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1 Introduction

1.1 Electron Hydrodynamics in Experiment

The flow of electrons in most materials is nearly Ohmic – that is the current density is uniform
and proportional to the applied voltage. In these materials the contributions from electron-electron
collisions are negligible when compared to electron-ion collisions and even moreso when compared
to the contributions from electron-impurity collisions [1]. Historically, the approach in solid-state
physics has been to treat these contributions collectively neglecting the nuance between momentum
relaxation and conservation – embodied in the Drude model under a single collision time τ [2].
However, as far back as the 1960s it has been suggested that hydrodynamic flow characterized
by viscous effects may be observed in ultra-pure, low temperature metals when electron-electron
interactions again become significant [3]. A schematic depicting these two types of flows is shown in
Figure 1, in the hydrodynamic flow the velocity is maximal at the center and suppressed along the
edges. This phenomena went mostly ignored until the early 21st century when rapid advancement
in the fabrication of ultra-pure materials enabled experimental detection of these effects. Since
then signatures of electron hydrodynamics has been detected in a variety of correlated electron
materials such as graphene [4], WTe2 [5], PdCoO2 [6], WP2 [7]. The purity of these materials may
be observed by the fact that the resistance of the materials is directly proportional to their scattering
rates. Experimental evidence for this flow is shown in Figure 2 . This technological advancement
and the commercial success of materials such as graphene has created renewed interest in this
field and necessitated the development of theories which accommodate the effects of hydrodynamic
effects. In this paper we will develop one such theory – but first we will provide a primer on modern
hydrodynamics.

1.2 Modern Perspective on Hydrodynamics

Historically hydrodynamics has been synonymous with fluid dynamics – governed by the applica-
tion of the Navier-Stokes equations. These equations have seen great success seeing applications
ranging from conventional fluids to quark-gluon plasma [9]. However, the Navier-Stokes equations
are just one of a more universal set of effective field theories which govern the thermalization in
a given chaotic many-body system [10]. The Navier-Stokes equations describe a system in which
charge particle-number, energy, and momentum are conserved. In their non-relativistic form the
equations are Galilean-symmetric – that is they are invariant under spatial translations, rotations,
and boosts. By writing down the most general equations with these quantities conserved and sym-
metries respected we can arrive at the form of the Navier-Stokes equations up to phenomenological
constants [11]. This more general approach allows us to qualitatively infer the large-scale and long-
time dynamics of non-trivial topologies. In section 3.1 we will consider the conserved quantities and
symmetries of our specific system and write down the most general form of equations consistent
with these. More technical applications of this approach can be found in [12], [13].
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Figure 1: Normalized velocity profile in a channel is depicted for purely Ohmic flow (left) and
purely Hydrodynamic flow (right). Image credit [8].

1.3 Hydrodynamics from Kinetic Theory

To go along with the modern zoom-out approach to hydrodynamics we may also consider the
zoom-in approach of deriving hydrodynamics from kinetic theory. The starting point for this is the
Boltzmann Equation:

∂f

∂t
= ˙⃗x · ∂f

∂x⃗
+ ˙⃗p · ∂f

∂p⃗
+ Ĉf = {Ĥ, f}+ Ĉf (1)

This equation governs the evolution of a phase-space distribution f(x⃗, p⃗, t) under a microscopic
Hamiltonian Ĥ. The quantity {Ĥ, f} is referred to as the streaming term and follows from de-
manding that the distribution f is locally conserved. The quantity Ĉf is referred to as the collisional
term and is a non-linear integral operator. Thus in order to make this problem tractable we use
the Chapman-Enskog expansion [14]. Begin by considering the equilibrium distribution f (0) given
by Ĉf (0) = 0. Next write your full distribution by including a dummy variable as follows:

f = f0 + ϵf (1) + ϵ2f (2) + ... (2)

We may then re-write the modified Boltzmann equation using this dummy variable.

∂f

∂t
= {Ĥ, f}+ 1

ϵ
Ĉf (3)

This allows us to compute Ĉf by considering how the modes interact namely that:

Ĉ[f (0), f (0)] = 0 (4)

Ĉ[f (0), f (n)] =
1

2

(
∂tf

(n−1) + {H, f (n−1)} −
n−1∑
m=1

Ĉ[f (n), f (n−m)]

)
(5)
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Figure 2: Experimental results for Au (blue) and WTe2 (orange). The measured magnetic field
from the currents along the z-axis just above the device (a). The reconstructed magnetic field along
the x-axis of the device (b). The inferred current distribution (c). Image credit [5].

