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Abstract

Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and
damping rates of collective oscillations as well as spatial structure of these modes up to the decapole
oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-
order modes, the formalism also gives rise to purely damped ‘non-hydrodynamic’ modes. We
calculate the amplitude of the various modes for both symmetric and asymmetric trap quenches,
finding excellent agreement with an exact quantum mechanical calculation. We find that higher-order
hydrodynamic modes are more sensitive to the value of shear viscosity, which may be of interest for
the precision extraction of transport coefficients in Fermi gas systems.

1. Introduction

Strongly interacting quantum fluids (SIQFs) such as high T, superconductors [1], clean graphene [2], the quark-
gluon plasma [3], and Fermi gases tuned to a Feschbach resonance [4] seem to lack a description in terms of
quasi-particle degrees of freedom. This has fueled interest in developing new tools to understand the transport
properties of these fluids, as well as trying to experimentally determine those properties more precisely.

As of yet, one of the cleanest experimental realizations of SIQFs is a Fermi gas tuned to a Feschbach
resonance. Fermi gases offer unprecedented control of a multitude of properties such as interaction strength,
system geometry, spin imbalance [5, 6], and mass imbalance [7]. In the case of a spin and mass balanced gas,
there have been a number experiments aimed at the extraction of shear viscosity [8—11], and—to a lesser extent
—bulk viscosity [12].

The Navier-Stokes equations provide a relatively straightforward model for the dependence of cloud
expansion and collective oscillation phenomena on transport coefficients, making them a seemingly ideal
candidate for extraction of such coefficients. Yet, in the low density corona of trapped atom gases the local mean
free path becomes large, and hence one cannot expect the Navier-Stokes equations to apply. This, as well as
uncertainties arising e.g. from trap averaging, gives rise to a large systematic error in transport coefficients thus
extracted from experimental data. Hence a theory which can address both the hydrodynamic behavior of the
high density region as well as the low density corona of the cloud is desirable. It has been shown that by including
extra ‘non-hydrodynamic’ degrees of freedom in a fluid dynamical description, termed anisotropic fluid
dynamics, one can obtain a smooth crossover between Navier-Stokes dynamics in the high density core of the
gas cloud and kinetic theory in the low density corona [13]. This theory has been recently used to determine the
shear viscosity in the high temperature regime with an error of five percent by comparing experimental data for
an expanding cloud to an anisotropic hydrodynamic description [14]. Similar precision determinations for
transport properties at lower temperatures, e.g. close to the superfluid transition, are still outstanding.

This present work is related to studies using anisotropic hydrodynamics in the sense that we will also employ
ahydrodynamic description beyond Navier-Stokes (‘second-order hydrodynamics’) in order to study collective
oscillations of harmonically trapped Fermi gases above the super-fluid transition (T' > T;). In the linear
response regime we are considering in this work, it turns out that the second-order and anisotropic

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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hydrodynamic equations of motion are identical. We will refer to our approach as second-order hydrodynamics
to simplify the discussion, but the only difference to an anisotropic hydrodynamics framework will be in name.

Our work is closely related to [ 15], and in many aspects is complementary to the results therein. In this work,
the focus is on the effects arising from a non-vanishing shear viscosity, and we limit our consideration to ideal
equation of state, whereas in [ 15] collective modes for polytropic equations of state and zero shear viscosity were
studied.

The outline of the paper is as follows: we begin by describing our theoretical framework of second-order
hydrodynamics in section 2. We then proceed to calculate the frequencies, damping rates, and spatial structures
for the collective modes of harmonically trapped gases in both two and three dimensions in sections 3, 4. We
calculate mode excitation amplitudes for experimentally relevant conditions in section 5 and offer our
conclusions in section 6. Detailed results on the spatial mode structure and mode amplitude calculations can be
found in three appendices.

2. Second-order hydrodynamics

The Navier-Stokes equations are conservation equations for mass, momentum, and energy. To close the system
of equations, constitutive relations between the viscous stresses and fluid variables need to supplied. For Navier-
Stokes, the viscous stress tensor 7; is set to first-order gradients of the fluid dynamic variables, mass density p,
flow velocity u, and temperature T. While widely successful in many fluid dynamics applications, such a first
order gradient expansion suffers from certain problems, in particular, in systems where the fluid speed
approaches the speed oflight [16]. Thus, more recently a second-order hydrodynamic framework has been
developed which—true to its name—includes second-order gradients in the expansion of the stress tensor, with
appropriate new second-order transport coefficients. Unlike the similar framework of the Burnett equations,
second-order hydrodynamics in addition contains a resummation procedure which ensures thatitisa
consistent, causal and instability-free generalization of Navier-Stokes (see the reviews in [4, 17]). For the case of a
unitary Fermi gas, scale-invariance seems to be a good symmetry, and the resulting non-relativistic form of the
second-order hydrodynamic equations has been derived in [18].

