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Thesis directed by Associate Professor Nathaniel Thiem

The character theory for semisimple Hopf algebras with a commutative representation ring

has many similarities to the character theory of finite groups. We extend the notion of superchar-

acter theory to this context, and define a corresponding algebraic object that generalizes the Schur

rings of the group algebra of a finite group. We show the existence of Hopf-algebraic analogues for

the most common supercharacter theory constructions, specificially the wedge product and super-

character theories arising from the action of a finite group. In regards to the action of the Galois

group of the field generated by the entries of the character table, we show the existence of a unique

finest supercharacter theory with integer entries, and describe the superclasses for abelian groups

and the family GL2(q).
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Chapter 1

Introduction

1.1 The representation ring

The character theory of semisimple Hopf algebras largely mirrors that of finite groups. The

goal in each case is to more deeply understand an algebra by studying how it can act on a vector

space, i.e. by describing the category of A-modules, or equivalently, the representations of A. For

a finite group G, the algebra under consideration is A = CG, the complex group algebra. The

category of A-modules is highly structured, in the sense that for two A-modules V and W , we have

that the underlying field C, the tensor product V ⊗W , and the dual space V ∗ = HomC(V,C) all

have a natural A-module structure, and every finite dimensional A-module is semisimple.

Hopf algebras are a class of algebras that abstract the essential structure of group algebras

in a way that ensures this desired structure on their categories of modules. The class of Hopf

algebras includes, for example, the universal enveloping algebras of Lie algebras, providing a uni-

fying framework for these two seemingly disparate structures. Indeed, the applications of Hopf

algebras are extremely pervasive, impacting many areas of mathematics and physics. For example,

Hopf algebras have their origins [3] in algebraic topology and the theory of algebraic groups; in

combinatorics [12], they provide algebraic frameworks for combining and decomposing sets of com-

mon combinatorial objects; they provide solutions to the Yang–Baxter equation [16] of statistical

mechanics and quantum field theory; and so on.

The category of H-modules for a semisimple Hopf algebra H is associated to a certain ring

R(H), called the representation ring, whose objects are formal linear combinations of (isomorphism
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clases of) simple H-modules, with a multiplication determined by tensor product and addition

determined by direct sum. Understanding the structure constants of this ring in the basis of simple

modules determines how tensor products of simple modules decompose as direct sums, which is

one of the main goals of representation theory in this setting.

The task of understanding the representation ring is further simplified by passing from

modules to characters. For any algebra A, every A-module V affords an algebra homomor-

phism ρV : A → EndC(V ) (the representation of A on V ). By composing ρ with the trace map

EndC(V ) → C, a character χV : A → C is associated to the module V . Returning to the case

of a semisimple Hopf algebra H, this character map V 7→ χV extends linearly to take the repre-

sentation ring R(H) to the span of the characters C(H) in H∗. The space of functions H∗ has

an induced algebra structure from the Hopf structure of H, and the image C(H) of the character

map is isomorphic to the representation ring R(H). Since R(H) ∼= C(H), we refer to C(H) as

the representation ring, and now we have reduced the problem of understanding the category of

H-modules to the problem of understanding a certain algebra of functions with a distinguished

basis.

When H = CG is the group algebra of a finite group, the characters, by virtue of their

construction from the matrix trace, are constant on conjugacy classes. Consequently, the value of

a character on a group element g ∈ G is the same as its value on the element

c = |C (g)|−1
∑

h∈C (g)

h ∈ CG,

where C (g) is the conjugacy class of g. These elements form a basis for the center Z(CG), and so

we have a pairing between the algebras Z(CG) and C(CG), by evaluating the distinguished basis of

irreducible characters on the distinguished basis of conjugacy class averages. The (square) matrix

that records these entries is the character table of G, and this contains a remarkable amount of

information about the group G. For example, from the character table one can reconstruct the

lattice of normal subgroups of G.
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1.2 Recent trends in character theory

When the representation ring C(H) is commutative, the analogy to the character theory of

finite groups is even stronger, recovering the notion of character table. In this case, Witherspoon [27]

defines a certain basis of the center Z(H), which in the case H = CG for a finite group G is precisely

the basis of conjugacy class averages up to normalization. This basis arises from the set of characters

of the commutative semisimple algebra C(H), viewed by double-duality as elements of H. Cohen

and Westreich [9] take an equivalent approach from the point of view of Frobenius algebras, and

bring the terminology of conjugacy classes and conjugacy class sums to the Hopf setting. They

provide an example of a character table (in the sense of Witherspoon) that is not the character

table of any finite group.

In a different direction, Diaconis and Isaacs [11] define supercharacter theories for finite

groups. A supercharacter theory consists of a collection of ‘approximately’ irreducible characters

satisfying certain axioms. These characters provide a way to simplify or approximate the usual

character table of a finite group, while potentially preserving enough information for certain ap-

plications. The notion of a general supercharacter theory arises from the work of André [1] and

Yan [28] on the representation theory of the unitriangular group; both these theories arrive at a

particular supercharacter theory as a manageable alternative to the otherwise intractable character

theory, the complexity of which is studied by Gudivok et al. [13]. In the same way that the center

of the group algebra and the representation ring determine the character theory of a finite group,

supercharacter theories are determined by (and are in one-to-one correspondence with) central

Schur rings [14]. An early generalization of the center of the group algebra studied by Schur and

later by Wielandt [26], in the context of permutation groups. Recently, interest in Schur rings has

revived somewhat as the result of connections to association schemes, supercharacter theories, and

circulant graphs.
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1.3 Organization

Our main goal is to combine these frameworks, extending the definition of supercharacter

theories and Schur rings from finite groups to semisimple Hopf algebras. We then use these defini-

tions to generalize some constructions that are common to the finite group case, and provide some

new examples.

Chapters 2 and 3 are preliminary. Chapter 2 introduces the main objects of interest in the

finite group case, namely supercharacters and Schur rings. We discuss the corresponence between

these objects, and some of the important constructions, in particular the wedge product of Leung

and Man [19], which is used to combine Schur rings from smaller groups. Chapter 3 begins with an

introduction to the diagrammatic definitions of algebras and coalgebras, with the goal of defining

Hopf algebras and summarizing some useful results concerning the structure of semisimple Hopf

algebras. We also review Frobenius algebras, a necessary precursor of the character theory of

semisimple Hopf algebras with a commutative representation ring.

Chapter 4 introduces generalized supercharacter theories and Schur rings, and shows that

more general formulations of the results and constructions from Chapter 2 still hold in this setting.

In Chapter 5, we focus specifically on constructing supercharacter theories from group actions,

by considering an algebraic characterization of this action on the corresponding Schur rings. We

then use these tools to prove in Chapter 6 that every supercharacter theory can be minimally

coarsened to a supercharacter theory that has an integer-valued supercharacter table. We describe

the superclasses of this minimal rational supercharacter theory for abelian groups and for GL2(Fq).



Chapter 2

Supercharacter theories and Schur rings

In this chapter we review the main objects under consideration in the finite group case.

We start with the supercharacter theory of an arbitrary finite group in §2.1, as introduced by

Diaconis and Isaacs [11], focusing on some of the properties of the usual character theory that are

modeled by supercharacter theories. We then give an overview of the much older notion of Schur

ring, from the perspective of approximating the center of the group algebra in §2.2, leading up

to the recent correspondence between supercharacter theories and central Schur rings in §2.3, as

described by Hendrickson [14]. Finally, §2.4–2.5 describes Hendrickson’s ∗-product construction [14]

for supercharacter theories as a special case of the wedge product construction for Schur rings of

Leung and Man [19].

2.1 Supercharacter theories

We begin with some definitions and basic results regarding supercharacter theories of finite

groups, first introduced in their present form by Isaacs and Diaconis [11], by abstracting the work

of Andre [1, 2] and Yan [28] concerning families of unipotent groups. We let Irr(G) denote the set

of irreducible characters of G and Cl(G) the set of conjugacy classes of G. The identity of G will

be denoted 1G and the character of the principal representation by εG, so that εG(g) = 1 for all

g ∈ G. To each subset X of Irr(G) we associate a character σX , defined to be the following linear
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combination of irreducible characters:

σX :=
∑
ψ∈X

ψ(1)ψ.

For each subset K of Cl(G), we will denote the union of the conjugacy classes in K as

CK :=
⋃
C∈K

C.

Definition 2.1.1. A supercharacter theory of G is a pair (X ,K), where X is a partition of

Irr(G) and K is a partition of Cl(G), satisfying:

(1) |X | = |K|, and

(2) σX is constant on CK for all X ∈ X and K ∈ K.

The characters σX and the sets CK are supercharacters and superclasses, respectively, and the

rank of (X ,K) is |X |.

Remark 2.1.2. Diaconis and Isaacs [11] take K to be a partition of G rather than Cl(G), but show

that K partitions G more coarsely than the partition of G into conjugacy classes. These definitions

are therefore equivalent, by replacing our partition K of Cl(G) with the partition {CK | K ∈ K} of

G. The reason for this departure is to facilitate the generalizations of the next chapter, where the

group G will no longer have a direct analogue in the larger context of Hopf algebras, but Cl(G)

will.

Definition 2.1.3. The supercharacter table corresponding to the supercharacter theory (X ,K)

of rank n, is the n × n matrix T with rows and columns indexed by X and K respectively, and

entries

TXK = σX(gK)

where gK is any representative of the superclass CK .

Example 2.1.4. The following partitions are always supercharacter theories of G.
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(1) Take X and K to be the partitions of Irr(G) and Cl(G), into singletons:

X = {{χ} | χ ∈ Irr(G)} and K = {{C} | C ∈ Cl(G)}.

In this case, for each singleton X = {χ}, the supercharacter σX = χ(1G)χ is a positive

integer multiple of the irreducible character χ. The superclasses are the usual conjugacy

classes. The corresponding supercharacter table is the matrix DT where T is the usual

character table of G, and D is the diagonal matrix D = diag(d1, d2, . . . , dn) where di =

χi(1G) is the degree of the character χi in the ith row of T .

(2) A supercharacter theory of rank two is obtained by taking

X = {Irr(G)− {εG}, {εG}} and K = {Cl(G)− {1G}, {1G}}.

The corresponding supercharacter table T is given by

T K0 K1

σ0 1 1

σ1 |G| − 1 −1

K0 = {1G}
K1 = G− {1G}
σ0 = εG
σ1 = ρG − εG

where

ρG =
∑

χ∈Irr(G)

χ(1G)χ

is the character of the regular representation.

A functionG→ C (or equivalently, a linear map CG→ C) that is constant on superclasses is a

superclass function. The following theorem shows how supercharacters and superclass functions

retain some of the essential properties of the ordinary irreducible characters and class functions of

G.

Proposition 2.1.5 (Diaconis–Isaacs [11, Prop. 2.2]). Let (X ,K) be a supercharacter theory of G.

The following are true.

(1) The singletons {εG} and {1G} are members of X and K, respectively.
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(2) The set {σX | X ∈ X} is a basis for the space of superclass functions.

(3) The set {ĈK | K ∈ K} is a basis for a subalgebra of Z(CG), where

ĈK =
∑
g∈CK

g.

(4) The partitions X and K uniquely determine each other.

(5) Each automorphism of C induces a permutation of X .

(6) Each automorphism of C induces a permutation of K.

�

There are several obvious choices for a partial order on the set of supercharacter theories of

G, using the fact that these are pairs of set partitions. Denote the set of all partitions of a given

set X by Part(X). It is well-known that Part(X) is partially ordered by ‘refinement’, in the sense

of the following definition.

Definition 2.1.6. Given a finite set X, and partitions P,Q ∈ Part(X), we say that P refines Q

(equivalently, P partitions X more finely, or less coarsely, than Q) if every X ∈ P is a subset of of

some Y ∈ Q. We denote this by P ≤ Q.

Remark 2.1.7. It follows that P refines Q if and only if every X ∈ Q is a union of elements of P .

If A and B are two finite sets, a partial order ≤ can be determined on Part(A) × Part(B)

using refinement in several ways. Some examples given below.

(1) Set (X ,P) ≤ (Y,Q) whenever X ≤ Y.

(2) Set (X ,P) ≤ (Y,Q) whenever P ≤ Q.

(3) Set (X ,P) ≤ (Y,Q) whenever X ≤ Y and P ≤ Q.

In fact, these orders all coincide when we restrict them from Part(Irr(G))×Part(Cl(G)) to the set

of supercharacter theories of G, as shown by Hendrickson [14] in the following result.
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Proposition 2.1.8 (Hendrickson [14, Cor. 3.4]). Let (X ,K) and (Y,L) be supercharacter theories

of G. Then X ≤ Y if and only if K ≤ L. �

Example 2.1.9. The supercharacter theories of Example 2.1.4 are the smallest (1) and largest (2)

possible supercharacter theories, respectively, in this partial order.

2.2 Schur rings

In this section, we will assume that k is an algebraically closed field of characteristic zero.

Schur rings are certain subalgebras of the group algebra kG that have a special basis arising from a

set partition of the group G. In the following definition, we employ some notation: if X is a subset

of G, then we write

X̂ :=
∑
g∈X

g ∈ kG and X−1 = {g−1 | g ∈ X}.

Definition 2.2.1. A subalgebra A ⊆ kG is a Schur ring of G if there exists a partition P of G

satisfying

(1) the set {X̂ | X ∈ P} is a basis for A,

(2) if X ∈ P, then X−1 ∈ P.

If A is a Schur ring, the partition P = P(A) is uniquely determined by A, and P is called a Schur

partition.

Example 2.2.2. The following subalgebras are always Schur rings of G.

(1) The algebra kG itself with partition P(kG) = {{g} | g ∈ G}.

(2) The center Z(kG) with partition P(Z(kG)) = {C | C ∈ Cl(G)}.

(3) The subalgebra A = k -span{1G, Ĝ} with partition P(A) := {{1G}, G− {1G}}.

Not every partition is a Schur partition. For instance, a partition P cannot be a Schur

partition unless {1G} ∈ P, since otherwise the span of the basis {X̂ | X ∈ P} would not contain
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1G, and consequently this would not be a subalgebra of kG. It is not a coincidence that this

condition resembles the property that {1G} ∈ K for any supercharacter theory K. In fact, we

will see that the partition of G into superclasses is always a Schur partition. The converse is true

whenever the associated Schur ring A is contained in Z(kG), as we will discuss in §2.3.

2.2.1 The lattice of Schur rings

There is a relationship between certain set-algebraic operations on the set of Schur rings

of G and the order-theoretic operations on their associated partitions, using the partial order

inherited from Part(G). By set-algebraic operations, we mean that given Schur rings A,B, we can

form new Schur rings by taking their intersection A ∩ B, and the Schur ring that they generate,

i.e. the smallest Schur ring containing both A and B. This follows immediately from an alternate

characterization [24] of Schur rings in terms of the so called Hadamard product or ‘circle product’

on kG. Let x, y ∈ kG so that

x =
∑
g∈G

agg and y =
∑
g∈G

bgg

for some ag, bg ∈ k. Then the vector space kG is an algebra with multiplication

x ◦ y =
∑
g∈G

agbgg

and identity Ĝ. As an algebra, this is isomorphic to the direct sum of |G| copies of k. The

following characterization can be found e.g., in a recent survey of Schur rings by Muzychuk and

Ponomarenko [24].

Lemma 2.2.3 (Muzychuk–Ponomarenko [24]). Let A be a subalgebra of kG. Then A is a Schur

ring of G if and only if

(1) A is closed under the Hadamard product and contains Ĝ, and

(2) if x =
∑

g∈G agg ∈ A, then x(−1) :=
∑

g∈G agg
−1 ∈ A.
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From this characterization, we have the following corollary, as observed by Muzychuck and Pono-

marenko [24].

Corollary 2.2.4. Let A,B be Schur rings of G. Then A ∩B is a Schur ring of G.

Proof. Since A,B are subalgebras of kG with respect to the usual multiplication, and also with

respect to the Hadamard product, A∩B is again a subalgebra with respect to both algebra structures

on kG. Let x ∈ A∩B. Then x(−1) ∈ A and x(−1) ∈ B, so x(−1) ∈ A∩B and it follows from Lemma

2.2.3 that A ∩B is a Schur ring of G.

It follows that finite intersections of Schur rings are Schur rings. Since there are only finitely

many partitions of G, there are only finitely many Schur rings of G. Therefore, given two Schur

rings A and B, there exists a smallest Schur ring containing both (there is at least one Schur ring

containing both, which is G itself), which we will refer to as the Schur ring generated by A and

B. The set of Schur rings of G is partially ordered by inclusion, and this partial order becomes a

lattice with respect to intersection and generation. We now consider a related lattice structure on

Part(G).

For an arbitrary finite set X, recall that Part(X) is partially-ordered by refinement. In

fact, the partial order on Part(X) determines a lattice structure on Part(X) as follows. The meet

(greatest lower bound) P ∧Q of two partitions P,Q ∈ Part(X) is the coarsest partition that refines

both P and Q. Concretely, this is given by the formula

P ∧Q = {X ∩ Y | X ∈ X , Y ∈ Y}.

The join (least upper bound) P ∨Q of two partitions P,Q ∈ Part(X) is the finest partition refined

by both P and Q. Proposition 2.2.6 relates the intersection of Schur rings to the join of the

associated partitions. We will use the following lemma, proved by Hendrickson [14].

Lemma 2.2.5 (Hendrickson [14, Lem. 3.2]). Let P,Q ∈ Part(G). Then

k -span
{
Ẑ | Z ∈ P ∨Q

}
= k -span

{
X̂ | X ∈ P

}
∩ k -span

{
Ŷ | Y ∈ Q

}
.

�
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Proposition 2.2.6. Let A,B be Schur rings of G with associated partitions P and Q. Then A ⊆ B

if and only if Q ≤ P, and A ∩B has partition P ∨Q.

Proof. Let A,B be Schur rings of G. Then A has basis BA = {X̂ | X ∈ P} and B has basis

BB = {Ŷ | Y ∈ Q}. Suppose A ⊆ B. Then each element X̂ of the basis BA is a linear combination

of the elements of BB. By the linear independence of the elements of G, the coefficients in this

expansion must all be 0 or 1. It follows that X the union of the sets Y such that Ŷ appears in

this decomposition with coefficient 1, again by the linear independence of the elements of G in kG.

Then since each Y ∈ Q is a subset of some X ∈ P, we have that Q ≤ P. For the reverse direction,

if Q ≤ P, we have that every element X ∈ P is a union of elements Y ∈ Q. It follows that each

basis element X̂ ∈ BA is a simple sum of elements of the basis BB, so A ⊆ B. The fact that P ∨Q

is the Schur partition corresponding to A ∩B now follows from Lemma 2.2.5.

Remark 2.2.7. It is not the case in general that the Schur ring generated by two Schur rings A

and B has associated partition P ∧ Q. This is only the case when the A + B is a Schur ring, as

in the wedge product construction discussed in §2.4.3, which makes the wedge product a valuable

construction from the point of view of supercharacter theories.

2.3 Supercharacter theories correspond to Schur rings

We return to the case k = C for the remainder of this section, in order to discuss the

close relationship between supercharacter theories and Schur rings. In particular, each Schur ring

contained in Z(CG) encodes the information contained in either of the partitions (X ,K) of a

unique supercharacter theory, and all supercharacter theories can be described in this manner. A

description of this correspondence is given by Hendrickson [14].