We then consider our conserved quantities and integrate over momentum space ˙⃗x:

n(x⃗, t) =

∫
fd ˙⃗x (6)

p(x⃗, t) = nv0 =

∫
f ˙⃗xd ˙⃗x (7)

ε(x⃗, t) = nT =

∫
f
m ˙⃗x2

3kB
d ˙⃗x (8)

Taken together the above yield an expression for our first correction f (1) which depends on f (0):

f (1) =

(
− 1

n

(
2kBT

m

) 1
2

A · ∇ln(T )− 2

n

∑
i

∑
k

Bij∂jvk

)
f (0) (9)

Note that in the above expression A is a vector and B is a tensor which satisfy the given relations.

In section 3.2 we will apply a similar expansion using a parameterized fermi-surface.

2 Motivation for the Theory

In this paper we will be developing a hydrodynamic theory for a 2-D material in which only x-
component of momentum is conserved. To understand why such a theory may be useful we must first
begin with some introductory solid state physics. Metals are crystalline structures with a periodic
arrangement of nuclei which characterize the cyrstal lattice. This forms a periodic potential as seen
by the electrons – solutions to the Schrödinger equation in a period potential are plane waves [15]:

Φ(x⃗) = eik⃗·x⃗u(x⃗) (10)

The important thing to note here is that due to the periodic nature of the lattice the wave-function
itself is also periodic meaning that Φ̃(k⃗+ K⃗) = Φ̃(k⃗) for any state that differ by a reciprocal lattice
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Figure 3: Fermi-surface of WP2 material, Image credit [18].

vector K⃗. Let us then consider the collision integral from earlier which capture particle interactions:

Ĉf = πβ

∫
d2p1d

2
p2d

2
p3d

2
p

(2πℏ)8
δ(
∑

p)δ(
∑

ϵ)Φ(p)[Φ(p) + Φ(p3)− Φ(p1)− Φ(p2)]

× |Mif |2fF (p)fF (p3)(1− fF (p1))(1− fF (p2)) (11)

The important thing to note here is the delta-function term capturing momentum conservation:

δ(
∑

p) ∼ δ(k⃗ + k⃗1 − k⃗2 − k⃗3) (12)

However we recall that the wave vector k⃗ is the same as k⃗ + K⃗ thus our equation reads:

δ(K⃗ + k⃗ + k⃗1 − k⃗2 − k⃗3) (13)

Thus we can imagine a scattering event in which one of the resultant particles gets kicked out
of the reciprocal lattice cell (Brillouin zone) but is reflected back in. While ordinarily disallowed
by momentum conservation it is permitted under these conditions. Such events are referred to as
Umklapp scattering and may directly relax momentum [16].

It has been previously conjectured that this Umklapp process may be efficient at relaxing momen-
tum near the Fermi-surface (the surface of constant energy below which all states are filled and
above which are empty) via electron-electron collisions [17]. Additionally, modern experimental
techniques have allowed us to image the Fermi-surface. In materials such as WP2 the Fermi-surface
wraps the Brillouin zone in a single spatial dimension as shown in Figure 3. In such an anisotropic
material this process would be efficient at relaxing momentum along this direction (which we take
to be y) while allowing for momentum to be conserved along in the other direction (x).
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3 Hydrodynamics

3.1 Landau Effective Theory

We consider the hydrodynamics of a 2D system in which momentum is only conserved in the
x-direction. Thus our conserved quantities are total particle number N and x-momentum Px. Ex-
amining the symmetries of these unusual conservation laws imposes restrictions on the forms of
the allowable terms which may appear in our kinetic theory. First we note that although we are
dealing with a discrete lattice we may consider the low-energy limit in which dx ≫ 1

l where l is the
lattice spacing. In this limit we may assume an effective continuous spatial translational symmetry.
We also note that because only one dimension of momentum is conserved that we may not impose
continuous rotational symmetry as that would violate this non-conservation. Thus, we begin by
using the Landau procedure of writing down the most general terms which may appear that respect
the following symmetries:

Spatial Parity (P):
∂tn = A∂xvx + σxx∂

2
xµ+ σyy∂

2
yµ+ ... (14)

The LHS of the above equation has no spatial dependence thus it is even under the parity transfor-
mation x → −x. The terms on the RHS have zero or two factors which depend on x thus they are
also even under this parity transformation. Our theory may also contain higher order derivatives
which satisfy this constraint.

