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The detection of communities within a dynamic network is a common means for obtaining a coarse-
grained view of a complex system and for investigating its underlying processes. While a number of
methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis
of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here,
we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we
analyze the limits of detectability for a dynamic stochastic block model where nodes change their
community memberships over time, but where edges are generated independently at each time step. Using
the cavity method, we derive a precise detectability threshold as a function of the rate of change and the
strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify
the communities better than chance. We then give two algorithms that are optimal in the sense that they
succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically
optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief
propagation equations. These results extend our understanding of the limits of community detection in an
important direction, and introduce new mathematical tools for similar extensions to networks with other
types of auxiliary information.
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I. INTRODUCTION

Many complex systems can be represented as networks,
that is, as a set of elements characterized by pairwise
interactions. Examples of networks are plentiful and
include friendships or communication in a social network,
regulatory interactions among genes, transportation
between cities, and hyperlinks between documents or
websites. Furthermore, many, perhaps even most, of these
networks are dynamic in nature, and their evolving struc-
ture is often represented as a sequence of graphs [1–8].
A common step in analyzing the structure of such net-

works is the detection of communities, in which we seek to
divide a network into groups of nodes that play similar
structural roles. A good division should provide a structural

coarse graining of the network, revealing the large-scale
structure of the system. In the simple case of static networks,
we now have rigorous methods for accomplishing this
task, using Bayesian techniques and probabilistic generative
models [9–15]. Importantly, we also have a precise math-
ematical understanding of when they can or cannot succeed
[14,16]. However, real-world networks are rarely simple,
and are often accompanied by auxiliary data, such asweights
on edges [17] or metadata on nodes [18–22]. Extending the
rigorous results for static networks to these richer graph
structures remains an important direction of study. Here, we
focus on the question of dynamic networks, in which each
node’s connections may change over time.
Community detection in dynamic networks inherits

many of the challenges of static networks, including
learning the number of communities, their sizes and node
membership, and the pattern of connections among com-
munities, e.g., assortative or disassortative (or, in physical
terms, ferromagnetic or antiferromagnetic). However, it
also poses new challenges, as both the network topology
and the community memberships may evolve over time.
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Community detection in dynamic networks has a long
history, and a number of techniques have been previously
developed. For instance, there are variants of multilayer or
temporal modularity maximization [5,23,24], non-negative
matrix or tensor factorization [3,6,8,25,26], minimum
description length [27,28], and probabilistic models
[4,7,29–33]. References [34,35] provide more comprehen-
sive reviews of this work. Approaches for detecting
communities in multiplex networks are also relevant
[36–45], as dynamic networks are a special case of
multiplex networks, in which the layers are organized in
a linear sequence. However, despite these varied efforts, up
to now we have lacked a theoretical understanding of the
optimality of these techniques, when or how they tend to
fail, or whether there are fundamental limits to detecting
community structure in dynamic networks.
Here, we answer these questions by deriving a precise

threshold on the detectability of communities in dynamic
networks, whose location depends only on the rate of
change of the community structure and on its strength.
Below this sharp threshold, we claim no efficient algorithm
can recover the true communities better than chance.
Furthermore, we give two algorithms that are optimal in
the sense that they succeed all the way down to this
threshold. These results generalize the theoretical insights
of Refs. [14,15] for community detection in static networks
to the dynamic setting, in which detectability depends on
both spatial and temporal coupling between nodes. The
mathematical tools we use to obtain these results are also
general, and could be used to obtain similar extensions to
networks with other types of auxiliary information.
Our approach exploits the powerful tools of probabilistic

generative models and Bayesian inference, which we use to
study the limits of the community detection problem using
the cavity method of statistical physics. We begin with the
well-known stochastic block model [46,47], a generative
model for static networks with community structure. We
note that there are several dynamic variants of this model
[29–31] and its mixed-membership version [7], and the
variant that we analyze here is a special case of some of
these models. Specifically, we mathematically study a
model in which nodes change their community member-
ship over time according to a Markov process, and edges
are generated independently at each time step. As a result,
the network of connections between nodes at different
times is locally treelike.
In many real-world systems, edge occurrence can corre-