2.1. Basic equations

In the following we consider what is maybe the simplest possible second-order hydrodynamics formalism to
describe a fluid in d spatial dimensions with a trapping force F. Namely, we utilize a relaxation equation for the
stress tensor. In this case our fluid equations are given by

Oip + 0i(pu;) = 0, (D
E;
O¢(pu;) + Oj(pu;u; + Pé; + m;) = P;) @
F|
0 + Ojluj(e + P) + mju;] = P—k”k’ 3
m
Tij + T Oy = — 10y ©)

where € is the energy density, 771s the shear viscosity, and 7, is the relaxation time for the stress tensor. In the
above equations, € and o;; are specified in terms of the fluid velocity, mass density and pressure Pas

(pu? + dP)
2 bl

2
ojj = [é)iuj + 6]'141‘ — Eéijakuk]. (6)

©)

Note that equation (5) corresponds to the equation of state for a scale-invariant system. It is easy to show that the
familiar Navier-Stokes equations are recovered upon taking the limit 7, — 0 in equation (4).

2.2. Assumptions

For simplicity, we have assumed the bulk viscosity and heat conductivity coefficients to vanish. The assumption
of vanishing bulk viscosity is consistent with measurements in two dimensions [19, 20]. Furthermore,
calculations of bulk viscosity in d = 3 imply that the value of bulk viscosity near unitarity in the high
temperature limit should be small [21]. Since we will consider a Fermi gas in the normal phase, i.e. above the
superfluid transition temperature T, taking the bulk viscosity to vanish should be a good approximation in the
cased = 3 aswell. The assumption of vanishing thermal conductivity is justified as it is already a second-order
gradient effect as discussed in [22]. Hence we assume the gas is isothermal, but it is straightforward to see how
the procedure below can be extended to the non-isothermal case. As a consequence, the temperature is a

2
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function of time only and not of spatial coordinates. In order to obtain analytically tractable results, we
additionally make the approximation that the gas may be described with an ideal equation of state:

P=nT= rr , @)
m
where nis the number density of particles (welet 7 = kg = 1throughout). The effects of a realistic non-ideal
equation of state on collective mode behavior in a viscous fluid typically require numerical treatments such as
those presented in [23].

Moreover, we assume 7/ P to be constant. While this assumption is not expected to hold in the low density
corona, it will allow analytic access to the spatial structure, frequency and damping rates of collective modes
using a second-order hydrodynamics framework. More accurate numerical studies including temperature and
density effects on the shear viscosity are left for future work.

Finally, in order to access collective mode behavior of the gas, we will assume small perturbations around a
time independent equilibrium state characterized by p, (x), uy = 0, and T, which are solutions to
equations (1)—(7). Thus, weset p = p,(1 + 6p), u = éu,and T = T + 6T with 6p, ou, 6T assumed to be
small. Working in the frequency domain we have dp (t, x) = e “!§p (x), with similar expressions holding for
du and 6T . To simplify notation, from now on perturbations such as 6p denote quantities where the time
dependence has been factored out, unless otherwise stated.

2.3. Linearization
Expanding equations (1)—(4) to linear order in perturbations and utilize equations (5)—(7) assuming constant
1,/ P, we have

—iwpybp + Oi(pyéu;) = 0, (8
—iwpybu; + 3j(M5ij + 57fij) _ 5/)5 =0, 9)
m m
T T T
_iwiw + 8j(6uj Opo) _ poﬂguk =0, (10)
2 m m m
. _ nTp, 2
(1 - lTﬂw)(SW,'j = —— 8i6uj + 81'(51/[,' — —6ij8k5uk . (11)
P m d

We refer to equations (8)—(10) with equation (11) substituted into equation (9) as the linearized second-order
hydrodynamics equations. It is straightforward to show that these equations exactly match those arising from
linearizing the anisotropic hydrodynamics framework of [13].

2.4. Configuration space expansion
For a harmonic trapping potential with trapping frequency w , the solution for the equilibrium density

—(2 + yHymwi
2Ty
such that all distances are measured in units of (Tj / (mw? ))!/2, times are measured in units of w7 ', temperatures

configuration is given by p, (x) = p, exp [ ] In the following, we will be using dimensionless units

in units of Ty, and densities in units of m@/2+1w? /T2 In these units the equilibrium solution is given by

7(x2+y2)

p()(x) = AOe 2, uO(x) = O) TE)(X) = 1)

where A, is a dimensionless positive number setting the number of particles (see the discussion in appendix C).

In the absence of a trapping potential, it is usually convenient to perform a spatial Fourier transform of
equations (8)—(11) in order to obtain the collective modes of the system. However, here we are interested in a
harmonic trapping potential (linear trapping force) which breaks translation symmetry. Thus, it is more
convenient to use a different expansion basis for the perturbations. Here we choose to expand perturbations in
tensor Hermite polynomials, though any complete basis of linearly independent polynomials will do. The Nth
order tensor Hermite polynomials in d spatial dimensions are given by the Rodrigues formula [24]

_1)N N :
HY . (x) _ (DT 08 g = : et 12
i in g(x) Oxhdx™..0x™N (2m)2

where i, € {1, 2, ...d}for k = {1, 2,...,N}. The tensor Hermite polynomials are orthogonal with respect to a
Gaussian weight which makes them particularly useful for the case of a harmonic trapping potential. In
particular, they satisfy the orthonormality condition

fdng(X)H-(N) (X H]%)mjm(x) = ONM (i §ias ., §iniv + all permutations of j's). (13)

i1y iN
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Figure 1. Time snap shots of density profiles and subsequent momentum density (pu) for the oscillatory modesin d = 2. Note that
the center of the monopole mode is at a lower density than the centers of the other modes since it is volume changing and has a larger
radius than the equilibrium configuration. The damping rate of higher-order modes is more sensitive to 7)/P as discussed in the text.
Also note that non-hydrodynamic modes share the same spatial structure as their hydrodynamic counterpart.

