to use a
static pointer analysis. Recall, however, that these num-
bers are still not comparable to static analysis numbers of
these benchmarks in prior work, since, unlike them, we also
analyze the Jikes RVM compiler and other system services.

From Table 7, we see that with eager propagation, the
mean pause time due to propagation varies between 2.1 sec-
onds and 6.8 seconds. In contrast, a full (lazy) propagation
is much slower. In other words, our algorithm is effective in
avoiding work on parts of the program that have not changed
since the last propagation.

Our results (omitted for space considerations) showed that
the cost of a propagation did not depend on which of the
events in Table 2 generated new constraints that were the
reason for the propagation.

Figure 4 presents the spread of propagation times for

javac. A point (x,y) in this graph says that propagation
“x” took “y” seconds. Out of 1,107 propagations in javac,
706 propagations take under 1 second. The remaining prop-
agations are much more expensive (10 seconds or more),
thus driving the average up. We can also discern an upward
trend in the more expensive propagations: they are more ex-
pensive later in the execution than earlier in the execution.
We explore this more in Section 7.3. The omitted graphs
for other benchmarks have a similar shape.

While we present the data for eager propagation, we do
not expect clients of our analysis to use eager propagation.
For example, connectivity-based garbage collection [31] does
not need to propagate every time the constraint set grows.
It is adequate to propagate only periodically, for example at
garbage collections.

As expected, the columns for propagation at GC in Ta-
ble 7 show that if we propagate less frequently, the indi-
vidual propagations are more expensive; they are still on
average cheaper than performing a single full propagation
at the end of the program run. Recall that, for Java pro-
grams, performing a static analysis of the entire program is
not possible because what constitutes the “entire program”
is not known until it executes to completion.

7.2.3 Interactions of Propagation Cost with Inlining.
So far, we have reported our analysis time with -O2 opti-

mizations, but with inlining disabled. Inlining is a double-
edged sword: it is both the most effective optimization for
Java programs and also has the greatest potential for slow-
ing down other analyses [38]. Inlining increases the size of
the code and can thus slow down subsequent analyses, most
notably ones that are not linear-time (e.g., the SSA anal-
yses in Jikes RVM). Since Andersen’s analysis is also not
linear (it is cubic time), we would expect inlining to interact
poorly with it. Indeed, when we enabled inlining, we found
that the time for propagation at garbage collections went up
by a factor of 2 to 5. In other words, if one is employing any
non-linear-time algorithms (such as our pointer analysis or
SSA-based analyses), one must be selective about applying
inlining.2

7.3 Understanding the Costs of our Con-
straint Propagation

The speed of our constraint propagator (a few seconds
to update points-to information) may be adequate for long-
running clients, but may not be feasible for short-running
clients. For example, a web server that does not touch new
methods after a few minutes of running can benefit from our
current analysis: once the web server stops touching new
methods, the propagation time of our analysis goes down
to zero. Since we did not have a server application in our
suite, we confirmed this behavior by running two bench-
marks (javac and mpegaudio) multiple times in a loop: after
the first run, there was little to no overhead from constraint
finding or constraint propagation (well under 1%). On the
other hand, an application that only runs for a few minutes
may find our analysis to be prohibitively slow. In this sec-
tion, we analyze the performance of our analysis in order to
identify how best to focus our efforts in improving it.

Broadly speaking, our propagator has two parts: the
worklist driven part (lines 2 to 19 in Figure 2) and the iter-

2By utilizing a dual-execution strategy as described in Sec-
tion 6, modern JVMs satisfy this property.