late across time [1]. In this case, however, our model can
still be applied if the edges have a time scale that is short
relative to the time windows over which the interactions
are aggregated, which returns us to a setting in which the
dynamic network will be locally treelike. For instance,
consider a network of phone calls or emails where the
autocorrelation time governing conversations (or sequences
of successive calls) is on the order of days, but where each

network snapshot aggregates these calls over a month. In
this case, belief propagation (BP) algorithms, like the ones
we develop here, are often asymptotically optimal, and we
may use the cavity method to compute the detectability
threshold exactly. While our results are not mathematically
rigorous, we believe that they can be made so using the
techniques of Refs. [16,48–50].
Finally, we give two principled and efficient algorithms for

detecting communities in real dynamic networks. The first
algorithm uses BP to pass messages between neighbors both
within a network at a particular time and between consecutive
networks in order to integrate information over the network’s
time series in an optimal way. We then linearize BP to obtain
a second spectral algorithm, based on a dynamical version
of the nonbacktracking matrix [50,51]. Through numerical
experiments, we confirm our theoretical calculations by
showing that these algorithms accurately recover the true
community structure in dynamic networks all the way down
to the generalized detectability threshold.

II. DYNAMIC STOCHASTIC BLOCK MODEL

The stochastic block model is a classic model of
community structure in static networks [46,47]. To obtain
a theoretical understanding of detectability in dynamic
networks, we use a variant of the stochastic block model in
which the community labels of nodes change over time, but
where edges are independent conditioned on these labels.
This particular model is also a special case of several
models previously introduced for community detection in
dynamic networks [4,7,29–31]. A crucial feature of the
variant we study is that it captures the dynamic behavior of
changing community labels but is analytically tractable.
Our model generates a dynamic sequence of graphs

GðtÞ ¼ (V; EðtÞ), with 1 ≤ t ≤ T. There are jVj ¼ n
nodes divided into k groups. Each graph has its own
group assignment, represented by an n-dimensional vector
of labels fgiðtÞ ∈ f1;…; kgji ∈ Vg. To generate this
sequence, we start by drawing gið1Þ from a prior distribu-
tion, where each node has initial probability qr of being in
community 1 ≤ r ≤ k. In successive steps t > 1, each node
updates its label according to a transition matrix τ, moving
to group r from group s with probability τrs. Finally, the
edges EðtÞ are generated independently for each t accord-
ing to a k × k matrix p, connecting each pair of nodes i, j
at time t with probability pgiðtÞ;gjðtÞ. The likelihood of the
graph sequence is then

PðfGðtÞg; fgðtÞgjp; q; τÞ

¼ P(gð1Þ)
YT
t¼2

P(gðtÞjgðt − 1Þ)

×
YT
t¼1

� Y
ði;jÞ∈EðtÞ

pgiðtÞ;gjðtÞ
Y

ði;jÞ∉EðtÞ
ð1 − pgiðtÞ;gjðtÞÞ

�
;
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and

P(gð1Þ) ¼
Y
i

qgið1Þ;

P(gðtÞjgðt − 1Þ) ¼
Y
i

τgiðtÞ;giðt−1Þ:

In our analysis, we focus on a uniform initial prior
qr ¼ 1=k and the popular special case, where prs ¼ cin=n
if r ¼ s and cout=n if r ≠ s for constants cin, cout.
The average degree of each graph is then
c ¼ ½cin þ ðk − 1Þcout�=k. For simplicity, we also assume
the transition matrix τ has a special form, where the node
keeps its label with probability η and chooses a uniformly
random label with probability 1 − η. In that case,

τ ¼ η1þ ð1 − ηÞ J
k
; ð1Þ

where 1 is the identity matrix and J is the all-1’s matrix.

III. GENERALIZED DETECTABILITY
THRESHOLD

In this context, the community detection task consists of
recovering the labels fgiðtÞg given the parameters p, q, η
and the sequence of graphs fGðtÞg. We now consider under
what conditions we can perform this task better than
chance. For static networks, previous work has shown that
there exists a phase transition below which no algorithm
can succeed [14,15]; for the case k ¼ 2, this is now known
rigorously [16]. This threshold occurs at a critical value
of cin − cout, which depends on the average degree,
namely, jcin − coutj ¼ k

ffiffiffi
c

p
.