∂tπx = B∂xµ+ ηxx∂
2
xvx + ηyy∂

2
yvx + ... (15)

The LHS of the above equation has one term that depends on x making it is odd under parity
transformation. The terms on the RHS have either one or three factors which depend on x thus
they are also odd under parity transformation. Note that the coefficients A,B,σxx,σyy,ηxx,ηyy will
depend on the specific system studied.

Time Reversal (T):
∂tn = A∂xvx + ... (16)

The LHS of the above equation has one factor that depends on time making it odd under time
reversal. The first term on the RHS is also odd under time reversal but the other terms from
(14) are even under time reversal thus they do not respect this symmetry. Therefore they will not
appear in the ideal hydro equations and may only appear from the collision integral.

∂tπx = B∂xµ+ ... (17)

The LHS of the above equation is even under time reversal. As before, the first term on the RHS
is also even under time reversal and should the other odd terms appear they must appear in the
collision integral.

3.2 Kinetic Theory

We want to study what happens in 2D systems in which only the x-component of momentum is
conserved. We do this by solving the vectorized Boltzmann equation:

∂t|Φ⟩+ L|Φ⟩+W |Φ⟩ = 0 (18)
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We decompose this perturbation into |Φ⟩ = |Φ⟩f + |Φ⟩s where W |Φ⟩s = 0 and |Φ⟩s corresponds to
our conserved quantities n and px.

Under this decomposition our equation becomes:

∂t

(
|Φ⟩s
|Φ⟩f

)
+

(
Lss Lsf

Lfs Lff

)(
|Φ⟩s
|Φ⟩f

)
+

(
0 0
0 Wff

)(
|Φ⟩s
|Φ⟩f

)
= 0 (19)

We then make the assumption that our fast modes decay on short time scales, meaning that they
vanish on long time scales, ie, ∂t|Φ⟩f ≈ 0 and thus:

Lfs|Φ⟩s + (Lff +Wff )|Φ⟩f = 0 =⇒ |Φ⟩f = −(Lff +Wff )
−1Lfs|Φ⟩s (20)

Substituting back into the decomposed Boltzmann equation for the slow sub-space we find that:

∂t|Φ⟩s + Lss|Φ⟩s − Lsf (Lff +Wff )
−1Lfs|Φ⟩s (21)

This gives us a streaming operator Lss and a collisional operator W ′ = −Lsf (Lff +Wff )
−1Lfs.

Utilizing the approach outlined in [19] we begin by considering the particular polygonal Fermi-
surface shown in Figure 4. We encode each edge as a vector |n,m⟩. We may then write |Φ⟩ =∑

n

∑
m ϕnm|n,m⟩. Let m index each edge as follows: m = ± 1, 2 , 3, 4 where vertical (horizontal)

edges to the right (above) of the origin O are taken to be positive. Let the n = 0 mode correspond
to the next number of quasi particles on a particular edge, and the n = 1 mode correspond to first
order excitations across and edge.

We then use this parameterization to encode the particle number vector |N⟩ and x-momentum
vector |Px⟩ where:

|N⟩ =
4∑

m=1

√
ν
√
lm|0,±m⟩ (22)

|Px⟩ =
2∑

m=1

Px,m

√
ν
√
lm|0,±m⟩+ h

4∑
m=3

|1,±m⟩ (23)

In order to fix the value of the constant ν we construct a current density vector |Jx⟩ ∝ vf |N⟩ and
demand that the following relation it satisfied:

⟨Px|Jx⟩ = n0 (24)

This results in the following form for ν:

ν =
n0(2(a+ b) + c)

2vf (2ad+ c(b+ d))
(25)

Now that ν has been fixed, we do the same for the constant h quantifying the differential contri-
bution of the n = 1 Legendre modes as compared to the n = 0 modes. As defined in (23), h may
be written as

h = ⟨1,m|Px⟩ (26)
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Figure 4: Toy Fermi-surface

