
Advances in MCMC Methods with Applications to Particle

Filtering, DSMC, and Bayesian Networks

by

Dale Jennings

B.S., Western Washington University, 2011

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2016

This thesis entitled:
Advances in MCMC Methods with Applications to Particle Filtering, DSMC, and Bayesian

Networks
written by Dale Jennings

has been approved for the Department of Applied Mathematics

Prof. Jem Corcoran

Prof. Manuel Lladser

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Jennings, Dale (Ph.D., Applied Mathematics)

Advances in MCMC Methods with Applications to Particle Filtering, DSMC, and Bayesian Net-

works

Thesis directed by Prof. Jem Corcoran

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a

desired probability distribution. While there exist many algorithms that attempt to be somewhat

universal, these algorithms can struggle for tractability in specific applications. The work in this

dissertation is focused on improving MCMC methods in three application areas: Particle Filtering,

Direct Simulation Monte Carlo, and Bayesian Networks. In particle filtering, the dimension of

the target distribution grows as more data is obtained. As such, sequential sampling methods

are necessary in order to have an efficient algorithm. In this thesis, we develop a “windowed”

rejection sampling procedure to get more accurate algorithms while still preserving the necessary

sequential structure. Direct Simulation Monte Carlo is a Monte Carlo algorithm for simulating

rarefied gas flows. In this dissertation, we review the derivation of the Kac master equation model

for 1-dimensional flows. From this, we show how the Poisson process can be exploited to construct

a more accurate algorithm for simulating the Kac model. We then develop an ε-perfect proof of

concept algorithm for the limiting velocity distribution as time goes to infinity. Bayesian Networks

(BNs) are graphical models used to represent high dimensional probability distributions. There

has been a great deal of interest in learning the structure of a BN from observed data. Here, we do

so by walking through the space of graphs by modeling the appearance and disappearance of edges

as a birth and death process. We give empirical evidence that this novel jump process approach

exhibits better mixing properties than the commonly used Metropolis-Hastings algorithm.

iv

Acknowledgements

First, I would like to thank my advisor, Prof. Jem Corcoran, not only for all of her guidance

and support, but also for her enthusiasm and many stories.

Special thanks also goes out to Dr. Jim Curry for his continued interest, advice, and frequent

hallway conversations.

To the rest of my committee, Prof. Manuel Lladser, Prof. Will Kleiber, Prof. Francois

Meyer, and Dr. Doug Nychka, I thank them for their helpful input and encouragement.

My gratitude also goes out to Anne Dougherty for providing me with funding in the form of

TA and GPTI positions.

Lastly, I would like to thank my family for their never ending moral support and encourage-

ment. And to all of my friends, who I could always count on to provide the necessary distractions

that have made my time in graduate school especially enjoyable.

Contents

Chapter

1 Introduction 1

1.1 Markov Chain Monte Carlo . 2

1.1.1 Rejection Sampling . 2

1.1.2 Metropolis-Hastings Algorithm . 3

1.2 Deficiencies in Naive Implementations . 4

1.2.1 The Curse of Dimensionality . 4

1.2.2 Distribution Bottlenecks . 5

2 Particle Filtering and Smoothing 8

2.1 Importance Sampling Based Sequential Methods . 9

2.1.1 A Review of Non-Sequential Importance Sampling 10

2.1.2 Sequential Importance Sampling (SIS) . 11

2.2 Rejection Sampling Based Sequential Methods . 14

2.3 Windowed Rejection Sampling . 14

2.3.1 Rejection Sampling in Windows . 15

2.4 Examples . 16

2.4.1 One Dimensional Normals with One Hidden Layer 16

2.4.2 Stochastic Volatility Model . 23

2.4.3 A “Highly Nonlinear” Model . 24

2.4.4 Two Layer Hidden Markov Model . 27

vi

3 Particle Methods for the Kac Model 33

3.1 The Kac Master Equation . 34

3.1.1 The Kac Walk . 34

3.1.2 Time and the Poisson Process . 36

3.2 The One Dimensional Kac Equation . 38

3.3 Simulation Methods for f(v, t) . 39

3.3.1 The Nanbu and Nanbu-Babovsky Algorithms 39

3.3.2 Bird’s DSMC Algorithm . 42

3.3.3 Exact Simulation of fN (v, t) Based on Properties of the Poisson process . . . 42

3.3.4 Simulation Results . 45

3.4 An ε-Perfect Simulation of f(v,∞) . 47

3.4.1 Perfect Simulation . 50

3.4.2 ε-Perfect Simulation for the Kac Model . 52

4 Uniform Sampling of DAGs 58

4.1 Introduction . 58

4.2 Forward Markov Chain . 59

4.3 Perfect Sampling Chains . 59

4.3.1 Regenerative DAG Coupler . 60

4.3.2 DAG Coupling from the Past . 63

4.4 Results . 66

5 Bayesian Network Structure Inference 68

5.1 Bayesian Networks . 69

5.2 Sampling Methods . 70

5.2.1 Structure Metropolis-Hastings . 70

5.2.2 Jump Processes . 72

5.2.3 A Birth and Death Process on Edges of a BN 74

vii

5.3 Experimental Results . 77

6 Conclusion 81

Bibliography 83

viii

Tables

Table

4.1 Number of Directed Acyclic Graphs with 1-9 nodes 58

5.1 Errors from estimated to exact probabilities of edges in a 4 node Bayesian network

from one run of the Edge Birth and Death Algorithm for 100 observations (left) and

500 observations (right). 79

Figures

Figure

1.1 Rejection sampling using draws from the cube [−1, 1]n to generate draws from the

unit ball Bn
1 (0) as a function of the dimension, n. (Left) Proportion of accepted

draws. (Right) Average number of required draws for 1 accepted draw 5

1.2 Histogram of 1000 samples using the MH algorithm targeting a mixture of 2 Gaus-

sians, using a symmetric candidate with variance (top) δ = 0.1, (bottom) δ = 12.

The true density is given by the smooth curve. 7

2.1 Depiction of Hidden Markov Models with (left) one hidden layer and (right) two

hidden layers . 9

2.2 Means for marginal components in 100, 000 draws from π(x0:10|y1:10) in the One

Dimensional Normal model using perfect 11-dimensional rejection sampling, the SIR

algorithm, and the WRS algorithm with various window lengths. 19

2.3 Histogram of values of X7 from 100, 000 draws from π(x0:11|y1:10) in the One Dimen-

sional Normal model using (left) WRS with w = 3 and (right) SIR 20

2.4 Histogram of values of X1000 from 100, 000 draws from π(x0:1000|y1:1000) in the One

Dimensional Normal model using (left) WRS with w = 3 and (right) SIR 21

2.5 Histogram of values of X300 from 100, 000 draws from π(x0:1000|y1:1000) in the One

Dimensional Normal model using (left) WRS with w = 3 and (right) SIR 22

x

2.6 Means for marginal components in 100, 000 draws from π(x0:10|y1:10) in the Stochas-

tic Volatility model using perfect 11-dimensional rejection sampling, the SIR algo-

rithm, and the WRS algorithm with w = 5. 25

2.7 Proportion of surviving distinct marginal values using SIR for the Stochastic Volatil-

ity model . 26

2.8 100,000 draws from X5|y0:10 in the Stochastic Volatility model using (left) WRS with

w = 5 and (right) SIR . 26

2.9 Proportion of Surviving Distinct Marginal Values using SIR for the Highly Nonlinear

Model . 28

2.10 100,000 draws from X5|y1:10 in the Highly Nonlinear model using (left) WRS with

w = 4 and (right) SIR . 28

2.11 Means for marginal components in 100, 000 draws from π(x0:10|z1:10) in the 2 Layer

HMM using perfect 11-dimensional rejection sampling, the SIR algorithm, and the

WRS algorithm with w = 9. 31

2.12 Means for certain marginal components in 100, 000 draws from π(x0:1000|z1:1000) in

the 2 Layer HMM using the SIR algorithm and the WRS algorithm with w = 9. . . 32

3.1 Histograms of 100,000 values of v1 at t = 2 with N = 5 using Nanbu’s Algorithm for

∆t = 0.01 (left) and ∆t = 1.0 (right). Curve is exact solution for N = ∞ given by

(3.8). 46

3.2 Estimated TV N for Nanbu’s Algorithm as a function of k for ∆t = 2/2k 47

3.3 Estimated TV N for the Nanbu, Bird, and Poisson algorithms as a function of N . . 48

3.4 Histograms of 100,000 Values of v1 at t = 2 with N = 50 for the DSMC algorithm

(left) and the Poisson algorithm (right). 48

3.5 Histograms of 100,000 upper tail values of v1 at t = 2 with N = 1000 using Bird’s

DSMC algorithm (left) and the Poisson algorithm (right). 49

3.6 Depiction of stochastically dominating (bounding) processes in perfect simulation. . 51

xi

3.7 Visualization of sample paths of the “Perfect Kac Walk” on a sphere in the first octant. 53

3.8 Arc from Figure 3.7 mapped to shorter arc. 54

3.9 Histogram of 100, 000 draws of v1 using the ε-perfect algorithm with N = 50 and

ε = 10−6. The solid curve represents the true solution. 57

4.1 Histogram of 1,000,000 draws from the uniform distribution on the set of DAGs with

3 nodes. Graphs are ordered in order of increasing number of edges. 66

4.2 (Left) Empirical average backward coupling time in blue and theoretical regeneration

time in red as a function of the number of nodes. (Right) Ratio of empirical coupling

time to theoretical regeneration time . 67

5.1 An example realization of a Markov chain with many rejections, with the state at

each step given by circles, and a continuous time process with the same transitions

given as a red line. 71

5.2 4 Node Graph Used for Testing . 78

5.3 (Left) Paths of two (red and blue) independent Metropolis-Hastings chains of 20, 000

steps. (Right) Paths of two independent Edge Birth and Death Algorithm runs

of 1, 500 jumps. The circles represent each of the 543 possible DAGs, with size

proportional to the posterior probability of the graph. 78

5.4 (Left) AIC score of a Metropolis-Hastings run of 2× 106 steps. (Right) AIC score of

an edge birth and death process run of 105 steps. 80

Chapter 1

Introduction

In many inference problems, direct evaluations of quantities of interest are often intractable

and therefore replaced with optimizing search strategies. In high-dimensional inference problems,

such search strategies are often computationally infeasible and, in some cases, even impossible.

There has been much research on both deterministic and probabilistic algorithms as a workaround

to these computational challenges. One of the most popular classes of probabilistic algorithms is

Markov chain Monte Carlo (MCMC) algorithms. The theoretical validation of MCMC algorithms

began with the seminal paper of Metropolis et al [43], and was later generalized by Hastings [27].

Their power comes from their ability to sample from distributions that cannot be directly computed,

often as a result of either intractable normalizing constants or the use of simulated likelihoods in

place of analytic likelihoods. While many existing MCMC algorithms apply, in theory, to large

classes of models, they typically require a fair amount “tweaking” in order to make them viable for

real applications of interest.

The work in this thesis focuses on constructing more efficient and/or accurate algorithms for

sampling in three areas. The first is particle filtering and smoothing which consists of sequential

Monte Carlo methods that are often employed in order to perform inference about models that

evolve in time and produce new observations that need to be processed in real time. Particle filters

have a wide range of applications in areas such as as signal processing, robotic navigation, and

computer vision. The second area of focus for this thesis is on simulation of the Kac model, which

is a stochastic model of the dynamics for colliding particles of a homogeneous rarefied (dilute)

2

gas. As a simplified version of the famed Boltzmann equation, the Kac model is often used in

order to verify or discard conjectures related to the statistical behavior of thermodynamic systems.

The third area we focus on in this thesis is that of Bayesian network structure inference.

Bayesian networks are graphical representations of high-dimensional probability distributions. The

NP-hard problem of inferring the structure of such a representation from data has received much

attention in recent years and has wide reaching applications in areas as diverse as genetic regulatory

networks, speech recognition, credit risk analysis, and the burgeoning area of “web intelligence” for

personalized browsing recommendation.

In the remainder of this Chapter, we review some basic building blocks for the algorithms to

come.

1.1 Markov Chain Monte Carlo

1.1.1 Rejection Sampling

One of the simplest Monte Carlo methods that can be employed is rejection sampling (also

known as the “accept/reject” algorithm). Suppose that one wants to generate a realization of a

random variable X from a probability distribution with density π(x), where π(x) may be expressed

as

π(x) =
h(x)

Z

for some, possibly unknown, normalizing constant Z. Suppose further that it is known how to

generate a realization of a random variable Y from a probability distribution with density g(y)

such that

h(y) ≤Mg(y)

with M a known constant. The rejection sampling algorithm proceeds as follows.

(1) Draw Y ∼ g(·).

(2) Draw U ∼ unif(0, 1).

3

(3) Check whether or not U ≤ h(Y)
Mg(Y) .

• If it is true, accept X = Y as a draw from π(·).

• Otherwise, reject Y and return to step (1).

This algorithm is known to eventually accept a draw and does so with unconditional probability

1
M . Clearly, the optimal choice would be to let g ≡ π, but the goal is to draw from π(x) when

direct sampling is not possible. Thus, it is very important that the distribution g(x) is chosen as

close to π(x) as possible to minimize M , while still being able to draw from g(x).

While this algorithm is simple to employ, it can often be challenging to choose a density g(·)

that results in an efficient algorithm, especially for a high-dimensional “target density” π.

1.1.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is one of the most popular MCMC methods. Similar to

rejection sampling, the goal is to draw/simulate a value (realization) of X where

X ∼ π(x) ∝ h(x).

Again, the normalization constant may be unknown. The Metropolis-Hastings algorithm is de-

signed to construct a Markov chain, {Xn}∞n=0, whose stationary distribution is π(x). This chain is

constructed by drawing “candidate” values X ′ from a density q(x|Xn−1). These candidate draws

are then either accepted, in which case Xn = X ′, or rejected, in which case Xn = Xn−1. The

probability of acceptance of a point x′, given that the chain is currently at point x, is given by

α(x, x′) = min

(
1,
h(x′)q(x|x′)
h(x)q(x′|x)

)
.

This choice of acceptance guarantees that the chain satisfies detailed balance with respect to the

target density π, which allows for the chain to have stationary distribution π. Formally, the

Metropolis-Hastings algorithm is as follows.

(1) Let n = 0. Start with any initial state X0.

4

(2) Generate a candidate next state X ′ ∼ q(x|Xn), and, independently, a uniform draw U ∼

unif(0, 1).

(3) Check whether or not U ≤ α(X,X ′).

• If it is true, set Xn+1 = X ′.

• Otherwise, set Xn+1 = Xn.

(4) Set n = n+ 1 and return to step (2).

In order to actually generate draws from π, this algorithm, in theory, needs to be run for

an infinite amount of time. Typically, however, it is run for “a long time” in the hope that the

generated chain of values has settled down to near equilibrium. Initial values are discarded up to a

“burn-in time”. The choice of such a time has been extensively studied, and we refer the reader to

[14] for a review of some convergence diagnostics. Another issue is that the values of Xn are usually

highly correlated with each other. This issue is minimalized by only selecting every m values from

the chain {Xn}n≥b, for some smart choice of m.

1.2 Deficiencies in Naive Implementations

1.2.1 The Curse of Dimensionality

While it is theoretically possible to construct an efficient candidate density for use with rejec-

tion sampling or Metropolis-Hastings schemes, implementations that do not exploit the structure

of the target distribution become extremely inefficient as the dimension of the state space grows.

To illustrate this, consider the case of using rejection sampling to create uniform draws from

the n-dimensional unit ball Bn
1 (0). To do so, we will draw a point, x, uniformly from the cube

[−1, 1]n. If x lies within Bn
1 (0), we accept it, if it lies outside the ball, we reject it and draw a new

point. The probability of accepting the point x is then the ratio of the volume of the ball to the

5

volume of the cube

P(acceptance) =
V (Bn(1))

V ([−1, 1]n)

=
πn/2

Γ
(
n
2 + 1

)
2n

This scales poorly as the dimension, n, increases, as shown in Figure 1.1.