In a dynamic network where community memberships
change slowly, we can learn more about a network and its
large-scale structure by integrating its edges over time.
Summing GðtÞ to form a single graph yields a denser
network, in which case we would expect to be able to
detect its community structure whenever cin − cout ≠ 0. On
the other hand, if node labels at successive steps are
uncorrelated, we can do no better than to treat each graph
in GðtÞ separately as a static graph. We thus expect the
community detection threshold in dynamic networks to
interpolate between its static value at η ¼ 0 and zero
at η ¼ 1.
To facilitate our analysis, we define a spatiotemporal

graph with Tn vertices iðtÞ, one for each node at each
time step. In addition to the “spatial” edges (iðtÞ; jðtÞ) ∈
EðtÞ for each t, we add “temporal” edges (iðtÞ; iðt� 1Þ)
connecting each node with its time-adjacent copies. Since
the spatial edges EðtÞ are independent and sparse, short
loops in this spatiotemporal graph are rare, implying that it
is locally treelike.
Now consider the neighborhood of a particular node iðtÞ.

Moving outward in space and time, there is a tree with iðtÞ

as its root: each node in this tree has “children” consisting
of its spatial and temporal neighbors. Using the cavity
method, we can think of inference as a reconstruction
problem on this tree, where each child’s label is transmitted,
with some noise, to its parent. As stated above, we
assume that node labels are copied along temporal edges
with probability η and replaced with uniformly random
labels with probability 1 − η. Similarly, since each edge in
EðtÞ exists with probability cin=n if the labels are the
same, and with probability cout=n otherwise, Bayes’s rule
implies that labels are copied along a spatial edge with
probability

λ ¼ cin − cout
kc

and replaced with a random label with probability 1 − λ.
Thus, we can think of the labels on spatial and temporal
edges as following a Markov process with stochastic
transition matrices σ and τ, respectively, where

σ ¼ np
kc

¼ λ1þ ð1 − λÞ J
k
; ð2Þ

and τ is given by Eq. (1).
We now consider the question of whether information

from distant leaves on this tree is transmitted to the root.
The tree is generated by a two-type branching process:
following a temporal edge leads to a node with one
temporal child, while following a spatial edge leads to a
node with two temporal children, and in both cases the
number of spatial children is Poisson distributed with
mean c. The transition matrix describing the expected
number of children of each type is then ðc

2
c
1
Þ. On the other

hand, besides the trivial eigenvalue 1 corresponding to the
uniform distribution, the eigenvalues of the transition
matrices σ and τ are λ and η, respectively. The results of
Ref. [52] then imply that the detectability transition occurs
when the largest eigenvalue of the matrix ðcλ2

2η2
cλ2
η2 Þ crosses

unity. This yields

cλ2 ¼ 1 − η2

1þ η2
or jcin − coutj ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
1 − η2

1þ η2

s
; ð3Þ

which ranges from the static threshold k
ffiffiffi
c

p
when η ¼ 0 to

zero when η ¼ 1, as expected.
The expression of Eq. (3) holds in the limit T → ∞.

We can compute the corresponding finite-time threshold
for a fixed T by diagonalizing a ð3T − 2Þ-dimensional
matrix, where we have a branching process with states
corresponding to moving along spatial, forward-temporal,
or backward-temporal edges at each time step. In particular,
the threshold then ranges from the static value for η ¼ 0 to
jcin − coutj ¼ k

ffiffiffiffiffiffiffiffi
c=T

p
for η ¼ 1.
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In spin glass theory, this type of threshold is called the
Almeida-Thouless line [53]; in probability and information
theory, it is known as the Kesten-Stigum bound or the
robust reconstruction threshold [52]. In the static case, it
has been shown rigorously for k ¼ 2 that below this point
community detection is information theoretically impos-
sible [16]. For k > 4 groups (and k ¼ 4 in the disassortative
or antiferromagnetic case cin − cout < 0), it was first con-
jectured [14,15], and later proved [54,55], that there is an
additional region below the threshold where community
detection is information theoretically possible, but expo-
nentially hard, so that no efficient algorithm can do
better than chance. We make the same claims for the
dynamic case.