Centering the origin at the center of a certain horizontal edge, we may then temporarily understand
|1,m⟩ to be given by:

|1,m⟩ ≡
√
ν̃L1

(
px
b/2

)(
b

2

)
(27)

where ν̃ is a coefficient we must determine by demanding ⟨1,m|1,m⟩ = 1. The extra factor of b/2
follows from changing the integration variable,

∫
dz L1(z)(. . .) →

∫
dpx L1(px/(b/2))×b/2(. . .). We

can normalize it by working out

1 =

∫ b/2

−b/2
dpx

[√
ν̃L1

(
px
b/2

)
b

2

]2
= ν̃

∫ b/2

−b/2
dpx p

2
x =

ν̃b3

6
=⇒ ν̃ =

6

b3
. (28)

Armed with this correct normalization of |1,m⟩, we may work out the inner product (27) as

h = ⟨1,m|Px⟩ =
∫ b/2

−b/2
dpx

[√
ν̃

(
b

2

)
L1

(
px
b/2

)]
px

=

∫ b/2

−b/2
dpx

[√
ν̃
b

2

(
px
b/2

)]
px

=

∫ b/2

−b/2
dpx p

2
x = 2

√
ν̃ × 2

3

(
b

2

)3

=

√
b3

6
= h. (29)

In the last equality, we used the expression for the normalization constant ν̃ given in (28).

Note that under this construction our perturbation vector takes the form:
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|Φ⟩ = µ|N⟩+ vx|Px⟩+ |Φ⟩f (30)

We then construct the collision integralW0 using the relaxation time approximationW |Φ⟩ ≈ γ = 1
τ :

W0 =

2∑
m=1

γs|0,±m⟩+
4∑

m=3

γf |0,±m⟩+
4∑

m=1

γf |1,±m⟩ (31)

Next we project this operator onto the fast modes using projector Pf creating a collision operator
W guaranteed to annihilate the slow modes where:

Pf = I− |Px⟩⟨Px|
⟨Px|Px⟩

− |N⟩⟨N |
⟨N |N⟩

(32)

W = PfW0P
−1
f (33)

We then construct the streaming operator L0 where:

L0 = I ⊗

(
2∑

m=1

±vf∂x|n,±m⟩+
4∑

m=3

±vf∂y|n,±m⟩

)
(34)

Next we introduce a projector onto the slow modes Ps = I − Pf and determine the form of L0 in
the slow-slow Lss slow-fast Lsf and fast-slow Lfs sub-spaces by conjugating L0 as follows:

Lsf = PfL0Ps (35)

Lfs = PsL0Pf (36)

We then return the the form of our effective collision operator W ′ = −Lsf (Lff +Wff )
−1Lfs. We

recognize that Lff ∝ vf |∇| and Wff ∝ γf and under our assumption that these fast modes decay
very quickly γf = 1

τf
will be very large, ie, γf ≫ vf |∇| and we can take the effective collision

operator to be:
W ′ = −LsfWLfs (37)

Now that we have all tools we need let us determine the equations of motion. We begin by recalling
the expanded form of the perturbation |Φ⟩:

|Φ⟩ = µ|N⟩+ vx|Px⟩+ |Φ⟩f (38)

We then inner product our vectorized Boltzmann equation (4) with ⟨N | to get:

∂tn = ∂tµ⟨N |N⟩ = −⟨N |Lss|N⟩ − ⟨N |W ′|N⟩ = A∂xvx + σxx∂
2
xµ+ σyy∂

2
yµ (39)

We then inner product our vectorized Boltzmann equation (4) with ⟨Px| to get:

∂tπx = ∂tvx⟨Px|Px⟩ = −⟨Px|Lss|Px⟩ − ⟨Px|W ′|Px⟩ = B∂xµ+ ηxx∂
2
xvx + ηyy∂

2
yvx (40)
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Here the hydrodynamical coefficients A,B,σxx,σyy,ηxx,ηyy depend on the specific geometrical factors
but for this example take on the explicit form:

A = −n0 (41)

σxx =
bn0vf

(
12bd(2a+ c) + b(2a(5b+ 6c) + 5bc) + 12d2(2a+ c)

)
γs (6d2(2(a+ b) + c) + b2(5b+ 6c) + 12bd(b+ c)) (2ad+ c(b+ d))

(42)

σyy =
2bn0vf

γs(2ad+ c(b+ d))
(43)

B = −n0 (44)