Assuming translational invariance along the z-axis in d = 3 spatial dimensions, the expansion inbothd = 2 and
d = 3 will involve only the tensor Hermite polynomials for d = 2. Recalling the assumption that the gas is
isothermal, the polynomial expansion of perturbations is then given by

N M+1
Sp =3 Y ap Hy ®),

M=0 j=1
N M+1
Sux = > Zb(M)H(M)(x)
M=0 j=1
0T (x) = ¢, (14)

where, in the sum over j, m; is understood to run over all combinations of indices unique up to permutations.
For example, if M = 2 the second sum runs over m = {(1, 1), (1, 2), (2, 2) }, while (2, 1) is excluded. The
reason for this restriction is that H (x) is fully symmetric in the indices as can be seen from equation (12). One
should also note that in equation (14), b%" is used as shorthand for the polynomial coefficients of all
components of u, and for a given M and m is a column vector with d components.

Let us now discuss the details of accessing the collective modes whose spatial structure is associated with
polynomials of low degree (‘low-lying modes’). Substituting equation (14) truncated at polynomial order N into
the linearized second-order hydrodynamics equations and taking projections onto different tensor Hermite
polynomials of order K < N we obtain a matrix equation for the polynomial coefficients in equation (14). The
(complex) collective mode frequencies @ are then obtained from requiring a non-trivial null-space of this
matrix, and subsequently the spatial structures are obtained from the corresponding null-vectors.

3. Collective mode solutionsind = 2

Results for the density and velocity of low-lying collective modes in d = 2 are shown in figure 1. In particular, we
find a breathing (monopole) mode which corresponds to a cylindrically symmetric oscillatory change in cloud
volume, a sloshing (or dipole) mode where the center of mass of the cloud oscillates about the trap center, a
quadrupole mode which is elliptical in shape, and higher-order modes corresponding to higher-order geometric

4
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Table 1. Frequencies and damping ratesind = 2 from
linearized second-order hydrodynamics assuming

%, T, < 1. The hydrodynamic mode damping rates
depend on 7)/P times a prefactor which increases with
mode order. Note that for d = 2 there is no non-
hydrodynamic sloshing or breathing mode.

w Ir

Number (Zero mode) 0 0
Temperature (Zero mode) 0 0
Rotation (Zero mode) 0 0
Breathing (Monopole) 2 0
Sloshing (Dipole) 1 0
Quadrupole NG} %
Hexapole J3 2%
Octupole 2 3%
Decapole J5 4%
Non-hydrodynamic quadrupole 0 TL - 2%
Non-hydrodynamic hexapole 0 Ti — 4%
Non-hydrodynamic octupole 0 TL — %
Non- hydrodynamic decapole 0 Ti — 8%

shapes. Note that the spatial structure of these collective modes are similar to those reported in [15]. More
detailed information about the d = 2 collective modes can be found in appendix A.

The collective mode frequencies wand damping rates I are given as the real and imaginary parts of roots of
polynomials, which generally do not admit simple closed form expressions. Hence, in table 1 we choose to report
expressions for the complex frequencies and spatial mode structure from second-order hydrodynamics for the
low-lying modes in the hydrodynamic limit /P < land 7, < 1 (assuming that 7,; and /P are of the same
order of magnitude), in which case simple analytic expressions can be obtained. In addition to the modes shown
in figure 1 there are three modes in table 1 which have zero complex frequency. The first corresponds to a change
in total particle number, the second corresponds to a change in temperature and width of the cloud, and the
third ‘zero mode’ is simply a rotation of the fluid about the central axis. While they are required for the mode
amplitude analysis (see section 5), the role of the first two of these zero frequency modes is relatively
uninteresting. Hence, we relegate detailed discussion of these modes to appendix C.

The rows of table 1 starting with the number mode and ending with the decapole mode are all hydrodynamic
modes. We note that at order O(n/P) the results for these modes match those from an analysis of the mode
frequencies of the Navier-Stokes equations at the same order. However, for values of 1)/ P where corrections to
the hydrodynamic limit become significant, the frequencies found from the Navier-Stokes equations and
second-order hydrodynamics disagree. In figure 2 we show the full dependence of the hydrodynamic mode
frequencies and damping rates on 77/ P (assuming 7, = 17/P based on kinetic theory [22, 25, 26]). Note that the
result of second-order hydrodynamics for the quadrupole mode exactly matches the result from kinetic theory
when setting 7, = 7r = 1/P [23,27].

Furthermore, results shown in in table 1 demonstrate that the hydrodynamic mode damping rates depend
on 7)/P times a prefactor which increases with mode order. This is completely analogous to what has been
observed in experiments on relativistic ion collisions, where simultaneous measurements of multiple modes
have been used to obtain strong constraints on the value of 77/s, see [28]. While higher-order modes have not yet
been studied in experiment, it is conceivable that measuring their damping rates could lead to a similarly strong
experimental constraint on shear viscosity in the unitary Fermi gas. We are not aware of this approach having
been suggested elsewhere in the literature. When aiming for using higher-order modes to analyze shear viscosity
in Fermi gases we recall that the present analysis is based on a linear response treatment. Quantitative analysis of
higher-order flows will, however, require the inclusion of nonlinear effects, especially for analysis of flows
beyond hexapolar order due to mode mixing. For this reason, we suggest the hexapolar mode as a prime
candidate for the use of higher-order modes to extract shear viscosity.