IV. BAYESIAN INFERENCE AND
BELIEF PROPAGATION

Given an observed graph sequenceGðtÞ, we wish to infer
the posterior distribution of group assignments fgðtÞg. For
fixed p, q, and η, Bayes’s rule gives us

PðfgðtÞgjfEðtÞgÞ ¼ PðfEðtÞg; fgðtÞgÞP
fg0ðtÞgPðfEðtÞg; fg0ðtÞgÞ

: ð4Þ

We are especially interested in the one-point marginals of
this distribution, i.e., the probability distribution of giðtÞ for
each node i at each step t. We denote this as

μirðtÞ ¼ PðgiðtÞ ¼ rjfEðtÞgÞ
¼

X
fgðtÞg

PðfgðtÞgjfEðtÞgÞδgiðtÞ;r:

As always, computing the denominator in Eq. (4) is
difficult, as it is a sum over kTn terms. In physical terms,
this quantity is a partition function and thus we do not
expect to be able to compute PðfgðtÞgjfEðtÞg; p; ηÞ
exactly. However, we can approximate it with variational
methods. Since the spatiotemporal graph is locally treelike,
we can make a Bethe approximation, corresponding to the
cavity method in physics or belief propagation in machine
learning. This allows us to approximate the marginals and
the free energy of the model in an efficient and asymp-
totically optimal way.
In belief propagation, vertices send their neighbors

“messages” consisting of estimates of their marginal
distributions. Each vertex updates its message to each of
its neighbors, based on the message it receives from its
other neighbors. It does this using Bayes’s rule, assuming
that its neighbors are independent of each other (condi-
tioned on that vertex’s state). We then update the messages
until they reach a fixed point.
In our dynamic setting, we have two kinds of messages,

passing along the spatial and temporal edges of the
spatiotemporal graphs (Fig. 1). We denote the spatial

messages μi→j
r ðtÞ: this is i’s estimate, sent to j, of the

probability that i belongs to group r at time t. Similarly,

the temporal message μiðtÞ→iðt�1Þ
r is i’s estimate of this

probability sent to its past and future selves.
For general values of the connection probabilities prs

and the transition matrix τ, the update equation for the
spatial messages is

μi→j
r ðtÞ¼ 1

Zi→jðtÞ
�X

s

τrsμ
iðt−1Þ→iðtÞ
s

��X
s

τsrμ
iðtþ1Þ→iðtÞ
s

�
×

Y
l∶ði;lÞ∈EðtÞ

l≠j

X
s

crsμl→i
s ðtÞ

Y
l∶ði;lÞ∉EðtÞ

l≠j

X
s

ð1−prsÞμl→i
s ðtÞ;

ð5Þ

and the update equation for the temporal messages is

μiðtÞ→iðtþ1Þ
r ¼ 1

ZiðtÞ→iðtþ1Þ

�X
s

τrsμ
iðt−1Þ→iðtÞ
s

�
×

Y
l∶ði;lÞ∈EðtÞ

X
s

crsμl→i
s ðtÞ

×
Y

l∶ði;lÞ∉EðtÞ

X
s

ð1 − prsÞμl→i
s ðtÞ; ð6Þ

where Zi→jðtÞ and ZiðtÞ→iðt�1Þ are normalization factors,

and similarly for μiðtÞ→iðt−1Þ
r with τ transposed. Finally, once

the messages reach a fixed point, we compute the marginals
at each vertex by taking all its incoming messages into
account:

