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Abstract
Utilizing a second-order hydrodynamics formalism, the dispersion relations for the frequencies and
damping rates of collective oscillations as well as spatial structure of thesemodes up to the decapole
oscillation in both two- and three- dimensional gas geometries are calculated. In addition to higher-
ordermodes, the formalism also gives rise to purely damped ‘non-hydrodynamic’modes.We
calculate the amplitude of the variousmodes for both symmetric and asymmetric trap quenches,
finding excellent agreementwith an exact quantummechanical calculation.Wefind that higher-order
hydrodynamicmodes aremore sensitive to the value of shear viscosity, whichmay be of interest for
the precision extraction of transport coefficients in Fermi gas systems.

1. Introduction

Strongly interacting quantum fluids (SIQFs) such as highTc superconductors [1], clean graphene [2], the quark-
gluon plasma [3], and Fermi gases tuned to a Feschbach resonance [4] seem to lack a description in terms of
quasi-particle degrees of freedom. This has fueled interest in developing new tools to understand the transport
properties of these fluids, as well as trying to experimentally determine those propertiesmore precisely.

As of yet, one of the cleanest experimental realizations of SIQFs is a Fermi gas tuned to a Feschbach
resonance. Fermi gases offer unprecedented control of amultitude of properties such as interaction strength,
system geometry, spin imbalance [5, 6], andmass imbalance [7]. In the case of a spin andmass balanced gas,
there have been a number experiments aimed at the extraction of shear viscosity [8–11], and—to a lesser extent
—bulk viscosity [12].

TheNavier-Stokes equations provide a relatively straightforwardmodel for the dependence of cloud
expansion and collective oscillation phenomena on transport coefficients,making them a seemingly ideal
candidate for extraction of such coefficients. Yet, in the low density corona of trapped atom gases the localmean
free path becomes large, and hence one cannot expect theNavier-Stokes equations to apply. This, as well as
uncertainties arising e.g. from trap averaging, gives rise to a large systematic error in transport coefficients thus
extracted from experimental data. Hence a theory which can address both the hydrodynamic behavior of the
high density region aswell as the lowdensity corona of the cloud is desirable. It has been shown that by including
extra ‘non-hydrodynamic’ degrees of freedom in afluid dynamical description, termed anisotropic fluid
dynamics, one can obtain a smooth crossover betweenNavier-Stokes dynamics in the high density core of the
gas cloud and kinetic theory in the low density corona [13]. This theory has been recently used to determine the
shear viscosity in the high temperature regimewith an error offive percent by comparing experimental data for
an expanding cloud to an anisotropic hydrodynamic description [14]. Similar precision determinations for
transport properties at lower temperatures, e.g. close to the superfluid transition, are still outstanding.

This present work is related to studies using anisotropic hydrodynamics in the sense that wewill also employ
a hydrodynamic description beyondNavier-Stokes (‘second-order hydrodynamics’) in order to study collective
oscillations of harmonically trapped Fermi gases above the super-fluid transition ( >T Tc). In the linear
response regimewe are considering in this work, it turns out that the second-order and anisotropic
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hydrodynamic equations ofmotion are identical.Wewill refer to our approach as second-order hydrodynamics
to simplify the discussion, but the only difference to an anisotropic hydrodynamics frameworkwill be in name.

Ourwork is closely related to [15], and inmany aspects is complementary to the results therein. In this work,
the focus is on the effects arising from anon-vanishing shear viscosity, andwe limit our consideration to ideal
equation of state, whereas in [15] collectivemodes for polytropic equations of state and zero shear viscosity were
studied.

The outline of the paper is as follows: we begin by describing our theoretical framework of second-order
hydrodynamics in section 2.We then proceed to calculate the frequencies, damping rates, and spatial structures
for the collectivemodes of harmonically trapped gases in both two and three dimensions in sections 3, 4.We
calculatemode excitation amplitudes for experimentally relevant conditions in section 5 and offer our
conclusions in section 6. Detailed results on the spatialmode structure andmode amplitude calculations can be
found in three appendices.

2. Second-order hydrodynamics

TheNavier-Stokes equations are conservation equations formass,momentum, and energy. To close the system
of equations, constitutive relations between the viscous stresses and fluid variables need to supplied. ForNavier-
Stokes, the viscous stress tensor pij is set tofirst-order gradients of the fluid dynamic variables,mass density ρ,
flow velocity u, and temperatureT.While widely successful inmany fluid dynamics applications, such afirst
order gradient expansion suffers from certain problems, in particular, in systemswhere the fluid speed
approaches the speed of light [16]. Thus,more recently a second-order hydrodynamic framework has been
developedwhich—true to its name—includes second-order gradients in the expansion of the stress tensor, with
appropriate new second-order transport coefficients. Unlike the similar framework of the Burnett equations,
second-order hydrodynamics in addition contains a resummation procedure which ensures that it is a
consistent, causal and instability-free generalization ofNavier-Stokes (see the reviews in [4, 17]). For the case of a
unitary Fermi gas, scale-invariance seems to be a good symmetry, and the resulting non-relativistic formof the
second-order hydrodynamic equations has been derived in [18].

