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Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a
desired probability distribution. While there exist many algorithms that attempt to be somewhat
universal, these algorithms can struggle for tractability in specific applications. The work in this
dissertation is focused on improving MCMC methods in three application areas: Particle Filtering,
Direct Simulation Monte Carlo, and Bayesian Networks. In particle filtering, the dimension of
the target distribution grows as more data is obtained. As such, sequential sampling methods
are necessary in order to have an efficient algorithm. In this thesis, we develop a “windowed”
rejection sampling procedure to get more accurate algorithms while still preserving the necessary
sequential structure. Direct Simulation Monte Carlo is a Monte Carlo algorithm for simulating
rarefied gas flows. In this dissertation, we review the derivation of the Kac master equation model
for 1-dimensional flows. From this, we show how the Poisson process can be exploited to construct
a more accurate algorithm for simulating the Kac model. We then develop an e-perfect proof of
concept algorithm for the limiting velocity distribution as time goes to infinity. Bayesian Networks
(BNs) are graphical models used to represent high dimensional probability distributions. There
has been a great deal of interest in learning the structure of a BN from observed data. Here, we do
so by walking through the space of graphs by modeling the appearance and disappearance of edges
as a birth and death process. We give empirical evidence that this novel jump process approach

exhibits better mixing properties than the commonly used Metropolis-Hastings algorithm.
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Chapter 1

Introduction

In many inference problems, direct evaluations of quantities of interest are often intractable
and therefore replaced with optimizing search strategies. In high-dimensional inference problems,
such search strategies are often computationally infeasible and, in some cases, even impossible.
There has been much research on both deterministic and probabilistic algorithms as a workaround
to these computational challenges. One of the most popular classes of probabilistic algorithms is
Markov chain Monte Carlo (MCMC) algorithms. The theoretical validation of MCMC algorithms
began with the seminal paper of Metropolis et al [43], and was later generalized by Hastings [27].
Their power comes from their ability to sample from distributions that cannot be directly computed,
often as a result of either intractable normalizing constants or the use of simulated likelihoods in
place of analytic likelihoods. While many existing MCMC algorithms apply, in theory, to large
classes of models, they typically require a fair amount “tweaking” in order to make them viable for
real applications of interest.

The work in this thesis focuses on constructing more efficient and/or accurate algorithms for
sampling in three areas. The first is particle filtering and smoothing which consists of sequential
Monte Carlo methods that are often employed in order to perform inference about models that
evolve in time and produce new observations that need to be processed in real time. Particle filters
have a wide range of applications in areas such as as signal processing, robotic navigation, and
computer vision. The second area of focus for this thesis is on simulation of the Kac model, which

is a stochastic model of the dynamics for colliding particles of a homogeneous rarefied (dilute)



gas. As a simplified version of the famed Boltzmann equation, the Kac model is often used in
order to verify or discard conjectures related to the statistical behavior of thermodynamic systems.
The third area we focus on in this thesis is that of Bayesian network structure inference.
Bayesian networks are graphical representations of high-dimensional probability distributions. The
NP-hard problem of inferring the structure of such a representation from data has received much
attention in recent years and has wide reaching applications in areas as diverse as genetic regulatory
networks, speech recognition, credit risk analysis, and the burgeoning area of “web intelligence” for
personalized browsing recommendation.

In the remainder of this Chapter, we review some basic building blocks for the algorithms to

come.

1.1 Markov Chain Monte Carlo

1.1.1 Rejection Sampling

One of the simplest Monte Carlo methods that can be employed is rejection sampling (also
known as the “accept/reject” algorithm). Suppose that one wants to generate a realization of a
random variable X from a probability distribution with density 7 (z), where 7(x) may be expressed

as

for some, possibly unknown, normalizing constant Z. Suppose further that it is known how to
generate a realization of a random variable Y from a probability distribution with density g(y)

such that

h(y) < Mg(y)

with M a known constant. The rejection sampling algorithm proceeds as follows.
(1) Draw Y ~ g(-).

(2) Draw U ~ unif(0, 1).



(3) Check whether or not U < 1\}41;)(/))/)

e If it is true, accept X =Y as a draw from = (+).

e Otherwise, reject Y and return to step (1).

This algorithm is known to eventually accept a draw and does so with unconditional probability
ﬁ. Clearly, the optimal choice would be to let g = 7, but the goal is to draw from m(z) when
direct sampling is not possible. Thus, it is very important that the distribution g(z) is chosen as
close to m(x) as possible to minimize M, while still being able to draw from g(x).

While this algorithm is simple to employ, it can often be challenging to choose a density g(-)

that results in an efficient algorithm, especially for a high-dimensional “target density” .

1.1.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is one of the most popular MCMC methods. Similar to

rejection sampling, the goal is to draw/simulate a value (realization) of X where
X ~7m(x) < h(z).

Again, the normalization constant may be unknown. The Metropolis-Hastings algorithm is de-
signed to construct a Markov chain, {X,,}7°,, whose stationary distribution is 7(z). This chain is
constructed by drawing “candidate” values X’ from a density g(x|X,_1). These candidate draws
are then either accepted, in which case X,, = X', or rejected, in which case X,, = X,,_1. The

probability of acceptance of a point ', given that the chain is currently at point z, is given by
y g

This choice of acceptance guarantees that the chain satisfies detailed balance with respect to the
target density mw, which allows for the chain to have stationary distribution w. Formally, the

Metropolis-Hastings algorithm is as follows.

(1) Let n = 0. Start with any initial state Xj.



(2) Generate a candidate next state X’ ~ ¢(z|X,), and, independently, a uniform draw U ~

unif(0, 1).
(3) Check whether or not U < a(X, X").

e If it is true, set X,,11 = X'.

e Otherwise, set X,+1 = X,,.
(4) Set n =n+ 1 and return to step (2).

In order to actually generate draws from m, this algorithm, in theory, needs to be run for
an infinite amount of time. Typically, however, it is run for “a long time” in the hope that the
generated chain of values has settled down to near equilibrium. Initial values are discarded up to a
“burn-in time”. The choice of such a time has been extensively studied, and we refer the reader to
[14] for a review of some convergence diagnostics. Another issue is that the values of X, are usually
highly correlated with each other. This issue is minimalized by only selecting every m values from

the chain {X,, },>p, for some smart choice of m.

1.2 Deficiencies in Naive Implementations

1.2.1 The Curse of Dimensionality

While it is theoretically possible to construct an efficient candidate density for use with rejec-
tion sampling or Metropolis-Hastings schemes, implementations that do not exploit the structure
of the target distribution become extremely inefficient as the dimension of the state space grows.

To illustrate this, consider the case of using rejection sampling to create uniform draws from
the n-dimensional unit ball B} (0). To do so, we will draw a point, x, uniformly from the cube
[—1,1]™. If x lies within B (0), we accept it, if it lies outside the ball, we reject it and draw a new

point. The probability of accepting the point x is then the ratio of the volume of the ball to the



volume of the cube

%
P(acceptance) = VCL I

71_71/2

r(5+1)2n

This scales poorly as the dimension, n, increases, as shown in Figure 1.1.
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Figure 1.1: Rejection sampling using draws from the cube [—1,1]" to generate draws from the unit
ball B}*(0) as a function of the dimension, n. (Left) Proportion of accepted draws. (Right) Average

number of required draws for 1 accepted draw

1.2.2 Distribution Bottlenecks

Another issue that arises in many MCMC schemes, including Metropolis-Hastings, is when
there are “bottlenecks” in the target density. This is common in multi-modal densities where the
density takes on small values in between the different modes. To illustrate how this affects mixing

of the Markov chain, consider using Metropolis-Hastings to target the density

m(z) em2(@t2)? 4 om3(@=2)?



using candidate densities of the form
q(2'|z) ~ N(2';2,6)

for different values of §, where N(x;u,0?) denotes a Gaussian density in x with mean y and
variance 0. The first 1000 steps are discarded as a “burn-in”, and then every sample is retained.
(This is not ideal as previously discussed.) When too small of a ¢ value is chosen, the chain mixes
well in the individual modes, but has a tendency to get stuck in one of the modes. When too
large of a § value is chosen, the chain jumps frequently between the modes, but does not mix well
within the individual modes. For example, when 6 = 0.1 is chosen, the chain has a tendency to
unpropotionately stay in one of the modes, as shown in Figure 1.2(top). On the other hand, when
0 = 12, the chain visits the two modes with approximately the same frequency, but the inter-mode

sampling is subpar, as shown in Figure 1.2(bottom).
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Figure 1.2: Histogram of 1000 samples using the MH algorithm targeting a mixture of 2 Gaussians,
using a symmetric candidate with variance (top) 6 = 0.1, (bottom) § = 12. The true density is
given by the smooth curve.



Chapter 2

Particle Filtering and Smoothing

Particle filters and smoothers are sequential Monte Carlo methods that are often employed
to sample from and provide estimates of the distribution of a set or subset of latent variables in
a hidden Markov model given observations. They are constructed specifically to provide updated
sampling and estimation when additional observations become available without reprocessing all
observations.

Consider the hidden Markov model with underlying and unobserved states {X,}22, tran-
sition density m(zp|zn—1), and an initial distribution with density m(zp). (In this chapter we will
assume a continuous state space, though the sampling techniques described will apply in the dis-
crete case as well.) Suppose that {Y,}°°, represents a sequence of observable variables that are
conditionally independent when the unobserved states are given and where each Y, is related to
the unobserved process through X,, and a “measurement model” density 7(y,|z,). Such a model
is depicted in Figure 2.1(left).

Our goal is to sample from the density m(xo.n|y1:n), where w;; denotes the vector
(i, Uig1,...,uj) for j > 4, sequentially in the sense that samples from 7(2g.,—1|y1:n—1) Will be
used along with a new observation ¥, to produce the desired points. The sampled points can
then be used to approximate, for example, expectations of the form E[f(Xo.,)|y1.n] and marginal
distributions 7 (x;|y1.,) for i = 0,1,...,n. The estimation of 7(zy|y1.n) is known as the filtering

problem and that of 7(z;|yi.n) for 0 < i < n is known as the smoothing problem.
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Figure 2.1: Depiction of Hidden Markov Models with (left) one hidden layer and (right) two hidden
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2.1 Importance Sampling Based Sequential Methods

We now briefly describe existing importance sampling and resampling approaches to the

problem of estimating and/or sampling sequentially from a target density
(1) = h(21:0)/Zn, (2.1)

where Z, = [ h(z1.,) dz1.n. A much more complete review is given by Doucet and Johansen [19].
Without loss of generality, x1., can be replaced by xq., and the target density can be a conditional
density.

Xl(.N) represent N points (“particles”)

n

To establish notation, note that, if Xf Q,X@l, e
sampled from m(z1.,), sequentially or otherwise, a simple unbiased estimator of the target density
is given by the empirical density that puts weight 1/N on each of the points. We may write this
succinctly as

T(x1m :NZ]I 1n—x1n] (2.2)
where 1[X l(zq)l = Z1.5) is the indicator function that takes on the value 1 when z1., = X f%, and zero

otherwise.

We can then estimate, for example, E[f (Xl.n)] for a given function f by

E[&nzNZf (233)

It is easy to verify that (2.2) and (2.3) are unbiased for m(z1.,) and E[f(X}.,)], respectively.
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2.1.1 A Review of Non-Sequential Importance Sampling

When one cannot sample directly from m(x1.,) o h(x1.,), importance sampling can be used
to instead sample points from a more tractable density, and these points can be used to estimate
the target density. Suppose that ¢(z1.,) is another density, presumably tractable, with the same
support as 7(z1.y,).

We can write

L) = 2.4
m(#1m) = =2 Z. (2.4)
where
h(xl:n)
w(x1m) 1= . 2.5
(%1:n) ) (2.5)
Then we proceed to estimate 7(x1.,) and Z,, as follows.
e Sample XST)L, XS)L, . ,Xfﬁ) w q(z1.0).!
e Estimate ¢(z1.,) with
N
— 1 ;
a(@r) = = UKL, = 21 (2.6)
i=1
e Estimate Z, = [ w(21.0)q(@1:0) d21:y = E[w(X1.0,)], when Xy, ~ q(21.,), with
- 1 .
Zn =~ Y w(X}h). (27)
i=1
e Estimate 7(x1.,) with
- _ w(mlzn)q(/x;) _ % 27{\]:1 w(Xilv)’L)]l[XYzz:wl”]
W(xlzn) = Z. = Z.
(2.8)

SN W UXY) = 2]

where
W w(X{QJ. ‘
SN w(X)

It is routine to show that (2.8) is an unbiased estimator of m(x1.,) and that the optimal

importance sampling density ¢(z1.,), in terms of minimizing variance, is q(z1.n) = m(21.).