Dimension

0.0 2.5 5.0 7.5 10.0

0.0

0.5

1.0

p

Dimension

0.0 2.5 5.0 7.5 10.0

0

100

200

300

400

500

E
[#

d
ra
w
s]

Figure 1.1: Rejection sampling using draws from the cube [−1, 1]n to generate draws from the unit
ball Bn

1 (0) as a function of the dimension, n. (Left) Proportion of accepted draws. (Right) Average
number of required draws for 1 accepted draw

1.2.2 Distribution Bottlenecks

Another issue that arises in many MCMC schemes, including Metropolis-Hastings, is when

there are “bottlenecks” in the target density. This is common in multi-modal densities where the

density takes on small values in between the different modes. To illustrate how this affects mixing

of the Markov chain, consider using Metropolis-Hastings to target the density

π(x) ∝ e−
1
2

(x+2)2 + e−
1
2

(x−2)2

6

using candidate densities of the form

q(x′|x) ∼ N (x′;x, δ)

for different values of δ, where N (x;µ, σ2) denotes a Gaussian density in x with mean µ and

variance σ2. The first 1000 steps are discarded as a “burn-in”, and then every sample is retained.

(This is not ideal as previously discussed.) When too small of a δ value is chosen, the chain mixes

well in the individual modes, but has a tendency to get stuck in one of the modes. When too

large of a δ value is chosen, the chain jumps frequently between the modes, but does not mix well

within the individual modes. For example, when δ = 0.1 is chosen, the chain has a tendency to

unpropotionately stay in one of the modes, as shown in Figure 1.2(top). On the other hand, when

δ = 12, the chain visits the two modes with approximately the same frequency, but the inter-mode

sampling is subpar, as shown in Figure 1.2(bottom).

7

x

-5 0 5

0.0

0.1

0.2

0.3

0.4

0.5

y

x

-5 0 5

0.0

0.1

0.2

0.3

y

Figure 1.2: Histogram of 1000 samples using the MH algorithm targeting a mixture of 2 Gaussians,
using a symmetric candidate with variance (top) δ = 0.1, (bottom) δ = 12. The true density is
given by the smooth curve.

Chapter 2

Particle Filtering and Smoothing

Particle filters and smoothers are sequential Monte Carlo methods that are often employed

to sample from and provide estimates of the distribution of a set or subset of latent variables in

a hidden Markov model given observations. They are constructed specifically to provide updated

sampling and estimation when additional observations become available without reprocessing all

observations.

Consider the hidden Markov model with underlying and unobserved states {Xn}∞n=0, tran-

sition density π(xn|xn−1), and an initial distribution with density π(x0). (In this chapter we will

assume a continuous state space, though the sampling techniques described will apply in the dis-

crete case as well.) Suppose that {Yn}∞n=1 represents a sequence of observable variables that are

conditionally independent when the unobserved states are given and where each Yn is related to

the unobserved process through Xn and a “measurement model” density π(yn|xn). Such a model

is depicted in Figure 2.1(left).

Our goal is to sample from the density π(x0:n|y1:n), where ui:j denotes the vector

(ui, ui+1, . . . , uj) for j ≥ i, sequentially in the sense that samples from π(x0:n−1|y1:n−1) will be

used along with a new observation yn to produce the desired points. The sampled points can

then be used to approximate, for example, expectations of the form E[f(X0:n)|y1:n] and marginal

distributions π(xi|y1:n) for i = 0, 1, . . . , n. The estimation of π(xn|y1:n) is known as the filtering

problem and that of π(xi|y1:n) for 0 ≤ i < n is known as the smoothing problem.

9

Figure 2.1: Depiction of Hidden Markov Models with (left) one hidden layer and (right) two hidden
layers

2.1 Importance Sampling Based Sequential Methods

We now briefly describe existing importance sampling and resampling approaches to the

problem of estimating and/or sampling sequentially from a target density

π(x1:n) = h(x1:n)/Zn, (2.1)

where Zn =
∫
h(x1:n) dx1:n. A much more complete review is given by Doucet and Johansen [19].

Without loss of generality, x1:n can be replaced by x0:n and the target density can be a conditional

density.

To establish notation, note that, if X
(1)
1:n, X

(2)
1:n, . . . , X

(N)
1:n represent N points (“particles”)

sampled from π(x1:n), sequentially or otherwise, a simple unbiased estimator of the target density

is given by the empirical density that puts weight 1/N on each of the points. We may write this

succinctly as

π̂(x1:n) =
1

N

N∑
i=1

1l[X
(i)
1:n = x1:n] (2.2)

where 1l[X
(i)
1:n = x1:n] is the indicator function that takes on the value 1 when x1:n = X

(i)
1:n, and zero

otherwise.

We can then estimate, for example, E[f(X1:n)], for a given function f by

Ê[f(X1:n)] =
1

N

N∑
i=1

f(X
(i)
1:n). (2.3)

It is easy to verify that (2.2) and (2.3) are unbiased for π(x1:n) and E[f(X1:n)], respectively.

10

2.1.1 A Review of Non-Sequential Importance Sampling

When one cannot sample directly from π(x1:n) ∝ h(x1:n), importance sampling can be used

to instead sample points from a more tractable density, and these points can be used to estimate

the target density. Suppose that q(x1:n) is another density, presumably tractable, with the same

support as π(x1:n).

We can write

π(x1:n) =
h(x1:n)

Zn
=
w(x1:n)q(x1:n)

Zn
(2.4)

where

w(x1:n) :=
h(x1:n)

q(x1:n)
. (2.5)

Then we proceed to estimate π(x1:n) and Zn as follows.

• Sample X
(1)
1:n, X

(2)
1:n, . . . , X

(N)
1:n

iid∼ q(x1:n).1

• Estimate q(x1:n) with

q̂(x1:n) =
1

N

N∑
i=1

1l[X
(i)
1:n = x1:n] (2.6)

• Estimate Zn =
∫
w(x1:n)q(x1:n) dx1:n = E[w(X1:n)], when X1:n ∼ q(x1:n), with

Ẑn =
1

N

N∑
i=1

w(X
(i)
1:n). (2.7)

• Estimate π(x1:n) with

π̂(x1:n) = w(x1:n) ̂q(x1:n)

Ẑn
=

1
N

∑N
i=1 w(X

(i)
1:n)1l[X

(i)
1:n=x1:n]

Ẑn

=
∑N

i=1W
(i)
n 1l[X

(i)
1:n = x1:n]

(2.8)

where

W (i)
n =

w(X
(i)
1:n)∑N

j=1w(X
(j)
1:n)

.

It is routine to show that (2.8) is an unbiased estimator of π(x1:n) and that the optimal

importance sampling density q(x1:n), in terms of minimizing variance, is q(x1:n) ≡ π(x1:n).

1 “iid” denotes “independent and identically distributed” values.

11

2.1.2 Sequential Importance Sampling (SIS)

Sequential importance sampling (SIS) is importance sampling for π(x1:n) in such a way where

draws from π(x1:n−1) are “extended” to n-dimensional points that are then reweighted to produce

draws from π(x1:n). To this end, the importance sampling density is chosen to have the form

q(x1:n) = q(x1)

n∏
i=2

q(xi|xi−1)

so that it may be sampled from recursively.

The associated importance sample weights may then also be computed recursively since, for

n ≥ 2,

w(x1:n) =
h(x1:n)

q(x1:n)
=

h(x1:n)

q(x1:n−1)q(xn|xn−1)

=
h(x1:n−1)

q(x1:n−1)
· h(x1:n)

h(x1:n−1)q(xn|xn−1)

=: w(x1:n−1) · α(x1:n) (2.9)

where α(x1:n) is an incremental weight function that is defined as

α(x1:n) :=
h(x1:n)

h(x1:n−1)q(xn|xn−1)
.

SIS Algorithm

At the first time step (n = 1),

• Sample X
(1)
1 , X

(2)
1 , . . . , X

(N)
1

iid∼ q(x1).

• Compute weights w(X
(i)
1) for i = 1, 2, . . . , N using (2.5).

At times n ≥ 2,

12

• Sample X
(1)
n , X

(2)
n , . . . , X

(N)
n independently with X

(i)
n ∼ q(xn|X(i)

n−1).

• Compute weights w(X
(i)
1:n) = w(X

(i)
1:n−1) · α(X

(i)
1:n) for i = 1, 2, . . . , N .

At any time n, one can estimate π(x1:n) and Zn using (2.8) and (2.7). One can also obtain

approximate dependent draws from π(x1:n) by sampling from (2.8). That is, by sampling from the

set of values {X(1)
1:n, X

(2)
1:n, . . . , X

(N)
1:n } using respective weights {W (1)

n ,W
(2)
n , . . . ,W

(N)
n }.

In practice, iteration of the SIS algorithm leads to a “degeneracy of weights” problem (see,

for example, [2], [17], [18], and [28]) where the weights of all but one particle will approach zero,

causing the method to break down and give meaningless results.

One way to avoid the issue of degenerate weights is to implement a resampling scheme at

each time step.

SIS Algorithm With Resampling (SIR)

At the first time step (n = 1),

• Sample X
(1)
1 , X

(2)
1 , . . . , X

(N)
1

iid∼ q(x1).

• Compute weights w(X
(i)
1) for i = 1, 2, . . . , N .

• Compute the normalized weights

W
(i)
1 =

w(X
(i)
1)∑N

j=1w(X
(j)
1)

for i = 1, 2, . . . , N .

• Sample N points, X̃
(1)
1 , X̃

(2)
1 , . . . , X̃

(N)
1 , with replacement, from the set

{X(1)
1 , X

(2)
1 , . . . , X

(N)
1 } with respective probabilities {W (1)

1 ,W
(2)
1 , . . . ,W

(N)
1 }. That

is, sample X̃
(1)
1 , X̃

(2)
1 , . . . , X̃

(N)
1 from

π̂(x1) =

N∑
i=1

W
(i)
1 1l[X

(i)
1 = x1].

13

Note that X̃
(1)
1 , X̃

(2)
1 , . . . , X̃

(N)
1 are now equally weighted particles, each with weight 1/N .

Assign weights w(X̃
(i)
1) = 1/N for i = 1, 2, . . . , N .

At times n ≥ 2,

• Sample X
(1)
n , X

(2)
n , . . . , X

(N)
n independently with X

(i)
n ∼ q(xn|X̃(i)

n−1).

• Extend each particle X̃
(i)
1:n−1 to particles (X̃

(i)
1:n−1, X

(i)
n).

• Compute associated weights w(X̃
(i)
1:n−1, X

(i)
n) := α(X̃

(i)
1:n−1, X

(i)
n) for i = 1, 2, . . . , N .

(This is consistent with SIS since the previous weights in (2.9) have been replaced by the

constant 1/N and the current weights have yet to be normalized.)

• Compute the normalized weights

W (i)
n =

w(X̃
(i)
1:n−1, X

(i)
n)∑N

j=1w(X̃
(j)
1:n−1, X

(j)
n)

for i = 1, 2, . . . , N .

• Sample N n-dimensional points, X̃
(1)
1:n, X̃

(2)
1:n, . . . , X̃

(N)
1:n , with replacement, from

the set {(X̃(1)
1:n−1, X

(i)
n), (X̃

(2)
1:n−1, X

(2)
n), . . . , (X̃

(N)
1:n−1, X

(N)
n)} with respective probabilities

{W (1)
n ,W

(2)
n , . . . ,W

(N)
n }. That is, sample X̃

(1)
1:n, X̃

(2)
1:n, . . . , X̃

(N)
1:n from

π̂(x1:n) =
N∑
i=1

W (i)
n 1l[(X̃

(i)
1:n−1, X

(i)
n) = x1:n]. (2.10)

Note that X̃
(1)
1:n, X̃

(2)
1:n, . . . , X̃

(N)
1:n are now equally weighted particles, each with weight 1/N .

Assign weights w(X̃
(i)
1:n) = 1/N for i = 1, 2, . . . , N .

As with SIS, we may, at any time n, estimate π(x1:n) using (2.10) or by using

π̂(x1:n) =
1

N

N∑
i=1

1l[X̃
(i)
1:n = x1:n]. (2.11)

14

We may obtain approximate dependent draws from π(x1:n) by sampling from (2.11). That is, by

sampling uniformly, with replacement, from the set of values {X̃(1)
1:n, X̃

(2)
1:n, . . . , X̃

(N)
1:n }.

An obvious issue with the SIR algorithm, known as the sample impoverishment problem,

is a decreasing diversity of particles as those with higher weights will likely be drawn multiple

times. Additionally, the resampling step may make the algorithm prohibitively slow and can lead

to increased variance of estimates. One way to address the speed and variance is to only resample

in the case of a small (user chosen threshold for) effective sample size

Neff :=

[
N∑
i=1

(W (i)
n)2

]−1

. (2.12)

A small effective sample size indicates higher variability of the weights which, in turn, indicates

impending degeneracy. In this case, resampling would be especially prudent.

It is important to note that, when resampling, one should be originally sampling a very large

number of points in order to minimize the effects of resampling repeated values from a discrete

distribution. Additional details about SIS and SIR procedures can be found in Doucet et al.

[17, 18] and in Andrieu and Doucet [1].

2.2 Rejection Sampling Based Sequential Methods

2.3 Windowed Rejection Sampling

In order to draw from a possibly unnormalized density π(x) ∝ h(x) using rejection sampling,

one must find a density q(x) and a constant M such that

h(x) ≤Mq(x).

Then, one proceeds as in Algorithm 1.

Algorithm 1 Rejection Sampling from π(x):

1. Generate X ∼ q.
2. Generate U ∼ Uniform(0, 1).

3. If U > h(X)
Mq(X) , return to 1. Otherwise, X is a draw from π.

15

Since π(x) may be a high-dimensional and conditional density, we could, in theory, use

rejection sampling to draw exactly from

π(x0:n|y1:n) ∝ h(x0:n|y1:n) := π(x0)
∏n
i=1 π(yi|xi)π(xi|xi−1)

=

[
n∏
i=1

π(yi|x∗i)

]
︸ ︷︷ ︸

M

·π(x0)

n∏
i=1

π(xi|xi−1)︸ ︷︷ ︸
q(x0:n)

where

x∗i = arg max
xi

π(yi|xi).

For most applications of particle filtering in the literature, x∗i , or at least an upper bound on

π(yi|xi), with respect to xi, is easily attainable. However, for even small values of n, the acceptance

probability,
∏n
i=1 π(yi|xi)/π(yi|x∗i), can be prohibitively small and of course we are losing the benefit

of sequential sampling. Thus, we propose rejection sampling “in windows”.

2.3.1 Rejection Sampling in Windows

“Windowed Rejection Sampling” (WRS) is based on the idea that, depending on the covari-

ance structure of the chain, at some point future observed y’s will eventually cease to significantly

affect earlier x’s. For example, if π(x0|y1, y2, y3, y4) ≈ π(x0|y1, y2, y3), we can write

π(x0, x1, x2, x3, x4|y1, y2, y3, y4) = π(x1, x2, x3, x4|x0, y1, y2, y3, y4) · π(x0|y1, y2, y3, y4)

≈ π(x1, x2, x3, x4|x0, y1, y2, y3, y4) · π(x0|y1, y2, y3),

and so we can sample approximately from π(x0:4|y1:4) by first sampling X0 from π(x0|y1:3) and then

sampling X1:4 from π(x1, x2, x3, x4|x0, y1, y2, y3, y4). Sampling from π(x0|y1:3) can be achieved by

sampling X0:3 from π(x0:3|y1:3) and considering only the x0 values. In this example, we say that

we are using rejection sampling in a “window of length 4”.

More formally, the WRS algorithm is described in Algorithm 2 for a given window length w.

We discuss the choice of this tuning parameter in Sections 4 and 5.

