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De Smet, Stijn (Ph.D., Aerospace Engineering)

On the design of solar gravity driven planetocentric transfers using artificial neural networks

Thesis directed by Prof. Daniel J. Scheeres

The sun’s gravity can be used to efficiently transfer between different planetocentric orbits.

Such transfers cannot be designed in a two-body dynamical system, nor do analytical methods

exist to identify such transfers. This dissertation presents a method to efficiently identify transfers

between a specified departure and target orbit. This method is applied to a well known problem:

transfers from inclined low-earth orbits to the geostationary orbit.

Motivated by the large observed control authority of the sun for geocentric transfers, a new

mission architecture is defined. This architecture allows the injection of multiple spacecraft around

Mars in different target orbits, enabled by solar gravity driven orbital transfers. The efficient design

of applications for a wide variety of departure and target orbits, requires an understanding of a large

area of the phase space. This dissertation showcases how an artificial neural network architecture

can accurately predict the solar gravity driven transfers, for a significantly large section of the

phase space. The developed architecture is then used to efficiently identify transfers for several

different applications. Multiple revolution transfers with maneuvers at intermediate periareions

are identified that arrive at Phobos or Deimos. Furthermore, transfers are designed that transfer

to both Phobos and Deimos in a single trajectory.

In addition to addressing solar perturbed planetocentric transfers, this dissertation shows

how the developed artificial neural network framework can be applied to a different problem, with

different dynamics. As an example, the dissertation develops an artificial neural network archi-

tecture that can predict heteroclinic connections in the Earth-Moon circular restricted three-body

problem.
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Chapter 1

Introduction and motivation

Orbital transfers are extremely common. Either to transfer between the post-launch and the

operational orbit, or to transfer in between different operational orbits. Thus, orbital transfers are

very common and an extensive body of literature exists. Two main categories can be identified:

methods that solely use maneuvers, and methods that use maneuvers augmented by perturbations.

The first category is commonly used for transfers between different orbits close to the planet’s

surface. In this orbital regime, the satellite is only marginally perturbed from two-body dynamics.

For chemical transfers, approximated by impulsive maneuvers, the optimal location, magnitude

and direction of the maneuvers can be obtained approximately from analytical formulae. For low-

thrust transfers, the depth of the gravity well in this orbital regime requires very lengthy transfers

with many optimization parameters. Recent advances in hybrid differential dynamic programming

allows to optimize such transfers [1].

Perturbation based methods are commonly used for transfers further away from the planet’s

surface. The dynamics in this orbital regime can no longer be accurately approximated by two-body

dynamics, since gravitational perturbations of other bodies become significant. Efficient transfers

between different orbits using perturbations have been extensively studied. First, a gravitational

assist, or flyby, method requires a spacecraft to get in close proximity to the perturbing body. An

example is the research by Ocampo, who introduced the idea of lunar flybys for inclined low-Earth

orbits to the geostationary orbit [2]. Second, methods have been studied that do not require such

close proximity to the perturbing body. A distinction can be made based on design methodology.
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A dynamical systems-based methodology uses manifolds; stable and unstable manifolds can

be followed to cheaply transfer between different orbits [3, 4]. This methodology has been suc-

cessfully applied to design low-energy transfers between the Earth and the Moon for the GRAIL

mission [5], or between different libration point orbits for the ARTEMIS mission [6].

The second branch of design methodology focuses on the natural force structure, i.e., pertur-

bations. This methodology can be used to design Earth-Moon transfers with ballistic captures as

studied by Miller and Belbruno [7], and Yamakawa [8] and applied by the Hiten mission [9]. Solar

tides can also be used to design transfers between different, planetocentric orbits. Orbital changes

that affect the magnitude of the angular momentum vector can be categorized by the quadrant of

the orbit in a rotating frame [8, 10]; including changes in the semi-major axis a, eccentricity e, and

thus periapse and apoapse radii rp and ra. A simple quadrant representation does not exist for

changes that affect the inclination i, argument of periapse ω and/or right ascension of ascending

node Ω. Nonetheless, large orbital plane changes are possible. An example is the work by Villac

[11, 12, 13, 14], who identified transfers with large inclination changes while maintaining a constant

periapse radius. This analysis heavily relies on numerical integration of periapse Poincaré maps in

the Hill system. The large computational load limited the discussion to the identification of po-

tential transfers, for a few discrete values of initial inclination, periapse radius and apoapse radius,

functioning as snapshots for the entire phase space. Besides designing transfers with fixed rp and

different i, Villac and Scheeres [15] investigated how periapse Poincaré maps in the Hill system can

be used to find trajectories that escape Europa. This work was furthered by Paskowitz and Scheeres

[16] to find trajectories that do not escape nor impact, for long periods of time. This work was

performed in the Jupiter-Europa system, but can be extended to sun-planet systems. An example

is the work by Davis and Howell, who investigated the escape-capture evolution of transfers in the

Sun-Saturn system [10]. Another example is the patent application of Geryon Space Technologies

[17]. This document demonstrates that solar gravity perturbations can be used to transfer from an

inclined low-Earth orbit (LEO) to the geostationary orbit (GEO). However, this research is limited

to point designs, without developing a systematic way to design such transfers. Such inclined LEO
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to GEO transfers can also be designed using a dynamical systems-based methodology in the circu-

lar restricted three-body problem (CRTBP) [18, 19]. This methodology requires finding a suitable

halo orbit, with a stable and unstable manifold that intersect tangentially with the target LEO

and GEO, respectively. The spacecraft departs tangentially from the LEO on the stable mani-

fold, after which it approaches the halo orbit. Then, the spacecraft departs the halo orbit on an

unstable manifold, and arrives tangentially to the geostationary orbit. This methodology requires

an experienced mission designer to identify halo orbits with suitable manifolds. This dissertation

will investigate how Villac’s work in the Jupiter-Europa Hill dynamical system [11, 12, 13, 14] can

be adapted to systematically find transfers from LEO to GEO that do not explicitly depend on

Lagrange point orbit invariant manifolds.

A common impeding factor for all of the methods described above is the lack of closed form

solutions for three-body dynamics. Villac derived analytical criteria for planar escaping or captured

trajectories, based on the sign of periapse [20]. However, no three-dimensional equivalent exists.

Furthermore, he derived an analytical approximation to predict the change between periapses based

on knowledge of the apoapse state [11]. However, the apoapse state is not readily known for transfers

departing from a specified initial orbit. Thus, no exact analytical solutions exist for orbital transfers

exploiting three-body dynamics. Hence, designing transfers in three-body dynamics heavily relies on

numerical integration, which can be computationally expensive. Furthermore, third-body dynamics

can be very sensitive to the initial conditions. For an evaluation of a large section of the phase

space, this sensitivity leads to a high required sampling density. Both factors combined can lead to

large computational requirements. Furthermore, the required memory to store a dense sampling

of the phase space can be large. Therefore, to the author’s knowledge, no global understanding of

such transfers exist, captured in an easily accessed database that can be used as a road map for

the dynamics within this system. This dissertation demonstrates how machine learning techniques

can be used to create this road map.
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Machine learning has been successfully applied to a large variety of applications in many

different research disciplines. Nonetheless, only a few astrodynamics applications utilized machine

learning. Examples are planetary landing pinpoint guidance [21, 22], optimal low-thrust transfers

between near-earth objects [23], automated low-thrust initial guess generation within a multi-body

regime [24], and automated low-thrust trajectory correction [25]. Furthermore, some research has

been conducted to understand the natural response in complicated dynamical systems. Guého et

al. [26] researched how machine learning techniques can be used on a problem replicating Keplerian

dynamics. Shah and Beeson [27] attempted to approximate invariant manifolds in the Earth-Moon

CRTBP. Both studies attempted to predict the full state at all intermediate time steps along the

natural flow of a solution. This greatly increases the size of the machine learning problem, and

prevents the training of models for the entire phase space. In this dissertation, it is shown how

this issue is resolved through the use of periapse Poincaré maps to map the Hill problem dynamics,

allowing the identification of transfers of interest within a large section of the phase space.

The evaluation of complex dynamical systems imposes a large computational load. Tradi-

tionally, the phase space is investigated in a circular representation of the three-body problem. For

some applications, the solutions found in this simpler dynamical system can significantly deviate

from the solutions in the real dynamics. An example is the effect of the eccentricity of the celestial

bodies’ orbits, for instance for capture orbits near Mars and Mercury [28]. Another example is

the Sun-Earth-Moon system, or the Jovian system, where more than two celestial bodies interact.

Such problems are usually modeled as segments in different CRTBP; a patched three-body model.

Examples are the work by Parker [3], Gómez et al. [29], Yagasaki [30], Howell and Kakoi [31],

Bokelmann and Russel [32], Bosanac et al. [33], etc. After analyzing the problem in a simple

dynamical system, specific transfers that exhibit certain desired characteristics are corrected into

a higher fidelity force model using a differential corrector [3]. This dissertation shows how the

systematic difference between a low- and higher-fidelity dynamical system can be predicted using

machine learning techniques.
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Multiple satellites can increase the science or commercial return of a mission, while cost-

intensive phases can be shared. Multi-spacecraft missions can be subdivided into two categories.

The first category is comprised of missions with communal orbital planes. A well-known example

is the GPS constellation of 24-32 satellites on six orbital planes [34]. However, each satellite has a

dedicated launch. The Galileo system on the other hand has three orbital planes, with a total of

30 satellites [35]. Up to four satellites in the same orbital plane are launched on a single vehicle

[36]. The angular separation along the orbit is obtained through an intermediate phasing orbit [36].

Another example is the BepiColombo mission. This mission to Mercury has two spacecraft, using

a common solar electric propulsion (SEP) module for the interplanetary transfer and a common

chemical module for Mercury orbital insertion maneuvers [37]. The two spacecraft have a common

orbital plane around Mercury but are injected at different orbital altitudes.

For some single-launch missions, the science return is increased when the spacecraft are in-

jected into different orbital planes. Orbital plane changes are energy intensive and are expensive

to execute using chemical maneuvers. One solution is the use of SEP. An example is the mission

design of MISEN, a proposed mission where three cubesats are injected into three different orbits

around Mars [38]. While they share a launch vehicle, they each use their own dedicated SEP system

to transfer to Mars and spiral into their dedicated science orbit [39]. Three-body dynamics can also

be used as an efficient orbital transfer strategy for multi-spacecraft missions. An example is the

THEMIS mission, where five spacecraft are deployed in different orbits, using third-body pertur-

bations by the Sun and Moon, in combination with maneuvers [40]. Another example is the work

by Chow et al. [41], who demonstrated that multiple satellites can be deployed in a constellation

with differently inclined orbits, using one launch vehicle. This methodology exploits the CRTBP

dynamics of Lissajous orbits near the Earth-Moon L1 Lagrange point. Similar to the discussion

on LEO to GEO transfers using manifolds, it is expected that a Hill system approach could iden-

tify transfers without explicitly relying on manifolds. Therefore, this dissertation investigates if a

new Martian, single-launch architecture with different orbital planes at different altitudes can be

enabled by highly eccentric, solar perturbed transfer orbits.
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1.1 Research statement and goals

Based on the identified knowledge gaps, the research statement can be summarized as:

This research combines dynamical systems theory for complex dynamical systems with modern

computational tools; artificial neural networks. This allows the characterization of the response in

a dynamical system through a series of simple, analytical evaluations. This new characterization

is applied to a new mission architecture for the injection of multiple spacecraft around Mars, and

allows for the rapid design of complex transfers.

Three main research goals can be identified to realize this research statement:

(1) Develop a systematic methodology to identify solar gravity driven transfers between a

specified departure and target orbit, applied to inclined LEO to GEO scenarios.

(2) Define a new mission architecture for the injection of multiple spacecraft around Mars,

enabled by solar gravitational perturbations.

(3) Develop methods to obtain an understanding of the control authority of the gravitational

perturbations for a wide variety of departure and target orbits around Mars.

1.2 Dissertation overview

Chapter 2 covers the theoretical background for the dissertation. A literature review of

historical approaches to orbital transfers is given, focusing on transfers from inclined LEO to GEO.

Furthermore, an overview is given on three-body dynamics and transfers. Finally, a high-level

overview is given on machine learning, and more specifically, artificial neural networks (ANN).

Chapter 3 explains how transfers between inclined LEO and GEO can be realized using solar

gravity. An algorithm is created to identify transfers departing from different initial inclinations.

Furthermore, the stability of these transfers is investigated, as well as the effect of missed and

imperfect maneuvers. This chapter designs the transfers assuming the Earth revolves around the

Sun in a circular orbit. Despite Earth’s small eccentricity of 0.0167, it is shown that this assumption
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leads to significant errors for the highly eccentric regime of the spacecraft on the planetocentric

transfer orbits.

Chapter 4 introduces a new mission concept, where multiple satellites are deployed around

Mars in drastically different orbits. This chapter introduces some key methodologies to establish

a global understanding of the control authority of the Sun, for a wide variety of departure and

target orbits. This chapter introduces the concept of databases that can be used as a road map

for the solar perturbed dynamics around Mars. In this chapter, the database is constructed using

numerical integration. The database is build for a limited subset of the phase space, centered

around a specific target application. First, the database is computed, under the assumption that

Mars’ orbit around the Sun is circular. Chapter 3 demonstrates that this circular assumption is

invalid. Therefore, the database is constructed for the eccentric restricted three-body problem. The

time invariance of this dynamical system greatly increases the number of database entries, even for

the limited subset of the considered phase space. This chapter therefore limits itself to identifying

the bounds of the phase space where the necessary conditions for specific transfers are met, and

transfers could exist.

The research milestone that enables the construction of a database of transfers, in the ec-

centric problem, and for a large area of the phase space, is the use of ANN. Chapter 5 starts with

the development of ANN for the small subset of the phase space considered in chapter 4. Key to

success is the introduction of an apoareion scaled version of the circular Hill system, as an approx-

imation to the eccentric Hill system. This scaled version allows to account for the majority of the

time-varying effect of the eccentricity, while only increasing the number of database entries by 20%,

as compared to the circular approximation. It is observed that the usage of the apoareion scaled

Hill system introduces systematic errors in the transfers, compared to the eccentric system. These

systematic errors can be captured in a separate ANN. This allows the introduction of a new ANN

architecture that can predict the response in the eccentric Hill system. This architecture is then

applied on a large area of the phase space, achieving the research goal of a global understanding

of the control authority of the Sun. Then, it is demonstrated how this architecture can be used
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to train ANN for a totally different application; designing heteroclinic connections between planar

Lyapunov orbits in the Earth-Moon, circular restricted three-body problem.

Chapter 6 demonstrates how the developed artificial neural network architecture can be used

to determine all initial conditions to target specific final orbits, with multiple revolutions around

Mars, and with impulsive maneuvers at intermediate periareions. Furthermore, it is shown how the

architecture can be used to analyze the effect of imperfect maneuvers on the identified transfers.

Chapter 7 summarizes the main contributions of this dissertation, and discusses future work.



Chapter 2

Theoretical background

In this chapter, the theoretical background for the dissertation is discussed. First, classical

orbital elements are described, followed by an overview on common strategies for transfers between

different orbits. Second, the different three-body dynamical systems used throughout this disserta-

tion are described. Third, the used reference frames are introduced, and the conversions between

different frames is discussed. Fourth, a brief overview is given on common methods to design orbits

and orbital transfers in three-body dynamics. Finally, the theory behind machine learning and

artificial neural networks is introduced.

2.1 Orbital elements and orbital element change strategies

An orbit subject to two-body motion, also known as Keplerian motion, is commonly described

using either Cartesian, or Keplerian orbital elements. The Cartesian elements are composed of three

positions and velocities, described with respect to a reference frame. Under Keplerian motion, the

individual position and velocity components change over time. Furthermore, they provide little

insight in the orbital type and the orbit’s orientation. These issues are circumvented by the use of

Keplerian orbital elements, also known as classical orbital elements.

In this section, first, the Keplerian orbital elements are discussed. Second, methods are

described to transfer between co-planar orbits. Third, methods are listed to transfer between

orbits with a different orbital plane, but identical in-plane parameters. Finally, transfer methods

with simultaneous orbital plane and in-plane changes are discussed.
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2.1.1 Orbital elements

The Keplerian orbital elements can be divided into two categories: parameters describing

the orientation of the orbital plane, and parameters describing the size of the orbit in the orbital

plane. Commonly, the orbital plane is described using a set of 3-1-3 Euler angles, as shown in Fig.

2.1. The first rotation occurs around the z-axis by Ω, the right ascension of ascending node. This

parameter describes the angular distance between the x-axis and the intersection of the orbital

plane with the xy-plane at the ascending node. The second rotation occurs around the local x-axis

by angle i, the inclination. This angle describes the tilt of the orbital plane with respect to the

xy-plane. The final rotation occurs around the local z-axis by angle ω, the argument of periapse.

This angle describes the angular distance from the ascending node to the location of periapse; the

closest point on an orbit. The size of the orbit is determined by the semi-major axis a. This

parameter is the average of the closest and farthest point of the orbit; periapse and apoapse. The

difference between the periapse distance rp and apoapse distance ra is dictated by the eccentricity

parameter, e. Finally, the true anomaly ν is a measure of the location of an object within the orbit,

measured from periapse. For unperturbed Keplerian motion, all parameters except ν are constant.

!"

$̂

!%

Ω

ω

Periapse

i

Orbital plane

Reference xy
plane
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node

ν+⃗

Satellite

Apoapse

Figure 2.1: Visualization of the classical orbital elements.

Some commonly used parameters can be defined using the six Keplerian orbital elements,

and the standard gravitational parameter, µ: the product of the mass of the central body, M and
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the gravitational constant, G. A few examples are periapse distance rp, apoapse distance ra, semi-

latus rectum p, argument of latitude u, true longitude λ, and specific angular momentum vector

direction ĥ and magnitude h:

rp = a · (1− e) ra = a · (1 + e) p = a · (1− e2)

u = ν + ω λ = ν + ω + Ω (2.1)

ĥ =

[
sin Ω sin i − cos Ω sin i cos i

]T
h =
√
µp

Different terminology exists for the periapse and apoapse parameters, depending on the central

body. The periapse for orbits around the Earth, the Sun and Mars are respectively called perigee,

perihelion and periareion. Similarly, the apoapses are called apogee, aphelion and apoareion.

2.1.2 Co-planar transfers

In this subsection, the design of co-planar transfers is investigated; i.e., transfers where only

the periapse and apoapse radii change. A maneuver at apoapse parallel to the velocity vector only

changes the periapse radius. Similarly, a maneuver at periapse parallel to the velocity vector only

changes the apoapse radius. To change both parameters in an efficient way, at least two maneuvers

are required. Examples are a Hohmann and a bi-elliptic transfer [42] between co-planar circular

orbits. The two different approaches are visualized in Fig. 2.2. A Hohmann transfer is a two-burn

solution. At periapse, a first maneuver changes the apoapse from r1 to r2. This transfer orbit is

then followed for half an orbit, up to apoapse. There, a second maneuver reduces the eccentricity

to zero, effectively changing the periapse radius from r1 to r2. The total required ∆V is

∆V =

√
µ

r1

[
(γ − 1)

√
2

γ(γ + 1)
+

1

γ
− 1

]
, (2.2)

where γ = r2/r1 is the ratio between the arrival and departure orbital radii. A Hohmann transfer is

not always fuel-optimal. Depending on the γ-ratio, a three-burn bi-elliptic transfer could be more

efficient. For this transfer, a first maneuver at periapse changes the apoapse from r1 to ra where

ra > r2. This transfer orbit is then followed for half an orbit, up to apoapse. There, a second
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maneuver raises the periapse radius from r1 to r2. This second transfer orbit is then followed for

half an orbit, up to periapse. Then, a third maneuver reduces the eccentricity to zero, effectively

changing the apoapse radius from ra to r2. For γ < 11.939, the Hohmann transfer is optimal. For

γ > 15.582, the bi-elliptic transfer is optimal. For intermediate γ-values, the bi-elliptic transfer is

optimal for sufficiently large ζ = ra/r1 [43]. The total required ∆V is

∆V =

√
µ

r1

[
(ζ − 1)

√
2

ζ(ζ + 1)
+

√
2(ζ + γ)

ζγ
− 1

γ
− 1

]
(2.3)

Figure 2.2: Visualization of a Hohmann and a bi-elliptic co-planar transfer (credit Wakker [43]).

2.1.3 Transfers with orbital plane change only

If two orbits only differ in one orbital plane parameter, different approaches exist for different

orbital plane parameters. If only the inclination is allowed to change, a maneuver must be performed

at the ascending or descending node with an angle from the initial orbital plane equal to 90◦+ ∆i
2 .

This requires ∆V = 2 sin(∆i
2 )V1. If only the right ascension of ascending node is allowed to change,

a maneuver must be performed at u = 90◦ or u = 270◦, i.e. 90◦ away from the ascending or

descending node. This requires ∆V = 2 sin(i) sin(∆Ω
2 )V1.

2.1.4 Transfers with orbital plane and in-plane changes

In this subsection, common methods to transfer between orbits with different orbital plane

angles and in-plane orbital elements are discussed. As an example, a very common, and well studied
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plane change is investigated; the transfer from a low earth orbit (LEO) to the geostationary orbit

(GEO). This is an equatorial circular orbit with an orbital radius of 42,164 km. Its orbital period

is equal to a sidereal day. Hence, a spacecraft in this orbit stays stationary as seen from a fixed

point on the surface. This makes it a popular orbit for numerous applications such as weather

and communication satellites. Several strategies exist to minimize the fuel cost for transfers from

inclined circular LEO to GEO. An overview of a few strategies will be given, divided into two

categories: maneuver based changes and perturbation based changes.

2.1.4.1 Maneuver based methods

Two-burn strategy with ∆i optimally distributed over two burns At a node

crossing of the initial circular orbit, a first maneuver raises the apogee to the geosynchronous

radius and reduces the inclination by ∆i1. This transfer orbit is then followed for half an orbit, up

to the apogee at geosynchronous altitude. There, a second maneuver nullifies the eccentricity and

inclination. For a given ratio γ = rGEO
rLEO

the total ∆V is [43]

∆V =

√
µ

rLEO

[ √
3γ + 1

γ + 1
− 2

√
2γ

γ + 1
cos ∆i1 +

√√√√1

γ

(
γ + 3

γ + 1
− 2

√
2

γ + 1
cos ∆i2

) ]
(2.4)

The distribution of the inclination changes over the two maneuvers can be optimized to minimize

the overall ∆V budget. A few examples for different initial inclinations can be found in Fig. 2.3.

For all considered initial inclinations, it is more efficient to perform the majority of the inclination

change with the second maneuver.

Three-burn bi-elliptic or super-synchronous transfer Reference [42] introduces the

idea of bi-elliptic transfers between two circular, coplanar orbits [42]. A co-planar bi-elliptic transfer

with a γ ratio above 11.94 can be more fuel-optimal than a co-planar Hohmann transfer [42]. For

the geostationary orbit with orbital radius of 42,164 km, the initial orbital radius must be below

3,531 km. This is well below the Earth’s surface. For any realistic rp value of a LEO orbit, the

γ-value is thus lower than 11.94. Therefore, it would appear that a bi-elliptic transfer type is not
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Figure 2.3: Determine initial inclination change to minimize total fuel cost for a two-burn strategy.
The different colors indicate different total inclination changes, the asterisks the optimum initial
inclination changes to minimize the total fuel cost.

advantageous. However, it is stipulated that for the transfer between circular, inclined orbits, it

could be more efficient to “obtain an intermediate point far out, make necessary inclination changes

and then return to the required orbit” [42]. This leverages the fact that inclination changes require

the least fuel when applied at low velocities, i.e. at a high apoapse. The considered bi-elliptic

transfers are composed of two consecutive transfer orbits. In the initial circular orbit, at a node

crossing, the first maneuver raises the apogee altitude above the geosynchronous altitude. This

transfer orbit is followed for half an orbit, up to apogee. Here, a second maneuver is executed

that raises the perigee from the initial value to the geosynchronous altitude. This maneuver also

nullifies the inclination. This second transfer orbit is followed up to perigee. There, a third

maneuver circularizes the orbit. For given ratios γ = rLEO
rLEO

and ζ =
rapogee
rLEO

, the total ∆V is [43]

∆V =

√
µ

rLEO

( √
2ζ

ζ + 1
+

√
2ζ

γ(ζ + γ)
−
√

1

γ
− 1

+

√
2

ζ

[ 1

ζ + 1
+

γ

γ + ζ
− 2

√
γ

(ζ + 1)(ζ + γ)
cos(∆i)

] )
(2.5)

In theory, the inclination change is free when rapogee = ∞. However, this requires infinite

time of flight. The required ∆V for this extreme scenario is computed using

∆V =

√
µ

rLEO

((√
2− 1

)(
1 +

√
1

γ

))
(2.6)
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On the left-hand side of Fig. 2.4, a few examples are shown of the trade-off between time of flight

(apogee radius) and fuel cost for bi-elliptic transfers for different initial inclinations. On the right-

hand side of Fig. 2.4, the optimal two-burn strategies for different inclinations are compared to

the theoretical minimum of the bi-elliptic transfers. For initial inclinations larger than 38.365◦,

the optimal two-burn strategy has a higher fuel cost than the theoretical minimum for bi-elliptic

transfers. Note that this value is specific for the considered γ-parameter. For this scenario, a value

of 6.42 is used, corresponding to an initial periapse altitude of 185 km.
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Figure 2.4: Comparison between a two- and a three-burn strategy. Left: ∆V in function of rapogee.
Right: ∆V in function of total required ∆i.

Continuous-thrust transfers Continuous-thrust transfers are transfers that have ma-

neuvers that occur over a long time frame. A common form uses electrical energy to expel propellant

at a very high velocity, which increases transfered momentum per unit of propellant mass. Due

to the large required power to expelled mass ratio, current spacecraft power levels only allow for

a small mass flow rate. Hence, the achievable thrust and corresponding accelerations are low. To

realize the desired orbital changes, the maneuvers are performed over long time periods. Multiple

options exist for low-thrust transfers between LEO and GEO. One option is using only low-thrust
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propulsion. Starting with a circular orbit deep inside Earth’s gravity well, the low accelerations

only allow for very gradual orbital changes. Hence, low-thrust transfers from LEO to GEO require

many revolutions around the Earth. Optimizing the thrust direction and magnitude on all revolu-

tions leads to a very large optimization problem. Therefore, historically, these transfers have been

designed using control laws and not with optimization procedures. An example is the Q-law, which

is based on Lyapunov feedback control [44]. Recent breakthroughs in hybrid differential dynamic

programming allow to numerically optimize such transfers [1]. An example with 750 revolutions

is shown in Fig. 2.5. This transfer requires 7.23 km/s, but only 691 kg of propellant assuming

a dry mass of 1000 kg and a specific impulse of 2000 s. On this figure, the orange arcs indicate

thrust arcs, the blue indicate coast arcs. A major disadvantage of this method, besides the lengthy

transfer times, is the large time spend in the Van Allen belts, a radiation belt around the Earth

where energetic charged particles are trapped by Earth’s magnetic field. The main Van Allen belt

Figure 2.5: A 750-revolution low-thrust transfer from LEO to GEO (credit Aziz [1]).
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is situated at altitudes between 1000 km and 6000 km above the Earth’s surface. One way of

reducing the time spend in the Van Allen Belt is through an initial chemical maneuver that puts

the apogee way past the Van Allen Belts. Then, over the course of many revolutions, the perigee

is gradually increased. This does not solve the problem entirely, as a considerable amount of time

is still spent inside the Van Allen belts [45].

2.1.4.2 Perturbation based methods

Lunar flybys In 1998, a failure in the last stage of the launch vehicle deployed HGS1,

also known as AsiaSat3, in a highly inclined, eccentric orbit. The spacecraft did not have enough

propellant to transfer to the geostationary orbit using traditional transfer methods. However, the

on-board propellant allowed to fly a trajectory with two lunar flybys to ultimately be inserted into

GEO [46]. While this transfer saved the mission, more efficient transfers exist using only one lunar

flyby. Such transfers are introduced in Ref. [2]. The direct lunar flyby trajectories have a perigee

radius at LEO and the apogee radius at the mean lunar distance. To achieve this eccentricity,

a maneuver in the velocity vector-direction is made in the low-earth parking orbit. The apogee

vector must lie in the lunar orbital plane to target a lunar encounter at apogee. This requires

a unique combination for the longitude of ascending node and the argument of perigee, given an

initial inclination. To achieve an equatorial orbital plane post-flyby, the flyby must occur when

the Moon passes through the equatorial plane; i.e., at the ascending or descending node of the

Moon’s orbit. An example for a transfer from a 52◦ inclined 200 km circular LEO can be found

in Fig. 2.6. This transfer requires 4.263 km/s and is 8.5 days long. The results of a preliminary,

patched-conics analysis can be found in Fig. 2.7 for an initial LEO at 185 km altitude. This

approximation provides the general trends, and can be corrected into a more accurate force model

using the procedure in Ref. [2]. Designing accurate lunar flybys is not the main goal of this section.

Therefore, this correction step is not applied here. This method requires the Moon to be close to

a nodal crossing, which only happens twice a month. An alternative using phasing loops has been

found that allow daily launches. However, those pass often through the Van Allen Belt.
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Figure 2.6: Schematics of a geostationary transfer using a lunar flyby (credit Ocampo [2]).
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Figure 2.7: Preliminary results of a patched-conics approach to analyze geostationary transfers
using a lunar flyby.

Solar tide transfers Solar gravity perturbations can be used to achieve the required ∆i

and ∆rp. In Reference [17], a point-design transfer starting at i = 51.5◦ is identified that requires

only 2.5% more ∆V than the two-burn transfers from 28.5◦ [17]. In Section 2.4, the methodology

to design such transfers will be briefly explained. In Chapter 3, these transfers will be discussed in

more detail.
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2.2 Three-body dynamics

Throughout this dissertation, transfers are designed in three-body dynamical systems. As

the name suggests, three-body dynamical systems are used to describe the motion of three masses

under the gravitational interactions amongst each other. The interest in three-body dynamics was

first piqued by classical dynamical astronomy, for instance to describe the motion of the Moon in the

Sun-Earth-Moon system. Compared to two-body dynamics, no analytical solution exists for three-

body dynamics. Many famous scientists have tackled the problem, developing numerous techniques

that are still used in classical mechanics: Euler [47], Lagrange [48], Jacobi [49], Poincaré [50] and

Hill [51], to name a few. Different applications require different models to represent the dynamics,

with different assumptions. For brevity, this dissertation will not give a detailed description on each

of the developed models and their assumptions. However, two specific applications are described,

as they lead to the introduction of terminology that will be used throughout this dissertation.

First, Hill described the motion of the Moon in the Sun-Earth-Moon system [51]. Hill used two

specific physical properties of this problem; the mass of the Moon and of the Earth are much smaller

than the mass of the Sun, and, the Moon and the Earth are spatially close. These assumptions are

known as the Hill approximation and allow for a simplification of the equations of motion.

Second, spaceflight introduced a new application for three-body dynamics, where the motion

of a spacecraft is described in the Sun-Earth system or Earth-Moon system. In general, the mass of

a spacecraft is much smaller than the mass of the other two bodies. This is known as the restricted

problem [52], and allows the simplification of the equations of motion.

In the next few subsections, three different dynamical systems are introduced. For each

dynamical system, the assumptions used to derive the equations of motion are explained, the

reference frame in which the equations of motion are expressed in, and several properties are

discussed such as equilibrium points, symmetries and the Jacobi constant, when they exist.
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2.2.1 Circular restricted three-body problem

In this subsection, the circular restricted three-body problem (CRTBP) is discussed.

2.2.1.1 Assumptions

The circular restricted three-body problem describes the motion of an object with a negligible

mass under the gravitational influence of two large masses M1 and M2. The larger of these two, M1

is called the primary, while M2 is called the secondary. The primary and secondary are assumed

to orbit their center-of-mass in a circular orbit, with radius a, with constant angular velocity N :

N =

√
G
M1 +M2

a3
(2.7)

2.2.1.2 Reference frame

The CRTBP is commonly implemented in a non-dimensional coordinate system using length

scale l, time scale τ , and mass scaling ψ.

l = a τ =
1

N
ψ = M1 +M2, (2.8)

Furthermore, a three-body parameter η is commonly used describing the mass ratios:

η =
M2

M1 +M2
(2.9)

In Fig. 2.8, the reference frame used for the CRTBP is shown. The origin lies at the center

of mass of the two large masses, the x-axis points from the primary to the secondary. The z-axis is

parallel to the angular momentum vector of the circular orbit of the secondary around the primary.

The y-axis completes the right-handed system. This reference frame rotates around the z-axis

with a constant angular velocity N , defined in Eq. 2.7. In this synodic, or co-rotating frame, the

coordinates of the primary and secondary are constant and located at (−η, 0, 0) and (1 − η, 0, 0),

respectively. Furthermore, r1 is the distance to the larger primary, and r2 is the distance to the

smaller primary.

r1 =
√

(x+ η)2 + y2 + z2 r2 =
√

(x− 1 + η)2 + y2 + z2 (2.10)
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Figure 2.8: Schematics of the reference frame used for the circular restricted three-body problem.

2.2.1.3 Equations of motion

Under the listed assumptions and non-dimensionalization, the Lagrangian L of this system

is defined as:

L =
ẋ2 + ẏ2 + ż2

2
− ẋy + ẏx+

x2 + y2

2
+

1− η
r1

+
η

r2
(2.11)

Using the Lagrangian formulation, the equations of motion in the non-dimensional CRTBP frame

can be found to be:

ẍ = 2ẏ + x− (1− η)
x+ η

r3
1

− ηx− 1 + η

r3
2

ÿ = −2ẋ+ y − (1− η)
x

r3
1

− η y
r3

2

(2.12)

z̈ = −(1− η)
z

r3
1

− η z
r3

2

2.2.1.4 Properties

The Lagrangian, L, defined in Eq. 2.11, is time invariant. Thus, from Noether’s theorem, it

is known that a conserved quantity exists: the Jacobi constant J [53].

J =
x2 + y2

2
+

(1− η)

r1
+
η

r2
− ẋ2 + ẏ2 + ż2

2
(2.13)

The CRTBP has five equilibrium points, known as Lagrange points. At such points, a body

does not experience a net acceleration in the synodic frame. Hence, if a point is placed at this
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location with infinite precision, with exactly zero velocity with respect to the synodic frame, it will

remain there. The Lagrange points can be found by nulling all velocities and accelerations in Eq.

2.12 and solving for three position components. The location of the five Lagrange points, which all

lie on the xy-plane, are shown in Fig. 2.9. Three of these points are known as the collinear points,

and lie on the x-axis. L1 is located between the primary and secondary, L2 is on the right-hand

side of the secondary, and L3 is on the left-hand side of the primary. Their exact locations can be

found by solving:

x− (1− η)(x+ η)

|x+ η|3
− η(x− 1 + η)

|x− (1− η)|3
= 0 (2.14)

Furthermore, two equilateral libration points exist, located at x = 1/2− η, and y = ±
√

3/2.

M1 M2L3 L1 L2

!"

!#

L5

L4

Figure 2.9: Location of the five equilibrium points for the circular restricted three-body problem.

Finally, the CRTBP has several symmetries [3, 54]. If (x, y, z, ẋ, ẏ, ż, t) is a solution, then the

following are also solutions:

(x, y, z, ẋ, ẏ, ż, t)→ (x, y,−z, ẋ, ẏ,−ż, t) (2.15)

(x, y, z, ẋ, ẏ, ż, t)→ (x,−y, z,−ẋ, ẏ,−ż,−t) (2.16)

(x, y, z, ẋ, ẏ, ż, t)→ (x,−y,−z,−ẋ, ẏ, ż,−t) (2.17)

2.2.2 Restricted circular Hill problem

In this subsection, the restricted circular Hill problem is discussed. For the remainder of this

dissertation, this is abbreviated to “circular Hill problem”.
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2.2.2.1 Assumptions

The circular Hill problem has several assumptions. First, it is assumed that body three is

massless. Hence, body one and two are only gravitationally attracted by each other and they orbit

their center of mass. Second, it is assumed that this orbit is circular with radius a where one body

revolves around the other body with constant angular velocity N :

N =

√
G
M1 +M2

a3
=

√
µ1 + µ2

a3
, (2.18)

where µ1 and µ2 are the standard gravitational parameters of the larger, and smaller primary,

respectively. Using the Hill assumption, where body one is assumed to be much more massive than

body two, this can be approximated by:

N ≈
√
µ1

a3
(2.19)

Finally, under the Hill assumption, the massless object is assumed to remain much closer to the

smaller body than to the larger body.

2.2.2.2 Reference frame

The circular Hill system is commonly implemented in a non-dimensional coordinate system

using length scale l, and time scale τ .

l =

(
µ2

µ1

) 1
3

a τ =

√
a3

µ1
(2.20)

In Fig. 2.10, the reference frame associated with the circular Hill problem is shown. The

frame is centered at the secondary. The x-axis points from the primary to the secondary. The

z-axis is parallel to the angular momentum vector of the secondary’s orbit around the primary.

The y-axis completes the right-handed system. This reference frame rotates around the z-axis with

constant angular velocity N , defined in Eq. 2.19. The non-dimensional coordinates for the primary

and secondary are (− 3
√
M1/M2, 0, 0) and (0, 0, 0), respectively.
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Figure 2.10: Schematics of the reference frame used for the circular and eccentric Hill problems.

2.2.2.3 Equations of motion

Under the listed assumptions and non-dimensionalization, the Lagrangian L of this system

is defined as:

L =
ẋ2 + ẏ2 + ż2

2
− ẋy + ẏx+

1

r
+

1

2

(
3x2 − z2

)
(2.21)

where r is the L2 norm of the non-dimensional position vector r in the circular Hill coordinate

frame. Using the Lagrangian formulation, the equations of motion can be found to be [13]:

ẍ− 2ẏ =
−x
r3

+ 3x

ÿ + 2ẋ =
−y
r3

(2.22)

z̈ =
−z
r3
− z

2.2.2.4 Properties

The Lagrangian, L, defined in Eq. 2.21, is time invariant. Thus, from Noether’s theorem, it

is known that a conserved quantity exists: the Jacobi constant J :

J =
ẋ2 + ẏ2 + ż2

2
− 1

r
− 1

2
(3x2 − z2) (2.23)
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The equilibrium points can be identified by nulling all velocities and accelerations in Eq.

