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Abstract. We report an ion-scale magnetic flux rope (the size
of the flux rope is ∼ 8.5 ion inertial lengths) at the trail-
ing edge of Kelvin–Helmholtz (KH) waves observed by the
Magnetospheric Multiscale (MMS) mission on 27 Septem-
ber 2016, which is likely generated by multiple X-line re-
connection. The currents of this flux rope are highly filamen-
tary: in the central flux rope, the current flows are mainly
parallel to the magnetic field, supporting a local magnetic
field increase at about 7 nT, while at the edges the current
filaments are predominantly along the antiparallel direction,
which induce an opposing field that causes a significant mag-
netic depression along the axis direction (> 20 nT), meaning
the overall magnetic field of this flux rope is depressed com-
pared to the ambient magnetic field. Thus, this flux rope, ac-
companied by the plasma thermal pressure enhancement in
the center, is referred to as a crater type. Intense lower hybrid
drift waves (LHDWs) are found at the magnetospheric edge
of the flux rope, and the wave potential is estimated to be
∼ 17 % of the electron temperature. Though LHDWs may be
stabilized by the mechanism of electron resonance broaden-
ing, these waves could still effectively enable diffusive elec-
tron transports in the cross-field direction, corresponding to
a local density dip. This indicates LHDWs could play impor-
tant roles in the evolution of crater flux ropes.

Keywords. Magnetospheric physics (magnetopause cusp
and boundary layers; solar wind–magnetosphere interac-
tions)

1 Introduction

Magnetic flux ropes, characterized by a reversal of the mag-
netic field in the cross section, are 3-D helical magnetic struc-
tures. The magnetic flux rope is usually regarded as the phys-
ical model of the flux transfer event (FTE) (Russell and El-
phic, 1978) on Earth’s magnetopause, with spatial sizes ex-
tending from several ion inertial lengths (di) to a few Earth
radii (RE) (e.g., Hasegawa et al., 2010; Eastwood et al.,
2016). Recent in situ observations revealed that flux ropes
could be flanked by two converging plasma jets, indicating
these flux ropes are still active, and possibly generated by
multiple, or even sequential, X-line reconnection (Hasegawa
et al., 2010; Øieroset et al., 2011; Pu et al., 2013). Such active
flux ropes are relatively less often observed in a statistical
study (Zhang et al., 2012); thus, X lines flanking flux ropes
might be short-lived once these flux ropes convect away from
the generation region.

A typical flux rope, with an enhancement of the mag-
netic field in the core region, can be modeled either as a
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force-free structure or a non-force-free structure, where mag-
netic pressure is balanced by plasma thermal pressures (e.g.,
Lundquist, 1950; Elphic and Russell, 1983; Zhang et al.,
2008; Farrugia et al., 2016; Zhao et al., 2016). There are also
some flux ropes with a decrease in magnetic field strength
in the center, which are referred to as crater flux ropes (e.g.,
Farrugia et al., 1988; Sibeck et al., 2008). Zhang et al. (2010)
proposed that these crater flux ropes are initial stages of typ-
ical flux ropes, and they would evolve into typical flux ropes
with a reduction of central plasma pressure resulting from
the transport of plasma along their axes. Therefore, they are
modeled as a non-force-free structure (Zhang et al., 2010).

The Magnetospheric Multiscale (MMS) mission (Burch
et al., 2016) with its unprecedented high-resolution plasma
measurements provides a good opportunity to study the
structure of ion-scale flux ropes with a duration of a few sec-
onds in the data (e.g., Alm et al., 2018; Eastwood et al., 2016;
Teh et al., 2017; Wang et al., 2017), which present observa-
tions of current filaments, nonideal ion behaviors, wave ac-
tivities and even flux rope coalescence. An ion-scale crater-
like flux rope has also been resolved by MMS, which is in-
terpreted as a result of the depression of transverse magnetic
fields in a flux rope simulation (Teh et al., 2017).