Proposition 2.3.1 (Hendrickson [14, Prop. 2.4]). Let G be a finite group. There is a one-to-one
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correspondence

 supercharacter

theories of H

 ←→

 central

Schur rings of H


(X ,K) 7−→ AK := k -span

{
ĈK | K ∈ K

}
.

such that (X ,K) ≤ (Y,L) if and only if AL ⊆ AK. �

Example 2.3.2. Under this correspondence, the largest central Schur ring, the center Z(CG)

itself, corresponds to the finest supercharacter theory, which is the usual character theory (up to

rescaling the irreducible characters). The smallest Schur ring C -span{1G, Ĝ} is always central, and

this corresponds to the coarsest supercharacter theory, which is the unique supercharacter theory

of rank 2 from Example 2.1.4.

2.4 Schur ring lifts and products

In this section, let G be a finite group with subgroup H ≤ G and normal subgroup N C G.

Using the fact that the group algebra kH is a subalgebra of kG, we observe that the Schur rings of

H are ‘almost’ Schur rings of G, and they can be extended to Schur rings of G by a process similar

to adjoining an identity to a non-unital ring. By a similar construction, every Schur ring of G/N

also gives rise to a Schur ring of G. These two constructions taken together give a way of forming

Schur rings of G using the information from a Schur ring of N and a Schur ring of G/N .

2.4.1 Lifting Schur rings from a subgroup

When H ≤ G, Schur rings can be lifted from H to G, by adjoining the element Ĝ ∈ G.

Lemma 2.4.1. Let H ≤ G and let A be a Schur ring of H associated to the partition P . Then

A′ = k -span{A ∪ {Ĝ}}

is a Schur ring of G with associated partition P ′ = P ∪ {G−H}.
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Proof. Let P ′ be as above. Since P is a partition of H, P ′ is clearly a partition of G. Furthermore,

g ∈ G −H implies g−1 ∈ G −H, so P ′ has the desired property that X ∈ P ′ implies X−1 ∈ P ′.

Since Ĝ = Ĥ + Ĝ−H, and Ĥ ∈ A, we can express A′ as

A′ = k -span{A ∪ {Ĝ}} = k -span{A ∪ {Ĝ−H}} = k -span{X̂ | X ∈ P ′}.

The space A′ is closed under multiplication, since xĜ = εG(x)Ĝ for all x ∈ kG, and 1G ∈ A ⊆ A′,

so A′ is a subalgebra of kG. It follows that A′ is a Schur ring with associated partition P ′.

2.4.2 Lifting Schur rings from a quotient group

When N ≤ G is normal, Schur rings can also be lifted from G/N to G. We can identify

kG/N as a subspace of kG by the injective map

i(gN) = |N |−1ĝN = |N |−1gN̂

for all g ∈ G. The image of this map is an algebra, under the inherited multiplication and scalar

multiplication of kG, but with identity |N |−1N̂ , and as such it is isomorphic to the algebra kG/N .

To see this, we note that (N̂)2 = |N |N̂ and

i(gN)i(hN) = (|N |−1gN̂)(|N |−1hN̂) = |N |−2gh(N̂)2 = |N |−1ghN̂ = i(ghN)

for all g, h ∈ G.

Suppose π : G → G/N is the natural map to the quotient and let π be the linear extension

π : kG→ kG/N . Then π restricted to the subspace i(G/N) gives a linear map

|N |−1gN̂ 7→ gN

for all g ∈ G. Thus we have π(i(gN)) = gN . If P is a partition of G/N , we can construct the

partition

π−1(P) := {π−1(X) | X ∈ P}

of G, which is refined by the partition of G into cosets of N .
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Lemma 2.4.2. Let N be a normal subgroup of G, and let A be a Schur ring of G/N with associated

partition P. Identify kG/N as a subspace of kG via gN 7→ |N |−1gN̂ for all g ∈ G. Then

A′ = k -span{A ∪ {1G}}

is a Schur ring of G with associated partition P ′ = (π−1(P)− {N}) ∪ {{1G}, {N − {1H}}}.

Proof. Let P ′ be as above. Since π−1(P) is a partition of G, so is P ′. Furthermore, g ∈ N − {1G}

implies g−1 ∈ N − {1G}, so P ′ has the desired property that X ∈ P ′ implies X−1 ∈ P ′. Since

N̂ = 1̂G + ̂N − {1G}, and N̂ ∈ A, we can express A′ as

A′ = k -span{A ∪ {1G}} = k -span{A ∪ {N̂ − {1}}} = k -span{X̂ | X ∈ P ′}.

The space A′ is clearly closed under multiplication, and 1G ∈ A′ by construction, so A′ is a

subalgebra of kG. It follows that A′ is a Schur ring with associated partition P ′.

Thus we can lift Schur rings from a subgroup N or quotient groups G/N , by viewing them as

subspaces of kG and adjoining an appropriate element of kG, which increases the dimension by at

most 1. In the next section, we combine these methods to give a description of the wedge product

construction of Leung and Man [18,19].

2.4.3 Wedge products

Let N C G be normal, and suppose N ≤ K ≤ G. It is possible to combine the information

of a Schur ring A of K with that of a Schur ring B of G/N , to get a a new Schur ring A∧B of G,

using the lifts from subgroups and quotient groups. When N = K, this is an algebraic version of

the ∗-product, via the correspondence of Proposition 2.3.1, which will be reviewed in §2.5.3.

One can always form the Schur ring generated by the lifts A′ and B′, in the sense of the

smallest Schur ring containing both A′ and B′. The problem is that it would be difficult to describe

the associated partition in terms of P and Q, the partitions associated to A and B. In particular,

it would be hard to decide if the Schur ring generated by A′ and B′ is not all of kG. The following

proposition shows that under certain conditions, the Schur ring generated by A′ and B′ is no larger
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than their linear span, and the associated partition is just the mutual refinement P∧Q of P and Q.

The proposition has been restated in the context of the lifts A 7→ A′ and B 7→ B′ of the associated

Schur rings, to emphasize the connection with the join of the corresponding partitions.

Proposition 2.4.3 (Leung–Man [19]). Suppose N ≤ K ≤ G and that N is normal in G. Let A be

a Schur ring of K with partition P, and let B be a Schur ring of G/N with partition Q, such that

N̂ ∈ A and that π(A) = B ∩ kK/H. Then A′ + B′ is a Schur ring of G with associated partition

P ′ ∧Q′. �

Definition 2.4.4. In the situation of Proposition 2.4.3, the Schur ring A′+B′ is denoted by A∧B

and called the wedge product of A and B.

When it is defined, the wedge product is uniquely characterized as the smallest Schur ring S

such that S∩kK = A and π(S) = B. The fact that A∧B has this property is shown by Leung and

Man [19]. To see that A ∧B is the smallest such Schur ring, suppose S is another Schur ring such

that S ∩ kK = A and π(S) = B. Since S ∩ kK = A, we have that S must contain A′. Similarly,

since π(S) = B, so S must contain B′. It follows that S also contains A ∧B = A′ +B′.

Using the correspondence of Proposition 2.3.1 we consider the supercharacter theory con-

structions that correspond to the above. In the case of the wedge product, we restrict to the case

of N = K, which gives the ∗-product described by Hendrickson [14].

2.5 Supercharacter theory lifts and products

Let G be a finite group with normal subgroup N ≤ G and let i and π be the natural inclusion

and projection

N
i−−→ G

π−−→ G/N.

For each of the constructions in §2.4, a corresponding construction for supercharacter theories

is found by restricting to the case of central Schur rings, and applying the correspondence of

Proposition 2.3.1.
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2.5.1 Lifting supercharacter theories from a subgroup

We are interested in characters in this section, so we restrict to the case k = C. We will lift

supercharacter theories from a subgroup N by lifting the associated central Schur rings. To ensure

that a central Schur ring in CN is also central in CG, a necessary and sufficient condition is that

the superclasses of N are all unions of conjugacy classes of G. Since in particular this implies that

N itself is a union of conjugacy classes of G, we only consider lifts from normal subgroups.

Lemma 2.5.1. Suppose (X ,K) is a supercharacter theory of the normal subgroup N of G such

that the superclass CK is a union of conjugacy classes of G for all K ∈ K. Then there exists a

supercharacter theory (X ′,K′) of G where

K′ = {K ′ | K ∈ K} ∪ {KG\N},

with K ′ = {C ∈ Cl(G) | C ⊆
⋃
K} and KG\N = {C ∈ Cl(G) | C ∩N = ∅}.

Proof. Since each superclass of (X ,K) is a union of conjugacy classes of G, the associated Schur

ring A is contained in Z(kG). Since Ĝ ∈ Z(kG), we also have that the lift A′ is contained in Z(kG),

and it is easy to check that (X ′,K′) is the corresponding supercharacter theory.

2.5.2 Lifting supercharacter theories from a quotient group

Now we consider lifts of supercharacter theories from G/N where N is a normal subgroup of

G. If we have a partition K of the conjugacy classes of G/N , this already gives a partition K′ of

the conjugacy classes of G in a natural way, i.e. we can simply combine the cosets of N according

to P, since the cosets of N are already unions of conjugacy classes. The partition K′ is almost a

partition of Cl(G) into superclasses, as the next lemma shows.

Lemma 2.5.2. Suppose (X ,K) is a supercharacter theory of the quotient G/N for some normal

subgroup N of G, with natural map π : G → G/N . Let K1 = {1G} be the conjugacy class of the

identity and let

K′ = {K ′ | K ∈ K} ∪ {K1}.
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Then there exists a supercharacter theory (X ′,K′) of G.

Proof. Viewing kG/N as a subspace of kG, the Schur ring A associated to (X ,K) has a partition

coarser than the partition of G into conjugacy classes, so A ⊆ Z(kG). Since 1G ∈ Z(kG), it follows

that the lift A′ is contained in Z(kG), and (X ′,K′) is the associated supercharacter theory.

2.5.3 The ∗-product

We can now describe the ∗-product introduced by Hendrickson [14] as way of combining

supercharacter theories of N and G/N . This is the supercharacter theory corresponding to the

wedge product of the corresponding central Schur rings A of N and B of G/N in the special case

where the subgroup K containing N is chosen to be N itself.

Proposition 2.5.3 (Hendrickson [14]). Let N be a normal subgroup of G. Suppose (X ,K) is a

supercharacter theory of N for which each superclass is a union of conjugacy classes of G, and

suppose that (Y,L) is a supercharacter theory of G/N . Then (X ′ ∧Y ′,K′ ∧L′) is a supercharacter

theory of G, where (X ′,K′) and (Y ′,L′) are the lifts to G of (X ,K) and (Y,L), respectively.

Proof. Since N is normal in G, let K = N and note that this is a subgroup of G containing N .

Let A and B be the Schur rings corresponding to (X ,K) and (Y,L), respectively. Then A may be

viewed as a supercharacter theory of K that contains N̂ . Furthermore, since π(A) = k -span{1G/N},

it is certainly true that B ∩ kK/N = B ∩ kN/N = k -span{1G/N} = π(A). Thus we may form the

wedge product A ∧ B = A′ + B′. This Schur ring is central in kG, since A′ and B′ are central

in kG. The corresponding supercharacter theory has the partition K′ ∧ L′, and it follows that the

partition of characters must be X ′ ∧ Y ′.



Chapter 3

Hopf algebras

In this expository chapter, we give the diagrammatic definitions of algebra and coalgebra

in §3.1 with the goal of defining Hopf algebras in §3.2, as in e.g. Montgomery [22], or Dăscălescu

et al. [10]. We then recall some of the main structure results for semisimple Hopf algebras as we

review integrals, Hopf ideals, normal Hopf subalgebras, and Hopf quotients. Frobenius algebras are

briefly reviewed in §3.3, in view of the natural Frobenius structure of semisimple Hopf algebras.

This Frobenius structure is then used in §3.4 to present the character theory for semisimple Hopf

algebras developed by Witherspoon [27] and Cohen and Westreich [8, 9].

3.1 Algebras and coalgebras

In this section, k is an arbitrary field. Most of the objects we consider will have an underlying

vector space structure, and most of the maps we consider will be linear maps. Therefore, we take

a moment to recall some of the common notions from linear algebra that will be used frequently in

what follows.

3.1.1 Vector spaces

All vector spaces are k-vector spaces unless otherwise specified, and ⊗ = ⊗k. The class of

vector spaces are the objects of the category Vectk. Given vector spaces V and W , the morphisms

Homk(V,W ) are the linear maps V →W . Evaluation gives a linear map 〈·, ·〉 : V ∗⊗V → k defined

by 〈φ, v〉 = φ(v).
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The dual space V ∗ is the vector space Homk(V, k) with pointwise addition and scalar mul-

tiplication. Given a linear map f : V → W , the transpose of f is the linear map f∗ : W ∗ → V ∗

defined by 〈f∗(φ), v〉 = 〈φ, f(v)〉 for all φ ∈ W ∗, v ∈ V . A contravariant functor Vectk → Vectk

is obtained by the mapping V → V ∗ and f 7→ f∗ for all vector spaces V and linear maps f . When

V is finite dimensional, there exists a natural isomorphism ev: V 7→ V ∗∗ defined by

〈ev(v), φ〉 = 〈φ, v〉

for all v ∈ V , φ ∈ V ∗, and it will sometimes be convenient to identify V = V ∗∗ via evaluation in

this case.

The twist map τ(V,W ) : V ⊗W →W ⊗V is a linear isomorphism defined by w⊗ v 7→ v⊗w.

If the spaces V,W are clear from context, then we simply write τ = τ(V,W ). The map V ∗⊗V ∗ →

(V ⊗V )∗ defined by (φ⊗ψ)(u⊗v) = φ(u)ψ(v) for all φ, ψ ∈ V ∗, u, v ∈ V is injective, so we view this

as an inclusion map, identifying V ∗⊗V ∗ as a subspace of (V ⊗V )∗. When V is finite dimensional,

we make the identification V ∗ ⊗ V ∗ = (V ⊗ V )∗, since in this case the map is an isomorphism.

3.1.2 Algebras and modules

In this section we review the basic definitions and terminology of k-algebras and their modules

for the purpose of dualizing these objects in §3.1.3 and setting some notation.

Definition 3.1.1. An algebra (or k-algebra) is a tuple (A,m, u) consisting of a vector space A

together with a multiplication m : A ⊗ A → A and unit u : k → A, which are linear maps such

that the following diagrams commute.

A⊗A⊗A A⊗A

A⊗A A

m⊗ id

id⊗m m

m

A⊗A

k ⊗A A⊗ k

A

u⊗ id id⊗u

m

These properties of (A,m, u) are referred to as associativity and the unit law, respectively. The

maps k ⊗A→ A and A⊗ k → A are linear isomorphisms determined by scalar multiplication, i.e.

by 1⊗ a 7→ a and a⊗ 1 7→ a for all a ∈ A.
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Remark 3.1.2. When no confusion is likely, we denote the algebra (A,m, u) by A, the multipli-

cation m(x, y) by xy, and u(1) by 1A.

Definition 3.1.3. Given an algebra A, a left A-module is a pair (M,ϕ), consisting of a vector

space M , together with a linear map ϕ : A ⊗M → M called the structure map, such that the

following diagrams commute.

A⊗A⊗M A⊗M

A⊗M M

m⊗ id

id⊗ϕ ϕ

ϕ

k ⊗M A⊗M

M

u⊗ id

ϕ

Similarly, a right A-module is a pair (M,ϕ), consisting of a vector space M , together with a

structure map ϕ : M ⊗A→M , such that the following diagrams commute.

M ⊗A⊗A M ⊗A

M ⊗A M

id⊗m

ϕ⊗ id ϕ

ϕ

M ⊗ k M ⊗A

M

id⊗u

ϕ

The maps k ⊗M → M and M ⊗ k → M are linear isomorphisms determined by 1⊗m 7→ m and

m⊗ 1 7→ 1 as in Definition 3.1.1.

Remark 3.1.4. When the structure map is clear from context, we denote (M,ϕ) by M . When it

is necessary to emphasize that M is a left (respectively right) A-module, then M is written as AM

(respectively MA). Equivalently, we say that A acts on M by ϕ, on the left (for a left A-module)

or the right (for a right A-module).

Example 3.1.5. Viewing the multiplication m : A⊗A→ A as the structure map for an A-module,

we obtain a left A-module AA or a right A-module AA, which are called the left and right regular

modules, respectively. Let Lx : A → A and Rx : A → A be left and right multiplication by an

element x ∈ A. Taking the transpose of these maps, we get linear maps L∗x : A∗ → A∗ and

R∗x : A∗ → A∗, from which we obtain right and left actions, respectively, of A on A∗. The left
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action ⇀ : A ⊗ A∗ → A∗ arises from the transpose of right multiplication. For x ∈ A and φ ∈ A∗

the action is defined by x ⇀ φ = R∗x(φ), or equivalently by

〈x ⇀ φ, y〉 = 〈φ, yx〉.

Similarly, the right action ↼ : A∗ ⊗ A → A∗ arises from the transpose of left multiplication. For

x ∈ A and φ in A∗, the action is defined by φ ↼ x = L∗x(φ), or equivalently by

〈φ ↼ x, y〉 = 〈φ, xy〉.

The associated A-modules are denoted by AA
∗ and A∗A.

Definition 3.1.6. An A-module M is simple if whenever N is a submodule of M , either N = M

or N = 0. An A-module is semisimple if it decomposes as a (finite) direct sum of simple modules.

An algebra A is semisimple if AA is semisimple.

We will be primarily concerned with semisimple algebras. In this case the center has a

canonical basis of orthogonal idempotents, a fact that we will make frequent use of in what follows.

Theorem 3.1.7 (Wedderburn). Let A be a finite dimensional semisimple algebra. Then every

A-module is semisimple, and the regular module decomposes as

AA =
n⊕
i=0

Li

where each Li = Aei is a simple submodule for some ei ∈ A satisfying

(1) eiej = 0 if i 6= j,

(2) e2
i = ei for all i,

(3)
∑n

i=1 ei = 1.

Let A be an algebra. An element e ∈ A is an idempotent if e2 = e. A set {ei} of

idempotents of A is orthogonal if eiej = 0 whenever i 6= j. A set of orthogonal idempotents

is complete if
∑

i ei = 1. An idempotent is primitive if it cannot be written as a sum of two
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orthogonal idempotents. An idempotent is central if it is contained in Z(A), and is primitive

central if it is central, but cannot be written as a sum of two orthogonal central idempotents.

Proposition 3.1.8 (Wedderburn). Let A be a simple algebra over k. Then A ∼= Mn(k) where

Mn(k) is the full matrix ring of n× n matrices over k, for some n.

This gives the following well-known result, of which we will make frequent use, that the

primitive central idempotents are a basis for the center. In particular, when we have a commutative

semisimple algebra A, the primitive idempotents and primitive central idempotents coincide, so that

A = Z(A) has a basis of primitive idempotents.

Proposition 3.1.9. Let A be a finite dimensional semisimple algebra. The primitive central idem-

potents of A are a basis for Z(A).

