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Abstract
Across species, diversity at the major histocompatibility complex (MHC) is critical to 
individual disease resistance and, hence, to population health; however, MHC diver-
sity can be reduced in small, fragmented, or isolated populations. Given the need for 
comparative studies of functional genetic diversity, we investigated whether MHC 
diversity differs between populations which are open, that is experiencing gene flow, 
versus populations which are closed, that is isolated from other populations. Using the 
endangered ring-tailed lemur (Lemur catta) as a model, we compared two populations 
under long-term study: a relatively “open,” wild population (n = 180) derived from 
Bezà Mahafaly Special Reserve, Madagascar (2003–2013) and a “closed,” captive pop-
ulation (n = 121) derived from the Duke Lemur Center (DLC, 1980–2013) and from 
the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB 
diversity and, across populations, we compared the number of unique MHC-DRB al-
leles and their distributions. Wild individuals possessed more MHC-DRB alleles than 
did captive individuals, and overall, the wild population had more unique MHC-DRB 
alleles that were more evenly distributed than did the captive population. Despite 
management efforts to maintain or increase genetic diversity in the DLC population, 
MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-
breeding efforts resulted in the MHC diversity of offspring increasing to a level com-
mensurate with that found in wild individuals. Therefore, loss of genetic diversity in 
lemurs, owing to small founder populations or reduced gene flow, can be mitigated by 
managed breeding efforts. Quantifying MHC diversity within individuals and between 
populations is the necessary first step to identifying potential improvements to captive 
management and conservation plans.
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1  | INTRODUCTION

In taxa as diverse as fish, amphibians, reptiles, birds, and mammals, 
diversity and/or the specific alleles present at the major histocompat-
ibility complex (MHC) have become important measures of genetic 
health. Polymorphism at MHC loci has been linked to many proxy 
measures of quality (e.g., disease resistance, ornamentation, life span) 
or fitness (e.g., mating success, offspring production) in individuals, 
populations, and species (Bernatchez & Landry, 2003; Sommer, 2005). 
For conservation biologists, these measures reflect the potential for 
adaptation to emerging zoonosis, habitat fragmentation, and climate 
change (Ujvari & Belov, 2011). Therefore, understanding whether 
MHC diversity differs between wild and captive populations could be 
significant to the development of captive management strategies, as 
well as to coordinating the protection and recovery of wild popula-
tions. Here, we compare diversity at the MHC-DRB gene between a 
“closed,” captive population and a more “open,” wild population. This 
comparison allows investigation of the influences of genetic isolation 
and balancing selection on MHC diversity, as well as the interplay be-
tween these forces and captive management.

Genetic diversity, defined as the number of genetic variants within 
a population or between individuals, allows future generations to 
adapt to environmental change. Loss of genetic diversity can be espe-
cially detrimental to populations that are small, fragmented, or isolated 
(reviewed in Frankham, 2005a, 2005b; Hedrick & Kalinowski, 2011). 
Such populations are generally less genetically diverse than are larger, 
more contiguous populations (Madsen et al., 2000; Sutton, Robertson, 
& Jamieson, 2015; reviewed in Ouborg, Angeloni, & Vergeer, 2010), 
owing to population bottlenecks, founder effects, genetic drift, or 
inbreeding—mechanisms that may act simultaneously and syner-
gistically. Similarly, captive populations are often less genetically di-
verse than their wild counterparts. They are often founded by only 
a few individuals and, once established, can be considered “closed” 
because they experience little additional influx, either from the wild 
or from other captive groups (reviewed in Ivy, 2016; Fernández-de-
Mera et al., 2009; Yao, Zhu, Wan, & Fang, 2015; but see Newhouse 
& Balakrishnan, 2015). Compared to captive populations, all but the 
most geographically isolated of wild populations are typically more 
“open” owing to greater gene flow. Thus, relative to wild populations, 
captive populations may experience more inbreeding and genetic drift 
and consequent loss of genetic diversity. For these reasons, captive 
populations can serve as important proxies for fragmented, wild popu-
lations, specifically for examining the consequences of founder effects 
and decades of isolation on genetic diversity. Assessments of the ge-
netic diversity of captive populations are also critical if these popula-
tions are to serve as potential sources for reintroduction efforts for 
endangered species.