Small-scale flux ropes, identified primarily by magnetic
bipolar structures, have been observed at the trailing edges
of Kelvin–Helmholtz (KH) waves (e.g., Eriksson et al., 2009;
Nakamura et al., 2013), where local conditions could be fa-
vorable for magnetic reconnection (Hasegawa et al., 2009).
However, due to the limitation of temporal resolutions, such
observations had been unable to provide direct and conclu-
sive evidence. The first direct evidence of ongoing magnetic
reconnection at the trailing edges of KH waves, where the lo-
cal magnetic shear is enlarged and the current sheet is com-
pressed to ion scale, is recorded by MMS (Eriksson et al.,
2016; Li et al., 2016), and the MMS observations confirm
previous studies from both field and particle measurements.
But whether such reconnection can result in the generation
of flux ropes has not been further examined by MMS. In this
study, we report an ion-scale flux rope at the trailing edge
of KH waves probably due to multiple X-line reconnection.
The reported flux rope, with a size of ∼ 8.5 di, presents a
depression of the magnetic field and an enhancement of the
plasma thermal pressure in the core region, which is taken
as a feature of a crater-like flux rope. We also analyze the
lower hybrid drift waves (LHDWs) and their possible roles
in plasma transport at the magnetospheric side of this flux
rope.

2 Observation

The MMS observations were made at the dusk flank of the
Earth’s magnetopause on 27 September 2016. The four MMS
spacecraft were located approximately at (0.3, 11.5, −3.4)
RE in geocentric solar magnetospheric (GSM) coordinates,

and the spacecraft were in a tetrahedron formation with a sep-
aration of ∼ 10 km. At this scale, data from individual satel-
lites appear almost identical, and we primarily present the
data from MMS1. We use plasma data from the fast plasma
investigation (FPI) (Pollock et al., 2016), magnetic field data
from the fluxgate magnetometer (FGM) and the search coil
magnetometer (SCM) (Russell et al., 2014; Le Contel et al.,
2014), and electric field data from the electric field double
probes (EDP) (Lindqvist et al., 2014; Ergun et al., 2014).

Figure 1 shows an overview of the fast survey
between 19:50 and 20:09 UT, when the solar wind
is relatively steady and presents an extended north-
ward interplanetary magnetic field (IMF) from OMNI
data: nsw = 8.5± 0.5 cm−3, Vsw= [−600.0± 5.8,−5.2±
11.6,−42.5±9.3] km s−1, Pdyn = 6.2±0.4 nPa and BIMF =

[−4.6± 1.4,2.6± 3.7,7.9± 1.6] nT in GSM. During this
time interval, MMS was initially located in the magneto-
spheric boundary layer, characterized by slow plasma ve-
locities (Fig. 1e and g), and a mixture of magnetospheric
ions (> 10 keV) and magnetosheath ions (∼ 1 keV) from ion
energy–time spectrograms (Fig. 1i). Then it was followed
by significant variations of field and plasma parameters dur-
ing the boundary layer crossings and, occasionally, MMS
recorded relatively cold and dense plasma with a large tail-
ward speed, indicating it had entered into the sheath region.
After 20:05 MMS returned into the magnetosphere again.

These quasi-periodic fluctuations near the magnetic equa-
tor can be excited by internal or external mechanisms, one of
which is the KH instability. Figure 1h shows the total pres-
sure perturbations (sum of the thermal and magnetic pres-
sures) and the strong total pressure minimum, created inside
the waves, is evident for KH instability (Moore et al., 2016).
Another indicator for the roll-up of the KH vortex is the low-
density and faster-than-sheath signature (Hasegawa et al.,
2006). Figure 2 shows a scatter plot of VX versus ion density
from all four MMS spacecraft between 19:52 and 20:05 UT,
and the x direction here is redefined to be tangential to the av-
erage magnetopause, following Hasegawa et al. (2006). The
data points inside the dotted box are magnetospheric ions,
characterized by low densities and slow speeds, and the mag-
netosheath ions are located in the dashed box, identified by
the highest ion number densities. There are some data points
in the lower-left region presenting a low-density and faster-
than-sheath feature, which is consistent with rolled-up KH
vortex. Meanwhile, the magnetic field and plasma parame-
ters at both sides, averaged from data points in the boxes
of Fig. 2, are shown in Table 1. The boundary conditions
are KH unstable based on the linear theory (Chandrasekhar,
1961), and the dominant period of these KH waves is ∼ 44 s
(1TKH) from ion density and magnetic field perturbations.
At the trailing edges of these surface waves, the magnetic
shear could suddenly increase, providing favorable condi-
tions for magnetic reconnection, which has been reported
in another KH event on 8 September 2015 (Eriksson et al.,
2016; Li et al., 2016). In this event, signatures of reconnec-
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Figure 1. Overview of KH waves observed by MMS on 27 September 2016. From the top, panels show (a) the magnetic field, (b) the electric
field, (c) the plasma density, (d, e) the ion temperature and velocity, (f, g) the electron temperature and velocity, (h) the total pressure (sum
of the thermal and magnetic pressures) and (i, j) the ion and electron omnidirectional energy flux.