2.1. Basic equations
In the followingwe consider what ismaybe the simplest possible second-order hydrodynamics formalism to
describe afluid in d spatial dimensionswith a trapping force F. Namely, we utilize a relaxation equation for the
stress tensor. In this case ourfluid equations are given by

r r¶ + ¶ =u 0, 1t i i( ) ( )

r r d p r¶ + ¶ + + =u u u P
F

m
, 2t i j i j ij ij

i( ) ( ) ( )

  p r¶ + ¶ + + =u P u
F

m
u , 3t j j ij i

k
k[ ( ) ] ( )

p t p hs+ ¶ = -p , 4ij t ij ij ( )

where ò is the energy density, η is the shear viscosity, and tp is the relaxation time for the stress tensor. In the
above equations,  and sij are specified in terms of thefluid velocity,mass density and pressure P as

 r
=

+ dPu

2
, 5

2( ) ( )

⎡
⎣⎢

⎤
⎦⎥s d= ¶ + ¶ - ¶u u

d
u

2
. 6ij i j j i ij k k ( )

Note that equation (5) corresponds to the equation of state for a scale-invariant system. It is easy to show that the
familiarNavier-Stokes equations are recovered upon taking the limit t p 0 in equation (4).

2.2. Assumptions
For simplicity, we have assumed the bulk viscosity and heat conductivity coefficients to vanish. The assumption
of vanishing bulk viscosity is consistent withmeasurements in two dimensions [19, 20]. Furthermore,
calculations of bulk viscosity in d=3 imply that the value of bulk viscosity near unitarity in the high
temperature limit should be small [21]. Sincewewill consider a Fermi gas in the normal phase, i.e. above the
superfluid transition temperatureTc, taking the bulk viscosity to vanish should be a good approximation in the
case d=3 aswell. The assumption of vanishing thermal conductivity is justified as it is already a second-order
gradient effect as discussed in [22]. Hencewe assume the gas is isothermal, but it is straightforward to see how
the procedure below can be extended to the non-isothermal case. As a consequence, the temperature is a

2
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function of time only and not of spatial coordinates. In order to obtain analytically tractable results, we
additionallymake the approximation that the gasmay be describedwith an ideal equation of state:

r
= =P nT

T

m
, 7( )

where n is the number density of particles (we let  = =k 1B throughout). The effects of a realistic non-ideal
equation of state on collectivemode behavior in a viscousfluid typically require numerical treatments such as
those presented in [23].

Moreover, we assume h P to be constant.While this assumption is not expected to hold in the low density
corona, it will allow analytic access to the spatial structure, frequency and damping rates of collectivemodes
using a second-order hydrodynamics framework.More accurate numerical studies including temperature and
density effects on the shear viscosity are left for future work.

Finally, in order to access collectivemode behavior of the gas, wewill assume small perturbations around a
time independent equilibrium state characterized by r x0 ( ), =u 00 , andT0 which are solutions to
equations (1)–(7). Thus, we set r r dr= +10 ( ), d=u u, and d= +T T T0 with dr d dTu, , assumed to be
small.Working in the frequency domainwe have dr dr= w-t x x, e ti( ) ( ), with similar expressions holding for
du and dT . To simplify notation, fromnowon perturbations such as dr denote quantities where the time
dependence has been factored out, unless otherwise stated.

2.3. Linearization
Expanding equations (1)–(4) to linear order in perturbations and utilize equations (5)–(7) assuming constant
h P , we have
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We refer to equations (8)–(10)with equation (11) substituted into equation (9) as the linearized second-order
hydrodynamics equations. It is straightforward to show that these equations exactlymatch those arising from
linearizing the anisotropic hydrodynamics framework of [13].

2.4. Configuration space expansion
For a harmonic trapping potential with trapping frequency ŵ , the solution for the equilibriumdensity

configuration is given by
⎡
⎣⎢

⎤
⎦⎥r r= w- + ^x exp

x y m

T0 0 2

2 2 2

0
( ) ( ) . In the following, wewill be using dimensionless units

such that all distances aremeasured in units of w^T m0
2 1 2( ( )) , times aremeasured in units of w^

-1, temperatures

in units ofT0, and densities in units of w+
^m Td d d2 1

0
2. In these units the equilibrium solution is given by

r = = =
- +

A e Tx u x x, 0, 1,0 0 0 0
x y2 2

2( ) ( ) ( )
( )

whereA0 is a dimensionless positive number setting the number of particles (see the discussion in appendix C).
In the absence of a trapping potential, it is usually convenient to perform a spatial Fourier transformof

equations (8)–(11) in order to obtain the collectivemodes of the system.However, herewe are interested in a
harmonic trapping potential (linear trapping force)which breaks translation symmetry. Thus, it ismore
convenient to use a different expansion basis for the perturbations. Herewe choose to expand perturbations in
tensorHermite polynomials, though any complete basis of linearly independent polynomials will do. TheNth
order tensorHermite polynomials in d spatial dimensions are given by the Rodrigues formula [24]

p
=

- ¶
¶ ¶ ¶

= -

g

g

x x x
g ex

x

x
xH

1

...
,

1

2
, 12i i i

N
N N

i i i... N N d

x

1 2 1 2 2

2
2( ) ( )

( )
( ) ( )