2.22. Only two collinear equilibrium points exist for the circular Hill problem. Both equilibrium

points are on the x-axis and are located at x = ± 3

√
1
3 .

Finally, Villac demonstrated that the circular Hill problem has five symmetries [13]. If

(x, y, z, ẋ, ẏ, ż, t) is a solution, then the following are also solutions:

(x, y, z, ẋ, ẏ, ż, t)→ (−x, y, z, ẋ,−ẏ,−ż,−t)

(x, y, z, ẋ, ẏ, ż, t)→ (x,−y, z,−ẋ, ẏ,−ż,−t)

(x, y, z, ẋ, ẏ, ż, t)→ (x, y,−z, ẋ, ẏ,−ż, t) (2.24)

(x, y, z, ẋ, ẏ, ż, t)→ (−x,−y, z,−ẋ,−ẏ, ż, t)

(x, y, z, ẋ, ẏ, ż, t)→ (−x,−y,−z,−ẋ,−ẏ,−ż, t)

Villac further showed that the latter three symmetries can be translated into classical orbital

element space [13]. Note that these orbital elements are expressed with respect to the Hill reference

frame, which uses the ecliptic plane as the reference plane.

(a, e, i, ω,Ω,M)→ (a, e, i, ω + π,Ω,M)

(a, e, i, ω,Ω,M)→ (a, e, i, ω,Ω + π,M) (2.25)

(a, e, i, ω,Ω,M)→ (a, e, i, ω + π,Ω + π,M)

2.2.3 Restricted eccentric Hill problem

In this subsection, the restricted eccentric Hill problem is discussed. For the remainder of

this dissertation, this is abbreviated to “eccentric Hill problem”.

2.2.3.1 Assumptions

The eccentric Hill problem has several assumptions. First, it is assumed that body three is

massless. Hence, body one and two are only gravitationally attracted by each other and they orbit

their center of mass. Second, it is assumed that this orbit is eccentric with semi-major axis a and
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eccentricity e, where one body revolves around the other body with non-constant angular velocity,

β. Using the Hill assumption, where body one is assumed to be much more massive than body

two, this angular velocity can be approximated by:

β ≈
√
a(1− e2) · µ1

d2
, (2.26)

where d is the instantaneous distance between the two primaries

d =
a(1− e2)

1 + e cos ν2
, (2.27)

where ν2 is the true anomaly of the secondary in its orbit around the primary. Finally, under the

Hill assumption, the massless object remains much closer to the smaller body than to the larger

body.

2.2.3.2 Reference frame

The eccentric Hill system is commonly implemented in a non-dimensional coordinate system.

The dimensional position and velocity vectors R and V are scaled to the non-dimensional position

vector r and r′, its derivative with respect to ν2 [55]:

R = αdr V = αβ(d′r + dr′), (2.28)

where α is a mass scaling parameter, β is the instantaneous angular rate defined in Eq. 2.26, d is

the instantaneous distance between the two primaries defined in Eq. 2.27 and d′ is its derivative

with respect to true anomaly ν2 [55]:

α = 3

√√√√(µ2

µ1

)
d′ =

d2

a(1− e2)
e sin ν2 (2.29)

All scaling parameters, except α, vary with ν2 and are thus not constant.

The reference frame used for the eccentric Hill problem is identical to the reference frame for

the circular Hill problem, shown in Fig. 2.10, with one major difference. For the circular Hill frame,

the angular velocity of the rotation around the z-axis is constant. For the eccentric Hill frame, this

angular velocity β, defined in Eq. 2.26, is not constant. The non-dimensional coordinates for the

primary and secondary are (− 3
√
M1/M2, 0, 0) and (0, 0, 0), respectively.
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2.2.3.3 Equations of motion

Under the listed assumptions and non-dimensionalization, the Lagrangian L of this system

is defined as:

L =
x′2 + y′2 + z′2

2
− x′2y + y′2x+

1

1 + e cos ν2

(
1

r
+

1

2

(
3x2 − z2

))
, (2.30)

where r is the L2 norm of the non-dimensional position vector r in the eccentric Hill coordinate

frame. Using the Lagrangian formulation, the dynamics of the eccentric Hill system can be derived,

with the derivatives taken with respect to true anomaly ν2, and not with respect to time, as

described by Scheeres and Marzari [55]:

x′′ − 2y′ =
1

1 + e cos ν2

(
−x
r3

+ 3x

)

y′′ + 2x′ =
1

1 + e cos ν2

(
−y
r3

)
(2.31)

z′′ + z =
1

1 + e cos ν2

(
−z
r3

)

2.2.3.4 Properties

Due to the dependency on cos ν2, the Lagrangian in Eq. 2.30 is time variant. Thus, no Jacobi

constant exists for the eccentric Hill problem. Similar to the circular Hill problem, two equilibrium

points exist for the eccentric Hill problem. Those equilibrium points have the same non-dimensional

coordinates as the circular Hill problem. However, due to the time dependent length and time scales,

their real physical location shifts. The eccentric Hill has the exact same symmetries as the circular

Hill system, but using the true anomaly as the time parameter. Furthermore, the orbital element

symmetries listed in Eq. 2.25 are identical.
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2.3 Reference frames

This section describes several reference frames that are used throughout this dissertation.

First, the non-rotating frames will be discussed, followed by a discussion on synodic frames.

2.3.1 Non-rotating frames

In this dissertation, two different types of non-rotating frames are used: mean equator and

equinox of J2000 frames, and mean orbit of J2000 frames. For each type, two implementations are

developed, one centered at Earth and one at Mars.

2.3.1.1 Mean equator frames

The mean equator and equinox of J2000 frame is a category of reference frames where [3]

• x̂: crossing of the planetary equator and ecliptic plane

• ŷ: completes the right hand system

• ẑ: planetary North pole

where the equator and ecliptic plane are defined with respect to the reference epoch J2000. From

this definition, one can see that the mean equator frame uses the planetary equatorial plane as the

xy-plane. The Earth Mean Equator and Mars Mean Equator reference frames are abbreviated to,

respectively, EME and MME. The common, center independent, abbreviation is ME.

2.3.1.2 Mean orbit frames

The mean orbit of J2000 frame is a category of reference frames where [3]

• x̂: crossing of the planetary equator and ecliptic plane

• ŷ: completes the right hand system

• ẑ: heliocentric angular momentum of the planet
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where the equator and ecliptic plane are defined with respect to the reference epoch J2000. From this

definition, one can see that the mean orbit frames use the planetary ecliptic plane as the xy-plane.

The Earth Mean Orbit and Mars Mean Orbit reference frames are abbreviated to, respectively,

EMO and MMO. The common, center independent, abbreviation is MO.

2.3.2 Synodic frames

Synodic frames are rotating reference frames, that rotate with the same instantaneous angular

velocity as the orbital motion of the two massive bodies in the three-body problem. As a result,

the coordinates of the primary and secondary are constant in a synodic frame. Depending on the

assumptions on this orbit, this angular velocity can be constant or time-varying. Depending on the

used dynamical system, a different synodic frame is used. Three different reference frames have

been introduced earlier in Subsubsections 2.2.1.2, 2.2.2.2, and 2.2.3.2.

2.3.3 Conversions between reference frames

In this subsection, the conversion between the mean equator, mean orbit and Hill frames are

discussed. First, the conversion between Cartesian state elements are discussed, followed by the

conversion between orbital elements.

2.3.3.1 Conversion in Cartesian state space

Mean equator and mean orbit This is a simple rotation around the x̂-axis by an angle ε;

the obliquity of the ecliptic. This is visualized on the left-hand side of Fig. 2.11

Since both systems are non-rotating reference frames, the transformation is simply

rMO = [M1(ε)] rME, rME = [M1(ε)]T rMO

ṙMO = [M1(ε)] ṙME, ṙME = [M1(ε)]T ṙMO

(2.32)

where [M1(ε)] is the single-axis rotation matrix around the first body axis, i.e., x̂ [56].

Mean orbit and Hill This is a rotation around the ẑ-axis by angle Θ, the instantaneous angle

between MO and Hill’s frame. This is visualized on the right side of Fig. 2.11. For the circular Hill
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Figure 2.11: Schematics of the conversion from the mean equator to the mean orbit reference frame
(left), and the mean orbit frame to the Hill reference frame (right).

frame, Θ = Θ0 +N(t− t0) where Θ0 is the angle at a chosen time t0. For the eccentric Hill frame,

this angle is Θ = Θ0 +νt−νt0 where the difference between the true anomalies between time t0 and

the current time can be computed using Kepler’s equation applied to the orbit of the secondary

around the primary. Since those systems do not maintain a constant orientation with respect to

each other, but have relative angular rotation rate ω = [0 0 N ]T for the circular and ω = [0 0 β]T

for the eccentric Hill frame, the transformation can be found using the transport theorem [56]:

rHill = [M3(Θ)] rMO, ṙHill = [M3(Θ)] ṙMO − [ω̃][M3(Θ)] rMO

rMO = [M3(Θ)]T rHill, ṙMO = [M3(Θ)]T ṙHill − [M3(Θ)]T [ω̃]T rHill

(2.33)

where [M3(ε)] is the single-axis rotation matrix around the third body axis, i.e., ẑ [56], and [ω̃] is

the skew-symmetric matrix form of the vector ω [56].

2.3.3.2 Conversion in orbital element state space

Orbital elements are defined with respect to a reference frame. The conversion in orbital

elements space can be performed by first converting orbital elements into Cartesian elements, after

which one can convert the Cartesian elements into a different reference frame, followed by converting

these states back to orbital elements. However, this does not provide much insight, nor are the

systematic trends identified. Therefore, in this paragraph, analytical relationships between the

orbital elements defined in different reference frames are identified.
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Mean equator and mean orbit For a reference frame, the orientation of the angular momen-

tum vector is constant and can be described by:

ĥ =

[
sin Ω sin i − cos Ω sin i cos i

]T
(2.34)

The angular momentum vector described in the mean orbit frame can be rotated into the mean

equator frame:

ĥME = [M1(ε)]T ĥMO (2.35)
sin ΩME sin iME

− cos ΩME sin iME

cos iME

 =


1 0 0

0 cos ε − sin ε

0 sin ε cos ε




sin ΩMO sin iMO

− cos ΩMO sin iMO

cos iMO

 (2.36)


sin ΩME sin iME

− cos ΩME sin iME

cos iME

 =


sin ΩMO sin iMO

− cos ε cos ΩMO sin iMO − sin ε cos iMO

− sin ε cos ΩMO sin iMO + cos ε cos iMO

 (2.37)

From this, one can see the coupling between the two reference frames’ orbital elements

iME = arccos
(
− sin ε cos ΩMO sin iMO + cos ε cos iMO

)
(2.38)

ΩME = atan2
(

sin ΩMO sin iMO, cos ε cos ΩMO sin iMO + sin ε cos iMO

)
The results of the conversion from any ecliptic state to its equatorial state are shown in Fig. 2.12.

Three distinct regions are detected based on the i behavior:

iMO ∈ [0◦, ε] → iME ∈ [ε− iMO, ε+ iMO]

iMO ∈ [ε, 180◦ − ε] → iME ∈ [iMO − ε, iMO + ε]

iMO ∈ [180◦ − ε, 180◦] → iME ∈ [iMO − ε, 360◦ − ε− iMO]

Every iME in each of the three regions, except for the bounds, is achieved twice. Once for

ΩMO ∈ (0◦, 180◦) and once for ΩMO ∈ (180◦, 360◦). The minimum and maximum iME are achieved

at ΩMO of 180◦ and 0◦ respectively. The equator can only be achieved for an ecliptic state with

iMO = ε and ΩMO = 180◦. Here, ΩME bifurcates, as it is singular for i-values of 0◦.
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Figure 2.12: Coupling between i and Ω for the equatorial and ecliptic reference frame. As an
example, the MME and MMO frames are shown, centered around Mars with angular difference
ε = 25.19◦.

At periapse, the orbital velocity is

V =

√
1 + e

rp
(2.39)

Eq. 2.32 conserves the magnitude of the position and velocity. Thus, if the conversion is performed

at periapse, it can be easily seen that rp and e are conserved, and thus the semi-major axis.

Mean orbit to Hill The angular momentum vector described in the Hill frame can be rotated

into the mean orbit frame:

ĥMO = [M3(Θ)]T ĥHill (2.40)
sin ΩMO sin iMO

− cos ΩMO sin iMO

cos iMO

 =


cos Θ − sin Θ 0

sin Θ cos Θ 0

0 0 1




sin ΩHill sin iHill

− cos ΩHill sin iHill

cos iHill

 (2.41)


sin ΩMO sin iMO

− cos ΩMO sin iMO

cos iMO

 =


cos Θ sin ΩHill sin iHill + sin Θ cos ΩHill sin iHill

sin Θ sin ΩHill sin iHill − cos Θ cos ΩHill sin iHill

cos iMO

 (2.42)
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From this, one can see that

iMO = ±iHill (2.43)

Since i ∈ [0, π]

iMO = iHill (2.44)

Thus, sin iMO = sin iHill. Dividing both sides of Eq. 2.42 by sin iMOsin ΩMO

cos ΩMO

 =

cos Θ sin ΩHill + sin Θ cos ΩHill

cos Θ cos ΩHill − sin Θ sin ΩHill

 (2.45)

Using the trigonometric functions sin(α+β) = sinα cosβ+sinβ cosα and cos(α+β) = cosα cosβ−

sinα sinβ, one can see that

ΩMO = ΩHill + Θ (2.46)

Eq. 2.33 conserves the magnitude of the position, but not of the velocity. Thus, if the conversion

is performed at periapse, rp is conserved, but the periapse velocity defined in Eq. 2.39, and thus e,

and the semi-major axis are frame-dependent.

In conclusion, the i are equal in both reference systems, while Ω simply differs by the instan-

taneous angle Θ. The e in both systems are different, and thus the ra for conversions occurring at

periapse.
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2.4 Common design philosophies for transfers in three-body dynamics

In this section, two different design philosophies are explained. The first philosophy based on

dynamical systems theory uses manifolds. The second philosophy focuses on the natural force struc-

ture, i.e. perturbations. Before explaining both design philosophies, a commonly used technique,

a Poincaré map, is defined.

2.4.1 Poincaré map

A Poincaré map is a method to reduce a system from a continuous trajectory in Rn to a

discrete mapping in Rn−1. It is defined as the mapping of the flow of the trajectory between

two surface of section crossings. The surface of section is an n−1-dimensional hyperplane that is

transverse to the flow, and has a specified crossing direction. As an example, imagine an autonomous

system, with a planar orbit that is slowly spiraling outwards (Fig. 2.13). The state is uniquely

determined by positions x and y, and velocities ẋ and ẏ. Now imagine a plane where y = 0, the

surface of section. One can easily see there are multiple intersections with this plane, for crossings

in a specific direction: ẏ > 0. The crossings are uniquely defined by x, ẋ and ẏ. The Poincaré

map thus reduces the continuous trajectory to discrete points on the y=0-plane. For this example,

the Poincaré map is the operator that maps the (x, ẋ, ẏ) states at intersection 1, I1, to the (x, ẋ, ẏ)

states at the next intersection, I2. Note that a Poincaré mapping is not guaranteed to exist. For

instance, a trajectory could have no future intersections with the y=0-plane.

I1 I2
!"

!#
y = 0, ℝN-1 

hyperplane

I1

I2y = 0

"

"̇

#̇

Figure 2.13: Conceptual example of a Poincaré map.
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Many different surface of sections can be used. For this dissertation, the transfers of interest

change their orbital elements in between subsequent periapses. Therefore, the periapse condition

is an obvious candidate for the surface of section. Villac and Scheeres [57] introduced the periapse

surface of section for the Hill problem. The following equation defines this periapse surface of

section and crossing direction. 
r · ṙ = 0

v2 + r · r̈ > 0

(2.47)

Haapala and Howell [58] have adapted the periapse surface section for the CRTBP by defining the

periapse with respect to the secondary body:
r2 · ṙ = 0

v2 + r2 · r̈ > 0,

(2.48)

where v and r̈ are the radial velocity and acceleration of the satellite relative to the secondary body.

2.4.2 Dynamical systems theory

Fuel efficient transfers between different orbits can be identified by connecting stable and

unstable manifolds of libration point orbits [3, 4, 59]. This process consists of three steps. First,

libration point orbits are determined. Second, unstable and stable manifolds are computed. Third,

intersections of the unstable and unstable manifolds on the Poincaré map’s surface of section are

determined to identify heteroclinic transfers.

In this dissertation, only planar Lyapunov periodic orbits in the Earth-Moon CRTBP around

L1 and L2 are considered, which are unstable periodic orbits. Those orbits can be identified using

the single-shooting method described in Ref. [3] using an initial guess from Grebow [59]. The

computation of periodic orbits is performed using a predictor-corrector scheme: an initial state is

integrated numerically, after which a deviation from periodicity is observed. The initial state is

then corrected using information from the monodromy matrix.
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Unstable periodic orbits have stable and unstable manifolds. Those can be computed using

the eigenvectors of the monodromy matrix, vs and vus, corresponding to the smallest and largest

real eigenvalue respectively, evaluated at one fixed point along the orbit. For each point on the

periodic orbit, xi, the initial state of the stable and unstable manifolds, xi
s and xi

us, can be computed

using the state transition matrix Φi,0 from the initial point of the periodic orbit, x0, up to xi:

xi
s = xi + ε

Φi,0vs

|Φi,0vs|
xi
us = xi + ε

Φi,0vus

|Φi,0vus|
(2.49)

Using these initial points, the manifolds can be computed by numerically integrating the state

backwards and forwards in time for the stable and unstable manifolds respectively. The integration

is stopped when the next Poincaré surface of section is encountered, as explained in Subsection 2.4.1.

This allows the determination of unstable and stable manifolds that have an intersection on the

first Poincaré surface of section. The computation of the next Poincaré maps allows to compute

intersections on the next Poincaré surface of sections. This methodology has been successfully

applied to design low-energy transfers between the Earth and the Moon for the GRAIL mission [5],

or between different libration point orbits for the ARTEMIS mission [6].

2.4.3 Natural force structure

Another branch of design methodology focuses on the natural force structure, i.e., pertur-

bations. This methodology can be used to design Earth-Moon transfers with ballistic captures as

studied by Yamakawa [8] and applied to the Hiten mission [9]. Solar tides can also be used to

design transfers between different, planetocentric orbits. Orbital changes can be categorized by

the quadrant of the orbit in a rotating frame, for changes that affect the magnitude of the angular

momentum vector, i.e., changes in the semi-major axis a and eccentricity e, and thus periapse

and apoapse radii rp and ra [8, 60]. In Ref. [60], Davis et al. derive an analytical expression to

express the tidal accelerations. For an exaggerated scenario, the solar tidal accelerations are shown

in Fig. 2.14. One can see that in quadrant I and III, the tidal acceleration opposes the motion of a
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prograde orbit. In quadrant II and IV on the other hand, the acceleration lies in the same direction

as the motion of a prograde orbit [60]. This allows to categorize the orbital changes according to

the quadrant, as shown in Table 2.1.

Figure 2.14: Visualization of the solar tidal accelerations in the Sun-Saturn system, in function
of the quadrants defined in the rotating frame. The effects are exaggerated by introducing an
artificially large primary and magnifying the ŷ-components (credit: Davis [60]).

Table 2.1: Quadrant categorization for gravitational perturbations in the Hill system. Reproduced
from Davis [60].

Quadrants I and III Quadrants II and IV

a ↓ ↑
rp ↓ ↑
e ↑ ↓

For changes that affect the inclination, argument of periapse and/or right ascension of ascend-

ing node, a simple quadrant representation does not exist. Nonetheless, large orbital plane changes

are possible. An example is the work by Villac [11, 12, 14, 13], who identified transfers with large

inclination changes while maintaining a constant periapse radius. This work was performed in the

Jupiter-Europa system, but can be easily extended to Sun-planet systems.
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2.5 Machine learning

The term “machine learning” was first coined by Arthur Samuel in 1959. He defined this term

as “the field of study that gives computers the ability to learn without being explicitly programmed”

[61]. Within machine learning, a distinction is made based on the type of data available for training.

Supervised learning algorithms have data sets available that contain the exact mapping from input

to output parameters. These algorithms mainly focus on learning the underlying relationships

between the input and output parameters. Unsupervised learning algorithms on the other hand

have only access to training data without explicit mapping between input and output parameters.

These algorithms mainly focus on finding structure in the data, and the identification of different

subgroups in the data. In this dissertation, the focus lies on supervised learning algorithms. While

numerous supervised learning algorithms exist, the general work-flow is always the same and can

be divided in several tasks. The work-flow is visualized in Fig. 2.15.

Data 
source

Training data
x → y

New 
data

Model
2. Train model

Predicted y
3. Prediction

x

y

1. Data creation

4.  Asses generalization

Figure 2.15: General work-flow of a supervised learning algorithm, adapted from Ref. [62].

(1) Data creation: generate the input-output pairs

(2) Training: use the input-output pairs in the training data to train a model.

(3) Prediction: predict the outputs, using a set of new inputs and the trained model.

(4) Asses generalization: compare the predicted outputs with the true outputs. The errors are

an indication for the generalization performance of the trained model.
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Some common supervised learning techniques are support vector machines [63], naive Bayes

classifiers [64], k-nearest neighbor [65], artificial neural networks (ANN) [66, 67, 68], and decision

tree methods such as random forests [69]. In this dissertation, artificial neural networks will be

used as the chosen machine learning technique. In the next subsections, an answer is given to the

following questions:

(1) How do artificial neural networks simulate input-output relationships?

(2) How are artificial neural networks trained?

2.5.1 How do artificial neural networks simulate input-output relationships?

Artificial neurons Rosenblatt introduced the concept of perceptrons in 1957 [67]. A

perceptron is a mathematical concept, that computes a weighted average of its inputs, and based

on this weighted average, returns a single binary value. This led to the development of artificial

neurons; perceptrons with continuous output. Figure 2.16 shows a schematic of an artificial neuron.

Artificial neuron k maps n input signals x to a single output value yk. First, it computes a weighted

sum of the inputs and adds a bias term, bk. Then, a mathematical operation is performed on this

weighted average; the activation function φ [70].

In
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x2
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ɸ(.)

Activiation
function
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Figure 2.16: Schematics of an artificial neuron, adapted from Ref. [71].

The output of a neuron is thus computed as:

yk = φ

(
~x · ~wk + bk

)
(2.50)
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Some examples of commonly used activation functions are a standard logistic function, also known

as sigmoid function S(x), and a hyperbolic tangent function tanh(x) [70]:

S(x) =
1

1 + e−x
tanh(x) =

ex − e−x

ex + e−x
(2.51)

Artificial neural network An artificial neural network is composed of a collection of

artificial neurons. Many variations exist in the way neurons are organized into a network, but all

neural networks are composed of multiple layers; an input layer, an output layer, and intermediate

layers, called hidden layers. Some common hidden layers are:

• feedforward layer: the output of a neuron is only dependent on its inputs and its weights.

• recurrent layer: the output of the previous evaluation of the neuron is added as an input.

This memory term enables the prediction of time series.

For this research, the neural networks predict the response of a Poincaré map; there is only one

epoch for which the output states are predicted. Hence, solely feedforward layers are used in this

research. A visualization of such a feedforward neural network is shown in Fig. 2.17. The inputs

Input layer Output layerHidden layers

Figure 2.17: Schematics of a 3-4-6-2 feedforward artificial neural network: two input neurons, two
hidden layers with 4 and 6 neurons, and 2 output neurons.
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of the neural network are propagated forward throughout the network to compute the outputs of

the network. This requires knowledge on the weights, unique for each neuron-neuron connection,

the bias of each neuron and the chosen activation function of each neuron. For the shown 3-4-6-2

neural network, (3× 4 + 4) + (4× 6 + 6) + (6× 2 + 2) = 50 unique weights and biases exist.

2.5.2 How are artificial neural networks trained?

An ANN tries to match the input-output relations observed in data. To do this, a cost

function is defined to represent how accurate the ANN is predicting the outputs. Two common

cost functions are the mean squared error and cross-entropy cost function. For N training samples

and M predicted output parameters, these are defined as:

MSE =
1

N

N∑
i=1

M∑
j=1

(
yipred,j − yitruth,j

)2
(2.52)

CE = − 1

N

N∑
i=1

M∑
j=1

(
yitruth,j ln

(
yipred,j

)
+
(
1− yitruth,j

)
ln
(
1− yipred,j

))
(2.53)

The weights and biases of the neurons are randomly initialized. During training, the weights and

biases are updated to minimize the cost function. This is done using a back propagation algorithm

[72]. There are numerous implementations, each with their advantages and disadvantages [70]. For

good generalization performance, a balance must be found between ANN with insufficient neurons

that miss trends, and ANN with too many neurons that suffer from over-fitting to the training data

[68, 73]. The latter occurs when the minimization procedure tunes the weights in such a way that

it almost perfectly captures the provided data, but is inaccurate when applied to new data, not

used in the training procedure. To detect overfitting, the data is divided into three sets: a training,

validation and test set [68, 73]. The training set is used in the training procedure to minimize the

cost function. During the training, the validation set is used to detect overfitting. If overfitting

occurs, the cost function on the validation set increases. When this happens, the training procedure

is stopped. Finally, there is the test data. This data is not used to train, nor detect overfitting

and stopping of the training procedure. Thus, it provides an independent measure to compare the

performance of different ANN.
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Transfers from inclined low-Earth orbits to geostationary orbit

3.1 Motivation

The geosynchronous orbit (GEO) is in high demand, yet it requires a considerable amount

of fuel to reach. Common launch sites for GEO satellites include the Guiana Space Centre, the

NASA Kennedy Space Center and the Baikonur Cosmodrome. Without dog-leg maneuvers after

launching into a parking orbit, the minimum inclinations that can be reached for each launch site

are 5◦, 28.5◦ and 51.5◦, respectively. For launch sites at high latitudes, a large part of the fuel

budget needs to be allocated to inclination changes ∆i. Several strategies exist to minimize this

fuel cost. Some of the methods are discussed in Subsection 2.1.4. In this chapter, transfers will

be designed from an initial, highly inclined circular orbit at 185 km altitude to a geosynchronous

orbit, which is an equatorial, circular orbit at an altitude of 35,786 km. The patent application

of Geryon Space Technologies [17] shows that solar gravity perturbations can be used to provide

the required ∆i and ∆rp. Point-design transfers starting at iEME = 51.5◦ have been found that

require only 2.5% more ∆V than the two-burn transfers from 28.5◦. The large body of work for

conventional strategies for this specific transfer, and the known existence of point-design solutions,

makes this transfer a great starting point to develop some of the required computational tools.

This chapter develops a systematic approach to identify transfers, if they exist, for any time of

year and initial iEME. Furthermore, the sensitivity of the dynamics to the initial state is quantified

through Lyapunov characteristic time analysis. Finally, the sensitivity of the transfers’ final iEME

and rp to launch injection errors is analyzed.
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3.2 Problem formulation

First, the structure and design variables of the transfer orbits are explained. Second, it is

shown how the Hill system’s properties can be used to prune the phase space.

3.2.1 Structure and design variables of the transfer orbits

The transfers depart LEO after an in-plane impulse in the velocity-direction to reach the

transfer orbit’s e1; index 1 indicates the orbital elements after this first maneuver. At the next

perigee, the transfers arrive with rp,2 = rGEO and iEME,2 = 0◦; index 2 indicates the orbital elements

prior to the second, in-plane impulse in the anti-velocity direction that circularizes the final orbit.

Figure 3.1 shows this strategy, and compares it with the bi-elliptic transfer (Subsubsection 2.1.4.1)

for a transfer from an initially polar orbit. The solar-perturbed orbit manages to do the entire

plane change without any out-of-plane maneuvers.

Figure 3.1: Comparison between a bi-elliptic (blue) and solar-perturbed transfer (red) for a scenario
departing from an initial polar orbit. Not to scale: red solar perturbed orbit has an apogee radius
O(105-106 km), cyan target orbit has a radius of 42,164 km.
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For this research, the initial rp,1 and iEME,1 are determined by the launch vehicle and launch

site, and are kept constant. This leaves four free design variables: the initial transfer e1, the

initial time t1, ωEME,1 and ΩEME,1. The first design variable characterizes the size and duration

of the transfer orbit, whereas the latter three determine the relative orientation between the Sun

and the trajectory, and thus the perturbing accelerations. Given the size of the phase space, and

the sensitive maps between design variables and final rp,2 and iEME,2 values, navigating the state

space is not trivial. For each day of the year, the four design variables that satisfy the required

∆iEME and ∆rp are determined. To find transfers, intersections must be found between contour

lines representing the correct ∆rp and correct ∆iEME, at the smallest e1 at which they occur.

By minimizing e1, the required fuel to inject the spacecraft from LEO into its transfer orbit is

minimized.

3.2.2 Phase space pruning

The Earth has a small heliocentric eccentricity of 0.0167. Therefore, the circular Hill problem

is used for this application. The circular Hill problem has three spatial symmetries in orbital element

space (Eq. 2.25). Only one of those spatial symmetries exists in the EME formulation, whereas

the other two are hidden in a more complex combination. If ωEME is a solution, ωEME + π is also

a solution. Therefore, the ωEME design space can be halved: ωEME ∈ [0, π). Furthermore, the

ΩHill + π symmetry is translated into a temporal symmetry. An identical response in the EME

system requires identical ΩEMO (Eq. 2.38), which is achieved for the ΩHill + π scenario if Θ is

adjusted by π (Eq. 2.46); i.e., if the timing changes by half an orbital period. Thus, a solution

at time t0 is also a solution at time t0 + 0.5P , with P the orbital period of the secondary around

the primary. Therefore, the temporal design space can be halved: t ∈ [t0, t0 + 0.5P ). Note that

this temporal symmetry relies on the time-invariance of the circular Hill problem. In conclusion,

employing the spatio-temporal symmetries, the solution space can be reduced by a factor of four.
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3.3 Transfer design methodology

The methodology is divided into four blocks. First, the mapping from the initial perigee

to the next perigee is developed. The next two blocks identify the maximum ∆iEME that can be

achieved at a specific e1 and t1. To do this, the second block finds an initial condition that satisfies

the required ∆rp using a single shooting method. The third block uses this to start a continuation

method to compute the entire contour of points with the correct ∆rp. On this contour, the local

maxima for ∆iEME are identified. The fourth block traces out these optima in e1 until the maximum

∆iEME is encountered. Each of those four blocks will be treated in more detail, followed with a

discussion on how the four blocks fit into a single algorithm.

3.3.1 Perigee to perigee Poincaré map

The transfers are designed to perform the entire ∆rp and ∆iEME in one orbit. Analytical

methods exist to predict the change between perigees based on knowledge of the apogee state [11].

As this state is not known a priori, a numerical approach is required: the computation of the

Poincaré map using the periapse surface of section defined in Eq. 2.47, using the circular Hill

equations of motion in Eq. 2.22.

By definition, the Hill model’s xy-plane is the ecliptic plane. However, the transfers nullify

their i with respect to the equatorial plane. Because i and Ω are coupled between equatorial and

ecliptic reference frames, iHill,1 is not constant for constant iEME,1, nor is the required iHill,2 = 0◦.

Therefore, the initial conditions in the equatorial inertial reference system must first be converted

to initial conditions in Hill’s rotating frame, after which they are numerically integrated. Finally,

the end states are rotated back to the inertial frame, to assess the achieved inclination change.

The Poincaré mapping can be performed for different initial conditions. Figure 3.2 shows

the inclination and perigee radius changes for the entire range of possible ωEME,1 and ΩEME,1 at

t1 = 0 with respect to J2000, with an initial iEME,1 = 51.5◦, a perigee altitude of 185 km and

an eccentricity of 0.9856. There are clearly defined contour lines for the inclination and perigee
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changes. Their shapes and the location of their extrema do not necessarily overlap. Furthermore,

the spatial symmetries in the circular Hill system can be observed.

Figure 3.2: Contours for ∆iEME and ∆rp,2. Example at t1=0, iEME,1 = 51.5◦, e1 = 0.9856.

3.3.2 Find point with required perigee raise

The Poincaré map is used to find a set of initial conditions that raises the perigee altitude

by 35,601 km from 185 km to GEO altitude. Note that in this subsection, all initial conditions

except ωEME,1 and ΩEME,1 are kept constant. First, an initial guess for the orbital parameters is

propagated between perigees and the obtained rp,2 and iEME,2 are stored. A forward finite difference

method computes the partials of rp,2 and iEME,2 with respect to ωEME,1 and ΩEME,1. Then, the

required ∆ωEME,1 and ∆ΩEME,1 to change the rp,2 by ∆rp = rp,GEO− rp,2 are predicted by solving

the following equation:

∆rp =
∂rp
∂ω
·∆ω +

∂rp
∂Ω
·∆Ω =

∂rp
∂ω
· ∆ω

∆Ω
∆Ω +

∂rp
∂Ω
·∆Ω (3.1)

To obtain the ratio between the two angles, a total angle step ∆Ψ =
√

(∆ω)2 + (∆Ω)2 is selected:

∆ω

∆Ω
= ±

√√√√(∆Ψ

∆Ω

)2

− 1 (3.2)

Provided that

α = (∆Ψ)2
[(∂rp
∂ω

)2
+
(∂rp
∂Ω

)2]− (∆rp)
2 (3.3)
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is positive, Eq. 3.1 has two solutions for ∆Ω. If α is negative, the required perigee change can not

be realized for the assumed step size. Increasing ∆Ψ resolves this.

∆Ω1,2 =

(
∂rp/∂Ω

)
∆rp ±

(
∂rp/∂ω

)√
α(

∂rp/∂Ω
)2

+
(
∂rp/∂ω

)2 (3.4)

Each solution for ∆Ω has two solutions for ∆ω:

∆ω11 =
√

∆Ψ2 −∆Ω2
1 ∆ω12 = −

√
∆Ψ2 −∆Ω2

1 (3.5)

∆ω21 =
√

∆Ψ2 −∆Ω2
2 ∆ω22 = −

√
∆Ψ2 −∆Ω2

2

Because the ± was ignored in Eq. 3.2, of the four solutions, only two are correct solutions. Plugging

the solutions into Eq. 3.1 determines the real solutions. The solution that has the most negative

∆iEME gradient is chosen. This procedure predicts the required change in ωEME,1 and ΩEME,1.

Then, at this new state, the perigee-to-perigee Poincaré mapping is performed; after which the

procedure is repeated until the target perigee raise is reached within a tolerance of 100 km, a 0.28%

error on the required perigee raise of 35,601 km.

An example of this procedure is shown in Fig. 3.3. Starting at (250◦, 220◦), indicated by

point 0, and a perigee raise of roughly 10,000 km, the solution jumps to point 1 with a perigee raise

of 70,000 km, after which it jumps to point 2, 3, and finally settles on point 4, where the perigee

raise is 35,604 km, a 3 km error. This figure also demonstrates that the solution jumps occur in a

direction that reduces the final inclination.

Figure 3.3: Procedural example for finding a point with the required perigee radius change.
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3.3.3 Find contour with required perigee raise

The method of the previous subsection provides a starting point to find all combinations

of (ωEME,1,ΩEME,1) that satisfy the perigee raise; again, while keeping all other design variables

constant. This will be done using a pseudo-arclength continuation method [74], which is known to

be robust around turning points [75]. This method consist of two steps: a predictor and a corrector

step. Both are briefly explained in the next paragraphs.

3.3.3.1 Predictor step: tangent method

First of all, a unit vector t̂, tangent to the contour at the current point, must be determined

by solving the following: 
(
∂rp/∂ω

)
t̂ω +

(
∂rp/∂Ω

)
t̂Ω = 0

t̂2ω + t̂2Ω = 1,

(3.6)

which has solutions

t̂Ω = ±

√√√√√√
(
∂rp/∂ω

)2

(
∂rp/∂ω

)2
+
(
∂rp/∂Ω

)2 t̂ω = −∂rp
∂Ω

(
∂rp
∂ω

)−1

t̂Ω

This solution has a sign ambiguity because a tangent direction exists in both directions. Therefore,

a choice must be made on the sign of t̂. For the step from the first to the second point, this is

arbitrarily chosen. For the next steps, the sign of t̂ is chosen in the direction that maximizes its dot

product with the difference between the two previously found points: max ±t̂ · [ωi−2−ωi−1,Ωi−2−

Ωi−1]T . This method ensures the continuation along the contour line past a turning point. Based

on this method, the direction of the prediction step is fully determined. Then, a step size ∆s

is chosen with which the new coordinates can be computed. Computing the ∆rp at these new

coordinates completes the predictor step.
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3.3.3.2 Corrector step: pseudo-arclength constraint

The pseudo-arclength constraint ensures that the dot product between the tangent direction

and the difference between the previous converged point xi−1 and the next point xi is equal to ∆s.

t̂ · (xi − xi−1) = ∆s (3.7)

Hence, the corrector step points must all lie on a (n - 1)-dimensional hyperplane, where n is

the dimensionality of the state-space. For this application, this results in computing a unit vector

perpendicular to the t̂-direction; n̂. The geometric interpretation is shown in Fig. 3.4.

Figure 3.4: Visualization of the pseudo-arclength constraint.

The next step computes the gradient of the perigee raise along the n̂-direction. Using this

information, the next corrected state can be predicted. This Newton-method is iterated until

convergence. Again, the tolerance is set to 100 km. The number of required iterations is used to

adjust the ∆s size for the next predictor step.

3.3.3.3 Completing the contour

This pseudo-arclength continuation method is repeated until a closed target ∆rp contour is

obtained. A few examples for different eccentricities can be found in Fig. 3.5, where the inclination

changes on the perigee-raise contours are shown. The local minima are indicated by red asterisks.

It has been verified that the contours indeed stay within a 100 km tolerance of the 35,601 km target.

This figure shows that multiple perigee contours can exist and they can merge. Furthermore, one

can see that the number of local minima of the inclination change is not constant.
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Figure 3.5: Inclination change on the contours with correct ∆rp for different e1: e1 = 0.9860618
(top left), e1 = 0.986618 (top right), e1 = 0.9870 (bottom left).