At the individual level, decreases in genetic diversity across the ge-
nome and at specific loci typically reduce quality or fitness (i.e., individ-
uals that have decreased genetic diversity have poorer health, shorter 
life spans, and produce fewer offspring than do individuals that have 
greater genetic diversity: Crnokrak & Roff, 1999; Frankham, 2005a; 
Keller & Waller, 2002). At the population level, loss of genetic diversity 

reduces adaptive potential, thereby increasing the risk of extinction. 
The loss of genetic diversity from population decline, genetic drift, 
or inbreeding is thus one of the major threats to endangered species 
(Frankham, 2005a, 2005b). Nonhuman primates and other long-lived 
species are particularly vulnerable to the negative effects of genetic 
loss because their slow life histories and low rate of reproduction can 
severely hinder the recovery of genetic diversity (Charpentier, Widdig, 
& Alberts, 2007). From a theoretical perspective, quantifying the ex-
isting genetic diversity within populations is essential for (1) identify-
ing the influence of genetic diversity on quality, fitness, and adaptive 
potential, (2) elucidating the evolutionary pressures influencing cur-
rent levels of biological variation, and (3) understanding the specific 
mechanisms of action. From an applied perspective, understanding the 
relationship between genetic diversity and fitness has become a task 
of increasing urgency for recovery and conservation of endangered 
species.

Because almost half of all nonhuman primate species are classified 
as “threatened” (IUCN 2010), the threat from loss of genetic diversity 
is of particular importance for developing successful primate conser-
vation plans. Although transgenerational health and reproductive data 
are logistically difficult to obtain for long-lived species, in a few semi-
free-ranging primates, loss of genetic diversity has been correlated 
with increased health risks, including greater ectoparasite prevalence 
and burden, as well as decreased immunocompetence (Charpentier, 
Williams, & Drea, 2008; Noble, Chesser, & Ryder, 1990; Van Coillie 
et al., 2008). These health threats, however, did not translate into 
shorter life spans for less heterozygous individuals (Charpentier, 
Williams, & Drea, 2015). Decreasing genetic diversity is often mea-
sured using neutral heterozygosity, nHo, calculated from microsatel-
lite data (Hartl & Clark, 1997; Reed & Frankham, 2001). Nonetheless, 
these correlations denote an indirect relationship between genetic 
diversity and health risks because differences in microsatellites do not 
change protein sequences. Therefore, nHo does not equate to func-
tional genetic diversity that reflects the adaptive potential of a popula-
tion. Relative to nHo, genetic diversity at protein coding or regulatory 
regions is better estimates of evolutionary potential because they are 
directly associated with factors that influence individual fitness, pop-
ulation viability, and the ability to respond to environmental change 
(Hedrick, 2001; Ouborg et al., 2010; Väli, Einarsson, Waits, & Ellegren, 
2008).

We could gain a better understanding of how an individual’s ge-
netic makeup affects its quality or fitness by examining genetic vari-
ation at critical functional genes, such as those of the MHC. The 
MHC is the most polymorphic gene family within vertebrates and is 
responsible for the activation of the adaptive immune system. MHC 
genes encode proteins that distinguish between “self” and “non-self” 
peptides (Piertney & Oliver, 2006). MHC products bind and present 
“non-self” peptides to immune system cells, initiating the body’s im-
mune response (Piertney & Oliver, 2006). Because each MHC mole-
cule “recognizes” a particular subset of pathogens, both overall MHC 
diversity and specific MHC alleles have been linked to resistance or 
susceptibility to pathogens (Biedrzycka, Kloch, Buczek, & Radwan, 
2011; Carrington & Bontrop, 2002; Evans & Neff, 2009; Oliver, Telfer, 
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& Piertney, 2009; Savage & Zamudio, 2011; Wegner, Kalbe, Kurtz, 
Reusch, & Milinski, 2003; reviewed in Bernatchez & Landry, 2003 and 
Sommer, 2005). In some species, the links between MHC and disease 
are independent of the impact of nHo, providing evidence that par-
asite load is specifically MHC-mediated, rather than a result of nHo 
(Schwensow, Fietz, Dausmann, & Sommer, 2007; Westerdahl et al., 
2005). Beyond the direct link between MHC and health, MHC di-
versity is also linked to differential lifetime survival (Huchard, Knapp, 
Wang, Raymond, & Cowlishaw, 2010) and reproductive success (Kalbe 
et al., 2009; Knapp, Ha, & Sackett, 1996; Ober, 1999; Sauermann 
et al., 2001; Setchell, Charpentier, Abbott, Wickings, & Knapp, 2010; 
Smith et al., 2010; Thoß, Ilmonen, Musolf, & Penn, 2011).

Given the correlations between MHC diversity and proxies of 
quality or fitness, such as health, individual and offspring survival, and 
reproductive success, measuring MHC diversity should be a fundamen-
tal component of wildlife conservation and captive-breeding efforts 
(reviewed in Ujvari & Belov, 2011). Individuals in small or fragmented 
populations and populations that have undergone a bottleneck often 
show reduced MHC-DRB diversity when compared to individuals in 
large or connected populations and in populations prior to size reduc-
tion (Agudo et al., 2011; Bollmer, Ruder, Johnson, Eimes, & Dunn, 2011; 
Sutton, Nakagawa, Robertson, & Jamieson, 2011; Sutton et al., 2015). 
A decline in genetic diversity can be further compounded by the more 
pronounced effects of genetic drift on smaller populations. Thus, small 
or fragmented populations are subject to a double-pronged threat.