16

Algorithm 2 Windowed Rejection Sampling from π(x0:n|y1:n):

Find x∗i = arg maxxi π(yi|xi), and set a window length parameter w.

1. Generate X0:w−1 ∼ π(x0:w−1|y1:w−1) using rejection sampling with

q(x0:w−1) = π(x0)
w−1∏
i=1

π(xi|xi−1)

and M =
∏w
i=1 π(yi|x∗i−1). Set m = 1.

2. Generate Xm:m+w−1 ∼ π(xm:m+w−1|xm−1, y1:m+w−1) = π(xm:m+w−1|xm−1, ym:m+w−1) using

rejection sampling with

q(xm:m+w−1|xm−1) =

m+w−1∏
i=m

π(xi|xi−1)

and M =
∏m+w−1
i=m π(yi|x∗i).

Note that

π(xm:m+w−1|xm−1, ym:m+w−1) ∝ h(xm:m+w−1|xm−1, ym:m+w−1)

:=
∏m+w−1
i=m π(yi|xi)π(xi|xi−1) ≤M · q(xm,n+w−1|xm−1).

Set m = m+ 1 and return to the beginning of Step 2. Continue until m+ w − 1 = n.

Note that if it is not obtainable, π(yi|x∗i) in expressions for M can be replaced by any upper bound.

2.4 Examples

2.4.1 One Dimensional Normals with One Hidden Layer

We begin, for the purpose of illustration, with a very explicit description of the algorithm

with a window length of w = 3, for the simple model

X0 ∼ N(µ0, σ
2
0), Xn+1 = aXn + σXεn+1, Yn = bXn + σY νn

where {εn}
iid∼ N(0, 1) and {νn}

iid∼ N(0, 1) are independent sequences. Assume that only the Yn

are observed.

17

Let N(x;µ, σ2) denote the N(µ, σ2) density.

We begin by using rejection sampling to produce N iid draws from π(x0:2|y1:2)

π(x0:2|y1:2) ∝ [π(y1|x1)π(y2|x2)] · [π(x2|x1)π(x1|x0)π(x0)]

using q(x0:2) = π(x2|x1)π(x1|x0)π(x0) = N(x2; ax1, σ
2
X) ·N(x1; ax0, σ

2
X) ·N(x0;µ0, σ

2
0).

It is easy to see that

x∗i = arg max
xi

π(yi|xi) = arg max
xi

N(yi; bxi, σ
2
Y) = yi/b for i = 1, 2,

We repeatedly draw independent realizations x0:2 of X0:2 ∼ q(x0:2) and u of U ∼ Uniform(0, 1)

until the first time that

u ≤ π(y1|x1)π(y2|x2)

π(y1|x∗1)π(y2|x∗2)
.

Repeating this procedure N times, we collect only the values of x0 and record them as

X
(1)
0 , X

(2)
0 , . . . , X

(N)
0 .

Now, moving our window of length w = 3 to the right by 1, we use rejection sampling to

produce N iid draws from π(x1:3|x0, y1:3)

π(x1:3|x0, y1:3) ∝ [π(y1|x1)π(y2|x2)π(y3|x3)] · [π(x3|x2)π(x2|x1)π(x1|x0)]

using

q(x1:3|x0) = π(x3|x2)π(x2|x1)π(x1|x0) = N(x3; ax2, σ
2
X) ·N(x2; ax1, σ

2
X) ·N(x1; ax0, σ

2
X).

That is, for each i = 1, 2, . . . , N , we repeatedly draw independent realizations x1:3 of

X1:3 ∼ q(x1:3|X(i)
0) and u of U ∼ Uniform(0, 1) until the first time that

u ≤ π(y1|x1)π(y2|x2)π(y3|x3)

π(y1|x∗1)π(y2|x∗2)π(y3|x∗3)
,

collecting the resulting value of x1 and recording it as X
(i)
1 .

Move the window of length w = 3 to the right by 1 to produce N draws from π(x2:4|x1, y1:4) =

π(x2:4|x1, y2:4), and retain the resulting values for X
(i)
2 for i = 1, 2, . . . , N .

18

Continuing in this manner, we generated N = 100, 000 independent values for X0:11 for this

model using parameters µ0 = 3.0, σ0 = 2.0, a = 0.9, b = 1.2, σX = 3.0, and σY = 2.3. (We looked

first at such a large N in order to really see the resulting distribution without being concerned

about sampling variability.) For comparison, we produced N independent draws directly from the

11-dimensional distribution π(x0:10|y1:10) using 11-dimensional (non-windowed) rejection sampling.

(As expected, the acceptance probabilities are quite small in this case and such direct simulation

from the target density is not reasonably achieved for much larger n.) Finally, we produced N

dependent draws approximately from π(x0:10|y1:10) using the SIR algorithm. Figure 2.2 shows the

average marginal values for X0 through X10 for each algorithm. Only the WRS results change

between graphs, showing the anticipated increasing accuracy of the WRS algorithm as the window

length increases. For the given model and parameters, a window length of w = 3 appears to be

sufficient. Indeed, as the perfect high-dimensional rejection sampling algorithm is a special case of

the WRS algorithm for fixed n and maximal window length, it is easy to code the WRS algorithm

once and run it first to get perfect draws from π(x0:n|y1:n) for the highest feasible n and then to

run it with lower w, gradually increasing w until sample statistics such as those shown in Figure

2.2 reach the desired accuracy.

For this example, the WRS algorithm produced 100, 000 iid draws from an approximation to

π(x0:11|y1:10) whereas the SIR algorithm (resampling every time) produced dependent draws with

only roughly 50% unique 11-dimensional values and only about 10% unique values forX0 marginally.

Figure 2.3 shows marginal distributions for X7 produced by the WRS and SIR algorithms. The

overlaid curves are the target normal densities that can be computed analytically for this simple

illustrative model. The time to run the WRS and SIR algorithms were comparable. Coded in

C++, the WRS algorithm completed in less than 2 seconds on a standard2 laptop while the SIR

algorithm completed in 8-10 seconds. The SIR algorithm would obviously speed up if resampling

was not done at every step and would likely be the faster algorithm if both were programmed in R

where resampling is efficient and accept/reject looping is inefficient.

2 We wish to convey relative speed between algorithms in lieu of particular machine specifications.

19

m
e

a
n

 o
f

1
0

0
,0

0
0

 d
ra

w
s

−
4

−
2

0
2

4

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

perfect

SIR

WRS (w=1)

m
e

a
n

 o
f

1
0

0
,0

0
0

 d
ra

w
s

−
4

−
2

0
2

4

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

perfect

SIR

WRS (w=2)

m
e

a
n

 o
f

1
0

0
,0

0
0

 d
ra

w
s

−
4

−
2

0
2

4

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

perfect

SIR

WRS (w=3)

Figure 2.2: Means for marginal components in 100, 000 draws from π(x0:10|y1:10) in the One Di-
mensional Normal model using perfect 11-dimensional rejection sampling, the SIR algorithm, and
the WRS algorithm with various window lengths.

20

x7 (WRS)

D
e
n
s
it
y

−8 −6 −4 −2 0 2 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

x7 (SIR)

D
e
n
s
it
y

−8 −6 −4 −2 0 2 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

Figure 2.3: Histogram of values of X7 from 100, 000 draws from π(x0:11|y1:10) in the One Dimen-
sional Normal model using (left) WRS with w = 3 and (right) SIR

21

When comparing the algorithms for larger n, it becomes crucial for efficiency to not resample

at every time step of the SIR algorithm. As per the discussion at the end of Section 2.1, we

resample only when the effective sample size Neff , given by (2.12) falls below the a threshold

Nthres. Following a suggestion in [18], we choose Nthres = N/3. Due to the Markov nature

of the model, we are able to continue forward with the window length w = 3 for increasing n.

When n = 1, 000, the estimated filtering distribution π(x1000|y1:1000) is shown in Figure 2.4 for

both algorithms. The SIR algorithm resulted in approximately 52% distinct values. An estimated

smoothing distribution, namely an estimate of π(x300|y1:1000) is shown in Figure 2.5. It is well

known (see [19]) that the SIR algorithm will produce severely impoverished samples for π(xi|y1:n)

and i small relative to n, and in this example we are left with only 0.07% distinct values. Suggested

approaches to mitigate degeneracy in SIR are discussed in [19], but the WRS algorithm performs

well without modification.

x1000 (WRS)

D
e
n
s
it
y

−10 −8 −6 −4 −2 0 2 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

x1000 (SIR)

D
e
n
s
it
y

−10 −8 −6 −4 −2 0 2 4

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

Figure 2.4: Histogram of values of X1000 from 100, 000 draws from π(x0:1000|y1:1000) in the One
Dimensional Normal model using (left) WRS with w = 3 and (right) SIR

22

x300 (WRS)

D
e
n
s
it
y

−6 −4 −2 0 2 4 6

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

x300 (SIR)

D
e
n
s
it
y

−4 −2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2.5: Histogram of values of X300 from 100, 000 draws from π(x0:1000|y1:1000) in the One
Dimensional Normal model using (left) WRS with w = 3 and (right) SIR

23

2.4.2 Stochastic Volatility Model

We now consider the stochastic volatility model, often used in finance and also considered

in [19], where

X0 ∼ N(0, σ2/(1− α2)), Xn+1 = αXn + σεn+1, Yn = βeXn/2νn

where {εn}
iid∼ N(0, 1) and {νn}

iid∼ N(0, 1) are independent sequences. Again we assume that only

the Yn are observed.

Following the same procedure in Section 2.4.1, using a general window length w, we need to

define q(x0:w−1), x∗i and q(xj:(j+w−1)|xj−1). It is easy to show that

x∗i = arg max
xi

π(yi|xi) = arg max
xi

N(yi; 0, β2exi) = ln(y2
i /β

2) for i = 1, 2,

Taking

q(x0) = π(x0) = N(x0; 0, σ2/(1− α2)) and q(xi|xi−1) = π(xi|xi−1
) = N(xi;αxi−1, σ

2),

we have

q(x0:w−1) = q(x0)
w−1∏
i=1

q(xi|xi−1) (2.13)

and

q(xj:(j+w−1)|xj−1) =

j+w−1∏
i=j

q(xi|xi−1). (2.14)

We ran Step 1 of the WRS algorithm (Algorithm 2) with w = 11 in order to get N = 100, 000

perfect draws via rejection sampling from π(x0:10|y1:10). (n = 10 was chosen as the maximal value

after which rejection sampling from π(x0:n|y1:n) became prohibitively slow.) We then ran the

complete WRS algorithm with n = 10 and increasing w, starting from w = 1, until the marginal

sample means from WRS for Xi|y1:10 produced rough (non-simultaneous) two standard deviation

confidence intervals which contained the perfect draw estimates of the means. That is, if µ̂i denotes

the sample mean of the 100, 000 values of Xi resulting from rejection sampling from π(x0:10|y1:10)

and Xi and S2
i denote the sample means and variances of the marginal distributions produced

by WRS, w was increased until µ̂i ∈ Xi ± 2Si/
√
N for all i ∈ {0, 1, . . . , 10}. This resulted in a

24

window length of 5. Figure 2.6 shows the sample means for the marginal draws with WRS and

w = 5 aligning with those from both perfect and SIR draws. Figure 2.7 shows the proportion

of surviving distinct values for each marginal distribution using SIR, which is in contrast to the

WRS algorithm giving 100% distinct values for all marginals. Figure 2.8 shows histograms of the

marginal distribution of X5|y1:10 obtained from the draws from π(x0:10|y1:10) using 11-dimensional

rejection sampling, the SIR algorithm, and the WRS algorithm with w = 5. The overlaid curve in

each case is the density estimated by 100,000 perfect draws of X5 marginalized from 11-dimensional

rejection sampling. The SIR algorithm results stand out as the roughest estimate, though, again,

it is well known [19] that this “straight” application of the SIR algorithm does not produce good

smoothing estimates and that additional steps should be taken to improve it. The WRS algorithm,

on the other hand gives a nice estimate of the smoothing distribution straight away with a speed

that is comparable to the initial pass of the SIR algorithm. (By “comparable” we mean that, for

the examples in this chapter as well as others we tried, the WRS algorithm was either faster than

the SIR algorithm or slower but still finishing only a few seconds behind. In the worst case, the

WRS algorithm was about one minute behind the SIR algorithm. No particular effort was made

to fully optimize either code.)

2.4.3 A “Highly Nonlinear” Model

In this section, we apply the WRS algorithm the “highly nonlinear” model considered in

several papers including [3], [11], [18], and [25].

X0 ∼ N(µ, σ2)

Xn+1 = 0.5Xn + 25Xn
1+X2

n
+ 8 cos(1.2n) + εn+1

Yn = 0.05X2
n + νn

for independent εn
iid∼ N(0, σ2

X) and νn
iid∼ N(0, σ2

Y). The parameters were chosen as µ = 0, σ2 = 5,

and σ2
X = σ2

Y = 10.

25

m
ea

n
of

 1
00

,0
00

 d
ra

w
s

−5
−4

−3
−2

−1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

perfect

SIR

WRS (w=5)

Figure 2.6: Means for marginal components in 100, 000 draws from π(x0:10|y1:10) in the Stochastic
Volatility model using perfect 11-dimensional rejection sampling, the SIR algorithm, and the WRS
algorithm with w = 5.

26

pr
op

or
tio

n
di

st
in

ct

0.
1

0.
2

0.
3

0.
4

0.
5

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 2.7: Proportion of surviving distinct marginal values using SIR for the Stochastic Volatility
model

x5 (WRS)

D
e
n
s
it
y

−8 −6 −4 −2 0 2

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

x5 (SIR)

D
e
n
s
it
y

−8 −6 −4 −2 0 2

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 2.8: 100,000 draws from X5|y0:10 in the Stochastic Volatility model using (left) WRS with
w = 5 and (right) SIR

27

Taking

q(x0) = π(x0) = N(x0;µ, σ2) and q(xi|xi−1) = π(xi|xi−1) = N(xi; ,m(xi−1), σ2
X),

with m(xi−1) = 0.5xi−1 + 25xi−1/(1 + x2
i−1) + 8 cos[1.2(i − 1)], we define q(x0:w−1) and

q(xj:(j+w−1)|xj−1) using (2.13) and (2.14).

It is easy to show that

x∗i = arg max
xi

π(yi|xi) =

 0 , if yi < 0

±
√
yi/0.05 , if yi ≥ 0.

An analysis of marginal means such as those depicted in Figures 2.2 and 2.6 reveal that a

window length of 4 is sufficient for this example. Figure 2.9 shows the proportion of surviving

distinct values for each marginal distribution using SIR, which, again, is in contrast to the WRS

algorithm giving 100% distinct values for all marginals. Figures 2.10 show histograms of X5|y1:10

produced by the WRS and SIR algorithms along with superimposed densities estimated by 11-

dimensional rejection sampling. As expected, the WRS results are smoother.

2.4.4 Two Layer Hidden Markov Model

In [1], the authors discuss a Rao-Blackwellized particle filtering technique, based on the SIR

algorithm, for estimating π(x0:n|z1:n) in a two-layer hidden Markov model as depicted in Figure

2.1(right). It involves using SIR to first estimate π(y1:n|z1:n) and then estimating π(x0:n|z1:n) using

the relationship

π(x0:n|z1:n) =

∫
π(x0:n|y1:n)π(y1:n|z1:n)

and draws from π̂(y1:n|z1:n). The WRS algorithm can be used here in place of the SIR algorithm.

In this example, however, we consider a particularly simple two-layer model from [1] which

can be dealt with more directly. The “dynamic tobit model” is described as follows.