μirðtÞ ¼
1

ZiðtÞ
�X

s

τrsμ
iðt−1Þ→iðtÞ
s

��X
s

τsrμ
iðtþ1Þ→iðtÞ
s

�
×

Y
l∶ði;lÞ∈EðtÞ

X
s

crsμl→i
s ðtÞ

×
Y

l∶ði;lÞ∉EðtÞ

X
s

ð1 − prsÞμl→i
s ðtÞ: ð7Þ

FIG. 1. A schematic representation of belief propagation
messages [see Eqs. (5) and (6)] being passed along spatial and
temporal edges in the spatiotemporal graph.
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Of course, when t ¼ 1 or t ¼ T, we remove the term
corresponding to the temporal edge coming from outside
the domain of t.
In the update equations given here, we have OðTn2Þ

messages, with spatial messages between both neighboring
and non-neighboring pairs of nodes. As in Refs. [13–15], in
the sparse case prs ¼ crs=n, we can approximate the effect
of non-neighboring pairs with an external field, so that
we only need to keep track of OðTnÞ messages between
nodes and their spatiotemporal neighbors. This amounts to
writing Y

l

X
s

ð1 − prsÞμl→i
s ðtÞ ¼ e−hrðtÞ;

where

hrðtÞ ¼
1

n

X
l

X
s

crsμl→i
s ðtÞ: ð8Þ

Furthermore, in our special case where τ and σ are given by
Eqs. (1) and (2), we have

X
s

τrsμ
iðt−1Þ→iðtÞ
s ¼ ημiðt−1Þ→iðtÞ

r þ 1 − η

k
;

X
s

τsrμ
iðtþ1Þ→iðtÞ
s ¼ ημiðtþ1Þ→iðtÞ

r þ 1 − η

k
;

X
s

crsμl→i
s ðtÞ ¼ λμl→i

r ðtÞ þ 1 − λ

k
:

As in Refs. [14,15], the BP equations have a trivial fixed
point where all the messages are uniform: μi→jðtÞ ¼
μiðtÞ→iðt�1Þ ¼ 1=k for all i, j, and t. The Kesten-Stigum
transition computed above is precisely where this fixed
point becomes unstable. Below the transition, BP con-
verges to the trivial fixed point, all marginals are uniform,
and the algorithm performs no better than chance.
However, above this transition, the trivial fixed point is

unstable, and BP converges to a nontrivial fixed point. If the
network is generated by our model and we know the correct
parameters, we expect this nontrivial fixed point to give an
asymptotically correct estimate of the marginals Eq. (7) up
to a permutation of the groups. In physical terms, we are on
the Nishimori line, so there is no static replica symmetry
breaking and no spin glass phase [56]. Then, if we assign
each node its most likely label at each time, settingdgiðtÞ ¼ argmaxrμirðtÞ, this assignment maximizes the
fraction of correct labels. Thus, our BP algorithm succeeds
all the way down to the detectability threshold given by
Eq. (3), and is asymptotically optimal in terms of its
accuracy. We expect that this can be made rigorous,
at least in the case k ¼ 2, using the techniques of
Refs. [16,48,49].

For k ≤ 3, the detectability transition is second order,
with the optimal accuracy going to zero continuously at the
transition. In analogy with the static block model [14,15],
we believe that for k > 4 (or k ≥ 4 for the disassortative
case) the detectability transition becomes first order. Then
there is an additional regime where there are at least two
competing fixed points, the trivial one and an accurate one,
both of which are locally stable. However, the basin of
attraction of the accurate fixed point is exponentially small,
so that BP with random initial messages will almost always
converge to the trivial fixed point. In this regime, commu-
nity detection is information theoretically possible, but it
would require exponential time to search the space of
possible fixed points. Physically, there is a free-energy
barrier between the trivial fixed point, which corresponds to
a paramagnetic phase, and the accurate fixed point, which
corresponds to a ferromagnetic one.