Table 1. The magnetic field and plasma parameters at the magnetosphere and magnetosheath side during the wave interval, which are
averaged from the dashed and dotted boxes in Fig. 2.

Plasma Velocity Magnetic field
density (cm−3) (km s−1) (nT)

Magnetosheath 16.55 [−264.10, 144.28, −50.45] [0.52, 16.45, 57.33]
Magnetosphere 5.43 [−102.18, 39.23, 13.42] [2.37, 14.41, 33.14]

tion at waves’ trailing edges are also revealed, and further-
more several bipolar structures are detected by MMS. We
will focus on one of them, marked by the vertical dotted line
in Figure 1, and investigate its properties in details.

Figure 3 shows the marked zoom-in plot of the KH wave
trailing edge crossing from the magnetospheric side to the
magnetosheath during the interval 19:58:01–19:58:07 UT,
indicated by the gradual disappearance of the magneto-
spheric ions (Fig. 3f). The y component of the magnetic
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Figure 2. A scatter plot of VX versus ion density from all four MMS
spacecraft from 19:52:00 to 20:05:00 UT. The data points inside
the dotted and dashed box present the magnetosphere and magne-
tosheath ions, respectively.

field presented a bipolar signature with a significant depres-
sion of the magnetic field in the z direction, suggesting a
flux rope (Fig. 3a), and its duration is about 2.7 s (1TFR).
The axis direction of this flux rope is consistent with previ-
ous full kinetic simulations, which showed flux ropes were
formed along the periphery of the vortex (Nakamura et al.,
2013). The field magnitude dip at the center of this flux rope
suggests it is a crater flux rope, which is accompanied by
a plasma density peak (Fig. 3c) at the BY reversal region
around 19:58:03.2 s.

At the magnetospheric side of the flux rope (prior to
19:58:02.5 s), a dawnward ion flow was observed (Fig. 3d).
As suggested by Korotova et al. (2011), this flow could
be attributed to the passage of the flux rope, which pushes
the surrounding plasma to the side, generating flows op-
posite to its motion on the flank. Inside the flux rope, an-
other duskward ion flow faster than the sheath plasma flow
was detected, and then we test the Walén relation to check
if it is a reconnection jet (Sonnerup et al., 1981; Phan et
al., 2013). Taking the magnetosheath plasma parameters as
reference (the shaded red region), we compare two vec-
tors 1V i = V i−V i,MSH and 1V A = V A−V A,MSH in the
shaded yellow region (19:58:03.7–19:58:05.4 UT) and show
the scatter plot in Fig. 3i: Though the ion velocity changes
across the magnetosheath side of the flux rope, the observed
velocity change (1V i) is about 52 % of the predicted flow
change (1V A). Therefore, additional evidence from the ion
distributions should be used to classify if it is a reconnec-
tion jet (Phan et al., 2013). Figure 4 shows the ion velocity
distribution functions at 19:58:04.042 and 19:58:06.892 UT

in the plane defined by the local B and E×B vectors. The
flow in the sheath region is almost along the E×B direc-
tion (Fig. 4b) but, crossing the current sheet, the ions have a
field-aligned component, suggesting they are transmitted ion
flows (Fig. 4a). The bulk velocity is close (∼ 77 %) to the
flow velocity predicted by the Walén relation (marked by the
black dot). This indicates that this jet was a consequence of
magnetic reconnection and the X line is located dawnward
of the flux rope. The possible reason why the slope of the
Walén test is relatively poor could be attributed to the struc-
ture of the flux rope, which modified the flow speeds when
ions propagated away from the X line.

Figure 3h shows the pitch angle spectrum of energetic
electrons with energies> 3 keV. Inside the flux rope, almost-
isotropic energetic electrons were clearly identified, while
the energy flux intensity is weaker than that in the magne-
tosphere, consisting of the re-closure of the field lines in the
flux rope. This is different with large-scale flux rope situa-
tions, in which both trapped and untrapped electrons can be
observed, suggesting different topologies of magnetic field
lines (Pu et al., 2013; Roux et al., 2015). At the sheath side
(from 19:58:05.0 to 19:58:06.2 s), energetic electrons only in
the antiparallel directions were detected, suggesting the ex-
istence of another X line on the north-dusk side to generate
these open field lines, and also this X line was formed ear-
lier than the one at the dawn side. In addition, the bulk elec-
tron velocity could reach up to 1200 km s−1 at the magneto-
spheric side where a local density dip was revealed (Fig. 3e).