10



Table 7: Propagation statistics (times in seconds)
Eager At GC Lazy

Program Count Time Count Time Count Time

null 0 0 1 53.2±0
compress 130 3.2±6.5 5 40.4±27.5 1 67.4±0
db 143 3.6±6.7 5 42.9±23.7 1 71.4±0
mtrt 265 2.1±5.0 5 46.2±10.5 1 68.1±0
mpegaudio 319 2.2±4.9 5 46.1±10.5 1 66.6±0
jack 397 4.2±6.4 7 49.0±13.3 1 78.2±0
jess 733 6.8±7.8 8 49.7±19.4 1 85.7±0
javac 1,107 5.9±10.5 10 87.4±39.2 1 187.6±0
xalan 1,728 4.9±9.2 8 85.7±28.9 1 215.7±0

Table 8: Arithmetic mean of time spent in the work-
list and iterative parts at a propagation. All times
in seconds.

Program Worklist time Iterative time

compress 2.6 0.4
db 2.9 0.4
mtrt 1.6 0.2
mpegaudio 1.6 0.2
jack 3.5 0.4
jess 5.8 0.7
javac 4.7 0.9
xalan 4.0 0.5

0

10

20

30

40

50

60

0 200 400 600 800 1,000

Number of propagations

Ti
m

e 
(S

ec
on

ds
)

Worklist
Iterative

Figure 5: Breakdown of iteration time for javac.

ative part (lines 20 to 26 in Figure 2). The worklist driven
part only performs as much work as necessary, whereas the
iterative part is a little wasteful, since it iterates over all
v.f -nodes and the corresponding h.f -nodes.

Table 8 gives the arithmetic mean of the time spent in
the worklist and iterative parts during a propagation. For
these experiments, we perform eager propagation (propagate
every time new constraints are found). The results are sur-
prising: we expected the iterative part to be the bottleneck,
but instead, the worklist part takes more time.

Figure 5 presents the same data graphically for javac. A
“Worklist” point (x,y) says that, for propagation “x”, the
worklist part of the algorithm took “y” seconds. An “Iter-
ative” point (x,y) says that, for propagation “x”, the iter-

ative part of the algorithm took “y” seconds. We see that
as javac executes, both the worklist and iterative parts get
more expensive. We expect the iterative part to get more
expensive, since it has more nodes to iterate through later
in the execution compared to earlier in the execution. How-
ever, the fact that the worklist part gets more expensive as
well suggests that as more and more classes are loaded and
methods analyzed, the points-to sets do get larger, increas-
ing the propagation time for the worklist part. The omitted
graphs for other benchmarks exhibit similar trends. To sum-
marize, our results indicate that we should focus our efforts
for improving propagator performance on the worklist part.

8. CONCLUSIONS
We describe and evaluate the first non-trivial pointer anal-

ysis that handles all of Java. Java features such as dynamic
class loading, reflection, and native methods introduce many
challenges for pointer analyses. Some of these prohibit the
use of static pointer analyses.

We validate the output of our analysis against actual
pointers created during program runs. We evaluate our anal-
ysis by measuring many aspects of its performance, includ-
ing the amount of work our analysis must do at run time.
Our results show that our analysis is feasible and fast enough
for server applications.

9. REFERENCES
[1] The Apache XML project. http://xml.apache.org.

[2] Colorado benchmark suite.
http://systems.cs.colorado.edu/colorado_bench.

[3] G. Agrawal, J. Li, and Q. Su. Evaluating a demand
driven technique for call graph construction. In
Internat. Conference on Compiler Construction (CC),
2002.

[4] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM Systems Journal, 39(1), 2000.

[5] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis,
University of Copenhagen, 1994. DIKU report 94/19.

[6] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adaptive optimization in the Jalapeño JVM.

11

http://xml.apache.org
http://systems.cs.colorado.edu/colorado_bench


In Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 2000.

[7] M. Arnold and B. G. Ryder. Thin guards: A simple
and effective technique for reducing the penalty of
dynamic class loading. In European Conference for
Object-Oriented Programming (ECOOP), 2002.

[8] D. F. Bacon and P. F. Sweeney. Fast static analysis of
C++ virtual function calls. In Obj.-Oriented Prog.,
Systems, Lang., and Applic. (OOPSLA), 1996.

[9] J. Bogda and A. Singh. Can a shape analysis work at
run-time? In Java Virtual Machine Research and
Technology Symp. (JVM), 2001.