Proof. Let A be a finite dimensional simisimple algebra. Then AA =
⊕N

i=0 Li
∼=
⊕N

i=0Mni(k) for

some N , since each Li is simple. The center of
⊕N

i=0Mni(k) is the set of block-scalar matrices, with

block sizes given by n1, n2, . . . , nN . Let Ei be the matrix that is the ni × ni identity matrix in the

ith block, and zero in all other blocks. This is a basis for the block-scalar matrices, hence a basis

for the center. Each Ei is idempotent, and any central idempotent must be a sum of the Ei, so

these are the primitive central idempotents. The algebra isomorphism above must map the center

of A to the center of
⊕N

i=0Mni(k), and it must map the set of primitive central idempotents of A

to the matrices Ei. It follows that the primitive central idempotents of A are basis for Z(A).

3.1.3 Coalgebras and comodules

In this section we introduce coalgebras and comodules, which are are obtained by dualizing

the definitions in §3.1.2. These objects will be necessary for our definition of Hopf algebras in §3.2.

Definition 3.1.10. A coalgebra (or k-coalgebra) is a tuple (C,∆, ε) consisting of a vector space

C together with a comultiplication ∆: C → C ⊗C and counit ε : C → k, which are linear maps

such that the following diagrams commute.
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C ⊗ C ⊗ C C ⊗ C

C ⊗ C C

∆⊗ id

id⊗∆ ∆

∆

C ⊗ C

k ⊗ C C ⊗ k

C

ε⊗ id id⊗ε

∆

These properties of (C,∆, ε) are referred to as coassociativity and the counit law, respectively. The

maps C → k⊗C and C → C ⊗ k are determined linearly by c→ 1⊗ c and c→ c⊗ 1, respectively.

When working with a coalgebra C, we employ Sweedler notation by writing the result of

applying the coproduct to an element x ∈ C as

∆(x) =
∑
x

x(1) ⊗ x(2).

The subscripts are symbolic, so that x(1) and x(2) are not specific elements of C, but placeholders

for the first and second parts of the simple tensors arising after applying ∆ to x, and the sum is

over all such simple tensors. When no other subscripts are present so that confusion is unlikely, we

will simply write
∑
x1 ⊗ x2 for ∆(x). The fact that (∆ ⊗ id) ◦∆ = (id⊗∆) ◦∆ is the same map

by coassociativity can be expressed in this notation as

∑
(x1)1 ⊗ (x1)2 ⊗ x2 =

∑
x1 ⊗ (x2)1 ⊗ (x2)2.

Therefore, to further simplify we denote either map as ∆2 : H → H ⊗H ⊗H and we denote the

unique result of applying it to an element of x ∈ C simply by

∆2(x) =
∑

x1 ⊗ x2 ⊗ x3.

Iterating this process n times, we write

∆n(x) =
∑

x1 ⊗ x2 ⊗ · · · ⊗ xn+1

representing (for example) the application of the composition

∆n = (∆⊗ id⊗ · · · ⊗ id) ◦ · · · ◦ (∆⊗ id⊗ id) ◦ (∆⊗ id) ◦∆

to x ∈ C, but where the tensor factor of C⊗r to which ∆ is applied at each stage is irrelevant as a

result of coassociativity.
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Definition 3.1.11. A coalgebra C is cocommutative if ∆ = τ ◦∆, i.e. if

∑
x1 ⊗ x2 =

∑
x2 ⊗ x1

for all x ∈ C.

Example 3.1.12. Let G be a finite group. The vector space kG is a (cocommutative) coalgebra

with coproduct and counit linearly determined by

∆(g) = g ⊗ g and ε(g) = 1.

Definition 3.1.13. Let (B,∆B, εB) and (C,∆C , εC) be coalgebras. A linear map f : B → C is a

coalgebra homomorphism if

(1) (f ⊗ f) ◦∆B = ∆C ◦ f , and

(2) εB = εC ◦ f .

Definition 3.1.14. Given a coalgebra C, a left C-comodule is a pair (M,ϕ), consisting of a

vector space M , together with a linear map ϕ : M → C ⊗M called the structure map, such that

the following diagrams commute.

C ⊗ C ⊗M C ⊗M

C ⊗M M

∆⊗ id

id⊗ϕ ϕ

ϕ

k ⊗M C ⊗M

M

ε⊗ id

ϕ

Similarly, a right C-comodule is a pair (M,ϕ), consisting of a vector space M , together with a

structure map ϕ : M ⊗M → C, such that the following diagrams commute.

M ⊗ C ⊗ C M ⊗ C

M ⊗ C M

id⊗∆

ϕ⊗ id ϕ

ϕ

M ⊗ k M ⊗ C

M

id⊗ε

ϕ

The maps M → k ⊗M and M →M ⊗ k are determined as in Definition 3.1.10.
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Remark 3.1.15. When the structure map is clear from context, denote (M,ϕ) by M . When it

is necessary to emphasize that M is a left (respectively right) C-comodule, then we write CM

(respectively MC).

3.1.4 Duality

Finite dimensional algebras and coalgebras are dual objects in the sense of the following

proposition, which is well-known.

Proposition 3.1.16. Let A be a finite dimensional vector space. Then (A,m, u) is an algebra if

and only if (A∗,m∗, u∗) is a coalgebra. If A is an algebra, then A is commutative if and only if the

coalgebra A∗ is cocommutative.

Proof. The proof is a straightforward application of the definitions, after making the identification

A∗ ⊗A∗ = (A⊗A)∗.

3.2 Hopf algebras

Combining the structures of algebras and coalgebras in a compatible way gives a self-dual

object called a bialgebra. Hopf algebras are a particular class of bialgebra, which have a natural

notion of a ‘dual representation’ precisely as we do in the finite group case. The basic definitions and

examples of this section can be found in an introduction to Hopf algebras, such as Montgomery [22]

or Dăscălescu et al. [10].

Definition 3.2.1. A bialgebra is a tuple (B,m, u,∆, ε) such that (B,m, u) is an algebra, (B,∆, ε)

is a coalgebra, and the following (equivalent) conditions hold:

(1) m,u are coalgebra homomorphisms,

(2) ∆, ε are algebra homomorphisms.

If (A,m, u) is an algebra and (C,∆, ε) is a coalgebra, then there exists an algebra structure

on the vector space Homk(C,A), with multiplication given by the convolution product, defined
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by the composition

f ∗ g = m ◦ (f ⊗ g) ◦∆

with unit element u ◦ ε. To verify that u ◦ ε is the multiplicative identity, let f ∈ Hom(C,A), x ∈ C

and note that

f ∗ (u ◦ ε)(x) =
∑

ε(x2)f(x1)1A = f
(∑

ε(x2)x1

)
= f(x)

by the counit law, and a similar calculation shows that (u ◦ ε) ∗ f = f .

Example 3.2.2. If C is a coalgebra, then there is a convolution product on C∗, since C∗ =

Hom(C, k), and k is naturally a k-algebra. This is the transpose of the comultiplication of C

restricted to the subspace C∗ ⊗ C∗ of (C ⊗ C)∗.

Definition 3.2.3. A Hopf algebra is a tuple (H,m, u,∆, ε, S) such that (H,m, u,∆, ε) is a

bialgebra, and S : H → H is an algebra antihomomorphism, called the antipode, such that the

following diagram commutes.

H ⊗H H H ⊗H

H ⊗H H H ⊗H

∆ ∆

m m

S ⊗ id id⊗Su ◦ ε

.

Example 3.2.4. If (H,m, u,∆, ε, S) is a finite dimensional Hopf algebra, then so is

H∗ = (H∗,∆∗, ε∗,m∗, u∗, S∗),

after identifying (H ⊗H)∗ ∼= H∗ ⊗H∗. The Hopf algebra H∗ is called the dual of H.

Remark 3.2.5. When confusion is possible, we will use a subscript to indicate the Hopf algebra

to which an operation belongs. For example, SH denotes the antipode of H, while SH∗ denotes the

the antipode of H∗, which happens to be the transpose (SH)∗.

Example 3.2.6. Let G be a finite group. Then the group algebra kG is a finite dimensional

cocommutative Hopf algebra with comultiplication, counit, and antipode determined linearly by

∆(g) = g ⊗ g, ε(g) = 1, and S(g) = g−1
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for all g ∈ G.

Example 3.2.7. The dual of the group algebra kG∗ is a finite dimensional commutative Hopf

algebra. Let φg be the basis of kG∗ dual to {g | g ∈ G}. Then the operations of kG∗ are linearly

determined by

(1) φgφh = δghφg,

(2) ∆(φg) =
∑

h∈G φgh−1 ⊗ φh,

(3) u(1) =
∑

g∈G φg,

(4) ε(φg) = 1,

(5) S(φg) = φg−1 ,

for all g ∈ G, where δ is the Kronecker delta.

Definition 3.2.8. Given Hopf algebras H and K, a linear map f : H → K is a Hopf algebra

homomorphism (or Hopf algebra map) if f is a homomorphism of H and K as bialgebras.

Remark 3.2.9. If f : H → K is a Hopf algebra homomorphism, then f ◦ SH = SK ◦ f .

3.2.1 Integrals

Let H be a Hopf algebra. We recall the definition and basic properties of integrals, which

are certain elements that are of key importance to the Frobenius algebra structure of H in the

semisimple case. Montgomery [22] and Dăscălescu et al. [10] again provide good resources for the

results of this section.

Definition 3.2.10. An element x ∈ H is a left (respectively right) integral if hx = ε(h)x for all

h ∈ H (respectively xh = ε(h)x).

The set of left (respectively right) integrals is an ideal of H, denoted by IL (respectively IR).

To see this, suppose Λ ∈ IL, and let x ∈ H. Then xΛ is again a left integral, since for all h ∈ H
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we have

h(xΛ) = h(ε(x)Λ) = ε(x)hΛ = ε(x)ε(h)Λ = ε(h)(ε(x)Λ) = ε(h)(xΛ).

But Λx is also a left integral, since

h(Λx) = (hΛ)x = ε(h)(Λx).

When IL = IR, then H is said to be unimodular. We will mainly be concerned with

semisimple Hopf algebras, which are finite dimensional (here semisimple simply means semisimple

as an algebra). A result of Larson–Sweedler shows that this condition is sufficient to ensure that

there is a unique left and right integral, up to rescaling.

Proposition 3.2.11 (Larson–Sweedler). Let H be a finite dimensional Hopf algebra. Then

dim(IL) = dim(IR) = 1

and SH(IL) = (IR).

The integrals of a finite dimensional Hopf algebra H control whether or not H is semisimple,

by the following generalization of Maschke’s theorem.

Proposition 3.2.12 (Larson–Sweedler). Let H be a finite dimensional Hopf algebra. Then the

following are equivalent:

(1) H is semisimple;

(2) εH(IL) 6= 0;

(3) εH(IR) 6= 0.

Example 3.2.13. If H = kG for an arbitrary field k of characteristic p and finite group G, then

ΛH = Ĝ 6= 0 is a left and right integral of H, so IL = IR = HΛH . Since εH(ΛH) = |G| in this

case, the condition εH(IL) 6= 0 is equivalent to the condition that p does not divide |G|. Thus the

above states that kG is semisimple whenever p does not divide |G|, which is one way of formulating

Maschke’s theorem for finite groups.
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If H is not only finite dimensional but also semisimple, then a corollary of Maschke’s theorem

gives that IL = IR, so that we no longer need to distinuish between left and right integrals. When

H is semisimple, it is also cosemisimple; i.e. H∗ is semisimple. In this case we will use λH to denote

the unique idempotent of integral of H∗. That is, we fix the integral λH by choosing any nonzero

integral and rescaling so that εH∗(λH) = λH(1) = 1, which in turn gives λ2
H = λH(1)λH = λH .

After fixing λH ∈ H∗, we fix an integral ΛH ∈ H by rescaling any nonzero integral so that

λH(ΛH) = 1.

3.2.2 Hopf subalgebras, ideals, and quotients

In the next chapter, we will be concerned with Hopf subalgebras and quotients of semisimple

Hopf algebras. As with much of the theory of semisimple Hopf algebras, this proceeds similarly to

the corresponding theory for finite groups their group algebras.

Definition 3.2.14. Let H be a Hopf algebra. A subalgebra K ⊆ H satisfying ∆H(K) ⊆ K ⊗K

and SH(K) ⊆ (K) is a Hopf subalgebra of H.

Remark 3.2.15. In general if C is a coalgebra, then a subspace D with ∆(D) ⊆ D ⊗D is itself

a coalgebra, with counit map εD given by the restriction of εC . In the above definition then, K

is a subalgebra and a subcoalgebra, which is closed under the antipode. The restrictions of these

operations from H to K give K the structure of a Hopf algebra.

Example 3.2.16. If H = kG is the group algebra of a finite group, the only Hopf subalgebras are

the subalgebras of the form kK, where K is a subgroup of G, and we can identify kK with the

group algebra of the group K by linearly extending the inclusion K → G.

For a finite group G, the group algebra kG acts on itself by linearly extending the action of

G on itself by conjugation. This is called the left or right adjoint action, depending on whether

we extend the left action g · x = gxg−1 or the right action x · g = g−1xg for all x, g ∈ G. This is

a special case of a more general adjoint action of any Hopf algebra on itself. These left and right
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adjoint actions are given by

h · x =
∑

h1xSH(h2) and x · h =
∑

SH(h1)xh2

respectively for all x, h ∈ H. In the case H = kG the only Hopf subalgebras that are closed under

the adjoint action are the Hopf subalgebras kN , where NCG is a normal subgroup. This motivates

the following definition.

Definition 3.2.17. Let H be a Hopf algebra. A Hopf subalgebra N is left (respectively right)

normal if it is closed under the left (respectively right) adjoint action of H on itself.

While normal subgroups are precisely the kernels (in the sense of group theory) of group

homomorhpisms, the kernel (in the sense of linear algebra) of a Hopf algebra homomorphism

f : H → K must be an ideal with additional structure, since H is an algebra and f respects the

algebra structure. But a normal Hopf algebra that is properly contained in H contains 1H , and

therefore cannot be a proper ideal, so normal Hopf algebras are not quite the kernels of the Hopf

algebra morphisms. Nevertheless, they are closely related in the semisimple case. The kernels of

Hopf algebra homomorphisms are the Hopf ideals, and are defined as follows.

Definition 3.2.18. Let H be a Hopf algebra. An ideal I of the algebra H satisfying

(1) I ⊆ ker(εH),

(2) ∆H(I) ⊆ I ⊗H +H ⊗ I, and

(3) SH(I) ⊆ I

is a Hopf ideal of H.

Remark 3.2.19. A subspace I satisfying conditions (1) and (2) in an arbitrary coalgebra is called

a coideal and these are precisely the kernels of coalgebra homomorphisms. Thus a Hopf ideal is a

subspace that is an ideal, a coideal, and is closed under the antipode.
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When H is semisimple, the relationship between normal Hopf subalgebras and Hopf ideals

is particularly nice. If K is any Hopf algebra, the space K+ = ker(εK) is a Hopf ideal, called the

augmentation ideal. When K is a Hopf subalgebra of H, this can be extended to a left or right

ideal of H in the usual way, by forming the space HK+ or K+H.

Proposition 3.2.20. If N is a normal Hopf subalgebra of H, then

(1) HN+ = N+H, and

(2) I = HN+ is a Hopf ideal of H.

When H is semisimple, every Hopf ideal arises in this way, as the next proposition shows.

Proposition 3.2.21. Let H be a semisimple Hopf algebra. If I is a Hopf ideal, then I = HN+

for some normal Hopf subalgebra N of H.

When I is a Hopf ideal, the quotient space H/I of cosets of I can be given the structure

of a Hopf algebra as follows. Since I is an ideal, the cosets of I have have an algebra structure

by multiplying representatives, with identity 1H + I. Since I is a coideal, the cosets of I have a

coalgebra structure by

∆(x+ I) =
∑

(x1 + I)⊗ (x2 + I)

for all x ∈ H. Finally, the antipode of H/I is given by

S(x+ I) = S(x) + I

for all x ∈ H.

3.3 Frobenius algebras

We recall the basic structure and characterizations of Frobenius algebras, since in what follows

we will make frequent use of the natural Frobenius structure of semisimple Hopf algebras.

Proposition 3.3.1. Let A be a finite dimensional algebra. The following are equivalent.
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(1) There exists a module isomorphism AA→ AA
∗.

(2) There exists a functional λ ∈ A∗ such that ker(λ) contains no nonzero left ideals.

(3) There exists a nondegenerate bilinear form (·, ·) : A ⊗ A → k that is associative, i.e. such

that (xy, z) = (x, yz) for all x, y, z ∈ A.

Proof. (1)⇒ (2). Let F : AA→ AA
∗ be an isomorphism of left A-modules. Set λ = F(1). Then

F(x) = F(x · 1) = x ⇀ F (1) = x ⇀ λ

for all x ∈ A. Let I be an ideal of A contained in ker(λ) and let x ∈ I. Then for all y ∈ A we have

〈F(x), y〉 = 〈x ⇀ λ, y〉 = 〈λ, yx〉 = 0

since yx ∈ I. Thus F(x) is identically zero, and by the injectivity of F it follows that x = 0 and

hence I = 0.

(2)⇒ (3). Suppose λ ∈ A∗ and that λ contains no nonzero left ideals. Define a bilinear form

on A by (x, y) = 〈y ⇀ λ, x〉 = λ(xy) for all x, y ∈ A. Let 0 6= y ∈ A and suppose that (x, y) = 0

for all x ∈ A. Then λ(xy) = 0 for all x ∈ A, and hence I = Ay is a left ideal contained in ker(λ).

It follows that y = 0, and hence the form is nondegenerate. For all x, y, z ∈ A we have

(xy, z) = 〈z ⇀ λ, xy〉 = λ(xyz) = 〈yz ⇀ λ, x〉 = (x, yz)

so this form is associative.

(3) ⇒ (1). Suppose that there exists a nondegenerate associative bilinear form (·, ·) on A.

Then define a map F : A → A∗ by F(x)(y) = (y, x) for all x, y ∈ A. The nondegeneracy of (·, ·)

ensures that F is a bijection. Let a ∈ A. Then for all y ∈ A we have

〈F(ax), y〉 = (y, ax) = (ya, x) = 〈a ⇀ F(x), y〉.

Thus F is a module homomorphism AA→ AA
∗.
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Definition 3.3.2. A Frobenius algebra is a tuple (A,m, u, λ) such that (A,m, u) is an algebra,

and λ ∈ A∗, called the Frobenius homomorphism, is a functional whose kernel contains no

nonzero left ideals. The associated module isomorphism F : AA→A A
∗ defined by

〈F(x), y〉 = 〈λ, yx〉

for all x, y ∈ A is called the Frobenius isomorphism. If λ(xy) = λ(yx) for all x, y ∈ A, then A

is called a symmetric algebra.

Remark 3.3.3. The Frobenius algebra (A,m, u, λ) may be denoted by (A, λ) if the algebra struc-

ture is clear from context, or simply A if the Frobenius structure is clear. The associated bilinear

form from Proposition 3.3.1 will be denoted by (·, ·).

Proposition 3.3.4. Let (A, λ) be a Frobenius algebra. Then there exist bases {`i} and {ri} of A

such that ∑
i

(x, ri)`i = x =
∑
i

(`i, x)ri.

Proof. Let {`i} be any basis of A and let {`∗i } ⊆ A∗ be the dual basis, i.e. for each i, `∗i ∈ A∗

is uniquely determined by `∗i (`j) = δij for all j. Then set ri = F−1(`∗i ). Since F is a linear

isomorphism, {ri} is a basis of A. For the first equality, we have for all x ∈ A

∑
i

(x, ri)`i =
∑
i

λ(xri)`i =
∑
i

F(ri)(x)`i =
∑
i

`∗i (x)`i = x.