To better understand these processes, Fig. 3.6 is created where the perigee contour plots for

many e1-values are depicted. One can see that the contours grow when e1 increases. At a certain

e1, the two contours meet. Upon increasing e1 further, they become one big contour. Furthermore,

one can see how the local minima, indicated by the black dots, branch of from each other. Starting

at one local optima per contour line, a V-pattern arises and the local optima branch off. From

Figure 3.6: Continuum of contours with correct ∆rp for a large number of e1.
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then on, there are two local optima per contour line. When the two contour lines merge into one

big contour line, the V-shaped pattern continues, explaining the four local optima on that contour

line. For all considered cases, a maximum of four local optima is observed.

3.3.4 Follow inclination gradient on perigee contours

Figure 3.6 shows that the local minima move smoothly. It is thus inefficient to compute

complete contours for every e1. The entire contour(s) is computed for one e1, the local optima are

determined and passed on to the next e1. First, a point on the contour line for the new e1 in the

neighborhood of the optima of the previous e1 is found. Then, a pseudo-arclength continuation

technique is used, but it is stopped when the new local minima at that e1 is observed. An example

for one local optima is visualized in Fig. 3.7. Note that a few extra steps are performed after

observing a local minimum, to reduce sensitivity to numerical noise.

Figure 3.7: Identify local ∆iEME minimum on a contour with correct ∆rp for a fixed e1. The local
minimum is indicated by a black asterisk.

Looking back at Fig. 3.6, one can see that local optima branch off from each other and that

contours merge. Therefore, it was decided to start at an initial e1 where the merge has occurred

and where four local optima are present. Then, each local optima is traced out in e1 until the

minimum iEME,2 is found for that local optima family. Note that a limit of 0.99 has been imposed

on the e1. At such large e1, the TOF between two perigees becomes very large, and in some cases
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infinite, indicating an escape trajectory. An example of this procedure can be found in Fig. 3.8,

where the red and black stars are respectively, the local minima on the full contour plot and the

minima for each local minima family traced out in e1.

Figure 3.8: For each of the four local minima on the closed contour, the (ωEME,1,ΩEME,1) location
of the local minimum in iMME,2 is traced out in e1.

3.3.5 Final algorithm

For an initial e1, the full contour is found. It is ensured that there are four local optima and

only one closed contour. If this is not the case, e1 is changed and the new contour is traced out

until both criteria our met. Then, for each local optima, the e1 that results in the minimal iEME,2

is determined. Those results, including the optimal e1, are used as an initial guess for the next

day. However, this results in jumps between local optima families. To prevent these jumps, the

local optima at the initial e1, and not the optimal e1, are passed on to the next day. This ensures

staying on the local minimum, but it comes at a higher computational cost.
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3.4 Resulting transfers for different initial inclinations

The developed method is applied to several iEME,1-values. In Fig. 3.9, one can see how the

four local optima (indicated by different colors) evolve over the year for iEME,1 of respectively 51.5◦,

90◦ and 128.5◦. These iEME,1 capture the entire spectrum for launch sites between Baikonur and

polar latitudes, as well as the retrograde counterpart for Baikonur. t1, e1, ωEME,1 and ΩEME,1 are

shown, which in combination with the known iEME,1 and rp,1, fully determine the initial state. The

first row in Fig. 3.9 shows the realized ∆iEME. Note that the algorithm is only applied to the first

half of the year; the results for the next half are identical through the temporal symmetry explained

in Subsection 3.2.2.

Figure 3.9: Realized inclination change and initial orbital elements in the EME frame for trans-
fers from the four different families (indicated by different colors) with the correct perigee raise,
departing from iEME,1 = 51.5◦ (left), 90◦ (middle) and 128.5◦ (right).

For different iEME,1, very similar structures are observed in the initial orbital elements. A

clear shift in e1 can be observed: for higher initial iEME,1, the families start at higher e1. Therefore,

they reach the e1 = 0.99 cut-off sooner, resulting in less feasible trajectories. A trajectory is deemed
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feasible when the second perigee condition is within 1◦ iEME,2 and 100 km rp,2 of a geostationary

orbit. For an initial iEME,1 of 51.5◦, 90◦ and 128.5◦, respectively 325, 225 and 113 days per year

have feasible transfers. The initial orbital elements for the feasible transfers are shown in Fig. 3.10,

where the different families of transfers are indicated by different colors. This figure highlights

the similarity in the orbital element structure for the different iEME,1. At first, ωEME,1 is around

180◦, after which it increases, accompanied by a strong increase in e1. Meanwhile, ΩEME,1 increases

linearly with t1. When the e1 limit of 0.99 is encountered, the transfers are deemed impossible.

After this infeasible t1-region, a different family of transfers becomes feasible. This family has

significantly lower values of ωEME,1 and ΩEME,1. The opposite process occurs, as compared to the

transfers prior to the cutoff: ωEME,1 value increases strongly while e1 drops. When ωEME,1 reaches

180◦, it lingers there. To make this possible, e1 needs to increase again. For the 90 and 128.5◦

scenario, the 0.99 e1 cutoff is reached again, indicating another infeasible region.
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Figure 3.10: Initial orbital elements in the EME frame and apogee angle α for transfers arriving
within 1◦ iEME and 100 km rp of a geostationary orbit, for different initial equatorial inclinations.
From left to right: 51.5◦, 90◦ and 128.5◦. The different colors indicate the different families of the
transfers.
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The bottom row of Fig. 3.10 displays the clockwise angular distance between the positive

y axis in the Hill reference frame and the apogee location, α. From theory, it is known that the

largest rp increase occurs near an angle of 45◦ [8, 60, 76], see Subsection 2.4.3. If α deviates from

this location, a larger e1 is required to realize the same ∆rp. It is observed that there are two

iEME reduction regions, that move through the rotating frame in opposite directions. Initially,

one of these regions is in the vicinity of α = 45◦. Thus, a low e1 suffices. This region travels

counter-clockwise, requiring the e1 to increase to realize the correct rp,2. Then, the iEME reduction

regions crosses the quadrant boundary near the 50 day mark. Thus, no rp increase can be realized

simultaneously with the iEME reduction; the transfers become infeasible. Meanwhile, the second

iEME reduction region undergoes an opposite, clockwise trend. When it crosses into the correct

quadrant, the trajectories become feasible again. Throughout its clockwise trajectory through the

quadrant, e1 decreases when α approaches 45◦. Then, the e1 increases again when the region travels

towards the positive y-axis. For iEME,1 of 90◦ and 128.5◦, the region crosses the quadrant around

day 120. Again, the transfers are infeasible until the other iEME reduction region crosses counter-

clockwise into the correct quadrant. For iEME,1 of 51.5◦, this happens instantaneously, explaining

why there is no infeasible region.

Figure 3.11 shows the time of flight versus ∆V for the different transfer strategies and for the

different values of initial inclination. The total required ∆V for the designed transfers is smaller

than the optimal two-burn, as well as the bi-elliptic transfers explained in Subsection 2.1.4. The

higher the initial inclination, the larger the ∆V savings are, relative to conventional transfers. For

a higher initial inclination, a slightly higher initial eccentricity is required, resulting in a slightly

higher ∆V. Thus, the required ∆V only varies slightly with initial inclination, while the two- and

three-burn ∆V changes significantly between different initial inclinations. The required ∆V is

higher than for the lunar gravity assist transfers. However, the designed transfers only cross the

Van Allen belts once, have launch opportunities that are less dependent on the Moon’s location

and are operationally easier, as they don’t have a critical and sensitive lunar flyby.
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Figure 3.11: ∆V and TOF comparison for different transfer strategies from inclined LEO to GEO.

3.5 Validation

The accuracy of the transfers is verified by integrating the transfers with the gravitational

accelerations of the Sun and Earth from the DE405 ephemeris model. Figure 3.12 shows significant

deviations from the target orbit, especially near the infeasible region. The observed errors can be

mainly attributed to ignoring Earth’s heliocentric eccentricity in the used dynamical model. The

differences between an eccentric and circular Hill problem are largest for transfers with high e1.

Although the identified transfers have significant errors in the real ephemeris, they are very close to

the solutions in the real ephemeris. For a few trajectories, indicated by black asterisks at day 0, 42

and 150, the errors are respectively 3,267 km, 212,003 km, and -5,746 km in rp,2, and 0.57◦, 12.50◦

and 1.00◦ in iEME,2. If the initial (ωEME,1,ΩEME,1) coordinates are changed by respectively (0.30◦,

-2.00◦), (1.50◦,1.15◦), and (0.00◦,1.60◦), those errors reduce to respectively 3, 94 and 27 km in rp,2,

and 0.46◦, 1.84◦, and 1.05◦ in iEME,2. This suggests a sensitivity in the state space, especially near

the infeasible region, which will be studied in more detail in the next section.
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Figure 3.12: Errors in rp,2 and iEME,2 when modeling the Earth’s and the solar gravity based on the
DE405 ephemeris, as compared to the circular Hill problem implementation for the iEME,1 = 51.5◦

transfers, and the transfers’ e1.

The lunar gravity is not included in these simulations because this research focuses on the

effects of the tidal forces from the Sun. The Moon’s effects may be overlaid based on its current

geometry, which changes monthly and creates monthly “holes” where the transfers are significantly

perturbed by the Moon, and may be infeasible; or they must be modified substantially to accom-

modate the lunar effects. However, this issue can be avoided by holding off on launches for a few

days as the Moon moves through a keep-out zone, or by using the ωEME + 180◦ symmetric transfer;

if the nominal transfer travels close to the Moon, the symmetric transfer usually does not. An

example has been computed for day 93: when the lunar gravity is included, an error of 18.92◦ in

final iEME,2 and 25,433 km in perigee altitude occurs. For the symmetric transfer, this error is 0.11◦

and 915 km. A slight tweak of the initial conditions of the transfers, or a tiny correction maneuver

performed halfway during the transfer can easily clean up this relatively small error.
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3.6 Contingency analysis

The nominal transfers are designed under the assumption that the departure conditions and

maneuvers are executed with infinite precision. In reality, this is never the case. Therefore, in

this section, the designed transfers’ robustness is assessed. First, the behavior of the trajectories

is investigated when the GEO insertion burn is not executed, followed by the performance of

neighboring trajectories as a result of an imperfect first maneuver. For definiteness, only the

iEME,1 = 51.5◦ transfers are discussed.

3.6.1 Missed GEO insertion burn

In this subsection, it is assumed that the maneuver at perigee 2 is not executed. The orbit

is thus not injected into GEO, but continues along its natural dynamics. Through computation of

the next Poincaré maps, the inclination and perigee radius at the next perigees can be computed,

displayed in Fig. 3.13. The black dashed line in the rp plot is the geostationary rp-value. The

impacting trajectories are indicated by a cyan dot. From this figure, one can see that for the third

perigee, a large percentage of the trajectories stay under 20◦ inclination. The region of trajectories

in between the two impact regions has a significant inclination change; those 24 days transition to

retrograde orbits. The perigee altitude also shows significant variations: the third perigee occurs

at altitudes between the Earth’s surface and up to 84,000 km above GEO. If both the inclination

and perigee altitude stay close to their GEO values, one could recover from the missed maneuver

by maneuvering at the third perigee. If one allows an inclination error of 5◦ and a perigee radius

error of 5,000 km, 16 trajectories per year can be injected into a near-GEO orbit on the third

perigee. For the next perigees, the inclination and perigee altitude show more variation, and more

trajectories impact. For the same tolerances, no trajectories can be injected into a near-GEO orbit

on the fourth and fifth perigees.
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Figure 3.13: Orbital elements at the next perigees when the GEO insertion burn does not occur.

3.6.2 Neighboring trajectory analysis

In this subsection, the stability of neighboring trajectories is assessed. First of all, the rate

of exponential divergence from perturbed initial conditions is computed. Then, a Monte Carlo

study is performed to determine the effect of launch injection errors on achieved iEME,2 and rp,2,

as well as on impact and escape characteristics. One key driver for the upcoming discussion is the

Jacobi constant (J). The non-dimensional formula can be found in Eq. 2.23. In this discussion,

the dimensional form is used, defined below:

J =
1

2
v2

Hill −
µSun

2R3
(3x2

Hill − z2
Hill)−

µEarth

rHill
(3.8)

At a value of -0.3995 km2/s2, a spacecraft could reach the L1 and L2 point with zero velocity.

Thus, the zero-velocity surface at this J-value touches the L1 and L2 point. The zero-velocity

surface is a surface that a body with a certain J-value cannot cross, since beyond the surface, its

velocity would be negative [43]. If J is smaller (more negative) than this value, the spacecraft is

contained to a central shape around the Earth. If J is larger than this value, the spacecraft can

theoretically escape the Earth system. Examples for both options are shown in Fig. 3.14. Four

different transfers for each of the four transfer families are analyzed. Per family, one transfer with

J smaller than the theoretical level, and three transfers with increasingly larger J . Those transfers

have been indicated with a black asterisk in Fig. 3.15 and visualized in Fig. 3.16.
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Figure 3.14: Example of a closed (top) and an open (bottom) zero-velocity surface.
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Figure 3.15: Jacobi constant of the transfers, and the selected transfers of the four families. The
dashed line shows the limiting case where J = -0.3995 km2/s2.



61

(a) Family 1. (b) Family 2.

(c) Family 3. (d) Family 4.

Figure 3.16: Visualization of the selected transfers for each of the four families in Fig. 3.15.
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3.6.2.1 Lyapunov characteristic exponents and Lyapunov characteristic time

Lyapunov characteristic exponent (LCE) analysis is a method to determine the rate of ex-

ponential divergence from perturbed initial conditions. Therefore, they “are a widely used tool for

the estimation of chaoticity in dynamical systems” [77]. The LCE is defined by the following:

χ = lim
t→∞

1

t
ln

(
d(t)

d(t0)

)
(3.9)

where d(t) is the distance in the phase space between the reference trajectory and a shadow tra-

jectory, which are initially separated by a distance d(t0) [77]. The shadow trajectory is initialized

by multiplying the initial state of the reference trajectory by a factor (1+ε). The initial distance

is hence (1+ε) times the norm of the initial state. From this equation, it can be seen that the

neighboring trajectory only diverges slower than exponentially when χ is zero.

During the computation of the shadow trajectory, a renormalization procedure needs to be

applied at given intervals of time τ . This re-normalization maintains the direction of the vector

from the reference to the shadow trajectory, but resets the distance to d(t0) [78]. This is done to

“avoid overflow of the lengths of the vectors in the case of a chaotic orbit” [79]. The LCE can then

be computed from [77].

χ = lim
N→∞

1

Nτ

N∑
i=0

ln

(
d(iτ)

d(t0)

)
(3.10)

For this procedure, two tuning parameters exist: first, the ε-parameter that determines the

initial distance. Second, the time interval τ to re-normalize. For this research, ε = 1e− 6 and τ=

50 days are used. In practice, a trajectory can not be integrated for infinite time. Therefore, the

computations have been cut-off when the LCE converges; i.e., when it is clear that the LCE will

keep on reducing to zero, or if it levels off and settles on a constant, non-zero value.

An example for the selected transfers in the third family (green) in Fig. 3.15 can be found in

Fig. 3.17. One can see that the departure days with the lower J (days 109, 127, and 137) converge

onto a non-zero value. However, for the day with the high J , day 150, it can be shown that the

LCE should converge to zero for this scenario. The high J value allows the nominal trajectory
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to escape from the Earth’s system. Hence, at infinite time, it travels at a constant velocity. A

small perturbation to this state results in a slightly different, but still constant velocity. Hence,

the nominal and shadow trajectory move with two different constant velocities at infinity; as such,

they do not diverge exponentially. Therefore, the LCE must be zero.

Figure 3.17: LCE trends for the third transfer family indicated in green in Fig. 3.15.

From the LCE computation, one can easily compute its reciprocal; the Lyapunov charac-

teristic time (LCT). The LCT is the time for the separation between the nominal trajectory and

a shadow trajectory to increase by a factor e. The LCEs and LCTs have been computed for all

transfers. In Fig. 3.18, the LCTs are plotted. The crosses indicate trajectories with an LCE of

zero, which have infinite LCT values. The ratio between LCT and transfer TOF is at least seven.

Hence, during the nominal TOF, initial perturbations are not expected to increase by a factor e.
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Figure 3.18: Lyapunov characteristic times. The different colors indicate the different families of
the transfers in Fig. 3.15.

3.6.2.2 Monte Carlo study on launch dispersion

The amount of information one can infer from non-exponential divergence is limited. It does

not provide any information on the sensitivity of the final inclination and perigee altitude to launch

injection errors, or on impact and escape characteristics of the transfers. To this end, a 10,000

element Monte Carlo analysis is performed on each of the selected transfers in Fig. 3.15, using the

circular Hill dynamical system. The three position and velocity errors are sampled from normal

distributions with mean 0 and standard deviations of, respectively, 10 km and 10 m/s. For this

study, an orbit is assumed to escape if it does not have a perigee within the first 1500 days. The

results of this Monte Carlo study are shown in Fig. 3.19, where the trajectories are grouped by

their family (color and number from Fig. 3.15) and ranked from smallest to largest nominal J from

top to bottom within each sub-figure. In each subfigure, the nominal J is indicated by a green,

dashed line. When an orbit impacts or escapes before performing one perigee-to-perigee transfer,

the results are indicated by a red or black dot respectively. If a next perigee-to-perigee transfer

exists, the response is indicated by a blue dot. One can clearly see from these figures that the

inclination and perigee response is dominated by a single parameter; the Jacobi constant. It can

be observed that the Jacobi constant has an almost perfect Gaussian response with a mean at

the nominal value, and a standard deviation between 0.14 and 0.145 km2/s2. The analysis will be

subdivided into two categories based on whether J is smaller or larger than the nominal value.
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(a) Family 1: depicted in red in Fig. 3.15.

(b) Family 2: depicted in blue in Fig. 3.15.
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(c) Family 3: depicted in green in Fig. 3.15.

(d) Family 4: depicted in black in Fig. 3.15.

Figure 3.19: Results of the 10,000 element Monte Carlo analysis quantifying the effect of launch
injection errors on the four selected transfers for each of the four transfer families, depicted in red,
blue, green, and black in Fig. 3.15.
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Smaller than nominal levels of J : For most days at smaller levels of J , the trajectory

converges on the unperturbed, original orbit. For small levels of J , the original eccentricity is small.

Hence, the orbit does not fly far enough from the Earth to be significantly perturbed by the solar

gravity. Figure 3.20a depicts a selection of trajectories for day 150 that have a smaller J than the

nominal trajectory (displayed in black). The smallest J ’s are depicted in blue, the largest in red.

For family 1 and 2, at the two days with the largest J , i.e. days 40, 43, 61 and 64, this

convergence on the unperturbed orbit is also observed. However, at J ’s close to the nominal, one

can see that the trajectories go retrograde. This can be explained through Fig. 3.20b. One can see

that the nominal trajectory, in black, goes from prograde to retrograde, and then back to prograde.

Trajectories with a J close to the nominal value go retrograde, but are then not perturbed enough

to return to a prograde regime. Hence, they arrive at perigee with an inclination larger than 90◦.

For day 40, this behavior cannot be seen from the inclination profile, as an impact region masks

the retrograde perigee passings.

(a) Day 150: J smaller than nominal. (b) Day 64: J smaller than nominal.

Figure 3.20: Monte Carlo analysis trajectory highlights for smaller than nominal levels of J .

Larger than nominal levels of J : For trajectories with J ’s larger than the nominal

value, two different responses can be observed. For family 1 and 2, the inclination and perigee

start increasing, after which they drastically decrease. At a certain J , they escape. This has been

visualized in Fig. 3.21a. For family 3 and 4, a distinctly different response can be observed. For the
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(a) Day 64: J larger than nominal.

(b) Day 150: J larger than nominal, part 1. (c) Day 150: J larger than nominal, part 2.

(d) Day 109: J larger than nominal.

Figure 3.21: Monte Carlo analysis trajectory highlights for larger than nominal levels of J .

three largest J trajectories, one can see that the inclination and perigee altitude start increasing.

Then, the perigee altitude starts dropping again, after which an impact region occurs. After this

impact region, the trajectories go retrograde and perigee starts increasing, until the trajectories

escape. This process has been visualized in Fig. 3.21b and 3.21c. Note that this escape region

is not observed for day 127 and day 174, as it occurs far from the nominal Jacobi constant where

only a few points have been sampled. The days with the smallest J for family 3 and 4 show a very

similar response. But, at an intermediate J , there is an additional escape region, visualized in Fig.

3.21d.



69

Conclusion Monte Carlo analysis: In summary, family 3 and 4 are more robust against

perturbed initial conditions. Family 1 and 2 have regions where the trajectories go retrograde, and

they have an earlier onset of escape. Finally, family 1 has a significant impact region at small levels

of J . This sensitive behavior has also been observed in the validation section: family 1 and 2 have

much larger errors when integrated in the DE405 ephemeris.

3.7 Conclusion

This chapter presents how third-body perturbed plane changes can be utilized to transfer from

highly inclined low-earth orbits to the geostationary orbit. A method has been developed that can

depart from any circular orbit with arbitrary inclination and arrive at any circular, equatorial orbit.

Furthermore, the developed method can be easily extended for transfers around other sun-planet

and planet-moon systems by a simple rescaling of the dynamics. The developed method has been

applied to demonstrate that the geostationary orbit can be achieved for a wide range of initial

inclinations, at a lower ∆V cost than traditional transfers. The required ∆V only varies slightly

for different inclinations and is approximately 4.38 km/s. This technology could thus facilitate

flexibility in launch site selection to launch a spacecraft into GEO. There are disadvantages to

using this transfer type. First, the required ∆V is higher than for lunar gravity assist transfers.

However, the designed transfers only cross the Van Allen belts once, and can have more than

two launch opportunities per month. Second, they have a significantly larger TOF than the two-

burn strategies. Third, they lack the bi-elliptic transfers’ flexibility of picking any desired TOF;

for a specific time of year, only two TOF trajectories (the designed trajectories, and their ω + π

symmetric counterpart) are feasible without supplemental maneuvers. Fourth, not all times of year

have feasible transfers. The number of days for which such transfers exist depends strongly on the

initial inclination. Considering these limitations, when transfer time is subordinate to fuel savings,

the newly designed trajectories can be a viable alternative to the classic transfers for high latitude

launch sites. The mentioned disadvantages could be countered by relaxing some of the constraints

put on the trajectory. It has been observed that a significant eccentricity increase is required for
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a marginal reduction in the final inclination. Therefore, small out of plane maneuvers during the

transfer should be allowed. This is expected to slightly increase the total ∆V budget, but reduce the

time of flight significantly. Furthermore, this is expected to increase the number of days for which

a feasible trajectory exists. This research can provide good initial guesses for those trajectories.

For highly eccentric transfers, a significant difference in response is observed between the

circular and the eccentric Hill system, despite Earth’s moderate heliocentric eccentricity of 0.0167.

It has been shown that the true transfers in the eccentric system are very close to the solutions

in the circular system, and can be found with a simple predictor-corrector scheme. For Mars’

eccentricity of 0.0934, it is expected that these differences are larger. Therefore, for the remainder

of the dissertation, the transfers should be designed accounting for Mars’ heliocentric eccentricity.

It has been shown that missing the GEO insertion burn has severe effects. Only for a

few trajectories does the natural dynamics return the spacecraft close to GEO at a next perigee.

Therefore, more thought should be put into mitigating the risk of a missed GEO insertion burn.

Through Lyapunov characteristic time analysis, it has been demonstrated that the trajectories do

not diverge by a factor e during the nominal transfer time. However, the inclination and perigee

changes from the targeted GEO values are large for the performed Monte Carlo analysis. Hence,

navigational solutions must be obtained early in the transfer to identify the magnitude of the launch

injection errors. A trajectory correction maneuver must then be designed and executed to correct

for the error. The timing and ∆V budget that should be allocated should be studied in more detail.



Chapter 4

Deployment dynamics for multiple-spacecraft architectures around Mars

4.1 Motivation

This chapter introduces a new mission concept, enabled by the large control authority of the

Sun. Missions such as ESA/JAXA’s BepiColombo [37], NASA’s Dawn [86] and JAXA’s Hayabusa

1 and 2 [87, 88] all use solar electric propulsion (SEP) for their interplanetary transfers. SEP is

characterized by high exhaust velocities, and thus a high fuel efficiency. Existing and new launch

vehicles such as Delta 4, Atlas 5, Falcon 9, Falcon Heavy, New Glenn, SLS, can accelerate large

payload masses to escape velocities, as shown in Table 4.1. When combining these capabilities with

fuel-efficient interplanetary SEP transfers, large payloads can be sent to other planets, enabling

the simultaneous transfer of multiple satellites. A multiple-satellite mission increases the science

return, while cost-intensive phases of the mission are shared, such as launch, and interplanetary

cruise operation and navigation. An example of this new mission paradigm is BepiColombo. This

Table 4.1: Performance of current and planned launch vehicles.

Launcher LEO GTO Trans-Mars injection Source
[tons] [tons] injection [tons]

Delta IV Heavy 28.8 14.2 8 [80]
Atlas V 18.9 8.9 ? [81]
Falcon 9 22.8 8.3 4 [82]
New Glenn 2-stage 45 13 ? [83]
Falcon Heavy 64 22.2 13.6 [84]
SLS Block 2 130 ? 45 [85]
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mission to Mercury has two spacecraft, using a common SEP module for the interplanetary transfer

and a common chemical module for Mercury orbital insertion maneuvers [37]. The two spacecraft

have a common orbital plane around Mercury but different orbital altitudes. For some missions, the

science return is increased when the spacecraft are injected into different orbital planes at different

altitudes. This architecture requires an efficient orbital transfer strategy.

Similar to BepiColombo, the envisioned mission architecture has multiple spacecraft with a

shared SEP system for the interplanetary transfer. The usage of SEP allows the heliocentric trans-

fers to arrive with a zero relative velocity with respect to Mars. The spacecraft are then deployed

one by one. In between the deployment of the spacecraft, a combination of solar perturbations and

SEP changes the orbital parameters. Chapter 3 demonstrates that there are two requirements to

design solar gravity transfers: high apoapse, and freedom in initial periareion orbital elements.

Traditional, chemical missions arrive at Mars on a hyperbola. A maneuver then reduces the

eccentricity below one, such that the satellite is captured around Mars. The multiple spacecraft

missions arrive on a parabola. An infinitesimal small maneuver reduces the eccentricity below one.

Depending on the size of the maneuver, the apoareion of the capture orbit can be controlled. The

larger the maneuver, the lower the apoareion. Thus, any arbitrarily high apoareion can be achieved.

Chemical missions’ orbital plane of the incoming hyperbola is constrained by the relative

velocity vector, V∞, of the interplanetary transfer. This vector depends heavily on the chosen

launch window. Transfers arriving on a parabola however, have a much larger degree of freedom in

the choice of orbital elements of this parabola. This can be demonstrated by the following analysis:

25,000 different parabolas with a fixed periareion altitude of 500 km are analyzed, with uniformly

sampled i, ω and Ω. These parabolas are integrated backwards in time from periareion, to the

sphere of influence radius of 576,000 km. There, the heliocentric position and velocity of Mars is

added to the state. For simplicity, it is assumed that Mars’ orbit is circular, with radius equal to

its semi-major axis. Note that the MMO reference frame is used for this system. Further note that

Mars is assumed to cross the x-axis at the moment the spacecraft reaches the sphere of influence

(SOI). This heliocentric state is converted into orbital elements, which are shown in Fig. 4.1. The
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largest changes are 3% for a, 0.033 for e, 0.9◦ for i, and 0.14◦ for true longitude λ. ω, Ω, and

ν are poorly defined on lowly inclined, near-circular orbits, and are therefore not shown. Since

the heliocentric states are so similar, the heliocentric low-thrust trajectories targeting these states

are also very similar. To target a certain parabola, it suffices to rendezvous with its corresponding

heliocentric trajectory. Note that the patched conics approach and the ignored eccentricity of Mars’

orbit introduce errors, but the general trend of this analysis holds.

Figure 4.1: Heliocentric orbital elements at the SOI crossing for the 25,000 sampled areocentric
parabolas (blue), compared to the assumed heliocentric orbital elements for Mars (black).

In conclusion, SEP transfers that rendezvous with Mars satisfy both requirements to design

solar gravity driven transfers: high apoapse and freedom in initial periareion orbital elements.

Therefore, solar gravity driven transfers can be used to deploy multiple spacecraft around Mars into

different orbital planes at different orbital altitudes. This requires knowledge of possible transfers

and an efficient way to identify them; a well-defined and easily accessed database of solutions.

This chapter’s goal is twofold. First, setting up the framework to create the database of transfers,

on a small subset of the phase space, centered around one specific application. The small subset

allows the exploration of the basic mechanisms required to construct the database, while limiting

the required computational resources. Furthermore, this chapter investigates the effects of varying

levels of fidelity of the database: a circular versus an eccentric model of the Martian orbit.
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Second, this chapter investigates a specific application to showcase the large control author-

ity of the Sun, warranting the interest in the research and the construction of a more extensive

database. An example application is selected that is fuel intensive to execute using traditional

transfer strategies. At the first periareion, one spacecraft immediately lands at a high latitude.

Then, the second spacecraft follows a highly eccentric orbit that is significantly perturbed by the

Sun. At the next periareion, the second spacecraft is deployed in a near-equatorial orbit with the

orbital radius of Phobos or Deimos.

The structure of this chapter is as follows. First, the proposed transfer type is explained in

greater detail and the assumptions on the orbits of Phobos and Deimos are explained. Second,

the control authority of the Sun is determined for a simplified scenario where Mars’ eccentricity is

ignored. The methodology relies on the time invariance of the circular Hill problem to reduce the

required number of integrations. Third, it is investigated how Mars’ eccentricity of 0.0934 affects

the solutions obtained in the circular Hill system. The time variance of the eccentric Hill system

greatly increases the required number of integrations. This prevents from efficiently identifying all

potential transfers in the eccentric scenario. Therefore, this section limits itself to computing the

necessary conditions; identifying the regions of the phase space where transfers could exist.

4.2 Structure of the proposed transfer type

Figure 4.2 visualizes the transfers of interest. The transfers start at the periareion of the

incoming areocentric parabola. The lack of relative velocity with Mars allows a large degree of

freedom to select this parabola. At periareion one, a small maneuver reduces the eccentricity below

one. For the Phobos and Deimos examples, the initial maneuver sizes are, respectively between

[12, 57] m/s, and [12, 48] m/s. Then, the transfer follows a solar perturbed, ballistic trajectory. The

transfers are designed to target a specific i2 and rp,2 at the next periareion. A second maneuver

then circularizes the spacecraft into its final, circular orbit. In this paper, index 2 reflects the

state at the second periareion before the circularization maneuver. For the Phobos and Deimos

examples, the second maneuver sizes are, respectively between [854, 866] m/s, and [512, 532] m/s.
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Figure 4.2: Schematic of the solar gravity driven transfer structure around Mars. Not to scale: red
solar perturbed orbit has an apoapse radius O(105 km), blue target orbit has a radius O(103-104

km).

For this research, it is assumed that Phobos and Deimos are in equatorial, circular orbits

with orbital radii equal to their semi-major axis of 9,376 and 23,460 km respectively. Their true

longitudes are ignored. Phobos’ and Deimos’ orbital periods are much shorter than the time of

flight of the transfers. Hence, the transfers, and thus their time of flight, can be slightly altered to

achieve the desired true longitude, or an intermediate phasing orbit can be used.

4.3 Designing transfers in the circular Hill problem

In this subsection, a database of solutions is developed for a simplified scenario ignoring

Mars’ eccentricity. First, the advantages of using the circular Hill system for this application are

explained. Second, based on preliminary results and a Pareto front method, bounds are placed on

the interesting departure orbital elements space for which the results need to be computed in higher

resolution. Finally, the methods to use this database for a practical application are explained.

4.3.1 Advantages of the circular Hill system

The circular Hill system is a time invariant system; every solution in the Hill system is valid

for any departure time t1. Specific departure iHill,1 and ΩHill,1 will have different ΩMMO, depending
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on t1. This will translate into different initial iMME,1 through Eq. 2.38. Therefore, the same Hill

trajectory integration can be re-used for different iMME,1 and t1, reducing the computational load.

Furthermore, as explained in Subsubsection 2.2.2.4, the Hill problem has three spatial symmetries

in the orbital element representation; the entire (ωHill,ΩHill) phase space can be represented by the

[0◦, 180◦]×[0◦, 180◦] region. This reduces the computational load by a factor four.

4.3.2 Creation of the database

First, the region within the first periareion phase space is determined that gets mapped

to orbital elements near the application’s target elements. The phase space is sampled with a

coarse resolution. The periareion Poincaré maps then compute the orbital elements at the second

periareion using the circular Hill EOM in Eq. 2.22. Prior to this, some pruning of the phase space

is already done:

(1) iHill,1: this chapter’s application focuses on near-polar departure orbits. Any iHill,1 ∈

[65◦, 115◦] (90◦ ± ε) has one or two ΩHill / epochs that maps this iHill,1 to iMME,1 = 90◦.

This chapter limits its results to this iHill,1 region.

(2) ωHill,1 and ΩHill,1: utilizing the Hill symmetries, the design space is reduced to [0◦, 180◦] ×

[0◦, 180◦]. Both parameters are sampled with a step size of 2.5◦.

(3) eHill,1: a lower and upper bound of 0.98 and 0.99 have been identified through empirical

testing; the lower limit to realize substantial changes in the system and the upper to

constrain the time of flight between periareions (TOF ) to reasonable values.

(4) rp,1: the periareion altitude is kept constant for this chapter’s application at 185 km.

The coarse resolution mapping is performed on grids in (ωHill,1,ΩHill,1), computed for 11

e1-values between 0.98 and 0.99 and for 6 iHill,1-values between 65◦ and 115◦. For the studied

application, the transfers only target a specific rp,2 and i2. Therefore, a Pareto front in rp,2 and

iHill,2 is computed for each (ωHill,1,ΩHill,1)-grid at different e1- and iHill,1-values. The Pareto front
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bounds the reachable phase space in rp,2 and iHill,2, without the need to plot every individual

transfer. Creating the Pareto front requires the determination of the minimum and maximum rp,2.

Then, at 150 equidistant points between the two extrema, the contour lines of transfers arriving at

that rp,2-value are identified (top left part of Fig. 4.3). Multiple contour lines are found that arrive

with the target rp,2, and should be plotted in the same color on the rp,2-contour plot. To distinguish

between the different contours, each received a different color coding, used in the bottom part of

Fig. 4.3. For each of the contour lines with the correct rp,2, the achievable iHill,2 is determined (top

right part of Fig. 4.3). The iHill,2 on the contour lines change smoothly with no discrete jumps.

Therefore, every possible iHill,2 between the minimum and maximum observed iHill,2 is achieved for

each contour line (bottom left part of Fig. 4.3). Finally, the lack of gaps is verified in reachable

Figure 4.3: Determining the bounds for one sampled rp,2-value of 3574.5 km within the Pareto
front of iHill,1= 115◦, e1 = 0.99. Top left: determine contours satisfying target rp,2, indicated by
different shades of red. Top right: determine iHill,2 on the rp,2-contours. Bottom: verify all iHill,2

between the iHill,2 extrema on the rp,2-contours are achieved.
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iHill,2 between the different contour lines (bottom right part of Fig. 4.3). If this is the case, any

iHill,2 between the extrema of all contour lines is achieved for the sampled rp,2-value. Those two

boundaries are the entries of the Pareto front for the sampled rp,2-value. This procedure is repeated

for the 150 equidistant rp,2 values, creating the Pareto front for a specific e1 and iHill,1 combination.

An example is given in Fig. 4.4.
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Figure 4.4: Pareto front for arrival orbital elements rp,2− iHill,2 for departure orbital elements iHill,1

= 90◦, e1 = 0.99 computed through a circular Hill periareion Poincaré mapping. The Pareto front
successfully bounds the reachable phase space, without the need to plot every individual transfer.

The Pareto fronts are computed for 6 iHill,1-values between 65◦ and 115◦, for 11 e1-values

between 0.98 and 0.99 (Fig. 4.5). The Pareto fronts are used to determine the interesting region

of the phase space for the two considered targets; Phobos and Deimos. The figures have vertical

red lines indicating the periapse radii of Phobos and Deimos, and a horizontal black line where

iHill,2 = ε. Reaching Phobos’s altitude and an equatorial orbit for a specific iHill,1 and e1 requires

the Pareto front to include the crossing between the black i and the red rp lines of Phobos. For

Phobos, the minimum e1 varies between 0.987 and 0.988 for the iHill,1 = 65◦ case and between 0.989

and 0.99 for the iHill,1 = 115◦ case. These detected bounds are then used to compute the database

with a more dense grid, with e1 spacing of 0.0001 and iHill,1 spacing of 1◦.
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Figure 4.5: Pareto fronts in arrival orbital elements rp,2-iHill,2 for departure orbital elements iHill,1 ∈
[65◦, 115◦] for e1 ∈ [0.98, 0.99] computed through a circular Hill periareion Poincaré mapping.

4.3.3 Usage of the database

The second goal of this section is to showcase the capabilities of solar perturbed transfers

on a specific application. The method for using the database is therefore explained; how to find

the correct initial time and orbital elements in the equatorial reference frame to target a specific

rp,2 and iMME,2 using the circular Hill dynamical system. This method is applied to determine the

initial conditions for an orbit that arrives at the equator. The methodology consists of five steps

and is summarized in Algorithm 1.
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First, for all iHill,1 and e1-values in the database, the contour in (ωHill,1,ΩHill,1)-space with

the target rp,2 is determined. Then, using a spline interpolation scheme, the points on this contour

with iHill,2 = ε are identified. Second, these starting conditions are numerically integrated to

verify that they arrive at the correct rp,2 and iHill,2 to within 500 km and 1◦ respectively. If these

accuracy requirements are satisfied, the initial Hill conditions to target a certain final orbit are

known. The rp,2 tolerance is fairly loose considering transfers with rp,2 O(104 km). For a limited

resolution database, the more stringent the tolerances, the fewer solutions are found. For the chosen

tolerance, all regions of the phase space with feasible transfers are identified. While the transfers do

not arrive at the exact rp,2-values, exact solutions in between the database’s entries can be found.