Finally, table 1 also indicates the presence of non-hydrodynamic modes (e.g. modes not present in a Navier-
Stokes description). The physics of non-hydrodynamic modes is largely unexplored (see [29, 30] for a brief
discussion of the topic in the context of cold quantum gases). Results shown in table 1 imply that several such
non-hydrodynamic modes exist, all of which are purely damped in second-order hydrodynamics. The non-
hydrodynamic mode damping rates are sensitive to 7, and 77/P. Thus the value of 7, could be extracted
experimentally by measuring any of the non-hydrodynamic mode damping rates in combination with a
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Figure 2. Two-dimensional hydrodynamic collective mode frequencies w (left panel) and damping rates I (right panel) as a function
of 1)/P. Subscripts denote mode name (monopole ‘B’; dipole ‘S’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). For the
purpose of the figures the kinetic theory relation 7,, = 7/P has been used.

Non-hydrodynamic Mode Damping Rates in d=2
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Figure 3. Two-dimensional non-hydrodynamic collective mode damping rates I" as a function of 1) /P (using 7, = 7/P). Subscripts
denote mode name (quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). Dotted line is I'"** = 1/7;; (see [29]). Note that in
d = 2 there is no non-hydrodynamic sloshing or breathing mode.

hydrodynamic mode damping rate required to determine %. In figure 3, non-hydrodynamic damping rates are

shown as a function of 1/P when setting 7, = 7/P.

4. Collective mode solutionsind = 3

In the case of a three-dimensional gas in a harmonic trap with trapping frequencies w, < wyx = wj, the resulting
gas cloud takes on an elongated cigar shaped geometry. For w, = 0, the configuration space expansion

equation (14) can be applied because there is no dependence on the coordinate z if we assume a translationally
invariant system along the z-axis. In this case, the collective mode structures in d = 3 are qualitatively similar to
those obtained in the two-dimensional case, see the discussion in [31, 32].

We report results for the low-lying modes in the limit 77/P, 7, < 1in table 2 whereas the full dependence of
frequencies and damping rates on % is shown in figures 4, 5 for the case 7, = 1/P. The only qualitative
difference with respect to the d = 2 case is that the breathing mode in d = 3 has a different frequency, anon-
zero damping rate, and there is now a non-hydrodynamic breathing mode. See appendix B for more details
about the spatial structure of the d = 3 collective modes.

It should be pointed out that, while second-order hydrodynamics predicts purely damped non-
hydrodynamic modes for both d = 2, 3, more general (string-theory-based) calculations suggest that there
should be a non-vanishing frequency component in the case of d = 3 [30]. It would be interesting to measure
non-hydrodynamic mode frequencies and damping rates in order to describe transport beyond Navier-Stokes

on a quantitative level.
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Table 2. Frequencies and damping ratesind = 3 from
linearized second-order hydrodynamics assuming

%, Tr < 1. The hydrodynamic mode damping rates
depend on 7/ P times a prefactor with increases with mode
order. Note that there is no non-hydrodynamic sloshing
mode, but, unlike for d = 2, there is anon-hydrodynamic
breathing mode ford = 3.

T
Temperature (Zero mode) 0 0
Number (Zero mode) 0 0
Rotation (Zero mode) 0 0
. 10 n
Breathing (Monopole) \/; 35
Sloshing (Dipole) 1 0
Quadrupole V2 %
n
Hexapole J3 2;
Octupole 2 3%
Decapole J5 4%
Non-hydrodynamic breathing 0 i - %
Non-hydrodynamic quadrupole 0 Tl—~ - 2%
Non-hydrodynamic hexapole 0 i - 4%
Non-hydrodynamic octupole 0 le ~ 6
Non-hydrodynamic decapole 0 % - 8%
Hydrodynamic Mode Frequencies in d=3 Hydrodynamic Mode Damping Rates in d=3
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Figure 4. Three-dimensional hydrodynamic collective mode frequencies w (left panel) and damping rates I (right panel) as a function
of 1)/P. Subscripts denote mode name (monopole ‘B’; dipole ‘S’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). For the
purpose of the figures the kinetic theory relation 7, = 7/P has been used.

5. Mode amplitudes calculations

In this section, experimentally relevant scenarios to excite the collective modes of the previous sections are
discussed, and the corresponding mode amplitudes are calculated. For simplicity, we assume 7, = 7/P in the
following. In particular, we focus on studying the excitation of the non-hydrodynamic quadrupole (ind = 2, 3)
and non-hydrodynamic breathing (in d = 3) modes, leaving a study of higher-order modes for future work. For
simplicity, only simple trap quenches (rapid changes in trap configuration) are considered. We will assume the
gas cloud to start in an equilibrium configuration of a (possibly biaxial, i.e. wy ijnit # Wy, init) harmonic trap. At
some initial time, a rapid quench will bring the trap configuration into a final harmonic form, which is assumed
to be isotropic in the x-y plane with trapping frequency wy inal = Wy, final = 1in our units.