As an endangered primate (Andriaholinirina et al., 2014), the ring-
tailed lemur (Lemur catta; Figure 1) is currently facing many anthro-
pogenic stressors, including habitat fragmentation, increased contact 
with humans and domestic animals, and climate change (Schwitzer 
et al., 2013). Evaluated by the IUCN in 2014, the population density of 

ring-tailed lemurs in Madagascar was found to be low and restricted 
to isolated fragments. Habitat loss, hunting pressure, and the illegal 
pet trade are estimated to have produced at least a 50% reduction in 
the wild population over the last few decades (Andriaholinirina et al., 
2014). Population estimates from areas known to historically contain 
ring-tailed lemurs indicate a dramatic population reduction to as few 
as 2,500 wild animals spread across southwestern Madagascar (Gould 
& Sauther, 2016; LaFleur et al., 2016), increasing the probability of loss 
of genetic diversity due to genetic drift. Because of these threats, ring-
tailed lemurs might be representative of vulnerable species worldwide. 
Moreover, the extensive, long-term study of large populations in the 
wild and in captivity (Gould, Sussman, & Sauther, 2003; Jolly, 1966; 
Sauther, Gould, Cuozzo, & O’Mara, 2015; Sussman et al., 2012; Zehr 
et al., 2014), coupled with confirmed susceptibility to inbreeding de-
pression (Charpentier et al., 2008), make the ring-tailed lemur a suit-
able model for testing if functional genetic diversity at the MHC differs 
between captive and wild populations or if MHC diversity declines in 
captivity.

We used two measures of MHC diversity to compare wild and cap-
tive individuals: absolute MHC allelic diversity and the diversity of MHC 
supertypes, which are groups of MHC alleles with similar motifs in their 
binding pockets despite nucleotide differences (Doytchinova & Flower, 
2005; Huchard, Weill, Cowlishaw, Raymond, & Knapp, 2008; Sepil, 
Lachish, Hinks, & Sheldon, 2013). These alleles therefore likely bind 
similar or identical pathogen peptides and can be grouped according to 
functional binding properties. Using these data, we evaluated the effect 
of breeding management on the more “closed,” captive population by 
estimating if its diversity (1) differs from that of the more “open,” wild 
population and (2) has changed across decades. We also used previously 
published microsatellite data to assess the relationship between nHo 
and functional genetic diversity (or MHC-DRB diversity: Charpentier 
et al., 2008; Grogan, McGinnis, Sauther, Cuozzo, & Drea, 2016; Pastorini 
et al., 2015), as well as to estimate effective population sizes.

2  | METHODS

2.1 | Subjects

Our subjects were 301 ring-tailed lemurs, including 121 (67 females; 
51 males; three infants of unknown sex) captive animals from three 
institutions that are part of the Association of Zoos and Aquariums 
(AZA) in the USA and 180 (86 females; 94 males) wild animals from 
Bezà Mahafaly Special Reserve (BMSR), in the region of Atsimo-
Andrefana, Madagascar.

The wild ring-tailed lemurs at BMSR have been studied since 1987 
and have been collared for identification and monitored monthly since 
2003 (for more details on BMSR and the monthly census of the wild 
population, see Sussman et al., 2012). From 1987 to 2013, this pop-
ulation has generally averaged approximately 95 adult, ring-tailed 
lemurs annually (range = 58–120; Gould, Sussman, & Sauther, 1999; 
Gould et al., 2003; Sauther & Cuozzo unpublished data). Our BMSR 
population represents the majority (>90%) of adults collared from 
2003 to 2013. We consider this population to be “open,” owing to the 

F IGURE  1 Photo of ring-tailed lemur by CM Drea
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known immigration and emigration of animals (Sauther, Sussman, & 
Gould, 1999; Sussman, 1991, 1992).