Third, the timing is determined. For the considered application, the transfers arrive at the equator,

requiring iHill,2 = ε, and ΩMMO,2 = 180◦ (Eq. 2.38). A specific value of ΩHill,2 sweeps through the

entire range of ΩMMO,2 throughout a Martian year. The Hill system solution is therefore mapped

onto the equator at one specific second periareion time, t2. The conversion between ΩMMO,2 and

ΩHill,2 is determined by the angular difference between the Hill and MMO frame at t2. Using Eq.

2.46, t2 can be found by solving:

ΩMMO,2 = π = ΩHill,2 + Θ0 +N(t2 − t0) (4.1)

From t2 and the TOF obtained from the integration in the Hill system, the time of the first

periareion, t1 is computed.

t1 = t2 − TOF, (4.2)

Fourth, the initial state in the MMO frame is computed:

ΩMMO,1 = ΩHill,1 + Θ0 +N(t1 − t0) (4.3)

iMMO,1 = iHill,1 (4.4)

Fifth and final, these MMO orbital elements are mapped to the initial state in the MME frame

using Eq. 2.38.

In conclusion, the equatorial initial orbital elements and timing can be computed to guarantee

that a trajectory reaches a target rp,2 and iMME,2 at the next periareion. For a wide variety of
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final states, the same data set can be used. Hence, the data only needs to be computed once. The

initial states and times of flight for two example final orbits matching Phobos and Deimos’s iMME

and rp can be found in Fig. 4.6. Note that the reference epoch is when Mars is at its perihelion.

Transfers with specific characteristics can be selected. For instance, if one wants to go to Phobos’s

iMME and rp in 80 days, and depart from a polar orbit, one can pick the transfer indicated by the

red asterisk departing at day 282, with iMME,1 = 90◦, ωMME,1 = 5◦, ΩMME = 196◦ and e1 = 0.9895.

Similarly, if one wants to target Deimos’ iMME and rp and depart from the highest possible iMME,1,

one needs to depart at day 462, with iMME,1 = 85◦, ωMME,1 = 23◦, ΩMME,1 = 294◦ and e1 = 0.99.

This transfer takes 93 days.

The solution structure depends strongly on the target orbit, but some common phenomena

are observed. First, a temporal symmetry exists that can be linked to the ΩHill symmetry in

the circular Hill system. Each solution for ΩHill has a corresponding solution ΩHill + 180◦. This

symmetry is mapped through Eq. 4.1 and 4.2 to create a temporal symmetry with a period of half a

Martian year. Second, for a specific eccentricity and inclination, usually zero or two solutions exist

in the [0◦, 180◦]×[0◦, 180◦] (ωMME,1,ΩMME,1) phase space. On a contour with the correct rp,2, all

iHill,2 are achieved between the minimum and maximum values (Fig. 4.3). If one of the extrema is

different from the required iHill,2, a solution exists on both sides of the extrema. The two solutions

have different arrival ΩHill,2 and thus a different t1. With the used sample spacing, the extrema are

rarely exactly equal to the required iHill,2. The departure times where there is only one solution is

therefore under sampled. This phenomenon is observed for Phobos in Fig. 4.6 near departure day

320, where both families meet. An exception is found near departure day 100 for Deimos, where

for a large enough e1 for small iHill,1, an extra set of two solutions exists. The origin of this extra

family is shown in Fig. 4.7. This figure also demonstrates how, for the aforementioned reasons,

there is an even number of extra solutions. The main family of solutions have very similar ΩHill,1

and arrive with a similar ΩHill,2. Hence, they are mapped to roughly the same t1. The extra family

exists in a different area of the phase space and is mapped to a different t1. This region appears to

lack much structure. A more systematic structure is expected for a higher resolution sampling.
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Figure 4.6: Equatorial conditions and timing of periareion one to reach Phobos’ (top) and Deimos’
(bottom) rp and iMME at periareion two in the circular Hill dynamical system.
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Figure 4.7: Origin of the extra family for Deimos. The iHill,2 are shown on contours of points with
rp,2 equal to Deimos’ orbital radius. Points where iHill,2 = ε are indicated by a red asterisk. On
the left figure, at iHill,1 = 65◦, at e1 = 0.9897, all iHill,2 < ε and no transfers exist. At e1 = 0.9898,
max iHill,2 > ε and transfers exist. On the right figure, at e1 = 0.99, at iHill,1 = 77◦, max iHill,2 > ε
and transfers exist. At iHill,1 = 78◦, max iHill,2 < ε: no transfers exist.

4.4 Designing transfers in the eccentric Hill problem

From the validation of the LEO-GEO transfers in Section 3.5, it was concluded that Earth’s

eccentricity of 0.0167 introduces significant errors for transfers with very high apoapse. Mars has a

higher orbital eccentricity of 0.0934. Therefore, it must be investigated how this eccentricity affects

the solutions observed in the circular Hill system.

4.4.1 Effect of eccentricity on Pareto fronts

The dynamics in Eq. 2.31 are dependent on the heliocentric true anomaly of Mars and are

thus time dependent. The varying Mars-Sun distance affects the reachable phase space. As an

example, the Pareto fronts for iHill,1 = 65◦ and e1 = 0.99 are computed for different values of νM

at periareion one (Fig. 4.8). These fronts are computed using numerically integrated periareion

Poincaré maps in the eccentric Hill system. νM,1 has a large impact on the reachable phase space

at periareion two and its effect cannot be ignored. For this example, νM,1-values of roughly 340◦

and 160◦ achieve the largest and smallest phase spaces, respectively. In other words, the transfers

that depart when Mars is at perihelion do not have the largest reachable phase space, nor do the

transfers that depart when Mars is at aphelion have the smallest phase space. Because the trajectory
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Figure 4.8: Effect of νM at the start of the transfer on the reachable phase space for the eccentric
Hill dynamical system. Apoareion scaled circular Hill bounds are shown in black.

is perturbed most near its apoareion, it is hypothesized that the largest and smallest phase space

are achieved when the spacecraft’s apoareion passage coincides with Mars being respectively at

perihelion and aphelion. Figure 4.9 confirms this hypothesis. The νM at apoareion for which

the phase space is largest and smallest are thus constant, in contrast to the transfer dependent

extrema of νM,1. Using the eccentric Hill system to identify the bounds of the phase space is thus

impractical. Using different scaled versions of the circular Hill system at Mars’ aphelion and at

perihelion is more straightforward. The different solar distances affect the scaling for the dynamics

of the circular Hill system in Eq. 2.20. Figure 4.9 shows that these circular Hill systems place

accurate bounds on the reachable phase space in periapse and inclination (black lines in Figs. 4.8

and 4.9). Furthermore, the circular Hill problems approximate the eccentric arrival ωHill,2, ΩHill,2

and TOF reasonably well, as can be seen from Fig. 4.10.
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Figure 4.9: Reachable state in function of νM when SC is at apoareion with scaled circular Hill
bounds shown in black. Left: largest phase space region. Right: smallest phase space region.

4.4.2 Determine the bounds

Two scaled circular Hill problems give a good indication of the minimum and maximum

achievable phase space at periareion two. Pareto fronts are computed for six different iHill,1-values

for five e1-values (Fig. 4.11). The Pareto fronts are used to determine the interesting region

of the phase space. Unlike the circular problem, this must be done for each departure time. For

computational reasons, a finer grid is only computed for departure times when Mars is near aphelion,

perihelion or the true anomaly for which the Mars-Sun distance is equal to Mars’ semi-major axis.

The results of these runs are summarized in Fig. 4.12, which shows the minimum e1, with a 0.0001

resolution, for which one can achieve a certain rp,2 and arrive with iHill,2 = ε. Note that Deimos

can not be reached at aphelion. In Fig. 4.11, it appears that at aphelion, with iHill,1 = 65◦ and

e1 = 0.99, the Pareto front touches the crossing of the lines indicating Deimos and iHill,1 = ε.

In reality, the Pareto front is just to the left and above this line crossing. Further note that the

transfers are not guaranteed to arrive at the equator. Unlike the circular Hill system, the found

solutions are time dependent. Hence, the arrival time cannot be changed to enforce arriving at

an equatorial orbit. The arrival ΩHill and the arrival time must be such that ΩMMO,2 = 180◦.
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Figure 4.10: Comparison between the response of the second periareion for initial orbital elements
e1 = 0.99 and iHill,1 = 65◦ integrated to the next periareion in the scaled circular Hill approxima-
tion and eccentric Hill system: ΩHill,2 (top), ωHill,2 (middle) and TOF (bottom) when Mars is at
perihelion (left) and aphelion (right).
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Figure 4.11: Pareto fronts for the scaled circular Hill systems at Mars’ aphelion (left) and perihelion
(right). Pareto fronts are computed using the response at periareion 2 in rp,2 and iHill,2 for initial
orbital elements at periareion 1, iHill,1 ∈ [65◦, 115◦] for e1 between 0.986 and 0.99. The red horizontal
lines indicate Phobos and Deimos. The black vertical line indicates iHill,2 = ε.
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at different target periapse radii rp,2: Phobos (left) and Deimos (right), at different initial inclina-
tions iHill,1, and for different heliocentric νM when the transfers pass through apoareion.

Therefore, the bounds presented here are necessary conditions. They can be used by a mission

designer; for every departure time of interest, the entire phase space, bounded by this analysis,

must be computed and analyzed.

4.5 Conclusion

In this chapter, the general mission architecture for the deployment of multiple satellites

around Mars is explained. Furthermore, several techniques to develop a database of solutions are

discussed. For the circular Hill problem, generating a database in transfers in the Hill reference

frame allows the re-use of integrated trajectories for different initial inclinations and different de-

parture times. For the eccentric Hill problem, the time variance of the dynamics prevents from

re-using transfers. This drastically increases the required number of integrations to create the

database. This chapter therefore limits itself to the development of a method to compute the

necessary conditions. The next chapter investigates methods to mitigate the computational costs

associated with the high required number of integrations in the eccentric system.



Chapter 5

Artificial neural networks

5.1 Motivation

In the previous chapter, it is demonstrated that the time variance in the eccentric Hill system

increases the required number of integrations. This prevents from creating the entire database to

identify the transfers of interest around Mars. In this chapter, it is demonstrated how artificial

neural networks can be used to reduce the required number of integrations, while maintaining

sufficient accuracy for preliminary studies.

First, an artificial neural network architecture is developed for the small area of the phase

space considered in Chapter 4. Second, it will be shown how this architecture can be expanded to

encompass a large area of the phase space. This will be done for forward and backwards Poincaré

maps predicting the next and previous periareions respectively. Finally, an example is given on the

usage of artificial neural networks for a different application; finding heteroclinic connections in the

CRTBP.
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5.2 Feasibility study for small section of phase space

This section explains a second method to create the database; machine learning techniques.

Many machine learning approaches are available, including artificial neural networks, random

forests, and support vector machines. This field of astrodynamics has not developed a lot of

experience using one or another, but it is clear that this astrodynamics application yield nonlin-

ear state spaces, wrapped angular units, and other bifurcation challenges. This dissertation uses

ANN. The main reasons are: ease of implementation, good generalization performance on prob-

lems with non-linear relationships [89], ability to work on problems with locally very non-linear

areas, such as bifurcations [90], and the ability to handle any form of input distributions [91] and

level of correlation between input parameters [89]. ANN’s biggest disadvantage is the sensitivity

to hyper-parameters, such as number of neurons and number of hidden layers [92]. A balance must

be found between ANN with insufficient neurons that miss trends, and ANN with too many nodes

that suffer from over-fitting [93]. The author does not claim other machine learning methods do not

work on this specific application, nor does the author make claims on ANN outperforming those

other methods. This dissertation demonstrates the application of a machine learning technique,

ANN, to a difficult problem in mission design. Given the demonstrated ability to carry out this

analysis using a machine learning technique can motivate future studies of what the most efficient

application of these methods would be.

First, ANN are developed for the scenario where Mars’ eccentricity is ignored. This develop-

ment functions as a testbed to establish the main ANN design choices. Second, the lessons learned

from the circular case are used to develop ANN for the eccentric scenario. Third, example transfers

are identified in the eccentric system. Finally, those transfers are validated in higher fidelity force

models.
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5.2.1 Artificial neural network for the circular approximation

In Subsection 4.3, the circular Hill problem database is entirely constructed using numerical

integration of a large set of initial conditions. In the next paragraphs, the methodology is explained

to construct the same database, using a much smaller set of integrated trajectories to train ANN.

The goal of the ANN is to predict the mapping from the orbital elements at periareion 1 to the

orbital elements at periareion 2 with sufficient accuracy. This allows the construction of a finely

gridded database relating the specified first periareion inputs to conditions at the second periareion.

Then, this populated dataset is post-processed to identify the input conditions at periareion 1 that

result in desired output conditions at periareion 2. First, the required input and output parameters

are listed. Second, the required training data is explained; i.e., the data created by numerical

integration of the Hill trajectories. Third, the utilized data pre-processing is described. This allows

faster training of the ANN and a larger accuracy. Fourth, the design of the ANN is explained

in more detail. Fifth, the ANN’s accuracy is validated using a Monte Carlo analysis. Finally, it

is shown how the designed neural networks can be used to reconstruct the database of solutions

developed in Subsection 4.3.

5.2.1.1 Structure of the inputs and outputs

The input should fully determine the initial periapse state. The rp,1 parameter is kept con-

stant since all orbits are assumed to depart from the same altitude of 185 km. The input parameters

are thus limited to ra,1, iHill,1, ωHill,1 and ΩHill,1. For the application of interest, Algorithm 1 re-

quires knowledge of iHill,2, ΩHill,2, rp,2 and TOF . Note that ra,1 is used as an input parameter, and

not e1. For a uniform sampling in ra,1, the rp,2 and TOF output parameters change more linearly

than with a uniform sampling in e1, facilitating learning.

5.2.1.2 Training data creation and pre-processing

The database in Subsection 4.3 was sampled with grids in (ωHill,1 × ΩHill,1) ∈ ([0◦, 180◦] ×

[0◦, 180◦]) with 2.5◦ resolution for iHill,1 ∈ [65◦, 115◦] with a 1◦ resolution and for e1 ∈ [0.987, 0.99]
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with a 0.0001 resolution. In total, 8,425,149 numerical integrations were performed. The ANN

method functions with only a fraction of that data: grids in (ωHill,1×ΩHill,1) ∈ ([0◦, 180◦]×[0◦, 180◦])

with 5◦ resolution for iHill,1 ∈ [65◦, 115◦] with a 10◦ resolution and for ra,1 ∈ [560000, 720000] with

a 20,000 km resolution. In total, 73,926 numerical integrations are required; less than one percent

of the data requirement of the first approach.

The training of a neural network is a minimization problem. Thus, several pre-processing

techniques for optimization can be used. First, all input and output parameters are scaled to [−1, 1]

using a feature scaling method:

xscaled = 2
x−min(x)

max(x)−min(x)
− 1 (5.1)

Second, an artificial bifurcation in ΩHill,2 is observed at the 360◦−0◦ boundary. The ANN incorrectly

identifies a large error when the predicted and true value are on opposites sides of this boundary.

Furthermore, when ΩHill,2 changes from 360 to 0◦, the ANN must capture a very strong bifurcation.

An example can be seen in Fig. 5.1. For a constant rp,1, ra,1, and i1, ΩHill,2 is shown in function of

ωHill,1 and ΩHill,1. In the two red regions, ΩHill,2 changes from the fourth to the first quadrant and

strong gradients exist. These strong changes are difficult to capture using ANN. This bifurcation is

Figure 5.1: Example of how an artificial angular bifurcation can be resolved by splitting the angle
in its cosine and sine components. In the regions indicated in red, the angle passes through the
360◦ - 0◦ region, introducing strong gradients on the contours. Those are not present in the cosine
and sine components.
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removed by splitting up ΩHill,2 into two output parameters: cos ΩHill,2 and sin ΩHill,2. The predicted

sine and cosine terms are then used to compute the ΩHill,2 value using an arctangent operator. This

extra output parameter increases training time. An attempt to avoid this extra parameter merges

iHill,2 and ΩHill,2 into the h and k modified equinoctial elements [94]:

h = tan
i

2
cos Ω k = tan

i

2
sin Ω (5.2)

However, the extraction of the individual, classical orbital elements from the predicted modified

equinoctial elements proves difficult. It is useful to track the errors produced using the ANN

predictions of the h and k modified equinoctial elements. These errors are non-linearly propagated

to the errors in iHill,2 and ΩHill,2. For the studied example, the transfers arrive at the second

periareion with iHill,2 ∈ [15◦, 150◦] and ΩHill,2 ∈ [0◦, 360◦]. These values translate in h and k ∈

[−2.8, 2.8] (Fig. 5.2). For a 1% accuracy in predicted h and k, these errors in h and k propagate

to maximum errors in iHill,2 and ΩHill,2 of 9.0◦ and 36.98◦, respectively. Typical errors are less, but

these worst-case errors must be understood. Therefore, the increased accuracy that comes with the

extra parameter is decided to outweigh the additional training costs.

5.2.1.3 ANN design

A multi-layer ANN can capture any data perfectly, given it has enough layers and neurons

[95]. In practice, the accuracy of the model is traded-off against the required data to train the

model, and the computational time required for training. More hidden layers and more neurons

usually translate into higher required training times. In this subsection, the design choices for the

ANN architecture are explained. The author does not claim that the choices made are necessarily

the best for this system in terms of obtained accuracy and computational performance. They do

however provide sufficient levels of accuracy and acceptable training times.
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Figure 5.2: Visualization of the h and k modified equinoctial elements, in function of i and Ω. For
each (i,Ω) combination, an error in h and k of 1% is added. These erroneous h and k parameters
are converted back to i and Ω. The histograms show the resulting errors for i and Ω.

From Fig. 3.2, it is known that the input parameters map to the outputs via a non-linear

function. Hence, a two-layer input-output ANN does not work for this application. At least one

hidden layer is required. For regression problems, in- and output layers have the identity function as

the activation function; i.e., the output of the input- and output layer neurons are identical to their

input. For the hidden layer, some examples of commonly used activation functions are a standard

logistic function and a hyperbolic tangent function [70]. For this research, the hyperbolic tangent

function is selected as it is centered around the mean at the origin, and its output ∈ [−1, 1]. This

mapping guarantees that the input for the next layer is also bounded by [−1, 1] [70]. Furthermore,

the hyperbolic tangent provides stronger gradients than the standard logistic function. Hence, the

training with hyperbolic tangent functions often converge faster [70, 96].

Second, a choice is made on the cost function and the back propagation algorithm used for

training. This problem can be categorized as a small-to-medium sized machine learning problem.
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For such problems, the Levenberg-Marquardt algorithm [97, 98] with a mean squared error (MSE)

cost function [70] is commonly used, as it is fast and accurate [99]. This back propagation method

relies on approximating the Hessian to provide second order derivatives. The use of the Hessian

improves the convergence rate, but its computational complexity grows with O(W 3) [70], with W

the total number of weights. This cubic growth explains why Levenberg-Marquardt is only used

for small-to-medium sized problems.

Third, the training data is subdivided into training, validation and testing sets. The data

is randomly assigned to these sets to avoid clustering. The optimal training, validation and test

ratios are problem specific, and depend on the size of the total data set. For this specific research,

decent generalization performance is achieved for 70, 15 and 15% for the training, validation and

testing sets, respectively.

Fourth, the number of neural networks that need to be trained is determined. Two different

architectures exist: an architecture where all output parameters are predicted in a single ANN,

and an architecture where each output parameter has its own dedicated ANN. The former is

commonly known as multi-task learning [100]. Within multi-task learning, the back-propagation

procedure updates the weights and biases to enable the identification of common traits, improving

generalization performance for “related tasks” [100]. A comparison between both architectures is

conducted on a small dataset. For this analysis, ra,2, cosωHill,2, and sinωHill,2 are added to the

list of outputs. While these outputs may not be of interest for the goals of this investigation,

they are required later in the dissertation, and may be important during training. Their addition

might allow the ANN to learn the underlying relationships between the inputs and outputs better,

and thus potentially make more accurate predictions. This analysis has been performed using the

MATLAB Statistics and Machine Learning Toolbox 11.2 [101] on an Intel i7-4870HQ @ 2.50GHz

CPU. The results of this analysis are shown in Table 5.1. The shown MSE accuracies are the

non-dimensional values for the independent test set. For the multiple ANN architecture, different

numbers of neurons per hidden layer are used for different output parameters, indicated by the

footnote symbols. The multi-task ANN architecture has only one ANN. Hence, the number of
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Table 5.1: Comparison between the training time and accuracy performance for a multi-task ar-
chitecture versus a multiple ANN architecture.

Output Multiple Multi-task Multi-task Multi-task
parameter ANN MSE MSE∗ MSE† MSE‡

rp,2
∗6.7e-6 7.3e-4 1.4e-4 4.6e-5

ra,2
∗1.8e-7 6.6e-5 1.5e-5 4.4e-6

TOF ∗4.2e-7 3.9e-4 1.4e-6 9.6e-5
iHill,2

†3.4e-5 1.3e-3 3.1e-4 1.3e-4
cos ΩHill,2

†5.0e-5 1.5e-3 3.4e-4 1.6e-4
sin ΩHill,2

†5.2e-5 8.1e-4 3.2e-4 1.6e-4
cosωHill,2

†5.4e-5 1.1e-3 2.6e-4 1.1e-4
sinωHill,2

†5.2e-5 1.2e-3 4.2e-4 1.5e-4

Training [min] 67.5 41.3 116.5 602.3
∗2 hidden layers, 15 neurons per layer.
†2 hidden layers, 25 neurons per layer.
‡2 hidden layers, 35 neurons per layer.

neurons per hidden layer for all predicted parameters within this ANN are equal, indicated by the

footnote symbols. The multiple ANN architecture clearly outperforms the multi-task architecture

for this application, both in accuracy and in training time. Even with ninefold training time, the

accuracy of the multi-task architecture is worse than the multiple ANN architecture. It is observed

that the angular outputs have a more non-linear response near bifurcations than the other three

parameters. Therefore, they require more neurons to capture these effects. This incompatibility

between the different tasks explains the better performance of the multiple ANN architecture for

this problem. While these results do not necessarily carry over to a scenario with more data, it was

decided to implement the multiple ANN architecture throughout this dissertation, unless otherwise

noted.

Finally, the number of hidden layers and the number of neurons in each hidden layer is

determined. A trade-off between accuracy (cost function) and required training time is performed.

As a threshold, the 99 percentile prediction errors on an independent validation set should be order

of magnitude 1%. Figure 5.3 shows an example of the trade-off for the rp,2 output ANN. This

analysis has been performed using the MATLAB Statistics and Machine Learning Toolbox 11.2
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Figure 5.3: Hidden layers and neurons architecture trade-off for rp,2. The MSE for the training,
validation and test set are shown, along with the training time for different number of neurons and
different number of layers.

[101] on an Intel i7-4870HQ @ 2.50GHz CPU. Note that the depicted mean squared errors are

non-dimensionalized. The darkest blue line represents a single hidden layer architecture, the other

lines a two-hidden layer architecture. The single hidden layer’s accuracy tapers off. Therefore,

a second hidden layer is required. The selected architecture is a 15 by 15 neuron, two hidden

layer architecture, indicated by the red dot. This architecture provides a good balance between

achieved accuracy and required training time. The almost identical accuracies between the training,

validation and test data sets demonstrate that over fitting is most likely not occurring in this ANN.

The ANN should therefore work well on data outside of the training data. For the TOF ANN, this

architecture provides satisfactory results. However, the ANN for iHill,2, cos ΩHill,2 and sin ΩHill,2

provide insufficient accuracy. When investigating these outputs, they display strong bifurcations

in the phase space. Those are difficult to capture and require more neurons. A similar neuron

size and hidden layers trade-off is performed for the iHill,2 ANN, depicted in Fig. 5.4. From this

analysis, a two-hidden layer, 25 by 25 neuron neural network is selected. This 25 by 25 architecture

also provides satisfactory results for cos ΩHill,2 and sin ΩHill,2.

In conclusion, a schematic representation of the iHill,2 ANN architecture is shown in Fig. 5.5.

Note that not all neurons in the hidden layers are displayed, for figure clarity reasons.
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Figure 5.4: Hidden layers and neurons architecture trade-off for iHill,2. The MSE for the training,
validation and test set are shown, along with the training time for different number of neurons and
different number of layers.
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Figure 5.5: Example of the designed neural network architecture, mapping the Hill orbital elements
at the first periareion to the Hill inclination at the second periareion. Note that not all neurons in
the hidden layers are displayed.

5.2.1.4 ANN training results and validation

Table 5.2 shows the training results for the different neural networks. Both the non dimen-

sionalized MSE values and the dimensional standard deviation 1σ are listed. All ANN have similar

performance over the training, testing and validation data, indicating over fitting is not occurring.

The ANN predictions outside of the training data should be accurate. The accuracy is tested
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Table 5.2: ANN training results for the circular Hill system.

Output Hidden layer Non-dimensional MSE , dimensional 1σ Units Training

parameter neuron sizes Training Validation Test time [min]

rp,2 15x15 6.1e-6 , 122 6.3e-6 , 123 6.7e-6 , 128 [-,km] 3.0
TOF 15x15 4.0e-7 , 0.912 4.3e-7 , 0.936 4.2e-7 , 0.912 [-,hrs] 3.1
iHill,2 25x25 2.4e-5 , 0.77 2.4e-5 , 0.78 3.4e-5 , 0.92 [-,deg] 17.3
cos ΩHill,2 25x25 2.4e-5 , 0.010 4.8e-5 , 0.013 5.0e-5 , 0.014 [-,-] 12.6
sin ΩHill,2 25x25 3.7e-5 , 0.012 4.6e-5 , 0.014 5.2e-5 , 0.014 [-,-] 10.2

and quantified through a Monte Carlo simulation. 100,000 random initial conditions are sampled

uniformly in the considered phase space of the first periareion, listed in the “Data selection” para-

graph. The orbital elements at the next periareion are predicted using the ANN, and compared

to the orbital elements obtained from numerical integration. Figure 5.6 shows the distribution of

the error in the predicted orbital elements. The best fitting Gaussian distribution is plotted in

red. While the errors are not Gaussian, the Gaussian can be used as a conservative bound on the

error distribution. The 1σ values from the Monte Carlo simulation are very similar to the ones

tabulated in Table 5.2. In 99% of the cases, the errors in predicted rp,2, iHill,2, ωHill,2 and TOF are

below 293 km, 2.58◦, 2.16◦ and 0.085 days. The integrated rp,2 varies between 3,389 km (Martian
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Figure 5.6: Distribution of the errors between the predicted and integrated orbital elements at
periareion two for the 100,000 samples in the Monte Carlo analysis for the circular Hill system.
The x-axis shows the number of samples for each y-axis bin.
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surface) and 50,000 km (Fig. 4.5), iHill,2 between 10 and 170◦, ωHill,2 and ΩHill,2 between 0 and

360◦ and TOF between 50 and 106 days. The errors indeed satisfy the accuracy threshold with

an order of magnitude 1%. If better accuracy is needed, this process can be repeated with more

neurons, and/or more layers. Simply adding more layers/neurons may not improve the accuracy.

For these larger networks, more training data is generally required for good generalization ability

[96, 102, 103].

The correlations between the different orbital element errors are shown in Table 5.3. Some

minor correlation exists between ∆rp,2 and ∆TOF . Both parameters are related to the magnitude

of the angular momentum vector, h. Both ANN have similar errors in regions of the phase space

where h varies quickly. A larger correlation exists between ∆iHill,2 and ∆ΩHill,2. Figure 5.7 shows

the orbital elements at periareion one, and ∆iHill,2 and ∆ΩHill,2, when either error is larger than

5◦. A band structure in ωHill,1 − ΩHill,1 is observed. A grid is computed in the neighborhood of a

selected point; for iHill,1 = 108.54◦, ra,1 = 617, 551 km, ωHill,1 = 23.12◦, and ΩHill,1 = 18.42◦, the

errors are ∆iHill,2 = 40.58◦ and ∆ΩHill,2 = −59.75◦. Figure 5.8 shows the integrated and predicted

response in the neighborhood of this point, for constant iHill,1 and ra,1. A bifurcation in iHill,2

and ΩHill,2 is observed. The ANN capture the global trend of the bifurcation, but the identified

boundaries deviate from the truth. Near those bifurcation boundaries, locally, large errors exist.

The ωHill,1 − ΩHill,1 location of this bifurcation is dependent on iHill,1 and ra,1, and traces out the

band structure observed in Fig. 5.7. Further analysis reveals the origin of this bifurcation; all points

within this band structure have rp,2 well below the Martian surface. For any practical application,

these regions will be avoided and the largest errors in predicted iHill,2 and ΩHill,2 are irrelevant.

Table 5.3: Correlation between the circular Hill ANN prediction errors for the 100,000 sampled
points in the Monte Carlo analysis.

∆rp,2 ∆TOF ∆iHill,2 ∆ΩHill,2

∆rp,2 1 0.087 0.010 0.011
∆TOF 0.087 1 −0.012 −0.001
∆iHill,2 0.010 −0.012 1 −0.191
∆ΩHill,2 0.011 −0.001 −0.191 1
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Figure 5.7: Region in initial orbital elements-space where the errors in iHill,2 or ΩHill,2 are larger
than 5◦ for the 100,000 samples in the Monte Carlo analysis for the circular Hill system.

Figure 5.8: Comparison between the predicted and integrated response in the neighborhood of a
point from the Monte Carlo analysis with a large error in iHill,2 and ΩHill,2 (white asterisk).
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5.2.1.5 ANN prediction of initial conditions to target final state

The ANN are used to re-create the results from Fig. 4.6. The same methodology described in

Algorithm 1 is used to find trajectories that target Phobos’ or Deimos’ rp and iMME. Instead of the

integrated orbital elements at periareion two, the ANN predicted elements are used. The results

are shown in Fig. 5.9. While small differences occur with Fig. 4.6, the ANN provide sufficient

accuracy to predict the region within the phase space where the initial conditions target the desired

rp,2 and iMME,2.

5.2.2 Artificial neural network for the eccentric problem

The previous subsection demonstrates that ANN can be used to improve on computational

requirements, while being able to predict the periareion Poincaré maps for the circular Hill problem

to within a specified tolerance. In this subsection, it is demonstrated how this can be extended

to predict results when taking into account Mars’ eccentricity. Classically, this is modeled as

an eccentric Hill problem. Section 4.4 demonstrated that the eccentricity of Mars increases the

computational burden to compute a database. This section also showed how the eccentric Hill

problem can be approximated by differently scaled circular Hill problems, based on the heliocentric

true anomaly of Mars when the transfers pass through apoareion. This subsection combines this

knowledge to set up the method to predict the periareion Poincaré maps in the scaled circular Hill

problem. First, an implementation choice is explained concerning the apoaerion scaled circular Hill

approximations with ANN. Second, the training data creation, training and validation procedures

of the ANN are explained. Third, the ANN are used to predict the initial orbital elements and

timing to target Phobos and Deimos. Finally, those transfers are integrated in a higher fidelity

model as a final test.

5.2.2.1 Approximation by an apoareion scaled circular Hill problem

The response in the eccentric Hill system can be approximated by the response in an apoareion

scaled circular Hill system. The apoareion scaled circular Hill dynamical system has the same
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Figure 5.9: ANN predicted equatorial conditions and timing of periareion one to reach Phobos’
(top) or Deimos’ (bottom) rp and iMME at periareion two in the circular Hill dynamical system.
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assumptions as the eccentric Hill system, with one major difference: Mars orbits around the Sun in

a circular orbit, with radius dM, apoareion; the instantaneous Sun-Mars distance when the transfers

pass through their apoareion. This form of the circular Hill system is again implemented in a

non-dimensional version using the definition of the length scale l and time scale τ from Eq. 2.20.

l =

(
µM

µS

) 1
3

dM, apoareion τ =

√
d3

M, apoareion

µS

The dimensional position and velocity vectors R and V are scaled to the non-dimensional position

vector r and velocity v:

r =
R

l
v =

τ

l
V (5.3)

This scaling can be incorporated in two different ways.

(1) Nominal initial state, scaled dynamics: the difference in solar distance can be translated

into different values of length and time scales.

(2) Scaled initial state, nominal dynamics: scale rp,1 and ra,1, integrate the dynamics using

mean length and time scales. Scale rp,2, ra,2 and TOF .

The first option requires adding the different length and time scales to the inputs of the ANN, which

is equivalent to adding νM, apoareion to the inputs of the ANN. This parameter drastically affects the

response of the periareion Poincaré map (Fig. 4.8). A relatively large number of different values of

νM, apoareion would need to be sampled to capture its effect.

For the second option, the non-dimensional equations of motion allow for the use of a constant

length and time scale lmean and τmean

lmean =

(
µM

µS

) 1
3

aM τmean =

√
a3

M

µS

by creating a scaled version of the dimensional position and velocity vectors.

r =
1

l
R =

1

lmean

lmean

l
R (5.4)
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=
1

lmean
Rscaled

v =
τ

l
V =

τmean

lmean

lmean

l

τ

τmean
V (5.5)

=
τmean

lmean
Vscaled

This scaling translates into the orbital elements domain by scaling ra and rp. For instance, near

Mars’ perihelion, the scaling increases ra,1, mimicking the stronger solar perturbations. The second

option requires adding rp,1 to the inputs of the ANN. A study on the effect of rp,1 shows that the

outputs of the periareion Poincaré map only differ slightly for small differences in rp,1. It is thus

expected that only a relatively small number of rp,1-values must be sampled. The large changes

observed in Fig. 4.8 can be mostly attributed to the differences in scaled ra,1. The effect of ra,1 is

already part of the ANN. Hence, this option capitalizes on this knowledge. The scaling increases the

range of ra,1 values, increasing the computational load compared to the circular case. Despite this,

the reduced sampling requirements on rp,1 compared to νM, apo renders option two more efficient.

5.2.2.2 Development of the ANN

The next few paragraphs explain how the training data is created, and how the ANN are

trained and validated.

Training data creation To start training the more extensive neural networks, the new

scaled training data range must first be computed. The nominal rp,1 of 3389.5 km is mapped to

[3100,3738] km. The bounds on ra,1 ∈ [560000, 720000] km (Fig. 4.12) are mapped to [512000,794000]

km. The training data range and sampling frequency is summarized in Table 5.4. The total num-

ber of integrations is 492,840; seven times the required training data for the circular Hill case. In

comparison, if all trajectories are integrated with the same resolution as the circular case, and a 1◦

resolution in νM,1, 3.04 billion integrations are required; an increase by a factor 6,000.

ANN design The ANN architecture for the circular scenario is re-used, be it with two

major differences. First, an extra input parameter is required; rp,1. Second, as will be demonstrated

later, an extra output parameter is required; the time of flight from periareion to apoareion, TOFapo.
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Table 5.4: Training data range for the apoareion scaled Hill ANN

Input parameter Sampling range Sampling frequency Unit

rp,1 3100 - 3700 200 km
ra,1 520,000-800,000 20,000 km
iHill,1 65-115 10 deg
ωHill,1 0 - 180 5 deg
ΩHill,1 0 - 180 5 deg

ANN training results and validation The training results for the different ANN is

shown in Table 5.5. Both the non-dimensionalized MSE, and the dimensional 1σ values are shown.

The performance is again consistent over the training, testing and validation sets indicating that

the ANN predictions on new data should be accurate. This accuracy is quantified through a Monte

Carlo analysis. 100,000 random initial conditions uniformly sampled within the bounds in Table 5.4

are numerically integrated to the next periareion. The difference between predicted and integrated

response is shown in Fig. 5.10. While the MSE results are very similar to the circular results, the

dimensional 1σ and 99 percentiles of rp,2 and TOF are significantly higher. The larger RMS values

can be attributed to the scaling: the maximum rp,2 is roughly five times higher for the eccentric

case. Thus, for the same non-dimensionalized MSE accuracy, the dimensional 99 percentile is

higher. The obtained accuracy is still deemed good enough for preliminary transfer design; the

errors of the ANN and the errors introduced by the scaled Hill approximation of the eccentric Hill

problem, have similar order of magnitude, and can be corrected with a predictor-corrector scheme.

This will be demonstrated in the next subsections.

Table 5.5: ANN training results for the apoareion scaled circular Hill system.

Output Hidden layer Non-dimensional MSE , dimensional 1σ Units Training

parameter neuron sizes Training data Validation data Test data time [min]

rp,2 15x15 2.8e-6 , 431 3.1e-6 , 450 3.2e-6 , 458 [-,km] 20.8
TOFapo 15x15 7.7e-7 , 1.344 7.8e-7 , 1.344 7.9e-7 , 1.368 [-,hrs] 21.0
TOF 15x15 1.3e-6 , 3.696 1.3e-6 , 3.696 1.3e-6 , 3.744 [-,hrs] 22.5
iHill,2 25x25 4.4e-5 , 1.10 4.4e-5 , 1.11 4.6e-5 , 1.14 [-,deg] 186.5
cos ΩHill,2 25x25 3.6e-5 , 0.012 3.9e-5 , 0.012 4.4e-5 , 0.013 [-,-] 177.0
sin ΩHill,2 25x25 4.7e-5 , 0.014 4.7e-5 , 0.014 5.0e-5 , 0.014 [-,-] 62.8
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Figure 5.10: Distribution of the errors between the predicted and integrated orbital elements at
periareion two for the 100,000 samples in the Monte Carlo analysis for the apoareion scaled Hill
system. The x-axis shows the number of samples for each y-axis bin.

The correlations between the orbital element errors are shown in Table 5.6. Again, some

minor correlation exists between ∆rp,2 and ∆TOF . The newly introduced ∆TOFapo also has

minor correlation with ∆rp,2, and some correlation with ∆TOF . The same parameters that affect

the TOFapo intuitively affect TOF in a similar manner. The correlation between ∆iHill,2 and

∆ΩHill,2 is significantly lower, compared to the circular case. Nonetheless, the same band structure

in ωHill,1 and ΩHill,1 is observed where the largest ∆iHill,2 and ∆ΩHill,2 occur (Fig. 5.11). Again,

these large errors occur in an impact region.

Table 5.6: Correlation between the apoareion scaled circular Hill ANN prediction errors for the
100,000 sampled points in the Monte Carlo analysis.