1 4id” denotes “independent and identically distributed” values.
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2.1.2 Sequential Importance Sampling (SIS)

Sequential importance sampling (SIS) is importance sampling for m(x1.,) in such a way where
draws from 7(z1.,—1) are “extended” to n-dimensional points that are then reweighted to produce

draws from 7(x1.,). To this end, the importance sampling density is chosen to have the form

n

q(z1:n) = q(z1) H q(xilzi-1)

i=2
so that it may be sampled from recursively.
The associated importance sample weights may then also be computed recursively since, for
n > 2,

h(xlzn) h<x1:n)

Q(xl:n) B Q(xlzn—l>Q(xn‘xn—1>

w(r1,) =

h(x1:m-1) _ h(x1:0)
Q(@1:n—1) M@rn—1)q(zp|Tn—1)

= w(T1m-1)  a(T1.y) (2.9)

where a(z1.,) is an incremental weight function that is defined as

h(l'l:n)
h(xl;n_1>Q(xn‘xn—1) .

a(T1.y) =

SIS Algorithm

At the first time step (n = 1),
e Sample Xfl),X{Q), e ,XfN) i q(z1).

e Compute weights w(Xy)) fori=1,2,..., N using (2.5).

At times n > 2,
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e Sample X,(LD, X,(f), s ,XT(LN) independently with Xy(f) ~ q(:z:n|X7(Lill).

n—1

e Compute weights w(sz,)l) = w(Xl(f) ) a(XfZL) fori=1,2,...,N.

At any time n, one can estimate m(x1.,) and Z, using (2.8) and (2.7). One can also obtain
approximate dependent draws from 7(x1.,) by sampling from (2.8). That is, by sampling from the

L @

1lins“*1lmmo s

set of values {X XSX)} using respective weights {Wél), LA WéN)}.

In practice, iteration of the SIS algorithm leads to a “degeneracy of weights” problem (see,
for example, [2], [17], [18], and [28]) where the weights of all but one particle will approach zero,
causing the method to break down and give meaningless results.

One way to avoid the issue of degenerate weights is to implement a resampling scheme at

each time step.

SIS Algorithm With Resampling (SIR)

At the first time step (n = 1),
e Sample Xfl),Xp), . ,X£N) i q(z1).
e Compute weights w(Xfi)) fori=1,2,...,N.

e Compute the normalized weights

o wXx)
Zj:l w(le )
fori=1,2,...,N.
e Sample N  points, Xfl),f(l(z), e ,X§N), with  replacement, from the set

(xW x® XM with respective probabilities {W W@ W™} That

is, sample )?1(1),)2?), ... ,)Afl(N) from

N
(e =Y WX = ).
=1
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Note that )2§1),)~(£2), cee )Z'§N) are now equally weighted particles, each with weight 1/N.

Assign weights w(f(l(l)) =1/N fori=1,2,...,N.
At times n > 2,

e Sample X,(Ll)7 X7(12), . ,X,(LN) independently with X9 ~ q(xn\)?r(fll)

e Extend each particle X1(7)1 , to particles (X &)1 1> X(l))

e Compute associated weights w()?{i)l_l,Xy(f)) = a(X ﬁ)@ 1 T(LZ)) fori=1,2,...,N.

(This is consistent with SIS since the previous weights in (2.9) have been replaced by the

constant 1/N and the current weights have yet to be normalized.)

e Compute the normalized weights

w(X L xY)

W) = nl :
SN wx) L x)

fori=1,2,..., N.

e Sample N n-dimensional points, Xflr)L,X{ 2“...,5(1(1), with replacement, from
the set {(X 1n 1,X(i)),()z£2,371,X,(L2)),.. ()Nfl( n) 1,X(N))} with respective probabilities
{W,gl),Wy(f), e N)} That is, sample X§ Q,Xﬁ)l, .. ,)?SX) from

(21m) ZW“ (XY XD = a.,]. (2.10)

Note that X1, X% X fZX) are now equally weighted particles, each with weight 1/N.

Lin>“*1mo ">

Assign weights w(X( )=1/N fori=1,2,...,N.

As with SIS, we may, at any time n, estimate 7(x1.,) using (2.10) or by using

() = % S URL, = vl (2.11)
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We may obtain approximate dependent draws from 7(x1.,) by sampling from (2.11). That is, by
sampling uniformly, with replacement, from the set of values {)N( flr)” )N(ﬁ)u e ,)N( 9?}

An obvious issue with the SIR algorithm, known as the sample impoverishment problem,
is a decreasing diversity of particles as those with higher weights will likely be drawn multiple
times. Additionally, the resampling step may make the algorithm prohibitively slow and can lead
to increased variance of estimates. One way to address the speed and variance is to only resample
in the case of a small (user chosen threshold for) effective sample size

N -1
Negs = [Z(WS))QI : (2.12)
i=1
A small effective sample size indicates higher variability of the weights which, in turn, indicates
impending degeneracy. In this case, resampling would be especially prudent.

It is important to note that, when resampling, one should be originally sampling a very large

number of points in order to minimize the effects of resampling repeated values from a discrete

distribution. Additional details about SIS and SIR procedures can be found in Doucet et al.

[17, 18] and in Andrieu and Doucet [1].
2.2 Rejection Sampling Based Sequential Methods
2.3 Windowed Rejection Sampling

In order to draw from a possibly unnormalized density 7(x) o h(z) using rejection sampling,

one must find a density ¢(x) and a constant M such that
h(z) < Mq(x).

Then, one proceeds as in Algorithm 1.

Algorithm 1 Rejection Sampling from = (x):

1. Generate X ~ q.
2. Generate U ~ Uniform(0, 1).

3. IfU > %, return to 1. Otherwise, X is a draw from .
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Since 7(z) may be a high-dimensional and conditional density, we could, in theory, use

rejection sampling to draw exactly from
7"'(550:71‘3/1:71) 0.8 h(xO:n|y1:n) = 7T(350) H?:l 7T(yi|xi)7‘r($i|xi—1)

- [Hﬂyirm]-w<x0>H7r<rci|xi—1>

=1

/

~~

M q(zo:n)
where

wj = arg maxm(y;|z;).
k2

For most applications of particle filtering in the literature, x}, or at least an upper bound on
m(yi|x;), with respect to x;, is easily attainable. However, for even small values of n, the acceptance
probability, [T7" 7(yi|zi) /7 (ys|z}), can be prohibitively small and of course we are losing the benefit

of sequential sampling. Thus, we propose rejection sampling “in windows”.

2.3.1 Rejection Sampling in Windows

“Windowed Rejection Sampling” (WRS) is based on the idea that, depending on the covari-
ance structure of the chain, at some point future observed y’s will eventually cease to significantly

affect earlier a’s. For example, if 7(zo|y1,y2,y3, y4) = 7(zo|y1, Y2, y3), we can write

W(l’o, Z1,22,T3, $4|y1, Y2,Y3, y4) = 7T(.T1, €2,3, $4|$0, Y1,9Y2,Y3, Z/4) ' W(.I'()‘yl, Y2, Y3, y4)

~  m(x1, 22, 23, Ta|T0, Y1, Y2, Y3, Y4) - T(T0|Y1, Y2, Y3),
and so we can sample approximately from 7(xg.4|y1.4) by first sampling X from 7 (zo|y1.3) and then
sampling X1.4 from 7 (x1, z2, x3, 24|70, Y1, Y2, Y3, y4). Sampling from 7(xg|y1.3) can be achieved by
sampling X.3 from 7(x0.3|y1.3) and considering only the xg values. In this example, we say that
we are using rejection sampling in a “window of length 4”.
More formally, the WRS algorithm is described in Algorithm 2 for a given window length w.

We discuss the choice of this tuning parameter in Sections 4 and 5.
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Algorithm 2 Windowed Rejection Sampling from 7 (xo.n|y1:n):

Find z} = arg max,, 7(y;|z;), and set a window length parameter w.

1. Generate Xg.y—1 ~ T(Z0o:w—1|Y1:w—1) using rejection sampling with

w—1

Q($O:w71) = 77(960) H W(-Tik”ifl)

=1

and M = [[;2, m(yilzf_1). Set m = 1.

2. Generate Xypmiw—1 ~ 71'(xm:m—i-w—l‘frm—layl:m—i-w—l) = 7"'(:1:771:771—5-10—1|xm—17ym:m—i-w—l) using

rejection sampling with
m+w—1

((Tmmiw-t1lrm) = [[ w(@ilzio)

i=m

and M = [T~ o (y;|a?).

=m

Note that

7T(xm:erwfl|$mfl» ym:erwfl) X h(xm:m+w71|xmfly ym:erwfl)

[T (g ) (@l wio1) < M- q(@mnpw—1|Tm—1)-

Set m = m + 1 and return to the beginning of Step 2. Continue until m +w — 1 = n.

Note that if it is not obtainable, 7w (y;|z;) in expressions for M can be replaced by any upper bound.

2.4 Examples

2.4.1 One Dimensional Normals with One Hidden Layer

We begin, for the purpose of illustration, with a very explicit description of the algorithm

with a window length of w = 3, for the simple model

Xo ~ N(po,02), Xpi1 = aXp + OxEnit, Y, = bX, + oyu,

id

where {e,,} N (0,1) and {v,} ~ N(0,1) are independent sequences. Assume that only the Y,

are observed.
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Let N(x;p,0?) denote the N(u,0?) density.
We begin by using rejection sampling to produce N iid draws from 7(zg.2|y1.2)

T(zo:2ly1:2) o [(y1]|z1) T (ye|w2)] - [m(22|21) 7 (21 |20) 7 (20)]

using q(xg.2) = w(x2|xy)w(x1|2x0)T(2T0) = N(22; @271, ag() - N(x1;axy, (f%() - N(xo; uo,ag).

It is easy to see that
x} = argmax 7 (y;|z;) = argmax N (y;; bxi, 0%) = /b for i=1,2,....
x; T4

We repeatedly draw independent realizations zg.2 of Xo.2 ~ ¢(xo.2) and u of U ~ Uniform(0, 1)

until the first time that

m(y1|z1)m(y2| 7o)
m(y1|27) 7 (y2|r3)

u <

Repeating this procedure N times, we collect only the values of xy and record them as
(1) (2 (N)
Xo /s X7 Xy .
Now, moving our window of length w = 3 to the right by 1, we use rejection sampling to

produce N iid draws from 7(z1.3|%0, y1:3)
T(@1:3|20, Y1:3) o [T (y1|z) 7 (y2|w2)w(ys|es)] - [m(ws]we)m(22|21)m(21|20)]
using
q(z1:3|T0) = m(x3|xe)w(xa|zr)m(T1|T0) = N(23; amg,agc) - N(z2; ax1, a_%() - N(x1;axy, 03().

That is, for each ¢ = 1,2,...,N, we repeatedly draw independent realizations 1.3 of

X3~ q(:z:l:g\Xéi)) and u of U ~ Uniform(0, 1) until the first time that

7 (y1|z1)m(ye|z2)m(yY3|23)
m(yi|@})m(yelzs)m(ys|23)’

(4)

collecting the resulting value of z1 and recording it as X;".

u <

Move the window of length w = 3 to the right by 1 to produce N draws from 7(z2.4|z1, y1:4) =

m(x2.4|21,Y2.4), and retain the resulting values for XQ(i) fori=1,2,...,N.
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Continuing in this manner, we generated N = 100,000 independent values for Xg.11 for this
model using parameters ;g = 3.0, 09 = 2.0, a = 0.9, b = 1.2, 0x = 3.0, and oy = 2.3. (We looked
first at such a large IV in order to really see the resulting distribution without being concerned
about sampling variability.) For comparison, we produced N independent draws directly from the
11-dimensional distribution 7(xg.10|y1:10) using 11-dimensional (non-windowed) rejection sampling.
(As expected, the acceptance probabilities are quite small in this case and such direct simulation
from the target density is not reasonably achieved for much larger n.) Finally, we produced N
dependent draws approximately from 7 (zg.10|y1:10) using the SIR algorithm. Figure 2.2 shows the
average marginal values for Xy through X9 for each algorithm. Only the WRS results change
between graphs, showing the anticipated increasing accuracy of the WRS algorithm as the window
length increases. For the given model and parameters, a window length of w = 3 appears to be
sufficient. Indeed, as the perfect high-dimensional rejection sampling algorithm is a special case of
the WRS algorithm for fixed n and maximal window length, it is easy to code the WRS algorithm
once and run it first to get perfect draws from m(zg.,|y1.) for the highest feasible n and then to
run it with lower w, gradually increasing w until sample statistics such as those shown in Figure
2.2 reach the desired accuracy.