The captive ring-tailed lemurs comprised 52 individuals resid-
ing, from 2012 to 2013, at the Duke Lemur Center (DLC; n = 32) in 
Durham, NC, the Indianapolis Zoo (n = 18), in Indianapolis, IN, and the 
Cincinnati Zoo (n = 2), in Cincinnati, OH, as well as an additional 69 
individuals that had previously resided at the DLC, from 1980 to 2012, 
for which DNA samples could be obtained. These captive animals 
included individuals born at any of the three institutions, as well as 
individuals that had transferred between these and other institutions, 
either to address a housing constraint or to satisfy a breeding recom-
mendation from the AZA Species Survival Plan (SSP) that originated 
in 1995. All individuals were housed in mixed-sex groups, with simi-
lar housing and provisioning conditions across the three institutions 
(for details, see Scordato, Dubay, & Drea, 2007; McKenney, Rodrigo, 
& Yoder, 2015). In past decades, groups at the DLC ranged from male–
female pairs to multimale, multifemale groups as large as 25 individu-
als. More recently, groups have included a maximum of 12 individuals. 
We treated the captive animals as a single population, regardless of 
home institution, because they are managed as such by the AZA; how-
ever, we have surveyed only three of over 200 institutions that house 
ring-tailed lemurs. We also consider them a relatively “closed” popu-
lation because of the small group of founders and because, each year, 
only a few individuals breed or transfer between institutions.

2.2 | Sampling

We obtained whole blood or tissue collected from wild and captive 
lemurs by veterinarians following established protocols (Charpentier 
et al., 2008; Sauther & Cuozzo, 2008). All of our sampling methods 
followed approved animal handling guidelines and protocols of the 
Institutional Animal Care and Use Committees of Duke University, the 
University of North Dakota, and/or the University of Colorado (most 
recently, these included Duke University IACUC #A143-12-05, ap-
proved 05/25/2012, and University of North Dakota IACUC #0802-
2, approved 04/03/08). Sample collection in Madagascar was also 
approved by Madagascar National Parks and CITES (05US040035/9).

2.3 | DNA extraction

We extracted DNA from the samples following the manufacturers’ 
instructions, using either DNA miniprep kits (Sigma, St. Louis, MO) 
or DNeasy® Blood and Tissue kits (Qiagen, Valencia, CA). We pre-
served whole blood from the wild subjects on Whatman FTA® Classic 
cards (GE Healthcare Life Sciences, Buckinghamshire, UK). From 
these cards, we extracted DNA and increased its quality and quan-
tity by whole genome amplification (Repli-G Single Cell Kit®, Qiagen, 
Valencia, CA).

2.4 | Genotyping

To genotype individuals at the MHC-DRB loci, we used parallel-
tagged sequencing to pool amplicons of 50–125 individuals, including 

two to five replicates per individual, for a total of 845 amplicons in 
eight PCR pools. We sequenced a 171-bp fragment of the MHC-DRB 
second exon, containing the antigen-binding site, using three Ion 
Torrent PGM® 314v2 chips (Life Technologies, Grand Island, NY) and 
five 454 Titanium® 1/8th lanes (Roche, Nutley, NJ). To distinguish al-
leles from artifacts, we used a published workflow that relies upon 
relative frequency of variants within an amplicon and comparisons 
between replicate PCRs for each sample to identify alleles (for details, 
see Grogan et al., 2016). Once animals were genotyped, we deter-
mined MHC supertype by identifying nucleotide sites under positive 
selection or positively selected sites (PSS), via the CODEML analy-
sis in PAML Version 4.7 (Yang, 2007). We used the physiochemical 
properties of PSS amino acids to determine MHC-DRB supertypes of 
alleles or groups of alleles with similar binding properties at antigen-
binding sites (ABS). We used heat mapping to determine supertypes in 
Genesis Version 1.7.6 (See Table S1 for details regarding MHC super-
types and corresponding MHC alleles: Doytchinova & Flower, 2005; 
Huchard et al., 2008; Schwensow et al., 2007; Sepil et al., 2013).

2.5 | Statistical analyses

Using an ANOVA, we compared the average MHC-DRB diversity of 
captive vs. wild individuals. We investigated whether sampling effort 
affected the number of alleles detected in each population compared 
to the actual allelic richness present in each population. To do so, we 
conducted permutation tests by randomly sampling ten individuals 
per population and counting the number of unique alleles represented 
in this random sample. After 100 iterations, we calculated the mean 
and SD of a sampling effort of ten. We then repeated this procedure 
in an incremental process, adding ten to our sampling effort in each 
step, up to a sample of 100 individuals. We conducted these permuta-
tion tests for both the wild population (n = 180) and the captive DLC 
population (n = 101), and plotted the average number of MHC-DRB 
alleles detected per given sampling effort. We performed all analyses 
in RStudio (Version 3.0.2).