( )
( )( )

where Î ¼i d1, 2,k { } for = ¼k N1, 2, ,{ }. The tensorHermite polynomials are orthogonal with respect to a
Gaussianweight whichmakes themparticularly useful for the case of a harmonic trapping potential. In
particular, they satisfy the orthonormality condition

ò d d d d= + ¢g jx x x xd H H ... all permutations of s . 13d
i i i

N
j j j
M NM i j i j i j

... ...N M

N N
1 2 1 2

1 1 2 2( ) ( ) ( ) ( ) ( )( ) ( )
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Assuming translational invariance along the z-axis in d=3 spatial dimensions, the expansion in both d=2 and
d=3will involve only the tensorHermite polynomials for d=2. Recalling the assumption that the gas is
isothermal, the polynomial expansion of perturbations is then given by

å å

å å

dr

d

d

=

=

=

= =

+

= =

+

a

T c

x x

u x b x

x

H ,

H ,

, 14

M

N

j

M
M M

M

N

j

M
M M

m m

m m

0 1

1

0 1

1

j j

j j

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

where, in the sumover j, mj is understood to run over all combinations of indices unique up to permutations.
For example, ifM=2 the second sum runs over =m 1, 1 , 1, 2 , 2, 2{( ) ( ) ( )}, while 2, 1( ) is excluded. The
reason for this restriction is that xH M

m ( )( ) is fully symmetric in the indices as can be seen from equation (12). One
should also note that in equation (14), b M

m
( ) is used as shorthand for the polynomial coefficients of all

components of du, and for a givenM and m is a column vector with d components.
Let us nowdiscuss the details of accessing the collectivemodes whose spatial structure is associatedwith

polynomials of low degree (‘low-lyingmodes’). Substituting equation (14) truncated at polynomial orderN into
the linearized second-order hydrodynamics equations and taking projections onto different tensorHermite
polynomials of order K N we obtain amatrix equation for the polynomial coefficients in equation (14). The
(complex) collectivemode frequencies w̃ are then obtained from requiring a non-trivial null-space of this
matrix, and subsequently the spatial structures are obtained from the corresponding null-vectors.

3. Collectivemode solutions in d=2

Results for the density and velocity of low-lying collectivemodes in d=2 are shown infigure 1. In particular, we
find a breathing (monopole)modewhich corresponds to a cylindrically symmetric oscillatory change in cloud
volume, a sloshing (or dipole)modewhere the center ofmass of the cloud oscillates about the trap center, a
quadrupolemodewhich is elliptical in shape, and higher-ordermodes corresponding to higher-order geometric

Figure 1.Time snap shots of density profiles and subsequentmomentumdensity (ru) for the oscillatorymodes in d=2.Note that
the center of themonopolemode is at a lower density than the centers of the othermodes since it is volume changing and has a larger
radius than the equilibrium configuration. The damping rate of higher-ordermodes ismore sensitive to h P as discussed in the text.
Also note that non-hydrodynamicmodes share the same spatial structure as their hydrodynamic counterpart.
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shapes. Note that the spatial structure of these collectivemodes are similar to those reported in [15].More
detailed information about the d=2 collectivemodes can be found in appendix A.

The collectivemode frequenciesω and damping ratesΓ are given as the real and imaginary parts of roots of
polynomials, which generally do not admit simple closed form expressions. Hence, in table 1we choose to report
expressions for the complex frequencies and spatialmode structure from second-order hydrodynamics for the
low-lyingmodes in the hydrodynamic limit h P 1and tp  1 (assuming that tp and h P are of the same
order ofmagnitude), inwhich case simple analytic expressions can be obtained. In addition to themodes shown
infigure 1 there are threemodes in table 1which have zero complex frequency. Thefirst corresponds to a change
in total particle number, the second corresponds to a change in temperature andwidth of the cloud, and the
third ‘zeromode’ is simply a rotation of thefluid about the central axis.While they are required for themode
amplitude analysis (see section 5), the role of thefirst two of these zero frequencymodes is relatively
uninteresting. Hence, we relegate detailed discussion of thesemodes to appendix C.

The rows of table 1 startingwith the numbermode and endingwith the decapolemode are all hydrodynamic
modes.We note that at order h P( ) the results for thesemodesmatch those from an analysis of themode
frequencies of theNavier-Stokes equations at the same order. However, for values of h P where corrections to
the hydrodynamic limit become significant, the frequencies found from theNavier-Stokes equations and
second-order hydrodynamics disagree. Infigure 2we show the full dependence of the hydrodynamicmode
frequencies and damping rates on h P (assuming t h=p P based on kinetic theory [22, 25, 26]). Note that the
result of second-order hydrodynamics for the quadrupolemode exactlymatches the result fromkinetic theory
when setting t t h= =p PR [23, 27].

Furthermore, results shown in in table 1 demonstrate that the hydrodynamicmode damping rates depend
on h P times a prefactor which increases withmode order. This is completely analogous towhat has been
observed in experiments on relativistic ion collisions, where simultaneousmeasurements ofmultiplemodes
have been used to obtain strong constraints on the value of h s, see [28].While higher-ordermodes have not yet
been studied in experiment, it is conceivable thatmeasuring their damping rates could lead to a similarly strong
experimental constraint on shear viscosity in the unitary Fermi gas.We are not aware of this approach having
been suggested elsewhere in the literature.When aiming for using higher-ordermodes to analyze shear viscosity
in Fermi gases we recall that the present analysis is based on a linear response treatment. Quantitative analysis of
higher-order flowswill, however, require the inclusion of nonlinear effects, especially for analysis offlows
beyond hexapolar order due tomodemixing. For this reason, we suggest the hexapolarmode as a prime
candidate for the use of higher-ordermodes to extract shear viscosity.