ηxx =
2bn0vf

(
a
(
bc+ 2d2

)
+ c(b+ d)2

)
γs(2(a+ b) + c)(2ad+ c(b+ d))

(45)

ηyy =
bn0vf

(
5b2 + 12bd+ 12d2

)
6γs(2ad+ c(b+ d))

(46)

We then consider the continuity equations to identify expressions for current density J⃗ and the
stress-energy tensor τ :

∂tn = −∇ · J⃗ = −∂xJx − ∂yJy (47)

∂tπx = −∇ · τ⃗ = −∂xτxx − ∂yτyx (48)

Comparing these expressions to (39) and (40) results in the following expressions for Jx, Jy, τxx, τyx:

Jx = n0vx − σxx(∂xµ) (49)

Jy = −σyy(∂yµ) (50)

τxx = n0µ− ηxx(∂xvx) (51)

τyx = −ηyy(∂yvx) (52)

4 Flow Patterns

Next we will consider the effects of placing the material in a long channel and applying an electric
field. The channel and applied electric field will be oriented at an angle θ relative to this fermi-
surface as shown in the figure below. This results in the introduction of coordinates x̃ = x cos θ +
y sin θ and ỹ = −x sin θ + y cos θ in which this electric field is given by E⃗ = E0

ˆ̃y.

We must also modify our equations of motion (39) and (40) to account for this new gradient.
This introduces an additional term to the chemical potential and µ → µ̃(x) + Eỹ. We are seeking
stationary solutions in the rotated frame, ie, solutions for which ∂tρ → 0. Employing the chain rule
∂
∂xi

= ∂
∂xi

∂x̃i
∂xi

giving us that ∂x = ∂x̃ cos θ + ∂ỹ sin θ and ∂y = −∂x̃ sin θ + ∂ỹ cos θ. Note that since
v = ṽ(x) we will drop the subscript and consider v = vx. Using these substitutions (39) becomes:

0 = (∂x̃ cos θ + ∂ỹ sin θ)n0v − σxx(∂x̃ cos θ + ∂ỹ sin θ)
2µ̃− σyy(−∂x̃ sin θ + ∂ỹ cos θ)

2µ̃ (53)

We will assume that the channel is sufficiently long and that no gradients exist along the direction of
the channel ỹ implying ∂ỹ → 0 allowing us to rewrite (53) as the second order differential equation:

cos θn0∂x̃ṽ = (σxx cos
2 θ + σyy sin

2 θ)∂2
x̃µ̃ (54)
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Figure 5: Fermi-surface oriented at an angle θ to an applied electric field.

cos θn0∂x̃ṽ = (σxx cos
2 θ + σyy sin

2 θ)∂2
x̃µ̃ (55)

∂x̃ṽ =
σ̃xx∂

2
x̃µ̃

n0 cos θ
(56)

Note that in the above expression we have defined σ̃xx = σxx cos
2 θ + σyy sin

2 θ.

Applying the previously mentioned substitutions to (40) we obtain the following expression:

0 = n0(∂x̃ cos θ+∂ỹ sin θ)µ̃+−ηxx(∂x̃ cos θ+∂ỹ sin θ)
2ṽ−ηyy(−∂x̃ sin θ+∂ỹ cos θ)

2ṽ+n0E0 sin θ (57)

After expanding and demanding that ỹ gradients vanish we get:

n0 cos θ∂x̃µ̃ = (ηxx cos
2 θ + ηyy sin

2 θ)∂2
x̃ṽ + n0E0 sin θ (58)

∂x̃µ̃ =
η̃xx∂

2
x̃ṽ

n0 cos θ
+ E0 tan θ (59)

As before we have defined a new quantity η̃xx = (ηxx cos
2 θ + ηyy sin

2 θ).