To evaluate the use of nHo as a proxy for MHC diversity, we used a 
linear regression to compare MHC-DRB diversity to microsatellite data 
separately for each population, using data from previously published 
work (for details of microsatellite genotyping of the captive population, 
see Charpentier et al., 2008; for details of microsatellite genotyping of 
the wild population, see Pastorini et al., 2015). Briefly, 73 ring-tailed 
lemurs from the DLC population were each genotyped at 10–15 
microsatellite loci. From BMSR, 130 individuals captured from 2003 to 
2005 were genotyped at 10 microsatellite loci. Only microsatellite loci 
that conformed to Hardy–Weinberg expectations were used to cal-
culate observed nHo per individual. Within the 73 captive individuals, 
nHo ranged from 0.21 to 0.86 (mean ± SE = 0.56 ± 0.02; Charpentier 
et al., 2008). In contrast, nHo for the wild population ranged from 0.33 
to 1.0 (mean ± SE = 0.76 ± 0.14; Pastorini et al., 2015).

Lastly, to assess the influence of approximately 50 years of cap-
tivity and captive management on MHC-DRB diversity in the DLC 
population, we divided our study period into decades and compared 
the average MHC-DRB diversity of the infants born during each 
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decade from 1980 to 2013 (see Charpentier et al., 2008). To disen-
tangle the relative influences of the founder effect from genetic drift 
over generations, we used the microsatellite data and the linkage dis-
equilibrium method (Laurie-Ahlberg & Weir, 1979; Hill, 1981; Waples 
& Do, 2010) in NeEstimator V2 (Do et al., 2014) to estimate the ef-
fective population size for the DLC population (n = 80) per decade 

in captivity from 1980 to 2007, as well as for the wild population 
(n = 130) from 2003 to 2005. These data are somewhat limited, how-
ever, as they do not include every individual residing at the DLC or 
BMSR during these years, nor every individual that was genotyped 
for MHC-DRB. Additionally, we lack microsatellite data from individ-
uals born at or transferred to the DLC after 2007, as well as for all 
individuals residing at the Cincinnati and Indianapolis Zoos and born 
at BMSR after 2006.

3  | RESULTS

In testing for differences in MHC-DRB diversity between wild and 
captive populations of ring-tailed lemurs, we found that wild indi-
viduals were significantly more diverse than were captive individuals 
(Figure 2). Specifically, there were significantly more MHC-DRB al-
leles (n = 301, F = 23.97, p < .001; Figure 2a; Table 1), as well as sig-
nificantly more MHC-DRB supertypes (n = 301, F = 7.035, p < .001; 
Figure 2b; Table 1) in wild individuals compared to captive individu-
als. Wild individuals possessed a mean (±SD) of 2.78 (±1.34) alleles 
(range = 1–7) and 2.60 (±1.32) supertypes (range = 1–7), whereas 
captive individuals possessed 2.1 (±0.86) alleles (range = 1–5) and 
1.65 (±0.83) supertypes (range = 1–5).

The wild population also showed more allelic richness, with 52 
unique MHC-DRB alleles and 24 MHC supertypes, compared to 13 
supertypes comprised of 20 MHC-DRB alleles in the captive popula-
tion (Figure 3). The two populations shared 18 alleles (12 supertypes); 
however, the captive population had two private alleles not found in 
the wild population and one private MHC supertype. In contrast, the 
wild population had 35 private alleles and 12 MHC supertypes that 
were not shared by the captive population (for details of which alleles 
were shared or were private, see Table S1). Neither sex nor age in-
fluenced the distribution of MHC-DRB alleles or supertypes between 
populations or individuals.

Within each population, MHC-DRB alleles and supertypes were 
unevenly distributed (Figure 3). Within the captive population, three 
alleles were present in a majority of the individuals, whereas the re-
maining 17 alleles were present in only a few individuals (overall 
range = 0.0–60.3%, overall mean = 10.6%; Figure 3a). The most abun-
dant allele was present in more than 60% of captive individuals, and 

F IGURE  2 Genetic diversity in ring-tailed lemurs showing the 
number of (a) MHC-DRB alleles and (b) MHC-DRB supertypes at the 
individual level for both captive (green) and wild (black) populations
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TABLE  1  Individual and population level of MHC-DRB diversity across captive animals at three institutions compared to animals from one 
wild population

Captive: 
Cincinnati zoo

Captive: 
Indianapolis zoo

Captive:  
DLC

Total captive 
population

Wild 
population

Number of individuals genotyped 2 18 101 121 180

Average number of alleles per individual 3.5 2.56 2.0 2.10 2.78

Total number of alleles in population 4 12 16 20 53

Number of private alleles 0 2 1 2 35

Average number of supertypes per individual 3.5 2.11 1.51 1.65 2.6

Total number of supertypes in population 4 9 11 13 24

Number of private supertypes 0 1 1 1 12
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more strikingly, the most common MHC supertype was present in 
>90% of captive individuals (range = 1.0%–90.0%, mean = 6.0%). By 
contrast, the most abundant MHC-DRB allele within the wild popu-
lation was present in only 38.8% of individuals (range = 0.0–38.8%, 
mean = 5.2%; Figure 3b), and the most abundant supertype was pres-
ent in only 51% of individuals (range = 2.0%–51.0%, mean = 9%). Thus, 

we found that MHC-DRB variation in the wild population was more 
evenly spread than was MHC-DRB variation in the captive population.