X0 ∼ N
(

0,
σ2
X

1− φ2

)
Xn+1 = φXn + σXεn+1, Yn = Xn + σY νn, Zn = max(0, Yn)

28

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 2.9: Proportion of Surviving Distinct Marginal Values using SIR for the Highly Nonlinear
Model

x5 (WRS)

D
e
n
s
it
y

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x5 (SIR)

D
e
n
s
it
y

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Figure 2.10: 100,000 draws from X5|y1:10 in the Highly Nonlinear model using (left) WRS with
w = 4 and (right) SIR

29

where {εn}
iid∼ N(0, 1) and {νn}

iid∼ N(0, 1) are independent sequences. Assume that only the Zn

are observed. The parameters were chosen as σ2
X = 0.05, σ2

Y = 0.30, and φ = 0.99, as in [1].

Consider the case first when n = 1. If z1 > 0, we wish to draw from

π(x0, x1|z1) = π(x0, x1|y1) ∝ h(x0, x1|y1) = π(y1|x1)π(x1|x0)π(x0)

where y1 = z1.

To implement the SIR algorithm, we take q(x0, x1) := π(x1|x0)π(x0) and use the weight

w(x0:1) := π(y1|x1). To implement rejection sampling, we use the fact that

h(x0, x1|y1) ≤M · q(x0, x1)

where M = 1
/√

2πσ2
Y and, again, q(x0, x1) := π(x1|x0)π(x0).

If z1 = 0, we wish to draw from

π(x0, x1|z1) = π(x0, x1|y1 < 0) ∝ Pπ(y1 < 0|x1)π(x1|x0)π(x0)

where Pπ(y1 < 0|x1) =
∫ 0
−∞ π(y1|x1) dy1. We then have the unnormalized target density

h(x0, x1|z1) = Φ(−x1/σY) · π(x1|x0)π(x0) (2.15)

where Φ(·) denotes the cumulative distribution function for the standard normal distribution.

Taking q(x0, x1) := π(x1|x0)π(x0), we can implement the SIR algorithm to draw from

(2.15) using w(x0:1) = Φ(−x1/σY) and we can implement rejection sampling using the fact that

Φ(−x1/σY) ≤M := 1.

For general n, we use q(xn|xn−1) = π(xn|xn−1) for both algorithms. The incremental weight

for the SIR algorithm is

α(x1:n) =

πY |X(zn|xn) , if zn > 0

Φ(−xn/σY) , if zn = 0.

Here, πY |X(·|·) is the conditional density for Yn given Xn.

30

For the WRS algorithm with window length w, we define M in Step 1 of Algorithm 2 as

M =

w∏
i=1

{
πY |X(zi|xi)1l[zi > 0] + Φ(−xi/σY)1l[zi = 0]

}
,

and M in Step 2 as

M =

m+w−1∏
i=m

{
πY |X(zi|xi)1l[zi > 0] + Φ(−xi/σY)1l[zi = 0]

}
.

Since the underlying hidden Markov model is an AR(1) model with autocorrelation function

ρ(h) = φh, it is not surprising that, for φ = 0.99, we would need w to be large for the WRS

algorithm. As in previous examples, we produced 100, 000 independent draws directly from the

11-dimensional distribution π(x0:10|z1:10) using 11-dimensional, non-windowed, rejection sampling

and then used windowed rejection sampling with increasing values of w until we matched marginal

means. Figure 2.11 shows the matching means, as well as the matching means from the SIR

algorithm. The turning point in this graph of means corresponds to the fact that z3 was the only

data point in z1:10 that was positive. Both the WRS and SIR algorithms were quite slow for this

example (on the order of 45 minutes) but were still of comparable speeds.

In Figure 2.12 we see that the marginal means for the SIR and WRS algorithms continue to

coincide even for large n. Due to the Markov nature of the model, the window length determined

with smaller n can still be used.

31

m
ea

n
of

 1
00

,0
00

 d
ra

w
s

−1
.0

−0
.9

−0
.8

−0
.7

−0
.6

perfect

SIR

WRS (w=9)

(z>0)

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Figure 2.11: Means for marginal components in 100, 000 draws from π(x0:10|z1:10) in the 2 Layer
HMM using perfect 11-dimensional rejection sampling, the SIR algorithm, and the WRS algorithm
with w = 9.

32

m
ea

n
of

 1
00

,0
00

 d
ra

w
s

−2
−1

0
1

2

X100 X200 X300 X400 X500 X600 X700 X800 X900 X1000

SIR

WRS (w=9)

Figure 2.12: Means for certain marginal components in 100, 000 draws from π(x0:1000|z1:1000) in the
2 Layer HMM using the SIR algorithm and the WRS algorithm with w = 9.

Chapter 3

Particle Methods for the Kac Model

In [35], Kac introduced an N particle stochastic process model for a spatially homogeneous

gas that evolves according to a specific collision process. He proved that, as N →∞, the marginal

probability density function (p.d.f.) for a single particle at time t approaches the solution of

a simplified version of the famed Boltzmann equation. The N -dimensional probability density

function for all particles is described by the Kac master equation which can be derived as a

random walk with transitions occurring at times of a Poisson process. In this chapter we take

advantage of properties of the Poisson process, including process “thinning” and the conditional

uniformity of event times, to efficiently simulate values from the velocity density of any single

particle at any given time t > 0. We compare our results to those from the familiar Nanbu ([44]),

Nanbu-Babovsky ([4]), and DSMC (direct simulation Monte Carlo) ([6]) algorithms. Additionally,

we introduce an “ε-perfect sampling algorithm” that uses “coupling from the past” techniques to

simulate or sample from the velocity distribution at time t = ∞ up to a user defined accuracy ε

that can be taken so small as to be essentially “perfect” within the accuracy available by a given

machine precision.

In Section 3.1, we review the derivation of the N particle Kac master equation and show its

relationship to the Poisson process. In Section 3.2 we very briefly review the probability density

function of any one given particle as a marginal density of the joint probability density function

solution to the Kac master equation. In Section 3.3 we review three existing simulation methods for

the marginal density, introduce our new exact Poisson method, and make an empirical comparison

34

between all methods. In Section 3.4, we briefly review the idea of perfect simulation (perfect

sampling) and describe a novel “ε-perfect” algorithm that applies to the Kac model.

3.1 The Kac Master Equation

ConsiderN one-dimensional particles, each with massm, with velocities v1, v2, . . . , vN . Define

~v = (v1, v2, . . . , vN). The total kinetic energy of the ensemble of particles is

E =
m

2

N∑
i=1

v2
i .

For simplicity, we assume that m = 2. Thus, we have E =
∑N

i=1 v
2
i or, equivalently, |~v| =

√
E.

If we assume that kinetic energy is conserved as these velocities evolve through particle

collisions, points ~v with always be found on the sphere SN−1(
√
E). We now describe a particular

evolution of velocities, proposed by Kac [35] in two stages as in [8]. The first stage is to describe as

a particular discrete time random walk known as the “Kac walk” and the second stage is to modify

the random walk so that it is taking place in continuous time.

3.1.1 The Kac Walk

The Kac Walk:

(1) Randomly select a pair of indices (i, j) from {1, 2, . . . , N}. There are

 N

2

 ways to do

this, so a particular pair (i, j) is selected with probability

 N

2

−1

.

(2) Randomly select a scattering angle1 θ from a density ρ(θ) on [0, 2π). (Often θ is assumed

to be uniformly distributed on [0, 2π). For an upcoming derivation, it will be convenient

to define ρ(θ) on [−π, π) and to assume that it is symmetric about 0.)

1 θ is referred to as a scattering or collision angle as an analogue to the 2- and 3-dimensional cases where the
collisions are parameterized by the angle between pairs of particles.

35

(3) Update the velocities for particles i and j through the rotation

(vi, vj)→ (v′i, v
′
j) := (vi cos θ + vj sin θ,−vi sin θ + vj cos θ).

Return to Step 1.

It is easy to see that total kinetic energy is conserved by the Kac walk (though momentum is

not) and therefore that these three steps create a random walk on SN−1(
√
E). We will now derive

the probability density function, fk for the vector of N velocities after k “collisions” or iterations

of the Kac walk.

Let g : SN−1(
√
E)→ < be any continuous function. Define an operator QN on such functions

as the conditional expectation

QNg(~v) := E[g(~Vk+1)|~Vk = ~v]

where ~Vk is the random vector of velocities at the kth iteration of the Kac walk.

Conditioning on the selected angle and particles, this becomes

QNg(~v) = E[g(~Vk+1)|~Vk = ~v]

=

∫ π

−π

∑
i<j

E

g(~Vk+1)

∣∣∣∣∣∣∣~Vk = ~v,
particles i and j

are selected

,
angle θ is

selected

 ·

 N

2

−1

ρ(θ) dθ

=

∫ π

−π

∑
i<j

g(v1, . . . , vi−1, v
′
i, vi+1, . . . , vj−1, v

′
j , vj+1, . . . , vN) ·

 N

2

−1

ρ(θ) dθ

=

∫ π

−π

∑
i<j

g(Rij(θ)~v) ·

 N

2

−1

ρ(θ) dθ

where Rij(θ) is the N ×N rotation matrix that is the identity matrix altered to have cos θ as the

(i, i) entry, sin θ as the (i, j) entry, − sin θ as the (j, i) entry, and cos θ as the (j, j) entry.

36

Now, define random vectors ~V0 ∼ f0 and ~V1 ∼ f1. Note that

E[g(~V1)] =

∫
S
g(~v) f1(~v) d~v,

where S is shorthand for SN−1(
√
E). Also note that

E[g(~V1)] = E[E[g(~V1)|~V0]]

=
∫
S QNg(~v)f0(~v) d~v

Thus, we have that ∫
S
g(~v) f1(~v) d~v =

∫
S
QNg(~v)f0(~v) d~v. (3.1)

It is straightforward to verify that QN is a self-adjoint operator in the sense that∫
S
QNg(~v)f(~v) d~v =

∫
S
g(~v)QNf(~v) d~v (3.2)

for all continuous g and for all N dimensional densities f . Therefore, combining (3.1) and (3.2),

we have ∫
S
g(~v)f1(~v) d~v =

∫
S
g(~v)QNf0(~v) d~v. (3.3)

Since (3.3) holds for all g : SN−1(
√
E) → <, we have that f1 = QNf0. Similarly, the probability

density function for the velocities after k collisions is given by

fk = QkNf0. (3.4)

3.1.2 Time and the Poisson Process

As of now, we have a p.d.f. for the N -dimensional vector of velocities evolving at the discrete

times of a random walk. We now will allow the velocities to evolve as an N -dimensional continuous

time Markov process. The p.d.f. will now be denoted by f(~v, t).

Kac proposed in [35] that collisions happen in the N -particle ensemble at times of a Poisson

process. Specifically, it is assumed that the expected number of particles that collide in a vanishingly

small time step ∆t is λN∆t for some λ > 0. This means that the expected number of collisions

between pairs of particles is λN∆t/2 and so the assumption is that collisions happen according to a

37

Poisson process with rate λN/2. Among other things, this implies that, as ∆t↘ 0, the probability

of exactly one collision in any time interval (t, t + ∆t) is λN∆t/2 + o(∆t), the probability of no

collisions is 1−λN∆t/2+o(∆t), and the probability of two or more is o(∆t). (Here, o(∆t) represents

a vanishing function g(∆t) such that g(∆t)/∆t→ 0 as ∆t↘ 0.)

Given the velocity density f(~v, t), at time t, the density at time t+∆t as ∆t↘ 0 is, informally,

the mixture density

f(~v, t+ ∆t) = p · (previous density after having gone through a collision)

+(1− p) · (previous density)

where p is the probability of a collision in the ensemble during the time interval (t, t + ∆t) as

∆t↘ 0.

Formally, this is written as

f(~v, t+ ∆t) = (λN∆t/2 + o(∆t)) ·QNf(~v, t) + (1− λN∆t/2 + o(∆t)) · f(~v, t)

= λN∆t
2 QNf(~v, t) + f(~v, t)− λN∆t

2 f(~v, t) + o(∆t)

which implies that

f(~v, t+ ∆t)− f(~v, t)

∆t
=
λN [QN − I]

2
f(~v, t) +

o(∆t)

∆t

where I is the identity operator, and for g : SN−1(
√
E)×< → <,

QNg(~v, t) := E[g(~Vk+1, t)|~Vk = ~v].

Letting ∆t ↘ 0, β = λ/2, and specifying an initial condition, we get the Kac Master

Equation:

d
dtf(~v, t) = βN [QN − I]f(~v, t)

f(~v, 0) = f0(~v)

38

which has solution

f(~v, t) = eβN [QN−I]tf0 = e−βNt
∞∑
i=0

(βNt)i

i!
QiNf0

= EQZN
N f0,

where ZN ∼ Poisson(βN).

3.2 The One Dimensional Kac Equation

For the following derivations and the simulations in Section 3.3.4, we assume that the scat-

tering angle density, ρ(θ), is the uniform density on the interval (0, 2π). We write θ ∼ unif(0, 2π).

Consider the marginal density for particle 1,

fN (v1, t) =

∫
SN−2(

√
E−v21)

f(~v, t) d~v−1 (3.5)

where ~v−1 := (v2, v3, . . . , vN). We will make the typical assumption that E = N since the total

kinetic energy grows with respect to the number of particles in the system.

Kac [35] showed, under some assumptions2 on the initial density f(v, 0), that this single

particle marginal density converges, as N → ∞, to the solution of a one-dimensional spatially

homogeneous Boltzmann-type equation:

df

dt
(v, t) =

λ

2π

∫ ∞
−∞

∫ 2π

0
[f(v′, t)f(w′, t)− f(v, t)f(w, t)] dθ dw, (3.6)

where

v′ = v cos θ + w sin θ and w′ = −v sin θ + w cos θ.

Equation (3.6) is known as the Kac Equation or the Kac-Boltzmann Equation.

Note that (3.6) may be rewritten as

∂f

∂t
=

1

ε
[P (f, f)− f] (3.7)

2 Let φ be a one dimensional density. Informally, an n-dimensional density φn, symmetric in its arguments, is
“φ-chaotic” if, as n → ∞, any k-dimensional marginal of φn acts as a product of k copies of φ. In [35], Kac proved
that if f (N) = f(~v, t) solves the Kac Master equation, then f (N) is f -chaotic, where f solves the Kac-Boltzmann
equation. Thus, we can consider any univariate marginal of f(~v, t) as N → ∞ as a solution to (3.6). For a more
formal explanation, please see [8].

39

for ε = 1/λ, and P (f, f) defined as the bilinear collision operator

P (f, f) =
1

2π

∫ ∞
−∞

∫ 2π

0
f(v′, t)f(w′, t) dθ dw.

If the initial distribution f0(v) := f(v, 0) on (−∞,∞) is taken to be f0(v) = 2√
π
v2e−v

2
, and

if λ =
√
π/2, the solution to (3.6) is known [37] to be

f(v, t) =
1√
π

[
3

2
(1− C(t))

√
C(t) + (3C(t)− 1)(C(t))3/2v2

]
e−C(t)v2 (3.8)

where

C(t) = [3− 2 exp(−
√
πt/16)]−1.

It is easy to see that

lim
t→∞

f(v, t) =
1√
3π

e−
1
3
v2 for −∞ < v <∞. (3.9)

We will use (3.8) and (3.9) to test several Monte Carlo algorithms.

3.3 Simulation Methods for f(v, t)

In Sections 3.3.1 and 3.3.2 we review existing methods for drawing (simulating) velocity values

from the single particle marginal distribution fN (v, t) for finite t. It has been shown ([6]) that these

types of particle methods can be useful for modeling rarefied gas flows, but in 2- or 3-dimensions,

computational constraints require the number of particles to be quite small. In Section 3.3.3 we

propose a new method that takes advantage of properties of the Poisson collision process. Our

goal is to have a method which is accurate and efficient enough to better approximate f(v, t) with

manageable values of N .

3.3.1 The Nanbu and Nanbu-Babovsky Algorithms

In [44], Nanbu proposes an algorithm to draw from fN (v, t) based on the probabilistic inter-

pretation of colliding particles and on the discretization

fn+1 = (1− λ∆t) fn + λ∆tP (fn, fn) (3.10)

40

of (3.7). Here, fn = fn(v) = f(v, tn), t0 = 0, and tn = t0 + n∆t for some small increment ∆t > 0.