Finally, table 1 also indicates the presence of non-hydrodynamicmodes (e.g.modes not present in aNavier-
Stokes description). The physics of non-hydrodynamicmodes is largely unexplored (see [29, 30] for a brief
discussion of the topic in the context of cold quantumgases). Results shown in table 1 imply that several such
non-hydrodynamicmodes exist, all of which are purely damped in second-order hydrodynamics. The non-
hydrodynamicmode damping rates are sensitive to tp and h P . Thus the value of tp could be extracted
experimentally bymeasuring any of the non-hydrodynamicmode damping rates in combinationwith a

Table 1. Frequencies and damping rates in d=2 from
linearized second-order hydrodynamics assuming

th
p , 1

P
. The hydrodynamicmode damping rates

depend on h P times a prefactor which increases with
mode order. Note that for d=2 there is no non-
hydrodynamic sloshing or breathingmode.

ω Γ

Number (Zeromode) 0 0

Temperature (Zeromode) 0 0

Rotation (Zeromode) 0 0

Breathing (Monopole) 2 0

Sloshing (Dipole) 1 0

Quadrupole 2
h
P

Hexapole 3
h2
P

Octupole 2 h3
P

Decapole 5
h4
P

Non-hydrodynamic quadrupole 0 -
t

h

p
2

P

1

Non-hydrodynamic hexapole 0 -
t

h

p
4

P

1

Non-hydrodynamic octupole 0 -
t

h

p
6

P

1

Non- hydrodynamic decapole 0 -
t

h

p
8

P

1
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hydrodynamicmode damping rate required to determine h
P
. Infigure 3, non-hydrodynamic damping rates are

shown as a function of h P when setting t h=p P .

4. Collectivemode solutions in d=3

In the case of a three-dimensional gas in a harmonic trapwith trapping frequencies w w w=z x y, the resulting
gas cloud takes on an elongated cigar shaped geometry. For w = 0z , the configuration space expansion
equation (14) can be applied because there is no dependence on the coordinate z if we assume a translationally
invariant system along the z-axis. In this case, the collectivemode structures in d=3 are qualitatively similar to
those obtained in the two-dimensional case, see the discussion in [31, 32].

We report results for the low-lyingmodes in the limit h tp P, 1 in table 2whereas the full dependence of
frequencies and damping rates on h

P
is shown in figures 4, 5 for the case t h=p P . The only qualitative

difference with respect to the d=2 case is that the breathingmode in d=3 has a different frequency, a non-
zero damping rate, and there is now a non-hydrodynamic breathingmode. See appendix B formore details
about the spatial structure of the d=3 collectivemodes.

It should be pointed out that, while second-order hydrodynamics predicts purely damped non-
hydrodynamicmodes for both d=2, 3,more general (string-theory-based) calculations suggest that there
should be a non-vanishing frequency component in the case of d=3 [30]. It would be interesting tomeasure
non-hydrodynamicmode frequencies and damping rates in order to describe transport beyondNavier-Stokes
on a quantitative level.

Figure 2.Two-dimensional hydrodynamic collectivemode frequenciesω (left panel) and damping ratesΓ (right panel) as a function
of h P . Subscripts denotemode name (monopole ‘B’; dipole ‘S’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). For the
purpose of thefigures the kinetic theory relation t h=p P has been used.

Figure 3.Two-dimensional non-hydrodynamic collectivemode damping ratesΓ as a function of h P (using t h=p P). Subscripts
denotemode name (quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). Dotted line is tG = p1nh (see [29]). Note that in
d=2 there is no non-hydrodynamic sloshing or breathingmode.
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5.Mode amplitudes calculations

In this section, experimentally relevant scenarios to excite the collectivemodes of the previous sections are
discussed, and the correspondingmode amplitudes are calculated. For simplicity, we assume t h=p P in the
following. In particular, we focus on studying the excitation of the non-hydrodynamic quadrupole (in d=2, 3)
and non-hydrodynamic breathing (in d= 3)modes, leaving a study of higher-ordermodes for futurework. For
simplicity, only simple trap quenches (rapid changes in trap configuration) are considered.Wewill assume the
gas cloud to start in an equilibrium configuration of a (possibly biaxial, i.e. w w¹x y,init ,init) harmonic trap. At
some initial time, a rapid quenchwill bring the trap configuration into afinal harmonic form,which is assumed
to be isotropic in the x-y planewith trapping frequency w w= = 1x y,final ,final in our units.