For the second equality, let ev : A→ A∗∗ be the canonical isomorphism where ev(x)(f) = f(x) for

all x ∈ A, f ∈ A∗. Then ev(`i) = `∗∗i . For all x ∈ A we have

F

(∑
i

(`i, x)ri

)
=
∑
i

λ(`ix)`∗i =
∑
i

〈F(x), `i〉`∗i =
∑
i

〈`∗∗i ,F(x)〉`∗i = F(x)

and hence ∑
i

(`i, x)ri = x.
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Definition 3.3.5. Bases {`i} and {ri} of a Frobenius algebra (A, λ) satisfying Proposition 3.3.4

are called dual with respect to λ.

Example 3.3.6. Let (H,m, u,∆, ε, S) be a semisimple Hopf algebra with nonzero integral Λ ∈ H

and nonzero integral λ ∈ H∗. Then (H,m, u, λ) and (H∗,∆∗, ε∗,Λev) are symmetric Frobenius

algebras, where Λev ∈ H∗∗ is evaluation at Λ.

The following examples are special cases of Example 3.3.6, where H = kG or H = kG∗. To

ensure semisimplicity, we will assume that the characteristic of k does not divide |G|.

Example 3.3.7. The group algebra (kG, λ) is a Frobenius algebra, with Frobenius homormophism

is λ = φ1. The associated bilinear form is determined by

(g, h) = λ(gh) = φ1(gh) = (g ⇀ φ1)(h) = φg−1(h) = δg−1h

for all g, h ∈ G. Since δg−1h = δh−1g, this form is symmetric, kG is a symmetric algebra. The map

F is determined by

F(g) = g ⇀ φ1 = φg−1 .

Example 3.3.8. The dual (kG∗,Λev) of the group algebra is a Frobenius algebra, where

Λ =
∑
g∈G

g.

The associated bilinear form is determined by

(φg, φh) = Λev(φgφh) = Λev(δghφg) = δghφg(Λ) = δgh.

Since δgh = δhg, this is a symmetric algebra. The map F is determined by

F(φg) = φg ⇀ Λev = g.

3.4 Character theory

In character theory, we are interested in modules and their associated characters, so we

review these objects for an arbitrary k-algebra, and recall the theory of semisimple algebras and
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central idempotents. We then specialize to the case of a semisimple Hopf algebra over C with a

commutative representation ring and review the character table construction of Witherspoon [27],

using the conjugacy classes of Cohen and Westreich [8].

Definition 3.4.1. Let V be an A-module with structure map ϕ : A ⊗ V → V . Define a map

ρ : A→ Endk(V ) by

ρ(x)(v) = xv.

The map ρ is the representation of A afforded by V .

It is trivial to check that ρ is an algebra homomorphism. Conversely, any algebra homomor-

phism ρ : A→ Endk(V ) for a vector space V gives V an A-module structure by taking the structure

map ϕ : A⊗ V → V to be ϕ(a⊗ v) = ρ(a)(v) for all a ∈ A, v ∈ V .

Definition 3.4.2. Given a representation ρ of A afforded by the A-module V , the character

χ : A→ k of ρ (equivalently, the character of V ) is defined by χ = tr ◦ρ where tr : Endk(V )→ k is

the usual trace of a linear map. A character is irreducible if the associated module is simple.

3.4.1 The representation ring

We now return to the case of a semisimple Hopf algebra, where the set of isomorphism classes

of H-modules is highly structured. Since H is semisimple, there are finitely many isomorphism

classes of irreducible left H-modules. Let Ĥ be an index set for this set of isomorphism classes.

Then the left regular H-module decomposes into irreducible H-modules as

H =
⊕
α∈Ĥ

V ⊕mαα

where mα = dimVα. Let [Vα] denote the isomorphism class of Vα. Then {[Vα] | α ∈ Ĥ} is the

complete set of isomorphism classes of irreducible H-modules. Since H is semisimple, the set

M(H) of all isomorphism classes of H-modules forms a commutative monoid under direct sum.

This can be extended to the Grothendieck group G0(H), a free abelian group with generating set

{[Vi]}. By tensoring with k we get a vector space R(H) = k ⊗ G0(H), with scalar multiplication
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x(y ⊗ V ) = xy ⊗ V for all x, y ∈ k and V ∈ r(H). This makes (R(H),⊗, u) an algebra, where the

multiplication is obtained by linearly extending the map

[V ]⊗ [W ] = [V ⊗W ],

where V,W are H-modules and V ⊗W . The unit is determined by the trivial module, u(1) = [V0].

The algebra (R(H),⊗, u) is called the representation ring of H.

Let U, V be H-modules, with associated characters χU and χV . Then χU = χV if and only if

U ∼= V . It follows that the character map : R(H)→ H∗, which linearly extends the map taking an

isomorphism class [V ] ∈ R(H) to the character χV of a representative V ∈ [V ], is well-defined. In

fact, the character map is an injective algebra homomorphism. The image of R(H) is a subalgebra

C(H) of H∗, and consequently C(H) ∼= R(H). For this reason we will also refer to C(H) as

the representation ring of H, and from this point forward we will primarily deal with characters

rather than modules. This is a key motivation for studying characters: knowledge of the structure

constants of the character ring with respect to the basis of irreducible characters is equivalent to

understanding the decomposition of tensor products of simple H-modules into simple modules.

3.4.2 The character table

Let H be a semisimple Hopf algebra with k = C, and further assume that the representation

ring C(H) is commutative. This condition is satisfied by a large class of Hopf algebras, known as

quasitriangular Hopf algebras, and every Hopf algebra can be embedded as a Hopf subalgebra of a

quasitraingular Hopf algebra. In this case, one can define conjugacy classes of H, from which the

usual notion of conjugacy class can be recovered in the case H = CG, which will be used to define

the character table of H. We will need the following result of Zhu [30].

Proposition 3.4.3 (Zhu [30, Lem. 2]). Let H be a semisimple Hopf algebra. Then the represen-

tation ring C(H) is semisimple. �

So together with our assumption that C(H) is commutative, it follows that C(H) has a basis

of primitive central idempotents {E1, E2, · · ·En}. We label these so that E1 = λH . We have already
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seen that λH is idempotent by construction, and λH is primitive since C(H)λH = C -span{λH} is

a one dimensional (hence irreducible) submodule of the regular C(H)-module.

Definition 3.4.4 (Cohen–Westreich [8]). For each primitive idempotent Ei of C(H), the space

Ci := SH(F−1
H (H∗Ei))

is called a conjugacy class of H. The conjugacy class sum associated to Ci is

Ci := SH(F−1
H (Ei))

and the normalized conjugacy class sum (or conjugacy class average) is the element ci := m−1
i Ci

where mi = dim(H∗E).

Example 3.4.5. Suppose H = CG for a finite group G. Let {gi} be a set of congugacy class

representatives. The primitive idempotents of C(H) are given by

Ei =
∑

g∈Cl(gi)

φg.

where {φg | g ∈ G} is the dual basis to G. It follows that gi ∈ Ci for all i, and the usual conjugacy

class of G is recovered as the set Ci ∩ G. Alternatively, if Cl(gi) is the conjugacy class of gi in G,

then Ci is just the linear span of Cl(g) in CG. The integer mi is equal to |Cl(gi)|, so the notion of

conjugacy class sum and normalized conjugacy sum are precisely recovered by

Ci =
∑

g∈Cl(gi)

g and ci = |Cl(gi)|−1
∑

g∈Cl(gi)

g.

Remark 3.4.6. We will let Cl(H) denote the set of normalized conjugacy class sums, rather than

the set of conjugacy classes, to more easily define supercharacter theories of H in Chapter 4.

In the finite group case, the character table is given (up to reordering rows and columns)

by the matrix Tij = χi(gj), where χi is the ith irreducible character and gj is a representative of

the jth conjugacy class, for some ordering of Irr(G) and Cl(g). Since characters are constant on

conjugacy classes, we have that

χi(gj) = |Cl(gj)|−1
∑

gj∈Cl(gj)

χi(gj) = χi(cj),

which motivates the following definition.
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Definition 3.4.7. Let H be a semisimple Hopf algebra with a commutative representation ring.

The character table of H is the square matrix T (up to reordering rows and columns) with entries

Tij = 〈χi, cj〉

where Irr(H) = {χ1, . . . , χn} is the set of irreducible characters ofH and where Cl(H) = {c1, . . . , cn}

is the set of normalized conjugacy class sums.

When H is semisimple, the Frobenius map FH maps Z(H) to C(H), so the conjugacy class

sums {Ci} are a basis for Z(H). This gives two bases for both C(H) and Z(H). In each case,

one basis consists of the primitive idempotents, the other basis being the normalized conjugacy

class sums (for Z(H)) and the irreducible characters (for C(H)). Each non-idempotent basis is, up

to rescaling, the dual basis of one of the bases of primitive idempotents, as described in the next

lemma.

Lemma 3.4.8. Let {Ei} and {ei} be the primitive idempotents of C(H) and Z(H), respectively.

Let {ci} and {χi} be the class averages and irreducible characters of H, respectively. Then we have:

(1) 〈Ei, cj〉 = δij,

(2) 〈χi, ej〉 = δijdi,

(3) SH(F−1
H (Ei)) = mici, and

(4) |H|FH(ei) = diχi,

where mi = dim(H∗Ei) and di = dim(Hei).

The character table T can also be realized as (the transpose of) the change of basis matrix

from the basis {Ei} of C(H) to the basis {χi}. To see this, write

χi =
∑
j

αijEj ,



40

so that (αij) is the transpose of the change of basis matrix. Since the bases {Ei} and {cj} are dual

by the above lemma, we have

Tij = 〈χi, cj〉 =
∑
k

αik〈Ek, cj〉 =
∑
k

δkjαik = αij .



Chapter 4

Generalized supercharacter theories and Schur rings

4.1 Generalized supercharacter theories

We extend the notion of supercharacter theory from the group algebra of a finite group to

semisimple Hopf algebras with a commutative representation ring, using the character theory of

§3.4. Recall that we have two bases of the character ring C(H), denoted by

Irr(H) = {χi} = {irreducible characters of H}

{Ei} = {primitive idempotents of C(H)}

as well as two bases of the center Z(H), denoted by

Cl(H) = {ci} = {normalized conjugacy class sums of H}

{ei} = {primitive central idempotents of H}.

Let di = dim(Hei) and let mi = dim(H∗Ei). Recall that these bases are related by

〈χi, ej〉 = δijdi, |H|FH(ei) = diχi,

〈Ei, cj〉 = δij , SH(F−1
H (Ei)) = mici.

To each subset X of Irr(H) we associate a character σX , defined to be the following linear

combination of irreducible characters:

σX :=
∑
χi∈X

χi(1H)χi.
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We also let

dX :=
∑
χi∈X

d2
i =

∑
χi∈X

(χi(1H))2

so that dX = σX(1H).

Recall that a conjugacy class Ci of H is a subspace of the form Ci = SH(F−1
H (H∗Ei)) for some

primitive idempotent Ei of C(H). Then for each subset K ⊆ Cl(H), we can form the subspace

CK := k -span

 ⋃
ci∈K

Ci

 =
⊕
ci∈K

Ci.

We also define

mK :=
∑
ci∈K

mi and cK :=
1

mK

∑
ci∈K

mici

so that dim(CK) = mK , and CK = cK ↼ H∗.

Definition 4.1.1. Let H be a semisimple Hopf algebra with a commutative representation ring.

A supercharacter theory of H is a pair (X ,K), where X is a partition of Irr(H) and K is a

partition of Cl(H), such that

(1) |X | = |K|,

(2) σX is constant on K for all X ∈ X and K ∈ K.

Each σX is a supercharacter and each space CK is the superclass associated to the normalized

superclass sum cK . The rank of (X ,K) is |X |.

Example 4.1.2. The following partitions are always supercharacter theories of H.

(1) Take X and K to be the finest possible partitions of Irr(H) and Cl(H), into singletons:

X = {{χ} | χ ∈ Irr(H)} and K = {{c} | c ∈ Cl(H)}.

In this case, for each singleton X = {χ}, the supercharacter σX = χ(1H)χ is just a positive

integer multiple of the irreducible character χ, and the normalized superclass sums are the

same as the normalized class sums.
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(2) A supercharacter theory of rank two is obtained by taking the coarsest possible partitions

of X and K that satisfy the condition {εH} ∈ X and {1H} ∈ K:

X = {Irr(H)− {εH}, {εH}} and K = {Cl(H)− {1H}, {1H}}.

4.1.1 Idempotents

The supercharacters and normalized superclass sums are related to certain idempotents in

Z(H) and C(H). Let (X ,K) be a pair of partitions of Irr(H) and Cl(H), respectively. Then for all

X ∈ X and all K ∈ K, define

eX :=
∑
χi∈X

ei and EK :=
∑
ci∈K

Ei.

Then by the orthogonality of the ei and Ei, the sets {eX} and {EK} are also orthogonal, and∑
X∈X

eX =
∑
i

ei = 1H and
∑
K∈K

EK =
∑
i

Ei = εK

using the fact that X and K are partitions.

The sets {eX} and {EK} are taken by FH to the sets of supercharacters {σX} and normalized

superclass sums {cK}, respectively, and they are dual with respect to the evaluation pairing in the

following sense.

Lemma 4.1.3. Let (X ,K) be a supercharacter theory of H. Then with notation as above, we have

(1) 〈EK , cL〉 = δKL,

(2) 〈σX , eY 〉 = δXY dX ,

(3) SH(F−1
H (EK)) = mKcK , and

(4) |H|FH(eX) = σX .

Proof. In each case, the result follows from a short calculation.

(1) Using the fact that {Ei} and {ci} are dual bases, we compute

〈EK , cL〉 =

〈∑
ci∈K

Ei,m
−1
L

∑
cj∈L

mjcj

〉
= δKLm

−1
L

∑
ci∈K
cj∈L

δijmj = δKLm
−1
L mK = δKL.
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(2) Using the fact that {χi} and {ej} are dual bases up to rescaling, we have

〈σX , eY 〉 =

〈 ∑
χi(1H)χi∈X

χi(1H)χi,
∑
χj∈Y

ej

〉
= δXY

∑
χi∈X
χj∈Y

δij(χi(1H))2 = δXY dX .

(3) Since SH ◦ F−1
H takes the basis {EK} to the basis {cK}, we have

SH(F−1
H (EK)) = SH

F−1
H

∑
ci∈K

Ei


=
∑
ci∈K

SH(F−1
H (Ei))

=
∑
ci∈K

mici

= mK

m−1
K

∑
ci∈K

mici


= mKcK .

(4) Finally, we use the fact that FH takes the basis {|H|ei} to the basis {diχi}, to get

|H|FH(eX) = |H|FH

∑
χi∈X

ei

 =
∑
χi∈X

diχi =
∑
χi∈X

χi(1H)χi = σX .

In the same way that the idempotent bases {ei} and {Ei} play an important role in the

character theory of H, the idempotents {eX} and and {EK} will play an analogous role for certain

algebras associated to (X ,K).

4.1.2 Superclass functions

Given a supercharacter theory (X ,K) ofH, an element of ψ ∈ C(H) is a superclass function

if ψ is constant on each subset K ∈ K. Note that K can be recovered from the superclass CK by

K = CK ∩Cl(H). The set of superclass functions is clearly a subspace of C(H), but we show that

this subspace is in fact a subalgebra, as in the case of finite groups. We will need the following

lemma.
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Lemma 4.1.4. Let H be a semisimple Hopf algebra, and let ev : H → H∗∗ be the canonical iso-

morphism. Then the following diagram commutes:

H H∗

H H∗∗

FH

FH∗|H|−1SH

ev

Proof. We compare the result of applying FH∗ ◦ FH and ev ◦SH to an element x ∈ H, and then

evaluate these elements of H∗∗ at a function g ∈ H∗. We make use of the fact that λH∗ =

|H|−1ΛH∗∗ = |H|−1 ev(ΛH), and write ∆(ΛH) =
∑

Λ1 ⊗ Λ2. We compute

〈(FH∗ ◦ FH)(x), g〉 = 〈(x ⇀ λH) ⇀ λH∗ , g〉

= λH∗(g(x ⇀ λH)) def. of H∗ ⇀ H∗∗

= |H|−1〈g(x ⇀ λH),ΛH〉 λH∗ = |H|−1 ev(ΛH)

= |H|−1
∑
〈g,ΛH〉〈x ⇀ λH ,Λ2〉 convolution product

= |H|−1
∑
〈g,ΛH〉〈λH ,Λ2x〉 def. of H ⇀ H∗

= |H|−1
∑
〈g,Λ1〉〈λH , SH(x)SH(Λ2)〉 λH = SH∗(λH)

= |H|−1g
(∑

λH(SH(x)SH(Λ2))Λ1

)
linearity

= g(|H|−1SH(x)) {Λ1}, {SH(Λ2)} dual w.r.t. λH

= 〈(ev ◦|H|−1SH)(x), g〉.

Lemma 4.1.5. Given a supercharacter theory (X ,Y), the subspace of superclass functions is a

subalgebra of C(H).

Proof. Let χ, ψ be superclass functions in C(H). Choose K ∈ K and let ci, cj ∈ K. Then

〈χ, ci〉 = 〈χ, cj〉 and 〈ψ, ci〉 = 〈ψ, cj〉.
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Since ci and Ei are dual bases for Z(H) and C(H), for any ψ ∈ C(H), write ψ =
∑

i αiEi for some

scalars αi. Then by the orthogonality of the Ei we have

ψEi =
∑
j

αiEjEi = αiEi,

and also

〈ψ, ci〉 =

〈∑
j

αiEj , ci

〉
=
∑
j

δijαj = αi,

so that ψEi = 〈ψ, ci〉Ei. We compute

〈χψ, ci〉 = 〈χ, ψ ⇀ ci〉

= m−1
i 〈χ, ψ ⇀ mici〉

= m−1
i 〈χ, ψ ⇀ SH(F−1

H (Ei))〉

= m−1
i 〈χ, ψ ⇀ |H|FH∗(Ei)〉

= m−1
i 〈χ, |H|FH∗(ψEi)〉

= m−1
i 〈χ, |H|FH∗(〈ψ, ci〉Ei)〉

= m−1
i 〈χ, |H|FH∗(Ei)〉〈ψ, ci〉

= m−1
i 〈χ, SH(F∗H(Ei))〉〈ψ, ci〉

= m−1
i 〈χ,mici〉〈ψ, ci〉.

= 〈χ, ci〉〈ψ, ci〉.

By the same argument, we have 〈χψ, cj〉 = 〈χ, cj〉〈ψ, cj〉 so

〈χψ, ci〉 = 〈χ, ci〉〈ψ, ci〉 = 〈χ, cj〉〈ψ, cj〉 = 〈χψ, cj〉.

It remains to determine whether the principal character εH = 1H∗ is a superclass function.

Since εH =
∑
Ei, for all j we have that

〈εH , cj〉 =
∑
i

〈Ei, cj〉 =
∑
i

δij = 1.

Thus εH is constant on Cl(H), hence is constant on all K in the partition K.
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4.1.3 Properties of supercharacter theories

We now show that the general properties of Proposition 2.1.5 still hold in this setting. Given

a supercharacter theory (X ,K), it will be useful to introduce the subspaces

AX = k -span{eX | X ∈ X},

AK = k -span{cK | K ∈ K},

BX = k -span{σX | X ∈ X},

BK = k -span{EK | K ∈ K},

so that AX , AK are subspaces of Z(H), and BX , BK are subspaces of C(H). Since AX and BK have

bases of orthogonal idempotents which sum to unity, these are subalgebras of Z(H) and C(H),

respectively.