For this example, the WRS algorithm produced 100, 000 iid draws from an approximation to
m(20:11|y1:10) whereas the SIR algorithm (resampling every time) produced dependent draws with
only roughly 50% unique 11-dimensional values and only about 10% unique values for Xy marginally.
Figure 2.3 shows marginal distributions for X7 produced by the WRS and SIR algorithms. The
overlaid curves are the target normal densities that can be computed analytically for this simple
illustrative model. The time to run the WRS and SIR algorithms were comparable. Coded in
C++, the WRS algorithm completed in less than 2 seconds on a standard? laptop while the SIR
algorithm completed in 8-10 seconds. The SIR algorithm would obviously speed up if resampling
was not done at every step and would likely be the faster algorithm if both were programmed in R

where resampling is efficient and accept/reject looping is inefficient.

2 We wish to convey relative speed between algorithms in lieu of particular machine specifications.
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Figure 2.2: Means for marginal components in 100,000 draws from 7(x¢.10|y1:10) in the One Di-
mensional Normal model using perfect 11-dimensional rejection sampling, the SIR algorithm, and
the WRS algorithm with various window lengths.
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When comparing the algorithms for larger n, it becomes crucial for efficiency to not resample
at every time step of the SIR algorithm. As per the discussion at the end of Section 2.1, we
resample only when the effective sample size N.f¢, given by (2.12) falls below the a threshold
Nipres- Following a suggestion in [18], we choose Nip.es = N/3. Due to the Markov nature
of the model, we are able to continue forward with the window length w = 3 for increasing n.
When n = 1,000, the estimated filtering distribution m(z1000|y1:1000) is shown in Figure 2.4 for
both algorithms. The SIR algorithm resulted in approximately 52% distinct values. An estimated
smoothing distribution, namely an estimate of 7(x300|y1:1000) is shown in Figure 2.5. It is well
known (see [19]) that the SIR algorithm will produce severely impoverished samples for m(z;|yi.n)
and ¢ small relative to n, and in this example we are left with only 0.07% distinct values. Suggested
approaches to mitigate degeneracy in SIR are discussed in [19], but the WRS algorithm performs

well without modification.
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Figure 2.4: Histogram of values of Xjgpp from 100,000 draws from 7(x0.1000|Y1:1000) in the One
Dimensional Normal model using (left) WRS with w = 3 and (right) SIR
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2.4.2 Stochastic Volatility Model

We now consider the stochastic volatility model, often used in finance and also considered
in [19], where
Xo ~ N(0, 02/(1 — 042)), Xni1 = aX, +oep11, Y, = BeX"/zun
where {e,} YN (0,1) and {v,} YN (0,1) are independent sequences. Again we assume that only
the Y,, are observed.
Following the same procedure in Section 2.4.1, using a general window length w, we need to

define q(wo.w-1), 7; and q(@;(jrw—1)|Tj-1). It is easy to show that
x} = argmax 7(y;|z;) = arg max N(y;; 0, 82%) = In(y?/5?) for i=1,2,....
x; Zq
Taking

q(z0) = m(x0) = N(x0;0,02/(1 — a?)) and q(z;|zi_1) = (T, ) = N (5 axi_1,0%),

we have
w—1
q(@ow-1) = q(zo) [ [ alwilair) (2.13)
i=1
and
Jtw—1
Q(xj:(j+wfl)|xj—1) = H q(xilzi-1). (2.14)
i=j

We ran Step 1 of the WRS algorithm (Algorithm 2) with w = 11 in order to get N = 100, 000
perfect draws via rejection sampling from 7(xg.10|y1:10). (n = 10 was chosen as the maximal value
after which rejection sampling from m(zg.,|y1.n) became prohibitively slow.) We then ran the
complete WRS algorithm with n = 10 and increasing w, starting from w = 1, until the marginal
sample means from WRS for X;|y;.10 produced rough (non-simultaneous) two standard deviation
confidence intervals which contained the perfect draw estimates of the means. That is, if fi; denotes
the sample mean of the 100,000 values of X; resulting from rejection sampling from 7 (zg.10|y1:10)
and X; and Siz denote the sample means and variances of the marginal distributions produced

by WRS, w was increased until fi; € X; & 25;/v/N for all i € {0,1,...,10}. This resulted in a
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window length of 5. Figure 2.6 shows the sample means for the marginal draws with WRS and
w = 5 aligning with those from both perfect and SIR draws. Figure 2.7 shows the proportion
of surviving distinct values for each marginal distribution using SIR, which is in contrast to the
WRS algorithm giving 100% distinct values for all marginals. Figure 2.8 shows histograms of the
marginal distribution of X5|y1.10 obtained from the draws from m(z¢.10|y1:10) using 11-dimensional
rejection sampling, the SIR algorithm, and the WRS algorithm with w = 5. The overlaid curve in
each case is the density estimated by 100,000 perfect draws of X5 marginalized from 11-dimensional
rejection sampling. The SIR algorithm results stand out as the roughest estimate, though, again,
it is well known [19] that this “straight” application of the SIR algorithm does not produce good
smoothing estimates and that additional steps should be taken to improve it. The WRS algorithm,
on the other hand gives a nice estimate of the smoothing distribution straight away with a speed
that is comparable to the initial pass of the SIR algorithm. (By “comparable” we mean that, for
the examples in this chapter as well as others we tried, the WRS algorithm was either faster than
the SIR algorithm or slower but still finishing only a few seconds behind. In the worst case, the
WRS algorithm was about one minute behind the SIR algorithm. No particular effort was made

to fully optimize either code.)

2.4.3 A “Highly Nonlinear” Model

In this section, we apply the WRS algorithm the “highly nonlinear” model considered in
several papers including [3], [11], [18], and [25].

Xo ~ N(u,o?)

Xps1 = 05X, + 255 +8cos(1.2n) + e,41
Y, = 0.05X2+u,

for independent &, N (0,0%) and v, N (0,0%). The parameters were chosen as y = 0, 02 = 5,

and ag( = O’%/ = 10.
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Figure 2.6: Means for marginal components in 100,000 draws from 7(z¢.10|y1:10) in the Stochastic
Volatility model using perfect 11-dimensional rejection sampling, the SIR algorithm, and the WRS
algorithm with w = 5.
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Figure 2.7: Proportion of surviving distinct marginal values using SIR for the Stochastic Volatility

model

Density
0.10 0.15 0.25 0.30 0.35
1 1 1 1 ]

0.05
1

0.00
L

Density

0.4

0.3

0.2

0.1

0.0

Figure 2.8: 100,000 draws from Xj5|yo.10 in the Stochastic Volatility model using (left) WRS with

w =5 and (right) SIR
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Taking
q(zo) = m(x0) = N(zo; 1, 0°) and q(i|zi—1) = m(@|wim1) = N(zi;, m(zi1),0%),

with m(zi—1) = 0.5m,1 + 25z;-1/(1 + 22 ;) + 8cos[1.2(i — 1)], we define ¢(zo.p—1) and
q(T . (j+w—1)|Tj—1) using (2.13) and (2.14).

It is easy to show that

0 , ify; <0

T = argn;axw(yilxi) =
' +1/:/0.05 , if y; > 0.

An analysis of marginal means such as those depicted in Figures 2.2 and 2.6 reveal that a
window length of 4 is sufficient for this example. Figure 2.9 shows the proportion of surviving
distinct values for each marginal distribution using SIR, which, again, is in contrast to the WRS
algorithm giving 100% distinct values for all marginals. Figures 2.10 show histograms of X5|y1.10

produced by the WRS and SIR algorithms along with superimposed densities estimated by 11-

dimensional rejection sampling. As expected, the WRS results are smoother.

2.4.4 Two Layer Hidden Markov Model

In [1], the authors discuss a Rao-Blackwellized particle filtering technique, based on the SIR
algorithm, for estimating m(zg.,|21.,) in a two-layer hidden Markov model as depicted in Figure
2.1(right). It involves using SIR to first estimate 7(y1.n|21.n) and then estimating 7 (zg.,|21.,) using

the relationship
7r(£0:n|21:n) = /W(xO:n|y1:n)7T(y1:n|len)
and draws from 7(y1.n|21.n). The WRS algorithm can be used here in place of the SIR algorithm.

In this example, however, we consider a particularly simple two-layer model from [1] which

can be dealt with more directly. The “dynamic tobit model” is described as follows.

2
o
X~ N X
0 <0’1—¢2>

Xnt1 = ¢ Xn +0xentt, Y, = X, +oyuvy,, Z, = max(0,Y},)
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where {e,} N (0,1) and {v,} N (0,1) are independent sequences. Assume that only the Z,

are observed. The parameters were chosen as 0% = 0.05, 02 = 0.30, and ¢ = 0.99, as in [1].

Consider the case first when n = 1. If z; > 0, we wish to draw from
m(xo, w1]21) = w(xo, 21|y1) o< h(zo, x1ly1) = w(y1lw1)7(21]20) 7 (20)

where y; = 21.
To implement the SIR algorithm, we take g(xo,z1) := m(x1|xo)m(x0) and use the weight

w(zp:1) := 7(y1|x1). To implement rejection sampling, we use the fact that
h(zo, z1|y1) < M - q(x0, 71)

where M = 1/1 /2mo? and, again, q(zo, 1) 1= 7 (21|@o)T(20).

If z1 = 0, we wish to draw from
m(xo, 1]|21) = m(x0, 21]|y1 < 0) x Pr(y1 < Olx1)mw(x1|xo)m(z0)
where Pr(y; < 0|z1) = fi)oo m(y1|x1) dy1. We then have the unnormalized target density
h(zo, x1|z1) = ®(—x1/0y) - m(x1|20)7(20) (2.15)

where ®(-) denotes the cumulative distribution function for the standard normal distribution.
Taking q(xg,x1) = 7w(x1|xo)m(20), We can implement the SIR algorithm to draw from
(2.15) using w(xg.1) = ®(—x1/0y) and we can implement rejection sampling using the fact that
O(—x1/oy) < M :=1.
For general n, we use q(zy|n—1) = 7(xn|xn—1) for both algorithms. The incremental weight
for the SIR algorithm is
my|x (znl®n) , if 2, >0
a(x1g) =
O(—zp/oy) , if z,=0.

Here, 7y x(+|-) is the conditional density for Y;, given X,.
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For the WRS algorithm with window length w, we define M in Step 1 of Algorithm 2 as
w
M = H {my|x (zilzi)1[z; > 0] + ®(—zi /0y )1z = 0]},
i=1
and M in Step 2 as
mtw—1
M= ][ {rvix(zilzi)lzi > 0] + ®(—2;/oy)U[z = 0]} .
i=m
Since the underlying hidden Markov model is an AR(1) model with autocorrelation function
p(h) = ¢", it is not surprising that, for ¢ = 0.99, we would need w to be large for the WRS
algorithm. As in previous examples, we produced 100,000 independent draws directly from the
11-dimensional distribution 7 (z¢.10|21:10) using 11-dimensional, non-windowed, rejection sampling
and then used windowed rejection sampling with increasing values of w until we matched marginal
means. Figure 2.11 shows the matching means, as well as the matching means from the SIR
algorithm. The turning point in this graph of means corresponds to the fact that z3 was the only
data point in z1.19 that was positive. Both the WRS and SIR algorithms were quite slow for this
example (on the order of 45 minutes) but were still of comparable speeds.
In Figure 2.12 we see that the marginal means for the SIR and WRS algorithms continue to

coincide even for large n. Due to the Markov nature of the model, the window length determined

with smaller n can still be used.
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Figure 2.11: Means for marginal components in 100,000 draws from 7(xg.10|21:10) in the 2 Layer
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Figure 2.12: Means for certain marginal components in 100, 000 draws from 7(x0.1000|21:1000) in the
2 Layer HMM using the SIR algorithm and the WRS algorithm with w = 9.