In the case ofNavier-Stokes equations, initial conditions are fully specified through the initial density r init,
velocity uinit, and temperatureT init or appropriate time derivatives of such quantities. However, second-order
hydrodynamics treats the stress tensor pij as a hydrodynamic variable, so, in addition, an initial condition pij,init

or its time derivative needs to be specified.
For equilibrium initial conditions of a general biaxial harmonic trapwith trapping force given by

g g= - -F x yx y we have

Table 2. Frequencies and damping rates in d=3 from
linearized second-order hydrodynamics assuming

th
p , 1

P
. The hydrodynamicmode damping rates

depend on h P times a prefactor with increaseswithmode
order. Note that there is no non-hydrodynamic sloshing
mode, but, unlike for d=2, there is a non-hydrodynamic
breathingmode for d=3.

ω Γ

Temperature (Zeromode) 0 0

Number (Zeromode) 0 0

Rotation (Zeromode) 0 0

Breathing (Monopole) 10

3

h
P3

Sloshing (Dipole) 1 0

Quadrupole 2 h
P

Hexapole 3
h2
P

Octupole 2
h3
P

Decapole 5
h4
P

Non-hydrodynamic breathing 0 -
t

h

p P

1 2

3

Non-hydrodynamic quadrupole 0 -
t

h

p
2

P

1

Non-hydrodynamic hexapole 0 -
t

h

p
4

P

1

Non-hydrodynamic octupole 0 -
t

h

p
6

P

1

Non-hydrodynamic decapole 0 -
t

h

p
8

P

1

Figure 4.Three-dimensional hydrodynamic collectivemode frequenciesω (left panel) and damping ratesΓ (right panel) as a function
of h P . Subscripts denotemode name (monopole ‘B’; dipole ‘S’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). For the
purpose of thefigures the kinetic theory relation t h=p P has been used.
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r =
s s- +

A ex , 15iinit

x x y y

T

2 2

2 init( ) ( )
( )

=u 0, 16init ( )

p = 0, 17ij,init ( )

whereT init also needs to be specified. Initial equilibrium implies the condition g w s= = Ti i i,init
2

init so that the
cloudwidth is fully specified once gi for =i x y, andT init arefixed. In addition, equilibriumof the initial trap
allows us to take p = 0ij,init . Themode amplitudes can then be obtained by projecting initial conditions onto the
collectivemodes found in the preceding sections (see appendix C for details of the calculation).

Isotropic trap quench in d=2.Wefirst consider the case of an isotropic trap quench g g g= ºx y in d=2
and assume =A A 1i 0 and =T 1init for simplicity. Although this case does not exhibit non-hydrodynamic or
higher-order collectivemode excitation, it does allowus tomake direct comparison to results from the literature
for the breathingmode excitation amplitude. This type of initial condition corresponds to a rotationally
symmetric trap quenchwith no initial fluid angularmomentum. Symmetry then implies that only the number,
temperature, and breathingmodes can be excited (see table 1), and the initial amplitude for thesemodes are
readily calculated. Figure 6 displays the (dimensionless) breathingmode amplitude as a function of the quench
strength γ. (Note that the amplitude of the temperaturemode is identical to the breathingmode amplitude in
this case.)The numbermode is not excited since the number of atoms taken in the initial conditionmatch the
number of atomswe assumed in ourfinal trap equilibrium ( =A A 1i 0 ). The amplitude of the breathingmode
for the isotropic trap quench is compared to the results from an exact quantummechanical scaling solution by
Moroz [33] infigure 6. As can be seen from thisfigure, there is exact agreement between the calculations for all

Figure 5.Three-dimensional non-hydrodynamic collectivemode damping ratesΓ as a function of h P (using t h=p P). Subscripts
denotemode name (monopole ‘B’; quadrupole ‘Q’; hexapole ‘H’; octupole ‘O’; decapole ‘D’). Dotted line is tG = p1nh (see [29]).
Note that in d=2 there is no non-hydrodynamic sloshingmode, but there is a non-hydrodynamic breathingmode.

Figure 6. Left: absolute value of the (dimensionless) breathing (‘B’)mode amplitude as a function the quench strength parameter γ for
an isotropic trap quench in d=2. Results are independent of h

P
. Themode amplitude agrees perfectly with the result from an exact

quantummechanical scaling solution (‘Moroz 2012’) derived in [33]. Right: absolute value of the (dimensionless) breathing (‘B’),
hydrodynamic (‘Qh’) and non-hydrodynamic (‘Qnh’) quadrupolemode amplitudes as a function the quench strength parameter gy

for an anisotropic trap quench in d=2. Results shown are for =h 0.5
P

. Note that the temperaturemode amplitude (not shown)
matches the breathingmode amplitude for both the isotropic and anisotropic trap quench in d=2.
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strength values γ. Note that the amplitudes in this case are independent of h P since for d=2, the breathing
mode does not couple to the shear stress tensor pij.

Anisotropic trap quench in d=2.We perform a similar analysis to that above, considering the case
=A A 1i 0 , and =T 1init , but now taking g g = 1x y , which corresponds to an anisotropic trap quench. The

mode amplitudes in this case depend on the value of h P . In this case, the temperature, breathing and
quadrupolemodes are excited. Figure 6 shows the absolute value of themode amplitudes for the hydrodynamic
breathing and quadrupolemodes, as well as the non-hydrodynamic quadrupolemode as a function of the
quench strength gy . Not surprisingly, figure 6 shows that the anisotropic trap quench gives rise to a considerably

larger quadrupolemode amplitude (both hydrodynamic and non-hydrodynamic) than the amplitude of the
breathingmode.