∆rp,2 ∆TOF ∆TOFapo ∆iHill,2 ∆ΩHill,2

∆rp,2 1 −0.044 −0.055 −0.016 0.003
∆TOF −0.044 1 0.200 −0.005 −0.017
∆TOFapo −0.055 0.200 1 −0.014 −0.0192
∆iHill,2 −0.016 −0.005 −0.014 1 0.037
∆ΩHill,2 0.003 −0.017 −0.0192 0.037 1
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Figure 5.11: Region in initial orbital elements-space where the errors in iHill,2 or ΩHill,2 are larger
than 5◦ for the 100,000 samples in the Monte Carlo analysis for the apoareion scaled circular Hill
system.

5.2.2.3 ANN prediction of initial conditions to target final state

The scaled circular Hill results are predicted with a uniform sampling in e1, νM,a, and iHill,1

with steps of respectively 0.0001, 1◦, and 1◦. For each realization of e1, νM,a and iHill,1, ωHill,1

and ΩHill,1 are predicted that satisfy the necessary conditions to arrive at Phobos or Deimos. This

prediction requires proper scaling of rp,1 and ra,1 using e1 and νM,a. Next, the departure and

arrival times are predicted. This process requires the time at apoareion, known from νM,a, and the

predicted TOFapo and TOF . The timing allows the conversion of the initial and final states between

the Hill and equatorial systems. Some of the arrival points that satisfy the necessary conditions

are mapped to the equator. The used algorithm is summarized in Algorithm 2. Figure 5.12 shows
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Figure 5.12: ANN predicted equatorial conditions and timing of periareion one to reach Phobos’
(top) or Deimos’ (bottom) rp and iMME at periareion two in the apoareion scaled circular Hill
system.
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the solutions with iMME,2 < 3◦ that arrive at Phobos’ or Deimos’ rp-values. This inclination value

is chosen in accordance with the expected 99 percentile accuracy of the ANN (Fig. 5.10). Further

note that only solutions with a 5◦ spacing in iHill,1 are shown to avoid cluttering the figure.

5.2.2.4 Validation of the predicted transfers

The results in Fig. 5.12 leveraged several assumptions and approximations, each introducing

errors. The main assumptions are the approximation of real dynamics using the eccentric Hill

model, which are then approximated by scaled circular Hill models, which in turn are predicted

using neural networks. The accuracy of the identified initial conditions is assessed in this paragraph.

The solutions with predicted iMME,2 < 1◦ are integrated in a full Mars-Sun ephemeris model in

the General Mission Analysis Tool (GMAT) developed at NASA Goddard Space Flight Center

[104]. Some of the inclination and periapse errors are significant. A breakdown of the errors is

shown in Fig. 5.13. The trajectories are predicted to arrive at Phobos or Deimos in the scaled Hill

model. When integrated in the scaled circular Hill model, the observed errors of approximately

1000 km in periapse radius and a few degrees in inclination are in line with the results of the Monte

Carlo analysis (Fig. 5.10). The scaled circular Hill system is an approximation of the eccentric

Hill dynamics. This simplification introduces periapse errors of approximately 3000 - 6000 km,

along with inclination errors between -3◦ and 6◦. The next row of figures shows the errors observed

for integrations in full Mars-Sun ephemeris using GMAT. Little difference exists between these

solutions and the eccentric Hill integrations. The two main error sources are the neural network

predictions and the difference between the scaled circular Hill and the eccentric Hill system. Adding

more neurons, layers, and training data could improve the former. The latter is a more structural

error source; the same departure day regions display similar error structures.

For further analysis, three predicted points are selected that target Phobos’ rp,2 and iMME,2 in

the apoareion scaled Hill system. When integrated in the eccentric Hill system, point 1 overshoots

the required rp,2 by about 2500 km, point 2 is about 3000 km too low and point 3 has a 6◦ error

in iHill,2. Those errors can be corrected using a simple predictor-corrector scheme. For each of the
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Figure 5.13: Error breakdown of the transfers predicted to arrive at Phobos’ (top) and Deimos’
(bottom) rp and iMME at periareion two in the apoareion scaled circular Hill dynamical systems.
Top: error in arrival conditions when integrating the predicted initial states in the apoareion scaled
Hill system. Middle: errors integrated in the eccentric Hill system. Bottom: errors integrated in
the DE405 ephemeris in GMAT.



112

three points, a grid in ωHill,1 and ΩHill,1 is computed, while constraining iHill,1, departure time and

e1 to be constant. Figure 5.14 shows the results of this process. The initial conditions on this grid

are numerically integrated in the eccentric Hill system to the next periareion. For point 1 and 2,

the errors are mainly in rp,2, and for point 3, the error is mainly in iHill,2. Therefore, the left side

of Fig. 5.14 shows the deviation from Phobos’ rp,2 in the neighborhood of point 1 and 2; δrp,2, and

the deviation from Phobos’ iHill,2 in the neighborhood of point 3; δiHill,2. The points are predicted

to satisfy the necessary conditions in the scaled Hill system. Because of the inaccuracies in the

ANN, and the difference between the scaled and eccentric system, these points deviate from the

locations satisfying the necessary conditions in the eccentric Hill system. For point 1 and 2, the

true necessary conditions are located on the intersection between the blue line indicating δrp,2 = 0

km, and the black line where iHill,2 = ε. For point 3, the necessary condition is located on the

intersection between the blue line indicating δiHill,2 = 0◦, and the black line where rp,2 = 9376

km, Phobos’ orbital radius. From this figure, one can see that the points have strong gradients in

either rp,2 and/or iHill,2. Due to these strong gradients, the predicted locations of the necessary

conditions are a few degrees off in ωHill,1 and ΩHill,1. On the right hand side of Fig. 5.13, the iMME,2

integrated in the eccentric Hill system is shown. The minimum iMME,2 contour closely follows the

lines where iHill,2 = ε. On these lines, the arrival times and ΩHill,2 vary, resulting in different final

iMME,2. This difference explains the small features observed in iMME,2. For all three scenarios,

the corrected solution has iMME,2 of maximum three degrees. A simple predictor-corrector scheme

in the eccentric Hill dynamical system with more design variables could correct for these errors.

Besides changes in ωHill,1 and ΩHill,1, small changes in sampled e1, iHill,1 and apoapse times should

be allowed. The obtained results provide very close initial guesses for the actual initial conditions.

For the predictor-corrector scheme shown in Fig. 5.14 where only ωHill,1 and ΩHill,1 are allowed to

vary, the predicted and corrected solutions have identical e1. Hence, the size of the first maneuver

is identical. For the three transfers, the corrected TOF vary between 100 and 108 days and the

magnitudes of the second maneuver, ∆V2, between 878 and 898 m/s. The predicted TOF and ∆V2

differ by a maximum of 3 days and 33 m/s; roughly a three percent difference.
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Figure 5.14: Visualization of the deviations from the locations of the necessary conditions predicted
using the scaled Hill ANN, and their true location and the effect on iMME,2 when integrated in the
eccentric Hill system, for transfers 1 (top), 2 (middle), and 3 (bottom).
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5.2.3 Discussion

In this subsection, the results of the feasibility study are discussed. The discussion is split up

according to the two original goals set up in Chapter 4; showcasing the large control authority of

the Sun on an example application, and developing the framework to create a database of transfers.

5.2.3.1 Showcasing large control authority of the Sun

As an example of the large control authority of the Sun, transfers were analyzed between near-

polar orbits at 185 km altitude and near-equatorial orbits at Phobos’ or Deimos’ orbital radius.

The transfers to both Phobos and Deimos have a similar structure and occur in the same times

within the Martian year (Fig. 5.12). However, the lower required periapse increase to reach Phobos

is easier to achieve than the high periapse increase to reach Deimos. Hence, for an initial polar

inclination with respect to the Martian equator, Phobos can be reached for 319 days vs 116 days

per Martian year for Deimos. Furthermore, one can see that the eccentricity and thus required time

of flight is higher for the Deimos case. Phobos can be reached in 60 to 115 days, Deimos in 75 to

120 days. For both targets, the argument of periapse fluctuates around 180◦. The Hill system has

a symmetry in ω. Thus, an equivalent solution exists with ωHill,1 ≈ 0◦. The longitude of ascending

node shows similar trends and structure throughout the year for both applications. Note that the

symmetry in the Hill system in Ω is not present in the equatorial system.

Fewer transfers appear to exist for initial iMME,1 < 90◦. The ANN captures all possible

transfers departing from an initial polar orbit with respect to the equator with a periareion altitude

of 185 km. For all other initial inclinations, the database is not complete. The shown results are for

iHill,1 ∈ [65◦, 115◦]. In the top of Fig. 5.12, in the [0,100] day region, the lowest line is made up of

points with iHill,1 = 65◦. If lower iHill,1 are included in the database, the lower right triangle in the

[0,100] day region will most likely become feasible. Similarly, the [200,480] day lower right triangle

is expected to be feasible. These transfers can be identified through a straightforward expansion of

the training data to include lower iHill,1.
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5.2.3.2 Database framework development

In Chapter 4 and this subsection, two different methods were developed to create a database,

on a small subset of the phase space, centered around one specific application. For method one

developed in Chapter 4, all database entries are created using numerical integration. Method

two developed in this subsection computes some database entries using numerical integration, and

machine learning techniques to predict the other database entries. Both methods were developed

for a circular and eccentric model of the Martian orbit around the Sun. In the next paragraphs,

both methods are compared in terms of computational requirements and accuracy.

For the circular model, the usage of ANN reduced the required number of integrated transfers

from 8.4 million to 74,000 for the small subset of the phase space of the first periareion. The

integration of the training data, training and the prediction of the 8.4 million transfers required 50

minutes on a 2.5GHz Intel Core i7 processor. On the same computational set-up, the numerical

integration of 8.4 million transfers required 10 days. The developed ANN for the circular scenario

were able to identify the transfers of interest to within a few 100 km and a few degrees. Only

marginal differences were found between the solutions identified by the ANN and the numerically

integrated database.

For the eccentric model, the ANN reduced the number of integrated transfers from 3.04 billion

to 492,000. The creation of the training data, training and the prediction of the 3.04 billion transfers

required roughly one day. The numerical integration of the 3.04 billion transfers would require 3570

days. The entries in the numerical database would exactly map the states at periareion one to the

states at periareion two in the eccentric Hill system. However, the large number of database entries

prevented the computation of the numerical database. For the ANN created database, the states

were mapped in the scaled Hill system. While the responses in the scaled and eccentric Hill systems

are qualitatively very similar (Fig. 4.10), the approximation is not exact. In fact, the scaled Hill

approximation of the eccentric Hill system, and the ANN produced similar errors with ∆rp O(1000

km) and ∆i O(1◦) (Fig. 5.13). Despite these errors, the initial conditions of the transfers identified
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in the scaled Hill system are near the solutions in the eccentric Hill system and can be corrected

using a simple predictor-corrector scheme.

5.2.4 Conclusion and recommendations

This section demonstrates that ANN can be used to create a database of solutions, at a more

tangible computational cost than when created solely through numerical integration. Furthermore,

the usage of an apoareion scaled circular Hill system, where the initial states are scaled and inte-

grated in nominal dynamics, proved critical to reduce the required number of integrations. This

system captures the majority of the time variance of the eccentric Hill system through a simple

expansion of the considered rp,1-ra,1 domain. The trained ANN predict the behavior of a solar

perturbed transfer over one revolution, throughout the Martian year. The obtained accuracy al-

lows to identify the initial orbital elements and timing to target specific final orbits. The predicted

transfers are found to be near the real solutions in the eccentric Hill system.

This predictor-corrector step could be made obsolete through two improvements. First, the

accuracy of the developed ANN could be improved. The most significant error for the scaled

Hill ANN occurs for the rp,2 parameter. While the non-dimensional MSE value is similar to its

circular ANN value, the dimensional 1σ value is almost four times higher. For the apoareion scaled

Hill system, some transfers have rp,2-values as high as 250,000 km. These transfers are not very

interesting for most practical applications, and make up the bulk of the 1σ error value. Therefore,

they should not be included in the ANN, allowing the ANN to focus on improving the accuracy

of the transfers in the region of interest. Similarly, the strongest gradients for iHill,2 and ΩHill,2

occur for impacting transfers. These transfers should be excluded from the training data. Second,

the difference between the apoareion scaled circular, and eccentric Hill system is observed to be

systematic. Therefore, the difference in response between both systems could be approximated by

separate ANN. Those ANN could provide a correction to the predicted scaled response, allowing

the prediction of the mapping in the eccentric Hill system. These suggested improvements are

implemented in the next section, for a significant expansion of the phase space of periareion one.
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5.3 ANN architecture for forward Poincaré maps on large section phase

space

This section’s goal is the design of an ANN architecture that can predict the next periareion

for transfers starting within a certain specified range of periareion and apoareion radii ranges,

for every possible initial orbital orientation and time, with multiple solar perturbed revolutions

around Mars. This requires a significant expansion of the phase space, as compared to the previous

section. Furthermore, the previous section’s recommendations to make the ANN more accurate are

implemented; filtering out impact regions, as well as transfers with very high rp,2, from the training

data, and approximating the systematic error between the apoareion scaled circular Hill and the

eccentric Hill system. First, the enlarged phase space is discussed. Second, the considered ANN

architecture and the methodology to design the ANN architecture are treated. Third, the accuracy

of the architecture for one revolution is computed. Fourth, the accuracy for multiple revolutions is

determined. Finally, some concluding remarks on the developed architecture are listed.

5.3.1 Considered phase space

Table 5.7 shows the region of the considered phase space. One can see that the entire phase

space for i1, ω1, Ω1, and t1 is considered, using the symmetries present in the eccentric Hill system.

For rp,1 and ra,1, this is impossible as the phase space is unbounded. Therefore, only a section of the

phase space is considered, be it a large section. The lower bound of rp,1 is at the surface of Mars,

while the upper bound is imposed to solely include the region where practical applications exist.

The lower bound for ra,1 has been imposed to ensure that significant changes between subsequent

periareions can occur. The upper limit on ra,1 has been set to limit the transfer duration to

reasonable values. These orbits go near or beyond the Laplace sphere of influence at 574,000 km.

From the shown bounds, it should be evident that numerically integrating this phase space

with a fine resolution is highly impractical. Sampling this phase space with a relatively sparse

resolution of 1,000 km in rp,1, 10,000 km in ra,1, 5◦ in i1, ω1 and Ω1, and 10 days in t1 results in
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Table 5.7: Bounds on the considered phase space.

Parameter Lower bound Upper bound Unit

rp,1 3,390 45,000 km
ra,1 440,000 720,000 km
iHill,1 0 180 deg
ωHill,1 0 180 deg
ΩHill,1 0 180 deg
t1 0 1 Martian year

approximately 4.6 billion numerical integrations. Therefore, artificial neural networks are designed

to predict the changes in orbital elements between subsequent periareions, requiring only a fraction

of the numerical integrations.

Using the phase space reduction technique described in Subsubsection 5.2.2.1, the phase space

in Table 5.7 can be reduced to the bounds listed in Table 5.8. Using the same resolution as earlier,

only 98.4 million integrations are required compared to 4.6 billion. The approximation of the

eccentric Hill system with an apoareion scaled circular Hill system is not exact, but the introduced

errors are systematic, and can be predicted using an ANN, as will be shown in Subsubsection

5.3.2.3. A visualization of the bounds on the phase space in the non-dimensional circular Hill

system are shown in Fig. 5.15.

Table 5.8: Difference between the real and the scaled bounds of the considered phase space.

Parameter Real bounds Scaled bounds Unit

rp,1 3,390-45,000 3100-49,200 km
ra,1 440,000-720,000 399,000-787,000 km
iHill,1 0-180 0-180 deg
ωHill,1 0-180 0-180 deg
ΩHill,1 0-180 0-180 deg
t1 0-1 N.A. Martian year
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Figure 5.15: Visualization of the scaled bounds of the first periareion in the circular Hill system.
Blue and red are the considered regions for, respectively, rp,1 and ra,1. The black dotted line is the
Laplace sphere of influence.

5.3.2 Methodology

In this subsection, the envisioned architecture is developed. First, an overview is given on the

neural network architecture, with three groups of ANN. Then, each of the three identified groups

is treated in more detail, where the training data creation, training and validation procedures of

the neural networks are explained.

5.3.2.1 General architecture

An overview of the architecture is given in Fig. 5.16. First, an initial state at periareion is

selected, and a specific time when the transfer passes through its apoareion. The timing is used

to scale the initial state using Eqs. 5.4 and 5.5. Second, using classification neural networks,

anomalies such as impacting and escaping transfers are identified. For the anomaly-free initial

states, the response in the scaled Hill system is predicted. Furthermore, a correction term is

predicted. This correction term predicts the difference between the response at the next periareion

when integrated in the apoareion scaled Hill system and the eccentric Hill system. Those two terms

are combined into a predicted response in the eccentric Hill system. There are thus three different

groups of ANN: a group of regression ANN to predict the response in the apoareion scaled Hill

system, a group of regression ANN to predict the difference between the apoareion scaled Hill and

the eccentric Hill system, and a group of classification ANN to predict escape or impact. Each of

those groups are explained in further detail in the next paragraphs.
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Figure 5.16: Overview of the three-group ANN architecture where the relationships are shown
between states (blue) and neural network groups (red) to predict the Poincaré map response in the
eccentric Hill system.

5.3.2.2 Apoareion scaled circular Hill neural networks

The apoareion scaled Hill system has continuous output, and is captured in a regression

feedforward neural network. Before looking into the design of the neural network, the data is

created and analyzed.

Data creation The five parameters at periareion 1 with scaled bounds listed in Table

5.8 are sampled to create the training data. Prior analysis shows that at low values of rp,1, small

variations in rp,1 have larger effects on the control authority than at high values. Therefore, a non-

uniform sampling in rp,1 is used. The other four parameters are sampled uniformly. The sampled
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values are listed in Table 5.9. Note that iHill,1 is sampled between 5◦ and 175◦ and not between 0◦

and 180◦. At those extreme inclinations, the initial state’s position is on the ecliptic plane, and its

velocity is entirely in the ecliptic plane. As such, no inclination changes are possible [14]. These

regions are therefore not included in the training data. The scaled Poincaré map is computed for

every permutation. In total, 6,209,784 numerical integrations are performed. If the periareion-to-

apoareion segment, or apoareion-to-periareion segment of the trajectory is longer than 250 days,

the integration is terminated and the trajectory is considered to escape.

Table 5.9: Sampling density of the orbital elements at the first periareion used as training data for
the scaled Hill and classification neural networks.

Region 1 Region 2 Sampled points

Lower Spacing Upper Lower Spacing Upper
bound bound bound bound

rp,1 (km) 3,100 3,000 12,100 17,100 5,000 52,100 12
ra,1 (km) 400,000 20,000 800,000 - - - 21
iHill,1 (deg) 5 10 175 - - - 18
ωHill,1 (deg) 0 5 180 - - - 37
ΩHill,1 (deg) 0 5 180 - - - 37

Total: 6,209,784

Data processing Prior to training, the raw integration data is processed. First, the

escaping trajectories are filtered out and indexed for later use in an escape classification neural

network. Second, some data is pruned out. In Fig. 5.17, the state at the next periareion is shown.

Based on the recommendation in the previous section, the trajectories that dip below the Martian

surface are filtered out. A lower limit of 1,000 km is imposed on rp,2. Those trajectories are indexed,

and are later used to train an impact classification neural network. This lower limit has not been

set equal to the Martian radius, to have a buffer against large errors in predicted orbital elements

near this boundary, as will be shown in the Validation paragraph. In Fig. 5.17, those transfers

are depicted in red. One can see that this impact detection also removes some outliers in ra,2.

Furthermore, rp,2 can grow very large. For any practical application around Mars, the periareion is

expected to remain below 50,000 km. By limiting the upper rp,2, the scaling of the rp,2-parameter
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during the training procedure is lower. Thus, for the same non-dimensional training accuracy, the

dimensional error is smaller. An upper limit of 70,000 km is imposed, again, to introduce a buffer

area. These transfers exhibit similar characteristics as the escaping trajectories. Their indices are

thus added to the index list of escaping trajectories. These transfers are depicted in green and

are also the longest. Lengthy transfers remain present in Fig. 5.17. A limit of 120 days is then

imposed. The classification limit is set slightly higher at 150 days to create a buffer. The transfers

that are longer than 150 days are added to the list of escape trajectories and are depicted in black.

In total, 5,556,519 transfers survive the data pruning. Their response is indicated in blue. Third,

there is an artificial bifurcation in ωHill,2 and ΩHill,2. Similarly to the discussion accompanying Fig.

5.1, the response for both parameters are split up in their cosine and sine components.

Figure 5.17: Pruning of the training data for the apoareion scaled Hill neural networks. Left:
original data. Right: remaining data after data pruning.
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Overview of input and output parameters From the discussion in Subsubsection

5.2.2.1, there are five input parameters: rp,1, ra,1, iHill,1, ωHill,1, ΩHill,1. The input parameters are

scaled based on the time of apoareion. In order to predict the response over several revolutions, all

orbital elements at each next periareion must be predicted. Therefore, the nine output parameters

at the next periareion are rp,2, ra,2, iHill,2, cosωHill,2, sinωHill,2, cos ΩHill,2, sin ΩHill,2, time of flight

TOF , and the time of flight between periareion and apoareion, TOFapo. The latter is required to

map the time at apoareion to the initial periareion time, which in its turn can be used to compute

the next periareion time.

Training Several ANN design choices need to be made that affect the training. The same

design choices are made as in Section 5.2, except for the numbers of neurons in each layer. The

rp,2, ra,2, TOF and TOFapo ANN have 30 neurons in each layer. The iHill,2, cosωHill,2, sinωHill,2,

cos ΩHill,2, and sin ΩHill,2 output parameters exhibit more non-linear responses. Therefore, their

ANN have 40 neurons in each layer. Furthermore, because of the larger size of the ANN, a different

computational set-up is used. The neural networks are trained using the MATLAB Statistics and

Machine Learning Toolbox 11.2 [101] for a maximum of 23 hours on 12 cores. Each core has 1 Intel

Xeon E5-2680 v3 @ 2.50GHz CPU.

Note, for each of the 9 output parameters, three separate ANN are trained for three different

iHill,1-regions; one ANN for iHill,1 ∈ [5◦, 65◦], one for iHill,1 ∈ [65◦, 115◦], and one for iHill,1 ∈

[115◦, 175◦]. All regions could have been trained in a single network per output parameter. The

training of this larger ANN would be more efficient; the same trends for varying iHill,1 on each

output parameter only need to be learned once, in stead of three times. However, the training time

per iteration, which increases linearly with provided number of data points, is roughly triple. This

larger required training time surpassed the 24-hour cut-off for each task on the used computational

set-up.

Validation As an independent test of the networks, a Monte Carlo analysis is performed.

100,000 points are uniformly sampled from the region within the bounds listed in Table 5.9. Using

the scaled Poincaré maps, those initial conditions are mapped to the next periareion, and compared
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to the ANN predicted response. The resulting error distributions are shown in Fig. 5.18 and the

1σ value and the 99 percentiles are displayed. The best fitting Gaussian distribution through this

histogram is plotted in red. One can see that while the errors are not Gaussian, the Gaussian can

be used as a conservative bound on the error distribution.
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Figure 5.18: Distribution of the errors between the predicted and integrated apoareion scaled
circular Hill Poincaré map for the 100,000 sampled points in the Monte Carlo simulation. The
x-axis shows the number of samples for each y-axis bin.

Each output is predicted with a separate ANN and the errors are therefore expected to be

independent. In Table 5.10, the correlations between the errors are shown. The most correlation

exists between rp,2, ra,2, TOF and TOFapo. Those parameters are all related to the magnitude

of the angular momentum vector. As such, in regions of the phase space where this parameter

changes quickly, and the ANNs struggle to capture this, all four parameters have larger errors.

Table 5.10: Correlation between the apoareion scaled Hill ANN prediction errors for the 100,000
sampled points in the Monte Carlo analysis.

∆rp,2 ∆ra,2 ∆TOFapo ∆TOF ∆iHill,2 ∆ωHill,2 ∆ΩHill,2

∆rp,2 1.00 −0.27 0.06 0.06 −0.02 0.01 0.01
∆ra,2 −0.27 1.00 −0.02 −0.07 0.01 −0.03 0.05
∆TOFapo 0.06 −0.02 1.00 0.16 −0.00 0.01 −0.03
∆TOF 0.06 −0.07 0.16 1.00 0.01 0.03 −0.04
∆iHill,2 −0.02 0.01 −0.00 0.01 1.00 0.01 −0.04
∆ωHill,2 0.01 −0.03 0.01 0.03 0.01 1.00 −0.10
∆ΩHill,2 0.01 0.05 −0.03 −0.04 −0.04 −0.10 1.00
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To determine if the ANN produces systematic errors, the (ωHill,1,ΩHill,1) locations are de-

termined where errors occur that are larger than the 99 percentile for the apoareion scaled Hill

ANN. There are systematic error regions that are similar to the band structures observed in Fig.

5.11. Those band structures were identified to be in impact regions. During the training of the

apoareion scaled Hill ANN, those impact, and escape regions, are filtered out the training data.

This creates local holes in the training phase space, and the ANN only have information of the

gradients on one side of this boundary. Therefore, it is expected that the large error regions are

near the impact and escape boundaries. Figure 5.19 verifies this hypothesis. This figure shows

the points with errors larger than the 99 percentile, plotted in function of their response at the

next periareion. For rp,2, ra,2, TOF , and TOFapo, the errors are mainly near the escape boundary.

This makes intuitive sense, since those parameters are largest in this region. The three angular

Figure 5.19: Locations in rp,2−TOF arrival phase space where errors larger than the 99 percentile
for the apoareion scaled Hill ANN occur.
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orbital elements have the largest errors near the impact boundary. In Fig. 5.8, it was shown that

for low rp,2-values, the iHill,2-values vary very quickly in the (ωHill,1,ΩHill,1) phase space. Near this

impact zone, the angular orbital elements still have strong gradients. Those gradients are difficult

to capture, especially considering the lack of information on the behavior on the other side of the

boundary.

This boundary issue is resolved through buffer zones introduced in the “Data processing”

paragraph. While the true impact occurs at the Martian radius, only transfers below 1,000 km are

filtered out. This introduces a buffer region, indicated in grey in Fig. 5.19. Within this region,

the ANN have limited information of the surrounding points, in the direction of the boundary. At

the true boundary of the impact, the ANN have more information in the direction of the 1,000 km

boundary and can more accurately capture the gradients. The grey escape buffer region between

120 and 150 days TOF and between 50,000 and 70,000 km in rp,2 functions similarly. Figure 5.20

re-creates Fig. 5.18, but excludes the errors of the points predicted to be the grey buffer region.

This improves the accuracy of all parameters by 13-27%.
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Figure 5.20: Distribution of the errors between the predicted and integrated apoareion scaled
circular Hill Poincaré map for the 100,000 sampled points in the Monte Carlo simulation, excluding
the grey buffer regions. The x-axis shows the number of samples for each y-axis bin.
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5.3.2.3 Correction neural networks

The correction term between the apoareion scaled Hill system and the eccentric Hill system

has continuous output, and is captured in a regression feedforward neural network. Before looking

into the design of the neural network, the data is created and processed.

Data creation The difference in response for the scaled and eccentric Poincaré maps is

quantified in a Monte Carlo analysis. The initial conditions, comprised of rp,1, ra,1, iHill,1, ωHill,1,

ΩHill,1 and initial time t1 are uniformly sampled from the unscaled bounds in Table 5.8. The

eccentric Poincaré map is numerically integrated, from which νM,apoareion can be extracted. This

parameter is then used to scale the initial conditions prior to the scaled Poincaré map computation.

Finally, the difference in response between the two dynamical systems is computed.

Data processing Prior to training, the raw integrated data is processed and some data

is pruned out. The rationale is described in this paragraph. Figure 5.21 shows trends between

the difference in ra,2 for the eccentric and scaled Hill systems, and several states associated with

the scaled Poincaré map. For instance, the differences in ra,2 are very large for trajectories that

have large rp,2-response in the scaled Hill system. The scaled Hill networks filter out trajectories

with rp,2 > 70,000 km. For these transfers, there is no need to predict the difference between the

dynamical systems. For the correction networks, a limit of 50,000 km is therefore introduced (top

left of Fig. 5.21). Second, large differences in ra,2 occur for high TOF s and ra,2-values in the

scaled Hill system. A limit of 120 days on TOF (top right of Fig. 5.21) and a limit of 850,000

on ra,2 (bottom left of Fig. 5.21) is imposed. Those transfers are lengthy and are deemed non-

interesting as they are close to escape. By pruning out this data, the extrema in the ra,2 differences

are decreased by an order of magnitude, improving the expected training accuracy. A similar

reduction is observed for the other output parameters.

No new classification networks are required to detect the rp,2 and TOF limits. The rp,2 and

TOF limits are already captured at 70,000 km and 150 day respectively. As will be shown in the

next subsection, buffer regions exists for the classification network in which erroneous classifications
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might occur. The 50,000 km and 120 day limits bound this buffer region and the trajectories are

most likely correctly classified. As shown in the previous subsubsection, the scaled Hill ANN include

this buffer region. Therefore, the scaled Hill ANN should be accurate enough to detect if the real

boundaries of 50,000 km rp,2 and 120 day TOF are exceeded. The ra,2 limit is a new limit and

needs to be added to the criteria for the escape classification neural network. As a buffer, a 900,000

km limit is used for the classification, while an 850,000 km value is used for the data pruning for

the correction networks. In the bottom right of Fig. 5.21, a trend between the difference in ra,2,

iHill,1 and νM,apoareion is observed. The trends for the other parameters are shown in Fig. 5.22. The

ANN are expected to be able to identify these trends.

Figure 5.21: Example of the pruning procedure on the training data for the correction ANN.
Example for the ra,2 parameter.

Overview of input and output parameters

For the correction neural networks, the inputs are the unscaled rp,1, ra,1, iHill,1, ωHill,1, ΩHill,1

and νM,apoareion. The outputs are the unscaled errors in rp,2, ra,2, iHill,2, ωHill,2, ΩHill,2, TOF and

TOFapo.
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Figure 5.22: Visualization of the systematic differences between the integrated response in the
apoareion scaled circular, and eccentric Hill systems.

Training Similar design choices as for the scaled Hill neural networks are made with a

separate ANN for each output parameter, and a two hidden layer architecture with 30 by 30 neurons

and a hyperbolic tangent activation function. The same cost function and training algorithms

are used. The same training time constraints and computational set-up are used. However, the

maximum training time is never encountered.

Validation The training is performed with 1e5, 2e5 and 1e6 points. As an independent

accuracy test, another 100,000 sample points are created from a uniform distribution in input

parameters. Table 5.11 lists the distribution statistics for the errors between the predicted and
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integrated difference between the eccentric and scaled Poincaré map. The observed accuracy im-

provement is not linear with the number of training points. The majority of the difference between

the eccentric and scaled Poincaré map is captured with 1e5 or 2e5 points, but the achieved accuracy

is worse than the accuracies of the scaled Hill ANN. Despite the decreasing accuracy improvement

per computed sample point, 1e6 points (Fig. 5.23) are required to provide similar accuracies as

the scaled Hill ANN (Fig. 5.18). For problems with a large evaluation cost for the more complex

dynamical model, this high number of evaluations is not always possible.

Table 5.11: Distribution statistics for the errors between the predicted and integrated difference
between the eccentric and apoareion scaled circular Hill Poincaré maps for the 100,000 sampled
points of the Monte Carlo simulation.

Before training 100,000 200,000 1,000,000 Units
training points training points training points

σ 99 perc. σ 99 perc. σ 99 perc. σ 99 perc.
rp,2 697 2,419 178 507 133 400 77 281 km
ra,2 2,677 10,001 168 505 149 483 101 371 km
TOFapo 0.32 1.29 0.62 1.81 0.26 0.80 0.13 0.42 hrs
TOF 0.62 2.56 0.91 2.48 0.63 1.79 0.33 1.11 hrs
iHill,2 0.55 2.08 0.33 1.19 0.28 0.91 0.21 0.71 deg
ωHill,2 0.63 1.95 0.35 0.85 0.31 0.73 0.21 0.59 deg
ΩHill,2 1.31 3.91 0.44 1.25 0.38 1.01 0.26 0.76 deg

-200

-100

0

100

200

 r
p

,2
 [
k
m

]

1   = 77
99 %  = 281

-200

0

200

 r
a

,2
 [
k
m

]

1   = 101
99 %  = 371

-0.4

-0.2

0

0.2

0.4

 T
O

F
a

p
o
 [
h
rs

] 1   = 0.13
99 %  = 0.42

-1

-0.5

0

0.5

1

 T
O

F
 [
h
rs

]

1   = 0.33
99 %  = 1.11

-0.5

0

0.5

 i
H

ill
,2

 [
d
e
g
]

1   = 0.21
99 %  = 0.71

-0.5

0

0.5

 
H

ill
,2

 [
d
e
g
]

1   = 0.21
99 %  = 0.59

-0.5

0

0.5

 
H

ill
,2

 [
d
e
g
]

1   = 0.26
99 %  = 0.76

Figure 5.23: Distribution of the errors between the predicted and integrated difference between the
eccentric and apoareion scaled circular Hill Poincaré maps for the 100,000 sampled points of the
Monte Carlo simulation. The x-axis shows the number of samples for each y-axis bin.
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The correlations between the errors are shown in Table 5.12. Similar conclusions can be

drawn as for the scaled Hill error correlation terms. Again, it is verified if certain areas in initial

phase space exist for which the correction ANN produce large errors. No systematic trend could be

identified. It appears that the magnitude of the errors is random. Figure 5.24 demonstrates that

the initial orbital elements that result in errors larger than the 99 percentile for the correction ANN

are more or less uniformly distributed. In combination with the decreasing accuracy improvement

per computed sampled point, observed in Table 5.11, this seems to suggest that the correction ANN

capture all major systematic input-output couplings in the phase space. Hence, no specific zones

within the phase space exist for which the correction ANN errors are systematically larger.

Table 5.12: Correlation between the correction ANN prediction errors for the 100,000 sampled
points in the Monte Carlo analysis.

∆rp,2 ∆ra,2 ∆TOFapo ∆TOF ∆iHill,2 ∆ωHill,2 ∆ΩHill,2

∆rp,2 1.00 −0.24 0.02 0.09 0.04 0.02 −0.03
∆ra,2 −0.24 1.00 0.06 −0.03 −0.03 −0.01 −0.01
∆TOFapo 0.02 0.06 1.00 0.36 −0.01 0.03 −0.07
∆TOF 0.09 −0.03 0.36 1.00 0.03 0.05 −0.05
∆iHill,2 0.04 −0.03 −0.01 0.03 1.00 0.05 −0.05
∆ωHill,2 0.02 −0.01 0.03 0.05 0.05 1.00 −0.24
∆ΩHill,2 −0.03 −0.01 −0.07 −0.05 −0.05 −0.24 1.00

Figure 5.24: Distributions of all input states for which any of the predicted correction terms has
an error larger than its 99 percentile value shown in Fig. 5.23. The y-axis shows the number of
samples for each x-axis bin.
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5.3.2.4 Escape and impact classification neural networks

Escape and impact are discrete events; therefore, a classification neural network is used to

predict which initial conditions lead to escape or impact.

Data creation The integrated trajectories to train the scaled Hill ANN are re-used, with

the same bounds and resolution listed in Table 5.9. From those integrations, the data for the clas-

sification neural networks is constructed. Some trajectories are immediately indicated as escape

trajectories, if the periareion-to-apoareion segment, or apoareion-to-periareion segment of the tra-

jectory is longer than 250 days. Furthermore, transfers with a TOF > 150 days, rp,2 >70,000 km,

or ra,2 > 900,000 km, are marked as escaping trajectories. Similarly, trajectories with rp,2 < 1,000

km are marked as impacting transfers. Note that these numbers are the boundaries of the buffer

regions and not the actual boundaries of the anomalies.

Overview of input and output parameters There are five scaled input parameters:

rp,1, ra,1, iHill,1, ωHill,1, ΩHill,1, scaled according to the time at apoareion. The outputs of a classifi-

cation network indicate the chance that a specific input results in a specific output category. For

the considered classification networks, there are only two possible classes: anomaly or no anomaly.

Therefore, there are two outputs. For the training data, the corresponding class is known determin-

istically. Therefore, for a trajectory without anomaly, the first output is 0, and the second output

1. For a trajectory with anomaly, the first output is 1, and the second output 0. When evaluating

a classification neural network on new data, the output can take intermediate values. The class

associated with the output neuron with the largest output is the most likely. The sample is thus

classified as that class.

Training A separate ANN is created to detect the escape and impact conditions. Each of

those networks has two outputs, and a two-hidden layer architecture with 30 neurons each. The

outputs of a classification neural network describes a probability. Therefore, each output must be

positive, and the sum of all outputs must be equal to one. For a linear activation function, this is

not guaranteed. Therefore, a softmax activation layer is applied to the output layer [105]. First, as
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for any neuron in a neural network, the weighed input of the two output neurons are computed, z1

and z2. After activation, the outputs of neuron 1 and neuron 2 are:

φ(z1) =
ez1

ez1 + ez2
φ(z2) =

ez2

ez1 + ez2
(5.6)

For a classification neural network with a softmax layer, a cross-entropy cost function usually

finds a better local optimum than the mean squared error cost function [106]. The cross-entropy cost

function is incompatible with the Levenberg-Marquardt back-propagation algorithm. Therefore, the

scaled conjugate gradient algorithm is used. The training is done on a NVIDEA Tesla K80 GPU

unit and does not exceed 15 minutes.

Validation As an independent test of the networks, a Monte Carlo analysis is performed.

The 100,000 element data set created for the validation of the scaled Hill ANN is re-used, and the

predicted and true classifications are compared. The left part of Fig. 5.25 shows the confusion

matrix for the escape classification network. The green and red entries display the correct and

incorrect classifications, respectively. The last column displays the percentages of the samples

predicted to escape or not escape that are correctly (green) and incorrectly (red) classified. The

bottom row shows the percentages of the samples that truly escape or not escape that are correctly

(green) and incorrectly (red) classified. The bottom right element shows the high overall accuracy.