The interpretation of (3.10) is that, if ∆t is small enough so that 0 ≤ λ∆t ≤ 1, “particle 1” (or any

fixed given particle)

• fails to undergo a collision and does not have any velocity update with probability 1−λ∆t,

or

• experiences a collision with probability λ∆t and has a new velocity generated according to

the collision process described by P (f, f).

For the following algorithm descriptions, we assume that ∆t divides into t evenly.

Nanbu’s Algorithm

For i = 1, 2, . . . , N , let v
(n)
i denote the velocity for particle i at time step n = 0, 1, 2,

(1) Sample initial velocities, v
(0)
1 , v

(0)
2 , . . . , v

(0)
N , for all N particles independent and identically

distributed (i.i.d.) from f0(v). Set s = 0.

(2) For i = 1, 2, . . . , N ,

• With probability 1− λ∆t do nothing to the velocity of the ith particle.

Set v
(n+1)
i = v

(n)
i .

• With probability λ∆t,

∗ Randomly select a second particle from among the remaining particles in

{1, 2, . . . , N}.

∗ Draw an angle value θ ∼ ρ(θ).

∗ Set v
(n+1)
i = v

(n)
i cos θ + v

(n)
j sin θ

(3) Set s = s+ ∆t and n = n+ 1. If s < t, return to Step 2.

As kinetic energy is not conserved in Nanbu’s Algorithm, Babovsky [4] modified the algorithm

to update both vi and vj as particles i and j collide. Additionally, at each time step, the number

41

of collisions processed is taken to be equal to the expected number of collision pairs in an interval

of length ∆t. As the expected number of collisions is λN∆t, the expected number of collision pairs

is λN∆t/2. This is then probabilistically rounded using the following function.

Round[x] =

 bxc , with probability bxc+ 1− x

bxc+ 1 , with probability x− bxc

It is easy to see that, for any given x, the expected value of Round[x] is x.

Nanbu-Babovsky Algorithm

For i = 1, 2, . . . , N , let v
(n)
i denote the velocity for particle i at time step n = 0, 1, 2,

(1) Sample initial velocities, v
(0)
1 , v

(0)
2 , . . . , v

(0)
N , for all N particles i.i.d. from f0(v). Set s = 0.

(2) For i = 1, 2, . . . , N ,

• Select m = Round[λN∆t/2].

• Randomly select m pairs, (i, j) of particle indices, without replacement, from among

all possible pairs.

• For each selected pair (i, j), draw an angle value θ ∼ ρ(θ) and set

v
(n+1)
i = v

(n)
i cos θ + v

(n)
j sin θ

v
(n+1)
j = −v(n)

i sin θ + v
(n)
j cos θ.

• For the remaining unselected indices k, set v
(n+1)
k = v

(n)
k .

(3) Set s = s+ ∆t and n = n+ 1. If s < t, return to Step 2.

Both the Nanbu and the Nanbu-Babovsky algorithms can be shown to converge to the so-

lution of the discretized Kac equation given by (3.10). Nanbu’s algorithms allows each particle to

potentially undergo a collision only once per time step and the Nanbu-Babovsky scheme allows

each pair of particles to potentially undergo a collision once per time step.

42

3.3.2 Bird’s DSMC Algorithm

The Direct Simulation Monte Carlo (DSMC) approach due to Bird [6] was first proposed in

the late 60’s and has been shown ([51]) to converge to the solution of (3.7). It differs from the

Nanbu-Babovsky algorithm in that any particular collision pair may be selected multiple times in

the time interval of length ∆t. Since there are λN∆t/2 collisions expected in that interval, the

average time between collisions is taken to be ∆tc := ∆t/[λN∆t/2] = 2/(λN).

Bird’s DSMC Algorithm

(1) Sample initial velocities, v
(0)
1 , v

(0)
2 , . . . , v

(0)
N , for all N particles i.i.d. from f0(v). Set s = 0.

(2) Process one collision as follows.

• Select a pair (i, j) of particles at random from among all possible pairs.

• For each selected pair (i, j), draw an angle value θ ∼ ρ(θ) and set

v
(n+1)
i = v

(n)
i cos θ + v

(n)
j sin θ

v
(n+1)
j = −v(n)

i sin θ + v
(n)
j cos θ.

• For the remaining unselected indices k, set v
(n+1)
k = v

(n)
k .

(3) Set s = s+ ∆tc and n = n+ 1. If s < t, return to Step 2.

Bird’s DSMC techniques comprise a much wider class of extremely useful and popular al-

gorithms than the one detailed here. As it stands, the one given here is essentially the Nanbu-

Babovsky algorithm where pairs are selected with replacement.

3.3.3 Exact Simulation of fN (v, t) Based on Properties of the Poisson process

In this section, we simulate exactly from fN (v, t) using the actual Poisson numbers of collisions

between important time points as opposed to the expected numbers of collisions. We do not

partition the interval (0, t), as in the previously described algorithms but instead focus on collision

times for the fixed “particle 1”.

43

Recall that the N -particle ensemble is assumed to undergo collisions at times of a Poisson

process with rate λN . As each collision involves 2 particles, this means that pairs of particles are

colliding according to a Poisson process with rate λN/2. The probability that particle 1 is involved

in any one of these collisions is (N −1)/
(
N
2

)
= 2/N . So, the particle 1 collision process is a thinned

Poisson process with rate (λN/2) · 2/N = λ. Therefore, we begin by simulating a Poisson rate λt

number of collisions for particle 1 in the time interval (0, t).

Though intercollision times for particle 1 are exponential with rate λt, once the number

of collisions during (0, t) is fixed, the times of those collisions are uniformly distributed over the

interval (0, t). So, rather than divide up the interval (0, t) into ∆t increments, we consider only

the times when particle 1 is involved in a collision by first simulating K ∼ Poisson(λt), then

simulating independent U1, U2, . . . , UK from the uniform distribution over (0, t) and finally con-

sidering the ordered time points T1, T2, . . . , TK corresponding to the ordered Ui. (For example,

T1 = min(U1, U2, . . . , UK) and TK = max(U1, U2, . . . , UK).)

To update the velocity for particle 1 at time T1, we must choose, at random, a particle from

the remaining N − 1 particles for collision. As this “sub-ensemble” of particles has been evolving

over the time interval (0, T1), we will process K1 ∼ Poisson(λ(N−1)T1/2) collisions involving only

these particles without any regard for the times of these collisions and then select one at random

for collision with particle 1. Continuing in this manner, we get the following algorithm.

Exact Poisson Algorithm

(1) Sample initial velocities, v
(0)
1 , v

(0)
2 , . . . , v

(0)
N , for all N particles i.i.d. from f0(v).

(2) Simulate K ∼ Poisson(λt). This is the number of collisions involving particle 1 during

[0, t]. Suppose that K = k.

(3) Simulate U1, U2, . . . , Uk
iid∼ unif(0, t) collision times for particle 1.

Denote the ordered U1, U2, . . . , Uk as T1, T2, . . . , Tk where T1 = min(U1, U2, . . . , Uk) and

Tk = max(U1, U2, . . . , Uk).

44

(4) Let T0 = 0.

For i = 1, 2, . . . , k,

• Simulate Ki ∼ Poisson(λ(N − 1)(Ti − Ti−1)/2). This is the number of “non particle

1” collisions happening during the time interval [Ti−1, Ti]. Suppose that Ki = ki.

• Process ki collisions for the (N − 1) particle ensemble as follows.

For j = 1, 2, . . . , ki

∗ Select a pair (r, s) of particles at random from among all possible pairs of particles

with labels in {2, 3, . . . , N}.

∗ For each selected pair (r, s), draw an angle value θ ∼ ρ(θ) and set new velocities

as

vr = vr cos θ + vs sin θ

vs = −vr sin θ + vs cos θ

where vr and vs on the right-hand side of these equations are the pre-collision

velocities for particles r and s.

• Randomly select one particle from {2, 3, . . . , N} and process a collision with particle

1 by assigning new velocities

vr = vr cos θ + vs sin θ

vs = −vr sin θ + vs cos θ

where r is the selected index in {2, 3, . . . , N} and v1 and vr on the right-hand side of

these equations are the pre-collision velocities for particles 1 and r.

Note that, unlike the Nanbu, Nanbu-Babovsky, and Bird algorithms, we are not using any sort

of time counter or partitioning of the time interval [0, t]. Furthermore, we are actually processing

a Poisson number of collisions, as assumed by the derivation of the Kac equation, in any given

time interval rather than simply the expected number of collisions under the Poisson assumption

as in Bird’s algorithm. Finally, we note that we are saving on collisions by not propagating the

45

system in the time interval [TK , t] as we are trying to sample the velocity of particle 1 at time t

and this is unchanged in this interval. This gives an expected savings of (N/2)(1− e−λt) collisions

per simulation repetition.

3.3.4 Simulation Results

In order to assess the performance of the different algorithms, we simulated repeated draws

from the velocity distribution of the first particle, v1, for various values of N , and compared the

results to the exact solution (for N → ∞) given by (3.8). Specifically, for each algorithm we

simulated N i.i.d. velocities and propagated the ensemble forward according to the algorithms

described in Sections 3.3.1, 3.3.2, and 3.3.3, collecting the ultimate values for v1 at various times t.

In all cases, we were able to achieve reasonable accuracy for a surprisingly small number of particles.

However, since the accuracy of the Nanbu and Nanbu-Babovsky algorithms both depend on how

finely the time interval is partitioned, and since the Nanbu-Babovsky sampling with replacement

step is relatively inefficient, we will focus our comparisons mainly on the Nanbu, Bird, and Poisson

algorithms.

We will express the accuracy of our numerical results using an estimate of the total variation

norm (TV N) between the true and estimated distributions. The total variation norm between

two probability measures π1 and π2 is defined to be

||π1 − π2|| =
1

2
sup
A∈B
|π1(A)− π2(A)|,

where B is the set of Borel sets in the appropriate space. If π1 and π2 are discrete measures, then

the total variation norm can be written simply as

||π1 − π2|| =
1

2

∑
x

|π1(x)− π2(x)|. (3.11)

In this chapter, we discretized both the true and simulated densities by a natural histogram binning

procedure in order to use (3.11) to give an estimated TV N between the target density and our

simulation results. As this estimate depends on the bin widths used, the actual values of our

46

estimated TV N are not as interesting as the relative values. We will keep our bin widths constant

throughout.

For example, for t = 2, using Nanbu’s algorithm with N = 5 produced distributions for v1

shown in Figure 3.1. In both cases the “target density” given by (3.8) is shown as a solid curve.

It is no surprise that the smaller simulation time step gives better results, but to illustrate the

v1

De
ns

ity

−6 −4 −2 0 2 4 6

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

v1

De
ns

ity

−4 −2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

Figure 3.1: Histograms of 100,000 values of v1 at t = 2 with N = 5 using Nanbu’s Algorithm for
∆t = 0.01 (left) and ∆t = 1.0 (right). Curve is exact solution for N =∞ given by (3.8).

TV N error, the estimated values of TV N for the left and right graphs are 0.0187 and 0.0482,

respectively. Figure 3.2 shows estimated TV N , for several values of N , as the simulation time step

size decreases. Each point on the graph was created by averaging 100 values of TV N , where each

estimated distribution was created from 100, 000 realizations of v1. The height of the horizontal

line just below 0.01 shows the average TV N for 100 samples of size 100, 000 for Bird’s DSMC

algorithm (which doesn’t depend on ∆t) for N = 50. This was indistinguishable to several decimal

places from similarly estimated TV N for larger N , for the Poisson algorithm for N ≥ 50, and

for a baseline estimated TV N for samples of size 100, 000 from the standard normal distribution.

(Recall that we do not expect the estimated TV N to necessarily approach zero even in the case

of exact simulation from the normal distribution due to the histogram binning discretization used

in its calculation.) Figure 3.3 shows the average TV N values (again averaging 100 values each

computed from a sample of size 100, 000) for the three algorithms as a function of the number

47

of particles in the simulations. Here we can see that the Poisson algorithm consistently performs

better than both the Nanbu and Bird algorithms for small N . That is, less particles are needed in

order to approximate (3.8) when using the Poisson algorithm. Distributions for v1, estimated by

the DSMC and Poisson algorithms are shown in Figure 3.4. While they are similar both visually

and by the TV N , the Poisson algorithm appears to be performing slightly better in the tails, as

shown in Figure 3.5 for the case of the upper tails.

●

●

●

●
●

● ●

k

TV
N

1 2 3 4 5 6 7

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

N=5

N=10

N=50
N=100

Bird and Poisson algorithms, N>50

Figure 3.2: Estimated TV N for Nanbu’s Algorithm as a function of k for ∆t = 2/2k

3.4 An ε-Perfect Simulation of f(v,∞)

“Perfect sampling” (or “perfect simulation”) is the name applied to a class of Markov chain

Monte Carlo (MCMC) algorithms which enable one to draw values exactly from the stationary

(limiting) distribution π of a Markov chain. This is in contrast to the more typical MCMC algo-

rithms in which transitions are simulated for “a long time” after which output is collected giving

only approximate draws from π.

48

0.
01

0
0.

01
2

0.
01

4
0.

01
6

0.
01

8
0.

02
0

N

TV
N

5 10 50 100

●

●

●
●

●

●

● ●

●

●

Nanbu (∆t=2 27)
Bird DSMC
Poisson

Figure 3.3: Estimated TV N for the Nanbu, Bird, and Poisson algorithms as a function of N

v1

De
ns

ity

−4 −2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

v1

De
ns

ity

−4 −2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

Figure 3.4: Histograms of 100,000 Values of v1 at t = 2 with N = 50 for the DSMC algorithm (left)
and the Poisson algorithm (right).

49

v1

De
ns

ity

3.0 3.5 4.0 4.5

0.0
0.5

1.0
1.5

2.0

v1

De
ns

ity

3.0 3.5 4.0 4.5

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Figure 3.5: Histograms of 100,000 upper tail values of v1 at t = 2 with N = 1000 using Bird’s
DSMC algorithm (left) and the Poisson algorithm (right).

50

3.4.1 Perfect Simulation

The essential idea of most of these approaches is to find a random epoch −T in the past

such that, if one constructs sample paths (according to a transition density p(x, y) that has sta-

tionary/limiting distribution π) from every point in the state space starting at −T , all paths will

have met or “coupled” by time zero. The common value of the paths at time zero is a draw from π.

Intuitively, it is clear why this result holds with such a random time T . Consider a chain starting

anywhere in the state space at time −∞. At time −T it must pick some value x, and from then on

it follows the trajectory from that value. Since it arrives at the same place at time zero, no matter

what value x is picked at time −T , the value returned by the algorithm at time zero is the tail end

of a path that has run for an infinitely long time and is therefore a “perfect” draw from π.

Typically, perfect sampling is carried out using stochastically dominating processes that

bound or “sandwich” the process of interest for all time as depicted in Figure 3.6. At time −T ,

these bounding processes are at the extremes of the state space. At time −b, they have coupled

together to form a single path that is followed forward to time 0. If such coupling is not achieved

before time 0, T is increased and the bounding processes are resimulated using the same random

inputs whenever they pass through previously visited time points. Note that when the bounding

processes couple at some random time −b, all possible sample paths of the process of interest have

necessarily coupled at some earlier random time −a. Note further that a path started anywhere in

the state space at time −T will be at the same place at time 0. This value at time 0 is a perfect

draw from the stationary distribution of the Markov chain. Time −T is known as a backward

coupling time.

Forward coupling of sample paths does not yield the same result for reasons that we will not

go into here. For more information on perfect sampling algorithms, we refer the reader to [9].

51

0−atime −b

sample paths
bounding paths

−T

Figure 3.6: Depiction of stochastically dominating (bounding) processes in perfect simulation.