Next, we calculated the average allelic richness detected for a 
given sampling effort (Figure 4). In the captive population, the number 
of unique alleles detected reached a plateau near a sampling effort 
of 60 individuals or 50% of the captive population sampled. When 
60 captive animals were sampled, approximately 75% of 20 possible 
unique alleles were detected. In the wild population, however, sam-
pling 55% of the population detected only 44% (n = 23) of the 52 
unique MHC-DRB alleles present. Therefore, the more diverse a pop-
ulation, the greater the sampling effort required to detect the majority 
of the MHC diversity present.

In our comparison between neutral and functional diversity, we 
found nHo to be significantly and positively correlated with the num-
ber of MHC-DRB alleles (n = 71, F = 5.884, p = .018) in the captive 
population; however, variation in nHo explained little of the variation 
in the number of MHC-DRB alleles (adjusted R2 = 0.065, slope = 1.26). 
Conversely, in the more diverse wild population, MHC diversity was 
not correlated with nHo (n = 88, F = 0.002, p = .962). Consequently, 
although average nHo decreased significantly across the decades 
from 1980 to 2010 (see Charpentier et al., 2008), MHC-DRB diver-
sity in infants born at the DLC remained constant (Spearman cor-
relation, n = 83, r = −0.11, p = .28). Despite careful management, the 
estimated effective population sizes decreased from 15.4 individu-
als during 1980–1989 to 14.4 individuals during 1990–1999, then 
down to 12.9 individuals during 2000–2009. In contrast, the effec-
tive population size from 2003 to 2005 at BMSR was 52.1 individuals 
(Figure 5). After 2010, however, MHC-DRB diversity in captive-born 
infants increased significantly (Spearman correlation, n = 93, r = 0.35, 
p < .001; Figure 6) compared to the MHC-DRB diversity of infants 
born in the decades prior to 2010. In fact, the MHC-DRB diversity of 
infants born after 2010 (mean ± SD = 2.8 ± 0.92) was comparable to 
the average MHC-DRB diversity of individuals in the wild (F = 0.002, 
p = .966).

4  | DISCUSSION

In a comparison of two populations of ring-tailed lemurs, both indi-
vidual- and population-level MHC-DRB diversity were greater in wild 
animals than in captive animals. Individuals from among the wild le-
murs possessed, on average, one allele more than did individuals from 
among the captive lemurs. The number of unique MHC-DRB alleles 
and MHC-DRB supertypes present in the wild population was more 
than twice the number in the captive population at the three institu-
tions included in this study. In both the wild and captive populations, 
allelic frequency showed a skewed distribution, as over 50% of MHC-
DRB alleles present in each population were found in five or fewer 
individuals. Just as some microsatellite variation already has been lost 

F IGURE  3 The frequency distribution of (a) MHC-DRB alleles (Leca-DRB) and (b) MHC-DRB supertypes in captive (green) and wild (black) 
populations of ring-tailed lemurs

F IGURE  4 The mean number (±SE) of unique MHC-DRB alleles 
detected in captive (green circles) and wild (black circles) populations 
of ring-tailed lemurs. The unique alleles detected were dependent 
upon sampling effort, estimated using resampling techniques, and 
are compared to the number of unique alleles present in the captive 
(dashed green line) and wild (dashed black line) populations
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in captivity (Charpentier et al., 2008), these rare MHC-DRB alleles are 
at greater risk of being lost via genetic drift than they would be in 
a larger population. In the captive population, the decreased genetic 
diversity likely reflects effects of 1) a genetic bottleneck, owing to 
only a few founding individuals having been initially captured from 
the wild, 2) decades of reduced gene flow between institutions, and 3) 
genetic drift, especially in small populations. Without the subsequent 
introduction of new MHC alleles, captive management efforts at the 
DLC, based on pedigree data, did not counteract the loss of genetic 
diversity over four decades (Charpentier et al., 2008); however, we 
found evidence of a genetic rescue occurring via the transfer of new 
individuals to the DLC after 2010.