[10] M. Burke and L. Torczon. Interprocedural
optimization: Eliminating unnecessary recompilation.
Trans. on Prog. Lang. and Systems (TOPLAS), 1993.

[11] R. Chatterjee, B. G. Ryder, and W. A. Landi.
Relevant context inference. In Principles of Prog.
Lang. (POPL), 1999.

[12] B.-C. Cheng and W.-m. W. Hwu. Modular
interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In Prog.
Lang. Design and Impl. (PLDI), 2000.

[13] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In
Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 1999.

[14] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth.
Practicing JUDO: Java under dynamic optimizations.
In Prog. Lang. Design and Impl. (PLDI), 2000.

[15] K. D. Cooper, K. Kennedy, and L. Torczon.
Interprocedural optimization: Eliminating
unnecessary recompilation. Trans. on Prog. Lang. and
Systems (TOPLAS), 1986.

[16] J. Dean, D. Grove, and C. Chambers. Optimization of
object-oriented programs using static class hierarchy
analysis. In European Conference for Object-Oriented
Programming (ECOOP), 1995.

[17] D. Detlefs and O. Agesen. Inlining of virtual methods.
In European Conference for Object-Oriented
Programming (ECOOP), 1999.

[18] A. Diwan, K. S. McKinley, and J. E. B. Moss. Using
types to analyze and optimize object-oriented
programs. Trans. on Prog. Lang. and Systems
(TOPLAS), 2001.

[19] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken.
Partial online cycle elimination in inclusion constraint
graphs. In Prog. Lang. Design and Impl. (PLDI), 1998.

[20] M. F. Fernandez. Simple and effective link-time
optimization of Modula-3 programs. In Prog. Lang.
Design and Impl. (PLDI), 1995.

[21] S. J. Fink and F. Qian. Design, implementation, and
evaluation of adaptive recompilation with on-stack
replacement. In Code Gen. and Optimization (CGO),
2003.

[22] J. S. Foster, M. Fähndrich, and A. Aiken.
Flow-insensitive points-to analysis with term and set
constraints. Technical report, University of California
at Berkeley, 1997.

[23] D. P. Grove. Effective Interprocedural Optimization of
Object-Oriented Languages. PhD thesis, University of
Washington, 1998.

[24] M. W. Hall, J. M. Mellor-Crummey, A. Carle, and
R. G. Rodriguez. Fiat: A framework for
interprocedural analysis and transformations. In
Workshop on Languages and Compilers for Parallel
Computing (LCPC), 1993.

[25] N. Heintze. Analysis of large code bases: The
compile-link-analyze model.
http://cm.bell-labs.com/cm/cs/who/nch/cla.ps,
1999.

[26] N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In Prog. Lang. Design and Impl. (PLDI),
2001.

[27] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis
using CLA: A million lines of C code in a second. In
Prog. Lang. Design and Impl. (PLDI), 2001.

[28] L. Hendren. Parallelizing Programs with Recursive
Data Structures. PhD thesis, Cornell University, 1990.

[29] M. Hind. Pointer analysis: Haven’t we solved this
problem yet? In Workshop on Program Analysis for
Software Tools and Engineering (PASTE), 2001.

[30] M. Hind and A. Pioli. Which pointer analysis should I
use? In Internat. Symp. on Software Testing and
Analysis (ISSTA), 2000.

[31] M. Hirzel, A. Diwan, and M. Hertz.
Connectivity-based garbage collection. In
Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 2003.

[32] M. Hirzel, J. Henkel, A. Diwan, and M. Hind.
Understanding the connectivity of heap objects. In
Internat. Symp. on Memory Management (ISMM),
2002.

[33] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. In Prog.
Lang. Design and Impl. (PLDI), 1992.

[34] U. Hölzle and D. Ungar. Optimizing
dynamically-dispatched calls with run-time type
feedback. In Prog. Lang. Design and Impl. (PLDI),
1994.