In the case of Navier-Stokes equations, initial conditions are fully specified through the initial density p ;
velocity Winit, and temperature T'n; or appropriate time derivatives of such quantities. However, second-order
hydrodynamics treats the stress tensor 7;; as a hydrodynamic variable, so, in addition, an initial condition 7 jni¢
or its time derivative needs to be specified.

For equilibrium initial conditions of a general biaxial harmonic trap with trapping force given by
F=—9x—ywe have
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Non-hydrodynamic Mode Damping Rates in d=3

0.1

n/P

Figure 5. Three-dimensional non-hydrodynamic collective mode damping rates I as a function of 7/P (using 7, = 1/P). Subscripts
denote mode name (monopole ‘B’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). Dotted lineis I = 1/7; (see [29]).
Note thatind = 2 there is no non-hydrodynamic sloshing mode, but there is a non-hydrodynamic breathing mode.
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Figure 6. Left: absolute value of the (dimensionless) breathing (‘B’) mode amplitude as a function the quench strength parameter ~ for
anisotropic trap quenchind = 2. Results are independent of 1. The mode amplitude agrees perfectly with the result from an exact

quantum mechanical scaling solution (‘Moroz 2012) derived in [33]. Right: absolute value of the (dimensionless) breathing (‘B’),
hydrodynamic (‘Q;") and non-hydrodynamic (‘Q,,’) quadrupole mode amplitudes as a function the quench strength parameter ,

for an anisotropic trap quench ind = 2. Results shown are for % = 0.5. Note that the temperature mode amplitude (not shown)
matches the breathing mode amplitude for both the isotropic and anisotropic trap quenchind = 2.

—(nxx2+nyy2)
Pinit(X) = Aje T, (15)
Ujpit = 0, (16)
7T1j,init == 0’ (17)

where T}y also needs to be specified. Initial equilibrium implies the condition v, = w?i; = 0; / Tini so that the
cloud width is fully specified once ~, for i = x, y and Ty are fixed. In addition, equilibrium of the initial trap
allows us to take 7 irit = 0. The mode amplitudes can then be obtained by projecting initial conditions onto the
collective modes found in the preceding sections (see appendix C for details of the calculation).

Isotropic trap quench ind = 2. We first consider the case of an isotropic trap quench v, = 7, = vin d=2
andassume A; /Ay = 1and T, = 1 for simplicity. Although this case does not exhibit non-hydrodynamic or
higher-order collective mode excitation, it does allow us to make direct comparison to results from the literature
for the breathing mode excitation amplitude. This type of initial condition corresponds to a rotationally
symmetric trap quench with no initial fluid angular momentum. Symmetry then implies that only the number,
temperature, and breathing modes can be excited (see table 1), and the initial amplitude for these modes are
readily calculated. Figure 6 displays the (dimensionless) breathing mode amplitude as a function of the quench
strength . (Note that the amplitude of the temperature mode is identical to the breathing mode amplitude in
this case.) The number mode is not excited since the number of atoms taken in the initial condition match the
number of atoms we assumed in our final trap equilibrium (4; /Ag = 1). The amplitude of the breathing mode
for the isotropic trap quench is compared to the results from an exact quantum mechanical scaling solution by
Moroz [33] in figure 6. As can be seen from this figure, there is exact agreement between the calculations for all
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Amplitude Ratio in d=2 Non-hydrodynamic Damping Rate in d=2
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Figure 7. Comparison of second-order hydro theory (lines) and experimental (‘Brewer et al 2015’) results as a function of 7)/P foran
anisotropic trap quench (results independent of ). Left: ratio of non-hydro to hydro quadrupole mode amplitudes. Right: non-
hydrodynamic quadrupole mode damping rate I'. Experimental data is from the reanalysis done in [29].

strength values . Note that the amplitudes in this case are independent of 7/ P since for d = 2, the breathing
mode does not couple to the shear stress tensor ;.

Anisotropic trap quench ind = 2. We perform a similar analysis to that above, considering the case
Ai/Ay = 1,and Ty = 1, but now taking ~, 7, =1 which corresponds to an anisotropic trap quench. The
mode amplitudes in this case depend on the value of 77/P. In this case, the temperature, breathing and
quadrupole modes are excited. Figure 6 shows the absolute value of the mode amplitudes for the hydrodynamic
breathing and quadrupole modes, as well as the non-hydrodynamic quadrupole mode as a function of the
quench strength 7,-Not surprisingly, figure 6 shows that the anisotropic trap quench gives rise to a considerably
larger quadrupole mode amplitude (both hydrodynamic and non-hydrodynamic) than the amplitude of the
breathing mode.

For a potential experimental observation of the non-hydrodynamic quadrupole mode, it is interesting to
consider the relative amplitude of this non-hydrodynamic mode to the (readily observable) hydrodynamic
quadrupole mode. The (absolute) amplitude ratio calculated using the above anisotropic trap quench initial
condition is plotted in figure 7 as a function of 77/P. One finds that the non-hydrodynamic mode amplitude is
monotonically increasing as a function of 77/ P. This is plausible given that for small viscosities one expects the
hydrodynamic mode to be dominant, whereas one expects the non-hydrodynamic mode to dominate in the
ballistic /P — oo limit.