52

3.4.2 ε-Perfect Simulation for the Kac Model

We say that an algorithm is “ε-perfect” if the distance between the bounding processes

depicted in Figure 3.6 is monotonically decreasing and if this distance is less than ε at time 0. In

this Section we will describe an ε-perfect algorithm for sampling from f(v,∞) that is interesting

mainly as a proof of concept for the approach that we hope will eventually be adapted to and useful

for more interesting models.

Consider, for the purpose of illustration, the case where we have only N = 3 particles.

Simulating i.i.d. velocities v1, v2, and v3 from f0(v) gives a kinetic energy E = v2
1 + v2

2 + v2
3. As

we propagate these 3 velocities forward in time, we create a realization of a 3-dimensional Markov

chain that lives on the surface of a 3-dimensional sphere with radius
√
E. For the simple model

considered in this chapter, we can, without loss of generality, consider the velocity vector as a

random walk on the sphere restricted to the first octant where v1, v2, v3 > 0 and at the end of our

simulation attach a negative sign to each velocity independently of the others with probability 1/2.

For the purpose of achieving a coupling of sample paths walking on the sphere, we note that

vi cos θ + vj sin θ can be written as

vi cos θ + vj sin θ = A sin(θ + ϕ)

for some A and ϕ. In the case where vj = 0, we may take A = vi and ϕ = π/2. In the case that

vj 6= 0, we may take A =
√
v2
i + v2

j and ϕ = tan−1(vi/vj). Suppose that the current position of

the random walk is (v1, v2, v3) and that the particles randomly selected for updating are indexed

by (i, j) = (1, 2). Note then that A =
√
E − v2

3 and, since v2 is nonzero with probability 1, the

new velocity for particle 1 is given by

v′1 =
√
E − v2

3 sin(θ + ϕ) (3.12)

where θ ∼ unif(0, 2π) and ϕ = tan−1(v1/v2). Since θ + ϕ is uniformly distributed over an interval

of length 2π, θ+ϕ(mod 2π) ∼ unif(0, 2π), and the distribution of v′1 in (3.12) is the same as that

53

of
√
E − v2

3 sin(θ). Thus, we will update v1 as

v′1 =
√
E − v2

3 sin(θ) (3.13)

where θ ∼ unif(0, 2π) and then v2 by setting

v′2 =
√
E − v2

3 − (v′1)2. (3.14)

Four different values for (v1, v2, v3) are visualized as points on the sphere in the first octant in

Figure 3.7, as well as an angle θ drawn uniformly over (0, 2π). All four points, and indeed all

points on the entire surface, will map onto the depicted arc.

Figure 3.7: Visualization of sample paths of the “Perfect Kac Walk” on a sphere in the first octant.

Suppose now that the next particles randomly selected for updating are indexed by (i, j) =

(3, 1). Given a new angle θ drawn uniformly over (0, 2π), the points on the arc from Figure 3.7 will

map to the smaller arc segment depicted in Figure 3.8.

It is easy to see that if the same indices (in the same or different order) are selected twice

in a row, the arc will maintain its length and move “laterally”. However, if at least one index is

different from those in the previous step, the arc segment will, necessarily, shrink in length. In

other words, we will be mapping all points on the sphere closer and closer together. Thus, the

algorithm is closing in on a single point on the surface. Formally, consider N particles with all

54

(a) Previous arc with rotated axes (b) New angle and arc mapped to smaller arc

Figure 3.8: Arc from Figure 3.7 mapped to shorter arc.

55

positive velocities. Suppose two realizations of the velocities are given by ~u and ~v, both living in

the first orthant. Applying a collision between particles i and j, we get

‖Rij(θ)~u−Rij(θ)~v‖22 =

[
(u1 − v1)2 + · · ·+

(√
u2
i + u2

j sin θ −
√
v2
i + v2

j sin θ
)2

+ · · ·

+
(√

u2
i + u2

j cos θ −
√
v2
i + v2

j cos θ
)2

+ · · ·+ (uN − vN)2

]
=

[
(u1 − v1)2 + · · ·+

(
u2
i + u2

j − 2
√
u2
i + u2

j

√
v2
i + v2

j + v2
i + v2

j

)
sin2 θ + · · ·

+
(
u2
i + u2

j − 2
√
u2
i + u2

j

√
v2
i + v2

j + v2
i + v2

j

)
cos2 θ + · · ·+ (uN − vN)2

]
≤
[
(u1 − v1)2 + · · ·+

(
u2
i + u2

j − 2(uivi + ujvj) + v2
i + v2

j

)
sin2 θ + · · ·

+
(
u2
i + u2

j − 2(uivi + ujvj) + v2
i + v2

j

)
cos2 θ + · · ·+ (uN − vN)2

]
=

[
(u1 − v1)2 + · · ·+

(
(ui − vi)2 + (uj − vj)2

)
sin2 θ + · · ·

+
(
(ui − vi)2 + (uj − vj)2

)
cos2 θ + · · ·+ (uN − vN)2

]
=

[
(u1 − v1)2 + · · ·+ (ui − vi)2 + · · ·+ (uj − vj)2 + · · ·+ (uN − vN)2

]
= ‖~u− ~v‖22 ,

where equality only occurs when (ui, uj) = c(vi, vj), for some constant c. This will occur anytime

that the same pair of particles is chosen multiple times in a row, but assuming that a new pair is

chosen, the coupled collision acts as a contraction on the portion of the sphere living in the first

orthant.

To formalize the ε-perfect sampling algorithm for general N , we will follow the N corner

points ~c1,~c2, . . . ,~cN , where ~ci =
√
E ~ei and ~ei is the ith standard basis vector for RN .

ε-Perfect Algorithm

Set an error tolerance ε > 0 and set n = 1.

(1) Simulate and store θ−n ∼ unif(0, π/2).

Randomly select a pair of distinct indices from {1, 2, . . . , N} and store as a 2×1 vector ~P−n

56

with entries denoted as ~P−n(1) and ~P−n(2). (Order is important. For example ~P−n = (3, 5)

is different from ~P−n = (5, 3).)

Set ~ci =
√
E ~ei for i = 1, 2, . . . , N .

Let t = n.

(2) Let ~ci(j) denote the jth element of ~ci.

For i = 1, 2, . . . , N , let e = [ci(P−t(1))]2 + [ci(P−t(2))]2 and set

~ci(P−t(1)) =
√
e sin θ−t

and

~ci(P−t(2)) =
√
e− [~ci(P−t(1))]2

If t = 1, go to Step 3. Otherwise, let t = t− 1 and return to the beginning of Step 2.

(3) Compute the Euclidean distance between all pairs of corner points. Let D be the maximum

of these distances. If D < ε, compute the average corner point

~c :=
1

N

n∑
i=1

~ci,

multiply each coordinate of ~c by −1 with probability 1/2 independent of all other coordi-

nates, output the new ~c, and exit the algorithm. Otherwise, set n = n + 1 and return to

Step 1.

In practice, it is more efficient, in the search for a backward coupling time, to step back

further than one step at a time. It is generally advised to let t = 2n in, what is in this case, Step

1 of the ε-perfect algorithm. For simplicity, we use the Euclidean distance between corner points

as a surrogate for arc length distance on the surface of the sphere since convergence to zero of the

former implies convergence to zero of the latter.

In Figure 3.9 we show the results for 100, 000 draws of v1 using the ε-perfect algorithm with

N = 50 and ε = 10−6 along with the curve given by (3.9). For this simulation run, the mean

backward coupling time was 948.2 with a minimum of 422 and a maximum of 1811.

57

v1

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3.9: Histogram of 100, 000 draws of v1 using the ε-perfect algorithm with N = 50 and
ε = 10−6. The solid curve represents the true solution.

Chapter 4

Uniform Sampling of DAGs

4.1 Introduction

Directed acyclic graphs (DAGs) are collections of nodes and directed edges such that there are

no directed paths from a node to itself. DAGs are often used to model the flow of information and

form the underlying structure of Bayesian Networks [48]. As such, testing algorithms for learning

Bayesian Networks and making inferences on structural properties of DAGs leads to a problem

which is very simple to state but much more difficult to solve: How can a DAG be uniformly

selected from the set of all DAGs with n nodes? Direct enumeration is not possible since the

number of DAGs grows super-exponentially as a function of the number of nodes. Table 4.1 lists

the number of DAGs for 1-9 nodes.

Recent work ([32],[38],[42]) on this problem has relied mostly on Markov chains with unknown

mixing times or asymptotic approximations of recursive formulas for counting DAGs. This chapter

of nodes # of DAGs

1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1,138,779,265
8 783,702,329,343
9 1,213,442,454,842,881

Table 4.1: Number of Directed Acyclic Graphs with 1-9 nodes

59

explores some perfect sampling techniques to sample uniformly from the set of DAGs on a given

number of nodes.

4.2 Forward Markov Chain

Melancon et al [42] proposed a very simple Markov chain whose stationary distribution is

uniform over the set of DAGs. The chain goes as follows

(1) Start with any initial DAG, X0 and let t = 0.

(2) Select a pair of nodes i and j.

• If edge i→ j is in Xt, set Xt+1 = Xt \ {i→ j}.

• If edge i → j is not in Xt and adding it leaves the graph acyclic, set

Xt+1 = Xt ∪ {i→ j}.

• Otherwise, set Xt+1 = Xt.

(3) Set t = t+ 1 and go back to step (2).

It is easy to check that this leads to an irreducible aperiodic Markov chain, and that the correspond-

ing transition matrix is symmetric, which guarantees the desired uniform stationary distribution.

Melancon et al further argue that the algorithm can produce an approximately uniform sample in

O(n3 log n) time.

4.3 Perfect Sampling Chains

The general concept of perfect sampling was reviewed in Section 3.4.1. Here, we apply this

idea in two separate ways. The first is through constructing a regeneration set that facilitates

coalescence of coupled chains. The second is a more direct application of stochastic domination

processes applied to the forward chain discussed previously.

60

4.3.1 Regenerative DAG Coupler

Let Gn be the set of DAGs on n nodes. Denote G̃n ⊂ Gn the set consisting of DAGs with

either no edges or
(
n
2

)
edges (which is the maximum possible number of edges). Note that n!

unique DAGs with
(
n
2

)
edges can be constructed by first choosing an ordering of the nodes, and

then for every node, placing edges to every node that follows it in the ordering. Also, since the

adjacency matrix of any DAG with
(
n
2

)
edges is a permutation of the fully filled in lower triangular

matrix, there are at most n! such DAGs. G̃n thus contains n! + 1 elements. We want to construct

a Markov chain that will uniformly sample from Gn, but to do so we will work with an extended

state space of (Gn×{T})∪ (G̃n×{R}). This extended state space corresponds to target states T ,

and regeneration states R.

For ease of notation, we will enumerate this extended state space in the following way

• Let 1 represent the empty graph in Gn × {T}.

• Let |Gn|−n!+1, |Gn|−n!+2, . . . , |Gn| represent the graphs with maximal number of edges

in Gn × {T}.

• Fill in the values in between 1 and |Gn| − n! + 1 in order of increasing number of edges.

• Let |G|+ 1 be the empty graph in G̃n × {R}.

• The remaining n! values correspond to the graphs with maximal number of edges in

G̃n × {R}.

With this enumeration, we are attempting to draw from the distribution

π = [pTπT | pRπR]

πT ∝ 1

using a transition matrix of the form

M =

 MT,T MT,R

MR,T MR,R

61

with sizes

MT,T : |Gn| × |Gn|

MT,R : |Gn| × (n! + 1)

MR,T : (n! + 1)× |G|

MR,R : (n! + 1)× (n! + 1)

Since we want to force coalescence through a regeneration, we choose MT,R to be of the form

MT,R = cT,R

pe pf · · · pf

...
...

...

pe pf · · · pf

where pe is the probability of regenerating at the empty graph, and pf is the probability of regen-

erating at a full graph. These should satisfy

pe + (n!)pf = 1.

The constant cT,R represents the unconditional probability of moving to a regenerative state. Fur-

thermore, we can let MR,R be of the form

MR,R = cR,R

pe pf · · · pf

...
...

...

pe pf · · · pf

since moving from one regenerative state to another should be itself again be a regeneration. The

constant cR,R then represents the probability of staying in the regeneration set, G̃n × {R}.

The choices for the blocks MT,T and MR,T are less constrained. They need to be constructed

in a way that allows for every state to be reached, while still being easy to simulate. The simplest

choice for MR,T is then

MR,T = cR,T

1 0 · · · 0 0 · · · 0

0 0 · · · 0 1 0

...
...

...
. . .

0 0 · · · 0 0 1

62

where, with probability cR,T , the chain moves to the target set and the graph remains the same.

Instead of trying to define MT,T , we examine the requirements there are for the coefficients

ci,j and pi, i, j ∈ {T,R}.

cT,T + cT,R = 1 (4.1)

cR,T + cR,R = 1 (4.2)

pT + pR = 1 (4.3)

Stationarity requires that

pTπT = pT cT,TπTMT,T + pRcR,TπRCR,T

= pT cT,TπTMT,T + pRcR,T [pe 0 · · · 0 pf · · · pf] (4.4)

and

pRπR = pT cT,RπRMT,R + pRcR,RπRMR,R

= pT cT,R[pe pf · · · pf] + pRcR,R[pe pf · · · pf]

= (pT cT,R + pRcR,R)πR (4.5)

Combining together (4.2), (4.3), and (4.4), we get

pR =
cT,R

cT,R + cR,T
(4.6)

and then using (4.6) along with (4.1) and (4.3) we have

pT =
cR,T

cT,R + cR,T
(4.7)

Now, substituting (4.6) and (4.7) into (4.5) and requiring non-negativity of probabilities, we get

cR,T ≤
min(1/pe, 1/pf)

|Gn|
(4.8)

which is maximized when pe = pf = 1
n!+1 . Thus, the best we can hope for is to have a regeneration

probability of n!+1
|Gn| , which leads to an average regeneration time of at least |Gn|

n!+1 .

63

4.3.2 DAG Coupling from the Past

Instead of forcing coalescence to take place through regenerations, we can design our Markov

chain to be able to be coupled in a way to allow natural coalescence to take place. For this, some

modifications to the original forward chain are needed. One of the biggest issues with using the

chain as described earlier is the fact that two instances of the chain may differ in the existence of

one edge. The chain whose graph has the edge will remove it if selected, while the chain whose

graph does not have the edge will attempt to add that edge. The only way the two chains will

eventually agree on that edge is if the edge becomes invalid for the chain that does not contain the

edge, which is a strong requirement.

In order to avoid this alternating behavior, we modify the chain to first select the type of

attempted move, along with the pair of edges. This leads to the following algorithm

(1) Start with any initial DAG, X0 and let t = 0.

(2) Select a pair of nodes i and j.

(3) Generate a uniform draw U ∼ unif(0, 1).

• If U ≤ 1
2 ,

∗ If edge i→ j is in Xt, set Xt+1 = Xt \ {i→ j}.

∗ Otherwise, set Xt+1 = Xt.

• If U > 1
2 ,

∗ If edge i → j is not in Xt and adding it leaves the graph acyclic, set

Xt+1 = Xt ∪ {i→ j}.

∗ Otherwise, set Xt+1 = Xt.

(4) Set t = t+ 1 and go back to step (2).

The second modification comes from the fact that edge additions and deletions are not the

only possible moves. Allowing edge reversals is known ([26]) to improve mixing at least in the

64

context of Bayesian Networks. Incorporating these edge reversals, as well as making some minor

tweaks, we get the forward chain

(1) Start with any initial DAG, X0 and let t = 0.

(2) Select an ordered pair of nodes (i, j).

(3) Generate a uniform draw U ∼ unif(0, 1).

• If U ≤ 1
3 ,

∗ If edge i→ j is in Xt, set Xt+1 = Xt \ {i→ j}.

∗ If edge j → i is in Xt, set Xt+1 = Xt \ {j → i}.

∗ Otherwise, set Xt+1 = Xt.