Chapter 3

Particle Methods for the Kac Model

In [35], Kac introduced an N particle stochastic process model for a spatially homogeneous
gas that evolves according to a specific collision process. He proved that, as N — oo, the marginal
probability density function (p.d.f.) for a single particle at time ¢ approaches the solution of
a simplified version of the famed Boltzmann equation. The N-dimensional probability density
function for all particles is described by the Kac master equation which can be derived as a
random walk with transitions occurring at times of a Poisson process. In this chapter we take
advantage of properties of the Poisson process, including process “thinning” and the conditional
uniformity of event times, to efficiently simulate values from the velocity density of any single
particle at any given time ¢ > 0. We compare our results to those from the familiar Nanbu ([44]),
Nanbu-Babovsky ([4]), and DSMC (direct simulation Monte Carlo) ([6]) algorithms. Additionally,
we introduce an “e-perfect sampling algorithm” that uses “coupling from the past” techniques to
simulate or sample from the velocity distribution at time ¢ = oo up to a user defined accuracy ¢
that can be taken so small as to be essentially “perfect” within the accuracy available by a given
machine precision.

In Section 3.1, we review the derivation of the N particle Kac master equation and show its
relationship to the Poisson process. In Section 3.2 we very briefly review the probability density
function of any one given particle as a marginal density of the joint probability density function
solution to the Kac master equation. In Section 3.3 we review three existing simulation methods for

the marginal density, introduce our new exact Poisson method, and make an empirical comparison
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between all methods. In Section 3.4, we briefly review the idea of perfect simulation (perfect

sampling) and describe a novel “e-perfect” algorithm that applies to the Kac model.

3.1 The Kac Master Equation

Consider N one-dimensional particles, each with mass m, with velocities vy, v, ..., vy. Define
U = (v1,v2,...,vn). The total kinetic energy of the ensemble of particles is
m
2
i=1
For simplicity, we assume that m = 2. Thus, we have E = Zf\i L v? or, equivalently, |7 = VE.

If we assume that kinetic energy is conserved as these velocities evolve through particle
collisions, points ¥ with always be found on the sphere SV _1(@). We now describe a particular
evolution of velocities, proposed by Kac [35] in two stages as in [8]. The first stage is to describe as
a particular discrete time random walk known as the “Kac walk” and the second stage is to modify

the random walk so that it is taking place in continuous time.

3.1.1 The Kac Walk

The Kac Walk:
N
(1) Randomly select a pair of indices (7,j) from {1,2,..., N}. There are ways to do

N
this, so a particular pair (i, j) is selected with probability

2
(2) Randomly select a scattering angle! 6 from a density p(#) on [0,27). (Often 6 is assumed
to be uniformly distributed on [0,27). For an upcoming derivation, it will be convenient

to define p(6) on [—7, ) and to assume that it is symmetric about 0.)

19 is referred to as a scattering or collision angle as an analogue to the 2- and 3-dimensional cases where the
collisions are parameterized by the angle between pairs of particles.
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(3) Update the velocities for particles ¢ and j through the rotation

(vi, v5) = (vj,}) := (v; cos @ + vj sin 6, —v; sin 6 + v; cos §).

Return to Step 1.

It is easy to see that total kinetic energy is conserved by the Kac walk (though momentum is
not) and therefore that these three steps create a random walk on SV ~1(v/E). We will now derive
the probability density function, f; for the vector of N velocities after k£ “collisions” or iterations
of the Kac walk.

Let g : SN"1(v/E) — R be any continuous function. Define an operator @y on such functions

as the conditional expectation
Qng(0) = E[g(Vis1)| Vi = 7]

where Vk is the random vector of velocities at the kth iteration of the Kac walk.

Conditioning on the selected angle and particles, this becomes

Qng(@) = Elg(Vir)|Vi = 7]

m o o particles i and j  angle 6 is N
= [ e |aten)Vi= | - o(0) 0
A are selected selected 2
—1
™ N
= / Zg(vl,...,’l)i_l,’()£7”l)i+1,...,’Uj_l,’U.;-,’Uj+1,...,’UN)' p(e)da
i<y 2
-1
@ N
= [ Yoy (6) df
i<y 2

where R;;(6) is the N x N rotation matrix that is the identity matrix altered to have cosf as the

(i,7) entry, sin @ as the (i, ) entry, —siné as the (j,7) entry, and cos @ as the (j,j) entry.
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Now, define random vectors \—/b ~ fo and Vi ~ f1. Note that

Elg(V:)] = / o(#) (D) B,

S

where S is shorthand for S¥~1(v/E). Also note that

Elg(V1)] = E[E[g(V1)[Vbl]
= [sQng(?)fo(v)dv
Thus, we have that

/ 9(0) f2(7) 7 = / Q@) fo(@) di (3.1)
S S

It is straightforward to verify that Q) is a self-adjoint operator in the sense that

/ Qng(9) () di = / o(0)Qn £(9) d7 (3.2)
S S

for all continuous g and for all N dimensional densities f. Therefore, combining (3.1) and (3.2),

we have
[ 9@ 1@ 5= [ 90 Qusol) dr 33)
S S

Since (3.3) holds for all g : SY~1(v/E) — R, we have that fi = Qnfo. Similarly, the probability

density function for the velocities after k£ collisions is given by
fr = Qi fo. (3.4)

3.1.2 Time and the Poisson Process

As of now, we have a p.d.f. for the N-dimensional vector of velocities evolving at the discrete
times of a random walk. We now will allow the velocities to evolve as an N-dimensional continuous
time Markov process. The p.d.f. will now be denoted by f(v,t).

Kac proposed in [35] that collisions happen in the N-particle ensemble at times of a Poisson
process. Specifically, it is assumed that the expected number of particles that collide in a vanishingly
small time step At is ANAt for some A > 0. This means that the expected number of collisions

between pairs of particles is A\INAt/2 and so the assumption is that collisions happen according to a
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Poisson process with rate AN/2. Among other things, this implies that, as At \ 0, the probability
of exactly one collision in any time interval (¢, + At) is ANAt/2 4+ o(At), the probability of no
collisions is 1 —ANAt/2+40(At), and the probability of two or more is o(At). (Here, o(At) represents
a vanishing function g(At) such that g(At)/At — 0 as At N\, 0.)

Given the velocity density f(v,t), at time ¢, the density at time t+At as At N\ 0 is, informally,

the mixture density
fw,t+At) = p-(previous density after having gone through a collision )
+(1 — p) - (previous density )

where p is the probability of a collision in the ensemble during the time interval (¢,¢ + At) as
At N\, 0.

Formally, this is written as

F@EE+AL) = (ANAL/2+ o(AL) - Quf(5,1) + (1 — ANAE/2 + o(At)) - £(5,1)

ABLQN f(0,1) + f(T,8) — AL f(3,1) + o(At)
which implies that

F(5.E+ A0~ f(56) _ANIQy ~1] .
o = SN @ +

o(At)
At

where T is the identity operator, and for g : SN "1(VE) x R — R,
Qng(0,t) 1= E[g(Vir1, )| Vi = 1.

Letting At N\, 0, 8 = A/2, and specifying an initial condition, we get the Kac Master

Equation:

Lf(@,t) = BNQn —If(7,1)

f(@,0) = fo(?¥)
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which has solution
(@) = eINI@N It fo — o= PN i W@&fo
i=0 )
= EQX fo,
where Zy ~ Poisson(SN).
3.2 The One Dimensional Kac Equation

For the following derivations and the simulations in Section 3.3.4, we assume that the scat-
tering angle density, p(6), is the uniform density on the interval (0,27). We write 6 ~ unif(0, 27).

Consider the marginal density for particle 1,

Fr(os, ) = / F(5,) di_y (3.5)
SN=2(\/E—?)
where ¥_1 := (vg,v3,...,vn). We will make the typical assumption that F = N since the total

kinetic energy grows with respect to the number of particles in the system.
Kac [35] showed, under some assumptions? on the initial density f(v,0), that this single
particle marginal density converges, as N — 00, to the solution of a one-dimensional spatially

homogeneous Boltzmann-type equation:

e} 2
St = [ [ 00w - 0w 0] d o, (36)

where

v =wvcosh +wsinb and w' = —vsin @ + w cos 6.

Equation (3.6) is known as the Kac Equation or the Kac-Boltzmann Equation.

Note that (3.6) may be rewritten as

ot
2 Let ¢ be a one dimensional density. Informally, an n-dimensional density ¢,, symmetric in its arguments, is
“¢-chaotic” if, as n — oo, any k-dimensional marginal of ¢, acts as a product of k copies of ¢. In [35], Kac proved
that if fO) = f(@,t) solves the Kac Master equation, then F) is f-chaotic, where f solves the Kac-Boltzmann
equation. Thus, we can consider any univariate marginal of f(¥,t) as N — oo as a solution to (3.6). For a more
formal explanation, please see [8].

Vet (3.7
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for e = 1/\, and P(f, f) defined as the bilinear collision operator

0 27
P(f,f)=217r/ /0 fO ) f(w' t)df dw.

If the initial distribution fo(v) := f(v,0) on (—oc0,00) is taken to be fo(v) = 202", and

§ls

if A\ = /m/2, the solution to (3.6) is known [37] to be

0.0) = = [ 30 - COVET + GCtt) - DC) ] o0 (33)

-

where
C(t) = [3 — 2exp(—v/wt/16)] L.

It is easy to see that

1
lim f(v,t) = e 3Y for —o0o < v < 0. (3.9)

t—o00 \/3771-

We will use (3.8) and (3.9) to test several Monte Carlo algorithms.

3.3 Simulation Methods for f(v,1)

In Sections 3.3.1 and 3.3.2 we review existing methods for drawing (simulating) velocity values
from the single particle marginal distribution fy(v,t) for finite ¢. It has been shown ([6]) that these
types of particle methods can be useful for modeling rarefied gas flows, but in 2- or 3-dimensions,
computational constraints require the number of particles to be quite small. In Section 3.3.3 we
propose a new method that takes advantage of properties of the Poisson collision process. Our
goal is to have a method which is accurate and efficient enough to better approximate f(v,t) with

manageable values of V.

3.3.1 The Nanbu and Nanbu-Babovsky Algorithms

In [44], Nanbu proposes an algorithm to draw from fy(v,t) based on the probabilistic inter-

pretation of colliding particles and on the discretization

fn+1 = (1 - )‘At) fn + )\Atp(fm fn) (3'10)
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of (3.7). Here, f, = fu(v) = f(v,tn), to =0, and t,, = top + nAt for some small increment At > 0.
The interpretation of (3.10) is that, if At is small enough so that 0 < AAt < 1, “particle 1”7 (or any

fixed given particle)

e fails to undergo a collision and does not have any velocity update with probability 1 — AAt,

or

e experiences a collision with probability AAt and has a new velocity generated according to

the collision process described by P(f, f).

For the following algorithm descriptions, we assume that At divides into t evenly.

Nanbu’s Algorithm

Fori=1,2,... N, let Ugn) denote the velocity for particle ¢ at time step n =0,1,2,....

(1) Sample initial velocities, vgo), véo), . ,vj(\(,)), for all N particles independent and identically

distributed (i.i.d.) from fp(v). Set s = 0.

(2) Fori=1,2,...,N

* )

e With probability 1 — AAt do nothing to the velocity of the ith particle.

Set U(’Hl) = v(n).

i .

e With probability AAZ,

x Randomly select a second particle from among the remaining particles in
{1,2,...,N}.

« Draw an angle value 6 ~ p(6).

(nt1) _

i

(n)

Y

(n)

* Set v cost9+vj sin 6

(3) Set s=s+ At and n =n+ 1. If s < ¢, return to Step 2.

As kinetic energy is not conserved in Nanbu’s Algorithm, Babovsky [4] modified the algorithm

to update both v; and v; as particles i and j collide. Additionally, at each time step, the number
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of collisions processed is taken to be equal to the expected number of collision pairs in an interval
of length At. As the expected number of collisions is AINAt, the expected number of collision pairs

is ANAt/2. This is then probabilistically rounded using the following function.

|x] , with probability |z|+1—=x
Round[z] =

|z +1 , with probability =z — |x]

It is easy to see that, for any given x, the expected value of Round[x] is x.

Nanbu-Babovsky Algorithm

Fori=1,2,...,N, let UZ-(n) denote the velocity for particle ¢ at time step n =0,1,2,....
(1) Sample initial velocities, v%o), véo), . ,’U](\(,)), for all N particles i.i.d. from fp(v). Set s = 0.

(2) Fori=1,2,...,N,

Select m = Round[ANAt/2].

Randomly select m pairs, (i,7) of particle indices, without replacement, from among

all possible pairs.