Theorem 4.1.6. Let H be a semisimple Hopf algebra with a commutative representation ring C(H)

and let (X ,K) be a supercharacter theory of H. Then the following are true.

(1) The supercharacters {σX} are a basis for the algebra of superclass functions in C(H).

(2) The normalized superclass sums {cK} are a basis for a subalgebra of Z(H).

(3) The partitions X and K uniquely determine each other.

(4) The singletons {εH} and {1H} are elements of X and K, respectively.

(5) Each automorphism of C induces a permutation of X .

(6) Each automorphism of C induces a permutation of K.

Proof. (1) Any function in C(H) is determined by its values on the basis {ci} of Z(H), since we

have seen that the values 〈ψ, ci〉 are the coefficients of ψ in the basis {Ei} for all ψ ∈ C(H). A

simple choice for the a basis for the algebra of superclass functions in C(H) are the characteristic

functions {φK} determined by

〈φK , ci〉 =

 1 ci ∈ K

0 ci 6∈ K
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since these are clearly linearly independent and span the algebra of superclass functions. But we

have that

〈EK , ci〉 =

〈∑
cj∈K

Ej , ci

〉
=

 1 ci ∈ K

0 ci 6∈ K

so in fact φK = EK for all K ∈ K. Thus the span AK of the idempotents {EK} is the algebra

of superclass functions. Since supercharacters are superclass functions by definition, we have that

BX ⊆ AK. The fact that |X| = |K| means the {σX} is in fact a basis for algebra of superclass

functions.

(2) We have shown that AK = BX . Since the antipode of H∗ takes an irreducible character χ

to the irreducible character χ, i.e. χ composed with complex conjugation, it is clear that SH∗(σX)

is again a class function, for each supercharacter σX . It follows that SH∗(AK) = AK, since the

supercharacters are a basis for the algebra of class functions, and the antipode is bijective. Therefore

we have

BK = SHF−1
H (AK) = F−1

H (SH∗(AK)) = F−1
H (BX ) = AX .

Since AX is a subalgebra of Z(H), the result follows.

(3) Let X be given and suppose that there exist supercharacter theories (X ,K) and (X ,K′).

By (1) we have

AK = BX = AK′ .

The set of primitive central idempotents of AK is {EK | K ∈ K} and the set of primitive central

idempotents in AK′ is {EK | K ∈ K′}. Since these are the same algebra, we have K = K′.

Now let K be given and suppose that there exist supercharacter theories (X ,K) and (X ′,K).

By (2) we have

AX = BK = AX ′ .

The set of primitive central idempotents of AX is {eX | X ∈ X} and the set of primitive idempotents

in AX ′ is {eX | X ∈ X ′}. Since these are the same algebra, X = X ′.

(4) The irreducible character χ1 = εH is a superclass function. Since AK = BX , this character
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can be written uniquely in the basis {σX} as

εH =
∑
X∈X

aXσX .

The above decomposition can be extended to a decomposition of ε into irreducible characters,

namely

εH =
∑
X∈X

∑
χ∈X

aXχ(1)χ.

Since irreducible characters are linearly independent, we must have that

(1) X = {εH} for some X ∈ X ,

(2) aX = 1, and

(3) aY = 0 for all Y ∈ X such that Y 6= X.

On the other hand, we have that

1H =
∑
X∈X

eX ∈ k -span{cK},

and so we can decompose 1H uniquely as

1H =
∑
K∈K

aKcK

for some aK ∈ k. Expanding this sum in the basis {ci} of Z(H) gives

1H =
∑
K∈K

∑
ci∈K

aKmi

mK
ci.

But 1H = c1 is itself a normalized conjugacy class sum, and normalized conjugacy class sums are

linearly independent. So we must have K = {1H} for some K ∈ K. Furthermore, since m1 = 1,

this gives mK = 1, aK = 1, and aL = 0 for all L ∈ K such that L 6= K.

(5) Let α ∈ Aut(C) be a field automorphism of C. The set X is in one-to-one correspondence

with the primitive idempotents {eX} of the algebra AX . Since AX ⊆ Z(H), the algebra AX is

commutative and semisimple, and so its irreducible representations are precisely the algebra maps

ρX : AX → C, defined by

zeX = ρX(z)eX
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for all X ∈ X and all z ∈ AX . The composition

AX
ρX−−→ C α−−→ C

is again an algebra map AX → C, and therefore gives an irreducible representation with index

Xα ∈ X determined by α. Since α is invertible, and (Xα)α−1 = X, the map X 7→ Xα is a

permutation of the set X .

(6) Again let α ∈ Aut(C). The set K is in one-to-one correspondence with the primitive

idempotents {EK} of the algebra AK. Since AK ⊆ C(H), the algebra A is commutative and

semisimple, and so its irreducible representations are precisely the algebra maps τK : AK → C,

defined by

ψEK = τK(ψ)EK

for all K ∈ K and all ψ ∈ A. The composition

AK
τK−−→ C α−−→ C

is again an algebra map AK → C, and therefore gives an irreducible representation with index

Kα ∈ K determined by α. As before, since α is invertible, and (Kα)α−1 = K, the map K 7→ Kα is

a permutation of the set K.

4.1.4 Partial order

As in the finite group case, supercharacter theories can be partially ordered according to the

partial order on set partitions using the partial order on Part(Irr(H)) or Part(Cl(H)), and this

choice yields the same result.

Proposition 4.1.7. Let (X ,K) and (Y,L) be supercharacter theories of H. Then X ≤ Y if and

only if Y ≤ L.

Proof. Suppose X ≤ Y as set partitions, so that X refines Y. This is equivalent to the condition

that the idempotents of AY can be formed as simple sums of the idempotents of AX , which happens
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if and only if AY ⊆ AX , since subalgebras of Z(H) are commutative and semisimple. Applying

the bijection FH , this is the same as AL ⊆ AK. Using the fact that subalgebras of C(H) are

commutative and semisimple, this occurs if and only if the primitive idempotents of AL are simple

sums of the primitive idempoents of AL, which is equivalent to K ≤ L.

4.2 Generalized Schur rings

When passing from the character theory of a finite group G to a supercharacter theory (X ,K),

the associated central Schur ring A played a role analogous to that of the center Z(kG). We now

consider certain subalgebras of a semisimple Hopf algebra H, which generalize Schur rings. We will

show that these subalgebras play the same role for the supercharacter theories of H as the Schur

rings did for the supercharacter theories of a finite group G.

Definition 4.2.1. Let H be a semisimple Hopf algebra. Then a subspace A of H is a Schur ring

of H if the following hold:

(1) A is a subalgebra of H,

(2) FH(A) is a subalgebra of H∗,

(3) SH(A) = A.

The following are the Hopf-algebraic analogues of the fundamental examples from the finite

group case.

Example 4.2.2. The following are always Schur rings of H:

(1) the algebra A = H itself, with FH(A) = H∗,

(2) the center A = Z(H), with FH(A) = C(H),

(3) the algebra k -span{1H ,ΛH}, with FH(A) = k -span{εH , λH}.
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4.3 Generalized correspondence

The correspondence between central Schur rings and supercharacter theories of finite groups

extends to the Hopf algebra setting.

Theorem 4.3.1. Let H be a semisimple Hopf algebra with a commutative representation ring.

There is a one-to-one correspondence{
supercharacter
theories of H

}
←→

{
central

Schur rings of H

}
(X ,K) 7−→ AX .

such that (X ,K) ≤ (Y,L) if and only if AY ⊆ AX .

Proof. Let (X ,K) be a supercharacter theory of H. Then by Proposition 4.1.6, the space AX is a

subalgebra of Z(H), hence of H. The image under the Frobenius map is AK, which is a subalgebra

of C(H), hence of H∗. It follows that SH(A) = A.

To show that this is a one-to-one correspondence, we construct the inverse map. Let A be a

central Schur ring of H. Since A is semisimple and commutative, it has a basis of primitive central

idempotents, which must be simple sums of the primitive central idempotents {ei} of H. Each

idempotent ei corresponds to an irreducible character χi ∈ Irr(H), so the idempotents of A are of

the form

eX =
∑
χi∈X

ei

for each X in a partition X of Irr(H). Now, B = FH(A) is a subalgebra of C(H), so B is semisimple

and commutative, and therefore has a basis of primitive central idempotents, which must be simple

sums of the primitive central idempotents {Ei} of C(H). Each idempotent Ei corresponds to an

element ci ∈ Z(H), so the idempotents of B are of the form

EK =
∑
ci∈K

Ei

for each K in a partition K of Cl(H). The map FH is a linear isomorphism, so we have

|X | = dim(A) = dim(B) = |K|,
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since X indexes a basis of A and K indexes a basis of B. It remains to check that σX is constant

on K for each K ∈ K. Let X ∈ X and K ∈ K be given. Since FH(|H|eX) = σX , we have that

σX ∈ B, so it can be written as a linear combination

σX =
∑
L∈K

aLEL =
∑
L∈K

∑
ci∈L

aLEi.

Then since the bases {Ei} and {ci} are dual bases, we have

〈σX , ci〉 =
∑
L∈K

∑
c`∈L

aL〈E`, ci〉 = aK =
∑
L∈K

∑
c`∈L

aL〈E`, cj〉 = 〈σX , cj〉

for all ci, cj ∈ K. It follows that (X ,K) is a supercharacter theory of H.

Finally, we have seen that AY ⊆ AX if and only if X ≤ Y as set partitions, and by definition

the partial order on supercharacter theories is the same as the partial on Part(Irr(H)) by comparing

the first component.

Example 4.3.2. The following are the extreme examples of this order-reversing correspondence.

(1) The largest central Schur ring Z(H), corresponds to the finest superchararacter theory

X = {{χ} | χ ∈ Irr(H)}

K = {{c} | c ∈ Cl(H)}
←→

AX = Z(H)

↓ FH

AK = C(H)

(2) The smallest central Schur ring k -span{1H ,ΛH} corresponds to the coarsest supercharacter

theory

X = {Irr(H)− {εH}, {εH}

K = {Cl(H)− {1H}, {1H}}
←→

AX = k -span{1H ,ΛH}

↓ FH

AK = k -span{εH , λH}

Let G be a finite group. Following his proof of the above correspondence [14] in the finite

group case, Hendrickson remarks that if A is any central subalgebra with basis arising from a

partition P of G, then P is automatically a Schur partition, since the condition X ∈ P if and only
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if X−1 ∈ P is not used in the proof of the correspondence. This is true in the present context as

well, for the analogous condition that A = SH(A), which reduces to the condition X ∈ P if and

only if X−1 ∈ P in the case H = CG.

Corollary 4.3.3. Let H be a semisimple Hopf algebra over C with a commutative representation

ring C(H). Let A be a subalgebra of Z(H) such that FH(A) is a subalgebra C(H). Then SH(A) = A.

Proof. Let A be as above. Then A = AX for some partition X of Irr(H) and FH(A) = AK

for some partition K of Cl(H), determined so that {eX | X ∈ X} and {EK | K ∈ K} are the

respective bases of primitive idempotents. From the proof of Theorem 4.3.1, it follows that (X ,K)

is a supercharacter theory of H. Thus the algebra AK of superclass functions is closed under SH∗

and consequently A = AX = F−1
H is closed under SH .

4.3.1 The central supercharacter theory

The following is an immediate application of the correspondence theorem for Hopf algebras.

Birciu [5] considers the central subalgebra Ẑ(H), defined to be the intersection Z(H) ∩ C(H∗).

Here C(H∗) is the character ring of H∗, viewed as a subalgebra of H by the isomorphism H ∼= H∗∗.

These are the ‘central characters’ of H∗, i.e. those characters that are central in H. The map FH

takes Ẑ(H) to Ẑ(H∗) = Z(H∗) ∩ C(H), the algebra of central characters of H.

The algebra Ẑ(H) is always a central Schur ring of H, since Ẑ(H) and its image under the

Frobenius map Ẑ(H∗) are subalgebras of H and H∗, respectively. When C(H) is commutative, the

correspondence theorem yields a supercharacter theory with the property that all supercharacters

are central in H∗, since the space of superclass functions is precisely the space of central characters.

Furthermore, this must be smallest supercharacter theory such that all supercharacters are central

characters. In the case H = kG, we have Ẑ(H) = Z(H), so this is a supercharacter theory that

appears only for non-trivial Hopf algebras. The usefulness of this supercharacter theory is made

evident by the following proposition of Birciu, which shows that the supercharacters are sufficient

to determine all normal Hopf subalgebras of H.
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Proposition 4.3.4 (Birciu [4, Thm. 3.8]). Let H be a finite dimensional semisimple Hopf algebra.

Any normal Hopf subalgebra of N of H is the kernel of a central character of H. �

If χ is the character of an H-module V , the kernel of χ is the largest Hopf subalgebra A such that

x · v = εH(x)v for all x ∈ A.

4.4 Schur ring lifts and products

In this section we describe a process for lifting Schur rings from Hopf subalgebras and quotient

Hopf algebras, which reduces to the corresponding construction from Chapter 2 in the finite group

case.

4.4.1 Lifting Schur rings from Hopf subalgebras

Let H be a semisimple Hopf algebra with Hopf subalgebra K. We will use need the following

lemma of Birciu [6], which shows that as algebras, FH(K) ∼= K∗.

Lemma 4.4.1 (Birciu [6, Lem. 1.6]). Let H be a semisimple Hopf algebra with Frobenius map

FH : H → H∗. Let K be a Hopf subalgebra with Frobenius map FK : K → K∗ and canonical

inclusion i : K → H. The following diagram commutes:

H H∗

K K∗

FH

FK

i i∗

�

Corollary 4.4.2. The injective map î : K∗ → H∗ defined by

î := FH ◦ i ◦ F−1
K

respects multiplication and comultiplication. In particular, î : K∗ → FH(K) is an algebra isomor-

phism.
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Proof. Since FH and FK are linear isomorphisms, the map î is injective with image FH . After

restricting i∗ in Lemma 4.4.1 to FH(K), we get a bijective map which respects the multiplication

and comultiplication of H∗ and K∗. The map î is the inverse of this restriction by Lemma 4.4.1

and therefore also respects the multiplication and comultiplication. In particular, this gives FH(K)

the structure of an algebra with multiplication inherited from H∗ and identity

î(1K∗) = FH(F−1
K (1K∗)) = FH(ΛK).

Lemma 4.4.3. Let K be a Hopf subalgebra of the semisimple Hopf algebra H. If K 6= H, then

ΛH 6∈ K.

Proof. We have that λK = λH |K , and εK = εH |K . There is a unique idempotent ΛK ∈ K such

that λK(ΛK) = 1, so that εK(ΛK) = |K|. Suppose ΛH ∈ K. Then λH is an idempotent of K for

which

λK(ΛH) = λH(ΛH) = 1,

so ΛH = ΛK . On the other hand, we have

εK(ΛH) = εH(ΛH) = |H| > |K|.

This is a contradiction, and the result follows.

Proposition 4.4.4. Let K be a Hopf subalgebra of a semisimple Hopf algebra H and let A be a

Schur ring of K. Then

I(A) := A+ IH

is a Schur ring of H. Furthermore, if K 6= H then sum is direct and dim(I(A)) = dim(A) + 1.

Proof. If K = H, then IH = IK ⊆ A, so I(A) = A, in which case the result follows immediately.

Suppose then, that K 6= H. Lemma 4.4.3 implies that A∩IH = 0, so we may consider the subspace

I(A) = A⊕ IH ⊆ H of dimension dim(A) + 1.
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It remains to show that I(A) is a Schur ring of H. The space A is a subalgebra of K, hence

of H, and IH is an ideal of H, so I(A) is a subalgebra of H. The map FH is a linear isomorphism,

so

FH(I(A)) = FH(A)⊕FH(IH).

Since FH(A) is the image of FK(A) via the composition

FK(A)
F−1
K−−−→ A

i−−→ A
FH−−→ FH(A),

it follows from Corollary 4.4.2 that FH(A) is multiplicatively closed in H∗. Furthermore, F(IH) =

k -span{εH}. Since εH is the identity of H∗, the space FH(I(A)) = FH(A) ⊕ k -span{εH} is also

multiplicatively closed, and contains the identity, so it is a subalgebra of H∗.

Finally, since SK = SH |K , the subalgebra A of H is closed under SH . Since S(ΛH) = ΛH ,

we also have that IH is closed (in fact, fixed pointwise) by SH . Thus I(A) = A⊕IH is also closed

under SH , and is therefore a Schur ring of H.

Example 4.4.5. Let K be a Hopf subalgebra of H. Then K itself is a Schur ring of K, so K+IH

is a Schur ring of H.

4.4.2 Lifting Schur rings from Hopf quotients

We describe a way to lift Schur rings from Hopf quotients, that is in some sense dual to the

process of lifting from Hopf subalgebras. To accomplish this, we first need some general duality

results about Schur rings of Hopf algebras.

Let H be a semisimple Hopf algebra. Since this implies that H∗ is also semisimple, it makes

sense to consider the Schur rings of H∗.

Proposition 4.4.6. Let H be a semisimple Hopf algebra. Then A is a Schur ring of H if and only

if FH(A) is a Schur ring of H∗.

Proof. Since A is an Schur ring of H, B = FH(A) is a subalgebra of H∗. The subalgebra B is
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closed under the antipode of H∗, since

SH∗(B) = (FH ◦ SH ◦ F−1
H )(B)

= (FH ◦ SH)(A)

= FH(A)

= B.

Finally, by Lemma 4.1.4, we have that

FH∗(B) = SH(A)) = ev(A),

after identifying H with H∗∗. The reverse direction follows by replacing H with H∗ and identifying

H with H∗∗.

Suppose H is self-dual, so that H ∼= H∗ as Hopf algebras, and fix an isomorphism f : H → H∗.

Then each Schur ring A of H can be paired with another ‘dual’ Schur ring Af in H, given by

Af = f−1(FH(A)) (of course it may be the case that A = Af .)

Now suppose H = CG for a finite group G. Then H is self-dual, by Pontryagin duality, which

identifies the elements g ∈ G with the irreducible characters of CG. In this case Z(H) = H and

C(H) = H∗, so that every Schur ring is central. Suppose A is a Schur ring of G, with corresponding

supercharacter theory (X ,K). Then after identifying Irr(H) and Cl(H) via the isomorphism f , the

supercharacter theory corresponding to Af has the partitions (K,X ). But note that even after this

identification, it is not necessarily the case that X = K, so that supercharacter theories also come

in dual pairs (given a choice f).

Recall the situation π : H → Q. In this case, the transpose π∗ : Q∗ → H∗ is an inclusion of

Hopf algebras. Consider the following diagram.

H∗ H∗∗ H H

Q∗ Q∗∗ Q Q

FH∗

FK∗

π∗ π∗∗

ev−1
H

ev−1
Q

π

SH

SQ

π
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The commutativity of the above diagram follows (from left to right) by (1) Lemma 4.4.1, (2) the

fact that ev : Vectk → Vectk restricts to a natural isomorphism of finite dimensional Hopf algebras,

and (3) the fact that π is a Hopf algebra map (and thus respects the antipodes of H and Q). Now,

by Lemma 4.1.4 we have that

FH∗ ◦ ev−1
H ◦SH = |H|−1F−1

H ,

and similarly

FQ∗ ◦ ev−1
Q ◦SQ = |Q|−1F−1

Q .