There are some false positives, and some false negatives. The integrated results for those points

are shown in the leftmost part of Fig. 5.26. All false positives (blue) are in the buffer region

(grey). Even though they do not escape according to the 70,000 km and 150 day standard (red

region), they escape under the more strict 50,000 km and 120 day standard (green region) and are

thus correctly classified. For the false negatives (black), the escape is not detected. The scaled

Hill networks’ training data includes the buffer region and the false negatives fall just outside this

region. It is expected that the scaled Hill networks provide sufficient accuracy to verify that these

points are indeed outside the 50,000 km and 120 day region. This is shown in the right part of

Fig. 5.26. The predicted responses for the false negatives are plotted and indeed fall outside the

50,000 km and 120 day region. Thus, the predicted responses can be used to detect escape of
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the false negatives. By using the buffer region, the incorrect classification of the false positives

and false negatives is entirely resolved. A similar procedure is followed for the validation of the

impact classification network. Again, the buffer region resolves the incorrect classification of the

false positives and negatives.

Figure 5.25: Confusion matrices for the escape (left) and impact (right) classification ANN.

Figure 5.26: Comparison of the integrated versus predicted results for erroneously classified trans-
fers: false positives (blue), false negatives (black), for escape (left) and impact (right) classification.

5.3.3 Architecture accuracy

In this subsection, the overall accuracy of the architecture is evaluated when the three groups

of ANN co-operate to predict the response of the periareion Poincaré map in the eccentric Hill

system. A 100,000 point Monte Carlo analysis is performed where the unscaled phase space in

Table 5.7 is uniformly sampled. Note that the departure time is sampled, and not the time when

the transfers pass apoareion. Those samples are numerically integrated using the eccentric Hill
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system. The flow chart in Fig. 5.16 is followed to predict the response in the eccentric Hill system,

with a small difference. All the ANN families use νM,apoareion either as an input parameter, or a

parameter to scale the input parameters. However, this parameter is not readily known from the

initial time. Therefore, an iterative procedure is followed where the νM,apoareion is predicted. The

νM,apoareion is initialized to νM,1. Then, using the scaled Hill and correction ANN, the TOFapo is

predicted. From this, the new νM,apoareion is computed and used to adjust the scaling of the initial

periareion. This procedure is repeated until convergence, i.e., when νM,apoareion does not change by

more than 1e-6 rad. Using the final value for νM,apoareion, the initial states are scaled. Those scaled

states are then used to predict which states do not impact nor escape. For those scaled states,

the response in the scaled Hill system is computed. The predicted points that arrive in the buffer

region are filtered out: rp,2 above 50,000 km, ra,2 above 850,000 km and TOF above 120 days, i.e.

the points outside the green region. For the remaining states, the response is scaled back to the

real phase space and the correction terms are computed and added to the response of the scaled

Hill system.

For 16,256 points, the integrated and predicted transfers are both outside the green region.

For 172 points, or 0.172% of the points, there is a conflict between the integrated and predicted

green region classifications. For those points, the predicted and integrated rp,2 and TOF are plotted

in Fig. 5.27. The difference in classifications are due to small oscillations near the escape and impact

criteria, depicted as black dashed lines. Those oscillations are a result of the inaccuracies in the

scaled Hill and correction ANN and cannot be avoided. The oscillations can potentially be reduced

in size by improving the scaled Hill and correction ANN by increasing the amount of data, the

number of hidden layers, the number of neurons, etc.

83,560 out of the 100,000 points are correctly predicted to be in the green region and the

difference between the predicted and integrated response can be quantified. The error statistics for

those points are displayed in Fig. 5.28. As a summary, the 1σ and 99 percentiles are shown in Table

5.13, along with the accuracies of the different ANN families. From this table, one can see that

the combined σ-value is smaller than the root squared value of the scaled Hill and correction ANN
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Figure 5.27: Integrated versus predicted rp,2 and TOF response at 172 incorrectly classified samples
for the single-loop validation.

σ-values. While the distributions are not Gaussian, the sum of the two Gaussian approximations,

whose σ is equal to the RSS of the individual σ’s, can be used as a conservative error distribution.

This sum of the Gaussians is plotted in black. Table 5.14 displays the correlation between the

errors. Again, there is some correlation, mostly between rp,2, ra,2, TOF and TOFapo.
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Figure 5.28: Distribution of the errors of the predicted orbital elements at periareion two using the
entire architecture, compared to the orbital elements integrated in the eccentric Hill system for the
100,000 sample points in the Monte Carlo simulation of the entire architecture. The x-axis shows
the number of samples for each y-axis bin.

To understand if the entire architecture produces systematic errors, Fig. 5.29 shows where in

the phase space at the second periareion the errors occur that are larger than the 99 percentile for
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Table 5.13: Distribution statistics for the errors of the predicted response, compared to the inte-
grated response, for different elements of the ANN architecture.

Parameter Scaled Hill Correction Entire RSS scaled Hill Unit
architecture and correction

σ 99 perc. σ 99 perc. σ 99 perc. σ 99 perc.
rp,2 74 263 77 281 90 301 106 387 km
ra,2 96 345 101 371 118 381 141 508 km
TOFapo 0.14 0.46 0.13 0.42 0.15 0.49 0.19 0.62 hrs
TOF 0.21 0.71 0.33 1.11 0.34 1.17 0.39 1.32 hrs
iHill,2 0.26 1.06 0.21 0.48 0.46 1.87 0.34 1.28 deg
ωHill,2 0.14 0.50 0.21 0.59 0.17 0.56 0.25 0.77 deg
ΩHill,2 0.11 0.41 0.26 0.76 0.20 0.66 0.28 0.86 deg

Table 5.14: Correlation between the prediction errors of the entire architecture.

∆rp,2 ∆ra,2 ∆TOFapo ∆TOF ∆iHill,2 ∆ωHill,2 ∆ΩHill,2

∆rp,2 1.00 −0.28 −0.10 −0.12 0.04 −0.00 −0.01
∆ra,2 −0.28 1.00 0.02 0.08 −0.04 0.02 0.02
∆TOFapo −0.10 0.02 1.00 0.34 0.01 −0.02 0.06
∆TOF −0.12 0.08 0.34 1.00 0.00 −0.04 0.07
∆iHill,2 0.04 −0.04 0.01 0.00 1.00 −0.00 −0.02
∆ωHill,2 −0.00 0.02 −0.02 −0.04 −0.00 1.00 −0.20
∆ΩHill,2 −0.01 0.02 0.06 0.07 −0.02 −0.20 1.00

the entire architecture. Again, the largest errors are found near the impact and escape boundaries.

The errors are combinations of errors in the apoareion scaled Hill ANN and errors in the correction

term ANN. The former has a clear structure (Fig. 5.19), while the latter appears random (Fig.

5.24). The structure is therefore dominated by the error regions of the apoareion scaled Hill ANN.

5.3.4 Architecture accuracy multiple loops

The framework developed in the previous sections can be used to chain multiple orbits; i.e,

the predicted orbital elements at periareion two can be used as the initial condition for a next

prediction procedure. In this section, the architecture for this procedure is developed, and its

accuracy is determined, based on a 10,000 point Monte Carlo analysis. For the first loop, the exact

same architecture is used. For the subsequent loops, a very similar architecture is used. Again,
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Figure 5.29: Locations in rp,2−TOF arrival phase space where errors larger than the 99 percentile
for the entire architecture occur.

the νM,apoareion is computed using an iterative procedure. Using the final value for νM,apoareion, the

initial states are scaled. An extra filtering step is required: some of the scaled initial states are

outside the scaled bounds in Table 5.9 for which the ANN are trained. An example are transfers

that return after the first loop with ra,2 larger than 720,000 km. If they return when Mars is near

its perihelion, the scaled value is above 800,000 km and must be filtered out. Furthermore, some

transfers return with iHill,2 smaller than 5◦ or larger than 175◦. After this extra step, the exact

same architecture is used.

A more complex classification problem occurs: trajectories that are incorrectly classified in

the first loop are carried over to the next loop. Table 5.15 gives an overview of the classification

performance. There are five entries. “Points at start of loop” lists how many transfers still exist

at the start of the loop. “Both green” lists the points for which both the integrated and predicted
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response are in the green region. For this category, the error can be quantified, shown in Table

5.16. “Both outside green” lists the transfers for which the integrated and predicted transfers are

both outside the green region. For the “conflict” category, the integrated and predicted transfer

conflict on the classification. Similar to Fig. 5.27, Fig. 5.30 is created. Again, these conflicts are

caused by small oscillations near the escape and impact criteria. Finally, for the “outside ANN

training” category, the scaled state is outside the training region and can no longer be predicted.

Table 5.15: Statistics of the classification errors for the multiple loop architecture.

Loop 1 2 3 4

Points at start of loop 10,000 8,388 6,981 5,932
Both green 8,388 6,981 5,932 5,218
Both outside green 1,598 1,327 1,002 680
Conflict 14 28 26 21
Outside ANN training 0 52 21 14
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Figure 5.30: Integrated versus predicted rp,f and TOF response at 89 incorrectly classified samples
for the multiple-loop validation.

The errors for the points in the “Both green” category can be quantified. The 1 σ and 99

percentiles are listed in Table 5.16, and the histograms for loop 2, 3 and 4 are shown in Fig. 5.31.

The errors do not grow linearly. Between loop 1 and loop 2, the errors increase strongly. This

increase levels of for subsequent loops. An exception is the continuous increase in errors in TOFapo

and TOF . These parameters are used for the iterative refinement of νM,apoareion. As this procedure
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Table 5.16: Statistics of the prediction errors of the multiple loop architecture.

Parameter Loop 1 Loop 2 Loop 3 Loop 4 Unit

σ 99 perc. σ 99 perc. σ 99 perc. σ 99 perc.
rp 90 297 247 797 311 1222 334 1274 km
ra 118 384 253 874 325 1270 360 1399 km
TOFapo 0.15 0.48 1.34 4.88 2.97 11.88 4.60 19.41 hrs
TOF 0.34 1.11 2.71 10.02 4.08 17.13 5.74 22.74 hrs
iHill 0.46 1.86 0.59 2.39 0.66 2.62 0.66 2.63 deg
ωHill 0.16 0.56 0.30 0.98 0.40 1.28 0.41 1.46 deg
ΩHill 0.20 0.66 0.30 1.04 0.40 1.35 0.45 1.62 deg

uses the identified timing from the previous loop, small errors in the previous loops amplify the

errors. While the time is roughly off by a day after four loops, this only results in a small angular

difference in predicted νM,apoareion. Therefore, the scaling of the Hill system, and as such the other

predicted orbital elements, are only marginally affected. Another concern arises from Table 5.16.

For multiple loops, the 99 percentile rp error grows above 1000 km, which is a significant error for

low periareions. Therefore, in Fig. 5.32, the error distribution is given for different regions of rp,5,

the periareion after loop 4. At small rp,5 levels, the rp,5 errors are smaller, alleviating the concern.

5.3.5 Conclusion and discussion

This section demonstrates how a combination of artificial neural networks can be used to

capture the response of a periareion Poincaré map for a large phase space in the eccentric Hill

system. Several common issues to construct a database with Poincaré maps are alleviated through

the use of ANN. First, the required number of integrations can be significantly lowered because

of the excellent capabilities of ANN to interpolate in between provided data. Furthermore, the

number of integrations can be decreased using a simplified dynamical model allowing a dimension-

ality reduction. Despite this simplified dynamical model, little to no accuracy is lost by using a

combination of two ANN families: one to predict the response in the simplified model, and one

to predict the difference in response between the simplified and more accurate dynamical model.

Second, large databases with a lot of numerically integrated data require a large storage space.
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Figure 5.31: Distribution of the errors of the predicted orbital elements at periareions three, four,
and five, using the entire architecture, compared to the orbital elements integrated in the eccentric
Hill system for the 10,000 sample points in the Monte Carlo simulation of the entire architecture.
The x-axis shows the number of samples for each y-axis bin.
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Figure 5.32: Distribution statistics of the errors of the predicted orbital elements at the fifth peri-
areion using the ANN architecture for multiple loops, compared to the orbital elements integrated
in the eccentric Hill system for different orbital regimes of rp,5. The x-axis shows the number of
samples for each y-axis bin.

Once the ANN are trained, their fast evaluation allows for the data to be recomputed on the fly.

Thus, the database does not require to be stored. For this research, all the ANN combined require

a megabyte of storage space. The ANN thus essentially function as compression agents on the data.

Third, anomalies can occur for Poincaré maps. Those have been monitored through the usage of

classification neural networks. For this, buffer regions were found to be of utmost importance.

These regions resolve the incorrect classification of false positives and false negatives. Furthermore,

they improve the accuracy of the scaled Hill ANN near the boundaries of the anomaly.
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5.4 ANN architecture for backward Poincaré maps

In Subsubsection 5.2.2.3, Algorithm 2 was developed to find the initial conditions to target

a specific final state. This has been done by creating grids in initial conditions, predicting the

next periareions, and filtering out the transfers arriving near Phobos or Deimos. Thus, a large

number of the predictions are done in vain. For this application, it is more efficient to create a

grid in the arrival conditions at Phobos or Deimos, and predicting the initial conditions. That

way, it is guaranteed that every prediction results in a transfer that arrives at the desired arrival

orbit. This requires the prediction of backwards periareion Poincaré maps; i.e., predict a periareion

backwards in time to its previous periareion. In analog with the previous section, this section

designs a backwards ANN architecture that allows the evaluation of transfers departing at different

periapse radii and that allows to predict transfers for multiple revolutions around Mars. In this

section, the ANN will be trained on backwards integrated periareion Poincaré maps. The arrival

periareion is indexed with subscript f , subsequent previous periareion with f − 1, f − 2, . . . This

section’s structure is identical to the structure of the previous section.

5.4.1 Considered phase space

The region of the phase space that is considered for the backwards ANN architecture is

identical to the region of the forward ANN architecture. The bounds on the phase space can be

seen in Table 5.17.

Table 5.17: Bounds on the considered backwards phase space.

Parameter Lower bound Upper bound Unit

rp,f 3,390 45,000 km
ra,f 440,000 720,000 km
iHill,f 0 180 deg
ωHill,f 0 180 deg
ΩHill,f 0 180 deg
tf 0 1 Martian year



144

5.4.2 Methodology

In this section, the different neural networks are developed. First, an overview is given on

the envisioned architecture, with three groups of artificial neural networks. Then, each of the three

identified groups is treated in more detail, where the training data creation, training and validation

of the neural networks are explained.

5.4.2.1 General architecture

The same design philosophy as for the forward architecture is used where three different

groups of neural networks co-operate. The first group uses regression neural networks that predict

the response in the scaled Hill system. The second group uses regression neural networks to predict

the error between the scaled Hill and the eccentric Hill system. The third group uses classification

neural networks to predict when transfers escape or impact. The terms escape and impact are still

used throughout this section to emphasize the analog with the forward architecture. In reality,

they represent different anomalies. Therefore, a note must be made on the terminology escape and

impact. The term escape made intuitive sense for forward integration. Transfers that at a previous

periareion have a very large rp, ra, or time of flight are not technically escaping trajectories. In fact,

they are transfers that are gravitationally captured around Mars due to an eccentricity reduction

caused by the solar perturbations. While these transfers can be used for specific applications, they

are filtered out in this research. Similarly, trajectories that are below the Martian surface at the

previous periareion are in reality not impacting transfers, but transfers originating from below the

surface of Mars.

5.4.2.2 Scaled Hill neural networks

The scaled Hill system has continuous output, and is captured in a regression feedforward

neural network. The same five steps are followed to design, train and validate these ANN.

Data creation The used training range and resolution is tabulated in Table 5.18.
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Table 5.18: Sampling density of the orbital elements at the final periareion used as training data
for the backwards scaled Hill and classification neural networks.

Region 1 Region 2 Sampled points

Lower Spacing Upper Lower Spacing Upper
bound bound bound bound

rp,f (km) 3,100 3,000 12,100 17,100 5,000 52,100 12
ra,f (km) 400,000 20,000 800,000 - - - 21
iHill,f (deg) 5 10 175 - - - 18
ωHill,f (deg) 0 5 180 - - - 37
ΩHill,f (deg) 0 5 180 - - - 37

Total: 6,209,784

Data processing Prior to training, the raw integration data is processed. First, the

trajectories that escape are filtered out and indexed for the escape classification neural network.

Second, some data is pruned out. In analogy with the forward networks’ limits on rp,2, TOF , and

ra,2, upper and lower limits on rp,f−1 are imposed, with buffer regions against wrongful classification.

A lower limit of 1000 km is imposed on rp,f−1. In Fig. 5.33, those transfers are depicted in red.

Furthermore, an upper limit of 70,000 km is imposed. These transfers are again added to the index

list of escaping trajectories. These transfers are depicted in green and are also the longest. Further,

a limit of -150 days TOF has been imposed. These indexes are also added to the list of escape

trajectories. These transfers are depicted in black. Furthermore, an ra,f−1 upper limit of 900,000

km has been imposed. In total, 5,556,519 transfers survived the data pruning. Their response is

indicated in blue.

Overview of input and output parameters Similar to the forward scenario, there are

five input and nine output parameters. The input parameters are rp,f , ra,f , iHill,f , ωHill,f , and

ΩHill,f . The output parameters are rp,f−1, ra,f−1, iHill,f−1, cosωHill,f−1, sinωHill,f−1, cos ΩHill,f−1,

sin ΩHill,f−1, time of flight TOF , and the time of flight between periareion f and the apoareion

between periareion f and f − 1, TOFapo.

Training The same ANN architecture and training framework is used as for the forward

neural networks. Unlike the forward neural networks, 6 different ANN per output parameter are

trained. Again, three regions based on the inclination. Furthermore, each of those three regions is
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Figure 5.33: Pruning of the training data for the backwards apoareion scaled Hill neural networks.
Left: original data. Right: remaining data after data pruning.

split up in two regions based on apoareion radius. The training of 6 regions was not required to

obtain a good overall accuracy, but was done as a result of a smaller phase space that was originally

considered. The original training range was ra,f ∈ [520e3, 800e3]. Later, it was decided to add the

ra,f ∈ [400e3, 520e3] region. The ANN for the ra,f ∈ [520e3, 800e3] was already trained at that time,

with good levels of accuracy. Therefore, it was decided to train the ra,f ∈ [400e3, 520e3] region in a

separate network, avoiding the computational resources required to re-train the ra,f ∈ [520e3, 800e3]

region, as part of a single ANN for the entire ra,f ∈ [400e3, 800e3] region.

Validation As an independent test of the networks, a Monte Carlo analysis is performed.

100,000 points are uniformly sampled from the region within the bounds of Table 5.18. Using the

scaled Poincaré maps, those initial conditions are mapped to the previous periareion, and compared

to the ANN predicted response. The resulting error distributions are shown in Fig. 5.34 and the 1σ
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Figure 5.34: Distribution of the errors between the predicted and integrated backwards apoareion
scaled circular Hill Poincaré map for the 100,000 sampled points in the Monte Carlo simulation.
The x-axis shows the number of samples for each y-axis bin.

value, along with the 99 percentiles are displayed. The best fitting Gaussian distribution through

this histogram is plotted in red. One can see that while the errors are not Gaussian, the Gaussian

can be used as a conservative bound on the error distribution. A spike is observed near zero.

Unlike the forward neural networks, 6 different regions are used for which the ANN are trained.

The responses for the ANN for the ra,f ∈ [400e3, 520e3] have slower, and smaller changes. Hence,

the errors are also smaller. This causes the peak observed near the zero error region.

The correlation between the different errors is tabulated in Table 5.19. The most correlation

exists between rp,f−1, ra,f−1, TOF and TOFapo. Analog to Fig. 5.19, Fig. 5.35 show the locations

in rp,f−1 − TOF phase space where errors occur that are larger than the 99 percentile for the

backwards apoareion scaled Hill ANN. Again, it can be concluded that the largest errors occur

in the grey buffer region due to a lack of information in the direction of the anomaly boundaries.

Figure 5.36 shows the distribution of errors, excluding the errors in the grey buffer region. This

improves the accuracy of all parameters by 10-28%.

5.4.2.3 Correction neural networks

The correction term between the scaled Hill and the eccentric Hill system has continuous

output, and is captured in a regression feedforward neural network.
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Table 5.19: Correlation between the backwards scaled Hill ANN prediction errors for the 100,000
points sampled in the Monte Carlo simulation.

∆rp,f−1 ∆ra,f−1 ∆TOFapo ∆TOF ∆iHill,f−1 ∆ωHill,f−1 ∆ΩHill,f−1

∆rp,f−1 1.00 −0.21 0.03 −0.08 0.02 −0.01 0.01
∆ra,f−1 −0.21 1.00 −0.04 0.09 −0.02 0.01 0.02
∆TOFapo 0.03 −0.04 1.00 0.04 0.04 0.00 0.01
∆TOF −0.08 0.09 0.04 1.00 0.01 0.02 0.00
∆iHill,f−1 0.02 −0.02 0.04 0.01 1.00 0.03 0.00
∆ωHill,f−1 −0.01 0.01 0.00 0.02 0.03 1.00 −0.10
∆ΩHill,f−1 0.01 0.02 0.01 0.00 0.00 −0.10 1.00

Figure 5.35: Locations in rp,1−TOF phase space where errors larger than the 99 percentile for the
backwards apoareion scaled Hill ANN occur.

Data creation Similar to the forward architecture, a Monte Carlo analysis is performed,

uniformly sampled from the bounds in Table 5.17. The difference in response between the eccentric

and scaled Hill system is computed.

Data processing Prior to training, the raw integrated data is processed and some data

is pruned out. Similar to the forward architecture, limits are imposed on rp,f−1, ra,f−1 and TOF .
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Figure 5.36: Distribution of the errors between the predicted and integrated backwards apoareion
scaled circular Hill Poincaré map for the 100,000 sampled points in the Monte Carlo simulation,
excluding the grey buffer regions. The x-axis shows the number of samples for each y-axis bin.

Again, those limits are set at 50,000 km, 850,000 km and 120 days. No new classification networks

are required to detect the rp and TOF events. The rp,f−1, ra,f−1 and TOF limits are already

captured at 70,000 km, 900,000 km and 150 day respectively. An example of this pruning procedure

for the ra,f−1 output parameter is shown in Fig. 5.37. In the bottom right of Fig. 5.37, a trend

between the difference in ra,f , iHill,f and νM,apoareion is observed. The trends for the other parameters

are shown in Fig. 5.38. The ANN are expected to be able to identify these trends.

Overview of input and output parameters For the correction neural networks, the

inputs are the unscaled rp,f , ra,f , iHill,f , ωHill,f , ΩHill,f and νM,apoareion. The outputs are the unscaled

errors in rp,f−1, ra,f−1, iHill,f−1, ωHill,f−1, ΩHill,f−1, TOF and TOFapo.

Training The same training framework is used as for the forward neural networks.

Validation The training is performed with 1e6 points. As an independent accuracy test,

another 100,000 sample points are created from a uniform distribution in input parameters. Figure

5.39 shows the distribution of the errors between the predicted and integrated difference between

the backward eccentric and scaled Poincaré map. Again, the correlations between the errors are

computed and shown in Table 5.20. Similar conclusions can be drawn as for the backwards, scaled

Hill error covariance terms. Again, it is verified if certain areas in the phase space exist for which
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Figure 5.37: Example of the pruning procedure on the training data for the backward correction
ANN. Example for the ra,f−1 parameter.

Figure 5.38: Visualization of the systematic differences between the integrated response in the
backwards apoareion scaled circular, and eccentric Hill systems.



151

the correction ANN produce large errors. No systematic trends could be identified. Figure 5.24

shows that the final orbital elements that result in errors larger than the 99 percentile are more or

less uniformly distributed. Thus, no specific zones within the phase space exist with systematically

larger errors.
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Figure 5.39: Distribution of the errors between the predicted and integrated difference between
the backwards eccentric and apoareion scaled circular Hill Poincaré maps for the 100,000 sampled
points of the Monte Carlo simulation. The x-axis shows the number of samples for each y-axis bin.

Table 5.20: Correlation between the backwards correction ANN prediction errors for the 100,000
samples in the Monte Carlo analysis.

∆rp,f−1 ∆ra,f−1 ∆TOFapo ∆TOF ∆iHill,f−1 ∆ωHill,f−1 ∆ΩHill,1

∆rp,f−1 1.00 −0.30 −0.57 −0.61 0.00 −0.00 0.00
∆ra,f−1 −0.30 1.00 0.05 0.07 −0.00 0.00 −0.00
∆TOFapo −0.57 0.05 1.00 0.93 −0.00 −0.00 −0.00
∆TOF −0.62 0.07 0.93 1.00 −0.00 −0.00 −0.00
∆iHill,f−1 0.00 −0.00 −0.00 −0.00 1.00 −0.05 0.03
∆ωHill,f−1 0.00 0.00 −0.00 −0.00 −0.05 1.00 −0.16
∆ΩHill,f−1 −0.00 −0.00 −0.00 −0.00 0.03 −0.16 1.00

5.4.2.4 Escape and impact classification neural networks

The escape and impact classification are discrete events; therefore, a classification neural

network is used to predict which initial conditions lead to escape or impact.
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Figure 5.40: Distributions of all input states for which any of the predicted backwards correction
terms has an error larger than its 99 percentile value shown in Fig. 5.39. The y-axis shows the
number of samples for each x-axis bin.

Data creation The same backwards integrated trajectories computed for the scaled Hill

neural networks have been used, with the same bounds and resolution listed in Table 5.18.

From the integrations of the scaled Hill neural networks, the data for the classification neural

networks can be constructed. During those integrations, some trajectories have been immediately

indicated as escape trajectories, if no next periareion could be found. Furthermore, transfers with a

TOF < -150 days, rp,f−1 >70,000 km, or ra,f−1 > 900,000 km, are marked as escaping trajectories.

Similarly, trajectories with rp,f−1 < 1,000 km are marked as impacting transfers. Note that these

numbers are the boundaries of the buffer regions and not the actual boundaries of the anomalies.

Overview of input and output parameters There are five scaled input parameters:

rp,f , ra,f , iHill,f, ωHill,f, ΩHill,f, scaled according to the time of apoareion. There are again two

outputs, indicating the chance an anomaly occurs or does not occur.

Training The same training framework is used as for the forward classification networks.

Validation As an independent test of the networks, a Monte Carlo analysis is performed.

The 100,000 element data set used for the validation of the backwards scaled Hill networks data is

re-used. Figure 5.41 shows the confusion matrix for the escape and impact classification network.

Again, it can be shown that the incorrect classification of the false positives and false negatives can

be resolved through the buffer regions. This is verified in the right part of Fig. 5.42.
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Figure 5.41: Confusion matrices for the backwards escape (left) and impact (right) classification
ANN.

Figure 5.42: Comparison of the integrated versus predicted results for erroneously classified back-
ward transfers: false positives (blue), false negatives (black), for escape (left) and impact (right)
classification.

5.4.3 Architecture accuracy

In this subsection, the overall accuracy of the backwards architecture is evaluated, using the

same method as used in Subsection 5.3.3, with a 100,000 point Monte Carlo analysis.

For 16,252 points, the integrated and predicted transfers are both outside the green region.

For 123 points, or 0.123% of the points, there is a conflict between the integrated and predicted

green region classifications. For those points, the predicted and integrated rp,f−1 and TOF are

plotted in Fig. 5.43. Again, the difference in classifications are due to small oscillations near the

escape and impact criteria due to the errors in the scaled Hill and correction ANN.

83,613 out of the 100,000 points are integrated and predicted to be in the green region and

the error can be quantified. The error statistics for those points are displayed in Fig. 5.44. As
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Figure 5.43: Integrated versus predicted rp,f−1 and TOF response at 123 incorrectly classified
samples for the single-loop validation.

a summary, the 1σ and 99 percentiles are shown in Table 5.21, along with the accuracies of the

different ANN families. Similar conclusions can be drawn as in Subsection 5.3.3.
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Figure 5.44: Distribution of the errors of the predicted orbital elements at periareion f − 1 using
the entire architecture, compared to the orbital elements integrated in the eccentric Hill system
for the 100,000 sample points in the Monte Carlo simulation of the entire architecture. The x-axis
shows the number of samples for each y-axis bin.

Table 5.22 displays the non-dimensionalized covariance errors. Again, there is some correla-

tion, mostly between rp,f−1, ra,f−1, TOF and TOFapo. To understand if the entire architecture

produces systematic errors, Fig. 5.45 shows the location in the phase space of the previous peri-

areion for errors that are larger than the 99 percentile for the entire backwards architecture. The
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Table 5.21: Distribution statistics for the errors of the predicted response, compared to the inte-
grated response, for different elements of the backwards ANN architecture.

Parameter Scaled Hill Correction Entire RSS scaled Hill Unit
architecture and correction

σ 99 perc. σ 99 perc. σ 99 perc. σ 99 perc.
rp,f−1 58 207 74 201 63 221 94 288 km
ra,f−1 72 261 76 271 82 291 104 376 km
TOFapo 0.1 0.35 0.36 0.49 0.14 0.51 0.37 0.60 hrs
TOF 0.15 0.53 0.75 1.04 0.29 1.03 0.76 1.17 hrs
iHill,f−1 0.18 0.68 0.20 0.72 0.18 0.69 0.27 0.99 deg
ωHill,f−1 0.11 0.39 0.14 0.48 0.13 0.45 0.18 0.62 deg
ΩHill,f−1 0.10 0.33 0.18 0.60 0.15 0.52 0.21 0.68 deg

largest errors are found near the impact and escape boundaries. The errors are combinations of

errors in the apoareion scaled Hill ANN and errors in the correction term ANN. The former has a

clear structure (Fig. 5.35), while the latter appears random(Fig. 5.40). The structure is therefore

dominated by the error regions of the apoareion scaled Hill ANN.

Table 5.22: Correlation between the prediction errors of the entire backwards architecture.

∆rp,f−1 ∆ra,f−1 ∆TOFapo ∆TOF ∆iHill,f−1 ∆ωHill,f−1 ∆ΩHill,f−1

∆rp,f−1 1.00 −0.20 0.06 0.08 0.01 0.02 0.01
∆ra,f−1 −0.20 1.00 −0.01 −0.04 −0.03 0.01 −0.03
∆TOFapo 0.06 −0.01 1.00 0.42 −0.03 −0.05 0.06
∆TOF 0.08 −0.04 0.42 1.00 0.01 −0.11 0.09
∆iHill,f−1 0.01 −0.03 −0.03 0.01 1.00 0.03 0.04
∆ωHill,f−1 0.02 0.01 −0.05 −0.11 0.03 1.00 −0.12
∆ΩHill,f−1 0.01 −0.03 0.06 0.09 0.04 −0.12 1.00

5.4.4 Architecture accuracy multiple loops

Similar to Subsection 5.3.4, the framework can be used to chain multiple orbits. The accuracy

is determined for a 10,000 point Monte Carlo analysis. Again, the multiple loops lead to a more

complex classification problem. Table 5.23 gives an overview on the classification. For the “conflict”

category, the integrated and predicted transfer conflict on the classification. Similar to Fig. 5.43,

Fig. 5.46 is created. Again, these conflicts are caused by small oscillations near the escape and
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Figure 5.45: Locations in rp,f−1 − TOF phase space where errors larger than the 99 percentile for
the entire architecture occur.

impact criteria. The errors for the points in the “Both green” category can be quantified. The 1σ

and 99 percentiles are listed in Table 5.24, and the histograms for loop 2, 3, and 4 are shown in

Fig. 5.47. Similar trends as for the forward neural networks can be observed. One can see that

the errors do not linearly grow. Furthermore, a strong increase in errors in TOFapo and TOF can

be observed. These parameters are used for the iterative search for νM,apoareion. As this procedure

uses the identified timing from the previous loop, small errors in the previous loops amplify the

errors.

Another concern arises from Table 5.24. For multiple loops, the 99 percentile rp error grows to

700 km, which is a significant error for low periapses. Therefore, in Fig. 5.48, the error distribution

is given for different regions of rp,f−4 after four backwards loops. One can see that at small rp,f−4

levels, the rp,f−4 errors are smaller, alleviating the concern.
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Table 5.23: Statistics of the classification errors for the backwards, multiple loop architecture.

Loop 1 2 3 4

Points at start of loop 10,000 8,202 6,849 5853
Both green 8,202 6,849 5,853 5,155
Both outside green 1,786 1,308 964 682
Conflict 12 22 17 10
Outside ANN training 0 23 15 6

0 10 20 30 40 50 60

r
p

 [Mm]

-150

-100

-50

0

T
O

F
 [
d
a
y
s
]

Predicted

Integrated

Figure 5.46: Integrated versus predicted rp and TOF response at 89 incorrectly classified samples
for the backwards multiple-loop validation.

Table 5.24: Statistics of the prediction errors of the backwards, multiple loop architecture.

Parameter Loop 1 Loop 2 Loop 3 Loop 4

σ 99 perc. σ 99 perc. σ 99 perc. σ 99 perc.
rp 60 210 135 440 161 585 186 710 km
ra 78 293 141 506 171 594 198 730 km
TOFapo 0.15 0.52 0.55 2.35 1.24 4.84 1.84 7.36 hrs
TOF 0.30 0.94 1.09 4.41 1.67 7.05 2.28 9.51 hrs
iHill 0.18 0.67 0.21 0.84 0.27 0.98 0.27 1.07 deg
ωHill 0.14 0.48 0.20 0.66 0.22 0.77 0.23 0.84 deg
ΩHill 0.13 0.50 0.19 0.73 0.24 0.90 0.26 0.96 deg

5.4.5 Conclusion

The artificial neural network architecture developed for forward Poincaré maps is successfully

applied to backwards Poincaré maps. This allows the prediction of previous periareions, for trans-

fers arriving between the Martian surface and 45,000 km, and for transfers consisting of multiple

revolutions around Mars.
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Figure 5.47: Distribution of the errors of the predicted orbital elements at periareions f − 2, f − 3,
and f − 4, using the entire backwards architecture, compared to the orbital elements integrated in
the eccentric Hill system for the 10,000 sample points in the Monte Carlo simulation. The x-axis
shows the number of samples for each y-axis bin.
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Figure 5.48: Distribution statistics of the errors of the predicted orbital elements at the periareion
after four backwards loops, compared to the integrated orbital elements in the eccentric Hill system
for different orbital regimes of rp,f−4. The x-axis shows the number of samples for each y-axis bin.

5.5 Designing heteroclinic connections using ANN

In this section, the motivation to look at this problem is explained. Then, the training data

is created and processed. Then, analog to Section 5.3, a combination of classification and regression

feedforward neural networks are trained. Finally, some conclusions are drawn.

5.5.1 Motivation

Heteroclinic connections can be used to freely transfer between different libration point orbits

(LPO). They are found by computing the unstable manifolds of the departure LPO, and the stable

manifolds of the arrival LPO, and finding the intersections of these manifolds on a Poincaré map

[3]. Due to the non-linearity of the manifolds, usually a dense sampling of the phase space is

required. Different authors have tried different approaches to reduce this computational burden.

The approximation of invariant manifolds using cubic convolution interpolation is introduced by

Topputo and Zang [107], and refined by Beeson et al. [108]. Shah and Beeson [27] explored

the use of recurrent neural networks and random forests to predict the time history of the state on

manifolds. They found that the neural networks were ill suited for this task. However, for identifying

heteroclinic connections, one does not need the entire state time history, but only the states at the

Poincaré surface of section. Therefore, this section demonstrates how ANN can be employed to

reduce the required number of integrated manifolds, while allowing accurate predictions of the

Poincaré map for a wide variety of Jacobi values for all possible departure and arrival points on

the considered LPO. ANN are designed to predict the Poincaré mapping for the unstable manifold
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of the Earth-Moon L1 point and for the stable manifold of the Earth-Moon L2 point or Jacobi

constants between 3.07 and 3.17, and for different departure locations along the orbits.

5.5.2 Data creation and processing

The manifolds of the L1 and L2 Lyapunov orbits are computed in the Earth-Moon CRTBP

system, explained in Subsection 2.2.1. First, using the method described in Subsection 2.4.2, the L1

and L2 planar Lyapunov orbits are computed. After finding an initial periodic orbit, a continuation

method, where the initial x-coordinate is slightly perturbed, is employed to find the orbits with

J ∈ [3.07, 3.17]. These orbits are visualized in Fig. 5.49.

Figure 5.49: Continuation of planar Lyapunov orbits around L1 and L2 in the Earth-Moon CRTBP,
for different values of the Jacobi constant J .

Any point on a heteroclinic connection must have identical J . Thus, a heteroclinic connection

between two orbits requires equal Jacobi constant for both orbits. Therefore, by specifying J , the

dimensionality of the problem can be reduced. Similarly, the dimensionality can be reduced by

defining a Poincaré map. If one knows four out of the six states, the state is fully defined through

a combination of J and the Poincaré surface condition. Commonly, a Poincaré surface at y=0 is

used to identify heteroclinic connections between Lyapunov orbits. Such a planar Poincaré surface

can encounter transversality issues. Those are resolved by using a periapse surface, defined in Eq.
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2.48. L1 and L2 Lyapunov orbits, and their manifolds, are planar in the z = 0 plane. Therefore,

the z and ż states can be ignored. In combination with a fixed J and the periapse surface section of

the Poincaré map, the Poincaré surface can be represented solely through the x and y coordinate.

The stable and unstable manifolds are computed using the method described in Subsection

2.4.2. Note that for this research, an ε for the positional deviations of 10 m has been used, while no

velocity deviations are applied. The manifolds are computed for every LPO with J between 3.07

and 3.17 with resolution 0.001. The manifolds are computed at different locations along the LPO.

To this end, the τ parameter is introduced, where analogous to an angle, 360 equidistant points

are selected along the LPO. Not all this data is used for training. A J- and τ -resolution of 0.005

and 10◦ are used for the training, i.e., a 50th of the created data. The rest of the computed data

allows for the validation of the networks. Note, this large set of validation data is not absolutely

necessary. However, it facilitates the visualization of the structure in the errors of the ANN.

An example of the unstable manifold computation of L1 at a J-value of 3.15 is shown in Fig.