For each selected pair (i, j), draw an angle value 6 ~ p(6) and set

(n) (n)

v§n+1) v, ' cost + vjn sin 6
vj(-nﬂ) = —vi(n) sin f + vj(-n) cosf.
e For the remaining unselected indices k, set v,(cnﬂ) = vlin).

(3) Set s =s+ At and n =n+ 1. If s < ¢, return to Step 2.

Both the Nanbu and the Nanbu-Babovsky algorithms can be shown to converge to the so-
lution of the discretized Kac equation given by (3.10). Nanbu’s algorithms allows each particle to
potentially undergo a collision only once per time step and the Nanbu-Babovsky scheme allows

each pair of particles to potentially undergo a collision once per time step.
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3.3.2 Bird’s DSMC Algorithm

The Direct Simulation Monte Carlo (DSMC) approach due to Bird [6] was first proposed in
the late 60’s and has been shown ([51]) to converge to the solution of (3.7). It differs from the
Nanbu-Babovsky algorithm in that any particular collision pair may be selected multiple times in
the time interval of length At. Since there are ANAt/2 collisions expected in that interval, the
average time between collisions is taken to be At. := At/[ANAt/2] = 2/(AN).

Bird’s DSMC Algorithm
1) Sample initial velocities, U(O), v(o), e ,v(o), for all N particles i.i.d. from fp(v). Set s = 0.
1 5V2 N

(2) Process one collision as follows.

e Select a pair (i, j) of particles at random from among all possible pairs.
e For each selected pair (i, ), draw an angle value 6 ~ p() and set

(n) (n)

v§n+1) = v, 'cosf + vjn sin 6
vj(-nﬂ) = —vi(”) sin f + vj(-n) cos 6.
e For the remaining unselected indices k, set v,E/,nH) = v,(cn).

(3) Set s = s+ At. and n =n+ 1. If s < ¢, return to Step 2.

Bird’s DSMC techniques comprise a much wider class of extremely useful and popular al-
gorithms than the one detailed here. As it stands, the one given here is essentially the Nanbu-

Babovsky algorithm where pairs are selected with replacement.

3.3.3 Exact Simulation of fy(v,t) Based on Properties of the Poisson process

In this section, we simulate exactly from fx (v, t) using the actual Poisson numbers of collisions
between important time points as opposed to the expected numbers of collisions. We do not
partition the interval (0,t), as in the previously described algorithms but instead focus on collision

times for the fixed “particle 1”.
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Recall that the N-particle ensemble is assumed to undergo collisions at times of a Poisson
process with rate AIN. As each collision involves 2 particles, this means that pairs of particles are
colliding according to a Poisson process with rate AN/2. The probability that particle 1 is involved
in any one of these collisions is (N — 1)/(];) = 2/N. So, the particle 1 collision process is a thinned
Poisson process with rate (AN/2) - 2/N = X. Therefore, we begin by simulating a Poisson rate At
number of collisions for particle 1 in the time interval (0, ).

Though intercollision times for particle 1 are exponential with rate At, once the number
of collisions during (0,¢) is fixed, the times of those collisions are uniformly distributed over the
interval (0,¢). So, rather than divide up the interval (0,¢) into At increments, we consider only
the times when particle 1 is involved in a collision by first simulating K ~ Poisson(At), then
simulating independent Uy, Us,...,Uk from the uniform distribution over (0,¢) and finally con-
sidering the ordered time points T4, 7T5,...,Tx corresponding to the ordered U;. (For example,
Ty = min(Uy, Us, ..., Uk) and Tx = max(Uy,Us, ..., Uk).)

To update the velocity for particle 1 at time 77, we must choose, at random, a particle from
the remaining N — 1 particles for collision. As this “sub-ensemble” of particles has been evolving
over the time interval (0,77), we will process K; ~ Poisson(A(N —1)T1/2) collisions involving only
these particles without any regard for the times of these collisions and then select one at random
for collision with particle 1. Continuing in this manner, we get the following algorithm.

Exact Poisson Algorithm

(1) Sample initial velocities, vgo), véo), . ,v](\?), for all N particles i.i.d. from fy(v).

(2) Simulate K ~ Poisson(At). This is the number of collisions involving particle 1 during

[0, t]. Suppose that K = k.

(3) Simulate Uy, Us,..., U i unif(0, ¢) collision times for particle 1.
Denote the ordered Uy, Us,..., Uy as T1,Ts,..., T where 71 = min(Uy, Us,...,Uy) and

Ty, = max(Uy, Us, ..., Uy).
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(4) Let Ty = 0.

Fori=1,2,....k,

e Simulate K; ~ Poisson(A(N — 1)(T; — T;—1)/2). This is the number of “non particle

17 collisions happening during the time interval [T;_1,T;]. Suppose that K; = k;.
e Process k; collisions for the (N — 1) particle ensemble as follows.
For j =1,2,...k;
* Select a pair (r, s) of particles at random from among all possible pairs of particles
with labels in {2,3,...,N}.
« For each selected pair (r, s), draw an angle value 6 ~ p(f) and set new velocities

as

v, = vpcosf + vgsinb
vg = —Upsinf 4+ vscosb
where v, and vs on the right-hand side of these equations are the pre-collision

velocities for particles r and s.

e Randomly select one particle from {2,3,..., N} and process a collision with particle

1 by assigning new velocities

v, = vpcosf + vgsinb

Vs = —vpsinf + vscosl

where r is the selected index in {2,3,..., N} and v; and v, on the right-hand side of

these equations are the pre-collision velocities for particles 1 and 7.

Note that, unlike the Nanbu, Nanbu-Babovsky, and Bird algorithms, we are not using any sort
of time counter or partitioning of the time interval [0,¢]. Furthermore, we are actually processing
a Poisson number of collisions, as assumed by the derivation of the Kac equation, in any given
time interval rather than simply the expected number of collisions under the Poisson assumption

as in Bird’s algorithm. Finally, we note that we are saving on collisions by not propagating the
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system in the time interval [Tk, t] as we are trying to sample the velocity of particle 1 at time ¢
and this is unchanged in this interval. This gives an expected savings of (N/2)(1 — e~*) collisions

per simulation repetition.

3.3.4 Simulation Results

In order to assess the performance of the different algorithms, we simulated repeated draws
from the velocity distribution of the first particle, v, for various values of NV, and compared the
results to the exact solution (for N — o0) given by (3.8). Specifically, for each algorithm we
simulated N i.i.d. velocities and propagated the ensemble forward according to the algorithms
described in Sections 3.3.1, 3.3.2, and 3.3.3, collecting the ultimate values for v; at various times t.
In all cases, we were able to achieve reasonable accuracy for a surprisingly small number of particles.
However, since the accuracy of the Nanbu and Nanbu-Babovsky algorithms both depend on how
finely the time interval is partitioned, and since the Nanbu-Babovsky sampling with replacement
step is relatively inefficient, we will focus our comparisons mainly on the Nanbu, Bird, and Poisson
algorithms.

We will express the accuracy of our numerical results using an estimate of the total variation
norm (TV N) between the true and estimated distributions. The total variation norm between

two probability measures m; and s is defined to be

1
||y — || = 3 Sup |T1(A) — m2(A)],
AeB

where B is the set of Borel sets in the appropriate space. If m and 7o are discrete measures, then

the total variation norm can be written simply as

= moll = 5 3 () — ma()] (3.11)

In this chapter, we discretized both the true and simulated densities by a natural histogram binning
procedure in order to use (3.11) to give an estimated TV N between the target density and our

simulation results. As this estimate depends on the bin widths used, the actual values of our
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estimated TV N are not as interesting as the relative values. We will keep our bin widths constant
throughout.

For example, for ¢ = 2, using Nanbu’s algorithm with NV = 5 produced distributions for v;
shown in Figure 3.1. In both cases the “target density” given by (3.8) is shown as a solid curve.

It is no surprise that the smaller simulation time step gives better results, but to illustrate the

Density
015 0.2 025 030
| | | |
Density
0.15 0.20 0.25 0.30
| | | |

0
0.10

0.05
|
0.05
|

0.00
L
0.00
L

Figure 3.1: Histograms of 100,000 values of v; at t = 2 with N = 5 using Nanbu’s Algorithm for
At = 0.01 (left) and At = 1.0 (right). Curve is exact solution for N = oo given by (3.8).

TV N error, the estimated values of TV N for the left and right graphs are 0.0187 and 0.0482,
respectively. Figure 3.2 shows estimated TV N, for several values of N, as the simulation time step
size decreases. Each point on the graph was created by averaging 100 values of TV N, where each
estimated distribution was created from 100,000 realizations of v;. The height of the horizontal
line just below 0.01 shows the average TV N for 100 samples of size 100,000 for Bird’s DSMC
algorithm (which doesn’t depend on At) for N = 50. This was indistinguishable to several decimal
places from similarly estimated TV N for larger N, for the Poisson algorithm for N > 50, and
for a baseline estimated TV N for samples of size 100,000 from the standard normal distribution.
(Recall that we do not expect the estimated TV N to necessarily approach zero even in the case
of exact simulation from the normal distribution due to the histogram binning discretization used
in its calculation.) Figure 3.3 shows the average TV N values (again averaging 100 values each

computed from a sample of size 100,000) for the three algorithms as a function of the number



47

of particles in the simulations. Here we can see that the Poisson algorithm consistently performs
better than both the Nanbu and Bird algorithms for small V. That is, less particles are needed in
order to approximate (3.8) when using the Poisson algorithm. Distributions for vy, estimated by
the DSMC and Poisson algorithms are shown in Figure 3.4. While they are similar both visually
and by the TV N, the Poisson algorithm appears to be performing slightly better in the tails, as

shown in Figure 3.5 for the case of the upper tails.

0.05
|

TUN

0.02
|

Figure 3.2: Estimated TV N for Nanbu’s Algorithm as a function of k for At = 2/2*

3.4 An e-Perfect Simulation of f(v, c0)

“Perfect sampling” (or “perfect simulation”) is the name applied to a class of Markov chain
Monte Carlo (MCMC) algorithms which enable one to draw values exactly from the stationary
(limiting) distribution 7 of a Markov chain. This is in contrast to the more typical MCMC algo-
rithms in which transitions are simulated for “a long time” after which output is collected giving

only approximate draws from 7.
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Figure 3.3: Estimated TV N for the Nanbu, Bird, and Poisson algorithms as a function of N

0.30
|
030
|
~
7
-

=
0.25
|
—
T
—

025
|

Density
015 020
|
—
Density
010 015 0.2
|

0.10
|

0.05
|

0.05
|

0.00
L

-4 -2 o 2

0.00
L

-4 -2 o 2
vi vi

Figure 3.4: Histograms of 100,000 Values of v; at t = 2 with N = 50 for the DSMC algorithm (left)
and the Poisson algorithm (right).
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Figure 3.5: Histograms of 100,000 upper tail values of v; at t = 2 with N = 1000 using Bird’s
DSMC algorithm (left) and the Poisson algorithm (right).
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3.4.1 Perfect Simulation

The essential idea of most of these approaches is to find a random epoch —T in the past
such that, if one constructs sample paths (according to a transition density p(z,y) that has sta-
tionary/limiting distribution 7) from every point in the state space starting at —7', all paths will
have met or “coupled” by time zero. The common value of the paths at time zero is a draw from 7.
Intuitively, it is clear why this result holds with such a random time 7. Consider a chain starting
anywhere in the state space at time —oo. At time —T' it must pick some value x, and from then on
it follows the trajectory from that value. Since it arrives at the same place at time zero, no matter
what value z is picked at time —T', the value returned by the algorithm at time zero is the tail end
of a path that has run for an infinitely long time and is therefore a “perfect” draw from 7.

Typically, perfect sampling is carried out using stochastically dominating processes that
bound or “sandwich” the process of interest for all time as depicted in Figure 3.6. At time —T,
these bounding processes are at the extremes of the state space. At time —b, they have coupled
together to form a single path that is followed forward to time 0. If such coupling is not achieved
before time 0, 7' is increased and the bounding processes are resimulated using the same random
inputs whenever they pass through previously visited time points. Note that when the bounding
processes couple at some random time —b, all possible sample paths of the process of interest have
necessarily coupled at some earlier random time —a. Note further that a path started anywhere in
the state space at time —71 will be at the same place at time 0. This value at time 0 is a perfect
draw from the stationary distribution of the Markov chain. Time —7T is known as a backward
coupling time.