Thus the following diagram commutes:

H∗ H

Q∗ Q

|H|−1F−1
H

|Q|−1F−1
Q

π∗ π

Proposition 4.4.7. Let Q be a Hopf quotient of a semisimple Hopf algebra H, with natural map

π : H → Q and let A be a Schur ring of Q. Then

J (A) := F−1
H ◦ I ◦ FQ

is a Schur ring of H. Furthermore, when Q 6= H, we have dim(J (A)) = dim(A) + 1.

Proof. We have that FQ(A) is a Schur ring of Q∗ of dimension dim(A). Since π∗ : Q∗ → H∗ is an

inclusion of Hopf algebras, we have that I(FQ(A)) is a Schur ring of H∗. The dimension of this

Schur ring is either dim(A) if Q = H or dim(A)+1 if Q∗ is a proper subalgebra of H∗, i.e. whenever

Q 6= H. It then follows that FH(I(FQ(A))) is a Schur ring of H of the desired dimension.

4.4.3 Generalized wedge products

We now assume that N,K are Hopf subalgebras of the semisimple Hopf algebra H, that N is

normal, and that N ⊆ K. Let Q = H/HN+ be the resulting quotient with natural map π : H → Q,

and let i : K → H be the canonical inclusion. In this section we give a method for constructing

Schur rings of H given Schur rings of K and Q, which generalizes the wedge product.
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We will assume we have a Schur ring A of K and a Schur ring B of Q = H/HN+, and we will

assume the conditions ΛN ∈ A and π(A) = B ∩ (K/KN+), which reduce to the assumptions made

in the finite group case when H = kG. In this situation, we will show that I(A) +J (B) is a Schur

ring of H with the desired properties. Specifically, we will show that the space A∧B := I(A)+J (B)

is a Schur ring of H such that (A ∧B) ∩K = A and π(A ∧B) = B. While the proof of this result

in the finite group case deals extensively with partitions of G and uses some technical results from

group theory, our proof will be Hopf-theoretic. The following lemmas will be useful.

Lemma 4.4.8. Let H be a semisimple Hopf algebra, N a normal Hopf subalgebra with inclusion

map i : N → H and Q = H/HN+ the quotient with natural map π : H → Q. Let

î : N∗ → H∗

î = FH ◦ i ◦ F−1
N

and
π̂ : Q→ H

π̂ = F−1
H ◦ π∗ ◦ FQ

Then we have

(1) î(εN ) = FH(ΛN ),

(2) î(λN ) = λH ,

(3) π̂(1Q) = |N |−1ΛN , and

(4) π̂(ΛQ) = ΛH .

Proof. (1) We have for x ∈ N that

FN (ΛN )(x) = λN (xΛN ) = εN (x)λN (ΛN ) = εN (x).

Then F−1
N (εN ) = ΛN , so after including N into H and applying FH , we have î(εN ) = FH(ΛN ).

(2) Observe that FN (1N ) = λN , and FH(1H) = λH . Since the inclusion map takes 1N to 1H ,

we have that î(λN ) = λH .

(3) It is enough to show that |H|F−1
H∗(ΛN ) = π∗(|Q|F−1

Q∗ (1Q)), or equivalently, that FH(ΛN ) =

π∗(FQ(1Q)) = π∗(λQ). To show this, we observe that H = HΛN ⊕ HN+ as H-modules. Thus,

the H modules HΛN and Q are isomorphic via π, where Q is viewed as an H-module by h · x =
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π(h)x, for all h ∈ H and x ∈ Q. It follows that HΛN is isomorphic to the lift of the left-regular

Q-module via the surjective algebra map π. Then the character of HΛN in H∗ is π∗ applied

to the character of the left regular Q-module in Q∗. Since |N |−1ΛN is the central idempotent

of H corresponding to HΛN , we have that dim(HΛN )|H|FH(|N |−1ΛH) is the character of this

module. Since dim(HΛN ) = |Q| = |H||N |−1, it follows that this character is precisely FH(ΛN ), so

FH(ΛN ) = π∗(λQ) as required.

(4) We note that FQ(ΛQ) = εQ, which is the identity of Q∗. Since π∗ is an injective algebra

homomorphism, π∗(εQ) = εH . Applying F−1
H gives ΛH .

Lemma 4.4.9. Under the above assumptions, the space A ∧B := I(A) + J (B) is a subalgebra of

H with (A ∧B) ∩K = A and π(A ∧B) = B.

Proof. We have the commutative diagram

H∗ H

Q∗ Q

|H|−1F−1
H

|Q|−1F−1
Q

π∗ π

Both H and Q have a canonical I(A) module structure, since I(A) is a subalgebra of H, and π

restricted to I(A) is an algebra map. Concretely, we have that H is an I(A)-module by restricting

the action of the regular module, to obtain the action

a · h = ah

for all a ∈ I(A), h ∈ H. Since π(I(A)) is a subalgebra of Q, we can pull back the same module

structure to I(A), to obtain the action

a · x = π(a)x

for all a ∈ I(A) and x ∈ Q. The map π is an I(A)-module homomorphism, since

π(a · h) = π(ah) = π(a)π(h) = a · π(h).
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Now let π̂ be the composition

Q
|Q|FH−−−−→ Q∗

π∗−−→ H∗
|H|−1F(H)−−−−−−−→ H.

If we restrict π to π̂(Q), it still respects the I(A) module structures, but the restriction of π

is invertible with inverse π̂, by the commutativity of the above diagram. It follows that π̂ is a

I(A)-module homomorphism, and that π̂(Q) is a I(A)-submodule of H.

Now we consider the subalgebra B ⊆ Q. Since π(|N |−1ΛN ) = π(1H) = 1Q, we have that

π(I(A)) = π(A) = B ∩ (K/KN+), with the last equality holding by our assumption. In particular

then, we have that π(I(A)) is a subalgebra of B, so that B is a submodule of I(A)Q. Since π̂ is an

injective I(A)-module homomorphism, it follows that π̂(B) is a submodule of I(A)H, i.e. that the

space π̂(B) is closed under left multiplication by I(A).

By construction, J (B) = π̂(B) + k -span{1H}, so for a ∈ I(A) and b ∈ J (B) we can write

b = b′ + β1H where b′ ∈ π̂(B) and β ∈ k. We then compute

ab = ab′ + βa ∈ I(A) + J (B)

since ab′ ∈ π̂(B) ⊆ J (B) and βa ∈ I(A). Thus we have that I(A) and J (B) are each individually

closed under multiplication, and products of the form ab where a ∈ I(A) and b ∈ J (B) are

contained in the sum I(A) + J (B). This sum also contains products of the form ba, by repeating

the above argument replacing the left I(A)-module structures arising from left multiplication, with

right I(A)-module structures arising from right multiplication. Thus the space I(A) + J (B) is

multiplicatively closed, and since 1H ∈ I(A) ∩ J (B) ⊆ I(A) + J (B), so A ∧ B is a subalgebra of

H.

Next, we show that (A∧B)∩K = A. Clearly A ⊆ (A∧B) and A ⊆ K, so A ⊆ (A∧B)∩K.

For the opposite inclusion, we have that

A ∧B = A+ k -span(ΛH) + π̂(B) + k -span(1H) = A+ π̂(B)

since 1H ∈ A and ΛH ∈ k -span{π̂(1Q)} ⊆ π̂(B). Thus it suffices to show that π̂(B) ∩K ⊆ A.
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To show this, we begin by writing the map π̂ explicitly. Starting with x ∈ Q we write

x = π(h) for some h ∈ H and compute

π̂(x) = |Q||H|−1F−1
H (π∗(FQ(x)))

= |Q||H|−1F−1
H (π∗(x ⇀ λQ))

= |Q||H|−1F−1
H (π∗(x ⇀ λQ))

= |Q||H|−1F−1
H (h ⇀ π∗(λQ))

= |Q||H|−1F−1
H (h ⇀ FH(ΛN ))

= |Q||H|−1F−1
H (FH(hΛN ))

= |Q||H|−1hΛN

= |N |−1hΛN .

Suppose that b ∈ π̂(B) ∩K. Then we have that b ∈ π̂(Q) = HΛN . But then we have HΛN ∩K =

KΛN , so that b ∈ KΛN = π̂(K/KN+). It follows that b ∈ π̂(B)∩π̂(K/KN+) = π̂(B∩K/KN+) =

π̂(π(A)) = AΛN ⊆ A, since we assumed that ΛN ∈ A. Thus we have (A ∧ B) ∩K ⊆ A, and so in

fact we have equality.

Finally, since π(A) ⊆ B and π(ΛH) ∈ k -span{ΛQ} ⊆ B, we have π(I(A)) ⊆ B. Since

π(1H) = 1Q ∈ B, we also have that π(J (B)) ⊆ B. Then π(A ∧ B) ⊆ B. But π(π̂(B)) = B and

π̂(B) ⊆ J (B), so π(A ∧B) is indeed all of B.

Proposition 4.4.10. Suppose H is a semisimple Hopf algebra with subalgebras N ⊆ K ⊆ H with

N normal in H and Q = H/HN+. Let A be a Schur ring of K and let B be an Schur ring of Q,

and suppose that ΛN ∈ K and that π(A) ∩Q = B. Then

A ∧B := I(A) + J (B)

is a Schur ring of H of such that (A ∧B) ∩K = A and π(A ∧B) = B.

Proof. We will use the notation from Lemma 4.4.9, regarding the inclusion i : K → H, the natural

map π : H → Q. By Lemma 4.4.9, A∧B is a subalgebra of H, with the properties (A∧B)∩K = A
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and π(A ∧ B) = B. As a sum of two Schur rings, A ∧ B is closed under SH . It remains to show

that F(A ∧B) is a subalgebra of H∗.

This follows by considering the sequence

Q∗
π∗−−→ H∗

i∗−−→ K∗.

The injective map π∗ may be viewed as the inclusion of Q∗ as a normal Hopf subalgebra of H∗ and

i∗ is surjective. We view these Hopf algebras as left Q∗ modules, via left multiplication by Q∗ for

Q∗ and H∗, and via φ · ψ = i∗(φ)ψ in the case of K∗ for all φ ∈ Q∗ and ψ ∈ K∗. Repeating the

argument of the previous lemma shows that FH(I(A)) is a FH(J (B))-module, with respect to left

and right multiplication. Together with the fact that FH(I(A)) and FH(J (B)) are individually

closed under multiplication, this implies that the space FH(A∧B) is multiplicatively closed in H∗.

Since 1H∗ = 1Q∗ ∈ FH(J(B)), this completes the proof.

4.5 Supercharacter theory lifts and products

4.5.1 Lifting supercharacter theories from Hopf subalgebras

Throughout §4.5, H is a semisimple Hopf algebra with a commutative representation ring.

Since a Schur ring A of a Hopf subalgebra K of H must contain ΛK , the Schur ring A can only be

central in H if ΛK is central in H. When H is semisimple, this is equivalent to the condition that

K be normal in H. Therefore, it makes sense when lifting supercharacter theories to restrict our

attention to normal Hopf subalgebras with a commutative representation ring.

Proposition 4.5.1. Suppose (X ,K) is a supercharacter theory of the normal Hopf subalgebra N

of H such that the superclass CK is a union of conjugacy classes of H, for all K ∈ K. Then there

exists a supercharacter theory (X ′,K′) of H where

K′ = {K ′ | K ∈ K} ∪ {KG\N}

with K ′ = Cl(H) ∩ CK and KH\N = {c ∈ Cl(H) | c 6∈ N}.
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Proof. Let A be the Schur ring of N associated to (X ,K), and consider the Schur ring I(A) of H.

For all K ∈ K, the superclass CK is a union of conjugacy classes, so we have

cK = m−1
K

∑
ci∈K′

mici ∈ Z(H).

It follows that A is contained in Z(H). The ideal IH is contained in Z(H), so I(A) = A + IH is

a central Schur ring of H. The central Schur ring I(A) corresponds to the supercharacter theory

with superclasses determined by K′.

4.5.2 Lifting supercharacter theories from Hopf quotients

Now we consider lifts of supercharacter theories from Q = H/HK+ where K is a normal

Hopf subalgebra of H. As we will see in the following proof, C(Q) is a subalgebra of C(H), so it

is sufficient to assume that C(H) is commutative to have supercharacter theories of Q.

Proposition 4.5.2. Suppose (X ,K) is a supercharacter theory of the quotient Q = H/HK+ for

some normal Hopf subalgebra K of H with natural map π : H → Q. Let K ′ = {c ∈ Cl(H) | π(c) ∈

K} and let K1 = {1H}. Then there exists a supercharacter theory (X ′,K′) of H where

K′ = {K ′ | K ∈ K} ∪ {K1}.

Proof. Let A be the central Schur ring of Q corresponding to (X ,K). The map π∗ : Q∗ → H∗ takes

the character ring of Q into the character ring of H∗, by mapping an irreducible character χ of Q

to the irreducible character χ ◦ π of H. It follows that the Schur ring I(FQ(A)) of H∗ is contained

in C(H). As a result, the Schur ring J(A) = F−1
H (I(A)) is contained in Z(H). The supercharacter

theory corresponding to J(A) has superclasses determined by K′.

4.5.3 The generalized ∗-product

Using the wedge product in the case N = K, we describe how to combine a supercharacter

theory of a normal Hopf subalgebra N with a supercharacter theory of Q = H/HN+ to produce a

nontrivial supercharacter theory of H.
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Proposition 4.5.3. With notation as above, suppose that (X ,K) is a supercharacter theory of N ,

such that for all K ∈ K, the superclass CK is a union of conjugacy classes of H. Suppose also that

(Y,L) is a supercharacter theory of G/N . Then (X ′ ∧Y ′,K′ ∧L′) is a supercharacter theory of H,

where (X ′,K′) and (Y ′,L′) are the lifts to H of (X ,K) and (Y,L), respectively.

Proof. Let A and B be the central Schur rings of N and Q, associated to (X ,K) and (Y,L),

respectively. Then viewing K = N as a subalgebra containing N , we have that A is a Schur ring of

K containing ΛN , and it is certainly true that π(A) = B∩H/HN+, since both sides of the equality

are k -span{1Q}. Then we can form the wedge product A∧B, which is a Schur ring of H. We have

that I(A) and J (B) are central, so A ∧B is central. Since A ∧B = I(A) + J (B), it follows that

the corresponding supercharacter theory has superclasses determined by the partition K′ ∧ L′.



Chapter 5

Group actions on supercharacter theories

Let H be a semisimple Hopf algebra. We wish to generalize the process by which superchar-

acter theories of groups are formed from orbits of group actions. To this end, we first develop some

algebraic machinery in the form of group actions on Schur rings. As a result of the correspondence,

we focus primarily on central Schur rings. We then use this machinery to formulate the notion

of group actions on supercharacter theories. In Chapter 6, we focus on the action of a particular

Galois group that gives rise to a supercharacter theory of special interest, which we then examine

in more detail.

5.1 Group actions on Schur rings

5.1.1 Schur ring maps

In order to define what it means for a group to act on a Schur ring of H, it is helpful to have

a notion of a Schur ring morphism.

Definition 5.1.1. Let A,B be Schur rings of H. A linear map f : A → B is a Schur ring map

provided that

(1) f is an algebra homomorphism A→ B,

(2) FH(f) := FH ◦ f ◦ F−1
H is an algebra homomorphism FH(A)→ FH(B),

(3) f ◦ SH = SH ◦ f .
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An immediate consequence of this definition is that Schur ring maps are injective, as the next

proposition shows.

Proposition 5.1.2. Let A,B be Schur rings of H and let f : A → B be a Schur ring map. Then

ker(f) = 0.

Proof. If |H| = 1, then A = B = H, so we assume |H| ≥ 2. We first establish that f(A) is a Schur

ring of H. The image f(A) ⊆ B is multiplicatively closed and contains 1H , since f is an algebra

homomorphism. Likewise FH(f(A)) = FH(f)(FH(A)) is the image of the algebra map FH(f) with

respect to the multiplication and unit inherited from H∗, so FH(A) is a subalgebra of H∗. Finally,

f(A) is closed under the antipode, since

SH(f(A)) = f(SH(A)) = f(A).

Thus f(A) is an Schur ring of H. As such, dim(f(A)) ≥ 2, since f(A) must contain both 1H and

ΛH .

We next show that ker(f) ⊆ ker(λ) ∩A. Suppose x ∈ ker(f). Then ψ = FH(x) ∈ kerFH(f).

But since ker(FH(f)) is an ideal of FH(A), we must have

φλH = εH∗(φ)λH = 〈φ, 1H〉λH ∈ ker(FH(f)).

Since FH(f)(λH) = 1H 6= 0, we must have 〈φ, 1H〉 = 0. But then

0 = 〈φ, 1H〉 = 〈FH(x), 1H〉 = 〈λ, x〉

so x ∈ kerλ. Thus ker(f) ⊆ ker(λ) ∩A.

Since ker(λ) ∩ A = ker(λ|A) contains no nontrivial ideals, we must have either ker(f) =

ker(λ) ∩ A or ker(f) = 0. Suppose ker(f) = ker(λ) ∩ A. Since λ : H → k, we would have

dim(ker(f)) ≥ dim(A)− 1 and consequently

dim(A) = dim(ker(f)) + dim(f(A)) ≥ (dim(A)− 1) + 2 = dim(A) + 1,

a contradiction. Thus ker(f) = 0.
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The fact that all Schur ring maps are injective may seem to be overly restrictive, but as the

previous proposition shows, this fact is forced upon us if we wish to respect both algebra structures.

This is consistent with the literature, for example the survey of Muzychuk and Ponomarenko [24],

which mentions three notions of Schur ring isomorphism, but does consider structure preserving

maps between Schur rings that are not injective. These notions are Cayley isomorphisms, combina-

torial isomorphisms, and the algebraic isomorphisms, each of which is increasingly general, so that

an algebraic isomorphism is the most general notion of a Schur ring map that is discussed. When

H = kG, every Schur ring map in the sense of Definition 5.1.1 is an algebraic isomorphism.

Algebraic isomorphisms are not explicitly required to respect the antipode, and can be char-

acterized as those maps satisfying conditions (1) and (2) our definition. Nevertheless, they respect

the antipode as a consequence of (1) and (2) in the finite group case, as we briefly show. Suppose

A,B are Schur rings of the finite group G and let X be an element of the associated partition P.

Let f : A → B be an algebraic isomorphism, so that f is an algebra isomorphism that takes the

standard basis of A to the standard basis of B. Then we have that

f(S(X̂)) = f(X̂−1) =
∑
g∈X

f(g−1) =
∑
g∈X

f(g)−1 =
∑

g∈f(X)

g−1 = S(f̂(X)).

It follows that f ◦S = S◦f , so that our definition coincides with the notion of algebraic isomorphism

in the case H = kG.

Now, even though we require Schur ring maps to respect the antipode, it may be that this

third axiom is a consequence of the other two. We show that this is at least the case for central

Schur rings, as might be expected from Corollary 4.3.3. To accomplish this recall that if χ is a

character of H afforded by the H-module V , then χ∗ denotes the character of the dual H-module

V ∗, and we have χ∗ = SH∗(χ) = χ where χ denotes complex conjugation. We are now in a position

to prove the following proposition.