5.50. This figure immediately highlights an issue; the manifold stays relatively close to the LPO

for a few revolutions. Hence, a few periapses are detected that could be considered to be still on

the LPO. Therefore, an x constraint is imposed: the first periapse with an x-coordinate 0.01 larger

than the maximum x-coordinate of the LPO is considered to be the first “true” periapse. Then,

another Poincaré mapping is performed up to the second periapse. This boundary is arbitrary and

orbit dependent, and therefore, it introduces a new problem. For τ = 200◦ and τ = 220◦, the

first and second identified periapses do not belong to the same group. This artificial bifurcation

can be overcome by a re-indexing of the periapses, i.e., for τ = 200◦, the last periapse before the

0.01 x-condition is satisfied is stored as the first periapse, and the first periapse passed the 0.01

x-condition is stored as the second periapse.

Another issue is shown in Fig. 5.51. At τ = 200◦, one can see the nominal behavior: the first

periapse is in the region between the periapse boundary and the Moon. However, at τ = 190◦, no

periapse exists in this region, and the first identified periapse truly belongs to the second group of

periapses. A simple re-indexing of the second periapse group solves this issue, along with storing
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Figure 5.50: Identified periapses on the unstable manifold of the planar Lyapunov orbit around L1

with J = 3.15.
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Figure 5.51: Identified periapses on the unstable manifold of the planar Lyapunov orbit around L1

with J = 3.16.

the information that no periapse exists in group 1 for this J−τ combination. Similarly, information

is stored when no periapse exists in group 2, for instance when the manifold escapes. Using these

simple re-indexing techniques, the location on the Poincaré section of the first and second periapse

group for the unstable manifolds of L1 are computed and visualized in Fig. 5.52. The classification

information on periapse existence is displayed in Fig. 5.53. Note that these figures only show the

training data. Similarly, the stable manifolds of L2 are computed and visualized in Fig. 5.54 and

its classification in Fig. 5.55.
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Figure 5.52: Periapse group identification on the unstable manifolds of L1: group 1 (left) and 2
(right).
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Figure 5.53: Classification whether or not a periapse on the unstable manifolds of L1 exists for
group 1 (left) and 2 (right): periapse exists (yellow) or periapse does not exist (blue).

5.5.3 Classification ANN

Classification ANN are created to identify whether or not a periapse exists for a J − τ com-

bination. A two-hidden layer architecture with 10 neurons per hidden layer is used and hyperbolic

tangent activation for the hidden layers. A softmax activation function is used on the output layer,

with a cross entropy cost function and using the scaled conjugate gradient back propagation algo-
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Figure 5.54: Periapse group identification on the stable manifolds of L2: group 1 (left) and 2 (right).
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Figure 5.55: Classification whether or not a periapse on the stable manifolds of L2 exists for group
1 (left) and 2 (right): periapse exists (yellow) or periapse does not exist (blue).

rithm. In total, four classification ANN are created: one for each periapse groups for both the L1

unstable and L2 stable manifolds. The combined training time is 3.32 seconds on a single core of

a 2.5GHz Intel Core i7 processor. The accuracy of the classification ANN is depicted in Fig. 5.56.

One can see that overall, the classification ANN accurately capture the phase space. There are

some boundary issues due to the different sampling resolutions of the training and validation data.
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Figure 5.56: Classification results for periapse group 1 (left) and 2 (right) on the unstable manifolds
L1 (top) and stable manifolds L2 (bottom), in function of the original phase space.

5.5.4 Regression ANN

The periapse Poincaré map for the planar manifolds of interest can be completely represented

by the x and y coordinates. The ẋ and ẏ coordinates can be found from the Jacobi constant

and the periapse condition. In total, eight regression ANN are created to predict the x and y

coordinates for each periapse group for both the L1 unstable and L2 stable manifolds. A two-hidden

layer architecture with 15 neurons per hidden layer is used. The hidden layers have hyperbolic

tangent activation functions, while the input and output layers have linear activation functions. The

mean squared error is used as the cost function with the Levenberg-Marquardt back propagation

algorithm. The combined training time for the eight networks is 12 seconds. The accuracy of

the regression ANN of the first and second periapse group are shown in Fig. 5.57 and Fig. 5.58.

The resulting error distributions show the 1σ value, along with the 99 percentiles. The best fitting

Gaussian distribution through the histograms are plotted in red. While the errors are not Gaussian,
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the Gaussian places a conservative bound on the errors. Note that for the first periapse group, the

neck regions have orders of magnitude higher errors. Those are not shown here for contrast. For

periapse group 1, the highest 99 percentile is 0.000675, or 260 km. The results for periapse group 2

are considerably worse. The highest 99 percentile is 0.004666, which corresponds to 1738 km. The

networks for group 2 are less accurate because the response of the Poincaré map rapidly varies in

several regions, such as the “sickle” features right and left of the Moon for L1 and L2 respectively.

Another example are the “whip” features left and right of the Moon for L1 and L2 respectively,

that only exist for low J-values.

Similar to the Hill system regression networks, the large errors occur near the classification

boundaries. Previously, this issue was resolved by adding a buffer region between the used boundary

and the real boundary. This was possible since the events were defined with respect to a continuous

parameter. Unfortunately, for this specific problem, no such continuous parameter exists; a transfer

either exists in a group or it does not.

5.5.5 Conclusion

A combination of classification and regression ANN can predict the existence, and xy-location

of the periapses for a wide variety of initial J and τ -values for the unstable manifold of L1 and

the stable manifold of L2. The grouping of periapses with similar characteristics is crucial for the

generalization accuracy. The classification boundaries are discrete events and the xy-location of

the periapses near this boundary vary rapidly. Therefore, the regression neural networks struggle

to accurately capture the response near these buffer regions. Furthermore, the discrete nature of

the classification prevents the use of a buffer region to improve the accuracy near the classification

boundaries.
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Figure 5.57: Accuracy of the regression ANN for periapse group 1 on the unstable manifolds of
L1 (top) and stable manifolds of L2 (bottom). The x-axis of the histograms shows the number of
samples for each y-axis bin.
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Figure 5.58: Accuracy of the regression ANN for periapse group 2 on the unstable manifolds of
L1 (top) and stable manifolds of L2 (bottom). The x-axis of the histograms shows the number of
samples for each y-axis bin.



Chapter 6

Applications

In this chapter, the designed ANN are used on a variety of applications. First, the initial

conditions are determined for transfers to Phobos or Deimos, or transfers that target both Martian

moons at subsequent periareions. Second, it is shown how the ANN allow to perform a Monte Carlo

analysis on the effect of injection burn errors. Third, it is shown how the ANN can capture the

effect of a missed injection burn at the final periareion. Fourth, a trade space study is performed

to determine the possible connections between initial and final (rp− iMME) combinations for a wide

variety of arrival conditions. Fifth, it is demonstrated how the ANN can be used to determine the

impact and escape stabilities of the phase space for multiple revolutions. Finally, it is shown how

the CRTBP ANN enables identifying heteroclinic connections between planar Lyapunov orbits.

6.1 Initial conditions targeting Phobos and/or Deimos

In this section, the initial conditions are determined for transfers that target the Martian

moons Phobos or Deimos. In this section, “targeting” means that the transfers arrive at the

final periareion with Phobos’ or Deimos’ rp,f and iMME,f . Furthermore, the initial conditions for

transfers that target both Martian moons at different periareions are identified. In this section,

both ballistic transfers are considered, as well as transfers that allow one in-plane maneuver at one

of the intermediate periareions. The initial conditions indicate the full state and time after the first

maneuver, occurring at periareion of the incoming parabola, and are indicated with index 1. The

arrival conditions occur at the last periareion of the transfer, and are indicated with index f .
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6.1.1 Ballistic transfers

In this section, the initial conditions are determined for ballistic transfers. The term ballistic

is used for transfers with no maneuvers at intermediate periareions, but with two eccentricity

reduction burns: one at periareion 1, and one at periareion f .

6.1.1.1 Methodology

Target one moon Specific transfers have unique arrival states at Phobos or Deimos. For

this application, three parameters are free: ra,f , ωHill,f , and tf . The other parameters are constant

variables, or can be computed from other parameters. The orbits of Phobos and Deimos are assumed

circular, with radius equal to their semi-major axis, resulting in a known rp,f . Furthermore, the

orbits are assumed to be equatorial. Hence, iHill,f must be equal to Mars’ obliquity of the ecliptic.

Furthermore, ΩHill,f can be computed from tf and the necessary condition ΩMMO,f = 180◦ (Eq.

2.38). Using the backwards ANN architecture developed in Section 5.4, the Hill orbital elements at

periareion f are mapped to the Hill orbital elements at the previous periareion, f−1. Those orbital

elements are the predicted initial conditions that target Phobos or Deimos in one revolution. To

determine initial conditions for more than one revolution, the process can be repeated by mapping

the periareion state f − 1 back to periareions f − 2, f − 3, . . ., 1.

The predicted phase space consists of initial time t1, and predicted initial orbital elements rp,1,

ra,1, iMME,1, ωMME,1, and ΩMME,1. This multi-dimensional phase space is impossible to visualize

in its entirety. This research is mainly interested in the timing, rp,1, and iMME,1. Therefore, this

research limits itself to visualize the reachable areas of the phase space, projected on the rp,1−iMME,1

plane. To include the time component, the projection on this plane is computed for discrete values

of arrival days with a 10 day spacing. Due to non-linearities in the dynamical system, a uniform

grid in arrival conditions does not translate into a uniform grid in departure conditions on these

planes. To reduce the required number of neural network evaluations, a refinement method is

developed. For a fixed tf , for a sparse initial resolution in ωHill,f , and ra,f ∈ [440, 720] Mm, the
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initial conditions are predicted and projected on the plane of interest. This plane is divided into

segments, and the number of points that are projected on each segment is computed. The segments

that are under-sampled are detected, and are indicated in red in the top part of Fig. 6.1. Near

the arrival conditions within a red rectangle, a grid in ra,f , and ωHill,f with halve the step size is

constructed, as visualized in Fig. 6.2. The point of interest is shown as a black dot. Its closest

neighbors in the grid are shown as blue dots. The eight new arrival conditions around the point of

Figure 6.1: Visualization of the refinement procedure for under-sampled regions on the plane of
interest: rp,1 − iMME,1. Top: detection of under-sampled regions. Bottom: new points computed
in the under-sampled regions.
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Figure 6.2: Visualization of the grid refinement, for a two-dimensional input grid (left) and a three-
dimensional input grid (right). Black: input state for point of interest. Blue: nearest input states
in previous resolution. Red: new input states.
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interest are indicated in red. Those new arrival conditions are predicted backwards and projected

on the plane of interest. After reducing the dimensions of the rectangular segments on the plane

of interest by halve, the process is repeated. In the bottom part of Fig. 6.1, the earlier computed

transfers are shown in blue, the newly computed transfers in red. The sparse regions on the plane

of interest are systematically filled up. The pseudo-code can be found in Algorithm 3.

Target both moons on one transfer A similar method is developed to find transfers that

chain the Martian moons; i.e., transfers that flyby one moon and arrive at the other moon. The

intermediate flyby conditions significantly reduce the initial phase space. This allows the sampling

of the entire Martian year within one grid, rendering the discrete arrival time computations obsolete.

A grid is created in ra,f , ωHill,f , and tf . Then, the ANN architecture is used to predict how the

orbital elements loop back N2 revolutions from the final states at the second moon, to the flyby

states at the first moon. The trajectories that pass close to the first moon are detected. Tolerances

of 500 km in rp,f−N2 and 2◦ in iMME,f−N2 are used. Those trajectories are then mapped back N1

times to determine the initial conditions. The trajectories that pass close to the first moon are

fairly rare. Therefore, a three-dimensional refinement method on the plane of interest is employed.

A state is composed of [ra,f , ωHill,f , tf ]. For every state in a sparse area, 26 new states are created

using a grid with half the step size compared to the grid of the previous iteration, as visualized on

the right-hand side of Fig. 6.2. The algorithm is summarized in Algorithm 4.

6.1.1.2 Results

Target one moon The described methodology is applied on scenarios with up to four

loops, for tf ∈ [0, 680] days past perihelion, with step size ten days for transfers targeting Phobos

or Deimos. For all arrival times and number of loops, the total area on the rp,1 − iMME,1 plane is

computed. This allows the computation of the contribution of additional loops to the total area.

An example of this procedure is shown in Fig. 6.3. Starting at the top left part of the figure, the

common area for loop 1 and 2 is shown in blue. The area unique to loop 1 is shown in red and

the area unique to loop 2 is shown in black. Loop 2, 3 and 4 respectively add 212, 150 and 487
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[Mm×deg]. An unexpected feature can be found in the top left part near rp,1 = 9, 000 km and

iMME,1 = 0◦. This region should be accessible with one loop, since this is the arrival phase space

region at the next periareion. Hence, marginal orbital changes are required. However, for this

method, a minimum value of ra,f of 440,000 km is used. For this value, some orbital changes still

occur, especially near perihelion, leaving this area empty. It can be easily imagined that for lower

values of ra,f , these regions would contain transfers. The size of this empty area depends on the

Mars-Sun distance, and varies for different tf -values.

Figure 6.3: Visualization of the effect of additional loops on the rp,1 − iMME,1 plane for ballis-
tic transfers arriving at Phobos at day 0. Loop 2, 3, and 4, add 212, 150 and 487 [Mm×deg],
respectively. One transfer per loop (green) is selected to be discussed in more detail.

As an example, four points are selected on Fig. 6.3 and are plotted in Fig 6.4. The first point

is realizable in 1 loop, and departs from rp,1 = 4, 000km and iMME,1 = 90◦. An extra loop allows

to depart from the same rp,1, but at a retrograde orbit with iMME,1 = 170◦. The one loop, nor

the two loop configuration has solutions with initial polar i, and rp,1 beyond Phobos. However, a

three-loop transfer exists that departs from rp,1 = 13, 000km and iMME,1 = 92◦. No transfers exist

with up to three loops that have iMME,1 > 50◦, with very high initial rp,1. The addition of a fourth

loop enables such transfers, departing from rp,1 = 40, 000km and iMME,1 = 70◦.
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Figure 6.4: Example ballistic transfers arriving at Phobos (black) at day 0 for scenarios with,
from top to bottom, 1, 2, 3 and 4 revolutions around Mars. 3-D view (left) and projection on the
xy-plane (right), plotted in the MME frame.
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The computation of the additional area on the rp,1− iMME,1 plane is repeated for all sampled

arrival days. Figure 6.5 summarizes the results. Almost identical trends occur for one loop transfers

to Phobos or Deimos, which can be attributed to their identical iHill,f , tf and thus ΩHill,f . Through

the non-linear dynamics, the correlation in the response decreases with each incremental loop. In

general, the area on the rp,1 − iMME,1 plane to target Phobos is larger than to target Deimos.
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Figure 6.5: Effect of additional loops on the departable phase space projected on the rp,1 − iMME,1

plane. Ballistic transfers arriving at Phobos (left) or Deimos (right) at day 0 through 680.

For regions in the rp,1 − iMME,1 plane with overlap between different loops, the minimum

TOF transfer can be determined. The rp,1 region is divided into 100 equally spaced bins, as are the

iMME,1 regions. For each of the 10,000 sections, the transfer with the smallest TOF is shown in Fig.

6.6. Not surprisingly, the smallest loop number results in the smallest TOF. Finally, the frequency

is computed departing from a certain region in the rp,1 − iMME,1 plane, for a maximum of 1, 2,

3, and 4 loops (Fig. 6.7). Note that these results show the percentage for a maximum number of

loops; i.e., the second figure from the left shows the percentage of year for which transfers exist with

one or two loops. Some general conclusions can be drawn. Not a single point can be accessed all

year round, with only one revolution. Again, it is noted that the region around Phobos or Deimos

should be accessible year-round, for transfers with smaller ra,f . The addition of a second and third

revolution renders some departure regions accessible year-round. For Phobos, these regions occur

at small rp,1, all the way down to the surface. For Deimos, they occur at slightly higher altitudes.

Another conclusion is that the largest inclination changes occur for lower initial periareion.
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Figure 6.6: TOF and number of loops for minimum TOF transfers targeting Phobos at day 0.

Figure 6.7: Percentage of the year one can arrive at Phobos (top) or Deimos (bottom) within 1, 2,
3 and 4 revolutions (left to right), for different departure regions in the rp,1 − iMME,1 plane.

The developed methodology can be applied to zoom in on a specific area of the phase space.

In analog with Section 5.2, the results with rp,1 near 185 km altitude (100 km tolerance) are shown

for up to four loop-transfers around Mars in Fig. 6.8 through 6.11. ∆V1 is the maneuver at

periareion one, ∆Vf is the maneuver to circularize the transfers at Phobos. In Subsection 5.2.3, it

was argued that certain empty regions in Fig. 5.12 would be filled up if a larger iHill,1-region was

considered. Fig. 6.8 shows this is indeed the case.



177

Figure 6.8: Departure time and initial orbital elements, TOF and fuel budget for one-loop transfers
targeting Phobos departing at rp,1 = 185± 100 km altitude.
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Figure 6.9: Departure time and initial orbital elements, TOF and fuel budget for two-loop transfers
targeting Phobos departing at rp,1 = 185± 100 km altitude.
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Figure 6.10: Departure time and initial orbital elements, TOF and fuel budget for three-loop
transfers targeting Phobos departing at rp,1 = 185± 100 km altitude.
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Figure 6.11: Departure time and initial orbital elements, TOF and fuel budget for four-loop trans-
fers targeting Phobos departing at rp,1 = 185± 100 km altitude.
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Furthermore, one can trade-off the time of flight with total fuel cost for transfers departing

from a specific region of the phase space. Zooming in on a single point on the rp,1 − iMME,1 phase

space for transfers departing with an initial rp near 185 km altitude (100 km tolerance) from a polar

orbit (0.5◦ tolerance), Fig. 6.12 is created, showing the results for transfers with up to four loops

around Mars. Clear regions exist for different loop numbers and the fuel savings from additional

loops are marginal. Within each loop number, different structures exist on top of each other, based

on the different departure time regions for which solutions exist. For traditional transfers, usually,

longer transfers require less fuel. However, for these solar-perturbed transfers, this is not the case.

Transfers arriving at the same rp,f with a high ra,f have a higher semi-major axis at arrival, and

thus a larger TOF. At the same time, circularizing the high ra,f transfers requires more fuel. Thus,

longer transfers, counter-intuitively, require more fuel.

Figure 6.12: TOF and ∆V trade-off for a single point on the rp,1 − iMME,1 phase space: rp,1 =
185±100 km altitude, iMME,1 = 90±0.5◦. Note that the shown ra,f -values are in the MME system,
thus, they can be larger than the 720,000 km limit for the transfers in the Hill system.
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Target both moons on one transfer The previous results can be trimmed by introducing

the intermediate flyby of the other moon. For all permutations ofN1 andN2, withN = N1+N2 ≤ 4,

transfers are computed that pass within 500 km and 2◦ of Phobos for injection-Phobos-Deimos

transfers, or Deimos for injection-Deimos-Phobos transfers. The results are summarized in Fig.

6.13 where the transfer type numbering is N1 - N2. The regions on the rp,1 − iMME,1 plane are

much smaller and only exist for certain periods throughout the Martian year. Again, for areas on

the rp,1− iMME,1 plane with overlap between the different loop number permutations, the minimum

TOF transfer is determined, shown in Fig. 6.14. Finally, similar to Fig. 6.7, Fig. 6.15 is created.

Note that the latter groups the loop number permutations with the same total loop number N .

Figure 6.13: Initial conditions for injection-Phobos-Deimos transfers (top) and injection-Deimos-
Phobos transfers (bottom).
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Figure 6.14: TOF and transfer structure for minimum TOF transfers: injection-Phobos-Deimos
(top) and injection-Deimos-Phobos (bottom).

Figure 6.15: Percentage of the year one can arrive at Deimos for injection-Phobos-Deimos transfers
(top), or arrive at Phobos for injection-Deimos-Phobos (bottom) transfers, for different departure
regions in the rp,1 − iMME,1 plane. Left to right: transfers with total loop numbers 2, 3 and 4.
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6.1.1.3 Validation and correction

Target one moon The transfers are validated by integrating the predicted arrival states

backwards in the eccentric Hill system. This allows to quantify the errors in the predicted initial

state. As an example, the minimum TOF transfers arriving at Phobos at day 0 are validated in

Fig. 6.16. The achieved accuracies are worse than what can be expected from the validation of the

entire phase space in Table 5.24. That validation was performed with randomly chosen periareion

states, limiting the number of similar transfers. For this application, transfers target the same

rp,f , iHill,f and ΩHill,f . Those transfers exhibit similar features, with highly correlated errors. If

one of the selected transfer regions has a higher than nominal error, the entire error distribution

is larger. Furthermore, the initial ωMME,1 and ΩMME,1 are poorly predicted for transfers departing

at very low and high iMME,1. Near 0◦ and 180◦, the node crossing is poorly defined. Small changes

in predicted orbital elements in the Hill reference frame are translated into significant errors in

Figure 6.16: Validation of minimum TOF transfers that arrive at Phobos at day 0. Deviations
between predicted and true initial orbital elements and timing.
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the MME frame. In the validation of the entire architecture, the response in the Hill system was

computed for iHill,1 ∈ [5◦, 175◦]. Hence, this phenomenon did not occur.

A systematic error occurs in some regions. Figure 6.17 demonstrates how this systematic

error affects the true location on the rp,1 − iMME,1 plane. Overall, the predicted transfers give a

good representation of the plane of interest. However, for some regions, the systematic error causes

gaps in the true locations on the plane. For instance, the entire section near iMME,1 = 70◦ has a

similar rp,1 error. The true location is slightly to the right, causing a gap. Looking at Fig. 6.6, those

transfers are all four loop solutions. The four loop solutions exist on the left of the minimum TOF

interface between loop 3 and 4 (Fig. 6.3 and Fig. 6.6). Hence, the predicted four loop-solutions

slightly to the left of this minimum TOF interface, with similar rp errors, are mapped into the gap.

Figure 6.17: Validation of minimum TOF transfers that arrive at Phobos at day 0. Left: predicted
location on plane of interest. Right: true location on plane of interest.

Target both moons on one transfer Similarly, the injection-Phobos-Deimos transfers

with minimum TOF in the top-part of Fig. 6.14 are validated. The results can be seen in Fig.

6.18. The errors near Phobos are larger than at Deimos. This is expected, since the transfers are

predicted to exactly arrive at Deimos, while they are expected to flyby Phobos within 2◦ and 500

km. A clear structure in inclination error can be observed. Only in the center of the windows do

true ballistic connections between Phobos and Deimos exist. Furthermore, the errors in ωMME,1
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Figure 6.18: Validation of ballistic minimum TOF injection-Phobos-Deimos transfers. Top: errors
in flyby state. Bottom: error between predicted and true initial orbital elements and timing.

Figure 6.19: Validation of ballistic minimum TOF injection-Deimos-Phobos transfers. Top: errors
in flyby state. Bottom: error between predicted and true initial orbital elements and timing.
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and ΩMME,1 are much smaller, due to the lack of solutions near 0◦ and 180◦ iMME,1. The injection-

Deimos-Phobos transfers with minimum TOF in the bottom-part of Fig. 6.14 are validated. The

results can be seen in Fig. 6.19. Again, a clear structure in inclination error can be observed and

the large errors exist in ωMME,1 and ΩMME,1 near iMME,1 = 0◦ .

The identified transfers do not perfectly pass by the first moon, nor do they depart exactly

from the predicted initial conditions. A predictor-corrector scheme is set-up to determine how much

the initial conditions need to vary to nullify the errors and find truly ballistic transfers between

the two moons. The predictor-corrector scheme is allowed to change the arrival conditions at the

second moon: ra,f , ωHill,f , and tf . Those final conditions are integrated backwards in the eccentric

Hill system. The errors at the first moon are computed and are minimized. This has been done for

all six permutations of transfer loops. The difference between the predicted and converged transfers

are shown in Table 6.1 for injection-Phobos-Deimos transfers and in Table 6.2 for injection-Deimos-

Phobos transfers. The converged injection-Phobos-Deimos, and injection-Deimos-Phobos transfers

are visualized in, respectively, Fig. 6.20 and 6.21. The identified transfers provide very good initial

guesses for truly ballistic transfers. Within a group in rp,1 − iMME,1 space, all predicted transfers

tend to converge onto the same converged point. This phenomenon can also be seen in Fig. 6.18

and 6.19; clear bands exist where the errors at the flyby moon are smallest. Thus, there is only

one truly ballistic solution per group. The other points in the neighborhood are points that satisfy

the tolerances, but require some maneuvering to nullify the errors for the flyby of the first moon.

Again, it is expected that the predicted transfers provide very good initial guesses.

6.1.1.4 Discussion

Additional loops increase the reachable phase space area and they increase the percentage of

the year one can arrive with certain orbital elements. An additional flyby places serious limits on

the reachable phase space area, and the percentage of the year one can arrive.
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Table 6.1: Difference between the predicted, and the converged initial states for a predictor-
corrector scheme changing the arrival states at Deimos, to target an exact flyby of Phobos.

N1 −N2 t1 iMME,1 ra,1 rp,1 ωMME,1 ΩMME,1 ∆rp,Phobos ∆iMME,Phobos

[days] [deg] [km] [km] [deg] [deg] [km] [deg]

1-1
Predicted 60.5 106.5 662,900 5,983 359.8 282.0 441 1.73
Converged 60.1 106.6 660,958 5,227 359.9 280.2 0.1 1.6e-3

1-2
Predicted 479.2 15.1 517,739 4,512 0.8 293.2 450 0.93
Converged 479.1 15.0 522,712 4,080 0.0 295.0 0.08 8.1e-4

1-3
Predicted 117.9 37.3 672,927 3,608 2.2 333.9 179 1.81
Converged 109.9 37.4 673,959 3,838 0.8 332.3 0.09 1.6-5

2-1
Predicted 659.6 69.7 691,205 43,181 352.1 289.8 441 0.64
Converged 659.6 69.7 669,670 36,862 353.2 284.8 0.10 3.8e-3

2-2
Predicted 682.5 58.2 704,567 49,743 355.0 312.9 202 1.02
Converged 682.8 57.5 698,909 45,679 354.6 311.1 0.10 2.94e-5

3-1
Predicted 378.7 33.5 536,306 18,067 358.5 312.9 401 1.03
Converged 378.8 33.5 541,114 17,670 358.2 314.0 0.09 8.2e-4

Table 6.2: Difference between the predicted, and the converged initial states for a predictor-
corrector scheme changing the arrival states at Phobos, to target an exact flyby of Deimos.

N1 −N2 t1 iMME,1 ra,1 rp,1 ωMME,1 ΩMME,1 ∆rp,Deimos ∆iMME,Deimos

[days] [deg] [km] [km] [deg] [deg] [km] [deg]

1-1
Predicted 482.9 6.4 647,379 11,665 358.2 261.8 481.9 1.94
Converged 481.8 6.3 655,429 10,427 1.1 259.9 0.01 0.02

1-2
Predicted 652.0 66.51 644,505 11,799 356.1 227.0 463.3 1.1
Converged 656.1 66.50 642,629 11,555 357.2 227.9 0.01 1.8e-3

1-3
Predicted 374.6 10.3 555,394 14,590 355.1 234.5 420 1.3
Converged 375.1 10.3 554,930 14,387 359.1 231.2 0.1 0.008

2-1
Predicted 20.0 93.5 639,885 10,595 358.3 260.4 360 1.9
Converged 19.2 93.5 639,885 10,781 358.8 260.3 0.07 0.08

2-2
Predicted 385.9 36.9 580,237 8,035 358.8 253.79 307 1.6
Converged 366.1 36.9 587,321 8,011 358.9 245.7 0.10 0.07

3-1
Predicted 665.9 64.1 577,088 12,298 356.8 244.6 514 0.3
Converged 667.2 64.1 576,465 12,198 357.2 244.8 0.094 4.4e-4
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Figure 6.20: Visualization of the converged injection-Phobos(black)-Deimos(green) transfers,
mapped on the xy-plane of the MME reference frame. The injection-Phobos segment is indi-
cated with a solid line, the Phobos-Deimos segment with a dashed line. From left to right and top
to bottom: 1-1, 1-2, 1-3, 2-1, 2-2, 3-1 transfers.
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Figure 6.21: Visualization of the converged injection-Deimos(green)-Phobos(black) transfers,
mapped on the xy-plane of the MME reference frame. The injection-Deimos segment is indi-
cated with a solid line, the Deimos-Phobos segment with a dashed line. From left to right and top
to bottom: 1-1, 1-2, 1-3, 2-1, 2-2, 3-1 transfers.
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6.1.2 Transfers with one maneuver

In this section, the initial conditions are determined when one maneuver is allowed at one

intermediate periareion. First, the maneuver type and magnitude is discussed. The focus of this

research is to solely use solar gravity to perform orbital plane changes. Therefore, the maneuvers

are restricted to be in-plane. The maneuvers occur at an intermediate periareion. Therefore, the

maneuvers are restricted to be in the velocity direction, solely altering ra. The required maneuver

sizes to decrease and increase the ra to the lower and upper limits of 440,000 and 720,000 km for

any rp − ra combination in the considered phase space are plotted in Fig. 6.22. One can see that

with solely 25.37 m/s, any ra state can be achieved, for any initial value of ra and rp. Furthermore,

one can see that large sections of the phase space require lower maneuver sizes.

Figure 6.22: |∆V | to change ra to 440,000 (left) and 720,000 (right) for any ra − rp combination.

6.1.2.1 Methodology

Target one moon Similar to the ballistic scenario, a sparse grid in ra,f and ωHill,f is

created and the periareion states post-maneuver are predicted. Then, for every post-maneuver

state, 57 pre-maneuver states are selected, differing only by ra-value. Every value between 440,000

and 720,000 with resolution 5,000 km is used. Those pre-maneuver states are then predicted back
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to compute the initial state. A three-dimensional refinement method is employed. The algorithm

is summarized in Algorithm 5. This process is again performed for tf ∈ [0, 680], with step size 10

days, on scenarios with total loops N ∈ [2, 4], with maneuvers after loop M ∈ [1, N − 1].

Target both moons on one transfer For the scenario with the additional flyby, a different

strategy is followed dependent on the timing of the maneuver.

Maneuver between injection and flyby of first moon: The final states at the second moon that have

a flyby with the first moon are already known and the post-maneuver states can be extracted from

the ballistic results. Again, for each post-maneuver state, 57 pre-maneuver states are selected and

predicted back to compute the initial state. This process is performed for all permutations of N1

and N2, and maneuver locations after loop M ∈ [1, N1].

Maneuver between flyby of first moon and arrival at second moon: The maneuver directly affects

whether or not a trajectory flies by the first moon. Thus, the post-maneuver state can not be

extracted from the ballistic results. Again, a grid is created in ra,f , ωHill,f , and tf . Then, the

post-maneuver orbital elements are predicted, and 57 pre-maneuver states are selected and pre-

dicted back to the orbital elements near the first moon. A three-dimensional refinement method is

employed to find more trajectories that pass close to the first moon. The algorithm is summarized

in Algorithm 6. Finally, the trajectories that pass close to the first moon are then mapped back

N1 loops to determine the initial conditions. This process is performed for all permutations of N1

and N2, and maneuvers after loop M ∈ [N1 + 1, N2 − 1].

6.1.2.2 Results

Target one moon It is investigated how the maneuvers expand the accessible surface on

the rp,1 − iMME,1 plane for ∆V < 1 m/s, ∆V < 5 m/s, ∆V < 10 m/s, and ∆V < 25 m/s. In

Fig. 6.23, a general overview of the results is given for transfers arriving at Phobos or Deimos.

The large number of permutations hinders the visualization of the expansion of the area for each

individual loop. Therefore, this figure shows the area of the phase space that is accessible for all

four loops combined, with only one maneuver for different maximum ∆V -values.
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Figure 6.23: Visualization of the effect of one ballistic maneuver on the rp,1 − iMME,1 plane for
transfers arriving at Phobos (left) or Deimos (right) at day 0 through 680.

For each arrival day, the loop number, maneuver location, and maneuver size that results in

the minimum TOF or minimum ∆V solution for each region within the rp,1 − iMME,1 plane can

be determined. An example of this procedure is shown in Fig. 6.24. This procedure plots the

extrema in the ∆V-TOF trade-off for each region on the rp,1 − iMME,1 plane, for a specific arrival

date. Regions exist with a significant TOF reduction if a maneuver of a few m/s is allowed. An

example can be seen for arrival day 0, near 5,000 km and 140◦. For the minimum ∆V solution, a

nearly ballistic solution with three loops is optimal. By allowing 5 to 10 m/s, a two loop solution

with a maneuver after the first loop becomes feasible, saving 120 days.

Finally, one can compute how many days per year one can depart from a certain region in

the rp,1 − iMME,1 plane, for a maximum of 1, 2, 3, and 4 loops, for maximum maneuver sizes of 0

m/s, 1 m/s, 5 m/s, 10 m/s, 25 m/s. The results can be seen in Fig. 6.25.

Target both moons on one transfer These results are significantly trimmed when in-

troducing an intermediate flyby. The initial conditions for the minimum TOF and minimum ∆V

transfers for all permutations of N1, N2 and maneuver locations are summarized in Fig. 6.26 for

injection-Phobos-Deimos transfers and in Fig. 6.27 for injection-Deimos-Phobos transfers. Similar

to Fig. 6.25, Fig. 6.28 is created where one can see how many days per year one can depart from

a certain region in the rp,1 − iMME,1 plane, for a maximum of 2, 3, and 4 loops, for maximum

maneuver sizes of 0 m/s, 1 m/s, 5 m/s, 10 m/s, 25 m/s.
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Figure 6.24: Comparison between minimum ∆V (top 2 rows) and minimum TOF transfers (middle
2 rows), and their difference in TOF and ∆V (bottom row) for transfers that arrive at Phobos at
day 0.
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Figure 6.25: Percentage of the year one can arrive at Phobos (top) or Deimos (bottom) within 1,
2, 3, and 4 revolutions (top to bottom). Left to right: ballistic, 1 m/s, 5 m/s, 10 m/s, 25 m/s.
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Figure 6.26: Comparison between minimum ∆V (top 2 rows) and minimum TOF transfers (middle
2 rows), and their difference in TOF and ∆V (bottom row) for injection-Phobos-Deimos transfers.
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Figure 6.27: Comparison between minimum ∆V (top 2 rows) and minimum TOF transfers (middle
2 rows), and their difference in TOF and ∆V (bottom row) for injection-Deimos-Phobos transfers.
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Figure 6.28: Percentage of the year transfers exist within regions of the departable phase space
in the rp,1− iMME,1 plane for injection-Phobos-Mars (top) and injection-Deimos-Phobos (bottom).
Left to right: ballistic, 1 m/s, 5 m/s, 10 m/s, 25 m/s. Top to bottom: 2 through 4 total loops.
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6.1.2.3 Validation and correction

Target one moon The identified initial conditions are again validated through backwards

numerical integration in the eccentric Hill system. The results for the validation for the minimum

TOF transfers arriving at Phobos at day 0 are shown in Fig. 6.29. The results are very similar to

the ballistic case, with similar conclusions.

Figure 6.29: Validation of one-maneuver transfers that arrive at Phobos at day 0 with minimum
TOF. Deviations between predicted and true initial orbital elements and timing.

Target both moons on one transfer Similarly, the minimum TOF transfers for injection-

Phobos-Deimos, and injection-Deimos-Phobos transfers are validated. The results are shown in Fig.

6.30 and 6.31. Compared to Fig 6.18 and 6.19, one can see fewer band structures with small errors at

the first moon. However, those band structures are still present, but are hidden by shorter duration

transfers at the same location on the rp,1−iMME,1 plane. Previously, true ballistic solutions between

Phobos and Deimos, and Deimos and Phobos have been identified, and their initial conditions are

shown in Tables 6.1 and 6.2. Those ballistic solutions can be re-used to determine the perturbed
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Figure 6.30: Validation of one-maneuver injection-Phobos-Deimos minimum TOF transfers. Top:
errors in flyby state. Bottom: error between predicted and true initial orbital elements and timing.

Figure 6.31: Validation of one-maneuver injection-Deimos-Phobos minimum TOF transfers. Top:
errors in flyby state. Bottom: error between predicted and true initial orbital elements and timing.



201

initial conditions for scenarios with maneuvers between injection and the first moon flyby. For

all N1 − N2, and maneuver location permutations, the response for pre-maneuver states between

440,000 and 720,000 with resolution 5,000 km are predicted, and numerically integrated. The

results can be seen in Fig 6.32. On the left, it can be seen that for each integrated transfer, a

predicted solution exists very close by; within 500 km and 0.5◦ for injection-Phobos-Deimos. The

extrema for injection-Deimos-Phobos are higher; 1500 km and 0.8◦. On the right, the integrated

response can be seen, for scenarios that do not impact nor escape. The black dots are the ballistic

solutions shown in Table 6.1. Note that multiple lines may exist for a N1−N2 scenario, differing by

the periareion number where the maneuver is applied. As an example, the effect of the maneuver

is shown for 2-1 injection-Deimos-Phobos transfers where a maneuver occurs at the Deimos flyby.

Six different maneuvers are applied, with maneuver size 14.9 m/s, 7.6 m/s, 4.7 m/s, 2.2 m/s, 1.0

m/s, and 3.3 m/s. Even for such small maneuvers, the effect on the departure conditions on the

rp,1 − iMME,1 are drastic. The integrated transfers are shown in Fig. 6.33. The yellow, Deimos-

Phobos segment of the transfer is constant. At the Deimos flyby, a maneuver is applied. Thus,

the magnitude of the cyan orbit, which arrives at Deimos, changes, affecting the initial periareion

conditions of the blue departure orbit. First, rp,1 decreases, and iMME,1 increases. The iMME,1

keeps increasing past turning point 3, but the rp,1-trend reverses direction and starts to increase.

Past point 5, the iMME,1 levels out and rp,1 increases rapidly past this point

For transfers with maneuvers between the first and second moon, one could set-up a predictor-

corrector scheme, where the arrival conditions at the second moon, as well as the maneuver are

allowed to vary. For this research, it was decided to limit the results to true ballistic solutions

between the first and second moon.
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Figure 6.32: Effect of maneuvers on departable phase space for injection-Phobos-Deimos (top) and
injection-Deimos-Phobos transfers (bottom). Left: error between predicted and integrated transfer.
Right: transfer type and maneuver size with ballistic solutions indicated in black.
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Figure 6.33: Visualization of the effect of maneuvers on the converged injection-Deimos(green)-
Phobos(black) transfers, mapped on the xy-plane of the MME reference frame. The 2-loop injection-
Deimos segment is indicated with a solid line, the one-loop Deimos-Phobos segment with a dashed
line. The maneuvers are placed at the Deimos flyby. From left to right and top to bottom: transfer
1 through 6.
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6.1.3 Discussion on computational efficiency

Prior to analyzing the computational efficiencies, it is worth noting that an artificial neural

network and a numerical integration approach adhere to two very different philosophies. For the

ANN approach, a large upfront investment of computational resources is required to train the ANN.