Forward coupling of sample paths does not yield the same result for reasons that we will not

go into here. For more information on perfect sampling algorithms, we refer the reader to [9].
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Figure 3.6: Depiction of stochastically dominating (bounding) processes in perfect simulation.

51



52

3.4.2 e-Perfect Simulation for the Kac Model

We say that an algorithm is “c-perfect” if the distance between the bounding processes
depicted in Figure 3.6 is monotonically decreasing and if this distance is less than € at time 0. In
this Section we will describe an e-perfect algorithm for sampling from f(v,00) that is interesting
mainly as a proof of concept for the approach that we hope will eventually be adapted to and useful
for more interesting models.

Consider, for the purpose of illustration, the case where we have only N = 3 particles.
Simulating i.i.d. velocities vy, v2, and v3 from fo(v) gives a kinetic energy F = vi + v3 + v3. As
we propagate these 3 velocities forward in time, we create a realization of a 3-dimensional Markov
chain that lives on the surface of a 3-dimensional sphere with radius vE. For the simple model
considered in this chapter, we can, without loss of generality, consider the velocity vector as a
random walk on the sphere restricted to the first octant where vq, v, v3 > 0 and at the end of our
simulation attach a negative sign to each velocity independently of the others with probability 1/2.

For the purpose of achieving a coupling of sample paths walking on the sphere, we note that

v; cos f 4 v; sin @ can be written as
vicosf +vjsinf = A sin(f + ¢)

for some A and ¢. In the case where v; = 0, we may take A = v; and ¢ = 7/2. In the case that
vj # 0, we may take A = ,/v? + vjz- and ¢ = tanfl(vi/vj). Suppose that the current position of
the random walk is (v, v2,v3) and that the particles randomly selected for updating are indexed
by (¢,7) = (1,2). Note then that A = \/m and, since vy is nonzero with probability 1, the

new velocity for particle 1 is given by

v) =/E —v3 sin(f + ) (3.12)

where 6 ~ unif(0,27) and ¢ = tan=!(v; /v2). Since  + ¢ is uniformly distributed over an interval

of length 27, 0 + ¢( mod 27) ~ unif(0, 27), and the distribution of v] in (3.12) is the same as that



of /E —v3 sin(f). Thus, we will update vy as

v) =4/ E —v3 sin(6)

where 6 ~ unif(0, 27) and then vy by setting

v = /B — o2 — (v})2.
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(3.13)

(3.14)

Four different values for (vi,v9,v3) are visualized as points on the sphere in the first octant in

Figure 3.7, as well as an angle 6 drawn uniformly over (0,27). All four points, and indeed all

points on the entire surface, will map onto the depicted arc.

Vs

Figure 3.7: Visualization of sample paths of the “Perfect Kac Walk” on a sphere in the first octant.

Suppose now that the next particles randomly selected for updating are indexed by (i,7) =

(3,1). Given a new angle € drawn uniformly over (0, 27), the points on the arc from Figure 3.7 will

map to the smaller arc segment depicted in Figure 3.8.

It is easy to see that if the same indices (in the same or different order) are selected twice

in a row, the arc will maintain its length and move “laterally”. However, if at least one index is

different from those in the previous step, the arc segment will, necessarily, shrink in length. In

other words, we will be mapping all points on the sphere closer and closer together. Thus, the

algorithm is closing in on a single point on the surface. Formally, consider N particles with all



(a) Previous arc with rotated axes (b) New angle and arc mapped to smaller arc

Figure 3.8: Arc from Figure 3.7 mapped to shorter arc.

54



95

positive velocities. Suppose two realizations of the velocities are given by 4 and v, both living in

the first orthant. Applying a collision between particles i and j, we get

2
1R (0)i — Rij ()75 = {(Ul—vl)2+"'+<\/U?+u?sin0—\/vf—i-vj?sinO) + -
2
+(\/u?+u?cosﬁ—\/mcosﬁ) +--~+(uN—UN)2]

= [(ul—vl)2+'--—|—<u?+u§—2 u?—i—ujz\/vi?+vj2+v§+v?>sin29+'--

+ (u?—|—u]2-—2\/ul2+u?\/vi2—|—vj2-+vi2+v]2-) cos® 04 - + (un —UN)Q]
< {(ul —v1)? A (uf +ud = 2(us + uvg) 4 vF + vF) sin® 6 + - -

+ (u? —|—u§ — 2(uiv; + ujv;) + 07 —i—v?) cos? 0+ + (un — vN)Q]
= {(ul —v)? 4 (= )+ (u —v;)?) sin® O + - -

2

+ ((u; — v)* + (uj —v;)?) cos? O + -+ + (uny — vn)?

~ [(ul—v1)2+---+<ui—vl-)2+---+<uj—v]-)2+-~+(uN—vN)2}
—
= |lu =43,
where equality only occurs when (u;, u;) = ¢(v;,v;), for some constant ¢. This will occur anytime
that the same pair of particles is chosen multiple times in a row, but assuming that a new pair is
chosen, the coupled collision acts as a contraction on the portion of the sphere living in the first
orthant.

To formalize the e-perfect sampling algorithm for general N, we will follow the N corner

points €, &, ..., En, where & = VE € and € is the ith standard basis vector for RY.

e-Perfect Algorithm

Set an error tolerance € > 0 and set n = 1.

(1) Simulate and store 6_,, ~ unif(0, 7/2).

Randomly select a pair of distinct indices from {1,2,..., N} and store as a 2 x 1 vector P,
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with entries denoted as P_,,(1) and P_,(2). (Order is important. For example P_,, = (3,5)

is different from P_, = (5,3).)
Set & =+Eé fori=1,2,...,N.
Let t =n.
(2) Let ¢;(j) denote the jth element of ¢;.
Fori=1,2,...,N, let e = [c;(P_4(1))]? + [c;(P_¢(2))]? and set
G(P(1)) = Ve sinb_,

and

G(P-4(2)) = Ve — [G(P-(1))]?
If t =1, go to Step 3. Otherwise, let t =¢ — 1 and return to the beginning of Step 2.

(3) Compute the Euclidean distance between all pairs of corner points. Let D be the maximum

of these distances. If D < €, compute the average corner point

n
o1 Zﬁ
C::N' Ci,

i=1

multiply each coordinate of & by —1 with probability 1/2 independent of all other coordi-
nates, output the new ¢, and exit the algorithm. Otherwise, set n = n + 1 and return to

Step 1.

In practice, it is more efficient, in the search for a backward coupling time, to step back
further than one step at a time. It is generally advised to let ¢ = 2™ in, what is in this case, Step
1 of the e-perfect algorithm. For simplicity, we use the Euclidean distance between corner points
as a surrogate for arc length distance on the surface of the sphere since convergence to zero of the
former implies convergence to zero of the latter.

In Figure 3.9 we show the results for 100,000 draws of v using the e-perfect algorithm with
N = 50 and ¢ = 1079 along with the curve given by (3.9). For this simulation run, the mean

backward coupling time was 948.2 with a minimum of 422 and a maximum of 1811.
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Figure 3.9: Histogram of 100,000 draws of v; using the e-perfect algorithm with N = 50 and
e = 1076, The solid curve represents the true solution.



Chapter 4

Uniform Sampling of DAGs

4.1 Introduction

Directed acyclic graphs (DAGs) are collections of nodes and directed edges such that there are
no directed paths from a node to itself. DAGs are often used to model the flow of information and
form the underlying structure of Bayesian Networks [48]. As such, testing algorithms for learning
Bayesian Networks and making inferences on structural properties of DAGs leads to a problem
which is very simple to state but much more difficult to solve: How can a DAG be uniformly
selected from the set of all DAGs with n nodes? Direct enumeration is not possible since the
number of DAGs grows super-exponentially as a function of the number of nodes. Table 4.1 lists
the number of DAGs for 1-9 nodes.

Recent work ([32],[38],[42]) on this problem has relied mostly on Markov chains with unknown

mixing times or asymptotic approximations of recursive formulas for counting DAGs. This chapter

# of nodes | # of DAGs

1

3

25

543

29,281

3,781,503
1,138,779,265
783,702,329,343
1,213,442,454,842 881

© 00 O U i W N~

Table 4.1: Number of Directed Acyclic Graphs with 1-9 nodes
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explores some perfect sampling techniques to sample uniformly from the set of DAGs on a given

number of nodes.

4.2 Forward Markov Chain

Melancon et al [42] proposed a very simple Markov chain whose stationary distribution is

uniform over the set of DAGs. The chain goes as follows
(1) Start with any initial DAG, X and let ¢t = 0.
(2) Select a pair of nodes i and j.

o Ifedge i — jisin Xy, set Xpyp1 = Xy \ {i — j}.
o If edge i — j is not in X; and adding it leaves the graph acyclic, set
Xt+1 = Xt U {’L — j}

e Otherwise, set X;11 = X;.
(3) Set t =t + 1 and go back to step (2).

It is easy to check that this leads to an irreducible aperiodic Markov chain, and that the correspond-
ing transition matrix is symmetric, which guarantees the desired uniform stationary distribution.
Melancon et al further argue that the algorithm can produce an approximately uniform sample in

O(n3logn) time.

4.3 Perfect Sampling Chains

The general concept of perfect sampling was reviewed in Section 3.4.1. Here, we apply this
idea in two separate ways. The first is through constructing a regeneration set that facilitates
coalescence of coupled chains. The second is a more direct application of stochastic domination

processes applied to the forward chain discussed previously.
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4.3.1 Regenerative DAG Coupler

Let G, be the set of DAGs on n nodes. Denote G,, C G,, the set consisting of DAGs with
either no edges or (Z) edges (which is the maximum possible number of edges). Note that n!
unique DAGs with (Z) edges can be constructed by first choosing an ordering of the nodes, and
then for every node, placing edges to every node that follows it in the ordering. Also, since the
adjacency matrix of any DAG with (g) edges is a permutation of the fully filled in lower triangular
matrix, there are at most n! such DAGs. G,, thus contains n! + 1 elements. We want to construct
a Markov chain that will uniformly sample from G,, but to do so we will work with an extended
state space of (G, x {T}) U (G,, x {R}). This extended state space corresponds to target states T,
and regeneration states R.

For ease of notation, we will enumerate this extended state space in the following way

e Let 1 represent the empty graph in G,, x {T'}.

o Let |G, —n!+1,|Gy| —n!+2,...,|G,| represent the graphs with maximal number of edges

in G, x {T'}.
e Fill in the values in between 1 and |G| —n! + 1 in order of increasing number of edges.
e Let |G| + 1 be the empty graph in G, x {R}.

e The remaining n! values correspond to the graphs with maximal number of edges in

Gn x {R}.
With this enumeration, we are attempting to draw from the distribution

7 = [pr7r | PRTR]

T ox 1

using a transition matrix of the form



with sizes

MT,T :
MT,R .

MRTI

]

MRR:

|Gn| x |Gp|
|Gy | x (n!41)
(n!+1) x |G|

(n!+1) x (n!+1)
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Since we want to force coalescence through a regeneration, we choose M7 g to be of the form

Mrr=crRr

Pe pPf - DPf

Pe pPf - DPf

where p, is the probability of regenerating at the empty graph, and p is the probability of regen-

erating at a full graph. These should satisfy

pe + (n)py = 1.

The constant cp g represents the unconditional probability of moving to a regenerative state. Fur-

thermore, we can let Mpr r be of the form

Mg R = crR

Pe pPf - Df

Pe pPr - Df

since moving from one regenerative state to another should be itself again be a regeneration. The

constant cr r then represents the probability of staying in the regeneration set, Gy, X {R}.

The choices for the blocks M7 7 and Mg 1 are less constrained. They need to be constructed

in a way that allows for every state to be reached, while still being easy to simulate. The simplest

choice for Mg 7 is then

Mpgr1T = crT
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where, with probability cgr 7, the chain moves to the target set and the graph remains the same.