Proposition 5.1.3. Let H be a semisimple Hopf algebra over C with a commutative representation

ring C(H), with central Schur ring A. Suppose f : A→ A and FH(f) : FH(A)→ FH(A) are algebra

automorphisms. Then SH ◦ f = f ◦ SH .
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Proof. Let A be a central Schur ring of H with corresponding supercharacter theory (X ,K). Sup-

pose f : A→ A is an algebra map such that FH(f) : FH(A)→ FH(A) is also an algebra map. We

must show that SH ◦ f = f ◦ SH . Let g = FH(f). Then after conjugation by FH , it suffices to

show SH∗ ◦ g = g ◦ SH∗ .

Recall that {eX} and {d−1
X σX} are dual bases of A and FH(A), respectively. Since g is an

algebra automorphism, it permutes the basis {EK} of primitive idempotents. Since f is an algebra

automorphism of A, we have that g also permutes the basis {σX}. Also, note that f(eX) = eY if

and only if g(σX) = σY , by the definition of g. Then since f and g act identically on the set X , we

will write either f(X) or g(X) for the index Y , whenever f(eX) = eY or g(σX) = σY . Equivalently,

in either case we can write X as f−1(Y ) or g−1(Y ). Thus for all X,Y ∈ X we have

δg(X)Y = δXf−1(Y )

since g(X) = Y if and only if X = f−1(Y ). Similarly, SH∗ permutes the supercharacters since SH

is a Schur ring map, so let X∗ ∈ X denote the index of SH∗(σX).

Now for all X,Y ∈ X , we compute

〈g(SH∗(σX)), eY 〉 = 〈g(σX∗), eY 〉

= δg(X∗)Y

= δX∗f−1(Y )

= 〈σX∗ , f−1(eY )〉

= 〈SH∗(σX), f−1(eY )〉

= 〈σX , f−1(eY )〉

= δXf−1(Y )

= δg(X)Y

= 〈g(σX), eY 〉

= 〈SH∗(g(σX)), eY 〉.

It follows that g ◦ SH∗ = SH∗ ◦ g as required.
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5.1.2 The category of Schur rings

We define a small category SringH , which has the set of Schur rings of H as objects. Given

two Schur rings A and B of H, the morphisms Hom(A,B) are the Schur ring maps. By Proposition

5.1.2, the Schur ring maps A → A are all injective, hence are all isomorphisms, so we define

Aut(A) = Hom(A,A).

Proposition 5.1.4. The map FH defines a functor

FH : SringH → SringH∗

A 7→ FH(A)

f 7→ FH(f)

for all Schur rings A and all Schur ring maps f . The functor FH is an equivalence of categories.

Proof. We will show that the functor

FH : SringH → SringH∗

has inverse

FH∗ : SringH∗ → SringH

so that FH∗ ◦ FH is the identity functor on SringH and FH ◦ FH∗ is the identity functor on

SringH∗ . Ordinarily, an equivalence of categories only requires that these compositions be naturally

isomorphic to the respective identity functors, but in this case we obtain the identity functors

precisely.

As maps on Hopf algebras, we have that FH∗ ◦ FH = |H|−1SH , so for any Schur ring A of

H, it follows that

(FH∗ ◦ FH)(A) = |H|−1SH(A) = |H|−1A = A.
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Let A,B be Schur rings of H and suppose f : A→ B is a Schur ring map. Then we compute

(FH∗ ◦ FH)(f) = FH∗(FH−1 ◦ f ◦ FH)

= F−1
H∗ ◦ (F−1

H ◦ f ◦ FH) ◦ FH∗

= (FH ◦ FH∗)−1 ◦ f ◦ (FH ◦ FH∗)

= (|H|−1SH)−1 ◦ f ◦ (|H|−1SH)

= |H|SH ◦ f ◦ |H|−1SH

= SH ◦ f ◦ SH

= f.

The same argument applied to H∗ instead of H completes the result.

5.1.2.1 Group actions and fixed Schur rings

Definition 5.1.5. Let A be an Schur ring of H. We will say that a finite group G acts on the

Schur ring A if G acts on the underlying set A and for all g ∈ G, the map ϕg : A → A defined by

ϕg(a) = g · a is a Schur ring map.

Remark 5.1.6. View the group G as a category G, with one object, and with morphisms identified

with the elements of G, such that composition g ◦ h is determined by the group operation. Then a

group action of G on a Schur ring A is equivalent to the existence of a functor G→ SringH which

maps the unique object of G to the object A.

Given an action of G on a Schur ring A, we can define a new Schur ring AG by

AG = {a ∈ A | g · a = a for all g ∈ G}.

We verify that AG is a Schur ring of H. We immediately have that AG is a subalgebra of H, since

AG is the subalgebra of A of points fixed by the algebra automorphisms {ϕg | g ∈ G}. We must

also check that FH(AG) is a subalgebra of H∗, but this is the set of fixed points of the algebra
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FH(A) fixed by the algebra automorphisms {FH(ϕg) | g ∈ G}. Finally, AG is closed under the

antipode, since for all g ∈ G and all x ∈ AG we have

ϕg(SH(x)) = SH(ϕg(x)) = SH(x).

5.2 Group actions on supercharacter theories

5.2.1 Supercharacter theories from orbits

Throughout this section, we assume H is a semisimple Hopf algebra with a commutative

representation ring C(H), set of irreducible characters Irr(H), and set of normalized conjugacy

class sums Cl(H). We consider the situation where a group G acts on the sets X and K of a

supercharacter theory (X ,K) of H in a compatible way, to produce a new supercharacter theory.

Whenever G acts on a finite set Ω we will use OrbitsG(Ω) to denote the set of orbits.

Definition 5.2.1. Let (X ,K) be a supercharacter theory of H, and suppose that G acts on the

sets X and K. Then we say these actions are compatible if

〈χg·X , cg·K〉 = 〈χX , cK〉

for all g ∈ G, X ∈ X , and K ∈ K. We describe this situation by saying that G acts on (X ,K).

Proposition 5.2.2. Suppose G acts on the supercharacter theory (X ,K). Then there is an induced

action of G on the corresponding Schur ring A, determined linearly for all g ∈ G and X ∈ X by

g · eX = eg·X

where eX is the primitive idempotent of A corresponding to σX .

Proof. Suppose G acts on (X ,G). Then G permutes the basis {eX} of A by g · eX = eg·X . Linear

extension gives an action of G on the vector space A, so that g ∈ G acts by the linear map

ϕg : A→ A. Since it permutes the idempotent basis, ϕg is an algebra map. To see this let x, y ∈ A.

In the idempotent basis, we have

x =
∑
X∈X

aXeX and y =
∑
Y ∈X

bY eY
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for some aX , bY ∈ k. Then ϕg preserves the multiplication

ϕg(x)ϕg(y) =
∑
X∈X

aXeg·X
∑
Y ∈X

bY eg·Y

=
∑
X∈X

∑
Y ∈X

aXbY eg·Xeg·Y

=
∑
X∈X

∑
Y ∈X

aXbY eg·XδXY

=
∑
X∈X

aXbXeg · Y

= ϕg(xy)

and unit

ϕg(1) =
∑
X∈X

eg·X =
∑
X∈X

eX = 1.

Next we show that F(ϕg) = F ◦ϕg ◦ F−1 is an algebra map of F(A). Using the same argument as

above, it suffices to show that F(ϕg) permutes the idempotent basis {EK}. Now, since {σX} is a

basis for F(A), the map F(ϕg) is determined linearly by

F(ϕg)(σX) = |H|FH(ϕg(eX)) = |H|FH(eg·X) = σg·X .

On the other hand, consider the map ψg that permutes the {FK} basis according to the action of

G on K, which is defined by

ψg : F(A)→ F(A)

ψg(EK) = Eg·K .

This map permutes the basis {σX} in precisely the same way as ϕg, as a consequence of the
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compatibilty condition on the actions of G on X and K, as shown by the calculation

ψg(σX) =
∑
K∈K
〈σX , cK〉ψg(EK)

=
∑
K∈K
〈σX , cK〉Eg·K

=
∑
K∈K
〈σX , cg−1·K〉EK

=
∑
K∈K
〈σg·X , cK〉EK

= σg·X .

Since F(ϕg) and ψg agree on the basis {σX}, they are equal, so F(ϕg) is an algebra map as required.

Since A is a central Schur ring, this is enough to conclude that ϕg is a Schur ring map.

When G acts on a supercharacter theory (X ,K), we may now consider the fixed Schur ring

AG = {a ∈ A | g · a = a for all g ∈ G}.

Since G permutes the {eX} basis, a basis for AG is given by the orbits of the basis elements

AG = k -span

{∑
X∈O

eX | O ∈ OrbitsG(X )

}

and this is clearly the basis of primitive orthogonal idempotents of AG. By the same argument,

the primitive idempotent basis of FH(AG) is given by

FH(AG) = k -span

{∑
K∈O

EK | O ∈ OrbitsG(K)

}
.

Having identified the primitive idempotent bases, the supercharacter theory corresponding to AG

is therefore (X G ,KG), where

X G =

{ ⋃
X∈O

X | O ∈ OrbitsG(X )

}
, and

KG =

{ ⋃
K∈O

K | O ∈ OrbitsG(K)

}
.

We have proved the following theorem.
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Theorem 5.2.3. Let G be a finite group, H a semisimple Hopf algebra with a commutative repre-

sentation ring and (X ,K) a supercharacter theory of H. Suppose G acts on (X ,K). Then (X G ,KG)

is a supercharacter theory of H where

X G =

{ ⋃
X∈O

X | O ∈ OrbitsG(X )

}
, and

KG =

{ ⋃
K∈O

K | O ∈ OrbitsG(K)

}
.

The following are direct consequences of the above theorem.

Corollary 5.2.4. Let (X ,K) be a supercharacter theory of H, and suppose that G acts on (X ,K).

Then the separate actions of G on X and K have equal numbers of orbits.

Corollary 5.2.5. Let (X ,K) be a supercharacter theory of H, and suppose that G acts on (X ,K).

Then G fixes {1} ∈ X and {ε} ∈ K.



Chapter 6

Rational supercharacter theories

Throughout Chapter 6 we fix a semisimple Hopf algebra H with a commutative representation

ring C(H) and character table T . We will assume from now on that k = C. Among supercharacter

theories arising from group actions, of particular interest is the supercharacter theory corresponding

to the central Schur ring fixed by a Galois group associated to each supercharacter table. We show

that this supercharacter theory has the property that all supercharacters are rational-valued (hence

integer-valued), and futhermore, it is the unique minimal supercharacter theory with this property.

We describe this supercharacter theory for an arbitrary abelian group, and compute the number of

supercharacters in the case of GL2(Fq).

6.1 The Galois group G(T )

Let (X ,K) be a supercharacter theory of H, and let T be the supercharacter table. The

entries of the matrix T are algebraic integers, and they lie in the cyclotomic field QN = Q(ζN )

where N is the exponent of H. Let Q(T ) be the smallest normal subfield of Q containing the entries

of T . Then we have Q ⊆ Q(T ) ⊆ QN . We then define G(T ) to be the Galois group Gal(Q(T )/Q).

The group G(T ) is the Galois group of the intermediate field Q(T ), so we can view it as a quotient

of the group Gal(QN/Q), where the natural map π : Gal(QN/Q)→ G is restriction to Q(T ).

The elements of Gal(QN/Q) are precisely the maps determined by ζ 7→ ζr where 1 ≤ r ≤ N−1

and gcd(r,N) = 1. As such, Gal(QN/Q) ∼= (Z/NZ)×. Each such r determines an element of G,

by restriction of the automorphism ζ 7→ ζr to Q(T ). Given an element of G(T ), the surjectivity
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of π implies that there is always some choice of r, though this choice is not unique. We will write

αr ∈ G to mean the restriction of ζ 7→ ζr to Q(T ), and as we just noted, every element of G(T ) can

be expressed (though not uniquely expressed) in this form.

6.1.1 The action of G(T ) on A

Fix a supercharacter theory (X ,K) of H, with corresponding central Schur ring A, and

character table T . Let G = G(T ). Then G acts on the Schur ring A as follows. Let eX be an

idempotent of A. Then associated to eX , and hence to X, is an irreducible character ψX of A,

defined by

aeX = ψX(a)eX

for all a ∈ A. The irreducible characters of A are all of the form ψX for some X ∈ X , and these are

precisely the algebra homomorphisms A → C. For each α ∈ G, choose an extension α̂ : C → C to

an automorphism of C. Then for each X ∈ X , the composition α̂ ◦ ψX is again an automorphism

A → C, and therefore must be ψY for some Y ∈ X . Since ψX and ψY are both completely

determined by their restriction to Q -span{cK | K ∈ K}, where they take values only in Q(T ), we

have that Y is determined by X and α independently of the choice of α̂. It can be checked that this

defines a (left) action of G on the set X , by α ·X = Y for all α ∈ G and X ∈ X , where ψY = α̂◦ψX .

Since G acts on X, it acts on A by algebra automorphisms, by linearly extending the permutation

α · eX = eα·X

for all α ∈ G and all X ∈ X .

6.1.2 The action of G(T ) on FH(A)

We now show that the action just described is in fact an action of G on A as a Schur ring.

It is enough to find an action of G on K that is compatible with the action on X . Let EK be an

idempotent of FH(A). Then associated to EK , and hence to K, is an irreducible character τK of
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FH(A), defined by

φEK = τK(φ)EK

for all φ ∈ FH(A). Then for all α ∈ G,K ∈ K, X ∈ X we claim that

τK(α̂−1 ◦ σX) = τL(σX)

for some L ∈ K depending on α̂ and K. To see this, we observe that

〈τK , α̂−1 ◦ σX〉 = 〈α̂−1 ◦ σX , cK〉

= α̂−1(〈σX , cK〉)

= α̂−1(〈τK , σX〉)

= 〈α̂−1 ◦ τK , σX〉.

Since the composition α̂−1 ◦τK is an algebra homomorphism FH(A)→ C, it must be an irreducible

character τL for some L ∈ K. By the same argument as before, τK and τL are both determined by

their values on Q -span{σX | X ∈ X}, which lie in Q(T ), so L depends only on α and K and not

on the choice of extension α̂. Thus we can define a (left) action of G on K by

〈τα·K , σX〉 = 〈τK , α̂−1 ◦ σX〉

for all α ∈ G, X ∈ X , K ∈ K.

Consequently, if ϕα is the automorphism of A induced by α ∈ G that permutes the idempo-

tents {eX} of A according to

ϕα(eX) = eα·X

then FH(ϕα) permutes the idempotents {EK} of FH(A) according to

FH(ϕα)(EK) = Eα·K .

6.2 Rational supercharacter theories

Definition 6.2.1. A supercharacter theory (X ,K) of H is rational if σX(cK) ∈ Q for all X ∈ X

and all K ∈ K.
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Remark 6.2.2. Since supercharacter values are algebraic integers, the supercharacter table of a

rational supercharacter theory is a matrix over Z.

Proposition 6.2.3. Let (X ,K) be the finest supercharacter theory, and let (Y,L) be a rational

supercharacter theory. Then (X G ,KG) ≤ (Y,L).

Proof. The Schur ring corresponding to (X ,K) is Z(H). Let A be the central Schur ring corre-

sponding to (Y,L). It suffices to show that A ⊆ Z(H)G . Let B = F(A). By applying F , it is

equivalent to show that B ⊆ C(H)G . Now B = k -span{σY | Y ∈ Y}. Let Y ∈ Y. Then it remains

only to show that σY ∈ C(H)G . But C(H)G contains all characters that are fixed by the action of

G. Since σY is rational valued, we have for each α ∈ G and each c ∈ Cl(H) that

〈αr · σY , c〉 =
∑
χi∈Y

χi(1)〈α · χi, c〉

=
∑
χi∈Y

αr(χi(1))α(〈χi, c〉)

=
∑
χi∈Y

α(χi(1)〈χi, c〉)

= α(〈σY , c〉)

= 〈σY , c〉.

Thus σY ∈ C(H)G as required.

Proposition 6.2.4. Let (X ,K) be the finest supercharacter theory. Then the supercharacter theory

(X G ,KG) is rational, so every entry of the supercharacter table lies in Z.
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Proof. Let X ∈ X G and let c ∈ Cl(H). Then for each α ∈ G we have that

αr(〈σX , c〉) =
∑
χi∈X

α(χi(1)〈χi, c〉)

=
∑
χi∈X

α(χi(1))αr(〈χi, c〉)

=
∑
χi∈X

χi(1)α(〈χi, c〉)

=
∑
χi∈X

χi(1)〈α · χi, c〉

= 〈α · σX , c〉

= 〈σX , c〉.

Since the fixed field of G is Q, the result follows.

6.3 Abelian groups

Let G be an abelian group, and let H = kG be the group Hopf algebra. We consider the

ordinary character theory (X ,K), so that

K = {{g} | g ∈ G}

and consequently the set of normalized class sums Cl(G) is G itself. We will identify the superclasses

K of the partition KG of the minimal rational supercharacter theory (X G ,KG). We need the

following lemma.

Lemma 6.3.1. Given g ∈ G, and αr ∈ G, there exists 1 ≤ r′ < |G| such that

(1) αr = αr′,

(2) gcd(r′, |G|) = 1.

Proof. We have that 1 ≤ r ≤ N − 1 and gcd(1, N) = 1, where N is the exponent of G. Let

|G| = p`11 p
`2
2 · · · p

`s
s
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be the unique prime factorization of |G|, where `i > 0 and write

N = pm1
1 pm2

2 · · · p
ms
s

where 0 ≤ mi ≤ `i since N divides |G|. Let

M1 =
∏
mi 6=0

p`ii and M2 =
∏
mi=0

p`ii

so that G = M1M2, gcd(M1,M2) = 1, and N |M1. Then by the Chinese remainder theorem, there

exists r′ such that 1 ≤ r′ ≤M1M2 = |G| satisfying

r′ ≡ r mod M1

r′ ≡ 1 mod M2.

Since N |M1, we have that r′ ≡ r mod N , so that αr = αr′ . If p is any prime dividing both r′ and

M1, then p must also divide r, since r = r′− tM1 for some integer t. This contradicts the fact that

gcd(r,N) = 1, so we must have gcd(r′, N) = 1. By definition of M1, this also gives gcd(r′,M1) = 1,

and clearly gcd(r′,M2) = 1. Thus we have that gcd(r′, |G|) = 1.

Lemma 6.3.2. Given 1 ≤ r′ ≤ |G| with gcd(r′, |G|) = 1, there exists 1 ≤ r < N such that

(1) gcd(r,N) = 1

(2) αr = αr′.

Proof. Choose r ≡ r′ mod N so that 1 ≤ r ≤ N − 1. It is clear that gcd(r′, N) = 1, since N | |G|.

Thus gcd(r,N) = 1, since any prime dividing both r and N would also divide r′, a contradiction.

Since r ≡ r′ mod N , we have that αr = αr′ .

By Lemma 6.3.1 and Lemma 6.3.2, it follows that for any αr ∈ G, we may assume that

gcd(r, |G|) = 1, since if this were not the case, we could find a new representative 1 ≤ r′ < |G| for

which this is the case. Since G is abelian, every character χ of kG is a homomorphism CG → C,

so we have that

〈χ, gr〉 = 〈χ, g〉r
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for all positive integers r, χ ∈ Irr(CG), and g ∈ G. Thus we have that

〈χ, gr〉 = 〈χ, g〉r = αr(〈χ, g〉) = 〈αr · χ, g〉 = 〈χ, (αr)−1 · g〉.