A sketch of the observed flux rope in the equator plane
is inferred and summarized in Fig. 3j. At the trailing edge
of KH waves, a flux rope is detected at the distorted mag-
netopause by MMS, whose relative trajectory is shown by
red dotted lines. The projection of the magnetic field lines is
shown by solid black lines, while the red arrows present the
direction of current flows. Circles with a “dot” and “cross”
denote the magnetic field (black) and the current (red) is di-
recting out of or into the plane of paper. The ion jets are
marked by a blue arrow. The current flows will be explained
later.

To better illustrate the structure of the flux rope in de-
tail, we transform the observations into a local bound-
ary normal (LMN) coordinate by performing a minimum
variance analysis on the magnetic field (MVAB) from
the interval 19:58:02.0 to 19:58:05.5 UT, which yields
L= [−0.22,0.94,−0.25], M= [0.06,0.27,0.96] and N=
[0.97,0.19,−0.11] in GSM. The four-spacecraft timing
analysis of the burst mode electric field data leads to the
direction normal to the boundary N′ = [0.97,0.22,0.06] in
GSM, with a velocity VN =−225 km s−1. Since the differ-
ence of the normal direction between MVAB and the tim-
ing method is ∼ 10◦, the size of the flux rope in the nor-
mal direction is estimated to be 610 km, or 8.5 di, consid-
ering that the nearby magnetosheath density is ∼ 10.2 cm−3.
The currents calculated from the curlometer method and di-
rect particle measurements are presented in Fig. 5d and e.
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Figure 3. Summary plot of the flux rope at the trailing edge of the KH wave. From the top, the panels show (a) the magnetic field, (b)
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Good agreement is found between two measures, both show-
ing considerable structure and variability in the current den-
sity of the flux rope with a maximum value of∼ 900 nA m−2,
while the current from plasma measurements is more struc-
tured, as shown by Phan et al. (2016). Therefore, this current
is transformed to the directions parallel and perpendicular to
the magnetic field (Fig. 5f). We find these currents are highly
filamentary: in the core region of the flux rope (shaded by
the yellow color), the current is parallel to the magnetic field,
and at the two edges (shaded by the blue color), it is predom-
inately antiparallel to the magnetic field. The azimuthal com-
ponent (jL) of the central parallel current changes from neg-
ative to positive (19:58:02.90–19:58:03:10 UT). By applying
a simple thin planar current approximation, the local mag-

netic field change can be estimated by 1BM = µ0IL, where
IL is the integrated jL inside the current sheet. From either
the positive IL or negative IL component, the central cur-
rent pair could raise the magnetic field in the M direction
from about 7.2 to 11.2 nT, which is in good agreement with
a local BM peak in Fig. 5a, with a ∼ 7 nT increase. This pro-
vides further evidence that the observed structure is a flux
rope. The other jL current pair with an opposite polarity at
edges is also revealed, which is co-located with the depres-
sion of the magnetic field in the M direction (19:58:02.57–
19:58:02.75 UT and 19:58:04.30–19:58:04.65 UT). The in-
tegrated filamentary current density (IL) is also compared
with the decrease in the magnetic BM component at the mag-
netospheric edge (17.9 mA m−1 and 24.1 nT) and the sheath
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edge (16.3 mA m−1 and 26.6 nT), and they are roughly con-
sistent with each other. Thus, the overall result is that the
observed magnetic field is depressed inside the flux rope
compared to the ambient magnetic field. It is worth not-
ing that most of the current component (jL) at the edges
should be part of the field-aligned current, for its maximum
value (> 500 nA m−2) is larger than the perpendicular cur-
rent (∼ 250 nA m−2) shown in Fig. 5g. This is different from
small-scale magnetic holes, which are supported by electron
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Figure 6. The measured electric field and plasma convective elec-
tric field. (a) The magnetic field; (b) J ×B force; (c) the plasma
thermal, magnetic and total pressures; (d, f) the measured electric
field (black), the ion convective electric field (blue) and the electron
convective electric field (red) in the L, M and N direction, respec-
tively. The color shaded region is the same as in Fig. 5.

currents perpendicular to the magnetic field (Gershman et al.,
2016; Goodrich et al., 2016).