Instead of trying to define M 7, we examine the requirements there are for the coefficients

¢, and p;, 4,5 € {T, R}.
crr+ergr=1
crr tCcrRr=1
pr+pr=1

Stationarity requires that

prr = prerrrrMrr + prer,rTRCRT

= prerrnrMrr + prer7 p, 0 -+ 0 Py Pf}

and

PRTR = prcT,RTRMT R + PRCR,RTRMR R
:pTCT,R[ De DPf -+ DPf ]+pRCR,R[ Pe Pf o Dy ]

= (prcr,r + PRCR,R)TR

Combining together (4.2), (4.3), and (4.4), we get

CT.R
CT.R + CR,T

and then using (4.6) along with (4.1) and (4.3) we have

CR,T
cr,R + CRT

(4.1)

(4.2)

(4.4)

(4.5)

(4.6)

(4.7)

Now, substituting (4.6) and (4.7) into (4.5) and requiring non-negativity of probabilities, we get

min(1/pe, 1/py)
|G|

CRT <

(4.8)

which is maximized when p. = py = ﬁ Thus, the best we can hope for is to have a regeneration

|Gn|
n!+1°

probability of %, which leads to an average regeneration time of at least



63

4.3.2 DAG Coupling from the Past

Instead of forcing coalescence to take place through regenerations, we can design our Markov
chain to be able to be coupled in a way to allow natural coalescence to take place. For this, some
modifications to the original forward chain are needed. One of the biggest issues with using the
chain as described earlier is the fact that two instances of the chain may differ in the existence of
one edge. The chain whose graph has the edge will remove it if selected, while the chain whose
graph does not have the edge will attempt to add that edge. The only way the two chains will
eventually agree on that edge is if the edge becomes invalid for the chain that does not contain the
edge, which is a strong requirement.

In order to avoid this alternating behavior, we modify the chain to first select the type of

attempted move, along with the pair of edges. This leads to the following algorithm
(1) Start with any initial DAG, X( and let ¢t = 0.
(2) Select a pair of nodes i and j.
(3) Generate a uniform draw U ~ unif(0, 1).

o IfU < 3,
« If edge i — j is in Xy, set Xpp1 = Xy \ {i — j}.
* Otherwise, set X;y1 = X;.

o IfU > 1,

x If edge ¢+ — 7 is not in X; and adding it leaves the graph acyclic, set
X1 =X U {’L — ]}

* Otherwise, set Xy = X4.
(4) Set t =t + 1 and go back to step (2).

The second modification comes from the fact that edge additions and deletions are not the

only possible moves. Allowing edge reversals is known ([26]) to improve mixing at least in the
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context of Bayesian Networks. Incorporating these edge reversals, as well as making some minor

tweaks, we get the forward chain
(1) Start with any initial DAG, X( and let ¢t = 0.
(2) Select an ordered pair of nodes (i, 7).
(3) Generate a uniform draw U ~ unif(0, 1).

o IfU <3,

If edge i — j is in Xy, set X1 = X¢ \ {0 — j}.

*

*

If edge j — i is in Xy, set Xpp1 = Xi \ {j — i}

* Otherwise, set X1 = X4.

e Ifl<U<,
x If edge ¢+ — j is in X; and the removal of it allows for the addition of edge 7 — i,
then set X1 = (Xp \ {t = 7} U{j — i}
« If edge i — j is not in X; and adding edge {j — i} leaves the graph acyclic, set
X1 =X  U{j — i}
x Otherwise, set X1 = X;.
o If2<U,

If edge j — i is in X} and the removal of it allows for the addition of edge i — 7,

*

then set X1 = (Xp \ {j = i}) U{i — j}.

*

If edge 7 — ¢ is not in X; and adding edge {i — j} leaves the graph acyclic, set

Xt+1 =X;U {Z — ]}

*

Otherwise, set X;11 = X;.
(4) Set t =t + 1 and return to step 2.

The last piece is then to couple together multiple instances of the chain from all possible

starting graphs, and check for coalescence. Obviously, we cannot enumerate and check every single
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possible graph, so instead, we will keep track of whether an edge is in every chain, possibly some
of the chains, or none of the chains. This is done through introducing a mark, M;; € {0,7,1},
to every edge {i — j}. A mark of M;; = 1 means that every instance of the chain contains the
edge {i — j}, a mark of M;; = 0 means that none of the chains contain the edge, and a mark of
M; ; =7 means that some of the chains may possibly contain the edge. With these marks, we can
then easily check to see if all of the chains have coalesced. If all of the marks are either 0 or 1, then
the graph of all of the chains is the same. Putting this into the coupling from the past framework,

our new DAG CFTP Algorithm is as follows.
(1) Set T = 1.
(2) Initialize the marks M; ; =? for all i # j.
(3) Sample an ordered pair of indices (i, j)_r.
(4) Sample U_7 ~ unif(0, 1).
(5) Fort =T, —1,...,1,

o IfU_; <1/3,
* Set M;_,;_, =0and M;_,; , =0.
o If1/3<U_; <2/3,
* If the DAG consisting of edges with M}, = 1 prohibits adding edge j — ¢ or
reversing edge ¢ — 7, do nothing.
* If one or more edges with M}, y =7 prohibits adding edge j — ¢ or reversing edge
i — j, set M; ; =7 and M;; =7.
* Otherwise, set M; ; =0 and M;; = 1.
o If2/3 < U_y,

* If the DAG consisting of edges with M}, = 1 prohibits adding edge i — j or

reversing edge j — i, do nothing.
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* If one or more edges with M}, , =7 prohibits adding edge ¢ — j or reversing edge
j — i, set Mj,i =7 and Mi,j =7.

* Otherwise, set M;; = 0 and M; ; = 1.

(6) If M;; #7 for all i # j, then all the chains have coalesced, and M corresponds to the
adjacency matrix of uniformly sampled DAG.

Otherwise, set T'=T + 1 and return to Step (2).

4.4 Results

We first want to verify that our DAG CFTP Algorithm is truly returning a uniform sample,
as it theoretically should. With n = 3 nodes, there are only 25 DAGs which makes enumeration
possible. So we start with generating uniform DAGs with 3 nodes. A histogram of 1,000,000 draws
is shown in Figure 4.1.

5.0x10¢

4.0x10%

3.0x10¢

2.0x10%

1.0x10¢

Graph

Figure 4.1: Histogram of 1,000,000 draws from the uniform distribution on the set of DAGs with 3
nodes. Graphs are ordered in order of increasing number of edges.

It is then important to look at how the algorithm scales as the number of nodes increases.

We ran the DAG CFTP for n = 3,4,...,9 nodes, producing 1,000 uniform samples for each. The
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backward coupling time (bct) was also returned for each sample, allowing the average backward

coupling time to be estimated. Figure 4.2 shows the average backward coupling time along with

the theoretical average regeneration time from the Regenerative DAG Coupler.
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Figure 4.2: (Left) Empirical average backward coupling time in blue and theoretical regeneration
time in red as a function of the number of nodes. (Right) Ratio of empirical coupling time to

theoretical regeneration time

The ratio of the average backward coupling time over the regeneration time appears to

be approaching an exponential (linear in log scale). Using the last several data points, we can

approximate the average backward coupling time to be

’GTL| e—3.943n

bet X
¢ ~npl4+1

Although the DAG CFTP Algorithm performs better than the theoretical Regenerative DAG Cou-

pler, it still scales at a rate which makes the algorithm computationally infeasible for reasonable

numbers of nodes. Approximate methods are still required for larger numbers of nodes as is of

practical interest.



Chapter 5

Bayesian Network Structure Inference

Bayesian networks (Pearl [48]) are convenient graphical expressions for high dimensional
probability distributions representing complex relationships between a large number of random
variables. A Bayesian network is a directed acyclic graph consisting of nodes which represent
random variables and arrows which correspond to probabilistic dependencies between them.

There has been a great deal of interest in recent years on the NP-hard problem of learn-
ing the structure (placement of directed edges) of Bayesian networks from data ([10],[16],[23],[24],
[29],[31],[33],[34],[45]). Much of this has been driven by the study of genetic regulatory networks
in molecular biology due to advances in technology and, specifically, microarray techniques that
allow scientists to rapidly measure expression levels of genes in cells. As an integral part of ma-
chine learning, Bayesian networks have also been used for pattern recognition, language processing
including speech recognition, and credit risk analysis.

Structure learning typically involves defining a network score function and is then, in theory,
a straightforward optimization problem. In practice, however, it is quite a different story as the
number of possible networks to be scored and compared grows super-exponentially with the number
of nodes. Simple greedy hill climbing with random restarts is understandably inefficient yet sur-
prisingly hard to beat. There have been many deterministic and stochastic alternatives proposed
in recent years such as dynamic programming ([36],[47],[46]), genetic ([15],[39],[40]), tempering
([5]), and Metropolis-Hastings (]20],[23],[41]) algorithms. There have been different approaches to

the task, including order space sampling and the scoring of graph “features” rather than graphs
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themselves. Several of these methods have offered some improvement over greedy hill climbing
but can be difficult to implement. Deterministic methods tend to get stuck in local maxima and
probabilistic methods tend to suffer from slow mixing.

In this chapter we consider a new stochastic algorithm in which the appearance and disap-
pearance of edges are modeled as a birth and death process. We compare our algorithm with the
popular Metropolis-Hastings algorithm and give empirical evidence that ours has better mixing

properties.

5.1 Bayesian Networks

Bayesian networks are graphical representations of the relationships between random vari-
ables from high dimensional probability distributions. A Bayesian Network on N nodes is a directed
acyclic graph (DAG) where the nodes (vertices), labeled 1,2,..., N, correspond to random vari-
ables X1, Xo,..., Xy and directed edges correspond to probabilistic dependencies between them.
We say that node i is a parent of node j and node j is a child of node i if there exists a directed
edge from ¢ to j, (in which case we write ¢ — j), and use the notation pa; to denote the collection
of all parents of node j. We will refer to nodes and their associated random variables interchange-
ably. Thus, pa; may also represent the collection of parent random variables for X;. Rigorously, a
Bayesian network consists of a DAG and a set of conditional densities {P(X;|pa;)}, along with

the assumption that the joint density for the N random variables can be written as the product
N
P(X1,Xy,..., Xn) = | [ P(Xilpas).
i=1
In other words, all nodes are conditionally independent given their parents.
In the problem of structure inference, the DAG is not explicitly known. A set of observations
D = (D1, Ds,...,Dy) is given, where each D; is an N-tuple realization of (X1, Xa,..., Xn). The

goal is then to recover the “best” edge structure of the underlying Bayesian Network, which may be

measured in many ways. For example, one may consider the best DAG as the one that maximizes
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the posterior probability

P(G|D) « P(D|G)P(G) (5.1)

over G. Indeed, (5.1) is important for many measures of “best DAGs” and it is the goal of this
chapter to simulate DAGs efficiently from this distribution.

Throughout this chapter, we will use the common assumption that the data D come from
a multinomial distribution, allowing us to analytically integrate out parameters to obtain a score

which is proportional to P(G|D).

5.2 Sampling Methods

In this section, we discuss two sampling methods for P(G|D). First, in Section 5.2.1, we
review a Metropolis-Hastings based algorithm for structure learning. Then, in Section 5.2.3, we
introduce a new algorithm for sampling from P(G|D) based on a continuous time Markov process.
The goal is to reduce the number of wasted computational steps that can come from many rejec-
tions in Metropolis-Hastings. Instead of stepping through a discrete time chain with the same state
repeated many times before a move to a new state, our goal is to find when the next transition will
occur, and jump to that transition. This idea is illustrated in Figure 5.1. The circles represent a
realization of a discrete time Markov chain with transitions rarely occuring. The red line depicts a
continuous time process with the same transitions. The length of the line between transitions repre-
sents the waiting time between jumps. By knowing the waiting times and the resulting transitions,

we can potentially remove wasted computational time of frequent rejections.

5.2.1 Structure Metropolis-Hastings

In [41], Madigan et al. construct a Metropolis-Hastings Algorithm for walking through the
space of BN structures, which was later improved upon by Grzegorczyk and Husmeier in [26]. The
basis of the algorithm is the construction of a proposal density based on three possible types of
moves: adding a single edge, removing a single edge, or reversing the direction of a single edge.

Of course, only moves which leave the graph acyclic are allowed in the proposal. Thankfully, the
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Figure 5.1: An example realization of a Markov chain with many rejections, with the state at each
step given by circles, and a continuous time process with the same transitions given as a red line.
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possible moves are quite easy to calculate ([22]). The possible edge additions are given by the zeros
of the matrix

[(T-4)™]"+4

where A is the adjacency matrix of the current graph, and I is the identity matrix. The possible

edge reversals are given by the ones of the matrix
(I-A)leA

where Ae B is component-wise multiplication between A and B. The Structure Metropolis-Hastings

Algorithm then goes as follows.
(1) Start with an arbitrary initial DAG, Gg, and set n = 0.
(2) Choose a proposal graph G’ uniformly from all graphs obtainable by one of the following

e Adding a single non-cycle causing edge to G,,.

e Removing a single edge from G,.

e Performing a non-cycle causing reversal of a single edge in G,.
(3) Draw U ~ unif(0, 1)
(4) If

< P(G'|D)(# of moves from G')
~ P(Gy|D)(# of moves from G,,)’

set G,11 = G'. Otherwise, set G111 = Gy,.