Proposition 6.3.3. Let g, g′ ∈ G. Then 〈g′〉 = 〈g〉 if and only if there exists α ∈ G such that

α · g = g′.

Proof. Suppose 〈g′〉 = 〈g〉. This is equivalent to the existence of a positive integer r such that

gcd(r, |G|) = 1, and gr = g′, which is to say

(αr)
−1 · g = g′

so take α = (αr)
−1.

Corollary 6.3.4. Let G be an abelian group and let (X ,K) be the minimal rational supercharacter

theory. The superclasses are in one-to-one correspondence with the cyclic subgroups of G, so that

the cyclic subgroup C corresponds to the superclass

K = {g | C = 〈g〉}.

Example 6.3.5. Let Cn = 〈g〉 be a cyclic group of order n. The n irreducible characters are the

algebra homomorphisms kCn → C, so they are all of the form χi(g) = ζi for a primitive nth root

of unity ζ. The character table is (up to reordering), the n× n matrix

Tij = 〈χi, gj〉 = ζij

for 0 ≤ i, j ≤ n− 1. Let

Xd = {{χi} | |χi(g)| = d} and Kd = {{gi} | |gi| = d}

where d ranges over the divisors of n. Then K1 = {1}, X1 = {ε}, Kn is the set of generators of Cn,

and Xn is the set of characters taking g to a primitive nth root of unity. The the minimal rational

supercharacter theory is given by

X = {Xd | d divides n} and K = {Kd | d divides n}.



84

Let σs = σXs and ct = cKt denote the supercharacters and normalized superclass sums, where

s and t range over the divisors of n. Using gn/t as a representative of the superclass containing

elements of order t, the supercharacter table (Tst) is the matrix with entries

Tst = 〈σs, ct〉 =

〈 ∑
|χi(g)|=s

χi, g
n/t

〉
=

∑
|χi(g)|=s

ζ(n/s)(n/t) = Tr
(
ζ(n/s)(n/t)

)
where Tr: Q(ζ)→ Q is the usual field trace

Tr(x) =
∑

α∈Gal(Q(ζ)/Q)

α(x).

Example 6.3.6. Let G be the group Cp × Cp for some prime p. Then the character table is a

p2 × p2 matrix. The supercharacter table T has only

p2 − 1

p− 1
= p+ 2

rows and columns, and is the integer valued matrix with T1i = 1, Ti1 = p− 1 for i 6= 1, and

Tij =

 p− 1 i = j

−1 i 6= j

for i, j 6= 1. With p = 5, we get that the supercharacter table is the 7× 7 matrix

T =



1 1 1 1 1 1 1

4 4 −1 −1 −1 −1 −1

4 −1 4 −1 −1 −1 −1

4 −1 −1 4 −1 −1 −1

4 −1 −1 −1 4 −1 −1

4 −1 −1 −1 −1 4 −1

4 −1 −1 −1 −1 −1 4



,

instead of the 25 × 25 matrix that represents the full character table. In some sense this matrix

reflects much of symmetry of the original group, while removing the symmetry that results from

choosing roots of unity.
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6.4 The family GLn(Fq)

Let k = Fq be the finite field with q elements. We begin by describing the conjugacy classes

of GLn(k) in §6.4.1, a description which can be found e.g., in Macdonald [21]. In §6.4.2, we

place some restrictions on which classes can belong to the same superclass in the minimal rational

supercharacter theory, to produce a lower bound on the rank. Finally, in §6.4.3 we compute the

rank of the minimal rational supercharacter theory of GLn(Fq) explicitly.

6.4.1 Conjugacy classes and Φ-Partitions

Let g ∈ GLn(k), and consider the action of the polynomial ring k[t] in the indeterminate t

on the vector space V = kn, where t acts by the automorphism g. That is, V is a k[t] module by

extending the action t · v = gv for all v ∈ V .

Lemma 6.4.1 (e.g., [21]). The isomorphism classes of GLn are in one-to-one correspondence with

isomorphism classes of k[t]-modules V , such that

(1) dimV = n, and

(2) t · v = 0 implies v = 0 for all v ∈ V .

�

Now let M = (k)× be the multiplicative group of the algebraic closure of k. The map x 7→ xq is an

field automorphism of k, hence is a group automorphism of M . Let Φ be the set of orbits.

Lemma 6.4.2 (e.g., [21]). Every orbit in Φ of size d ∈ {0, 1, 2, . . .} is of the form

{α, αq, αq2 , . . . , αqd−1}

for some α ∈M with αq
d

= α and the polynomial

f =
d−1∏
i=0

(t− αqi) ∈ k[t]

of degree d is irreducible. Furthermore, every irreducible polynomial f 6= t is of this form, for some

orbit in Φ of size d = deg(f). �
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Thus the orbits of Φ can be identified with the corresponding irreducible polynomial, so that we

denote by f either an orbit in M or the irreducible polynomial whose roots are determined by that

orbit, depending on the context.

Proposition 6.4.3 (Macdonald [21]). Suppose that V is a k[t]-module satisfying the conditions of

Lemma 6.4.1. For a polynomial f ∈ k[t], let (f) be the ideal of k[t] generated by f . Then V has a

primary decomposition

V ∼=
⊕
f,i

k[t]/(f)µi(f)

for some positive integers µi(f), where each f 6= t. �

Definition 6.4.4. Let n be a nonnegative integer. A partition µ of n of rank k is a (possibly

empty) list of nonnegative integers (µ1, µ2, . . . µk) such that µ1 ≥ µ2 ≥ · · ·µk and
∑

i µi = n. The

size of µ is n and we denote this by |µ|.

Example 6.4.5. Partitions are often depicted by rows of boxes called Young diagrams. We list all

non-empty partitions of n = 5 with the associated diagram:

µ Young diagram

(5)

(4, 1)

(3, 2)

(3, 1, 1)

µ Young diagram

(2, 2, 1)

(2, 1, 1, 1)

(1, 1, 1, 1, 1)

Proposition 6.4.3 shows that to each f appearing in the decomposition of a k[t]-module V ,
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there is an associated partition µ(f) = (µ1(f), µ2(f), . . . , µk(f), and these partitions satisfy

∑
µ(f)6=∅

deg(f)|µ(f)| = n.

The functions f appearing in the primary decomposition of V , together with the partitions µ(f),

uniquely determine the isomorphism class of V . This motivates the following definition, where P

denotes the set of partitions of all sizes.

Definition 6.4.6. A Φ-partition µ of rank n is a function µ : Φ→P satisfying

∑
f∈Φ

deg(f)|µ(f)| = n.

Given any Φ-partition of rank n, we can create work backwards to form the associated k[t]-

module V , and these are in turn in one-to-one correspondence with the conjugacy classes of GLn(k).

Thus the conjugacy classes of GLn(k) are indexed by the Φ-partitions of rank n.

Example 6.4.7. The (generalized) Jordan canonical form of a matrix g ∈ GLn(k) may be taken

as a representative of the conjugacy class of g. Let f ∈ Φ, with f = td + a1t
d−1 + · · · + ad and

define J(f) to be the d× d companion matrix

J(f) =



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3

...
...

. . .
...

...

0 0 · · · 1 −ad


.

Set Jm(f) to be the block diagonal matrix with m diagonal blocks of J(f). Then the block diagonal

matrix with blocks Jµi(f) is the generalized Jordan canonical form of the conjugacy class indexed

by the Φ-partition µ.

6.4.2 A lower bound on the rank of (X G ,KG)

We define the type of a Φ-partition and show that the number of types of Φ-partitions of rank

n is a lower bound for the number of superclasses of the minimal rational supercharacter theory of
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GLn(k). In particular, this is always a nontrivial supercharacter theory (neither the maximal nor

minimal supercharacter theory) when n ≥ 2 and q ≥ 3.

Definition 6.4.8. Given a Φ-partition µ, the type of µ is a tuple with entries (up to reordering)

indexed by f ∈ Φ such that µ(f) 6= ∅, where the entry in the position indexed by f is written

deg(f)µ(f).

Example 6.4.9. The polynomials t+ 4 and t2 + 4t+ 2 are irreducible over F5. The Φ-partition µ

mapping

(t+ 4) 7→ (2, 2, 1) and t2 + 4t+ 2 7→ (1)

has rank (1)(5) + (2)(1) = 7, so it indexes a conjugacy class of GL7(F5). The type of µ is

(1(2,2,1), 2(1)).

Let Jm(α) be the m×m Jordan block where each diagonal entry is α, each superdiagonal entry is

1, and all other entries are zero. We will need the following lemma, working over k.

Lemma 6.4.10. For 0 6= α ∈ k, the Jordan canonical form of the matrix Jm(α)r is Jm(αr).

Proof. Write Jm(α) = αIm+N , where Im is the m×m identity matrix, and N is the m×m matrix

with each superdiagonal matrix equal to 1, and all other entries equal to zero. Then we have

Jm(α)r = (αIm +N)r = αrIm +N ′

where N ′ is nilpotent and has rank m, so that Jm(α)r has rank m, and eigenvalue αr with multi-

plicity m. It follows that the Jordan form of Jm(α)r is Jm(αr).

Let f ∈ Φ of degree d. Since f has distinct roots in k, the Jordan canonical form of the

companion matrix J(f) is the diagonal matrix with diagonal entries given by the orbit f . By block

multiplication, the matrix Jm(f) is conjugate to the block upper-triangular matrix that replaces

companion matrix J(f) with its diagonalized Jordan form. By permuting rows and columns, this

matrix is similar to the block upper triangular matrix with blocks Jm(α), for each α ∈ f . Thus

we have that the Jordan form of Jm(f) is the block diagonal matrix with a block Jm(α) for each

α ∈ f . We are ready to prove the following.
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Lemma 6.4.11. Let f = {α, αq, . . . , αqd} ∈ Φ with d ≤ n and choose 1 ≤ r ≤ N satisfying

gcd(r,N) = 1 where

N = |GLn(Fq)| = qn − 1(qn − q) · · · (qn − qn−1).

Then Jm(f)r is conjugate to Jm(g) in GLn(Fq) where g = {β, βq, . . . , βqd} and β = αr.

Proof. First, since deg(f) = d, f is an orbit in F×
qd

. Since d ≤ n, we have that |F×
qd
| = qd − 1

divides N . It follows that gcd(r, qd − 1) = 1, and so the map x 7→ xr is a group automorphism of

the multiplicative group F×
qd

taking f to g. It follows that g is another orbit of the map x 7→ xq,

and so g ∈ Φ is again an irreducible polynomial of degree d, and g has the correct form.

The following diagram commutes, since exponentiation commutes with conjugation:

GLmd(Fq) GLmd(Fq)

GLmd(Fq) GLmd(Fq)

X 7→ TXT−1

X 7→ XrX 7→ Xr

X 7→ T−1XT

Starting at the top left, we follow the matrix Jm(f), and take T ∈ GLn(Fq) to be the matrix

such that TJm(f)T−1 is the Jordan canonical form
⊕

α∈f Jm(α). Raising to the r power gives⊕
α∈f Jm(αr). Conjugation by T−1 must give Jm(f)r ∈ GLmd(Fq) by commutativity. But this

shows that Jm(f)r has Jordan canonical form in GLmd(Fq) given by

⊕
α∈f

Jm(αr) =
⊕
α∈g

Jm(α),

which is the Jordan canonical form in GLmd(Fq) of the matrix Jm(g). Since Jm(g) and Jm(f)r are

conjugate in GLmd(Fq), they are also conjugate in GLmd(Fq).

Extending this result to block diagonal matrices with blocks of the form Jm(f), we have the

following corollary.

Corollary 6.4.12. Let g, g′ ∈ GLn(Fq) in conjugacy classes indexed by µ and µ′, respectively. If

gr = g′ for some power 1 ≤ r ≤ N with gcd(r,N) = 1, then µ and µ′ have identical types.
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Since superclasses in the minimal rational supercharacter theory are unions conjugacy classes

over orbits of the action g 7→ gr, it follows that any conjugacy classes in the same superclass must

be indexed by the Φ-partitions of the same type. Thus the number of superclasses is at least the

number of possible types. This ensures that this is not the maximal supercharacter theory as soon

as n ≥ 2, in which case we already have at least three distinct types: 1(1,1), 1(2), and 2(1). Since F×q

is a quotient of GLn(Fq) (by SLn(Fq)), once q ≥ 3 we have that the character table of F×q contains

irrational entries. By lifting characters of F×q , the same is true for the character table of GLn(Fq).

Thus for q ≥ 3, the minimal rational supercharacter theory is not the minimal supercharacter

theory. Combining these facts, we have that the minimal rational supercharacter theory is neither

the largest nor smallest supercharacter theory for n ≥ 2 and q ≥ 3.

6.4.3 Superclasses in GL2(Fq)

Let n = 2 and suppose q ≥ 3. Then the only possible non-empty partitions appearing in a

Φ-partition of rank n are µ = (2) and µ = (1). Similarly, the only possible irreducible polynomials

f that can be mapped to a non-empty partition are polynomials of degree 1 or 2. Then the only

possible types of Φ-partitions of rank 2 are given below.

Form of µ No. of classes(
1(2)
)

q − 1(
1(1,1)

)
q − 1(

1(1), 1(1)
)

1
2(q − 1)(q − 2)(

2(1)
)

1
2q(q − 1)

To count the total number of classes of each type, we count the number of polynomials in Φ

of the appropriate degree. For the first row and second row, there are q−1 irreducbile polynomials

of degree 1 (excluding f = t), since these all are of the form (t− α) for 0 6= α ∈ Fq. For the third

row, we need to choose two such polynomials in any order, which gives (q − 1)(q − 2)/2 choices.

For the fourth row, we can choose any polynomial of degree 2. These are orbits of the form (α, αq)

where each orbit is contained in F×
q2
− F×q . This gives (q2 − 1) − (q − 1) = q(q − 1) elements, and
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these are partitioned into orbits of size two. Thus there are q(q − 1)/2 choices for this polynomial.

From our lower bound, we know that the rank of the minimal rational supercharacter theory

is at least four, so that it must be nontrivial. In fact, the rank will generally be much larger, as we

will show. Since all conjugacy classes in a superclass are indexed by Φ-partitions of the same type,

it makes sense to talk of the type of the superclass. We consider each type separately and count

the number of superclasses of that type.

Lemma 6.4.13. Let τ(n) denote the number of divisors of n. The types 1(2) and 1(1,1) each belong

to τ(q − 1) superclasses.

Proof. For the types 1(2) and 1(1,1), raising to the r power takes J2(f) to J2(g) in the former case

or J1(f)→ J1(g) in the latter case. So in either case, the orbits of conjugacy classes are in this in

one-to-one correspondence with the orbits of F×q under the action x 7→ xr. This is a cyclic group

of size q − 1, and we are acting by the full automorphism group of F×q , so we are precisely in the

case of counting the superclasses in a cyclic group. We have seen that these are in one-to-one

correspondence with the number of divisors of the size of the group, in this case q − 1. Thus the

number of superclasses of type 1(2) or 1(1,1) is the number of divisors of q − 1, or τ(q − 1).

Lemma 6.4.14. There are τ(q2 − 1)− τ(q − 1) superclasses of type 2(1).

Proof. For the type 2(1), raising to the r power takes J1(f) to J1(g), so we need to count orbits

in F×
q2
− F×q under the action x 7→ xr. The total number of orbits in F×

q2
is τ(q2 − 1) and τ(q − 1)

of these are contained in F×q . If f = (α, αq), then α and αq lie in distinct orbits under the action

x 7→ xr, since gcd(r, q) = 1 for each r. It follows that there are τ(q2 − 1)− τ(q − 1) distinct orbits

of f , since each orbit of f corresponds to an orbit of α.

Lemma 6.4.15. There are

1

φ(q − 1)

∑
1≤r≤q−1

gcd(r,q−1)=1

[(
gcd(r − 1, q − 1)

2

)
+

gcd(r2 − 1, q − 1)− gcd(r − 1, q − 1)

2

]

superclasses of type (1(1), 1(1)).
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Proof. The conjugacy classes of this type have Jordan blocks J1(f)⊕J1(g) with f 6= g and deg(f) =

deg(g) = 1. Each degree one polynomial f 6= 0 determines an element of F×q . Then after applying

the map x 7→ xr, we are interested in orbits in F×q × F×q , discounting those orbits generated by

elements of the form (α, α), since we cannot have f 6= g.

Using Burnside’s lemma, this is the same as the average number of fixed points. It suffices to

consider 1 ≤ r ≤ q, since xq = x for all x ∈ F×q , and we are acting by all such r with gcd(r, q) = 1.

For a fixed r, we need to count the fixed points (α, β) ∈ F×q × F×q , up to reordering the pair, and

with α 6= β. We divide these fixed points into two cases.

For the first case, we could have (αr, βr) = (α, β) because the pair is fixed pointwise. Up to

reordering, this is the same as choosing two fixed points of F×q . Suppose α ∈ F×q is fixed, so that

αr = α. This occurs if and only if |α| divides r− 1. The number of elements in the cyclic group F×q

of order q − 1 with order dividing r − 1 is gcd(r − 1, q − 1). Thus the total number of fixed points

of this type is
(

gcd(r−1,q−1)
2

)
.

For the second case, we could have that (αr, βr) = (α, β) (up to reordering) because αr = β

and βr = α. This is possible if and only if αr
2

= α, i.e. if |α| divides r2− 1. As before, the number

of elements with this property is gcd(r2−1, q−1). Now, since we require α 6= β, we need to subtract

the number of pairs (α, α) with this property, but this is equivalent to finding the number of fixed

points of F×q , which we computed to be gcd(r − 1, q − 1). Then the total number of fixed points

(α, β) of this type for which α 6= β is gcd(r2 − 1, q− 1)− gcd(r− 1, q− 1), and up to reordering, is

1

2
(gcd(r2 − 1, q − 1)− gcd(r − 1, q − 1)).

For a given r, the number of fixed points of the map x 7→ xr (applied pointwise) is therefore(
gcd(r − 1, q − 1)

2

)
+

gcd(r2 − 1, q − 1)− gcd(r − 1, q − 1)

2

and the result follows by averaging over the possible values of r.

Combining these results, we have proved the following.
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Theorem 6.4.16. The rank of the minimal rational supercharacter theory for GL2(Fq) is

τ(q − 1) + τ(q2 − 1) +N(q)

where

N(q) =
1

φ(q − 1)

∑
1≤r≤q−1

gcd(r,q−1)=1

[(
gcd(r − 1, q − 1)

2

)
+

gcd(r2 − 1, q − 1)− gcd(r − 1, q − 1)

2

]
,

τ(n) is the number of divisors of n, and φ is the Euler totient function.

Example 6.4.17. We list the number |K| of congjugacy classes, the number |KG | of minimal

rational superclasses, and the ratio (to three decimals) for GL2(Fq) for a few small values of q ≥ 3.

q |K| |KG | |KG |/|K|

3 8 7 0.875

4 15 8 0.533

5 24 15 0.625

7 48 23 0.479

8 63 12 0.190

9 80 25 0.313

11 120 33 0.275

13 168 47 0.280

16 255 30 0.118

17 288 47 0.163

19 360 63 0.175
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