We then substitute the expression (59) into (56) to obtain the following:

∂x̃ṽ =
σ̃xxη̃xx∂

3
x̃ṽ

n2
0 cos

2 θ
(60)

Next we define w = ∂xv and r(θ) = n0 cos θ√
σ̃xxη̃xx

to obtain:

∂2
xw = r(θ)w (61)
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We recognize the above as the ODE with solutions:

∂x̃v = w = C̃+e
r(θ)x − C̃−e

−r(θ)x (62)

Integrating and absorbing a factor of 1
r(θ) into our constants we find ṽ of the form:

ṽ = C+e
r(θ)x + C−e

−r(θ)x + v0 (63)

Substituting (63) back into (59) and substituting for r(θ) we obtain the following expression:

∂x̃µ̃ =
η̃xx∂

2
x̃

n0 cos θ
(C+e

r(θ)x + C−e
−r(θ)x) + E0 tan θ (64)

∂x̃µ̃ =
η̃xxr

2(θ)

n0 cos θ
(C+e

r(θ)x + C−e
−r(θ)x) + E0 tan θ (65)

Integrating we arrive at a solution for µ̃ of the following form:

µ̃ =
n0 cos θ

σ̃xx
(C+e

r(θ)x − C−e
−r(θ)x) + E0x tan θ (66)

Let us now consider the changes to the current density J⃗ given by equations (49) and (50) in the

new frame our vector
˜⃗
J will be given by the following expression:

˜⃗
J = R(θ)J⃗ (67)

˜⃗
J = R(θ)n0v +R(θ)σ⃗RT (θ) ⃗̃E (68)

[
J̃x
J̃y

]
= n0v

[
cos θ
sin θ

]
+

[
cos θ sin θ
− sin θ cos θ

] [
σxx 0
0 σyy

] [
cos θ − sin θ
sin θ cos θ

] [
−∂x̃µ̃
E0

]
(69)

[
J̃x
J̃y

]
= n0v

[
cos θ
sin θ

]
+

[
σxx cos

2(θ) + σyy sin
2(θ) (σyy − σxx) sin(θ) cos(θ)

(σyy − σxx) sin(θ) cos(θ) σxx sin
2(θ) + σyy cos

2(θ)

] [
−∂x̃µ̃
E0

]
(70)

[
J̃x
J̃y

]
= n0v

[
cos θ
sin θ

]
+

[
σ̃xx σ̃xy
σ̃yx σ̃yy

] [
−∂x̃µ̃
E0

]
(71)

Note that above R(θ) is the rotation matrix and we have defined σ̃ij for ease of notation.

Now let us attempt to fix the constants v0, C+, C− we will do this by assuming no slip bound-
ary conditions. That is that the velocity vanishes at the boundaries, ie, ṽ(L) = ṽ(−L) = 0.

Under the condition that ṽ(L) = ṽ(−L) we have:

C+e
r(θ)L + C−e

−r(θ)L = C+e
−r(θ)L + C−e

r(θ)L (72)

C+ sinh[r(θ)L] = C− sinh[r(θ)L] (73)

C ∝ C+ = C− (74)
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Under the condition that ṽ(L) = 0 we have that:

ṽ0 = −C cosh[r(θ)L] (75)

We now have an expression for ṽ of the form:

ṽ = C(cosh [r(θ)x]− cosh [r(θ)L]) (76)

We now need to fix the constant C by considering our expression for Jx from (71):

Jx̃ = n0ṽ cos θ − σ̃xx∂x̃µ+ E0σ̃xy (77)

We demand that Jx̃ = 0 as there cannot be a flow through the channel walls upon rearranging the
above expression we obtain:

cos θ∂x̃µ =
cos θ

σ̃xx
(n0 cos θṽ + E0σ̃xy) (78)

After substituting in (76) we have:

cos θ∂x̃µ =
cos θ

σ̃xx
(n0 cos θ[C(cosh [r(θ)x]− cosh [r(θ)L]]) + E0σ̃xy) (79)

Next we consider (59) which we rewrite as:

cos θ∂x̃µ̃ =
n0 cos

2 θ∂2
x̃ṽ

r2(θ)σ̃xx
+ E0 sin θ (80)

Substituting in our expression for ṽ (76) and differentiating we obtain:

cos θ∂x̃µ̃ =
n0 cos

2 θ

σ̃xx
C cosh[r(θ)x] + E0 sin θ (81)

Setting (79) equal to (81) we get the following:

cos θ

σ̃xx
(n0 cos θ[C(cosh [r(θ)x]− cosh [r(θ)L]]) + E0σ̃xy) =

n0 cos
2 θ

σ̃xx
C cosh[r(θ)x] + E0 sin θ (82)

After canceling like terms and solving for C we find that:

C =
E0(cos θσ̃xy − sin θσ̃xx)

n0 cos2 θ cosh [r(θ)L]
(83)

We can further simplify using the definitions from (71) to obtain:

C =
E0σyy sin θ

n0 cos2 θ cosh [r(θ)L]
(84)

Thus after substituting in our expression for C (76) for ṽ becomes:

ṽ =
E0σyy sin θ

n0 cos2 θ

(
1− cosh[r(θ)x]

cosh [r(θ)L]

)
(85)

We see a flow profile that takes the form shown in Figure 4. Before moving forward let us quickly
address the apparent divergence of the maximal-velocity at ṽ(x = 0) expected as cos(θ) → 0.
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Figure 6: Flow profile in a channel

ṽ =
E0σyy sin θ

n0 cos2 θ

(
1− 1

cosh [r(θ)L]

)
(86)

We note that when this occurs r → 0 as well, thus Taylor expanding in r we obtain a bounded
expression for ṽ:

ṽ =
E0σyy sin θ

n0 cos2 θ

(
1− (1− 1

2
(rL)2

)
= E0n0

L2

2

σyy sin(θ)

σxxηxx
(87)

Next let us consider what transverse Hall-Voltage would arise as a result of our theory. We again
use the fact that Jx = 0 to and solve (77) for ∂x̃µ̃ to obtain:

∂x̃µ̃ = E0
σ̃xy
σ̃xx

+
n0 cos(θ)ṽ

σ̃xx
(88)

Substituting in our expression for ṽ we get:

∂x̃µ̃ = E0
σ̃xy
σ̃xx

+ E0n0σyy tan(θ)

(
1− cosh [r(θ)x]

cosh [r(θ)L]

)
(89)

Integrating the above we obtain the following expression:

µ̃ = E0

[
x
σ̃xy
σ̃xx

+ σyy tan(θ)

(
x− sinh [r(θ)x]

r cosh [r(θ)L]

)]
(90)
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Taking VH = ∆µ̃ across the channel and substituting in our original hydrodynamic coefficients we
obtain the expression:

VH = 2E0

[
L(σxx − σyy) sin(θ) cos(θ)

σxx cos(θ)
2 + σyy sin(θ)

2 + σyy tan(θ)

(
L− 1

r
tanh[r(θ)L]

)]
(91)

Next we will consider the conductance G = Iy/(E0d) we might expect for a channel for length d.
First we must obtain an expression for Iy which we do by integrating the expression for Jy in (71):

Iy =

∫ +L

−L
dx Jy (92)

Iy =

∫ +L

−L
dx dx n0ṽ sin(θ)− σ̃yx∂x̃µ̃+ E0σ̃yy (93)

Substituting in our expression for ṽ and recognizing the second term as VH we obtain:

Iy = E0

∫ +L

−L
dx σyy tan

2(θ)

(
1− cosh[r(θ)x]

cosh [r(θ)L]

)
+ σ̃yy − σ̃yxVH (94)

Integrating the above expression and substituting in VH we obtain:

Iy = 2E0

[
σyy tan(θ)

(
L− 1

r
tanh[r(θ)L]

)
(tan(θ)− σ̃xy) + L

(
σ̃yy −

σ̃2
xy

σ̃xx

)]
(95)

Thus after substituting in for the hydrodynamic coefficients in our original frame we obtain an
expression for the conductance G of the following form:

G =
2

d

[(
L− 1

r
tanh[r(θ)L]

)(
σyy(tan

2(θ)− sin2(θ)) + σxx sin
2(θ)

)
+ L

(
σxxσyy

σxx cos2(θ) + σyy sin
2(θ)

)]
(96)

5 Conclusion

Above we have described the hydrodynamics of a 2D material with only one spatial-dimension
momentum conservation. The material WP2 shows signatures of hydrodynamic flow and its exotic
Fermi-surface makes it an ideal candidate to test out this theory. In the presence of an applied
electric field our theory predicts hydrodynamic flow with a strong dependence on orientation. In
particular, our theory predicts a minimal current when the electric field is oriented along the y-axis
of the Fermi-surface and a maximal current when aligned perpendicular to the y-axis of the surface.
In addition to the abnormal flow conditions we also predict the presence of a transverse voltage
which we suggestively refer to as a Hall-Voltage that also appears as a result of our theory. In this
paper we have only considered the effects an electric-field on flow in a narrow channel. Additional
predictions of the theory may be made by considering flow through other geometries as well as the
behaviour of the material in the presence of an applied magnetic field.
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