Genetic drift may, in fact, have a stronger effect on immune sys-
tem or functional genes than on neutral genetic diversity (Bateson, 
Whittingham, Johnson, & Dunn, 2015; Froeschke & Sommer, 2014; 
Marsden et al., 2012) or may overwhelm the influence of selection in 
small populations (Luo, Pan, Liu, & Li, 2012; Miller & Lambert, 2004). In 
some cases, MHC diversity even declines faster than does neutral di-
versity (Bateson et al., 2015; Bollmer et al., 2011; Ejsmond & Radwan, 
2009; Eimes et al., 2011; Sutton et al., 2011, 2015); however, we 
saw a more rapid decline of neutral diversity compared to MHC di-
versity in the captive ring-tailed lemur population at the DLC. Thus, 
although genetic drift has resulted in decreased neutral diversity in 
the DLC population, selective pressure may be mitigating the loss of 
immunogenetic diversity in captivity (Ellison et al., 2012; Newhouse & 
Balakrishnan, 2015). Captivity may even be exerting strong selective 
pressure through exposure to novel pathogens not previously experi-
enced during millions of years of isolation on Madagascar.

Although limited MHC diversity does not necessarily condemn a 
species to extinction (e.g., Castro-Prieto, Wachter, & Sommer, 2011; 
Lau, Jaratlerdsiri, Griffith, Gongora, & Higgins, 2014; Plasil et al., 2016; 
Weber, Stewart, Schienman, & Lehman, 2004; Weber et al., 2013; Zhu, 
Ruan, Ge, Wan, & Fang, 2007), low MHC diversity can compromise 

population viability over the long term by increasing susceptibility to 
disease (Belov, 2011; Radwan, Biedrzycka, & Babik, 2010; Segelbacher 
et al., 2014; Spielman, Brook, Briscoe, & Frankham, 2004). In particu-
lar, many species are likely to increasingly encounter novel pathogens 
in the future because of increased exposure to humans, their livestock, 
other domesticated animals (e.g., feral dogs and cats), and invasive 
species (Barrett, Brown, Junge, & Yoder, 2013; Daszak, Cunningham, 
& Hyatt, 2000, 2001). The negative effects of low MHC diversity on 
an animal’s ability to combat novel pathogens also may be exacerbated 
by stress from human disturbance or environmental perturbations 
(Frankham, 2005b). These perturbations to the environment, which 
often decrease population size (e.g., a drought: Gould et al., 2003), 
are likely to subject populations to increasing effects of genetic drift, 
which may further decrease genetic diversity in a negative feedback 
loop that subsequently renders a population even more susceptible to 
novel pathogens. Thus, quantifying the current level of MHC diversity, 
especially in wild or endangered species, is essential to future conser-
vation efforts.

Although previous researchers have estimated genetic diversity 
using nHo as a proxy for functional diversity (Höglund, Wengström, 
Rogell, & Meyer-Lucht, 2015; Segelbacher et al., 2014), we found only 
a weak correlation between MHC-DRB diversity and nHo in captivity 
and no correlation in our wild population. Our MHC and nHo findings, 
however, confirm that captive individuals have less overall genetic 
diversity than do wild individuals (Charpentier et al., 2008; Pastorini 
et al., 2015). Captive ring-tailed lemurs are more closely related within 
institutions than between institutions, and also have greater related-
ness between individuals at a single institution than do individuals 
within a social group at the BMSR (Pastorini et al., 2015). Together, the 
MHC and nHo data indicate that groups of ring-tailed lemurs at some 
institutions have historically functioned as independent, small popu-
lations, exhibiting less gene flow than typically occurs between wild 
groups (Pastorini et al., 2015). In other words, there are fewer trans-
fers between captive groups at the institutions examined in this study 
than there are immigrations between wild groups. Between 1980 
and 2013, the AZA SSP included 2,839 ring-tailed lemurs housed at 
289 institutions. During this period, 1,168 transfers, including some 
animals that were transferred multiple times, occurred between 217 
institutions, which is a rate of 0.1 transfers per institution per year 
(Gina Ferrie, personal communication). In contrast, researchers at the 
BMSR and Berenty Reserve have observed an average of 1.4 and 2.9 
transfers, respectively, per social group annually (Koyama, Nakamichi, 
Ichino, & Takahata, 2002; Sauther, 1991; Sussman, 1992).