V. SPECTRAL CLUSTERING

In dense networks, a common approach to detecting
communities is spectral clustering, which is accomplished
by examining the eigenvectors of either the adjacency or
Laplacian matrix. In sparse networks, approach fails strictly
above the detectability threshold [51,57]. However, it is
known that this difficulty can be circumvented, in static
networks, by using a nonbacktracking matrix or Hashimoto
operator [50,51], which prevents localization of the eigen-
vectors to the high-degree vertices. Here, we extend these
techniques to derive a spectral algorithm for sparse
dynamic networks.
The idea is simply to linearize the BP update equations

around the trivial fixed point described above, expanding
all the messages to first order around 1=k. In the static
case, this linearization yields the nonbacktracking matrix.
Its second through kth eigenvectors are correlated with
the true community structure all the way down to the
detectability transition [50,51], so that we can label nodes
using a clustering technique in Rk−1 such as the k-means
algorithm.
For the dynamic block model, linearizing the BP update

equations around the trivial fixed point gives a 2km × 2km
matrix, where m is the total number of edges in the
spatiotemporal graph. Analogous to Ref. [51], this is the
tensor product of a k × k matrix with a 2m × 2m matrix,
which we can simplify further by writing it in terms of the
total incoming and outgoing messages at each vertex. This
gives a 4nT × 4nT matrix:

B ¼

0BBBBB@
λAspatial −λ1 λAspatial 0

λðDspatial − 1Þ 0 λDspatial 0

ηAtemp 0 ηAtemp −η1
ηDtemp 0 ηðDtemp − 1Þ 0

1CCCCCA: ð9Þ
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Here, 1 denotes the nT-dimensional identity matrix, Atemp

is the adjacency matrix of temporal edges, Dtemp is the
diagonal matrix of temporal degrees, Aspatial is the adja-
cency matrix of spatial edges, and Dspatial is the diagonal
matrix of spatial degrees. That is,

Atemp
ðu;tÞ;ðv;t0Þ ¼ δuvðδt;t0þ1 þ δt;t0−1Þ;

Dtemp
ðu;tÞ;ðu;tÞ ¼

�
2 if 1 < t < T

1 if t ¼ 1 or t ¼ T;

Aspatial
ðu;tÞ;ðv;t0Þ ¼ ⨁

t
AðtÞ ¼

�
1 if t ¼ t0 and ðu; vÞ ∈ EðtÞ
0 otherwise;

Dspatial
ðu;tÞ;ðu;tÞ ¼ ⨁

t
DðtÞ ¼

X
v

Au;vðtÞ;

where the symbol ⨁ denotes the matrix direct sum
(diagonal concatenation). The terms λAspatial and ηAtemp

in Eq. (9) correspond to attenuation of the messages along
the spatial and temporal edges by the second eigenvalues
of σ and τ, respectively. The terms −1 correspond to the
nonbacktracking nature of belief propagation, and are
known in physics as Onsager reaction terms.
This analysis gives us a spectral algorithm for dynamic

networks. We form the spatiotemporal graph, construct the
matrix B, compute the k − 1 eigenvectors with the largest
eigenvalue (in absolute value), and finally perform k-means
clustering on the resulting n vectors in Rk−1. In the case
k ¼ 2, we can simply label nodes according to the sign
of the second eigenvector to separate nodes into two
communities.
As in the static case [51], the instability of the trivial

fixed point corresponds exactly to where the community-
correlated eigenvectors emerge from the bulk of B’s
spectrum in the complex plane. Thus, we claim that, while
it is somewhat less accurate than belief propagation, this
spectral algorithm is optimal in the sense that it works all
the way down to the dynamical detectability transition.
Finally, we also expect that this result can be made
rigorous, as Ref. [50] did for the static case.

VI. NUMERICAL EXPERIMENTS

To verify our claims of the detectability transition in
dynamic networks and the accuracy of our algorithms, we
conduct the following numerical experiment. Using the
dynamic block model, we generate a number of dynamic
networks with various rates of change and various strengths
of community structure. We then use the BP and spectral
algorithms to infer the group assignments, assuming that
the true parameters are available to the algorithm, and
measure their accuracy against the known underlying
structure.
Following past work, we parametrize the strength of the

community structure by ϵ ¼ cout=cin. For ϵ ¼ 0, nodes
connect only to others in the same group, while for ϵ ¼ 1,

the network at each time is an Erdős-Rényi random graph
with no community structure. In terms of ϵ, the detect-
ability transition in Eq. (3) occurs at