For a potential experimental observation of the non-hydrodynamic quadrupolemode, it is interesting to
consider the relative amplitude of this non-hydrodynamicmode to the (readily observable) hydrodynamic
quadrupolemode. The (absolute) amplitude ratio calculated using the above anisotropic trap quench initial
condition is plotted infigure 7 as a function of h P . One finds that the non-hydrodynamicmode amplitude is
monotonically increasing as a function of h P . This is plausible given that for small viscosities one expects the
hydrodynamicmode to be dominant, whereas one expects the non-hydrodynamicmode to dominate in the
ballistic h  ¥P limit.

The present calculation is compared tomode amplitude ratios extracted from experimental data [20] in [29].
To compare non-hydrodynamic damping rate data and theory, we follow the procedure used in [29] by
employing the approximate kinetic theory relation

⎡
⎣⎢

⎤
⎦⎥

h
p

» +
P

K
k a

1
4 ln

, 18F
2

2

( ) ( )

where »K 0.12 in order to relate the experimentally determined k aF to h P (see discussion in [23, 29] and
references therein formore details on this relation). Using this procedure, one observes qualitative agreement of
the amplitude ratios between calculation and experimental data infigure 7 (left panel). In addition, one can
compare the non-hydrodynamic quadrupolemode damping rate, finding reasonable agreement (see right panel
offigure 7).

There are several possible reasonswhy a quantitative agreement between second-order hydro and
experiment infigure 7 should not be expected. For instance, the present theory calculations neglect the presence
of a pseudogap phase and pairing correlations (see e.g. [27, 34–37] on this topic). Furthermore, it is likely that the
quantitative disagreement infigure 7 is at least in part due to the assumptions discussed in section 2, such as
small perturbations, constant h P , and ideal equation of state. In particular, for the strongly interacting quasi-
two-dimensional Fermi gas near the pseudogap temperatureT*, significantmodification of the equation of state
has been predicted and observed, see [34]. Studies aiming for achieving a quantitative agreementmost likely will
have to rely on full numerical solutions, such as e.g. those discussed in [14, 23], whichwe leave for future work.
In addition, our framework only admits a single non-hydrodynamicmode for each of the collectivemodes.
While thismay be appropriate in the kinetic theory regime, other approaches such as that of [30] indicate that
ourmodelmay be too simple to capture quantitative features of early time dynamics. Finally, we note that the
data shown infigure 7was extracted from experiments that were not designedwith the purpose of considering

Figure 7.Comparison of second-order hydro theory (lines) and experimental (‘Brewer et al 2015’) results as a function of h P for an
anisotropic trap quench (results independent of γ). Left: ratio of non-hydro to hydro quadrupolemode amplitudes. Right: non-
hydrodynamic quadrupolemode damping rateΓ. Experimental data is from the reanalysis done in [29].

9

New J. Phys. 19 (2017) 023042 WELewis and PRomatschke



early time dynamics. Thismay contribute to the large uncertainty of the existing data, as well as possibly
introducing significant systematic error.

Isotropic trap quench in d=3 For the case of an isotropic trap quench ( = =A A T1, 1i 0 init ) in d=3,
results for the (hydrodynamic and non-hydrodynamic) breathingmode and temperaturemode amplitudes are
shown infigure 8.Unlike the case of d=2, the three-dimensional geometry is capable of supporting a non-
hydrodynamic breathingmode; furthermore, we find the temperaturemode amplitude to differ from the
(hydrodynamic) breathingmode amplitude.

The right panel offigure 8 shows the ratio of non-hydrodynamic to hydrodynamic breathingmode
amplitudes, which reaches up to about 20% for large enough h P . It is interesting to note that the apparent
saturation of this ratio at about 20% is consistent with the amplitude ratio from [29], extracted from
experimental data in [31].(Note that in the experiment of [31], the gas was released from a symmetric trap,
allowed to expand for a short period, and then recaptured in a symmetric trapping potential, which is a different
protocol than the trap quench considered here. For this reasonwe do not attempt a direct comparison tomode
amplitudes of [29] in this case.)

6. Conclusion

Wehave utilized a second-order hydrodynamics framework in order to gain analytic insight into the collective
response of Fermi gases in both two-dimensional (‘pancake’) and three-dimensional (‘cigar’) trap geometries.
Our results demonstrate a number of interesting features whichmay be reasonably expected to qualitatively
describe experimental results. In some cases we even expect quantitative agreement, such aswas the case for a
Fermi gas undergoing an isotropic trap quenchwherewe found our results tomatch those obtained froman
exact quantummechanical scaling solution [33].

For instance, our analysis demonstrates that the damping rate of the volume conserving higher-harmonic
modes is proportional to the shear viscosity times the harmonicmode number (i.e. themodewinding number
w, see appendix A). Similar features have been predicted and experimentally observed in the context of
relativistic heavy-ion collisions, see [28, 38].While higher-ordermode excitations likely result in weaker signal-
to-noise ratio, ourwork suggests a potential experimental avenue towards a precision extraction of shear
viscosity in cold Fermi gases by analogywith the relativistic heavy-ion results.