The present calculation is compared to mode amplitude ratios extracted from experimental data [20] in [29].
To compare non-hydrodynamic damping rate data and theory, we follow the procedure used in [29] by
employing the approximate kinetic theory relation

: (18)

2
N K[l + 4In (kpa)]’
p T

where K ~ 0.12 in order to relate the experimentally determined kra to 1/P (see discussion in [23, 29] and
references therein for more details on this relation). Using this procedure, one observes qualitative agreement of
the amplitude ratios between calculation and experimental data in figure 7 (left panel). In addition, one can
compare the non-hydrodynamic quadrupole mode damping rate, finding reasonable agreement (see right panel
of figure 7).

There are several possible reasons why a quantitative agreement between second-order hydro and
experiment in figure 7 should not be expected. For instance, the present theory calculations neglect the presence
of a pseudogap phase and pairing correlations (see e.g. [27, 34—37] on this topic). Furthermore, it is likely that the
quantitative disagreement in figure 7 is at least in part due to the assumptions discussed in section 2, such as
small perturbations, constant 7/ P, and ideal equation of state. In particular, for the strongly interacting quasi-
two-dimensional Fermi gas near the pseudogap temperature T%, significant modification of the equation of state
has been predicted and observed, see [34]. Studies aiming for achieving a quantitative agreement most likely will
have to rely on full numerical solutions, such as e.g. those discussed in [ 14, 23], which we leave for future work.
In addition, our framework only admits a single non-hydrodynamic mode for each of the collective modes.
While this may be appropriate in the kinetic theory regime, other approaches such as that of [30] indicate that
our model may be too simple to capture quantitative features of early time dynamics. Finally, we note that the
data shown in figure 7 was extracted from experiments that were not designed with the purpose of considering
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Isotropic Trap Quench in d=3 Amplitude Ratio in d=3
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Figure 8. Left: absolute value of the (dimensionless) hydrodynamic breathing (‘B;’), non-hydrodynamic breathing (‘B,,;,’) and
temperature (“T”) modes as a function the quench strength parameter 7 for an isotropic trap quench ind = 3. Results shown are for
% = 0.5. Right: ratio of the non-hydrodynamic to hydrodynamic breathing mode amplitudes as a function of 7/ P for an isotropic
trap quenchind = 3 (resultindependent of 7). The maximal ratio of about 20% is roughly consistent with the results of [29], and
suggests the possibility of experimental observation.

early time dynamics. This may contribute to the large uncertainty of the existing data, as well as possibly
introducing significant systematic error.

Isotropic trap quenchin d = 3 For the case of an isotropic trap quench (A; /Ay = 1, Tiy = 1)ind = 3,
results for the (hydrodynamic and non-hydrodynamic) breathing mode and temperature mode amplitudes are
shown in figure 8. Unlike the case of d = 2, the three-dimensional geometry is capable of supporting a non-
hydrodynamic breathing mode; furthermore, we find the temperature mode amplitude to differ from the
(hydrodynamic) breathing mode amplitude.

The right panel of figure 8 shows the ratio of non-hydrodynamic to hydrodynamic breathing mode
amplitudes, which reaches up to about 20% for large enough 7/P. It is interesting to note that the apparent
saturation of this ratio at about 20% is consistent with the amplitude ratio from [29], extracted from
experimental datain [31].(Note that in the experiment of [31], the gas was released from a symmetric trap,
allowed to expand for a short period, and then recaptured in a symmetric trapping potential, which is a different
protocol than the trap quench considered here. For this reason we do not attempt a direct comparison to mode
amplitudes of [29] in this case.)

6. Conclusion

We have utilized a second-order hydrodynamics framework in order to gain analytic insight into the collective
response of Fermi gases in both two-dimensional (‘pancake’) and three-dimensional (‘cigar’) trap geometries.
Our results demonstrate a number of interesting features which may be reasonably expected to qualitatively
describe experimental results. In some cases we even expect quantitative agreement, such as was the case for a
Fermi gas undergoing an isotropic trap quench where we found our results to match those obtained from an
exact quantum mechanical scaling solution [33].

For instance, our analysis demonstrates that the damping rate of the volume conserving higher-harmonic
modes is proportional to the shear viscosity times the harmonic mode number (i.e. the mode winding number
w, see appendix A). Similar features have been predicted and experimentally observed in the context of
relativistic heavy-ion collisions, see [28, 38]. While higher-order mode excitations likely result in weaker signal-
to-noise ratio, our work suggests a potential experimental avenue towards a precision extraction of shear
viscosity in cold Fermi gases by analogy with the relativistic heavy-ion results.

Our study also discusses the presence, damping rates, and expected mode amplitudes of non-hydrodynamic
modes in trapped Fermi gases in detail. Recent studies on these non-hydrodynamic modes suggest they could
provide information about the presence of quasi-particles in strongly coupled Fermi gases as well as exhibit deep
connections between atomic physics and string theory [29, 30]. The present results for the non-hydrodynamic
mode amplitudes suggest that non-hydrodynamic modes should be accessible by state-of-the-art cold Fermi gas
experiments.