(5) Set n =n+ 1 and return to step (2).

5.2.2 Jump Processes

Let (2, F) be a state space consisting of a non-empty set 2 and a sigma algebra F on (.
A jump process on (2, F) is a continuous time stochastic process that is characterized as follows.

Assume the process is in some some state x € 2.
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e The waiting time until the next jump follows an exponential distribution with rate (or

intensity) A(x) and is independent of the past history.

e The probability that the jump lands the process in F' € F is given by a transition kernel

K(z,F).

It is known (e.g. [21], [49]) that there exists a Q; :  x F — R so that Q;(z, F) is the probability
that at time ¢ the process is in F' given that the process was in state x at time 0. Such @; are

defined as the solution to Kolmogorov’s backward equation

5@ F) = N0 Qi F) +30) | @il YK o)

Furthermore, let an) (x, F') be the probability of a transition from z to F' with at most n

jumps. If A(z) is bounded then

Q) (2, F) := lim Q" (z, F)

n—oQ

is the unique minimal solution to Kolmogorov’s forward equation

;Qt(xaF): —/F)\(Z)Qt(l‘,dz)-i-/ A2)K(z, F)Q(z,dz).

Q
(It is “minimal” in the sense that if Ry(z,F) is any other nonnegative solution, then
Ry(z,F) > Qtoo)(x,F) forallt >0,z € Q,and F € F.)
For a distribution, 7, to be invariant under such a process, m must satisfy the detailed balance

conditions
m(2)A(2) K (2, dy)dp(z) = m(y)\y) K (y, dx)dp(y)

with respect to some density .

Preston [49] extended this jump process to the trans-dimensional case where jumps from
states in €2, can move the process to a one dimension higher state, living in ,,11, with (birth) rate
Ap(z) or to a one dimension lower state, living in €,,_;, with (death) rate Ag(x). Associated with

these birth and death rates are birth and death kernels, K; and K;. The total jump rate and the
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transition kernel are then given by

Az) = Mp(2) + Aa(z)

/\d(l’)
Az)

For a configuration x with n points to move to a configuration 2’ with n + 1 points (or vice

K(z,F)= Ky(z, F) + Ki(z, F).

versa), the detailed balance conditions simplify ([49], [50]) to requiring balance, with respect to ,

of the birth and death rate of a single point in the configuration. That is, we require that
m(z)b(z, 2’ \ x) = n(z)d(2', 2" \ 7)

where b(x, 2’ \ x) is the birth rate of the single point 2 \  given that the current configuration
of points is x, and d(a', 2’ \ z) is the death rate of the single point 2’ \ = given that the current

configuration of points is 2’. These relate to the total birth and death rates in that
Xo(x) =) (w2’ \ x)

A(z') = d(a', 2’ \ x)
where the birth sum is taken over all states 2’ that consist of configuration x with the addition of

a single point and the death sum is taken over all states x that consist of configuration 2’ with a

single point deleted.

5.2.3 A Birth and Death Process on Edges of a BN

To construct a jump process for BN structure inference, our goal is to construct a birth and
death process acting on edges of a BN which has invariant distribution P(G|D).

The relevant state space is (g,29), where G is the set of all DAGs with N nodes and 29 is

the power set of G. We define the disjoint sets G, k =0, ..., N(A;*l), to be the set of DAGs with
exactly k edges. Our jump process will then jump between the G for adjacent values of k.

For G € G, denote the graph with the addition of the edge from node i to node j by

(GU{i — j}) € Gr11, and the graph with the removal of the edge from i to j by (G\{i — j}) € Gx_1.
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Detailed balance then requires that, for every edge ¢ — j that is a valid, i.e. non-cycle causing,
addition,

P(GID)b(G,{i = j}) = P(GU{i = j}[D)d(GU{i = j}, {i = j}).

It is convenient to let

dGu{i—jh{i—jiH=1

so that

bG i i) = P

—  PDIGU{i=j}) P(GU{i—j})
o P(D|G)P(G)

If we let A; denote the M-dimensional vector of observations of X in the data set D, this birth

rate may be rewritten as
P(Aj] Ay, GU{i = j})P(GU{i — j})

b(G, {i —j}) = P(Aj]Ape,. G)P(G)

Here, Ay, is the M x k matrix of data points for the & parents of node j in G' (Apq; = 0if k=0)
and Apa9 is the M x (k + 1) matrix of data points for the k parents of node j in G U {i — j}.

The transition rates are then given by

(@)=Y WG {i—j}),

valid i—j

MG = > L

{i—j}eCG
With this, we can easily construct a way to simulate from this process in the following way.

(1) Start with an arbitrary initial DAG, G

(2) Compute the birth rates b(G,{i — j}) for all possible valid i — j edge additions to G.

Compute
M(G) = Y b(G,{i—j})
valid i—j

and
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(3) With probability A\g(G)/(Ay(G) + Aa(G)), remove a randomly selected existing edge.

Otherwise, add valid edge ¢ — j with probability b(G, {i = j})/ s (G).
(4) Return to step 2.

At first glance, it may seem like such an algorithm would be computationally expensive, as
the required birth rates depend on computing the score for two different graphs. However, if we
assume a modular score, the computation at each step is manageable. A modular score means we

have

N
P(D|G) = [[ P(AilAw,;. G)

i=1
which leads to a birth rate of
oti sy < POV DI, POV i )
’ P(G)TT, P(Ail A, G
_ PGU{E = 53)P(A| A aGU{Z—W})
a P(G)P(Aj|Ape;, G)

So, for each birth rate, we only need the ratio of the altered score to current score of a single node
corresponding to the child end of the proposed edge.

Further computational relief comes from the fact that most of the birth rates can be stored
from previous steps. After adding or removing an edge, the only birth rates that need to be
recalculated are for edges pointing to nodes whose parent set has been altered, edges which were
not previously valid, or edges which are no longer valid.

These realizations allow for a more complete and efficient algorithm
(1) Start with an initial DAG, G
(2) For all possible edge additions, i — j, calculate the birth rate b(G,{i — j})

(3) With probability A\g(G)/(Ay(G) + Aa(G)), remove a randomly selected existing edge.

Otherwise, add a valid edge k — ¢ with probability b(G, {k — £}).

(4) If any of the following are true, update the birth rate b(G, {i — j}).



7
e j =1/
e Edge ¢ — j was not a valid addition before the addition or removal of edge k — ¢ but

now is valid

e Edge i — j was a valid addition before the addition or removal of edge k — ¢ but now

is no longer valid

(5) Return to step 3.

5.3 Experimental Results

While the theory guarantees that our edge birth and death process will have the correct
stationary distribution, in this Section we investigate the mixing time and whether or not Monte
Carlo simulation of graphs from P(G|D) using our method is feasible in practice. In order to
attempt to avoid overfitting, i.e. introducing too many edges to fit the data, we will select our prior

distribution P(G) to give a log score proportional to the Akaine Information Criteria (AIC).

log P(G|D) x AIC(G|D) = —2log P(D|G) + 2 (# parameters in G)

In the simulation study, we first consider a simple 4 node graph so that we may compare our results
with exact computations. We generated 50 observations of X1, Xo, X3, X4 as related by the DAG
in Figure 5.2. Each node was allowed to take on values in {1,2, 3,4}, with equal probability.

We then ran both the standard Structure Metropolis-Hastings algorithm and our Edge Birth
and Death Algorithm. Figure 5.3 shows two independent runs of each algorithm. While both
algorithms tend to find high probability regions of the state space, our edge birth and death
algorithm explores much more of the state space with far fewer number of steps.

One benefit of running Monte Carlo methods is they allow us to easily calculate the probabil-
ities of specific graph features, e.g. edge probabilities. With the Edge birth and Death Algorithm,
the edge probabilities correspond to the proportion of time that the graphs contain the given edge.

With the same 4 node graph as before, we calculated the edge probabilities and compare them to
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Figure 5.2: 4 Node Graph Used for Testing

Figure 5.3: (Left) Paths of two (red and blue) independent Metropolis-Hastings chains of 20,000
steps. (Right) Paths of two independent Edge Birth and Death Algorithm runs of 1,500 jumps. The
circles represent each of the 543 possible DAGs, with size proportional to the posterior probability
of the graph.
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the true edge probabilities both for m = 100 observations and m = 500 observations. The results
are shown in Table 5.1. As the number of observations increases, the error in estimating edge prob-
abilities decreases, as expected. Even with edges that are not being predicted entirely accurately,
the error is balanced out between the probability of an edge and the reversed version of the edge.
For example, with 50 observations, the probability of edge 1 — 2 existing was underestimated by
0.06, but the probability of edge 2 — 1 existing was overestimated by 0.06. This keeps the correct

dependencies between random variables, but the causal directions may be less accurate with fewer

observations.
Node 1 2 3 4 Node 1 2 3 4
1 - -.06 | +.02 | -.05 1 - +.03 | -.02 | .00
2 +.06 — .00 | -.01 2 -.03 — .00 | .00
3 -.02 | +.04 — -.01 3 +.02 | .00 — .00
4 +.04 | -.04 .00 — 4 .00 .00 .00 | -

Table 5.1: Errors from estimated to exact probabilities of edges in a 4 node Bayesian network from
one run of the Edge Birth and Death Algorithm for 100 observations (left) and 500 observations
(right).

Next, we tested our edge birth and death algorithm on the “Alarm data set” compiled by
Herskovits ([30]). This data set, often used as a benchmark for structure learning algorithms,
consists of 1000 observations of 37 random variables, each taking on 4 possible values. We ran our
edge birth and death algorithm for 10° time steps. For comparison, we ran the standard Metropolis-
Hastings scheme for 2 x 10° steps which took approximately the same amount of CPU time. The
AIC was recorded at each step and is plotted for one of these runs in Figure 5.4. As is well known,
the MH scheme is prone to getting trapped in local minima, and takes many steps to escape these

points whereas our edge birth and death algorithm appears to mix more easily.
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Figure 5.4: (Left) AIC score of a Metropolis-Hastings run of 2 x 10% steps. (Right) AIC score of
an edge birth and death process run of 10° steps.



Chapter 6

Conclusion

In this thesis, we studied three separate applications for which Markov chain Monte Carlo
methods have commonly been implemented. In each of these applications, we developed MCMC
algorithms that exhibit enhanced efficiency and/or accuracy.

In Chapter 2, we developed a “windowed” rejection sampling algorithm to target the marginal
distributions of the posterior of a hidden Markov model. The decaying influence of past samples
was exploited in order to have small enough windows for the algorithm to be efficient while still
retaining enough samples to have improved accuracy over the commonly used sequential importance
sampling algorithms.

In Chapter 3, a derivation one-dimensional Kac model was reexamined, with emphasis placed
on the underlying Poisson process. We then leveraged this Poisson process to create a more accurate
sampling algorithm for particle collisions. This Poisson process was used further to construct a proof
of concept e-perfect algorithm for sampling the limiting distribution of particle velocities as time
goes to infinity. This algorithm returns samples with a controlled level of sampling error, €.

Chapters 4 and 5 were focused on directed acyclic graphs and bayesian networks. Chapter
4 explored the possibility of creating a perfect sampler for the uniform distribution over the set
of DAGs on a given number of nodes. A theoretical Regenerative DAG Coupler was discussed
with a known regeneration time. We then paired Coupling from the Past concepts with a modified
version of a known Markov chain with uniform stationary distribution to create our DAG CFTP

Algorithm, which functions as a perfect uniform sampling algorithm. The backward coupling time
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of the DAG CFTP Algorithm was explored empirically, and while it scales better than the size of
the state space, and better than the Regenerative DAG Coupler, it is still prohibitively expensive
to use. In Chapter 5, we presented a new algorithm for sampling from the posterior distribution
of Bayesian Networks given data based on a birth and death process. This new Edge Birth and
Death Algorithm allows for probabilistic inferences to be made about Bayesian Network structures
while avoiding some of the downfalls of existing methods. In particular, our Edge Birth and Death
Algorithm does not get trapped in local extrema as easily as structure MCMC and allows for
less restrictive choices of priors over graphs compared to order MCMC. An open question related
to this Edge Birth and Death Algorithm is whether it can be made perfect by applying similar

constructions to perfect algorithms for spatial point processes.
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