Our study also discusses the presence, damping rates, and expectedmode amplitudes of non-hydrodynamic
modes in trapped Fermi gases in detail. Recent studies on these non-hydrodynamicmodes suggest they could
provide information about the presence of quasi-particles in strongly coupled Fermi gases aswell as exhibit deep
connections between atomic physics and string theory [29, 30]. The present results for the non-hydrodynamic
mode amplitudes suggest that non-hydrodynamicmodes should be accessible by state-of-the-art cold Fermi gas
experiments.

There are a number of ways that the results presented here can be generalized and improved. For instance,
we plan to study the case of collectivemodes for uniformdensity and temperature equilibrium configurations
(‘Fermi gas in a box’), as well as anisotropic trap geometries in the future. Furthermore, the availability of fully
numerical second-order hydrodynamic algorithms [13, 23]will allow relaxing the present assumptions of

Figure 8. Left: absolute value of the (dimensionless) hydrodynamic breathing (‘Bh’), non-hydrodynamic breathing (‘Bnh’) and
temperature (‘T’)modes as a function the quench strength parameter γ for an isotropic trap quench in d=3. Results shown are for
=h 0.5

P
. Right: ratio of the non-hydrodynamic to hydrodynamic breathingmode amplitudes as a function of h P for an isotropic

trap quench in d=3 (result independent of γ). Themaximal ratio of about 20% is roughly consistent with the results of [29], and
suggests the possibility of experimental observation.
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constant h P , ideal equation of state, and small perturbations around equilibrium in order to aim for a fully
quantitative exploration of the collectivemodes of trapped Fermi gases.
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AppendixA. Spatialmode structure for d=2

In this appendixwe collect the spatialmode structure for the low lyingmodes in d=2 (see table A1). It is
interesting to note that, of themodes found, only the temperaturemode and breathingmode are associatedwith
a non-zero value of dT . This is because they are the only twomodes which change the volume of the cloud, and
hence can lead to heating and cooling of the gas. Also note that each irrotational volume conservingmode (here:
dipole, quadrupole, hexapole, octupole, and decapolemodes) has two independent realizations related by an
appropriate coordinate transformation. For example, the quadrupolemode and tilted quadrupolemode are
related by a rotation of 45o. In general, we can assign amode thewinding numberw of the associated velocity
field u on a circle centered on the origin. This quantitymerely counts the number of full rotationsmadewhen
following a vector around the prescribed circle. For example, =w 0Dip , =w 1Quad , =w 2Hex ,K so that the
angle of coordinate rotations to get the second independentmode for a givenmode is conveniently given by

f
p

D =
+w2 1

. A1
( )

( )

Of course, any rotation through an angle in the range q pD Î +w0, 1( ( ))will produce an equally valid
independentmode, but the angle in equation (A1) provides a uniform approach tofinding an independent
mode fromone already found. This provides a connection to the approach in [29]where inequivalent
polynomials under rotation up to quadrupolemodewere considered in the second-order hydrodynamics
framework used here.

Table A1. Spatial structure of the variousmodes for d=2 expressed in terms of the normalized complexmode
frequencies. Note that the tiltedmodes denoted Tilted- or T- for short in the table can be found by an appropriate rotation
of coordinates.

dr dux duy dT

Number (Zeromode) 1 0 0 0

Temp. (Zeromode) + -x y 22 2 0 0 2

Rotation (Zeromode) 0 y -x 0

Breathing (Monopole) + -x y 22 2 w- xi B w- yi B −2

x-axis sloshing (Dipole) x w- i S 0 0

y-axis sloshing (Dipole) y 0 w- i S 0

Quadrupole -y x2 2 wxi Q w- yi Q 0

Tilted quadrupole xy w- i
y

Q2
w- i x

Q2
0

Hexapole -y x y33 2 wxy2i H w- - y xi H
2 2( ) 0

T-Hexapole - + xyx

3
2

3
w- - i

y x
H3

2 2( ) w- i
xy

H
2

3
0

Octupole - +x x y y64 2 2 4 w- + xy3i x
O3

2
3( ) w- - y x yi 3 O

3 2( ) 0

T-Octupole -xy x y3 3 w- i
x y y

O
3

4

2 3( ) w- i
x xy

O
3

4

3 2( )
0

Decapole - +y x y x y10 55 2 3 4 w- xy x y4i D
3 3( ) w- - + y x y xi 6 D

4 2 2 4( ) 0
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5
3 2 4

5
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y x y x
D

6

5

4 2 2 4( ) w- - 4i
xy x y

D5

3 3( ) 0

Non-hydro quad. -y x2 2 wxi Q
nh w- yi Q

nh 0

T-Non-hydro quad. xy w- i
y

Q
nh

2
w- i x

Q
nh

2
0

Non-hydro hex. -y x y33 2 wxy2i H
nh w- - y xi H

nh2 2( ) 0

Non-hydro oct. - +x x y y64 2 2 4 w- + xy3i x
O
nh

3
2

3( ) w- - y x yi 3 O
nh3 2( ) 0

Non-hydro dec. - +y x y x y10 55 2 3 4 w- xy x y4i D
nh3 3( ) w- - + y x y xi 6 D

nh4 2 2 4( ) 0
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Appendix B. Spatialmode structure for d=3

The spatial structure ofmodes in d=3 are given in table B1. Results are very similar to those for d=2 shown in
appendix A. The only differences are that for a harmonic trapping potential which is translationally invariant
along one axis and isotropic along the other two in d=3, the breathingmode now couples to shear stresses.
Hence there is now an associated non-hydrodynamic breathingmode as well as a difference in the
corresponding temperature perturbation associatedwith the volume change of the cloud. Since there is no
associated velocity field for the time independent temperature zeromode, thismode is associatedwith a
vanishing stress tensor, and hence themode structure is the same as in the d=2 case. All othermodes also
exhibit the same spatial and frequency structure.