There are a number of ways that the results presented here can be generalized and improved. For instance,
we plan to study the case of collective modes for uniform density and temperature equilibrium configurations
(‘Fermi gas in a box’), as well as anisotropic trap geometries in the future. Furthermore, the availability of fully
numerical second-order hydrodynamic algorithms [13, 23] will allow relaxing the present assumptions of
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Table Al. Spatial structure of the various modes for d = 2 expressed in terms of the normalized complex mode
frequencies. Note that the tilted modes denoted Tilted- or T- for short in the table can be found by an appropriate rotation

of coordinates.

bp Ouy ou, oT
Number (Zero mode) 1 0 0 0
Temp. (Zero mode) x>+ yr—2 0 0 2
Rotation (Zero mode) 0 y —Xx 0
Breathing (Monopole) x2+yr =2 —ixwp —1iyp -2
x-axis sloshing (Dipole) x —iwg 0 0
y-axis sloshing (Dipole) y 0 —iwg 0
Quadrupole y? — x? iXq —liylq 0
Tilted quadrupole xy — i%@Q 7%@(2 0
Hexapole y® — 3x%y 2ixywy —i(y? — xH oy 0
T-Hexapole - 4+ xp? 71'MD i 0

13 3 Y B H 3 WH
Octupole xt — 6x¥y? + y* Si(—% + xyz)@o —i(y* = 3x¥)wo 0
2,3 3342
T-Octupole xy® — Xy '—(3“' y)~o {30 43xy )Qo 0
Decapole y> — 10x%® + 5xty 41(3?/ —x y)wD —i(y* — 6x%? + xHIp 0
5 _ 3733,

T-Decapole % — 2x%? + xyt w p 74iM$D 0
Non-hydro quad. y? — x? ist}’ —iywgh 0
T-Non-hydro quad. xy —iZ ~3h —1xo~.)"h 0
Non-hydro hex. y3 — 3x%y iy —i(yr = D) 0
Non-hydro oct. xt — 6x?y? + yt 3i(77 + xy )u’“}"h —i(y® — 3xY) et 0
Non-hydro dec. y> — 10x%® + 5x%y 4i(xy? — xPy)wpt —i(y* — 6xy? + xhHp 0

constant 77/ P, ideal equation of state, and small perturbations around equilibrium in order to aim for a fully
quantitative exploration of the collective modes of trapped Fermi gases.
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Appendix A. Spatial mode structure ford = 2

In this appendix we collect the spatial mode structure for the lowlying modesind = 2 (see table A1). Itis
interesting to note that, of the modes found, only the temperature mode and breathing mode are associated with
anon-zero value of 6T This is because they are the only two modes which change the volume of the cloud, and
hence can lead to heating and cooling of the gas. Also note that each irrotational volume conserving mode (here:
dipole, quadrupole, hexapole, octupole, and decapole modes) has two independent realizations related by an
appropriate coordinate transformation. For example, the quadrupole mode and tilted quadrupole mode are
related by a rotation of 45°. In general, we can assign a mode the winding number w of the associated velocity
field u on acircle centered on the origin. This quantity merely counts the number of full rotations made when
following a vector around the prescribed circle. For example, Wpip = 0, Wquad = 1, WHex = 2,... 50 that the
angle of coordinate rotations to get the second independent mode for a given mode is conveniently given by

Ap=—" Al
Yo (D

Of course, any rotation through an angle in the range Af € (0, 7w/ (w + 1)) will produce an equally valid
independent mode, but the angle in equation (A1) provides a uniform approach to finding an independent
mode from one already found. This provides a connection to the approach in [29] where inequivalent
polynomials under rotation up to quadrupole mode were considered in the second-order hydrodynamics
framework used here.
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Table B1. Spatial structure of the various modes for d = 3 expressed in terms of the normalized complex mode

frequencies. Note that the tilted modes denoted Tilted- or T- for short in the table can be found by an appropriate

rotation of coordinates.

op Oy ouy 6T
Number (Zero mode) 1 0 0 0
Temp. (Zero mode) xX+y?—2 0 0 2
Rotation (Zero mode) 0 y —x 0
Breathing (Monopole) x2+y?-2 —ix@p —iyWp 7§
x-axis sloshing (Dipole) x —ig 0 0
y-axis sloshing (Dipole) y 0 —il0g 0
Quadrupole y? — x? ixWq —liy@q 0
Tilted quadrupole xy - i%wQ — i%GQ 0
Hexapole y? - 3x%y 2i.2xy¢?2H —i(y? — xHoy 0
T-Hexapole =% +xp? 7iL3x)u~)H 712%47);{ 0

3
Octupole xt — 6x%y? + y* 3i(—5 + 7)o —i(y? — 3x¥)@o 0
2,3 3_ 2

T-Octupole xpy? — Xy iy@o iwwo 0
Decapole y557 10x?y® + 5xty 4i(9§y3 - ;cSy)FJD —i(y* — 63§2y23+ xHap 0
T-Decapole Tyt 4%“”@ 741'@&)[) 0
Non-hydro breath. X2y -2 —ixaph —iyph —g
Non-hydro quad. y* — x? iy — iy 0
T-Non-hydro quad. xy —i%wgh —i%@éh 0
Non-hydro hex. y? — 3x%y 23ixyu~),'§h —i(y2 — )T 0
Non-hydro oct. xt — 6xy? 4 yt 3i(—5 + xy2) g —i(y® = 3xHy)u 0
Non-hydro dec. y5 — 10x%° + 5xty 4i(xy? — Xy)op —i(y* — 6x¥y? + xHTE 0