[35] A. C. King. Removing GC synchronization (extended
version). http://www.acm.org/src/subpages/
AndyKing/overview.html, 2003. Winner (Graduate
Division) ACM Student Research Competition.

[36] J. R. Larus and S. Chandra. Using tracing and
dynamic slicing to tune compilers. University of
Wisconsin Technical Report 1174, Aug. 1993.

[37] C. Lattner and V. Adve. Data Structure Analysis: An
Efficient Context-Sensitive Heap Analysis. Tech.
Report UIUCDCS-R-2003-2340, Computer Science
Dept., Univ. of Illinois at Urbana-Champaign, Apr
2003.

[38] H. Lee, D. von Dincklage, A. Diwan, and J. Moss.
Understanding the behavior of compiler optimizations.
Submitted, November 2003.

[39] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using SPARK. In Internat. Conference on
Compiler Construction (CC), 2003.

[40] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insenstitive and
context-insensitive points-to analyses for Java. In
Workshop on Program Analysis for Software Tools and
Engineering (PASTE), 2001.

12

http://cm.bell-labs.com/cm/cs/who/nch/cla.ps
http://www.acm.org/src/subpages/AndyKing/overview.html
http://www.acm.org/src/subpages/AndyKing/overview.html


[41] D. Liang, M. Pennings, and M. J. Harrold. Evaluating
the precision of static reference analysis using
profiling. In Internat. Symp. on Software Testing and
Analysis (ISSTA), 2002.

[42] T. Lindholm and F. Yellin. The Java virtual machine
specification. Addison-Wesley, second edition, 1999.

[43] M. Paleczny, C. Vick, and C. Click. The Java HotSpot
server compiler. In Java Virtual Machine Research
and Technology Symp. (JVM), 2001.

[44] I. Pechtchanski and V. Sarkar. Dynamic optimistic
interprocedural analysis: a framework and an
application. In Obj.-Oriented Prog., Systems, Lang.,
and Applic. (OOPSLA), 2001.

[45] A. Rountev and S. Chandra. Off-line variable
substitution for scaling points-to analysis. In Prog.
Lang. Design and Impl. (PLDI), 2000.

[46] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java using annotated constraints. In
Obj.-Oriented Prog., Systems, Lang., and Applic.
(OOPSLA), 2001.

[47] E. Ruf. Effective synchronization removal for Java. In
Prog. Lang. Design and Impl. (PLDI), 2000.

[48] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. In Principles of Prog.
Lang. (POPL), 1999.

[49] M. Shapiro and S. Horwitz. The effects of the
precision of pointer analysis. In Static Analysis Symp.
(SAS), 1997.

[50] V. C. Sreedhar, M. Burke, and J.-D. Choi. A
framework for interprocedural analysis and
optimization in the presence of dynamic class loading.
In Prog. Lang. Design and Impl. (PLDI), 2000.

[51] Standard Performance Evaluation Corporation
(SPEC). SPECjvm98 benchmarks.
http://www.specbench.org/osg/jvm98.

[52] B. Steensgaard. Points-to analysis in almost linear
time. In Principles of Prog. Lang. (POPL), 1996.

[53] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu,
and T. Nakatani. A dynamic optimization framework
for a Java just-in-time compiler. In Obj.-Oriented
Prog., Systems, Lang., and Applic. (OOPSLA), 2001.

[54] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
European Conference for Object-Oriented
Programming (ECOOP), 2000.

[55] F. Vivien and M. Rinard. Incrementalized pointer and
escape analysis. In Prog. Lang. Design and Impl.
(PLDI), 2001.

[56] J. Whaley. Joeq: A virtual machine and compiler
infrastructure. In Workshop on Interpreters, Virtual
Machines, and Emulators (IVME), 2003.

[57] J. Whaley and M. Lam. An efficient inclusion-based
points-to analysis for strictly-typed languages. In
Static Analysis Symp. (SAS), 2002.

13

http://www.specbench.org/osg/jvm98