λ ¼ 1 − ϵ

1þ ðk − 1Þϵ ¼
1ffiffiffi
c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

1þ η2

s
: ð10Þ

In our experiments, we explore networks in the ðϵ; ηÞ plane,
while keeping the average degree c fixed.
We measure the accuracy of the inferred labels by the

overlap between the true assignment g� and the inferred
one ĝ. This is the fraction of nodes labeled correctly,
averaged over all nodes and all times, normalized so that it
is 1 if ĝ ¼ g� and 0 if ĝ is uniformly random. (To break the
permutation symmetry, we maximize over all k! permuta-
tions of the groups.) In Fig. 2, we show the overlap
obtained by BP for dynamic networks as a function of ϵ
for several choices of η, with n ¼ 512, T ¼ 40, k ¼ 2, and
c ¼ 16. For each η, the critical value of ϵ for T ¼ 40 is
shown as a vertical line in the lower panel. As predicted, the
critical ϵ increases with η; we find numerically that the
finite-size effects scale as n−1=2, typical of phase transitions
in infinite-dimensional systems.
Figure 3 shows the overlap throughout the ðϵ; ηÞ plane,

using both BP and our spectral algorithm, again for k ¼ 2
and c ¼ 16. The dashed curve shows the detectability
transition for T ¼ 40; note that close to η ¼ 1 it diverges
from the transition for T ¼ ∞, which is shown as the
magenta curve. While BP achieves a higher overlap
throughout the ðϵ; ηÞ plane, both algorithms achieve a
large overlap when ϵ is small or η is large, i.e., when
the community structure is strong or when the group
memberships change slowly. As we approach the critical
curve, both algorithms undergo a second-order transition,
with their accuracy going to zero continuously. (As stated

FIG. 2. Overlap as a function of ϵ for different values of η
(given in the legend). For each η, the critical value of ϵ for T ¼ 40
is shown as a vertical line in the lower panel, and the hatched area
shows the region of detectability for static networks [14,15]. Each
data point is the average of 100 instances, with n ¼ 512, T ¼ 40,
k ¼ 2 groups, and average degree c ¼ 16.
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above, for some larger values of k we expect this transition
to become first order, with the accuracy jumping to zero
discontinuously.) Moreover, Fig. 4 shows that the con-
vergence time of BP, i.e., the number of times we need to

iterate the update equations to reach a fixed point, diverges
near the critical curve.

VII. CONCLUSION

Although we now have a rigorous theoretical under-
standing of the strengths, weaknesses, and limits of
community detection in static networks, comparable theo-
retical insights for networks with more general structures
have been lacking. Here, we derive a mathematically
precise understanding of the limits of detectability for
communities in dynamic networks, under a model in which
group memberships are correlated over time but where the
edges at each time are generated independently. Using the
cavity method, we generalize the static-case detectability
limit to depend both on the strength of the communities and
on the rate at which community membership changes over
time. Because this model is an analytically tractable special
case of several previously published models, we expect
qualitatively similar behavior to occur within more elabo-
rate models of dynamic networks, including those where
the edges at successive times are correlated.
Our two efficient algorithms for detecting communities

in dynamic networks, one based on belief propagation and
one on spectral clustering, are optimal in the sense that they
succeed all the way down to the detectability threshold.
Furthermore, the belief propagation algorithm is asymp-
totically optimal in terms of its accuracy, implying that no
algorithm can perform better at detecting communities in
dynamic networks in which edges are generated independ-
ently at each time step.
We believe that all of our results can be made rigorous,

at least for two groups, using the methods of Refs. [16,
48–50]. We also note that the mathematical tools we
introduce to obtain our results for dynamic networks are
quite general, and could be used to obtain similar results for
other, more general types of networks. Examples of such
future directions include the case where the matrix p of
connection probabilities changes over time (a situation
similar to change-point detection in networks [58]), or
where edges are persistent across time [1], or where
networks have edge weights [13] or additional metadata
on the nodes [19–22]. The latter represents a particularly
interesting case, as recent numerical results by Newman
and Clauset [22] suggest that metadata on the nodes may
also serve to shift the location of the detectability threshold
in static networks.
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