Appendix B. Spatial mode structure ford = 3

The spatial structure of modes in d = 3 are given in table B1. Results are very similar to those ford = 2 shown in
appendix A. The only differences are that for a harmonic trapping potential which is translationally invariant
along one axis and isotropic along the other two in d = 3, the breathing mode now couples to shear stresses.
Hence there is now an associated non-hydrodynamic breathing mode as well as a difference in the
corresponding temperature perturbation associated with the volume change of the cloud. Since there is no
associated velocity field for the time independent temperature zero mode, this mode is associated with a
vanishing stress tensor, and hence the mode structure is the same asin the d = 2 case. All other modes also
exhibit the same spatial and frequency structure.

Appendix C. Details of mode amplitude calculation

Given generic initial conditions on p, u, T, and m;;, one can derive a system of equations for complex mode
amplitudes (a,, + ib,) of mode n (e.g. n = ‘number’, ‘temperature’, ‘breathing’, etc.) by performing the
following projections onto a mode m:

L. 00100 = py(016p, (0

= [, dxpy00 32 Rel(a, + ibe 160, (018p,,(0), )

modes n

j};z A2 [ inie (%) ] pg (X) Otk (X)

= [, &% 3 Rel@ + ibue 5w,y () St x), (C2)
R

modes n

j}; X[ Tinie — Tl py (08T,

= [, & X Rel@, + ib)e 8T,10, (00T, (C3)
RZ

modes n
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Figure C1. Left: absolute value of the (dimensionless) number (‘N’), temperature (‘T”) and breathing (‘B’) mode amplitudes as a
function of the quench strength parameter y for an isotropic quench ind = 2 assuming A; /Ay = 1.1 > land T, = 1. Right: phase
of mode amplitude. Note the amplitude and phase of the breathing and temperature modes are identical.

jl; L X[ inie ()] 6715 ()

- f Cdx Y Rel(an + ibye 8, ()] (). (C4)
R modes n
It should be noted that as can be seen from tables 3 and 4, not all of the individual perturbations are orthogonal
(the full mode structures are, however, independent). For example, while 6pr,,, = 6p, itis not possible to
construct the full mode structure demp = { (5pTemp, OUremps OTremp) as alinear combination of the full mode
structure of the other modes. We note that as a result, care should be used when obtaining the system of
equations for the amplitudes give by evaluating equations (C1)—(C4) not to miss contributions from all the
important modes. We also point out that in general our process for finding mode structure, it is found that mode
frequencies come in pairs, one with positive and the other with negative real part. However, in allowing for a
complex amplitude and taking the real part in equations (C1)-(C4) we need only consider modes to have
positive real part of the frequency.
Let us consider a generic isotropic trap quench in d = 2 for multiple initial conditions in order to

demonstrate the role of the temperature and number modes. In this case, the amplitudes take on a fairly simple
form

= % Y (C3)
0
(1 =% = (Tiie = Dy
ar = — , (C6)
Y
(1 =5 = = Ty -
ag = )
B 4y
by = 0. (C8)

Note that the above expressions contain both phase and magnitude information, as they may be negative. We
will plot phase and amplitude separately below. Additionally, we see from equations (C5)—(C8) several features
which should be expected. To explore this, we will break up our analysis into several cases.

Case1: Ai/AO =1, Tinit =1

This is the case discussed in the main text (see section 5).

Case2: Aj/Ag = 1, Ty = 1

For this case we see from equations (C5)—(C8) that the ratio A; /A, gives rise to a non-zero amplitude of the
number mode, but leaves the location of the zero of the other two modes at v = 1. This should be expected since
this merely means thatat v = 1 we have more (A; /Ay > 1)orless (A4; /Ay < 1)atoms in the trap than what was
assumed in the equilibrium we expanded about. This should make the role of the number mode more clear.
Particularly, it is only important if for some reason we chose to expand our dynamics about an equilibrium with
adifferent number of particles than given by our initial conditions. Figure C1 shows the case with A; /A, > 1
where there are more atoms that was assumed in our expansion around equilibrium. In this case the number
mode is excited in phase (i.e. with positive amplitude) as one would expect, while there is no change in the
breathing or termperature mode amplitudes.
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Figure C2. Left: absolute value of the (dimensionless) temperature (‘T”) and breathing (‘B’) mode amplitudes as a function of the
quench strength parameter -y for an isotropic quench ind = 2 assuming A; /Ap = 1and Tipi = 0.9. Right: phase of mode amplitude.

Case3: Aj/Ag= 1, Tinie = 1

For this case we see from equations (C5)—(C8) that the number mode is not excited, while the value of T}
alters the location of the zero for the temperature and breathing modes. This should be expected sinceat v = 1
the breathing mode is excited through the temperature difference. Figure C2 shows the case where Ty < 1,
demonstrating that the phase of the breathing mode vanishes at ¥ = 1 while the magnitude is non-zero. A
positive amplitude at v = 1is expected since the temperature is below its equilibrium value for the given cloud
radius so the cloud will reduce its size to try to reach equilibrium.
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