• If 1
3 < U ≤ 2

3 ,

∗ If edge i→ j is in Xt and the removal of it allows for the addition of edge j → i,

then set Xt+1 = (Xt \ {i→ j}) ∪ {j → i}.

∗ If edge i→ j is not in Xt and adding edge {j → i} leaves the graph acyclic, set

Xt+1 = Xt ∪ {j → i}.

∗ Otherwise, set Xt+1 = Xt.

• If 2
3 < U ,

∗ If edge j → i is in Xt and the removal of it allows for the addition of edge i→ j,

then set Xt+1 = (Xt \ {j → i}) ∪ {i→ j}.

∗ If edge j → i is not in Xt and adding edge {i→ j} leaves the graph acyclic, set

Xt+1 = Xt ∪ {i→ j}.

∗ Otherwise, set Xt+1 = Xt.

(4) Set t = t+ 1 and return to step 2.

The last piece is then to couple together multiple instances of the chain from all possible

starting graphs, and check for coalescence. Obviously, we cannot enumerate and check every single

65

possible graph, so instead, we will keep track of whether an edge is in every chain, possibly some

of the chains, or none of the chains. This is done through introducing a mark, Mi,j ∈ {0, ?, 1},

to every edge {i → j}. A mark of Mi,j = 1 means that every instance of the chain contains the

edge {i → j}, a mark of Mi,j = 0 means that none of the chains contain the edge, and a mark of

Mi,j =? means that some of the chains may possibly contain the edge. With these marks, we can

then easily check to see if all of the chains have coalesced. If all of the marks are either 0 or 1, then

the graph of all of the chains is the same. Putting this into the coupling from the past framework,

our new DAG CFTP Algorithm is as follows.

(1) Set T = 1.

(2) Initialize the marks Mi,j =? for all i 6= j.

(3) Sample an ordered pair of indices (i, j)−T .

(4) Sample U−T ∼ unif(0, 1).

(5) For t = T, T − 1, . . . , 1,

• If U−t ≤ 1/3,

∗ Set Mi−t,j−t = 0 and Mj−t,i−t = 0.

• If 1/3 < U−t ≤ 2/3,

∗ If the DAG consisting of edges with Mk,` = 1 prohibits adding edge j → i or

reversing edge i→ j, do nothing.

∗ If one or more edges with Mk,` =? prohibits adding edge j → i or reversing edge

i→ j, set Mi,j =? and Mj,i =?.

∗ Otherwise, set Mi,j = 0 and Mj,i = 1.

• If 2/3 < U−t,

∗ If the DAG consisting of edges with Mk,` = 1 prohibits adding edge i → j or

reversing edge j → i, do nothing.

66

∗ If one or more edges with Mk,` =? prohibits adding edge i→ j or reversing edge

j → i, set Mj,i =? and Mi,j =?.

∗ Otherwise, set Mj,i = 0 and Mi,j = 1.

(6) If Mi,j 6=? for all i 6= j, then all the chains have coalesced, and M corresponds to the

adjacency matrix of uniformly sampled DAG.

Otherwise, set T = T + 1 and return to Step (2).

4.4 Results

We first want to verify that our DAG CFTP Algorithm is truly returning a uniform sample,

as it theoretically should. With n = 3 nodes, there are only 25 DAGs which makes enumeration

possible. So we start with generating uniform DAGs with 3 nodes. A histogram of 1,000,000 draws

is shown in Figure 4.1.

Graph

10 20

0

1.0×10⁴

2.0×10⁴

3.0×10⁴

4.0×10⁴

5.0×10⁴

Figure 4.1: Histogram of 1,000,000 draws from the uniform distribution on the set of DAGs with 3
nodes. Graphs are ordered in order of increasing number of edges.

It is then important to look at how the algorithm scales as the number of nodes increases.

We ran the DAG CFTP for n = 3, 4, . . . , 9 nodes, producing 1,000 uniform samples for each. The

67

backward coupling time (bct) was also returned for each sample, allowing the average backward

coupling time to be estimated. Figure 4.2 shows the average backward coupling time along with

the theoretical average regeneration time from the Regenerative DAG Coupler.

n

2 4 6 8 10

10
-5

10
0

10
5

b
ct

n

2 4 6 8 10

10
5

10
10

b
ct
/r
e
g

Figure 4.2: (Left) Empirical average backward coupling time in blue and theoretical regeneration
time in red as a function of the number of nodes. (Right) Ratio of empirical coupling time to
theoretical regeneration time

The ratio of the average backward coupling time over the regeneration time appears to

be approaching an exponential (linear in log scale). Using the last several data points, we can

approximate the average backward coupling time to be

bct ∝∼
|Gn|
n! + 1

e−3.943n

Although the DAG CFTP Algorithm performs better than the theoretical Regenerative DAG Cou-

pler, it still scales at a rate which makes the algorithm computationally infeasible for reasonable

numbers of nodes. Approximate methods are still required for larger numbers of nodes as is of

practical interest.

Chapter 5

Bayesian Network Structure Inference

Bayesian networks (Pearl [48]) are convenient graphical expressions for high dimensional

probability distributions representing complex relationships between a large number of random

variables. A Bayesian network is a directed acyclic graph consisting of nodes which represent

random variables and arrows which correspond to probabilistic dependencies between them.

There has been a great deal of interest in recent years on the NP-hard problem of learn-

ing the structure (placement of directed edges) of Bayesian networks from data ([10],[16],[23],[24],

[29],[31],[33],[34],[45]). Much of this has been driven by the study of genetic regulatory networks

in molecular biology due to advances in technology and, specifically, microarray techniques that

allow scientists to rapidly measure expression levels of genes in cells. As an integral part of ma-

chine learning, Bayesian networks have also been used for pattern recognition, language processing

including speech recognition, and credit risk analysis.

Structure learning typically involves defining a network score function and is then, in theory,

a straightforward optimization problem. In practice, however, it is quite a different story as the

number of possible networks to be scored and compared grows super-exponentially with the number

of nodes. Simple greedy hill climbing with random restarts is understandably inefficient yet sur-

prisingly hard to beat. There have been many deterministic and stochastic alternatives proposed

in recent years such as dynamic programming ([36],[47],[46]), genetic ([15],[39],[40]), tempering

([5]), and Metropolis-Hastings ([20],[23],[41]) algorithms. There have been different approaches to

the task, including order space sampling and the scoring of graph “features” rather than graphs

69

themselves. Several of these methods have offered some improvement over greedy hill climbing

but can be difficult to implement. Deterministic methods tend to get stuck in local maxima and

probabilistic methods tend to suffer from slow mixing.

In this chapter we consider a new stochastic algorithm in which the appearance and disap-

pearance of edges are modeled as a birth and death process. We compare our algorithm with the

popular Metropolis-Hastings algorithm and give empirical evidence that ours has better mixing

properties.

5.1 Bayesian Networks

Bayesian networks are graphical representations of the relationships between random vari-

ables from high dimensional probability distributions. A Bayesian Network on N nodes is a directed

acyclic graph (DAG) where the nodes (vertices), labeled 1, 2, . . . , N , correspond to random vari-

ables X1, X2, . . . , XN and directed edges correspond to probabilistic dependencies between them.

We say that node i is a parent of node j and node j is a child of node i if there exists a directed

edge from i to j, (in which case we write i→ j), and use the notation paj to denote the collection

of all parents of node j. We will refer to nodes and their associated random variables interchange-

ably. Thus, paj may also represent the collection of parent random variables for Xj . Rigorously, a

Bayesian network consists of a DAG and a set of conditional densities {P (Xi|pai)}Ni=1 along with

the assumption that the joint density for the N random variables can be written as the product

P (X1, X2, . . . , XN) =

N∏
i=1

P (Xi|pai).

In other words, all nodes are conditionally independent given their parents.

In the problem of structure inference, the DAG is not explicitly known. A set of observations

D = (D1, D2, . . . , DM) is given, where each Di is an N -tuple realization of (X1, X2, . . . , XN). The

goal is then to recover the “best” edge structure of the underlying Bayesian Network, which may be

measured in many ways. For example, one may consider the best DAG as the one that maximizes

70

the posterior probability

P (G|D) ∝ P (D|G)P (G) (5.1)

over G. Indeed, (5.1) is important for many measures of “best DAGs” and it is the goal of this

chapter to simulate DAGs efficiently from this distribution.

Throughout this chapter, we will use the common assumption that the data D come from

a multinomial distribution, allowing us to analytically integrate out parameters to obtain a score

which is proportional to P (G|D).

5.2 Sampling Methods

In this section, we discuss two sampling methods for P (G|D). First, in Section 5.2.1, we

review a Metropolis-Hastings based algorithm for structure learning. Then, in Section 5.2.3, we

introduce a new algorithm for sampling from P (G|D) based on a continuous time Markov process.

The goal is to reduce the number of wasted computational steps that can come from many rejec-

tions in Metropolis-Hastings. Instead of stepping through a discrete time chain with the same state

repeated many times before a move to a new state, our goal is to find when the next transition will

occur, and jump to that transition. This idea is illustrated in Figure 5.1. The circles represent a

realization of a discrete time Markov chain with transitions rarely occuring. The red line depicts a

continuous time process with the same transitions. The length of the line between transitions repre-

sents the waiting time between jumps. By knowing the waiting times and the resulting transitions,

we can potentially remove wasted computational time of frequent rejections.

5.2.1 Structure Metropolis-Hastings

In [41], Madigan et al. construct a Metropolis-Hastings Algorithm for walking through the

space of BN structures, which was later improved upon by Grzegorczyk and Husmeier in [26]. The

basis of the algorithm is the construction of a proposal density based on three possible types of

moves: adding a single edge, removing a single edge, or reversing the direction of a single edge.

Of course, only moves which leave the graph acyclic are allowed in the proposal. Thankfully, the

71

Step/Time

0 5 10 15

-1.0

-0.5

0.0

0.5

1.0

S
ta
te

Figure 5.1: An example realization of a Markov chain with many rejections, with the state at each
step given by circles, and a continuous time process with the same transitions given as a red line.

72

possible moves are quite easy to calculate ([22]). The possible edge additions are given by the zeros

of the matrix [
(I −A)−1

]T
+A

where A is the adjacency matrix of the current graph, and I is the identity matrix. The possible

edge reversals are given by the ones of the matrix

(I −A)−1 •A

where A•B is component-wise multiplication between A and B. The Structure Metropolis-Hastings

Algorithm then goes as follows.

(1) Start with an arbitrary initial DAG, G0, and set n = 0.

(2) Choose a proposal graph G′ uniformly from all graphs obtainable by one of the following

• Adding a single non-cycle causing edge to Gn.

• Removing a single edge from Gn.

• Performing a non-cycle causing reversal of a single edge in Gn.

(3) Draw U ∼ unif(0, 1)

(4) If

U ≤ P (G′|D)(# of moves from G′)

P (Gn|D)(# of moves from Gn)
,

set Gn+1 = G′. Otherwise, set Gn+1 = Gn.

(5) Set n = n+ 1 and return to step (2).

5.2.2 Jump Processes

Let (Ω,F) be a state space consisting of a non-empty set Ω and a sigma algebra F on Ω.

A jump process on (Ω,F) is a continuous time stochastic process that is characterized as follows.

Assume the process is in some some state x ∈ Ω.

73

• The waiting time until the next jump follows an exponential distribution with rate (or

intensity) λ(x) and is independent of the past history.

• The probability that the jump lands the process in F ∈ F is given by a transition kernel

K(x, F).

It is known (e.g. [21], [49]) that there exists a Qt : Ω×F → R+ so that Qt(x, F) is the probability

that at time t the process is in F given that the process was in state x at time 0. Such Qt are

defined as the solution to Kolmogorov’s backward equation

∂

∂t
Qt(x, F) = −λ(x)Qt(x, F) + λ(x)

∫
Ω
Qt(y, F)K(x, dy).

Furthermore, let Q
(n)
t (x, F) be the probability of a transition from x to F with at most n

jumps. If λ(x) is bounded then

Q
(∞)
t (x, F) := lim

n→∞
Q

(n)
t (x, F)

is the unique minimal solution to Kolmogorov’s forward equation

∂

∂t
Qt(x, F) = −

∫
F
λ(z)Qt(x, dz) +

∫
Ω
λ(z)K(z, F)Qt(x, dz).

(It is “minimal” in the sense that if Rt(x, F) is any other nonnegative solution, then

Rt(x, F) ≥ Q(∞)
t (x, F) for all t ≥ 0, x ∈ Ω, and F ∈ F .)

For a distribution, π, to be invariant under such a process, π must satisfy the detailed balance

conditions

π(x)λ(x)K(x, dy)dµ(x) = π(y)λ(y)K(y, dx)dµ(y)

with respect to some density µ.

Preston [49] extended this jump process to the trans-dimensional case where jumps from

states in Ωn can move the process to a one dimension higher state, living in Ωn+1, with (birth) rate

λb(x) or to a one dimension lower state, living in Ωn−1, with (death) rate λd(x). Associated with

these birth and death rates are birth and death kernels, Kb and Kd. The total jump rate and the

74

transition kernel are then given by

λ(x) = λb(x) + λd(x)

K(x, F) =
λb(x)

λ(x)
Kb(x, F) +

λd(x)

λ(x)
Kd(x, F).

For a configuration x with n points to move to a configuration x′ with n+ 1 points (or vice

versa), the detailed balance conditions simplify ([49], [50]) to requiring balance, with respect to π,

of the birth and death rate of a single point in the configuration. That is, we require that

π(x)b(x, x′ \ x) = π(x′)d(x′, x′ \ x)

where b(x, x′ \ x) is the birth rate of the single point x′ \ x given that the current configuration

of points is x, and d(x′, x′ \ x) is the death rate of the single point x′ \ x given that the current

configuration of points is x′. These relate to the total birth and death rates in that

λb(x) =
∑

b(x, x′ \ x)

λd(x
′) =

∑
d(x′, x′ \ x)

where the birth sum is taken over all states x′ that consist of configuration x with the addition of

a single point and the death sum is taken over all states x that consist of configuration x′ with a

single point deleted.

5.2.3 A Birth and Death Process on Edges of a BN

To construct a jump process for BN structure inference, our goal is to construct a birth and

death process acting on edges of a BN which has invariant distribution P (G|D).

The relevant state space is (G,2G), where G is the set of all DAGs with N nodes and 2G is

the power set of G. We define the disjoint sets Gk, k = 0, . . . , N(N−1)
2 , to be the set of DAGs with

exactly k edges. Our jump process will then jump between the Gk for adjacent values of k.

For G ∈ Gk, denote the graph with the addition of the edge from node i to node j by

(G∪{i→ j}) ∈ Gk+1, and the graph with the removal of the edge from i to j by (G\{i→ j}) ∈ Gk−1.

75

Detailed balance then requires that, for every edge i → j that is a valid, i.e. non-cycle causing,

addition,

P (G|D) b(G, {i→ j}) = P (G ∪ {i→ j}|D) d(G ∪ {i→ j}, {i→ j}).

It is convenient to let

d(G ∪ {i→ j}, {i→ j}) = 1

so that

b(G, {i→ j}) = P (G∪{i→j}|D)
P (G|D)

= P (D|G∪{i→j})P (G∪{i→j})
P (D|G)P (G)

If we let ∆j denote the M -dimensional vector of observations of Xj in the data set D, this birth

rate may be rewritten as

b(G, {i→ j}) =
P (∆j |∆pa′j

, G ∪ {i→ j})P (G ∪ {i→ j})
P (∆j |∆paj , G)P (G)

.

Here, ∆paj is the M × k matrix of data points for the k parents of node j in G (∆paj = ∅ if k = 0)

and ∆pa′j
is the M × (k + 1) matrix of data points for the k parents of node j in G ∪ {i→ j}.

The transition rates are then given by

λb(G) =
∑

valid i→j
b(G, {i→ j}),

λd(G) =
∑

{i→j}∈G

1.

With this, we can easily construct a way to simulate from this process in the following way.