Though the perpendicular current is relatively small in
magnitude, the corresponding J ×B force is not negligible
(Fig. 6b). The normal component of this force is much larger,
and its magnitude varies from−0.015 to 0.015 nPa km−1. To
check if it is a force-balanced structure, we plot the pres-
sure profile in Fig. 6c. Though the magnetic pressure and the
plasma thermal pressure (ions and electrons) vary obviously
during the flux rope crossings, the total pressure stays almost
unchanged. This suggests this flux rope is not magnetically
force-free but still in force balance with the magnetic field
and plasma pressures (Zhao et al., 2016). Since the magnetic
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Figure 7. Wave activities in the observed flux rope. (a) The magnetic field, (b) the plasma density, (c) the electric field in burst mode, (d)
the electric field spectral power density and (e) the magnetic field spectral power density. The black and red lines present the local lower
hybrid frequency and electron cyclotron frequency. (f) Band-pass filtered electric and magnetic field at frequencies 10 Hz<f < 300 Hz from
19:58:02.40–19:58:02.75 UT. (g) The 8E (black) and 8B (red) for the lower hybrid drift waves. The right panels show electron pitch angle
distributions of differential energy flux at 19:58:02.227, 19:58:02.647 and 19:58:02.887 UT.

field is always depressed in such crater flux ropes, a nonzero
pressure gradient force is required to balance the J×B force
to maintain the force balance, meaning the crater flux rope
should intrinsically be a non-force-free structure.

To test if particles are frozen-in in this flux rope, we com-
pare the electric field measured from EDP (Eedp) with the
fluid convective electric field (Eci,ce =−V i,e×B). Since
Ece =Eci+J ×B/ne (Dai et al., 2017) and the J ×B/ne
term is not negligible as shown in Fig. 6b, it is expected
that not all fluid convective electric fields are consistent with
the measured electric field. This comparison in LMN among
Eedp (in black), Eci (in blue) and Ece (in red) is presented
in Fig. 6d–f. Overall, good agreement of these three lines is
found during the selected time interval. The agreement be-
tween Eedp and Ece is extremely good when disregarding
some small systematic constant offsets at a few mV m−1, in-
dicating that the electrons are largely frozen-in throughout
the encounter with the flux rope. In contrast to the electrons,
there are intervals where there is significant deviation in the
ions. For example, at the magnetospheric edge, the difference
of Eci and other electric fields exceeds 20 mV m−1, meaning
ions cannot move as fast as electrons, which remain frozen-
in as pointed out. These deviations are consistent with the

changing of J ×B and can be found inside the flux rope and
at the edges, while they are more obvious at the magneto-
spheric side due to smaller densities. This indicates the de-
coupled motions of ions and electrons are not rare in a crater
flux rope.

Various wave activities, for instance ion-scale magne-
tosonic waves and ion acoustic-like waves, have been re-
vealed during KH wave periods, which play a role in plasma
transport and heating (Moore et al., 2016; Wilder et al.,
2016). In the presence of the pressure (density) gradient in
the non-force-free flux rope reported in this study, lower hy-
brid drift waves can be excited, as shown in Fig. 7. Fig-
ure 7c presents the electric field fluctuation in burst mode,
whose maximum amplitude can reach ∼ 80 mV m−1, corre-
sponding to a broadband spectrum covering the lower hy-
brid frequency (Fig. 7d). Magnetic perturbations parallel to
the background magnetic field in the lower hybrid frequency
range are also clear and presented in Fig. 7e. In this study,
we mainly focus on LHDWs on the magnetospheric edge
from 19:58:02.40 to 19:58:02.75 UT. Figure 7f presents the
fluctuations of the electric field in the wave propagation di-
rection (δEk) and parallel magnetic field (δB||) with a band-
pass filtering for frequencies 10 Hz<f < 300 Hz. Then the
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wave potential is estimated by 8B = (B0/neeµ0)δB|| (Nor-
gren et al., 2012; Divin et al., 2015), which peaks at ∼ 20 eV
as shown in Fig. 7g. The phase velocity v of the lower hybrid
drift waves is found by fitting8E =

∫
Edt ·v to8B . The best

fitted 8E agrees well with 8B , with a correlation coefficient
0.83, and the phase speeds v is estimated at 498× [−0.51,
0.40, −0.75] km s−1 in GSM. The good agreement between
8E and 8B suggests the constant phase speed is still accept-
able, although the background magnetic field changes sig-
nificantly. The wave length is then about 16.6 km, or equiva-
lently kρe ≥ 0.2, where ρe is the electron thermal gyroradius.
This suggests LHDWs may have a larger wave length in a fi-
nite β plasma (Daughton, 2003).