In captivity, these transfers occur for several reasons, most impor-
tantly as part of the AZA SSP management of diversity of the captive 
population in the USA. The ring-tailed lemur population including all 
individuals from all AZA SSP institutions is a large and successfully 
managed population, considered a Green SSP Program because the 
population has retained “a minimum of 90% gene diversity at 100 years 
or 10 generations, and includes at least 50 animals held among at least 
three AZA member institutions” (AZA 2014). Estimates of genetic di-
versity are based on the number of founder lineages represented in 
the population, rather than on molecular estimates via microsatellites 

F IGURE  6 Mean MHC-DRB allelic richness (±SD) possessed 
by ring-tailed lemur infants born at the DLC, separated typically by 
decade of birth from 1980 through the birth season of 2013. The 
number of infants born per period is shown above each data point
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or allelic diversity of SNPs or candidate genes (AZA Population 
Management Center Population Management Guidelines; Lacy, 1995). 
Unfortunately, little is known about the origins or relationships of the 
founding ring-tailed lemurs in the captive population, and molecular 
work has not confirmed that founders were unrelated to one another. 
AZA SSP management has prevented some loss of diversity through 
genetic drift; however, these efforts have not been completely suc-
cessful at maintaining levels of neutral or adaptive diversity equivalent 
to the level of genetic diversity seen in the wild. Given our findings 
regarding the limited correlation between neutral and adaptive diver-
sity, we recommend the inclusion of molecular data, particularly of 
potentially important candidate genes, into the Breeding and Transfer 
Plan. We also recommend increased transfer of key individuals pos-
sessing unique MHC-DRB alleles or substantial MHC-DRB diversity, 
particularly between international institutions that may hold unique 
individuals from different source populations (Frankham, 2015; Ivy, 
2016; Pastorini et al., 2015). The inclusion of molecular data and the 
movement of endangered species across international borders may be 
financially and logistically constrained, but could increase the diver-
sity of captive offspring and preserve extremely rare MHC-DRB alleles 
within the captive population.

Additionally, although uneven MHC-DRB allelic frequencies are 
present in other vertebrate species (Alcaide, Muñoz, Martínez-de la 
Puente, Soriguer, & Figuerola, 2014; Pechouskova et al., 2015; Weber 
et al., 2013), the highly skewed distribution of MHC-DRB alleles in 
ring-tailed lemurs increases the likelihood that rare, potentially import-
ant alleles may have been lost, particularly from the captive popula-
tion, due to genetic drift. The diversity and distribution of MHC-DRB 
in animals across institutions should be evaluated and that assessment 
incorporated into breeding recommendations. To gain an accurate 
picture of MHC-DRB diversity in populations, especially captive ones, 
sampling should include almost every individual because of the abun-
dance of rare alleles and uneven distribution.

Lastly, we show that captive populations suffer from the effects 
of small founder population and possible genetic drift, but that careful 
management, including the influx of new individuals, can negate this 
potential threat and lead to an increase in the number of MHC-DRB 
alleles. This kind of genetic “rescue” by a few individuals is one method 
of increasing genetic diversity, viability, and survivorship (e.g., Adams, 
Vucetich, Hedrick, Peterson, & Vucetich, 2011; Johnson et al., 2010; 
Westemeier et al., 1998; reviewed in Frankham, 2015). Without con-
tinued introduction of new alleles, however, the increase in individual 
diversity may be temporary (Hedrick, Peterson, Vucetich, Adams, & 
Vucetich, 2014). The inclusion of measures of genetic diversity into 
conservation management plans is a critical step in the preservation 
of viable populations, both in captivity and in the wild (Witzenberger 
& Hochkirch, 2011).

MHC-DRB is not the only component of immunogenetic diver-
sity that could be monitored and managed, however. For example, 
toll-like receptors could provide an informative comparison to the 
MHC-DRB. Whereas the MHC controls the activation of the adaptive 
immune system, toll-like receptors are essential to the innate immune 
response through intracellular signaling (Gonzalez-Quevedo, Phillips, 

Spurgin, & Richardson, 2015; Grueber et al., 2015; Morris, Wright, 
Grueber, Hogg, & Belov, 2015). Alternatively, assessment of functional 
immmunogenetic diversity could be expanded using next-generation 
Ig-seq technology to explore expressed antibodies (Larsen, Campbell, 
& Yoder, 2014). This method allows for monitoring of disease status 
of wild populations and surveillance of novel diseases, an important 
component of advanced conservation management.

As an endangered strepsirrhine endemic to Madagascar, the ring-
tailed lemur is both a flagship conservation species for one of the 
world’s top biodiversity hot spots and a prime example of a species in 
peril (Gould & Sauther, 2016; LaFleur et al. 2016). Like all nonhuman 
primates, ring-tailed lemurs face significant anthropogenic threats 
(Reuter et al. 2017; Schwitzer et al., 2013) and are increasingly sus-
ceptible to environmental change through loss of genetic diversity 
(Frankham, 2005a, 2005b; Charpentier et al., 2008; Spielman et al., 
2004). Studies such as this one are key for assessing a species’ ability 
to respond to these threats, including novel pathogens, as well as to 
adapt to changing climatic conditions. Such studies are also crucial for 
determining whether captive populations are sufficiently representa-
tive of wild populations to serve as a reservoir for the purpose of rein-
troduction or repopulation.
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