(1) Start with an arbitrary initial DAG, G

(2) Compute the birth rates b(G, {i → j}) for all possible valid i → j edge additions to G.

Compute

λb(G) =
∑

valid i→j
b(G, {i→ j})

and

λd(G) =
∑

{i→j}∈G

1.

76

(3) With probability λd(G)/(λb(G) + λd(G)), remove a randomly selected existing edge.

Otherwise, add valid edge i→ j with probability b(G, {i→ j})/λb(G).

(4) Return to step 2.

At first glance, it may seem like such an algorithm would be computationally expensive, as

the required birth rates depend on computing the score for two different graphs. However, if we

assume a modular score, the computation at each step is manageable. A modular score means we

have

P (D|G) =
N∏
i=1

P (∆i|∆pai , G)

which leads to a birth rate of

b(g, {i→ j}) =
P (G ∪ {i→ j})

∏N
i=1 P (∆i|∆pa′i

, G ∪ {i→ j})
P (G)

∏N
i=1 P (∆i|∆pa′i

, G)

=
P (G ∪ {i→ j})P (∆j |∆pa′j

, G ∪ {i→ j})
P (G)P (∆j |∆paj , G)

So, for each birth rate, we only need the ratio of the altered score to current score of a single node

corresponding to the child end of the proposed edge.

Further computational relief comes from the fact that most of the birth rates can be stored

from previous steps. After adding or removing an edge, the only birth rates that need to be

recalculated are for edges pointing to nodes whose parent set has been altered, edges which were

not previously valid, or edges which are no longer valid.

These realizations allow for a more complete and efficient algorithm

(1) Start with an initial DAG, G

(2) For all possible edge additions, i→ j, calculate the birth rate b(G, {i→ j})

(3) With probability λd(G)/(λb(G) + λd(G)), remove a randomly selected existing edge.

Otherwise, add a valid edge k → ` with probability b(G, {k → `}).

(4) If any of the following are true, update the birth rate b(G, {i→ j}).

77

• j = `

• Edge i→ j was not a valid addition before the addition or removal of edge k → ` but

now is valid

• Edge i→ j was a valid addition before the addition or removal of edge k → ` but now

is no longer valid

(5) Return to step 3.

5.3 Experimental Results

While the theory guarantees that our edge birth and death process will have the correct

stationary distribution, in this Section we investigate the mixing time and whether or not Monte

Carlo simulation of graphs from P (G|D) using our method is feasible in practice. In order to

attempt to avoid overfitting, i.e. introducing too many edges to fit the data, we will select our prior

distribution P (G) to give a log score proportional to the Akaine Information Criteria (AIC).

logP (G|D) ∝ AIC(G|D) = −2 logP (D|G) + 2 (# parameters in G)

In the simulation study, we first consider a simple 4 node graph so that we may compare our results

with exact computations. We generated 50 observations of X1, X2, X3, X4 as related by the DAG

in Figure 5.2. Each node was allowed to take on values in {1, 2, 3, 4}, with equal probability.

We then ran both the standard Structure Metropolis-Hastings algorithm and our Edge Birth

and Death Algorithm. Figure 5.3 shows two independent runs of each algorithm. While both

algorithms tend to find high probability regions of the state space, our edge birth and death

algorithm explores much more of the state space with far fewer number of steps.

One benefit of running Monte Carlo methods is they allow us to easily calculate the probabil-

ities of specific graph features, e.g. edge probabilities. With the Edge birth and Death Algorithm,

the edge probabilities correspond to the proportion of time that the graphs contain the given edge.

With the same 4 node graph as before, we calculated the edge probabilities and compare them to

78

1

2 3

4

Figure 5.2: 4 Node Graph Used for Testing

Figure 5.3: (Left) Paths of two (red and blue) independent Metropolis-Hastings chains of 20, 000
steps. (Right) Paths of two independent Edge Birth and Death Algorithm runs of 1, 500 jumps. The
circles represent each of the 543 possible DAGs, with size proportional to the posterior probability
of the graph.

79

the true edge probabilities both for m = 100 observations and m = 500 observations. The results

are shown in Table 5.1. As the number of observations increases, the error in estimating edge prob-

abilities decreases, as expected. Even with edges that are not being predicted entirely accurately,

the error is balanced out between the probability of an edge and the reversed version of the edge.

For example, with 50 observations, the probability of edge 1 → 2 existing was underestimated by

0.06, but the probability of edge 2→ 1 existing was overestimated by 0.06. This keeps the correct

dependencies between random variables, but the causal directions may be less accurate with fewer

observations.

Node 1 2 3 4

1 – -.06 +.02 -.05

2 +.06 – .00 -.01

3 -.02 +.04 – -.01

4 +.04 -.04 .00 –

Node 1 2 3 4

1 – +.03 -.02 .00

2 -.03 – .00 .00

3 +.02 .00 – .00

4 .00 .00 .00 –

Table 5.1: Errors from estimated to exact probabilities of edges in a 4 node Bayesian network from
one run of the Edge Birth and Death Algorithm for 100 observations (left) and 500 observations
(right).

Next, we tested our edge birth and death algorithm on the “Alarm data set” compiled by

Herskovits ([30]). This data set, often used as a benchmark for structure learning algorithms,

consists of 1000 observations of 37 random variables, each taking on 4 possible values. We ran our

edge birth and death algorithm for 105 time steps. For comparison, we ran the standard Metropolis-

Hastings scheme for 2× 106 steps which took approximately the same amount of CPU time. The

AIC was recorded at each step and is plotted for one of these runs in Figure 5.4. As is well known,

the MH scheme is prone to getting trapped in local minima, and takes many steps to escape these

points whereas our edge birth and death algorithm appears to mix more easily.

80

Figure 5.4: (Left) AIC score of a Metropolis-Hastings run of 2 × 106 steps. (Right) AIC score of
an edge birth and death process run of 105 steps.

Chapter 6

Conclusion

In this thesis, we studied three separate applications for which Markov chain Monte Carlo

methods have commonly been implemented. In each of these applications, we developed MCMC

algorithms that exhibit enhanced efficiency and/or accuracy.

In Chapter 2, we developed a “windowed” rejection sampling algorithm to target the marginal

distributions of the posterior of a hidden Markov model. The decaying influence of past samples

was exploited in order to have small enough windows for the algorithm to be efficient while still

retaining enough samples to have improved accuracy over the commonly used sequential importance

sampling algorithms.

In Chapter 3, a derivation one-dimensional Kac model was reexamined, with emphasis placed

on the underlying Poisson process. We then leveraged this Poisson process to create a more accurate

sampling algorithm for particle collisions. This Poisson process was used further to construct a proof

of concept ε-perfect algorithm for sampling the limiting distribution of particle velocities as time

goes to infinity. This algorithm returns samples with a controlled level of sampling error, ε.

Chapters 4 and 5 were focused on directed acyclic graphs and bayesian networks. Chapter

4 explored the possibility of creating a perfect sampler for the uniform distribution over the set

of DAGs on a given number of nodes. A theoretical Regenerative DAG Coupler was discussed

with a known regeneration time. We then paired Coupling from the Past concepts with a modified

version of a known Markov chain with uniform stationary distribution to create our DAG CFTP

Algorithm, which functions as a perfect uniform sampling algorithm. The backward coupling time

82

of the DAG CFTP Algorithm was explored empirically, and while it scales better than the size of

the state space, and better than the Regenerative DAG Coupler, it is still prohibitively expensive

to use. In Chapter 5, we presented a new algorithm for sampling from the posterior distribution

of Bayesian Networks given data based on a birth and death process. This new Edge Birth and

Death Algorithm allows for probabilistic inferences to be made about Bayesian Network structures

while avoiding some of the downfalls of existing methods. In particular, our Edge Birth and Death

Algorithm does not get trapped in local extrema as easily as structure MCMC and allows for

less restrictive choices of priors over graphs compared to order MCMC. An open question related

to this Edge Birth and Death Algorithm is whether it can be made perfect by applying similar

constructions to perfect algorithms for spatial point processes.

Bibliography

[1] Christophe Andrieu and Arnaud Doucet. Particle filtering for partially observed gaussian state
space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
64(4):827–836, 2002.

[2] Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle markov chain monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342, 2010.

[3] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on parti-
cle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal
processing, 50(2):174–188, 2002.

[4] Hans Babovsky and Reinhard Illner. A convergence proof for nanbu’s simulation method for
the full boltzmann equation. SIAM journal on numerical analysis, 26(1):45–65, 1989.

[5] Daniel James Barker, Steven M Hill, and Sach Mukherjee. Mc4: a tempering algorithm for
large-sample network inference. In IAPR International Conference on Pattern Recognition in
Bioinformatics, pages 431–442. Springer, 2010.

[6] GA Bird. Molecular gas dynamics and the direct simulation monte carlo of gas flows.
Clarendon, Oxford, 508, 1994.

[7] EA Carlen, Maria C Carvalho, and Michael Loss. Kinetic theory and the kac master equation.
Contemporary mathematics, 552:1–20, 2011.

[8] Eric A Carlen, Maria C Carvalho, J Le Roux, Michael Loss, and Cédric Villani. Entropy and
chaos in the kac model. arXiv preprint arXiv:0808.3192, 2008.

[9] George Casella, Michael Lavine, and Christian P Robert. Explaining the perfect sampler. The
American Statistician, 55(4):299–305, 2001.

[10] Ting Chen, Hongyu L He, George M Church, et al. Modeling gene expression with differential
equations. In Pacific symposium on biocomputing, volume 4, page 4, 1999.

[11] Wen-shiang Chen, Bhavik R Bakshi, Prem K Goel, and Sridhar Ungarala. Bayesian estimation
via sequential monte carlo sampling: unconstrained nonlinear dynamic systems. Industrial &
engineering chemistry research, 43(14):4012–4025, 2004.

[12] Jem N Corcoran and Richard L Tweedie. Perfect sampling of ergodic harris chains. Annals of
Applied Probability, pages 438–451, 2001.

84

[13] JN Corcoran and RL Tweedie. Perfect sampling from independent metropolis-hastings chains.
Journal of statistical planning and inference, 104(2):297–314, 2002.

[14] Mary Kathryn Cowles and Bradley P Carlin. Markov chain monte carlo convergence diagnos-
tics: a comparative review. Journal of the American Statistical Association, 91(434):883–904,
1996.

[15] Luis M de Campos and Juan F Huete. Approximating causal orderings for bayesian net-
works using genetic algorithms and simulated annealing. In Proceedings of the Eighth IPMU
Conference, volume 1, pages 333–340, 2000.

[16] Adrian Dobra, Chris Hans, Beatrix Jones, Joseph R Nevins, Guang Yao, and Mike West.
Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis,
90(1):196–212, 2004.

[17] Arnaud Doucet, Nando De Freitas, and NJ Gordon. Sequential monte carlo methods in prac-
tice. series statistics for engineering and information science, 2001.

[18] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. On sequential monte carlo sampling
methods for bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

[19] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. Handbook of nonlinear filtering, 12(656-704):3, 2009.

[20] Byron Ellis and Wing Hung Wong. Learning causal bayesian network structures from experi-
mental data. Journal of the American Statistical Association, 103(482):778–789, 2008.

[21] William Feller. An introduction to probability theory and its applications: volume I, volume 3.
John Wiley & Sons London-New York-Sydney-Toronto, 1968.

[22] Nicandro Flores. Counting directed acyclic graphs and its application to Monte Carlo learning
of Bayesian networks. ProQuest, 2007.

[23] Nir Friedman and Daphne Koller. Being bayesian about network structure. In Proceedings
of the Sixteenth conference on Uncertainty in artificial intelligence, pages 201–210. Morgan
Kaufmann Publishers Inc., 2000.

[24] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian networks to
analyze expression data. Journal of computational biology, 7(3-4):601–620, 2000.

[25] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-
gaussian bayesian state estimation. In IEE Proceedings F-Radar and Signal Processing, volume
140, pages 107–113. IET, 1993.

[26] Marco Grzegorczyk and Dirk Husmeier. Improving the structure mcmc sampler for bayesian
networks by introducing a new edge reversal move. Machine Learning, 71(2-3):265–305, 2008.

[27] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[28] Anton J Haug. Bayesian estimation and tracking: a practical guide. John Wiley & Sons, 2012.

85

[29] David Heckerman. A tutorial on learning with bayesian networks. In Learning in graphical
models, pages 301–354. Springer, 1998.

[30] Edward Herskovits. Computer-based probabilistic-network construction. PhD thesis, Stanford
University USA, 1991.

[31] Dirk Husmeier. Sensitivity and specificity of inferring genetic regulatory interactions from
microarray experiments with dynamic bayesian networks. Bioinformatics, 19(17):2271–2282,
2003.

[32] Jaime S Ide and Fabio G Cozman. Random generation of bayesian networks. In Brazilian
symposium on artificial intelligence, pages 366–376. Springer, 2002.

[33] Seiya Imoto, Sunyong Kim, Takao Goto, Sachiyo Aburatani, Kousuke Tashiro, Satoru Kuhara,
and Satoru Miyano. Bayesian network and nonparametric heteroscedastic regression for non-
linear modeling of genetic network. Journal of bioinformatics and computational biology,
1(02):231–252, 2003.

[34] E Jarvis, V Smith, K Wada, M Rivas, M McElroy, T Smulders, P Carninci, Y Hayashizaki,
F Dietrich, X Wu, et al. A framework for integrating the songbird brain. Journal of
Comparative Physiology A, 188(11-12):961–980, 2002.

[35] Mark Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, volume 1955, pages 171–197, 1954.

[36] Mikko Koivisto and Kismat Sood. Exact bayesian structure discovery in bayesian networks.
Journal of Machine Learning Research, 5(May):549–573, 2004.

[37] Max Krook and Tai Tsun Wu. Formation of maxwellian tails. Physical Review Letters,
36(19):1107, 1976.

[38] Jack Kuipers and Giusi Moffa. Uniform random generation of large acyclic digraphs. Statistics
and Computing, 25(2):227–242, 2015.

[39] Pedro Larranaga, Cindy MH Kuijpers, Roberto H Murga, and Yosu Yurramendi. Learning
bayesian network structures by searching for the best ordering with genetic algorithms. IEEE
transactions on systems, man, and cybernetics-part A: systems and humans, 26(4):487–493,
1996.

[40] Pedro Larrañaga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga, and Cindy M. H. Kuijpers.
Structure learning of bayesian networks by genetic algorithms: A performance analysis of
control parameters. IEEE transactions on pattern analysis and machine intelligence, 18(9):912–
926, 1996.

[41] David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models for discrete data.
International Statistical Review/Revue Internationale de Statistique, pages 215–232, 1995.

[42] Guy Melancon, Isabelle Dutour, and Mirelle Bousquet-Melou. Random generation of dags for
graph drawing. 2000.

[43] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

86

[44] Kenichi Nanbu. Direct simulation scheme derived from the boltzmann equation. i. monocom-
ponent gases. Journal of the Physical Society of Japan, 49(5):2042–2049, 1980.

[45] Irene M Ong, Jeremy D Glasner, and David Page. Modelling regulatory pathways in e. coli
from time series expression profiles. Bioinformatics, 18(suppl 1):S241–S248, 2002.

[46] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models for small gene networks.
In Pacific symposium on biocomputing, volume 9, pages 557–567. Citeseer, 2004.

[47] Sascha Ott and Satoru Miyano. Finding optimal gene networks using biological constraints.
Genome Informatics, 14:124–133, 2003.

[48] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1988.

[49] Chris Preston. Spatial birth and death processes. Advances in applied probability, 7(3):465–
466, 1975.

[50] Brian D Ripley. Modelling spatial patterns. Journal of the Royal Statistical Society. Series B
(Methodological), pages 172–212, 1977.

[51] Wolfgang Wagner. A convergence proof for bird’s direct simulation monte carlo method for
the boltzmann equation. Journal of Statistical Physics, 66(3-4):1011–1044, 1992.