Once trained, each evaluation requires very little computational resources. For the numerical

integration approach, no upfront computational resources are required. However, for each new

application, a large amount of computational resources are required. Due to their different nature,

a fair comparison between both methods is difficult. Three complicating factors can be identified:

(1) The evaluation speed of the ANN allows for a brute-force approach where all potential final

states are sampled, with a certain resolution. In the following comparison, it is assumed that

the numerical integration method requires the same number of sampling points. In reality,

this is not the only numerical integration method one could use to design trajectories;

more efficient strategies could be developed. One example is the methodology developed

in Chapter 3, another could be an interpolation approach.

(2) The required time for the training and evaluation of the ANN, and for the numerical

integration of a single transfer, is highly dependent on the used computational set-up, and

the utilized computing language. To make as fair of an analysis as possible, all computations

have been performed in the same computing language, Matlab, on the same computational

set-up: a 12 core system, each core composed of 1 Intel Xeon E5-2680 v3 @ 2.50GHz CPU.

Therefore, the required computational load is expressed in CPU-days on this computational

system; a task that takes 2 hours to complete on the 12 cores requires 1 CPU-day. It could

be argued that the numerical integration could be significantly sped-up using a parallel

system, i.e., using a GPU computational system. However, at the same time, the training

and evaluation of the ANN could also be sped-up using a GPU. The individual gains for

the integration and the ANN training are impossible to predict and can only be determined

by actually implementing a GPU methodology for both architectures.
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(3) The computational time of the numerical integration method is highly dependent on the

numerical integrator used, and the chosen integration tolerances. In this research, Mat-

lab’s ode45 integrator has been used, a variable stepsize Runge-Kutta integrator, with an

absolute tolerance of 1e-12, and a relative tolerance of 3e-10.

With these limitations of the comparison method in mind, the actual comparison can be

performed. For the creation of the training data, and the training of the backward neural networks,

629.5 CPU-days are required. To predict the initial conditions for transfers that arrive at Phobos

at day 0, 1.51 million Poincaré maps are evaluated for the ballistic scenario. Assuming this is

representative for the other 68 sampled days, this totals to 104 million Poincaré maps. Adding one

intermediate maneuver requires the prediction of an additional 10 million Poincaré maps for day 0.

Assuming this is representative for the other 68 sampled days, this adds 690 million Poincaré maps.

In total, for Phobos, the Poincaré maps are evaluated 794 million times. This takes approximately

0.48 CPU-days. If one would numerically integrate this with the method listed above, this would

require roughly 935 CPU-days.

In conclusion, the most efficient philosophy depends on the number of depth required for each

application. For the Phobos application, the transfers were identified with an arrival time resolution

of 10 days. In this scenario, the artificial neural network approach is already more efficient with

only one application. If one would only identify transfers with a resolution of 50 days, the prediction

and integration times are reduced to, respectively, 0.15 and 288 days. In this scenario, if one is

only interested in arriving at Phobos, it would have been more efficient to numerically integrate all

the solutions. If one is interested in multiple applications, with different target arrival orbits, it is

more efficient to use the artificial neural network approach if at least three different applications

are considered with a similar number of required Poincaré mappings as for the Phobos application.

Again, these conclusions only hold for the specific computational set-up used in this dissertation.



206

6.1.4 Conclusions

From the previous subsections, it is clear that artificial neural networks are able to identify

transfers with specific characteristics such as target a specific final orbit, or transfers that chain

multiple target orbits. The initial orbital elements can be predicted, for different mission profiles,

with multiple revolutions around Mars and with an intermediate maneuver. This allows a mission

designer to quickly generate a global view of the phase space. From the validation, it can be seen

that the artificial neural network architecture provide sufficient accuracy to approximate the true

initial conditions. Thus, for transfers of interest within the phase space, the designer can easily

identify the real transfer in the neighborhood of the predicted transfer.

6.2 Injection error analysis for transfers targeting Phobos

As demonstrated, the backward architecture can support the determination of the initial

conditions and timing to target a specific orbit in one or more revolutions. Besides finding this

reference trajectory, the forward architecture can be used for a fast evaluation of the effect of

injection errors at the first periareion. An example of this application is given in this section.

For this analysis, a few different initial conditions are selected that target Phobos’ rp and

iMME at arrival day 0. Two different groups of initial conditions are selected; one group with

a constant rp,1 = 5, 000 km at different values of equatorial inclination, and one group with a

constant equatorial inclination of 30◦ and different values of rp,1. The orbital elements at the initial

periareion are listed in Table 6.3.

For each of the 6 points, 100,000 perturbed initial conditions are created by sampling three

position, and three velocity deviations, sampled from normal distributions with mean 0 and stan-

dard deviation 10 km and 10 m/s, respectively. The orbital elements for the perturbed initial states

of reference trajectory 1 are depicted in Fig. 6.34. ra,1 has the largest variation out of the five

orbital elements, caused by the large sensitivity of eccentricity to small variations in velocity, in

the high eccentric regime for the reference orbits (Fig. 6.22). Using the perturbed initial condi-
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Table 6.3: Selected reference trajectories for injection error analysis. Group 1: constant rp,1. Group
2: constant iMME,1

Parameter Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Unit

rp,1 5000 5,000 5000 5,000 km
ra,1 583,977 604,572 620,085 632,467 km
iMME,1 50.9 60.7 70.0 80.3 deg
ωMME,1 357.8 357.5 357.2 357.0 deg
ΩMME,1 210.3 208.3 206.0 203.0 deg
νM,1 318.6 315.4 312.9 310.9 deg

Parameter Trajectory 5 Trajectory 6 Trajectory 7 Trajectory 8 Unit

rp,1 4,999 10,000 14,996 20,002 km
ra,1 519,391 558, 632 586,857 611,708 km
iMME,1 30.1 30.0 29.9 29.1 deg
ωMME,1 358.5 357.3 356.1 354.7 deg
ΩMME,1 211.5 226.2 231.8 234.2 deg
νM,1 327.2 321.4 317.0 312.9 deg

Figure 6.34: 100,000 perturbed orbital elements at periareion one for transfer 1, and the classifica-
tions for the next predicted periareion.

tions and the forward ANN architecture, the next periareion is predicted. Figure 6.34 displays the

classification for the next periareion. This figure shows the trajectories that impact and escape, as

well as the trajectories that cannot be predicted, i.e., the trajectories that are outside the training
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region of the ANN. Again, ra,1 is the dominating parameter. Therefore, for the other reference

trajectories, only the ra,1-parameters are shown on the left-hand sides of Figs. 6.35 and 6.36. On

the right hand sides of these figures, the predicted iHill,2 and rp,2 are shown, color coded by the

ra,1-value.

Figure 6.35 shows the results for trajectory 1 through 4, for constant rp,1 and varying iMME,1.

These four transfers nominally increase their rp-value from 5000 km to 9356 km and target iHill,2 = ε,

indicated by the grey asterisk. Several trends are observed. First, at very low ra,1, the solutions

cannot be predicted. However, it can be argued that at these very low ra,1-values, the transfers are

barely perturbed. Hence, they converge onto the black asterisk, the original, unperturbed initial

state. This behavior at low ra,1-values is identical to the behavior at low J-values for the LEO-to-

GEO transfers’ Monte Carlo analysis in Fig. 3.19. For larger ra,1-values, the rp,2 − iHill,2 values

approach the nominal values. At higher ra,1-values, the rp,2 increases strongly, until the escape

criterion at 50,000 km is achieved. A region of escape exists. For even higher ra,1-values, the

transfers can no longer be predicted. However, it can be argued that those transfers points most

likely escape as well. For the ra,1-values lower than the nominal value, the rp,2-values decrease,

before they increase again to reach the unperturbed state (black asterisk). For high enough initial

inclination, the lowest value of rp,2 crosses the Martian surface (red dashed line), and an impact

region occurs. This is very similar to the behavior observed for day 43 in Fig. 3.19.

Figure 6.36 shows the results for trajectory 5 through 8, for constant iMME,1 and varying rp,1.

Similar conclusions can be drawn: low ra,1 transfers converge on the original unperturbed state,

high ra,1-transfers escape. Again, it can be argued that the transfers with very high ra,1-values

that cannot be predicted, probably escape.
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Figure 6.35: Results of the Monte Carlo injection error analysis for group 1 with constant rp,1.
From top to bottom: trajectory 1 through 4. Left: perturbed ra,1 and classifications for the next
predicted periareion. Right: rp,2 and iHill,2 at the next periareion, in function of original ra,1. Red
dashed line represents the Martian surface.
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Figure 6.36: Results of the Monte Carlo injection error analysis for group 2 with constant iMME,1.
From top to bottom: trajectory 5 through 8. Left: perturbed ra,1 and classifications for the next
predicted periareion. Right: rp,2 and iHill,2 at the next periareion, in function of original ra,1. Red
dashed line represents the Martian surface.
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6.3 Missed insertion burn analysis for transfers targeting Phobos

The initial conditions are predicted to arrive at target rp,f and iMME,f -values. At these

arrival conditions, a maneuver circularizes the transfer into its target orbit, for instance in orbits

with Phobos’ or Deimos’ rp and iMME. In analogy with Subsection 3.6.1, this section assumes

this maneuver does not occur and the transfer continues along its natural dynamics. Through

the prediction of the next Poincaré maps using the forward ANN architecture, rp and iMME at

the next periareions can be computed. As an example, the next three periareions are shown in

Fig. 6.37 for transfers that nominally arrive at Phobos at day 0 after a one-loop transfer. On this

figure, the impacting and escaping transfers are indicated in red and black, respectively. The cyan

transfers return to the correct rp and iMME within a 1000 km and 3◦ tolerance, in accordance with

the accuracy of the ANN in Table 5.16 for multiple revolution transfers. The bottom-left figure

displays the transfers that satisfy these tolerances, and the periareion number when the tolerances

are met. For these transfers, the missed insertion burn can be executed at this later periareion.

However, for the vast majority of the transfers, the natural dynamics hinder the recovery of a

missed insertion burn.
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Figure 6.37: Results of the missed insertion burn analysis for one-loop transfers that arrive at
Phobos at day 0. Red: impact, black: escape, cyan: transfers that meet tolerances.
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6.4 Arrival phase space trade-studies

This dissertation claims to provide global understanding for solar gravity driven orbital trans-

fers around Mars, for all times in the Martian year, any orbital orientation, for a large region of rp

and ra. However, so far, only transfers that target the equator have been considered. For instance,

Section 6.1 performs a detailed analysis of the phase space for transfers targeting Phobos and

Deimos. In this section, the feasible initial phase space on the rp,1 − iMME,1 plane is determined

for a wide variety of target orbits with different target rp,f and iMME,f -values. This highlights

the capability of the developed architecture to predict transfers for a wide variety of target orbits,

warranting the claim of global understanding.

Visualizing all existing transfers in compact form is impossible. Therefore, this section focuses

on one-loop transfers and ignores the time component; the regions on the rp,1 − iMME,1 plane are

determined for which at least one transfer throughout the Martian year exists for a specific target

rp,f and iMME,f . This process is performed for a wide range of target rp,f and iMME,f values.

The results are computed and visualized for discrete levels of iMME,f . For each level of iMME,f , 42

values of rp,f are sampled between 4,000 and 45,000 km. It is observed that different regions on

the rp,1 − iMME,1 plane have different intervals of rp,f for which transfers exist. The minimum and

maximum target rp,f for each region on the rp,1− iMME,1 plane for different final iMME,f are shown

in Fig. 6.38 through Fig. 6.40.

A mission designer can use these figures to quickly determine whether or not transfer exists

between specific (rp,1, iMME,1)→ (rp,f , iMME,f ) combinations. A few examples on how to use these

graphs are indicated by arrows on Fig. 6.38. Departing from rp,1 = 4, 000 km and iMME,1 = 100◦

(black arrows), transfers exist to the equator for target rp,f ∈ [4000, 37000] km. Departing from

rp,1 = 20, 000 km and iMME,1 = 100◦ (red arrows), transfers exist to the equator for target rp,f ∈

[4000, 25000] km. If a transfer exists, the methods developed in Section 6.1 can be used to identify

the initial orbital elements and timing for the transfers.
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Figure 6.38: Feasible initial phase space for target orbits with arrival iMME,f = 0◦ (top), 30◦

(middle), 60◦ (bottom) for rp,f ∈ [4000, 45000] km
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Figure 6.39: Feasible initial phase space for target orbits with arrival iMME,f = 90◦ (top), 120◦

(middle), 150◦ (bottom) for rp,f ∈ [4000, 45000] km
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Figure 6.40: Feasible initial phase space for target orbits with arrival iMME,f = 180◦ for rp,f ∈
[4000, 45000] km



217

6.5 Escape and impact stability analysis

The forward architecture can also support general dynamic studies. For instance, the impact

and escape stabilities of the phase space can be assessed for multiple revolutions. While the devel-

oped networks can be used on the entire phase space in Table 5.7, the results of a six-dimensional

phase space are hard to visualize. Therefore, a subset of the phase space is analyzed; the effect

of rp,1 and ωHill,1 is investigated. Six different combinations of initial iHill,1 and ΩHill,1 are used

for a fixed ra,1 and departure time. The next four periareions are predicted for 100,000 (rp,1,

ωHill,1) combinations for each of the six selected combinations. Fig. 6.41 shows how the initial rp,1

and ωHill,1 affect the impact and escape characteristics. All the transfers depart when Mars is at

perihelion and have an initial apoapse radius of 700,000 km, while different initial conditions for

iHill,1 and ΩHill,1 are used. Besides impact and escape characteristics, the architecture can also be

used to determine how the location of the periareions evolve. In Fig. 6.42, the projections of the

periareions on the xy-plane are shown.

The number of subsequent periareions that can be predicted is theoretically unlimited. How-

ever, the errors, as quantified in Tables 5.15 and 5.16 will increase. An example where the impact

and escape characteristics for the next 16 periareions are predicted can be found in Fig. 6.43. From

this, one can see that there is a region in (rp,1, ωHill,1) space where the transfers do not escape nor

impact for a large number of orbital revolutions around Mars. To assess the accuracy, the 10,000

initial points are integrated numerically for 16 loops. The results can be seen in Fig. 6.44. While

there are 243 transfers that are predicted to not escape nor impact, only 182 really do. Hence,

there is only a 73% accuracy. Comparing Fig. 6.43 and Fig. 6.44, one can see that the global

structure is captured.
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Figure 6.41: Impact and escape characteristics for the next four periareions for multiple combina-
tions of iHill,1 and ΩHill,1 with ra,1 = 700, 000 km, departing when Mars is at perihelion.
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Figure 6.42: xy projection of periareions 1 through 5 for multiple combinations of iHill,1 and ΩHill,1

with ra,1 = 700, 000 km, departing when Mars is at perihelion.

Figure 6.43: Impact and escape characteristics for next 16 periareions for iHill,1 = 45◦, ΩHill,1 = 45◦

with ra,1 = 700, 000 km, departing when Mars is at perihelion.
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Figure 6.44: Integrated impact and escape characteristics for next 16 periareions for iHill,1 = 45◦,
ΩHill,1 = 45◦ with ra,1 = 700, 000 km, departing when Mars is at perihelion.
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6.6 Identify heteroclinic connections in the Earth-Moon CRTBP

In this section, first, the heteroclinic connections are predicted using the ANN designed in

Section 5.5. Second, a predictor-corrector scheme is used to nullify the position and velocity errors

on the predicted connections. This last step also allows to quantify the errors in the predicted

connections. Finally, some conclusions are drawn on the obtained results.

6.6.1 Predicting heteroclinic connections

The responses on the Poincaré map for both the L1 unstable and L2 stable manifolds for both

periapse groups are predicted. A heteroclinic connection only exists between orbits with identical

Jacobi constant. Therefore, a Jacobi constant is selected, between 3.07 and 3.17. For this specific

Jacobi constant, the τ -phase space is sampled with a 0.1◦ resolution. The classification neural

networks predict if a periapse exists for a specific periapse group and J − τ combination. If it

is predicted to exist, the regression neural networks are used to predict the xy-coordinates of the

manifold’s intersection with the Poincaré surface of section.

Four different types of connections exist: (1,1), (1,2), (2,1) and (2,2) connections where the

first and second number indicate the group numbers of the L1 and L2 manifold periapses respec-

tively. Note that because of the difference in chosen Poincaré surface, these connection categories

are different from the ones commonly found in literature [3, 109]. For each connection type, the

distance between the periapses is computed for all τ1− τ2 permutations. The permutation with the

smallest predicted distance is stored as a potential heteroclinic connection, if the distance is smaller

than 2000 km. While in theory, (1,2) and (2,1) connections should be identical, small differences in

classification and regression network accuracies give slightly different results. Only the connection

with the smallest periapse distance for the (1,2) and (2,1) connections are stored. This process is

repeated for J ∈ [3.07, 3.17] with a 0.001 J-resolution. The results of these computations can be

seen in Fig. 6.45. Note that τ2-values larger than 360◦ are shown to guarantee a continuous figure.

In analogy with an angle, the correct τ2 values can be found by subtracting 360◦. Further note
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Figure 6.45: Location of the origin of the manifolds along the planar Lyapunov orbits for the
predicted heteroclinic connections: (1,1) connection (blue) and (1,2) or (2,1) connections (red).

that all found (2,2) connections impact the Moon. The identified initial conditions are integrated,

and the actual position and velocity discontinuities at the predicted connections are computed. It

is observed that for some transfers, the error in ẋ and ẏ is larger than 100 m/s. Those transfers,

indicated by diamonds, pass relatively close to the Moon. As a result, small errors in position can

lead to large errors in velocity. Those transfers are discarded. Between J=3.095 and J=3.106, the

predicted 2-1 transfers impact the Moon and are thus not shown. Note: the heteroclinic connection

at 3.147 is not identified. From the results, a heteroclinic connection is expected with a τ2-value

near 300◦. Looking at Fig. 5.56, this is on the classification border between group 1 and group 2

of the L2 stable manifolds. As a result, it is wrongfully predicted that no periapses exists in this

region.

6.6.2 Validation and discussion on results

As a final validation, the predicted initial conditions are corrected until the heteroclinic

connections are continuous with a position and velocity tolerance of 1 m and 1 mm/s, respectively.

In Fig. 6.46, the errors between the predicted and true τ -values are depicted. Note that for a few
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transfers, the heteroclinic connections do not converge. Within the correction procedure, at the

initial τ -value, the number of required Poincaré mappings to arrive near the predicted periapse is

computed. During the correction procedure, this number is held constant, i.e., a fixed number of

Poincaré mappings are computed. Sometimes, numerical instabilities can lead to the introduction

or removal of a periapse. Since the correction procedure performs a fixed amount of Poincaré

mappings, this leads to a jump in the location of this periapse. It is expected that with a more

stable correction procedure, these connections would converge.
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Figure 6.46: Difference between the location of the origin of the manifolds along the planar Lya-
punov orbits for the predicted, and corrected heteroclinic connections.

One can see that in general, the predicted τ -values are order of magnitude 1◦ off. For a few

connections, the ∆τ1 is significantly larger. At J = 3.15, τ1 is predicted to be 140, while the correct

value is 146.21. Looking at the top left of Fig. 5.57, the largest negative errors in x-coordinates are

occurring in this neck region. Thus, the neural network predicted connection is not as accurate as

for other regions of the phase space. Finally, Fig. 6.47 shows the corrected heteroclinic connections

at a few J-values. Haapala identified a transfer at J = 3.15 in Ref. [110]. The solution is identical

to the heteroclinic connections found in this work. Furthermore, the transfers at J = 3.134 in Ref.

[3] lie in between the identified transfers at J = 3.13 and J = 3.14.
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Figure 6.47: Converged heteroclinic connections between planar Lyapunov orbits in the Earth-Moon
CRTBP.
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6.6.3 Conclusion

This section demonstrates how a combination of classification and regression feedforward

neural networks can be used to find heteroclinic connections between planar L1 and L2 Lyapunov

orbits. To do this, the manifolds are computed for orbits with different Jacobi constants between

3.07 and 3.17, with resolution 0.005, at 36 different locations on each orbit. The developed artificial

neural network architecture succeeds in identifying the heteroclinic connections, if they exist, be-

tween any orbit with Jacobi constant within the training range. The predictions are within 0.1-1%

of the arclength along the periodic orbit.

This research can be extended by computing subsequent periapses, and again, creating clas-

sification and regression neural networks to capture the response. This allows the identification

of higher order connections, e.g. (1,3), (2,3), (3,3), etc. Furthermore, this methodology can be

applied for different departure and arrival orbits. For instance, heteroclinic connections between

halo orbits. These orbits are no longer planar, making them an excellent test bed to see if the ad-

ditional two dimensions of the Poincaré map can still be accurately captured using artificial neural

networks.



Chapter 7

Conclusions

7.1 Summary

This thesis deals with the efficient design of solar gravity driven orbital transfers. Early

research efforts focuses on developing a systematic methodology to identify transfers from inclined

low-earth orbits to the geostationary orbit. Based on the observed control authority of the Sun,

it is hypothesized that the solar gravity driven transfers enable a new mission architecture for the

injection of multiple spacecraft around Mars. To assess the versatility of the proposed mission

architecture, the control authority of the gravitational perturbations needs to be understood for

a wide variety of departure and target orbits in the Martian system. This requires a well-defined

and easily accessed database of transfers in this system. The framework to build this database is

developed on a small subset of the phase space, centered around one specific application. This allows

the exploration of different methods for constructing this database, while limiting the required

computational resources. Even for this small subset of the phase space, the required number of

numerical integrations to compute the database increases due to the time variant effect of the

Sun-Mars distance on the control authority.

This issue is alleviated by a pairing of artificial neural networks with an apoareion scaled

version of the circular Hill system. This system manages to capture the majority of the time-variant

effect of the eccentric system, using only a fraction of the required numerical integrations. When

applied to the small subset of the phase space, promising results are obtained, as well as several

recommendations to improve the performance of the neural networks. Those recommendations



227

are implemented in a new artificial neural network architecture to capture the response of a large

subset of the phase space. This architecture is comprised of three families of networks. One network

predicts if a transfer escapes or impacts. If the transfer is anomaly free, one network predicts the

response in the apoareion scaled version of the circular Hill system. While this system captures

the majority of the time-variant effect of the eccentric Hill system, the system also has systematic

errors compared to the eccentric Hill system. Therefore, another artificial neural network family

predicts the difference in response between both dynamical systems.

The developed neural network architecture is applied on a wide variety of applications. First,

the architecture is used to identify the initial conditions for transfers with up to four solar perturbed

revolutions around Mars, with or without a maneuver at an intermediate periareion. The initial

conditions are identified for transfers targeting Phobos or Deimos, as well as transfers that chain

multiple targets together; transfers that go to Phobos and Deimos on a single transfer. Second,

the architecture is used to compute the effect of missed, or incorrect, maneuver executions on the

identified transfers. Third, it is demonstrated how the neural networks can be used to determine the

regions of the initial phase space that have at least one transfer per Martian year for a wide variety

of target orbits. Finally, the versatility of the artificial neural network architecture is demonstrated

by applying it on a different problem; identifying heteroclinic connections between planar Lyapunov

orbits in the Earth-Moon circular restricted three-body problem.

7.2 Main contributions

The main contributions of this dissertation are listed below:

(1) Developed a methodology to identify solar gravity driven transfers between a specified

departure and target orbit.

(2) Introduced a new mission architecture that can inject multiple spacecraft around Mars in

different orbital planes and radii.

(3) Defined a new dynamical system, the apoareion scaled circular Hill system, as an approxi-
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mation of the eccentric Hill system.

(4) Developed a general artificial neural network architecture for Poincaré maps, using a com-

bination of regression and classification neural networks.

(5) Demonstrated how artificial neural networks can be used to predict the difference between

a more complex, and a simpler dynamical system.

(6) Demonstrated how an artificial neural network architecture functions as a database of

solutions to a difficult problem in mission design, without the explicit need to store a large

amount of pre-computed transfers.

(7) Demonstrated how the artificial neural networks can be used to predict all the initial

conditions that transfer to a specific target orbit, with multiple solar-perturbed revolutions

around Mars with or without intermediate maneuvers. Once trained, the computational

efficiency of the network architecture gives the mission designer a global understanding of

the phase space in a time span of minutes to hours.

7.3 Future work

This dissertation is the first step in the systematic study of planetocentric solar gravity

driven orbital transfers. The current artificial neural network architecture enables the design of

transfers with multiple revolutions around Mars with maneuvers at intermediate periareions. This

dissertation builds the foundation for different categories of follow-up studies.

The first category of follow-up studies leverages the architecture for different applications.

The developed methodology to target Phobos or Deimos can be applied to different equatorial target

orbits that are of scientific or operational interest, such as an areostationary orbit. Furthermore,

new mission concepts can be analyzed. An example would be the deployment of a constellation

of satellites around Mars, that are all injected into orbits with the same inclination and orbital

radius, but with different right ascensions of the ascending node. The developed methodology can
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be readily used, be it with different necessary conditions imposed on the arrival state.

The second category of follow-up studies expands the capabilities of the artificial neural

network architecture. A straightforward next step is the design of transfers with maneuvers at

intermediate apoareions. This requires the training of periareion-to-apoareion and apoareion-to-

periareion ANN. Furthermore, methods could be investigated to include SEP on the solar perturbed

transfers. In this dissertation, the analysis was broken off upon arrival at the target orbit. The

eccentricity upon arrival is high, and this dissertation assumes it is reduced using an impulsive

maneuver. This requires a chemical propulsion system, on top of the SEP system used for the

interplanetary transfers. Different ways could be investigated to include SEP. The impulsive trans-

fers could be used as ballistic initial guesses for local optimizers. Adding the co-states to the inputs

of the Poincaré map could also allow the addition of the SEP component, while automatically

guaranteeing optimal transfers. Those co-states need to be added to the inputs of the ANN. It is

expected that the behavior is more strongly non-linear, and thus harder to train.

The third category of follow-up studies extends the analysis to different sun-planet or planet-

moon Hill systems. The trained apoareion scaled Hill ANN can be re-used for different Hill systems.

Note that the training region of rp and ra for Mars’ system is mapped to a different rp and ra-region,

depending on the ratio between the different Hill systems’ length scales. The correction ANN are

dependent on the eccentricity of the secondary around the primary, and cannot be recycled between

different systems. These ANN need to be trained with new data created for every system.

The fourth and final category of follow up studies could address several issues of solar gravity

driven transfers that this dissertation identified. For instance, further studies could mitigate the

severe effects of a missed final injection burn, as well as the effects of initial injection burn inaccura-

cies. A study could trade-off navigational requirements, such as required accuracy and urgency of

obtaining the navigation solution, with the timing and ∆V budget required to design a trajectory

correction maneuver.
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Appendix B

Algorithms

Algorithm 1 Find transfers targeting a final orbit in the circular Hill problem

1: for iHill,1 do
2: for e1 do
3: create grid in ωHill,1 and ΩHill,1 → G
4: PoincareMapping (rp,1,e1,iHill,1, G )

return Hill orbital elements periareion 2

5: SplineInterpolation(G, Hill orbital elements periareion 2 )
return (ωHill,1, ΩHill,1) arriving at correct rp,2 and iHill,2 = ε

6: PoincareMapping(rp,1,e1,iHill,1,ωHill,1, ΩHill,1 )
return ωHill,1 and ΩHill,1 confirmed within 1◦ and 500 km of correct rp,2 and iHill,2

7: ComputeTiming(ΩHill,2,TOF )
return initial and final time such that iHill,2 = ε is mapped to the equator

8: RotateStates (initial and final conditions and time )
return initial and final conditions in MME frame

9: end for
10: end for
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Algorithm 2 Find transfers targeting a final orbit in the apoareion scaled circular Hill problem

1: create grid in ωHill,1 and ΩHill,1 → G
2: for νM,a do
3: for ra,1 do
4: scaleStates (rp,1,ra,1,νM,a )

return scaled rp,1 and ra,1

5: for iHill,1 do
6: PoincareMapping (rp,1,e1,iHill,1, G )

return Hill orbital elements periareion 2, scaled back to true values

7: SplineInterpolation(G, Hill orbital elements periareion 2 )
return (ωHill,1, ΩHill,1) arriving at correct rp,2 and iHill,2 = ε

8: PoincareMapping(rp,1,e1,iHill,1,ωHill,1, ΩHill,1 )
return ωHill,1 and ΩHill,1 confirmed within 1◦ and 500 km of correct rp,2 and iHill,2

9: ComputeTiming(ΩHill,2,TOF )
return initial and final time such that iHill,2 = ε is mapped to the equator

10: RotateStates (initial and final conditions and time )
return initial and final conditions in MME frame

11: end for
12: end for
13: end for

Algorithm 3 Find initial conditions for N-loop transfers targeting an equatorial final orbit in the
eccentric Hill problem, using a backwards method.

1: iHill,f = ε, rp,f fixed to target orbit, fixed tf
2: compute ΩHill,f : (iHill,f , tf ) → iMME,f = 0
3: initialize grid in arrival states (ra,f , ωHill,f )→ Gf

4: initialize sampling grid on plane of interest: grid in (rp,1,iMME,1)→ G1

5: while ∃ undersampled regions do
6: for loops = 1 to N do
7: EccentricHillPoincareMapping(Gf , tf )

return previous periareion state and time using algorithm in Fig. 5.16

8: end for
9: determine the undersampled regions in grid G1

10: compute a new set of arrivalStates, Gf , in undersampled regions of G1

11: refine grid G1

12: end while
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Algorithm 4 Find transfers targeting an equatorial final orbit in the eccentric Hill problem after
N1 +N2 loops, with an intermediate flyby after N1 loops

1: iHill,f = ε, rp,f fixed to target orbit, fixed tf
2: initialize grid in arrival states (ra,f , ωHill,f , tf )→ Gf

3: for tf ∈ Gf do
4: compute ΩHill,f : (iHill,f , tf ) → iMME,f = 0,
5: end for
6: initialize sampling grid on plane of interest: grid in (rp,1,iMME,1)→ G1

7: while ∃ undersampled regions do
8: InitialState(Gf ,N1,N2 )

return initial and arrival conditions ∈ Gf in MME frame with close intermediate flyby

9: determine the undersampled regions in grid G1

10: compute a new set of arrivalStates, Gf , in undersampled regions of G1

11: refine grid G1

12: end while
13:

14: procedure: InitialState(Gf ,N1,N2 )

15: for loopCounter= 1 to N2 do
16: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

17: end for
18: for transfers ∈ Gf do
19: if |iMME,f−N2 − iflyby| < 2◦ and |rp,f−N2 − rp,flyby| < 500km then
20: for loopCounter= 1 to N1 do
21: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

22: end for
23: else
24: discard
25: end if
26: end for
27: return initial and arrival conditions ∈ Gf in MME frame with close intermediate flyby
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Algorithm 5 Find initial condition of a single transfer arriving at equatorial final orbit in the
eccentric Hill problem for N loops with maneuver after loop M

1: iHill,f = ε, rp,f fixed to target orbit, fixed tf
2: compute ΩHill,f : (iHill,f , tf ) → iMME,f = 0
3: initialize grid in ra,f ,ωHill,f → Gf

4: initialize grid in ra,preManeuver → Hf

5: initialize sampling grid on plane of interest: grid in (rp,1,iMME,1)→ G1

6: while ∃ undersampled regions do
7: InitialState(Gf ,Hf ,N ,M )

return initial and arrival conditions ∈ Gf in MME frame with intermediate maneuver

8: determine the undersampled regions in grid G1

9: compute new, finer sets Gf and Hf in undersampled regions of G1

10: refine grid G1

11: end while
12:

13: procedure: InitialState(Gf ,Hf ,N ,M )

14: for loopCounter= 1 to N −M do
15: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

16: end for
17: for transfers ∈ Gf do
18: for ra,preManeuver ∈ Hf do
19: update ra,f−M with ra,preManeuver

20: for loopCounter= 1 to M do
21: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

22: end for
23: end for
24: end for
25: return initial and arrival conditions in MME frame for transfers ∈ Gf and maneuvers ∈Mf
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Algorithm 6 Find transfers targeting an equatorial final orbit in the eccentric Hill problem after
N1 +N2 loops, with an intermediate flyby after N1 loops and a maneuver after M > N1 loops

1: iHill,f = ε, rp,f fixed to target orbit, fixed tf
2: initialize grid in arrival states (ra,f , ωHill,f , tf )→ Gf

3: for tf ∈ Gf do
4: compute ΩHill,f : (iHill,f , tf ) → iMME,f = 0,
5: end for
6: initialize grid in ra,preManeuver → Hf

7: initialize sampling grid on plane of interest: grid in (rp,1,iMME,1)→ G1

8: while ∃ undersampled regions do
9: InitialState(Gf ,Hf ,N1,N2,M )

return initial and arrival MME ∈ Gf , and maneuvers ∈Mf with intermediate flyby

10: determine the undersampled regions in grid G1

11: compute new, finer sets Gf and Hf in undersampled regions of G1

12: refine grid G1

13: end while
14:

15: procedure: InitialState(Gf ,Hf ,N1,N2,M)

16: for loopCounter= 1 to N1 +N2 −M do
17: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

18: end for
19: for transfers ∈ Gf do
20: for ra,preManeuver ∈ Hf do
21: update ra,f−M with ra,preManeuver

22: for loopCounter= 1 to N2 −M do
23: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

24: end for
25: if |iMME,f−N2 − iflyby| < 2◦ and |rp,f−N2 − rp,flyby| < 500km then
26: for loopCounter= 1 to N1 do
27: EccentricHillPoincareMapping(periapse state, timing)

return previous periareion state and time using algorithm in Fig. 5.16

28: end for
29: else
30: discard
31: end if
32: end for
33: end for
34: return initial and arrival conditions ∈ Gf and maneuvers ∈Mf with close intermediate flyby
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Acronyms

ANN Artificial Neural Network
CE Cross Entropy
CRTBP Circular Restricted Three-Body Problem
EME Earth Mean Equator and equinox of J2000

EMO Earth Mean Orbit of J2000

EOM Equations Of Motion
GEO GEostationary Orbit
GMAT General Mission Analysis Tool
LCE Lyapunov Characteristic Exponent
LCT Lyapunov Characteristic Time
LEO Low-Earth Orbit
LPO Lagrangian Point Orbit
MME Mars Mean Equator and equinox of J2000

MMO Mars Mean Orbit of J2000

MSE Mean Squared Error
RSS Root Sum Squared
SEP Solar Electric Propulsion
SLS Space Launch System
SOI Sphere Of Influence
TMI Trans Mars Injection
TOF Time Of Flight
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Nomenclature

Roman

a semi-major axis [km]

b artificial neuron bias [-]

d instantaneous Mars-Sun distance [km]

e eccentricity [-]

G gravitational constant [km3· kg−1· s−2]

h specific relative angular momentum [km2· s−1]

i inclination [deg]

J Jacobi constant [-]

l length scale [km]

Mi mass of body i [kg]

[Mn(α)] rotation matrix around the nth body axis by angle α [-]

N mean motion [s−1]

N total number of revolutions around Mars [-]

N1 total number of revolutions around Mars before the flyby [-]

N2 total number of revolutions around Mars after the flyby [-]

n̂ normal vector [-]

P orbital period [s]

p semi-latus rectum [km]
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r non-dimensional position vector [-]

R dimensional position vector [km]

ra apoapse radius [km]

rp periapse radius [km]

t̂ tangent vector [-]

t0 reference time for conversion between MMO and Hill frame [s]

TOF time of flight [days]

TOFapo time of flight between periareion and apoareion [days]

u argument of latitude [deg]

V dimensional velocity vector [km· s−1]

w artificial neuron weight [-]

W total number of weights and biases in ANN [-]

Greek

α mass scaling parameter [-]

α apoapse location angle [deg]

β rate of change of the true anomaly [s−1]

γ ratio between arrival and departure orbital radii for co-planar

transfers

[-]

ε small perturbation [-]

ε obliquity of the ecliptic [deg]

ζ ratio between intermediate and departure orbital radii for bi-

elliptic transfers

[-]

η three-body parameter [-]

Θ instantaneous angle between MO and Hill frame [deg]

λ true longitude [deg]

µ standard gravitational parameter [km3· s−2]

ν true anomaly [deg]
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σ standard deviation [-]

τ angle-like parameter describing position on an LPO [deg]

τ time scale [s]

φ activation function [-]

Φ state transition matrix [-]

ψ mass scale [-]

χ Lyapunov characteristic exponent [-]

ω rotation vector [s−1]

ω argument of periapse [deg]

Ω right ascension of ascending node [deg]

Miscellaneous

∆� change

O� order of magnitude

�1 state at the first periareion after injection maneuver one

�2 state at the second periareion before injection maneuver two

�a state at the apoareion between periareion one and two

�f state at the final periareion

�̂ unit vector

�̇ derivative with respect time

�̈ second derivative with respect time

�′ derivative with respect to true anomaly

�′′ second derivative with respect to true anomaly

�E Earth

�M Mars

�S Sun

�s stable manifold

�us unstable manifold
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Physical constants

General

AU 149,597,870.700 [km]

G 6.67E-20 [km3· kg−1· s−2]

µS 1.3271248287031293E+11 [km3· s−2]

Earth

a 1.00 [AU]

e 0.0167 [-]

RE 6378.136 [km]

µE 398600.4415 [km3· s−2]

ε 23.34 [deg]

epoch alignment EMO and Hill 0 [days past J2000]

Mars

a 1.52366231 [AU]

e 0.09341233 [-]

RM 3389.5 [km]

µM 42828.372 [km3· s−2]

ε 25.19 [deg]

epoch alignment MMO and Hill 2460322.6003472232 [JD]

epoch perihelion 2460438.94726728 [JD]
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Earth-Moon CRTBP

µ 0.01215 [-]

Length scale 384,401 [km]

Time scale 377,491 [s]