It is worth noting that the ratio of LHDW potential to the
electron temperature (e8/kBTe) is ∼ 17 %, suggesting that
the electrons could be effectively scattered by the wave elec-
tric field. We plot the electron pitch angle distributions of
differential energy flux at 19:58:02.227, 19:58.02.647 and
19:58.02.887 UT. In the second panel when LHDWs are ac-
tive, we find a significant decrease in electron energy flux
from a few tens of eV to about 200 eV, especially at 0 and
180◦ pitch angle, which is associated with a local plasma
density dip. This result suggests LHDWs could play impor-
tant roles in plasma transport by this simple wave scattering
picture.

The cross-field diffusion coefficient of LHDWs (D⊥) can
be estimated from the quasi-linear theory (Treumann et al.,
1991), which is given by

D⊥ =
1
2
ρ2
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where νan,ρce,ωLH,ωpe,�e and E = ε0δE
2/2 are the

anomalous collision frequency, electron gyroradius, lower
hybrid frequency, electron plasma frequency, electron gy-
rofrequency and the wave electric field energy density, re-
spectively. Its value is about 1×108 m2 s−1. This implies a
diffusion time of about 2.6 s over a diffusion region with its
width at one wave length, which is sufficient for the observed
local plasma transport. It is worth noting that the transport
due to LHDWs may be only important at edges of the ob-
served flux rope, as the estimated diffusion coefficient is
about 1 order of magnitude smaller for the diffusive buildup
of the magnetopause boundary layer and also smaller than
that in the magnetopause reconnection region (Graham et al.,
2017).

The electron transport efficiency of LHDWs is determined
by its saturation level. There are several candidate satura-
tion mechanisms, which have been reviewed by Carter et al.
(2002). Considering Te < Ti and Vi < vth,i (Vi, vth,i are the
ion bulk and thermal velocity) in a finite β plasma, the elec-
tron resonance broadening model is more suitable here (Huba

et al., 1978; Gary and Sanderson, 1979), which predicts
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We estimate the normalized fluctuating electric field en-
ergy density (E/nTi) from observations to be ∼ 4× 10−7,
which is comparable to the predicted value (∼ 2× 10−7).
Thus, the LHDWs are damped as a larger number of elec-
trons are permitted to involve the electron-wave resonance.
This process also results into significant energy dissipations,
which would be another aspect for the anomalous transport
properties of LHDWs.

Another possible explanation for the observed electron
distribution is the parallel acceleration, meaning the electrons
can resonate with LHDWs. This requires the phase speed of
LHDWs to be comparable to the local electron thermal speed
(vth,e). The resonant condition is written as v|| = ωLH/k|| =

mi/me×ωLH/k⊥ (Graham et al., 2014). However, the esti-
mated v|| is far larger than vth,e. This suggests the parallel ac-
celeration is not the dominant process for the observed elec-
tron pitch angle distributions compared to wave scattering.

3 Discussion and conclusions

In this study, an ion-scale magnetic flux rope at the trailing
edge of KH waves observed by MMS has been investigated,
which is probably generated by multiple X-line reconnec-
tion. Highly filamentary currents in this flux rope and their
induced magnetic field are discussed: in the core region, a
local increase in the magnetic field is supported by the par-
allel currents, and the current filaments at the edges induce a
larger opposing field that causes overall |B| depressions inte-
rior to the flux rope. As the magnetic field is depressed inside
this flux rope, plasma thermal pressures increase towards the
center to maintain the force balance, corresponding to a non-
force-free structure. Decoupling of electron and ion motions
is also observed inside the current sheet. Intense LHDWs
are also found at the magnetospheric edge of the flux rope,
whose wave potential reaches to ∼ 17 % of the electron tem-
perature. Therefore, these waves could effectively cause dif-
fusive electron transport, with an estimated diffusion coef-
ficient at ∼ 1.×108 m2 s−1, consisting of the local plasma
density dip. This indicates LHDWs can play a role in the
plasma transport in a crater flux rope.

Though we have presented the relation between the mag-
netic variations and current filaments, and the role of LHDWs
in transporting electrons inside a crater-type flux rope, the
later evolution of the flux rope is still not well understood.
In addition, the reported flux rope is located at the trailing
edges of the KH vortex, which will be gradually rolled-up
with time. Thus, the following the evolution of this flux rope
with the KH vortex still requires further investigations.
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