AppendixC.Details ofmode amplitude calculation

Given generic initial conditions on ρ, u,T, and pij, one can derive a systemof equations for complexmode
amplitudes +a bin n( ) ofmode n (e.g. n=‘number’, ‘temperature’, ‘breathing’, etc.) by performing the
following projections onto amodem:
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Table B1. Spatial structure of the variousmodes for d=3 expressed in terms of the normalized complexmode
frequencies. Note that the tiltedmodes denoted Tilted- or T- for short in the table can be found by an appropriate
rotation of coordinates.

dr dux duy dT

Number (Zeromode) 1 0 0 0

Temp. (Zeromode) + -x y 22 2 0 0 2

Rotation (Zeromode) 0 y -x 0

Breathing (Monopole) + -x y 22 2 w- xi B w- yi B - 4

3

x-axis sloshing (Dipole) x w- i S 0 0
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Tilted quadrupole xy w- i
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3
2

3
w- - i

y x
H3

2 2( ) w- i
xy

H
2

3
0

Octupole - +x x y y64 2 2 4 w- + xy3i x
O3

2
3

( ) w- - y x yi 3 O
3 2( ) 0

T-Octupole -xy x y3 3 w- i
x y y

O
3

4

2 3( ) w- i
x xy

O
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3 3( ) w- - + y x y xi 6 D
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It should be noted that as can be seen from tables 3 and 4, not all of the individual perturbations are orthogonal
(the fullmode structures are, however, independent). For example, while dr dr= BTemp , it is not possible to
construct the fullmode structure d dr d d= Tu, ,Temp Temp Temp Temp{ }as a linear combination of the fullmode
structure of the othermodes.We note that as a result, care should be usedwhen obtaining the systemof
equations for the amplitudes give by evaluating equations (C1)–(C4)not tomiss contributions from all the
importantmodes.We also point out that in general our process forfindingmode structure, it is found thatmode
frequencies come in pairs, onewith positive and the other with negative real part. However, in allowing for a
complex amplitude and taking the real part in equations (C1)–(C4)weneed only considermodes to have
positive real part of the frequency.

Let us consider a generic isotropic trap quench in d=2 formultiple initial conditions in order to
demonstrate the role of the temperature and numbermodes. In this case, the amplitudes take on a fairly simple
form

= -a
A

A
1, C5N

i

0

( )

g g

g
=

- - -
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T1 1

4
, C6T
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A init
i
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( ) ( )

( )

g g

g
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4
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A
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0
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( )

=b 0. C8B ( )

Note that the above expressions contain both phase andmagnitude information, as theymay be negative.We
will plot phase and amplitude separately below. Additionally, we see from equations (C5)–(C8) several features
which should be expected. To explore this, wewill break up our analysis into several cases.

Case 1: =A A 1i 0 , =T 1init

This is the case discussed in themain text (see section 5).
Case 2: ¹A A 1i 0 , =T 1init

For this case we see from equations (C5)–(C8) that the ratio A Ai 0 gives rise to a non-zero amplitude of the
numbermode, but leaves the location of the zero of the other twomodes at g = 1. This should be expected since
thismerelymeans that at g = 1wehavemore ( >A A 1i 0 ) or less ( <A A 1i 0 ) atoms in the trap thanwhatwas
assumed in the equilibriumwe expanded about. This shouldmake the role of the numbermodemore clear.
Particularly, it is only important if for some reasonwe chose to expand our dynamics about an equilibriumwith
a different number of particles than given by our initial conditions. Figure C1 shows the case with >A A 1i 0

where there aremore atoms thatwas assumed in our expansion around equilibrium. In this case the number
mode is excited in phase (i.e.with positive amplitude) as onewould expect, while there is no change in the
breathing or termperaturemode amplitudes.

FigureC1. Left: absolute value of the (dimensionless)number (‘N’), temperature (‘T’) and breathing (‘B’)mode amplitudes as a
function of the quench strength parameter γ for an isotropic quench in d=2 assuming = >A A 1.1 1i 0 and =T 1init . Right: phase
ofmode amplitude. Note the amplitude and phase of the breathing and temperaturemodes are identical.
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Case 3: =A A 1i 0 , ¹T 1init

For this case we see from equations (C5)–(C8) that the numbermode is not excited, while the value ofT init

alters the location of the zero for the temperature and breathingmodes. This should be expected since at g = 1
the breathingmode is excited through the temperature difference. Figure C2 shows the case where <T 1init ,
demonstrating that the phase of the breathingmode vanishes at g = 1while themagnitude is non-zero. A
positive amplitude at g = 1 is expected since the temperature is below its equilibrium value for the given cloud
radius so the cloudwill reduce its size to try to reach equilibrium.
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